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The vague accuracy of events
dancing two by two with language,
which they forever surpass

William Carlos Williams
Paterson
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By ‘represent’ here I mean in anything like a standard philosophical
sense of designative, depictive or verisimilous representation of the
world by the mathematics of our best physical theories, e.g.:

a Tarskian relation of designation between elements of a math-
ematical space (“the space of states”) and states of a physical
system as in some versions of the semantic view (designative)
or similarity along the lines of Giere (depictive)
or the existence of a homomorphism of some kind between
mathematical stuff and stuff in the world à la the structural-
ists (verisimilous)
or a possible-worlds semantics for solutions to equations of
motion or field equations (elements of all three)

meaning is fixed by ontology



Even empiricists and instrumentalist such as Carnap and van
Fraassen subscribe to Tarskian-like semantics to give empirical
content to the mathematical formalism of theories.

It is in that sense that I claim that they (and almost all other
empiricists and instrumentalists I know of today) take the meaning
of mathematical formalism to be determined by designative
relations with respect to a fixed ontology, even if they are not
realists about the ontology.



natural accompaniment:

empirical content accrues to the mathematical formal-
ism of theory largely if not wholly by virtue of this kind of
representation—any physical significance the mathemat-
ics has derives from it



In today’s world of philosophy of physics, standard practice is to
require one of the following in order for one to feel that one has at
least the grounds for understanding a theory:
1. a fixing of the fundamental ontology of the theory;
2. or a fixing of the semantics of the theory using some variant

of the semantic view à la van Fraassen or (more popular these
days) a possible-worlds semantics à la Lewis

3. or whatever is demanded by any of a number of more niche
views about how to fix the empirical content of a theory, which
nonetheless have ardent backers, like the use of category the-
ory to characterize the models of a theory in such a way as
(the sometimes implicit claim goes) to allow for a unique ar-
ticulation of their physical significance.

Most often, proponents of such a thing think that that is all one
needs in order to do all the work of understanding a theory.



We need the freedom to pick and choose what philosophical tools
may be fruitful in any given investigative context, without the prior
expectation that one approach or set of tools will work everywhere.

sometimes, sketching a bare set of abstract interpretive princi-
ples does all the work one wants

other times, one needs to get down and dirty with the fine
details of theoretical calculations and of possible experimental
design without any pretense that a possible-world semantics or
abstract interpretive principles will do
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1. complexity of the world

Steven French once asked me over beers (well, I was having beer
and Steven was having a non-alcoholic beverage), what is the
difference between mathematical space and physical space?

I replied, well, it’s easier to find decent Chinese take-out in physical
space.

It was a joke, but it also had a point: I know how to recognize
decent Chinese take-out in physical space. I have no idea how even
to represent “decent Chinese take-out”, much less recognize it, in
any mathematical structure we use to model physical systems in
our best theories.1

1. “You think I open a restaurant in the middle of the ’hood and don’t know
what’s going on? I fucking represent.” – The Fugees, “Chinese Restaurant”



The world is a complex place, and our mathematical models of
its parts are almost childishly, recklessly simple. How can a
relation of “representation” hold between them?

(Steven and his ilk would be unimpressed by considerations of complexity, at
least as presented so baldly and briefly as here. I return to ideas related to this
theme and elaborate on them in problems 7–9 below)



2. levels of abstraction
Does—can—

F = ma

“represent” in the same way as

F = G
mM r̂

r2

Indeed, can it “represent” at all?

Can the latter do so in the same way as the equation modeling 2
perfect homogeneous spheres as a Keplerian binary system without
a specified target?

That modeling the Earth and the Sun as a concrete, individual
gravitationally coupled system, with lunar and Jovian perturbations
accounted for?

Do different levels of abstraction “represent” in the same way?

How does one decide when the mathematics is “concrete enough”
to represent?



3. “reading off” the meaning of mathematics

Not every mathematical operation one can meaningfully perform in
the structures used to formulate a theory has physical significance.

Just because one can apply a mathematical result or operation does
not ipso facto entail that it will have physical significance.

And even if it does seem to have physical significance, one must
always take some care and think about what that physical
significance is, not assume one knows it by “reading it off” the
mathematics in a way naively suggested by depictive representation.



the Hole Argument is a perfect example:

1. assume spacetime points are substantival in the sense that it makes sense
to imagine the world as it is, and the world such that each body occupies
different spacetime points

2. the relationship between those two physical situations, the Hole Argu-
ment assumes, is represented by a diffeomorphism, because that is the
mathematical operation representing “pushing stuff (tensor fields) around
on top of fixed spacetime (manifold) points”

3. but I have never seen an argument that dragging tensors around without
also dragging the points around, as a mathematical operation, has phys-
ical meaning at all, much less that meaning, in the investigative context
in which the Hole Argument is posed

4. that diffeomorphisms are properly interpreted in that way in such a con-
text is exactly what I want an argument for: the very fact that trying to
interpret diffeomorphisms in that way leads to a quagmire such as the
Hole Argument is a reductio of such interpretation

5. the reply will inevitably come, “But that’s just what diffeomorphisms
mean, it’s obvious from the mathematics.” No. Mathematics does not
interpret itself, no matter how “obvious” it may seem. There are always
different possible ways of interpreting the formalism, and one must have
principled grounds for choosing one.



4. same operation, different meanings

Sometimes, one and the same mathematical operation has different
physical significance depending on the investigative context in which it is
performed.

It makes no physical sense to “add two spatial positions” as a possible
representation of a physical operation, even though they are encoded in
the structure of a 3-dimensional vector space.

It does make sense to add them when computing a factitious quantity
such as the center of mass of a system of particles.

The formalism alone cannot distinguish such cases, as would be the case
if the math represented the world in a depictive sense.

Only pragmatics can distinguish them, a judgment of how the math is to
be applied and interpreted in any given investigative context not itself
determined by any formal or structural features of the math.



5. different formulations of the same theory
A naive reading of the mathematics misleads. General relativity:

1. manifold and metric tensor
2. manifold, metric tensor, and stress-energy tensor
3. manifold and tetrad field
4. manifold, tetrad field, and stress-energy tensor
5. section of SO(3, 1) principal fiber bundle
6. section of SO(3, 1) principal fiber bundle over a manifold and sec-

tion of the tensor bundle of 2-index symmetric covariant tensors
over the same manifold

7. manifold, choice of spin structure, and cross-section of the spinor
bundle over the double covering space of the manifold

8. manifold, choice of spin structure, cross-section of the spinor bundle
over the double covering space of the manifold, and spin coeffi-
cients of the stress-energy tensor

9. manifold, a diffeomorphism-invariant gauge theory of the Lorentz
group, with Lagrangian of the type f(F ∧ F ), where F is the cur-
vature 2-form of the spin connection, with 6 extra primary and sec-
ondary constraints



cont.

10. manifold and Synge’s biscalar “world function” (geodesic distance)
11. manifold, Synge’s biscalar “world function” (geodesic distance), and

stress-energy tensor
12. manifold and fixed set of values for scalars in parametrized post-

Newtonian formalism
13. manifold and fixed set of values for scalars in parametrized post-

Newtonian formalism, and stress-energy tensor
14. Einstein algebra
15. Einstein-Hilbert action
16. Palatini action (and variants)
17. Eddington-Schrödinger affine formulation
18. Cartan’s tetrad formulation (and variants)
19. Plebański’s chiral formulation
20. chiral pure-connection formulation
21. all the many, many 3+1 formulations
22. all the many, many 2+2 formulations
23. . . .



Do some “really represent” and others not?

Do some “really represent” only in so far as one can transform their
results into the language of The One Formulation, canonical and
privileged above all others?

That seems silly to me. In so far as they all work equally well, they
all represent equally well. Or not.

There is no principled way to say one is “canonical” or “privileged”.



6. meaning without representation

There can be meaning, physical significance, without representation: the
physical significance of the symplectic structure in Hamiltonian
mechanics is, in part, energy conservation.

Not even the hardest of the hardcore realists would be tempted to think
that the symplectic structure “represents”.

Indeed, one can not even make sense of the idea that it designates
something in, e.g., the semantic view of theories or possible world
semantics, because it is a relation on the entire class of models.



7. “Oh, Lord, ooh, you are so big, so absolutely
huge. . .

. . . Gosh, we’re all really impressed down here I can tell you.”

The overwhelmingly, unimaginably vast majority of structures, solutions,
etc., associated with the mathematical formalism of every single physical
theory I know is unknown to us, and, moreover, unknowable by us, and by
any epistemic agents we can imagine as being remotely like us in any way.

GR as class of Lorentzian 4-geometries:

even just at the level of topology, the problem is inconceivable

the issue of individual metrics exponentiates it

even trying to use “general principles” to narrow down and fix on
“manageable, physically reasonable” classes of spacetimes doesn’t
help



I think we tend to forget in philosophy, we lose sight of, how complex real
physical systems are and what a miracle it is that our almost naively,
recklessly simple-minded theories, and the childishly sketched models we
construct in those theories, can still capture them with astonishing
accuracy, and do so in ways, moreover, that seem to give us real
understanding of the nature of the world in a broader sense.

And correlatively, we forget how much distance there is between those
simple models we do know in any given theory and the real physical
systems they purport to represent, and so we forget how many of the
theory’s other models would also perform the depictive representational
tasks better and prima facie do them better (by adding ever more finely
grained detail, for example), if one of them does at all—how many of
those models that we have no idea how to construct in any way graspable
by the human mind, or indeed even how to identify if someone gave us
one gift-wrapped.



Thus we are saying that, on depictive views, the overwhelming
majority of the empirical content of a theory is something that we
do not know, are in fact nowhere near knowing, and have good
reason to think we will never know in anything resembling
thoroughness and detail

epistemologically speaking, the idea that a theory even has
non-trivial cognizable empirical content is an act of faith.

What possible use could such a thing have to a fruitful analysis of
the content and structure of our knowledge and understanding in
physics?



8. which parts of the math represent?

Consider the problem of knowing which parts of “realistic” or “physically
significant” solutions and models do represent parts of physically possible
systems. This is not the problem of “gauge” or “surplus structure”.

Take Navier-Stokes theory (the classical theory of viscöelastic,
thermoconductive fluids), a continuum theory—the solutions to its
equations allow one to make, indeed they necessarily encode, physical
predictions at arbitrarily small spatial and temporal scales (say, 10−100

cm); but we know that it is not appropriate for that task, and we know
we can safely ignore those “predictions” of the theory in assessing its
propriety and adequacy.

We know this, however, by nothing determined by the formalism, by the
mathematics. It is wholly a pragmatic affair to determine the regime of
applicability of a physical theory. (“It needs a lot of intuitive physical
sense to know when to expect actual things to behave like the idealized
models we make of them.” –Synge, Relativity: The Special Theory, ch. i,
§18, p. 32.)



9. the breakdown of theories

We use theories to model systems, and to model them well, i.e.,
fruitfully, in a way that teaches us much and also displays our
conceptual mastery of them and their behavior. . .

even when the systems are in states such that the models are in no
way predictively accurate

when, that is, there can be no question of the math representing
the system in any depictive sense.



Every theory, for every kind of physical system it treats, has
characteristic breakdown scales—spatial, temporal, energetic, et
al.—beyond which the theory is no longer appropriately and
adequately applied.

The predictive accuracy of Navier-Stokes theory breaks down as a
fluid approaches turbulence.

Nevertheless, even while the dynamical equations of the theory no
longer yield accurate predictions, other parts of the theory, the
kinematical relations among its quantities (e.g., that the
shear-stress tensor is symmetric, and that heat flux is always
independent of the pressure gradient), still are meaningfully applied
to model some aspects and features of the system in those states.



It is those kinematical relations that we use, among other purposes,
to guide the design of instruments to probe the systems, which
shows that the theory can capture something of deep physical
significance about the systems even when it is not predictively
accurate of them.

But, again, there can be no question of depictive representation
without predictive accuracy.
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The root of all these problems is that contemporary philosophy has a
fundamentally mistaken picture of what a physical theory is.

It is not a formal system in conjunction with rules of interpretation, or
principles of coordination, or formal semantics, or sketches of
representational capacities, or some such thing to bring the formalism into
empirical contact with phenomena by virtue of relations of representation.

A physical theory is a body of inter-related knowledge and understanding,
both theoretical and experimental, about some more or less clearly
delineated part of the physical world (classical viscöelastic,
thermoconductive fluids, e.g., or weakly ionized, inviscid plasmas).

The theory is a structured network of our concepts about such things in
combination with the practical mastery of experimentation on and
observation of them.



It is our concepts that (we attempt to use to) represent. They are
the Peircean symbols.

Math does not represent, but rather serves as the Peircean icon or
index mediating the relation of representation between our thought
(the Peircean symbol) and the world.

Math is a tool we use to bring our concepts and the world into
contact.

Indeed, math provides us a wealth of different tools to use in order
to bring our concepts and the world into contact (and that itself in
a number of different ways), nothing more, nothing less. Some of
those tools function in ways that superficially resemble standard
ideas of representation, even though they are nothing like it in any
important sense; others do not.



Math does not represent the world in any interesting sense—it
rather mediates the way that our concepts attempt to
represent the world.



When I say “math does not represent,” I mean in a very broad
sense: philosophers of science, realist and instrumentalist alike,
tend to think that all math in physical theory gets its meaning in
exactly (or primarily) one way—representation, whether they are
realists about the ontology or not

and so, correlatively, that it can play only one role (or primarily one
role) in giving an account of how we come to know about the world
and what it is that we know when we do.

But that’s not how terms in a theory’s formalism acquire physical
significance. They do so by the use we make of them as tools in
mediating the connection between our concepts and the world, and
how each functions as a tool is something we must work out on a
case-by-case basis; it is not something fixed once and for all.



a sampling from the mathematical toolbox of
general relativity

contributes to Tab (e.g., Maxwell field)
required for initial-value formulation of manifestly physical fields
(e.g., Maxwell field, gab)
dynamically couples to manifestly physical entities (e.g., Maxwell
field, gab)
dynamically couples to manifestly physical quantities that more
than one type of physical system can bear (e.g., Einstein tensor)
acts as a measure of an observable aspect of manifestly physical
entities (e.g., Riemann tensor)
enters the field equation of a manifestly physical structure (e.g.,
Einstein tensor)
constrains the behavior of a manifestly physical entity (e.g., Killing
field, conformal structure)
plays an ineliminable (albeit physically obscure) role in the math-
ematical structure required to formulate the theory (e.g., Einstein
tensor)



Still, it sometimes seems difficult to deny that math “directly
represents” in the depictive, verisimilous sense. Think, e.g., of the
ellipses of Kepler that Newton put to such profound use.

I believe we feel so strongly that the math “directly latches on to
the physical world” in such cases because the physical concepts
embodying the theory enlivens in our understanding the
mathematical concepts constituting the formal structure we use as
a tool to help us bring our concepts to bear in attempting to reason
and learn about the world.



Part of the common way of grasping the physical notion of “circle”,
e.g., just is “body moving in a particular way”. That physical idea
then is commonly brought to bear, for the most part unconsciously,
in our picture of the mathematical concept of “circle”, in how we
grasp and make use of the concept.

And so we mistake the physical content enlivening the
mathematical concept for a relation of representation, for a
fantastical capacity of the mathematical concept to reach out and
make direct contact with the physical world.



How deeply the physical penetrates, grounds and enlivens the
mathematical, in a way familiarized by the pedestrian-perceptual,
how much we use the physical to understand the math, measures
how strongly we feel the math “directly represents” the world.

This is why it is easy to think that the mathematical formalism of
quantum theory “does not represent”—because the way we
understand an element of a complex function space with a
sesquilinear form is not enlivened by any physical concepts
familiarized from the pedestrian-perceptual, nor the way we
understand a linear functional on an abstract normed algebra with
involution, closed under the weak topology.
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van Fraassen, The Scientific Image (p. 8, his italics):

Science aims to give us, in its theories, a literally true
story of what the world is like; and acceptance of
a scientific theory involves the belief that it is true.
This is the correct statement of scientific realism.



My picture allows for a more satisfactory explication of the idea of
realism.

Realism has nothing to do with representation—that “a theory tells
us what the world would be like if the theory were true”. It is rather
the idea that:
1. our theories are such that they can teach us more about the

world than how to predict experimental outcomes;
2. and we are in an epistemic state such that we can learn from

our theories to understand the world in ways that lie deeper
and that go beyond the prediction of experimental outcomes.



I can believe that “there is a way the world is”—and do so with
good reason—without being a realist in the sense that I believe our
best scientific theories are, with respect to ontology, a veridical or
even merely adequately accurate representation of the world in any
traditional sense.



Math does not give us verisimilous descriptions of the world to
believe in.

Rather, we use math to confabulate ways of thinking about the
world that conduce to understanding.
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