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ABSTRACT

Every physical theory has (at least) two different forms of mathematical equations to
represent its target systems: the dynamical (equations of motion) and the kinematical
(kinematical constraints). Kinematical constraints are differentiated from equations of
motion by the fact that their particular form is fixed once and for all, irrespective of
the interactions the system enters into. By contrast, the particular form of a system’s
equations of motion depends essentially on the particular interaction the system enters
into. All contemporary accounts of the structure and semantics of physical theory
treat dynamics, i.e., the equations of motion, as the most important feature of a theory
for the purposes of its philosophical analysis. I argue to the contrary that it is the
kinematical constraints that determine the structure and empirical content of a physical
theory in the most important ways: they function as necessary preconditions for the
appropriate application of the theory; they differentiate types of physical systems; they
are necessary for the equations of motion to be well posed or even just cogent; and they
guide the experimentalist in the design of tools for measurement and observation. It
is thus satisfaction of the kinematical constraints that renders meaning to those terms
representing a system’s physical quantities in the first place, even before one can ask
whether or not the system satisfies the theory’s equations of motion.
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1 Introduction

Every physical theory has (at least) two different forms of mathematical equations to represent its
target systems: the dynamical (equations of motion) and the kinematical (kinematical constraints).
Since at least the seminal work of Suppes (1960, 1962), contemporary investigation and analysis
of the structure and semantics of physical theories has focused on the character and role of a
theory’s equations of motion. In particular, the family of solutions to the equations of motion,
and the models those solutions allow one to construct, have taken pride of place in determining
the structure and semantics of a theory. This is true whether one hews to the semantic view of
theories (Suppe 1974a; van Fraassen 1980) or the Best-Systems picture (Cohen and Callender 2009)
or a semantics based on possible worlds (Lewis 1970; Butterfield 2021), or one is a neo-Carnapian
(Demopoulos 2013; Lutz 2014), or a structuralist (Stegmüller 1979; da Costa and French 2003),
or an inferentialist (Suárez 2004), or one tries to reconcile the syntactic and the semantic views
by the use of category theory (Halvorson and Tsementzis 2017), or one champions a sophisticated
syntactic view on its own (Lutz 2014), or one uses category theory directly to represent the models
of the theory (Weatherall 2017), or almost any other of the contemporary popular (and niche)
accounts of scientific theory. Only a fool or a philosopher would deny that the dynamics of a
theory plays a central role of fundamental importance in a proper accounting of its structure and
semantics. I believe, however, that focus on the dynamics to the exclusion of other fundamental
structures theories possess can give at best only a partial picture of a theory, and in many if not
most cases a distorted, misleading and even wildly inaccurate one.

I argue that it is satisfaction of the kinematical constraints—fixed, unchanging relations of
constraint among the possible values of a system’s physical quantities—that ground the idea of
the individual state of a system as represented by a given theory. If the individual quantities a
theory attributes to a system do not stand in the minimal relations to each other required by the
theory, then the idea of a state as representing that kind of system cannot be cogently formulated,
and without the idea of an individual state of a system one can do nothing in the theory to try
to represent the system. A fortiori, if the kinematical constraints are not satisfied, one has no
grounds for believing that the system at hand is one of the type the theory treats. It is thus
those constraints that differentiate types of physical systems, and not their dynamics. Kinematical
constraints, therefore, also function as necessary preconditions for the appropriate application of
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the theory in the first place, before one can even ask whether a given system the theory purportedly
treats satisfies its equations of motion. Indeed, they are necessary for the equations of motion to
be well posed or even just consistent. Finally, they, and not the equations of motion, guide the
experimentalist in the design of tools for measurement and observation.

In sum, it is satisfaction of the kinematical constraints that renders meaning to those terms
representing a system’s physical quantities in the first place, even before one can ask whether or
not the system satisfies the theory’s equations of motion.

2 Kinematics and Dynamics

It is often useful when contemplating a physical theory to distinguish its kinematical from its
dynamical components. I begin with a general account of this.

The difference between the kinematic and the dynamic manifests itself first in the family of
quantities a theory ascribes to a type of system. On the one hand, there are the quantities that can
vary with time and place while the system remains otherwise individually the same; these are the
dynamic quantities (position, velocity, angular momentum, shear-stress, electric current, . . . ). On
the other, there are the quantities that one assumes, for the sake of argument and investigation,
remain constant as the system dynamically evolves, on pain of the system’s alteration in specie;
these are the kinematic quantities (Newtonian mass, Hooke’s constant, electrical resistance, shear
viscosity, thermoconductivity, index of refraction, quantum spin, . . . ). This classification belongs
to kinematics.

A state of a system is the aggregation of the values of its physically significant properties at
an instant; it is represented by a proposition encapsulating all that can be known of the system
physically, at least so far as the theoretical and experimental resources one relies on are concerned.
If one can distinguish the values of the properties of the system at one time from those at another
time by the available resources, then the system is in a state at the first time different from that
at the second. A state, therefore, can be thought of as a set of the values of quantities that jointly
suffice for the identification of the species of the system and for its individuation at a moment.
As such, the state is the most fundamental unit of theoretical representation of a system as a
unified system, rather than just as (say) a bunch of random, unrelated properties associated with
a spatiotemporal region. The characterization of a system’s state belongs to kinematics. Every
known physical system has the property that at least some of its quantities, the dynamical ones,
almost always change in value as time passes, which is to say, the system in general occupies
different states at different moments of time. The collection of states it serially occupies during an
interval of time forms a dynamical evolution (or just ‘possible evolution’). The characterization of
possible evolutions belongs to dynamics.

Kinematics does more than classify the quantities of a type of physical system into the kinematic
and the dynamic and characterize the state of the type of system. It also imposes fixed, unchanging
relations of constraint among their possible values, both constraints that must hold at a single
instant and those that must hold over the course of any of the system’s possible evolutions. More
precisely, there are two kinds of kinematical constraints a theory may comprise, the local and the
global. A local constraint involves only quantities that can be attributed to a single state of the
system, such as position; a global one involves a quantity that cannot be attributed to any single
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state of the system, such as the period of an orbiting body.1 Examples of kinematical constraints:

• Hooke’s constant k has physical dimension
m

t2
(local)

• the shear-stress tensor is symmetric in Navier-Stokes theory, σab = σ(ab) (local)

• Kepler’s Harmonic Law,
a3

T 2
= M (global)

• the stress-energy tensor is covariantly divergence-free in general relativity, ∇nTna = 0 (local)

• the Heisenberg uncertainty principle, ∆x∆p ≥ 1
2~ (local)

Different types of physical system can have the same quantities formally, but they will always obey
different kinematical constraints among themselves. Both viscous fluids and elastic solids have a
shear-stress tensor and a coefficient of thermoconductivity, all with the same physical dimensions,
and the shear-stress tensor of both is symmetric. They jointly obey different kinematical con-
straints, however: the shear-stress tensor of each, for instance, stands in a different fixed relation
to the heat flux, i.e., a relation that holds for all states, irrespective of how the system is evolving
or what interactions it is experiencing with its environment.

Roughly speaking, then, kinematics comprises what one needs to know in order to fix the type
of system at issue (is it a viscous fluid? an elastic solid? an electromagnetic field?) based on the
particular kinematic and dynamic quantities it possesses and the kinematical constraints holding
among them, and to give a complete description of its state at a single moment—complete, that
is, with respect to the theory at issue, i.e., a consistent ascription of values to all the quantities it
bears that are treated by a model of it in the theory. Dynamics comprises what one needs to know
in order to individuate a system (the concrete values of all its dynamic quantities, e.g., position and
velocity) and to describe its behavior over time (how those values change), in order to conclude,
for example, that one’s model represents this system right here by the determination of the values
that a particular set of its quantities respectively takes over the next 5 minutes, given both its
state at the initial moment and the state of its environment (the forces, if any, it is subject to, or
the interactions it enters into) at that moment and over the course of those 5 minutes.

I shall spend most of the rest of the paper discussing kinematics (and dynamics mostly by
way of contrast). Although there is much more to say about the dynamical structure of a physical
theory, for the purposes of this paper I must rest content with remarking that it includes in general
a rich and deep lode of topological, geometrical, analytical and algebraic structures on the space
of states that in particular encode relations among entire classes of dynamic evolutions; those
relations often take in part the form of a set of partial-differential equations expressed in terms

1. There is a subtlety here. Any kinematical constraints that involve derivatives may be concived of as depend-
ing on values of quantities at more than one state, even for local constraints, depending on one’s views on what
“differentiation” means as a representation of part of a physical process; some global constraints, moreover, can
be formulated by laying down conditions that must hold at individual states (e.g., that a Newtonian orbit be an
ellipse can be formulated as a constraint on the value of the spatial derivative at every point of the orbit, or on
the sum of the distances from the foci at each point); this seems superficially similar to some local ones, e.g., con-
servation of angular momentum, which can also be formulated as a relation among derivatives at different points.
Whether a constraint, then, is global or local, depends in part on whether one can formulate the condition over
arbitrarily short periods of a possible evolution, which one can for conservation of angular momentum (the sys-
tem satisfies angular momentum, say, during one part of an evolution but not another), but not for whether a
planetary orbit is an ellipse (where, by definition, one must wait an entire orbital period before one can say the
condition is satisfied or not).
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of the kinematic and dynamic quantities, viz., the equations of motion, the solutions to which
represent the totality of the system’s dynamical evolutions starting from all kinematically possible
initial states. The canonical example is Newton’s Second Law: a Newtonian body accelerates in
direct, fixed proportion to the net total force applied to it, the ratio of the acceleration to the total
force being the kinematic quantity known as the body’s inertial mass.

3 Kinematical Constraints

Kinematical constraints are differentiated from equations of motion by the fact that the particular,
concrete form of a kinematical constraint is fixed once and for all, irrespective of the interactions the
system may enter into with other systems (such as a measuring apparatus in the laboratory). By
contrast, the particular, concrete form of a system’s equations of motion depends essentially on the
particular interaction (if any) the system enters into with another system in its environment—e.g.,
what external forces, if any, act on the system.

The difference between a kinematical constraint and an equation of motion comes out clearly
in Newton’s Second Law, written out explicitly as two coupled first-order differential equations.

ẋ = v

(always the same: kinematical constraint)

versus

v̇ = F/m

(the concrete form of F depends on environment, forces: equation of motion)

For a more interesting example, consider Maxwell’s equations. According to this characterization,
the first two,

∇ ·B = 0

Ḃ = −∇×E
(3.1)

those governing the magnetic components B of the electromagnetic field, are both local kinematical
constraints. They are kinematical constraints and not equations of motion because neither changes
form no matter the environment the electromagnetic field evolves in (ignoring the possibility of
magnetic monopoles, which, if they were to exist, would yield a theory different from classical
Maxwell theory2). Indeed, even though one of the equations includes the time-derivative of a
quantity, making it look like an equation of motion, I claim that from a physical point of view
one must think of them both as kinematical constraints. The crux of the matter is that the
electromagnetic field couples with other systems only by way of their manifestation of electric
charge ρ or current j, but those quantities when present change the form only of the other two of
Maxwell’s equations,

∇ ·E = ρ

Ė = j−∇×B
(3.2)

2. See Dirac (1931) for an argument to this effect, which also gives some insight into dynamics versus kinemat-
ics more generally.
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those governing the electric components E of the electromagnetic field. In effect, the difference
between the two pairs of relations shows that, in a precise sense, the magnetic field couples directly
with no physical quantity of any other system in that the presence of electric charges and currents
does not alter the form of its two defining equations. (The magnetic field does couple to electric
charge “to second order” by way of the second of equations (3.2), whence Ampère’s Law.) Thus
the form of equations (3.1) does not depend on the particular dynamical evolution the system
manifests at any given time. Nonetheless, not just any old thing counts as a magnetic field no
matter how it evolves and no matter what relations hold among its quantities at different points;
only those things that behave like magnetic fields can be magnetic fields, which in this case means
the identical satisfaction of the first two of Maxwell’s equations.3

4 Roles in Theory

Theories do not predict kinematical constraints; they demand them. I take a prediction to be
something that a theory, while appropriately modeling a system, can still get wrong. Newtonian
mechanics, then, does not predict that the kinematical velocity of a Newtonian body equal the
temporal rate of change of its position; rather it requires it as a precondition for its own applica-
bility. It can’t “get it wrong”. If the kinematical constraints demanded by a theory do not hold for
a family of phenomena, that theory cannot treat it, for the system is of a type beyond the theory’s
scope. By contrast, if the equations of motion are not satisfied, that may tell one only that one
has not taken all ambient forces on the system (couplings with its environment) into account; it
need not imply that one is dealing with an entirely different form of system. Even in principle,
one can never entirely rule out the mere possibility that the equations of motion are inaccurate
only because there is a force one does not know how to account for, not because the system is not
appropriately treated by those equations of motion. This can never happen with a kinematical
constraint. It is either satisfied, to the appropriate and required level of accuracy given the mea-
suring techniques available and the state of the system and its environment, or it is not. This is a
serious difference in physical significance among the types of proposition a theory contains, which,
among other things, should be reflected in the way an account of semantics assigns significance to
the theory’s structural elements.

Indeed, satisfaction of kinematical constraints is required for the equations of motion of a
theory to be well posed or even just consistent. The initial-value formulation of the Navier-Stokes
equations, for example, is well set (in the sense of Hadamard) only if the shear-stress tensor
is symmetric and the heat flux is transverse to fluid flow, both kinematical constraints (Lamb
1932; Landau and Lifschitz 1975). One cannot even formulate Newton’s Second Law if velocity
is not the first temporal derivative of position. (This is not as trivial a proposition as it may

3. That one of the defining equations for a Maxwell field in the four-dimensional formulation (the equation
representing the fact that the Faraday tensor is curl-free) does not require the metric at all for its formulation—
the exterior derivative is determined by the differential structure of the underlying manifold—is a striking way to
make precise the idea that it is a kinematical constraint. It is only the other equation, the covariant divergence of
the Faraday tensor set equal to the charge-current 4-vector, that is the equation of motion; and when one decom-
poses the Faraday tensor into E and B components, the curl-free equation for the Faraday tensor is equivalent to
equations (3.1), and the divergence equation is equivalent to equations (3.2). (See Malament 2004 for an exposi-
tion of the 4-dimensional formulation.) Note that this holds in general relativity, not only in special relativity.

6



sound on first blush, for there are theories in which velocity is not the first temporal derivative of
position, e.g., relativistic fluid mechanics; see, e.g., Landau and Lifschitz 1975 and Earman 1978.)
More generally, in a sense one can make precise (Curiel 2014), if the kinematical constraints of
Lagrangian mechanics are not satisfied (v = q̇), then one cannot formulate the Euler-Lagrange
equation; and similarly, if the kinematical constraints of Hamiltonian mechanics are not satisfied
(the ps and qs do not satisfy the canonical Poisson-bracket relations4), then one cannot formulate
Hamilton’s equation. Thus satisfaction of the kinematical constraints is required as a precondition
for the appropriate application of a theory in modeling a kind of system, and so the kinematical
constraints in fact function in that precise sense as a priori constitutive components of a physical
theory.5

This is not true of the dynamical relations the theory posits. A theory may appropriately treat
a family of phenomena even when it does not model the dynamical behavior of all members of the
family to any prescribed degree of accuracy, i.e., even when the equations of motion are not satisfied
in any reasonable sense (and thus when, according to the standard conception of semantics, the
schematic representations of those phenomena cannot contribute to the semantic content of the
terms occurring in those representations). A theory, however, can and does tell us much about
the character and nature of physical systems for which it does not give accurate representations,
systems, in other words, it cannot soundly represent in totality, cannot be true of, and so systems
that, according to all the standard contemporary accounts of theory structure and semantics, the
theory should have nothing to say about at all. If a system’s behavior is not accurately captured
by a theory’s equations of motion, then that system cannot, e.g., be represented by a Tarskian
model constructed from a solution to the equations of motion; it is thus, according to the semantic
view of theories, for instance, not even a candidate for contributing to the semantic content of
the theory’s theoretical terms, inter alia. In fact, though, such systems can still be appropriately
represented by that theory in a precise and important sense, even though the equations of motion
are not satisfied, so long as the kinematical constraints are.

Consider the example of a representation of a body of liquid as provided by the classical theory
of fluid mechanics, Navier-Stokes theory. When the liquid is not too viscous, is in a state near
hydrodynamical and thermodynamical equilibrium, and the level of precision and accuracy one
demands of the representation is not at too fine a spatiotemporal scale, then the classical theory
yields excellent models of the liquid’s behavior over a wide range of states and environments. When
the state of the liquid, say, begins to approach turbulence, the representation the theory provides
begins to break down. It does so, however, in a subtle way, one that cannot be wholly accounted

4. (qi, pj) satisfy the canonical Poisson-backet relations if

{qi, qj} = 0

{qi, pj} = δij

{pi, pj} = 0

(4.3)

where δij is the Kronecker delta symbol, which equals 1 for i = j and 0 otherwise.
5. Indeed, sometimes the kinematical constraints uniquely determine the equations of motion, as in Hamilto-

nian mechanics; and sometimes they determine part of the form, as in Lagrangian mechanics where the kinemati-
cal constraints imply that the Euler-Lagrange equation is second order. See theorem 5.1 (p. 302) of Curiel (2014)
for a precise statement of the claim about Hamiltonian mechanics, and the informal argument on pp. 311ff. of the
same for the claim about Lagrangian mechanics.
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for by adverting merely to the fact that the theory’s equations of motion become predictively
inaccurate. In particular, there is a regime in which the theory’s dynamical equations of motion no
longer provide accurate predictions by any reasonable measure, and yet all the quantities the theory
attributes to the liquid (e.g., shear viscosity, mass density, hydrostatic pressure, shear-stress, et al.)
will still be well defined, and all the kinematical constraints the theory jointly imposes on those
quantities (e.g., the constancy of shear viscosity, the continuity of mass-density, the conservation
of energy, the symmetry of the shear tensor, etc.), will still be satisfied (Monin and Yaglom 1971;
Pope 2000). Call it the regime of kinematical propriety. In a strong sense, then, the theory can
still provide a meaningful—and appropriate—model of the liquid even though that model is not
adequately accurate in all its predictions. This sort of situation, where the theory’s dynamics are
no longer adequate but its kinematics are still appropriate, shapes and provides at least part of
the physical meaning of terms like ‘mass density’ and ‘shear’—physical meaning that ipso facto
cannot be captured by a semantics that grounds meaning on the dynamics of the theory, and in
particular by one that relies wholly or even in large on part on the family of solutions to the
theory’s equations of motion.

More precisely, then, a view about the structure and semantics of physical theory based ulti-
mately on dynamics is inadequate for (at least) two reasons. First, it does not allow us, within the
scope of the theory itself, to understand why such models are not sound even though all the quan-
tities the theory attributes to the system are well defined and the values of those quantities jointly
satisfy all kinematical constraints the theory requires. Second, we miss something fundamental
about the meaning of various theoretical terms by rejecting such models out of hand merely on the
grounds of their inaccuracy. It is surely part of the semantics of the term ‘hydrostatic pressure’,
e.g., that its definition as a physical quantity treated by classical fluid mechanics breaks down
when the fluid approaches turbulence closely enough; because, however, the theory’s equations
of motion stop being accurate long before, in a precise sense, the quantity loses definition in the
theory and long before the kinematical constraints of the theory stop being satisfied, any account
of the structure of theories and their semantics that rejects the inaccurate models in which the
term still is well defined will not be able to account for that part of the term’s meaning. Thus, an
adequate account of physical theory must be grounded on notions derived from relations in some
sense prior to the theory’s representations of the dynamical behavior of the physical systems it
treats, relations that govern the propriety of the theory’s representational resources for modeling
the system at issue. These are the the theory’s kinematical constraints.

One may think that this discussion about how, where and when theories break down more
properly belongs to pragmatics (in the sense of semiotic theory) than to semantics. That is not so.
A system of formal semantics that would ground itself in the family of possible physical systems
for which it provides sound models cannot even get started until that family is demarcated. But
that is exactly to require an investigation of the boundary of the theory’s regime of kinematical
propriety, which is thus logically and conceptually prior to any such system of semantics.

In order to be able to formulate and evaluate any kinematical constraint, of course, the quan-
tities themselves in the terms of which the constraints are formulated must be well defined in the
theory. For this to be the case, it is necessary that one be able to formulate the local kinematical
constraints and verify that they hold. Without the satisfaction of the local kinematical constraints,
the entire idea of the individual state of a system as represented by that theory cannot be cogently
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formulated—individual quantities do not stand in the minimal relations to each other required by
the theory for that type of system—and without the idea of a state of a system, one can do nothing
in the theory to try to treat the system.6

More to the point, if the local kinematical constraints are not satisfied, one has no grounds for
believing that the system at hand is one of the type the theory treats. Many different kinds of
system, for example, have shear and stress—Navier-Stokes fluids, elastic solids, ionically charged
plasmas, electromagnetic fields, et al. To say that a system has a quantity represented by a shear-
stress tensor is not to have said very much. One must also know, among other things, whether
the shear-stress tensor must be symmetric, or divergence-free, or stand in a fixed algebraic relation
to another of the system’s quantities such as heat flux, and so on. Each such possible condition
is a kinematical constraint; and each different type of system that has a quantity appropriately
represented by a shear-stress tensor will impose different constraints on that tensor. It is those
constraints that differentiate types of physical systems, and not their dynamics. Think of all the
kinds of systems whose dynamics obey the equation of a simple harmonic oscillator (pendulum,
spring, vibrating string, electrical circuit, orbiting planet, trapped quantum particle, . . . )—without
question what differentiates them cannot be the form of their dynamics. It is only the form and
content of the kinematical constraints one demands be obeyed by the quantities entering into the
equations of motion. In this sense, then, the kinematical constraints are constitutive of the type
of system the theory treats.

Another way to see the point is to observe that kinematical constraints are invariant under all
interactions of the system with the environment that do not wholly undermine the capacity of the
theory at issue to treat the system appropriately and adequately—under, that is to say, all possible
transformations of the system that leave it identifiably still the same type of system, i.e., ones that

6. There may seem to be a circularity here: the kinematical constraints need to be satisfied for the quantities
to be well defined as quantities of that sort of system, and yet one cannot formulate the kinematical constraints
unless the quantities are defined in the first place. The resolution is that there is always a pre-theoretical idea of
a physical quantity associated with a kind of physical system (itself characterized in a rough, pre-theoretical way)
that can be measured in a pragmatic way, independent of whether or not it satisfies any given kinematical con-
straint. (Hempel 2001 provides an insightful discussion of this idea.) Generally, there will be a family of measur-
ing techniques available for measuring such a pre-theoretically characterized quantity, and that kind of measure-
ment will allow one to test whether or not the values of the given quantities do indeed satisfy a given kinematical
constraint. In particular, the fact that the kinematical constraints in the abstract guide one in developing instru-
ments for measuring them, like the symmetry of the shear-stress tensor in Navier-Stokes theory, allows one to
have an idea of how to verify whether the kinematical constraints hold in situations where one cannot be certain
beforehand. This is what allowed Newton to use, in his argument for universal gravity, Kepler’s structuring of the
raw ephemerides into elliptical orbits, even though Kepler’s work took place before Newton had even developed
his mechanics in the first place. Also relevant to this issue is the fact that one must take account of the different
contexts in play in the idea of the circularity, the different senses of “being defined”, on the one hand having a co-
gent theoretical definition, and on the other forming a physically well defined instance of that quantity in a given
physical system in a given state (where ‘state’ here does not refer to the representation of the system by any given
theory, but the much looser idea of “how the system is physically constituted at this moment, independent of any
attempt to represent it theoretically”). To discuss any of this in the detail and to the depth it deserves is beyond
the scope of this paper.

The ideas mooted in this skeletal discussion bear profitable comparison with Harry Collins’ idea of the exper-
imenter’s regress; see, e.g., Collins (1992, ch. 4). In contradistinction to Collins, however, I consider this relation
between theory and experiment to be not only unproblematic, and in particular not circular in the sense of lead-
ing to a regress, but rather wholly fruitful, and indeed necessary for the progress of science.
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are not too disruptive or destructive. The dynamical equations of motion or field equations do
not do this, as we have seen in the discussion of the break down of the theory. That is why the
kinematical constraints, rather than any dynamical structures, define the type of the system at
issue.

The same considerations show that kinematical constraints are, in a precise sense, analytic:
they are made true solely by the meanings of the terms in the context of the theory. In that sense
they are like L-sentences in a Carnapian framework (Carnap 1956). Unlike L-sentences, however,
they have non-trivial semantic content, for the constraints they impose on physical systems are
non-trivial. Not all types of physical system will satisfy them, viz., those systems not appropriately
represented by the theory. One can see as well that they must have non-trivial semantic content
by the fact that they play an evidentiary role in reasoning about the system.

Finally, it is the kinematical constraints, not the equations of motion, that guide the experimen-
talist in the design of instruments for probing and measuring the quantities the theory attributes to
the systems it treats. An instrument that is to measure Newtonian velocity, for instance, must be
sensitive to differences in spatial location at ever smaller measured temporal intervals, even if only
indirectly, in accord with the kinematical constraint ẋ = v. Such an instrument, if well designed,
does not care about how the system accelerates, i.e., about its dynamics. Similarly, an instrument
that would measure shear-stress of a Navier-Stokes fluid must conform to the equality of pressure
and reversed sense of shear across imaginary surfaces in fluid that is represented by the symmetry
of the shear-stress tensor. Again, the instrument need not care at all about the dynamics of the
fluid to measure the shear-stress, and indeed must be insensitive to how the shear-stress changes
over time, if it is to measure the instantaneous value of the quantity. In this way, kinematical
constraints provide the foundation for the operationalization of the meaning of theoretical terms.7

To summarize, then, the roles that kinematical constraints play in physical theory:

1. they govern the propriety of theory in representing systems in the first place, i.e., they serve
as preconditions of applicability;

2. they characterize the physical nature of systems the theory treats, i.e., that constitutive of
the kind of system the theory appropriately represents;

3. they guarantee the cogency and good behavior of the dynamics, in so far as that can be
guaranteed (by ensuring the well posedness of the initial-value formulation of the equations

7. If one likes, one can take this as a way to make precise the sense in which experiments are “theory laden”,
and why that is irrelevant for the capacity of experiments to provide independent confirmation and refutation
of theories: the equations of motion in general play no role in the design of experimental instruments, but it is,
in general, only the equations of motion we test in experiments. When a theory does predictively break down,
then we can use such measurements to test whether it is only the equations of motion that fail to be accurate,
or whether the entire theory has broken down, in the sense that the values of the system’s quantities no longer
satisfy even the kinematical constraints. (The same issues discussed in footnote 6 arise here as well.) One can of
course build instruments to test the kinematical constraints, to help determine, e.g., the boundaries of the regime
of kinematical propriety. One may profitably describe such cases as the turning of what had once been kinematics
into dynamics—it always indicates a deepening of our knowledge and understanding of the physical systems at
issue. An example is when one studies an ordinary thermodynamical system, in a state of what would be consid-
ered equilibrium from the point of view of thermodynamics, in finely grained enough detail for one to need to take
account of statistical fluctuations of the thermodynamical quantities in order to make one’s theoretical treatment
appropriate and adequate.
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of motion, or by ensuring that one can formulate the equations of motion in the first place);

4. they provide guidance in the design of tools for measurement and observation, and so provide
the empirical ground for the meaning of theoretical terms.

The equations of motion play none of these roles.
Before concluding the paper in the next section, it will be instructive to compare the way I have

characterized kinematical constraints with the manifestly similar ideas in Neo-Kantian accounts of
the structure and semantics of physical theory, such as those of Reichenbach (1965) and Friedman
(2001). They postulate a relativized a priori, which also is in some sense constitutive of the kinds of
systems treated by a theory, and which function in some sense as preconditions for the applicability
of a theory. Kinematical constraints, on my conception, do have some similarities to that idea, but
they have deep differences as well.

1. First and foremost, kinematical constraints are part of the theory itself, not supra-theoretical
principles, as for the neo-Kantians.

2. Contra several of the Reichenbachian examples of relativized a priori principles, such as that
of genidentity (Padovani 2011), kinematical constraints have true physical content, not just
formal character, in the sense that direct measurement can verify whether they hold or not
of a given system.

3. One needs the satisfaction of kinematical constraints, as experimentally verified, in order to
apply the theory appropriately in the most full-blooded sense, that of characterizing systems
and making predictions about them.

With regard to the last point, Friedman (2001, p. 71) does say, “The role of constitutively a
priori principles is to provide the necessary framework in which the testing of properly empirical
laws is possible.” Nonetheless, a priori principles on his conception are not amenable to direct
experimental verification in the same way as kinematical constraints. Kinematical constraints, as
opposed to the kind of a priori principles he characterizes, appear already as part of the theory
itself, rigorously and precisely formulated—and so amenable to direct experimental testing—not
as imprecise and supra-theoretic adjuncts to the theory.

It is also worth emphasizing that, on my account, kinematical constraints are necessary in both
a logical sense (the equations of motion often imply the kinematical constraints), and in the sense
of grounding the meaning, providing grounds for the possibility of representing certain kinds of
experience (endowing empirical propositions in theory with meaning). Although the kinematical
constraints do not play the role of the constitutive a priori in grounding the possibility of experience
in a broad sense (the “concrete sensible experience” of p. 76), they do play that role with regard to
the planning, modeling, performance, interpretation, and evaluation of experiments in a theoretical
framework; this is shown by the fact that, as I observed earlier, they characterize the physical nature
of systems the theory treats, i.e., that constitutive of the kind of system the theory appropriately
represents. Nonetheless, I must emphasize that the similarities between my ideas and those of
Friedman (2001, p. 76) are not trivial, and I owe a clear and large debt to his work.
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5 Bearing on Semantics

To accept a theory is, at a minimum, to accept its analytic or a priori propositions as true—as
necessarily true in the context of the framework. To accept Newtonian mechanics is to accept that
v = ẋ and that mv̇ = F. It is not, however, to accept them in the same way: it is to accept
the former as applying to all systems the theory may meaningfully be applied to, and to accept
the latter as a proposition holding of all systems the theory accurately represents. It is not to
accept that the magnitude of the gravitational force is G

m1m2

r2
, nor to accept that the magnitude

of the net force on this body right here, right now, is 5 Newtons. One requires a semantics of
frameworks that allows one to demarcate that class of propositions, the ones necessarily true in
the context of the framework. One cannot know them as analytic if given the framework only as a
formal structure, or if one uses a semantics such as a Tarskian one that treats all propositions as
semantically on par with each other. The aprioricity of the propositions must come as part of the
semantic interpretation of the framework itself.

One may say that a theory has propriety in representation for a system when the system
satisfies its kinematical constraints, for their satisfaction is semantically prior to the satisfaction
of the equations of motion (§4). It therefore seems promising to attempt to base a semantics for
physical theory on this idea:

We know the meaning of a theory when we know the conditions under which the
kinematical constraints hold, i.e., when the the theory has propriety in representation.

To know the meaning of a theory, therefore, cannot be to know the set of “possible worlds” the
solutions to the theory’s equations of motion represents. It is rather to know the conditions under
which it is sensical to investigate the formulation of possible conditions of the theory’s truth, i.e.,
the satisfaction of its equations of motion, for this can be done only in so far as one already knows
what systems the theory represents with propriety.
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