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1 The Intrinsic Geometry of the Tangent Bundle

In this paper, I give a novel construction and presentation of the intrinsic geometry of a generic tan-
gent bundle, in the terms of which the Euler-Lagrange equation can be formulated in a geometric,
illuminating way. I conclude by proving a result (theorem 3.2) that shows that, in a strong sense,
not only must Lagrangian mechanics be formulated on tangent bundles (as opposed to Hamilto-
nian mechanics, which can be formulated on any symplectic manifold, whether diffeomorphic to a
cotangent bundle or not), but moreover the intrinsic geometry of the Euler-Lagrange equation itself
allows one to completely reconstruct the space on which one formulates it as a tangent bundle over
a particular base space.

First, I fix some notation. I shall mostly use the abstract-index notation of Geroch, Newman
and Penrose to designate indexed entities such as tensors. (See, e.g., Wald 1984 for an exposition
of it, and Penrose and Rindler 1984 for the complete mathematical theory.) In particular, indices
in this notation do not designate the ordinal position of coordinates in a fixed coordinate system,
nor, indeed, anything pertaining to any coordinate system, and so the indexed sign itself does not
designate the numerical component of an object in a coordinate system but rather the geometrical
object itself. I shall use the following convention to keep things straight: Roman letters as indices
will signify tensors in the abstract-index notation and Greek letters will signify coordinate functions
and tensorial components in coordinate systems. Also, because it will be useful to have a way to
distinguish objects living on bundles from those living on their base spaces, I shall use lower-case
indices to signify objects residing on a base space (or arbitrary manifold) and upper-case for those on
bundle spaces. Thus, for example, ‘ξA’ may designate a vector field on a bundle space as represented
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in the abstract-index notation, and ‘ηα’ a component of a 1-form on the base space of a bundle, in a
particular coordinate system. It is assumed that all manifolds are smooth, connected, paracompact
and Hausdorff and all structures on them are smooth.

Given a 2n-dimensional manifold N, an almost-tangent structure is a smooth one-up, one-down
index tensor field Ja

b satisfying the following conditions:1

1. considered as a linear operator on the tangent planes of N, Ja
b has rank n everywhere

2. Ja
nJn

b = 0

It is not difficult to see that, as a linear operator on tangent vectors, the image of Ja
b image equals

its kernel, an n-dimensional distribution on N. If this distribution is integrable in the sense of
Frobenius, Ja

b itself is said to be integrable. A necessary and sufficient condition for this to hold is
that the Nijenhuis tensor of Ja

b identically vanish,

Jn
[b∇|n|J

a
c] − Ja

n∇[bJ
n

c] = 0

(Cf. Nijenhuis (1951) and Lehmann-Lejeune (1964).) Note that the quantity to the left of the equal
sign does not depend on choice of derivative operator and in fact does define a tensor. It is easy
to see that an integrable almost-tangent structure induces a locally affine structure on each leaf of
its subordinate foliation (Brickell and Clark 1974). The almost-tangent structure itself will be said
to be complete if this locally affine structure is complete, in the sense that the natural flat affine
connection associated with the locally affine structure is geodesically complete.

If M is an n-dimensional manifold, then its tangent bundle TM comes equipped with a canonical
integrable, complete almost-tangent structure JA

B (hence the name), the image of which is precisely
the set of vertical vectors on TM (i.e., those tangent to the fibers). In order to construct it and
show its geometrical meaning, it will be useful to characterize first a few other structures natural to
tangent bundles. TM has a distinguished vector space of vector fields V, the vertical vector fields,
those everywhere tangent to the fibers. V defines an n-dimensional distribution, which is clearly
integrable (in the sense of Frobenius)—the leaves of the associated foliation are just the bundle’s
fibers, the linear structure of which guarantees integrability. Thus V is involutive, i.e., closed under
the action of the Lie bracket.

Now, given a curve γ(u) on M, there is a natural way to associate with it a curve γ̂(u) on TM:

γ̂(u) = (γ(u), γa(u))

where γa(u) is the tangent vector to γ at the parameter value u. It is easy to see that a curve ξ on
TM, with tangent vector ξA, has such an associated curve on M if and only if

dπT ◦ ξA = IdTM (1.1)

where dπT is the differential of πT (i.e., a mapping from TTM to TM); ξA is treated as a mapping
from TM to TTM; and IdTM is the identity map on TM. I shall call a vector ξA on TM tangent

1See Clark and Bruckheimer (1960), Dombrowski (1962) and Eliopoulos (1962) for the original work on this

structure.
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to such a curve a second-order vector field.2 It follows from condition (1.1) that the space Ξ of
second-order vector fields has the structure of an affine space over V.

We are now in a position to construct the canonical almost-tangent structure on TM, using the
following fundamental lemma, proved by a simple computation, which I skip:3

Lemma 1.1 Given any vector field αA on TM and any second-order vector field ξA, there is a
unique vertical vector field βA such that

£ξβ
A + αA (1.2)

is a vertical vector field.

Fix for a moment the second-order vector field ξA in the expression (1.2), and treat βA as a function
of αA. If we multiply αA by a scalar field σ, then a simple computation shows that βA gets multiplied
by σ as well. Thus there is a tensor field JA

B , depending on ξA, such that JA
NαN = βA. The

dependence of JA
B on ξA, however, is in fact trivial: because every second-order vector field can

be derived by adding a vertical vector field to ξa, lemma 1.1, in conjunction with the integrability
of V, implies that JA

B is the same no matter which second-order vector field one uses to construct
it. Now, the contravariant index of JA

B always lies in the vertical sub-space of the tangent plane,
since βA is always a vertical vector, and its covariant index must annihilate vertical vectors by
uniqueness: if αA is already vertical, then βA must be 0. It follows that JA

NJN
B = 0. In fact, it

follows that a vector αA is vertical if and only if JA
NαN = 0 and that every vertical vector is of

the form JA
NαN for some αA. Thus JA

B defines an isomorphism from the quotient space of the
tangent plane by the vertical vectors to the space of vertical vectors at every point of N. JA

B is
therefore an almost-tangent structure. A useful property of JA

B is that

JA
N£ξJ

N
B = −JA

B (1.3)

for any second-order vector field ξA. To see this, note that by definition £ξ(JA
NαN )+αA is always

a vertical vector; equation (1.3) then follows from expanding the Lie derivative, contracting with
JA

B and noting that αA is arbitrary. Because JA
NJN

B = 0, one also has

JN
B£ξJ

A
N = JA

B

It follows from the affine-space structure of Ξ that JA
B annihilates the difference of any two

second-order vector fields. Thus, for any ξA ∈ Ξ, ΛA = JA
NξN is a vertical vector field independent

of the choice of ξA. ΛA is the Liouville vector field, a canonical vertical vector field on TM. It follows
from lemma 1.1 that £ΛξA is a second-order vector field if and only if ξA is. Thus JA

N£ΛξN = ΛA.
2‘Second-order’ because such vector fields naturally represent second-order differential equations on M, just as

sections of TM represent first-order differential equations. Second-order vectors are also called in the literature ‘lifts’

and ‘semi-sprays’. I shall not use ‘lift’, for there are actually several natural ways to “lift” structure from M to TM

(Yano and Ishihara 1973), so ‘lift’ by itself is ambiguous. ‘Semi-spray’ just strikes me as a little silly, not to mention

uninformative.
3I thank R. Geroch (private communication) for pointing this out to me.
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Expanding the lefthand side and noting that £Λ(JA
NξN ) = £ΛΛA = 0, it follows that ξN£ΛJA

N =
−ΛA. Since this holds for arbitrary second-order vector fields, it follows that

£ΛJA
B = −JA

B (1.4)

In fact, equation (1.4) can be used to define ΛA since it is the only vertical vector field that satisfies
it, as a simple computation shows.

Writing out the components of these structures in natural coordinates on TM gives some insight
into their geometry.4 Let q ∈ M have coordinates (qα), so that any point p in the fiber over q will
have naturally induced coordinates (qα, vβ). Then any second-order vector field ξA can be written
in the form

ξA = vµ

(
∂

∂qµ

)A

+ ξν

(
∂

∂vν

)A

where the ξν are arbitrary (smooth) functions of qα and vα. In other words, in so far as a vector
on the tangent bundle can be thought of as an infinitesimal change in the base-space directions, as
it were, plus an infinitesimal change in the vertical directions, a second-order vector always has the
infinitesimal change in the base-space directions equal to the velocity tangent to a curve on the base
space heading in that direction with the associated rate of change. The canonical almost-tangent
structure has the form

JA
B =

(
∂

∂vµ

)A

⊗ (dqµ)B

If ξA is a vector in Tp(TM) with components (ρα, σβ), then JA
NξN is a vertical vector with com-

ponents (0, ρα), i.e., the original “non-vertical” components get shoved over and become the new
vertical components while the original vertical components are annihilated. ΛA has the form

vµ

(
∂

∂vµ

)A

Thus, ΛA in essence tells you “how far” from the zero-section you are in the fiber. It is also easy to
verify that the 1-parameter group of diffeomorphisms it generates are precisely the homothetia of the
fibers that multiply vectors tangent to TM by et, where t is the parameter of the diffeomorphism,
as it sweeps them along its flow-curves.

2 The Euler-Lagrange Equation

Fix a Lagrangian L : TM → R. In terms of the structures characterized in §1, the Euler-Lagrange
equation becomes

£ξ(JN
A∇NL)−∇AL = 0 (2.1)

4A coordinate system (qα) on M naturally induces one on TM, viz., (qα, vβ), where the vα represent vectors

tangent to curves on M when those curves are parametrized in terms of the qα—roughly speaking, vα = q̇α. These

natural coordinates are the generalization of (x, v) (position and velocity) as used to parametrize the dynamical space

of states of a Newtonian particle moving in R3.
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where ξA, the Lagrangian vector field, is the vector field determined by L, i.e., the solution to
the Euler-Lagrange equation.5 It is sometimes convenient to write the equation in an expanded,
equivalent form,

2JM
AξN∇[M (JS

N ]∇SL)− JM
A∇M (ΛN∇NL− L) = 0 (2.2)

I call ∇[A(JS
B]∇SL) the Lagrangian 2-form associated with L. An L for which the 2-form is

symplectic is called regular. Clearly, if this 2-form is symplectic, then the existence of a ξA satisfying
the Euler-Lagrange equations is guaranteed. It also guarantees, moreover, that the solution ξA is
indeed a second-order vector field. I shall give a proof of this result to allow the reader a chance to
become better acquainted with these structures.

Proposition 2.1 If ∇[A(JN
B]∇NL) is symplectic, the unique solution ξA on TM to equation 2.2

is a second-order vector field.

To start, note that

2ΛN∇[A(JN
N ]∇NL) = 2ΛNJS

[N∇A]∇SL + 2ΛN (∇[AJS
N ])∇SL

= −ΛNJS
A∇N∇SL + ΛN (∇AJS

N )∇SL− ΛN (∇NJS
A)∇SL

= −ΛNJS
A∇N∇SL− JS

N (∇AΛN )∇SL− ΛN (∇NJS
A)∇SL

= −ΛNJS
A∇N∇SL + JS

A∇SL− JN
A(∇NΛS)∇SL

(by equation 1.4)

= −ΛNJS
A∇N∇SL + JS

A∇SL− JN
A∇N (ΛS∇SL)

+ JN
AΛS∇N∇SL

= −JN
A∇N (ΛS∇SL− L)

= −2JN
AξM∇[N (JN

M ]∇NL)

Now showing that

−2JN
AξM∇[N (JN

M ]∇NL) = 2JN
mξM∇[A(JN

N ]∇NL)

5A simple calculation shows that this equation, when expressed in natural coordinates, is equivalent to the standard

coordinate-based form of the Euler-Lagrange equation,

d

dt

„
∂L

∂vi

«
−

∂L

∂qi
= 0

when ξA is second-order. (Cf. Klein (1962), Klein (1963) and de León and Rodrigues (1989).)
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will prove the proposition, since, on the assumption that ∇[A(JN
B]∇NL) is symplectic, one will be

able immediately to conclude that JA
NξN = ΛA.

−JN
AξM∇[N (JN

M ]∇NL) = −JN
AξMJS

[M∇N ]∇SL− JN
AξM∇[NJS

M ](∇SL)

= −JN
mξMJS

[A∇N ]∇SL− JN
AξM∇[NJS

M ](∇SL)

(by symmetry between N and S)

= −JN
mξM∇[N (JN

A]∇NL) + JN
mξM∇[NJS

A](∇SL)

− JN
AξM∇[NJS

M ](∇SL)

= JN
mξM∇[A(JN

N ]∇NL)

+ ξM∇SL(JN
m∇[NJS

A] − JN
A∇[NJS

M ]).

A short calculation shows that the second term (the part in parentheses) on the righthand sideof
the last line is the Nijenhuis tensor of JA

B , which identically vanishes since JA
B is integrable on

TM, completing the proof.
Even though one can in general find non-trivial second-order vector fields that are solutions to

equation 2.2 when the Lagrangian 2-form is not symplectic, such solutions are not in general unique,
and so not of physical interest. I shall restrict myself, therefore, in the following to Lagrangians
that make this symplectic. Interestingly enough, these are precisely the ones for which, in a fixed
coordinate system on TM,

det
∣∣∣∣ ∂2L

∂vµ ∂vν

∣∣∣∣ 6= 0

the necessary and sufficient condition for one to be able to pass to a regular, unconstrained Hamil-
tonian formulation of the system via the Legendre transform. Clearly, a necessary condition for this
to hold is that the Lagrangian be at least quadratic in all velocity terms.

When ξA is not second-order, then of course ∇[A(JN
B]∇NL) will not be symplectic, but one

may still wonder whether in this case one can find non-trivial solutions to equation 2.2 that are
also solutions to the ordinary Euler-Lagrange equation. It turns out one can if L satisfies a certain
other condition. If ξA is not second-order, say with components (gα, hβ) in natural coordinates
(qα, vβ), equation 2.2 becomes a pair of equations to be jointly satisfied, the ordinary Euler-Lagrange
equations

d
dt

(
∂L

∂vi

)
− ∂L

∂qi
= 0

and
n∑

µ=1

(gµ − vµ)
∂2L

∂vµ∂vν
= 0

for each ν separately. Given that ξA is not second-order, this latter equation will be satisfied if and
only if

n∑
µ=1

∂2L

∂vµ∂vν
= 0 (2.3)
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for every ν = 1, . . . , n.6 In this case, the pair of equations will reduce down to the ordinary Euler-
Lagrange equation for which ∇[A(JN

B]∇NL) is not symplectic, and there are in general many
solutions to this equation for a given L.

To get a feel for condition (2.3), consider the case where M is two-dimensional; then, using x for
v1 and y for v2, the condition becomes

∂2L

∂x2
= − ∂2L

∂x∂y

=
∂2L

∂y2
.

(2.4)

Changing coordinates to s = x + y and t = x− y yields the equivalent conditions

∂2L

∂s∂t
= 0

and
∂2L

∂s2
= 0

which clearly has the general solution
L = ks + f(t)

where k is a constant and f(t) is any twice-differentiable function of t alone. Switching back to v1

and v2, we find
L = k1v

1 + k2v
2 + f(v1 − v2)

to be the general form of a Lagrangian satisfying 2.3 in two dimensions.
This procedure can be generalized to any dimension without too much trouble. If M is n-

dimensional, define the matrix
Mµ

ν ≡ e
2πij

n

Then the general form of a Lagrangian satisfying equation 2.3 is

L = k1v
1 + · · ·+ kNvN + f(M2

νvν , . . . , MN
νvν)

where the kµ’s are constants and f is a twice-differentiable function of the vµ’s alone, taking n− 1
arguments.

Thus far I have treated only the homogeneous Euler-Lagrange equation. I turn now to examine
the inhomogeneous case,

2JM
AξN∇[M (JS

N ]∇SL)− JM
A∇M (ΛS∇SL− L) = φA

where φA, the generalized force-form, is a 1-form on TM. Let us call a 1-form ωA on TM anti-vertical
if it annihilates vertical vectors.7 It is easy to see that ωA is anti-vertical if and only if JN

AωN = 0.
An argument similar to that used to prove 2.1 proves

6Note that if L is such as to satisfy this sum, then ∇[A(JN
B]∇NL) is automatically not symplectic, as one should

have expected. The sum says that adding the elements of each row separately of the matrix ∂2L
∂vµ∂vν yields zero,

implying that the sum of the columns of the matrix add to zero. Thus the columns are not linearly independent and

so the determinant of the matrix vanishes, which is to say that ∇[A(JN
B]∇NL) is not symplectic.

7Such 1-forms are often called ‘vertical’ in the literature, but I find that confusing.
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Proposition 2.2 If the Lagrangian 2-form in the inhomogeneous Euler-Lagrange equation is sym-
plectic, then the Lagrangian vector field is second-order if and only if the force-form φA is anti-
vertical.

When φA = 0, simple inspection of equation 2.2 shows that the scalar function

EL ≡ ΛN∇NL− L

is conserved along the flow-lines of L’s Lagrangian vector field ξA, i.e.,

£ξEL = 0

By Poincaré’s lemma, we know that locally there exists a scalar function U on TM such that

φA = −∇AU

if and only if
∇[AφB] = 0

In this case, one says that φA is conservative. One can easily show that

£ξ(EL + U) = 0

in this case. Thus EL + U is identified with the total energy of the system.
If ∇[AφB] 6= 0, then one says the dynamical system is non-conservative. One can still in this case

define a notion of work done along any given evolution curve of the system. Let ξ be an evolution
curve associated with the Lagrangian vector field ξA, that is, a solution to the inhomogeneous Euler-
Lagrange equation with generalized force-form φA; then define W , the total work done along ξ by
the system, by

W [ξ] =
∫

ξ

ξNφA dt

When ∇[AφB] = 0, this definition implies conservation of total energy, as it ought.

3 Lagrangian Mechanics and Tangent Bundle Structure

In order to write down the Euler-Lagrange equation on the tangent bundle, one requires JA
B and

(at least implicitly) ΛA. All of the arguments one uses in proving the important results so far
obtained, such as propositions 2.1, ultimately rely only on the fact that JA

B is an integrable,
complete almost tangent structure, that JA

NΛN = 0, and that £ΛJA
B = −JA

B . This raises
the question whether one could “do” Lagrangian mechanics on a 2n-dimensional manifold with an
integrable, complete almost-tangent structure and an appropriate Liouville-like vector field, but
that was not diffeomorphic to the tangent bundle of any manifold, as one can “do” Hamiltonian
mechanics on any symplectic manifold whether it is diffeomorphic to a cotangent bundle or not.

The following theorem answers the question:
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Theorem 3.1 (Brickell and Clark, 1974) If N is a manifold with an integrable, complete almost-
tangent structure JA

B and a global vector field ΛA satisfying JA
NΛN = 0 and £ΛJA

B = −JA
B,

then N is diffeomorphic to the tangent bundle of some manifold.

JA
B and ΛA by themselves encode all the tangent-bundle structure of TM. If one were given TM

simply as a differentiable manifold with JA
B and ΛA defined on it, one could reconstruct the closed

submanifolds of TM corresponding to its fibers; one could recover the vector space structure of each
fiber; and one could recover M up to diffeomorphism. Roughly speaking, the leaves of the foliation
induced by JA

B are the fibers as affine spaces (since JA
B tells you the vertical vectors, and fixes

the non-vertical vectors up to the addition of a vertical vector), and ΛA fixes the zero-section, i.e.,
the origin of each such “affine-space fiber”. M is then diffeomorphic to the quotient space of TM

under the equivalence relation ‘belongs to the same leaf of the JA
B-foliation as’. Hence one may as

well always do Lagrangian mechanics on the tangent bundle of configuration space. Contrast this
with the situation in Hamiltonian mechanics, wherein the canonical symplectic structure does not
by itself suffice to fix the structure of phase space as the cotangent bundle of configuration space.

Next, then, one naturally wants to know how much the structure of Lagrangian mechanics by
itself, that is, the way that vector fields get associated with scalar fields, determines the structure of
velocity-phase space as a tangent bundle. Roughly speaking, if one knew of the space TM merely
as a differentiable manifold (i.e., one did not know that it was the tangent bundle of M), and one
also knew the Lagrangian dynamical vector field associated with any given Lagrangian—say one
had a black box that spat out the correct Lagrangian vector field on TM 3 seconds after one fed
a Lagrangian into it—would this information alone suffice to reconstruct JA

B and ΛA on TM?
That is, would this alone suffice to determine not only that TM was the tangent bundle of some
manifold or other but actually to produce the manifold of which it was the tangent bundle (up to
diffeomorphism)? The answer is yes. More precisely:

Theorem 3.2 Given two n-dimensional manifolds M and M̂, and a diffeomorphism ζ : TM → TM̂

satisfying the following condition:

for any regular Lagrangian L on TM and its Lagrangian vector field ξA,

(ζ∗) [ξA] = ξ̂A

where ξ̂A is the Lagrangian vector field on TM̂ associated with L̂ ≡ (ζ∗) [L], where (ζ∗)
is the natural push-forward action associated with ζ

then there exists a diffeomorphism z : M → M̂ such that ζ is the diffeomorphism between TM and
TM̂ naturally induced by the action of z.

To prove the theorem, it will be convenient to use the following

Lemma 3.3 If ζ is a diffeomorphism from TM to TM̂ that takes second-order vector fields to
second-order vector fields, then ζ arises from a diffeomorphism between M and M̂.
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Because the almost-tangent structure and the Liouville vector field determine the base manifold up
to diffeomorphism, it will suffice to show that the push-forward action of ζ preserves them. Let ξA

and ξ̂A be second-order vector fields on M and M̂ respectively such that

(ζ∗)[ξA] = ξ̂A

Then
JA

Bξb = ΛA

and
ĴA

B ξ̂b = Λ̂A

By hypothesis, therefore,
ĴA

B(ζ∗)[ξA] = Λ̂A

Because ζ is a diffeomorphism we also have

(ζ∗)[JA
Bξb] = (ζ∗)[ΛA]

We can immediately conclude (up to a constant factor we may as well set equal to 1)

(ζ∗)[JA
B ] = ĴA

B

(ζ∗)[ΛA] = Λ̂A
(3.1)

proving the lemma.
Now let M, M̂ and ζ be as in the statement of the theorem, and ξA a second-order vector field

on TM. Then at any given point there exists a (non-unique) Lagrangian L such that ξA is the
Lagrangian vector field of L in a neighborhood of that point. By hypothesis, ξ̂A such that

(ζ∗)[ξA] = ξ̂A

is a solution to the Euler-Lagrange equation on TM̂ with Lagrangian (ζ∗)[L]. Thus ξ̂A is a second-
order vector field on TM̂, which proves the theorem.

The theorem essentially says that, if a diffeomorphism between two tangent bundles “commutes”
with the Euler-Lagrange equation, then the diffeomorphism arises from one between the base spaces
of the bundles. The intrinsic geometry of the Euler-Lagrange equation requires that spaces on which
the equation can be meaningfully formulated be canonically diffeomorphic to tangent bundles, and,
moreover, that intrinsic geometry allows one to fully recover the geometry of the space on which one
formulates the equation as a tangent bundle in a canonical way.
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