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ABSTRACT

I examine the debate between substantivalists and relationalists about the ontological

character of spacetime and conclude it is not well posed. I argue that the hole argument

does not bear on the debate, because it provides no clear criterion to distinguish the

positions. I propose two such precise criteria and construct separate arguments based

on each to yield contrary conclusions, one supportive of something like relationalism and

the other of something like substantivalism. The lesson is that one must fix an investiga-

tive context in order to make such criteria precise, but different investigative contexts

yield inconsistent results. I examine questions of existence about spacetime structures

other than the spacetime manifold itself to argue that it is more fruitful to focus on

pragmatic issues of physicality, a notion that lends itself to several different explications,

all of philosophical interest, none privileged a priori over any of the others. I conclude by

suggesting an extension of the lessons of my arguments to the broader debate between

realists and instrumentalists.
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[. . .] we must bear in mind that the scientific or science-producing value

of the efforts made to answer these old standing questions is not to be

measured by the prospect they afford us of ultimately obtaining a

solution, but by their effect in stimulating men to a thorough investi-

gation of nature. To propose a scientific question presupposes scientific

knowledge, and the questions which exercise men’s minds in the present

state of science may very likely be such that a little more knowledge
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would shew us that no answer is possible. The scientific value of the

question, How do bodies act on one another at a distance? is to be found

in the stimulus it has given to investigations into the properties of the

intervening medium. (Maxwell [1965b])

[. . .] between a cogent and enlightened ‘realism’ and a sophisticated

‘instrumentalism’ there is no significant difference—no difference that

makes a difference. (Stein [1989])

1 Introduction

The revival of the debate in the philosophical community over the ontic status

of spacetime can trace its roots, in part, to its revival in the community of

physicists. Belot ([1996]) and Belot and Earman ([2001]), for instance, claim

that philosophers ought to take the debate seriously because many physicists

do. I do not think that fact suffices as reason for philosophers to take the

debate as interesting, much less even well posed. The active work of physicists

on our best physical theories should provide the fodder for the work of the

philosopher of physics most of the time. Sometimes, however, the physicists

are confused or just mistaken, and it is then our job to try to help set matters

straight. I believe that is the case here.1

A virtue of the work of many contemporary philosophers on the issue is the

foundation of their metaphysical conclusions on arguments based on the

structures of our best physical theories. I think the method falls short, how-

ever, in so far as it treats those structures in abstraction from their uses in

actual scientific enterprises, both theoretical and experimental. This lacuna

leaves the debate merely formulaic, without real content, at the mercy of clever

sophistications without basis in scientific knowledge in the fullest sense.

Stein ([1994], pp. 1–2) admirably sums up the situation as I see it. I quote

him at length, as he says it better than I could:

[...] let me [...] hazard a rough diagnosis of the reason why some things

that are (in my view) true, important, and obvious tend to get lost sight

of in our discussions [. . . Philosophy] has (I believe) in our own time been

affected by an excess of what might be called the ésprit de technique[. . .]: a

tendency both to concentrate on such matters of detail as allow of highly

formal systematic treatment (which can lead to the neglect of important

matters on which sensible even if vague things can be said), and (on the

other hand), in treating matters of the latter sort, to subject them to

quasi-technical elaboration beyond what, in the present state of

knowledge, they can profitably bear [. . .] what I have described can be

characterized rather precisely as a species of scholasticism [. . .] In so far

as the word ‘scholasticism’, in its application to medieval thought, has a

1 See (Curiel [2001], [2009]) for arguments to this effect on closely related matters, and for a

defence of this claim as a fruitful philosophical attitude.
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pejorative connotation, it refers to a tendency to develop sterile

technicalities—characterized by ingenuity out of relation to fruitfulness;

and to a tradition burdened by a large set of standard counterposed

doctrines, with stores of arguments and counterarguments. In such a

tradition, philosophical discussion becomes something like a series of

games of chess, in which moves are largely drawn from a familiar

repertoire, with occasional strokes of originality—whose effect is to

increase the repertoire of known plays.

In the spirit of Stein’s diagnosis, rather than something formally sophisti-

cated, I’m going to propose something crude and simple: to avoid the sterility

that formal technical elaboration can lead to, we should look at the way that

spacetime structures are used in practice to model real systems in order to

make progress on issues pertaining to the standard debate. For I do think

there are important, deep questions we can make progress on in the vicinity of

that debate, questions of the sort Maxwell alludes to in this article’s epigraph.

As Maxwell intimates, however, for such questions to be investigated profit-

ably, they must be such as to support and stimulate ‘the investigation of

nature’. And that, I submit, can be accomplished only when the questions

bear on scientific knowledge in all its guises, as theoretical comprehension and

understanding, as evidential warrant and interpretative tool in the attempt to

assimilate novel experimental results, as technical and practical expertise in

the design and performance of experiments, and as facility in the bringing

together of theory and experiment in such a way that each may fruitfully

inform the other.

I will argue that the way to find the philosophically and scientifically fruitful

gold in the metaphysical dross is to formulate and address the questions in a

way that makes explict contact with our best current knowledge, in its fullest

form, about the kinds of physical system at issue. One way to do that is to pose

and investigate the questions explicitly in the context of what I will call an

investigative framework—roughly speaking, a set of more-or-less exactly

articulated theoretical structures for the modelling of physical systems,

along with a family of experimental practices and techniques suited to their

investigation. Different investigative frameworks, as I show by constructive

example, provide different natural criteria for rendering determinate the ques-

tion of the ontic status of spacetime, with none privileged sub specie æternitatis

over any other. Those different criteria yield different answers to the question,

suitably formulated in the given frameworks. This should not be surprising.

After all, different sorts of scientific investigations naturally assume and rely

on different relations between individual spacetime points and metrical (and

other forms of spatiotemporal) structure, and it is those relations that are

supposed to provide the criteria for the existence of spacetime points. The
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mathematical formalism of the theory does not by itself fix a unique such

relation with clear ‘physical’ significance.

I begin in Section 2 with an examination of the hole argument. I do this for

two reasons. First, because invocation of the argument has become a man-

nerism in the debate, it must be confronted; I conclude that it has no bearing

on the issue. Second, I discuss it because it yields a useful schema for the

production of concrete criteria that one can use to explicate the differences

between substantivalists and relationalists. I use that schema to frame the

arguments of the subsequent two sections, of the article. In each of those

two sections, I make the schematic criterion concrete in the context of a par-

ticular form of investigative framework, constructing two arguments with

contrary conclusions, one for something like relationalism and the other

something like substantivalism, to show that one can make the debate con-

crete in any of a number of precise, physically significant ways, none a priori

privileged over the others, and that those ways will not in general agree in their

consequences.

In Section 5, I urge that the contrary conclusions of Sections 3–4 strongly

suggest that issues of ontology are best addressed in the context of a particular

form of investigation. For a given spacetime theory—and even a given model

within the theory—depending on one’s purposes and the tools one allows

oneself—either one can treat spacetime points as entities and individuate

and identify them a priori, or one can in any of a number of ways construct

spacetime points as factitious, convenient pseudo-entities. Nothing of intrinsic

physical significance hangs on the choice, and so a fortiori science cannot

guide us if we attempt to choose sub specie æternitatis between the alterna-

tives—such a choice must become, if anything, an exercise in scholastic meta-

physics only.

In Section 6, I extend the discussion to a host of other types of spacetime

structure, such as Killing fields and topological invariants. The attempt to

formulate criteria for the physicality of such other structures adds weight to

the conclusion that such questions require concrete realization in the context

of something akin to real science in order to acquire substantive content. I

conclude in Section 7 with a brief attempt to show that my arguments ramify

into the debate between realists and instrumentalists more generally, by dint in

part of the picture of science the arguments implicitly rely on.

The overarching lesson I draw is that metaphysical argumentation ab-

stracted from the pragmatics of the scientific enterprise as we know it—science

as an actually achieved state of knowledge and as an ongoing enterprise of

inquiry—is vain. Very little of real substance can be learned about the nature

of the physical world by studying only theoretical structures in isolation from

how they hook up to experimental knowledge in real scientific practice, a
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practice endemic not only to the current debate, but to the entirety of phil-

osophy of physics as a discipline.

The constructions I found the arguments on require the use of advanced

mathematical machinery from the theory of general relativity. (For the inter-

ested reader, (Wald [1984]; Malament [2012]), for example, contain compre-

hensive coverage of all material required.) Limitations of space have required

me to elide many of the technical details of the constructions the arguments

are based on. The interested reader can find them in a separate manuscript

(Curiel [unpublished]) containing technical appendices to this article, in which

the details are worked out.

2 The Hole Argument

In recent times, several physicists and philosophers have treated Einstein’s

infamous hole argument as being at the heart of questions about the ontology

of spacetime (Earman and Norton [1987]; Belot [1996]; Gaul and Rovelli

[2000]). The lesson most often claimed is that one cannot identify spacetime

points without reliance on metrical structure, that there is no bare manifold of

points under the metric field.

The debate is often posed thus: should the manifold M by itself or the

ordered pair ðM; gabÞ be properly construed as the represention of physical

spacetime? This, in brief, is the argument: Fix a spacetime model ðM; gabÞ.
2

For ease of exposition, we stipulate that it possess a global Cauchy surface, �.

(We could do without this condition at the cost of unnecessary technical de-

tails.) Say that we know the metric tensor on � and on the entire region of

spacetime to its causal past, J�½��. (Note that J�½�� contains �.) This forms a

well set Cauchy problem, and so there is a solution to the Einstein field

equation (EFE) that extends gab on J�½�� to a metric on all of M, yielding

the original spacetime.3 Now, let � be a diffeomorphism that is the identity on

J�½�� and smoothly becomes non-trivial on Jþ½�� ��. No matter what else

one takes the diffeomorphism invariance of general relativity to mean, at a

minimum it must be that a diffeomorphism applied to a solution of the EFE

yields another, possibly distinct solution. Apply � to gab (but not to M itself);

this yields a seemingly different metric—a different physical state of the

2 I am not biasing the argument by demanding a model of spacetime consist of both a manifold

and a metric. By ‘model of spacetime’ here, I mean just ‘manifold cum metrical structure as

purely computational tool’, irrespective of how the debate resolves itself.
3 This is not, strictly speaking, accurate. If no restrictions are placed on the matter fields, then in

general the initial-value problem is not well set. Indeed, even a few known physical solutions to

the EFE possess no well set initial-value formulation, for example, those representing homoge-

neous dust and some types of perfect fluid (Geroch [1996]). We can ignore these technicalities,

though it may raise a serious problem about indeterminism in the theory, one which has not

been addressed in the literature.
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gravitational field. This is the crux of the issue: that the points of Jþ½�� ��

carry a different metric tensor than before.

We now face a dilemma, the argument continues (Earman and Norton,

[1987]): we can either hold that fixing the metric on J�½�� does not determine

the metric on Jþ½�� ��, a radical indeterminism, or else we can conclude that

spacetime points in some sense have no identifiability or existence independent

of the prior fixing of the metric, with most researchers opting for the di-

lemma’s second horn.4

I want to make a crude and simple proposal, for I think the debate has lost

sight of a crude and simple, and yet fundamentally important, fact: just be-

cause the mathematical apparatus of a theory appears to admit particular

mathematical manipulations does not eo ipso mean that those manipulations

admit of physically significant interpretation. One has the mathematical struc-

ture of the theory; one is not free to do whatever it is one wants with that

formalism and then claim, with no foundation in practice, that what one has

done has physical import. The mathematical formalism by itself cannot tell us

what manipulations it admits have physical significance; one must determine

what one is allowed to do with it—‘allowed’ in the sense that what one does

respects the way that the formalism actually represents physical systems. A

simple example illustrates the point: adding 3-vectors representing spatial

points in Newtonian mechanics. As a physical operation, adding spatial

points is meaningless—the idea of linearly superposing spatial points in

Newtonian theory as a representation of a physical state of affairs makes no

sense. For computing factitious quantities such as the centre of mass, however,

it does make sense. Just because one can add two vectors in the mathematical

formalism of a theory does not by itself make the operation physically

significant.

General relativity is (usually) formulated with the use of differential Lorentz

manifolds. Not every well-formed mathematical operation on a Lorentz

4 There are actually two different versions of the argument in the literature, though this goes

unremarked. The one I rehearse here can be thought of as a generalization of the other. The

more specialized form, which Einstein himself formulated and used, assumes that spacetime has

a region of compact closure, the hole, in which the stress-energy tensor vanishes, though it itself

is surrounded by non-zero stress-energy. The diffeomorphism is then stipulated to vanish every-

where except in the hole, and the argument goes more or less as in the general case, with the

emendation that now it is the distribution of ponderable matter that does not suffice to fix the

physical state of the gravitational field. (Earman [1989], for example, uses the more general

argument, whereas Stachel [1993] uses the more specialized form.) I think the specialized form of

the argument introduces a red herring, namely, physical differences between regions of space-

time with stress-energy and those without. There is no principled way within the theory itself to

distinguish between such regions in a way that bears on ontological issues. One of the regions

has non-trivial Ricci curvature; the other does not, though it may have non-trivial Weyl curva-

ture. That difference, the only one formulable in the terms of the theory, can tell us nothing

about the ontic status of the spacetime manifold. The introduction of the difference seems rather

to bespeak an old prejudice that material sources should suffice to determine the physical state of

associated fields, but this is not true even in classical Maxwell theory.
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manifold has physical significance. It arguably makes mathematical sense to

apply a diffeomorphism of the manifold to the metric only, and not to the

underlying manifold at the same time.5 That fact by itself does not imbue the

operation with physical significance. Considerations such as the hole argu-

ment show how diffeomorphisms ought to be applied to spacetime models so

as to have physical significance.

What is of intrinsic physical significance in the possible states and inter-

actions of physical systems does not depend on the diffeomorphic presenta-

tion of the manifold cum metric. (Are those two bodies in physical contact? Is

stress-energy being transferred from this one to that or vice versa? Can a light-

signal be sent from this to that? Is gravitational radiation present? And so on.)

To ensure this equivalence of physical significance across diffeomorphic pres-

entations, however, one must stipulate that, in the context of general relativity,

the application of a diffeomorphism to the metric is a ‘physically’ well defined

procedure only when one also applies it to the (given presentation of the)

manifold itself. Thus the hole argument is obviated by the fact that the appli-

cation of � to the manifold cum metric results only in a different presentation

of the same intrinsic physical structure, and so the worry about determinism

evaporates, doing away with the dilemma. How one tries to characterize the

ontology of the spacetime manifold, if that is the sort of thing one is into, may

be influenced by this restriction on the applicability of diffeomorphisms to

spacetime models, or it may not. The important point is that this restriction

results from conditions imposed by the way one may employ the formal ap-

paratus of the theory so as to respect how in scientific practice spacetime

models represent physically possible spacetimes—how it is that the formal

structures of the theory acquire real physical meaning.

In sum, the hole argument has no bearing on whether existence should be

attributed to spacetime points independent of metrical structure. The diffeo-

morphic freedom in the presentation of relativistic spacetimes does not ipso

facto require philosophical elucidation, for it in no way prevents us from

investigating what is of true physical significance in systems that general rela-

tivity models (Curiel [2009]). It is neither formal relations nor substantive

entities that remain invariant when one applies a diffeomorphism to a

5 If one adopts a certain definition of a differential manifold, namely, that it is an equivalence class

of diffeomorphic presentations, then the operation underlying the hole argument does not make

even mathematical sense. (Weatherall [forthcoming] concludes this, based on related considera-

tions; I am sympathetic with his arguments.) S
2, for example, can be presented as a submanifold

of a 179-dimensional hyperboloid, or as R
2 with a point added, or as a manifold in its own right;

S
2
�R

2 can be presented as a direct product of manifolds (as here), or as R
4 with a line

removed; and so on. In this case, pushing tensors around on the manifold by a diffeomorphism

without also pushing the points around, as required by the hole argument, is not an unambigu-

ous notion. I do in fact accept the definition of a differential manifold as an equivalence class,

but I am trying to be as charitable as possible to the proponents of the debate, so I am willing to

grant for the sake of argument that the required manipulations make mathematical sense.
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relativistic spacetime; it is the family of physical facts the spacetime represents.

One may represent those facts in a language some of whose primitive terms

designate ‘spacetime points’ or not. It is irrelevant to our capacity to use them

in profitable ways in science and, more important, to our understanding of

those facts in our broader attempts to comprehend the physical world. This

line of thought already suggests that the debate between substantivalists and

relationalists is not well posed.

In the event, my rejection of the hole argument rests on a deeper point. I

think the most unproblematic and uncontroversial fact about diffeomorphic

freedom is that it embodies an inevitable arbitrariness in the mathematical

apparatus the theory uses to model physical systems: the choice of the pres-

entation of the spacetime manifold and metric one uses to model a physical

system is fixed only up to diffeomorphism. A comparison will help illuminate

the character of this arbitrariness.

Hamiltonian mechanics has a similar arbitrariness: one is free to choose any

symplectomorphism between the space of states and the cotangent bundle of

configuration space, that is, one may choose, up to symplectomorphism, any

presentation of phase space (or, in more traditional terms, any complete set of

canonical coordinates), without changing the family of solutions the possible

Hamiltonians determine (Curiel, [2014]). One is not driven to investigate the

ontic status of points in phase space merely because one is free to choose any

symplectomorphism in its presentation. Indeed, one can run an argument

analogous to the hole argument here, substituting ‘phase space’ for ‘spacetime

manifold’, ‘symplectomorphism’ for ‘diffeomorphism’, and ‘symplectic struc-

ture’ for ‘metric’. Does that show anything of intrinsic physical or metaphys-

ical significance? No serious person would argue so. And in this case, it would

be manifestly absurd to ‘apply a symplectomorphism only to the symplectic

structure and not the underlying manifold’: in general the underlying manifold

is a cotangent bundle and the symplectic structure is the canonical one on it;

pushing the symplectic structure around on its own will yield a new symplectic

structure that is not the canonical one, and so is manifestly unphysical for the

purpose of formulating Hamilton’s equation.

It is clear that the existence of inevitable, more or less arbitrary, non-

physical elements in the presentation of the models of a theory by itself

does not require that one decide on the ontic status of any entities putatively

designated by its mathematical structures. More to the point, it is clear in

such cases that the physical significance of the theory’s models is not

masked or polluted by the unavoidable arbitrariness in the details of their

presentations.6

6 It is a deep puzzle that every known physical theory has such arbitrariness in its formal repre-

sentations of physical systems. Does this imply that our mathematics is not so well suited to

modelling the physical world as we tend to assume?
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In the end, however, the most serious problem I have with the hole argu-

ment, and all other arguments analogous to it, comes to this: nothing I can see

militates in favour of taking the hole argument as bearing on the ontic status

of spacetime points, just because the hole argument by itself provides no in-

dependent, clear, and precise criterion for what ‘existence independent of met-

rical structure’ comes to. That idea has no substantive content on its own. In

the next two sections, I will show this by exhibiting two plausible, precise

criteria for what the idea may mean in the contexts of two different types of

investigation, which in the event lead to opposing conclusions. The criteria are

based on the criterial schema I have implicitly relied on so far: whether the

identification of spacetime points must depend on the prior stipulation of

metrical structure.7

3 Limits of Spacetimes

In this section, I propose an argument in favour of the view that one cannot

attribute to the spacetime manifold any existence independent of metric struc-

ture; the provision of a precise criterion for the existence of spacetime struc-

ture, grounded in both the structure and the application of physical theory,

drives the argument. Two criteria natural to the investigative context will

suggest themselves, a weaker one based on the idea of the identifiability of

spacetime points and a stronger one based on their existence (in a precise

sense).

To treat a spacetime as the limit, in some sense, of an ancestral family of

continuously changing spacetimes is one of the ways of embodying in the

framework of general relativity two of the most fundamental and indispens-

able tools in the physicist’s workshop: the idealization of a system by means of

the suppression of complexity, so as to render the system more tractable to

investigation; and the enrichment of a system’s representation in a theory by

the addition (or reimposition) of complexity previously ignored (or ellided).

As a general rule, the fewer degrees of freedom a system has, the easier it is to

study. Schwarzschild spacetime (Figure 1) is far easier to work with than

Reissner–Nordström (Figure 2) in large part because one ignores electric

charge, and there is a natural sense in which one can think of Schwarzschild

spacetime as the limit of Reissner–Nordström as the electric charge of the

7 I know of no one who adopts exactly this schematic criterion. (Perhaps Hoefer ([1996], [1998])

comes the closest.) I use it because it captures the essence of the criteria that are often stipulated

in the debate, that the question of the existence of spacetime points devolves upon the relation of

those points to some geometrical structure, such as the metric. See, e.g., Butterfield ([1989]);

Earman ([1989]); Maudlin ([1990], [1993]); Pooley ([2006], [2013]); Rynasiewicz ([1994]); Belot

([1999]), ([2011]); Dorato ([2000]); Huggett ([2006]); DiSalle ([1994], [2006]); is a notable ex-

ample of a contemporary philosopher who takes an approach sympathetic to my own; Robert

Geroch, in private conversation, is a notable example of a contemporary physicist who does so.
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central black hole shrinks to zero.8 Contrarily, by reversing the sense of that

limiting procedure, one can think of Reissner–Nordström spacetime as the

complexification of Schwarzschild spacetime induced by the introduction of a

smoothly increasing central electric charge.9 A generic representation of such

a limiting process can provide schemas of both of these theoretical tools,

depending on whether one enlarges or shrinks the number of degrees of free-

dom in the limiting process. As we will see, what in the idealized model one

may reasonably identify and attribute existence to may depend in sensitive

ways on the character of the more complex or simpler models one starts with

and the nature of the limiting process itself. This fact drives the argument I

propose. I will discuss two examples of such a limiting process in order to

motivate the two precise criteria I propose for the existence of spacetime

points independent of metrical structure.

A complete treatment of the limiting process grounding the examples would

require the use of heavy machinery from differential geometry, based on a

construction of Geroch ([1969]). Limitations of space prevent me from work-

ing it out in detail here.10 I will instead sketch the features relevant to our

problem and describe salient examples.

Figure 1. Carter–Penrose diagram of Schwarzschild spacetime. Each point in the

diagram represents a 2-sphere in the spacetime manifold. (This diagram is taken

from (Geroch [1969]), with the author’s permission.)

8 Schwarzschild spacetime is the unique spherically symmetric vacuum solution to the EFE (other

than Minkowski spacetime); it represents a spacetime that is empty except for an electrically

neutral, spherically symmetric, static central body or black hole of a fixed mass.

Reissner–Nordström is the generalization of Schwarzschild spacetime that allows the central

structure to have an electric charge; see, for example, (Hawking and Ellis ([1973]), Chapter 5,

Section 5) for an exposition.
9 The idea of complexification I employ here has nothing to do with the idea bandied about in

other contexts in mathematical physics, also called ‘complexification’, in which one extends a

mathematical structure based on the real numbers to one based on the complex numbers.
10 To see the constructions and examples worked out in detail, see (Curiel [unpublished]).
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Before giving an example of the construction directly relevant to my argu-

ment and putting it to work, however, I discuss one of its most important and

powerful features, that the constructed limiting family does not parametrize

metrics on a fixed manifold, but rather parametrizes the spacetime manifolds

themselves. Geroch ([1969], p. 181) himself states in illuminating terms the

reason behind this:

It might be asked at this point why we do not simply [use a] 1-parameter

family of metrics on a given fixed manifold [. . .] . Such a formulation

would certainly simplify the problem: it amounts to a specification of

when two points [in different members of the limiting family] are to be

considered as representing ‘the same point’ of [the limit spacetime]. It is

not appropriate to provide this additional information, for it always

Figure 2. Carter–Penrose diagram of Reissner–Nordström spacetime. Each point

in the diagram represents a 2-sphere in the spacetime manifold. (This diagram is

taken from (Geroch [1969]), with the author’s permission.)
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involves singling out a particular limit, while we are interested in the

general problem of finding all limits and studying their properties.

To make the force of these remarks clear, consider the attempt to take the limit

of Schwarzschild spacetime as the central mass goes to 0. In Schwarzschild

coordinates, using the parameter � �M�1=3 (the inverse-third root of the

Schwarzschild mass), the metric takes the form

1�
2

�3r

� �
dt2 � 1�

2

�3r

� ��1

dr2 � r2ðd�2 þ sin 2� d�2Þ: ð1Þ

This clearly has no well-defined limit as �!0. Now, apply the coordinate

transformation

~r � �r; ~t � ��1t; ~� � ��1�:

In these coordinates, the metric takes the form

�2 �
2

~r

� �
d~t

2
� �2 �

2

~r

� ��1

d ~r2
� ~r2
ðd ~�2
þ ��2sin 2ð� ~�Þ d�2Þ:

The limit �!0 (now representing the limit of the central mass going to zero)

exists and yields

�
2

~r
d~t

2
þ

~r

2
d ~r2
� ~r2
ðd ~�2
þ ~�2 d�2Þ;

a flat solution discovered by Kasner ([1921]). If instead of that coordinate

transformation we apply the following to the original Schwarzschild form

In Equation (1),

x � rþ ��4; � � ��4�;

then the resulting form also has a well-defined limit, which is the Minkowski

metric. The two limiting processes yield different spacetimes because behind

the scenes the same points of the underlying manifold get pushed around

relative to each other in different ways. Because the coordinate relations of

initially nearby points differ in different coordinate systems, those differ-

ences get magnified in the limit, so that their final metrical relations differ.

Thus, the limits in the different coordinates yield different metrics.

This example suggests why, in working with limits of spacetimes, it is in-

appropriate to work with a fixed manifold from the start. To do so determines

a unique limit, but we want to allow ourselves different ways to take the limit,

so that our ideal scientist can ignore different facets of the complex system

under study, and so produce different idealized models of it.11 For example,

11 Of course, sometimes is appropriate for the scientist to take the limit of a family of metrics on a

fixed background manifold. An excellent example is in the statement and proof of the geodesic
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she may want to take the limit of Reissner–Nordström spacetime as the mass

goes to zero while leaving the electric charge fixed, rather than taking the limit

as the electric charge vanishes, or she may want to take the limit in a way that

does not respect the spherical symmetry of the initial system in order, for

example, to study small perturbations of the original system.12

I turn now to an example immediately relevant to my arguments. Consider a

family fðM�; gabð�ÞÞg of Reissner–Nordström spacetimes, each element of the

family having the same fixed value, M, for its mass and all parametrized by

electric charge l, which converges smoothly to zero.13 Geroch’s construction

shows that there are innumerable ways of fixing a limit, each leading to a

different topology and metric. Fix one that has Schwarzschild spacetime as

the limit, ’natural’ in the sense that it respects the spherical and the timelike

symmetries in all the spacetimes in the limiting family. (There is not even a

unique limiting family in this special case.) Now, comparison of Figures 1 and 2

suggests that something drastic happens in the limit. All the points in the throat

of the Reissner–Nordström spacetimes (the shaded region in the diagram) seem

to get swallowed by the central singularity in Schwarzschild spacetime—in some

way or other, they vanish. Using Geroch’s machinery we can make precise the

question of their behaviour in the limit �!0.

Consider the points in the shaded region in Figure 2, between the lines r¼ 0

and r ¼ r� (r is the radial coordinate in a system that respects the spacetime’s

spherical symmetry; the coordinate values r� and r+ define boundaries of

physical significance in the spacetime, which in large part serve to characterize

the central region of the spacetime as a black hole). The machinery allows one

to trace individual points through the given limiting process, in effect iden-

tifying the same point in the different member spacetimes of the limiting

family, in a way peculiar to that limiting process. (Of course, part of the

point of the construction is that there is no single, a priori privileged way of

doing this.) One can use this inter-family identification of points to make

precise the sense in which something drastic does indeed occur in such a

limit that takes Reissner–Nordström to Schwarzschild spacetime. In each

Reissner–Nordström spacetime in the limiting family, any point lying in the

shaded region does not have a well defined limit: no point in the resulting

Schwarzschild spacetime limit can be identified with it. (Roughly speaking, the

theorem of Ehlers and Geroch ([2004], p. 233). In fact, they give an illuminating discussion of

this very issue on p. 233.
12 Paiva et al. ([1993]) discuss in some detail an interesting class of different limiting spacetimes one

can induce from Schwarzschild spacetime by taking the limit as the mass goes to zero and to

infinity, respectively, in different ways. See (Bengtsson et al. [2014]) for a similar discussion for

Reissner–Nordström spacetime, as the electric charge and the mass are each taken to zero.
13 I ignore the fact that electric charge is a discrete quantity in the real world, an appropriate

idealization in this context.
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points, in the limit, run into the Schwarzschild singularity at r¼ 0.) In this

precise sense, no point in Reissner–Nordström spacetime to the future of the

horizon r ¼ r� has a corresponding point in the limit space.

To sum up: one begins with a family of Reissner–Nordström spacetimes con-

tinuously parametrized by electric charge, which converges to zero; one uses

Geroch’s machinery to construct a limit space by a choice of how to track the

identification of individual points across members of the limiting family; this

choice enforces a division of points that have a limit from those that do not; and

that identification, in turn, dictates the identification of spacetime points in the

limitspace(whichpointsintheancestralfamilyliewithintheSchwarzschildradius,

for example, and which do not). Thus one can identify points within the limit

Schwarzschild spacetime—one’s idealized model—only by reference to the met-

rical structure of members of the ancestral family; one can, moreover, identify

points in the limit space with points in the more complex, initial models one is

idealizing only by reference to the metrical structure of the members of the ances-

tral family as well. It is only by the latter identification, however, that one can

construe the limit space as an idealized model of one’s initial models, for the whole

point is tosimplify thereckoningof thephysicalbehaviourofsystemsatparticular

points of spatiotemporal regions of one’s initial models.

One can, moreover, use different choices of the inter-family identification of

points to construct Schwarzschild spacetime from the same ancestral family,

with the result that in each case the same point of Schwarzschild spacetime is

identified with a different family of points in the ancestral family. More gen-

erally, different choices will yield limit spaces that differ from Schwarzschild

spacetime, with no canonical way to identify a point in one limit space (one

idealized model the theoretician constructs) with one in another. In other

words, the identification of points in the limit space depends sensitively on

the way the limit is taken, that is, on the way the model is constructed. In

consequence, in so far as one conceives of Schwarzschild spacetime as an

idealized model of a richer, more complete representation, one can identify

points in it only by reference to the metrical structure of one of its ancestral

families, and one can do that in a variety of ways.

Now, say one wants to treat slightly aspherical, almost-Schwarzschild

spacetimes as a complexification of Minkowski spacetime, in order to study

how asphericities affect metrical behaviour. Because the limit spacetime will

be almost-Schwarzschild, its appropriate manifold is still R
2
� S

2, the natural

topology of Schwarzschild spacetime. In this case, in an intuitive sense, points

will appear, because the topology of Minkowski spacetime is R
4, so in some

sense one must compactify two topological dimensions to derive a

Schwarzschildian spacetime as a more complex limit. There are many ways

to effect such a compactification; all the simplest, such as Alexandrov com-

pactification, work by the addition of an extra point or set of points to the
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topological manifold to represent, intuitively speaking, the bringing in of

points at infinity to a manageable distance from everything else.14 The diffi-

culty of these issues, however, is underscored by the fact that one can also

think of this as a case in which points rather disappear; R
2
� S

2, after all, is

homeomorphic to R
4 with a line removed! Thus one could use an ancestral

family every member of which is R
4 but that has as limit space the manifold of

Schwarzschild spacetime presented as the manifold R
4 with a line removed.15

In this example, we will consider the attempt to introduce a central, slightly

aspherical body by physical construction in a Minkowskian laboratory, as an

experimentalist might do it. The physical construction will proceed in infini-

tesimal stages, with a tiny portion of matter introduced at each step distrib-

uted in a slightly aspherical way (keeping, in an intuitive sense, the aspherical

shape of the body the same), and an allowance of a finite time so that the

ambient metrical structure can settle down to an almost-Schwarzschild char-

acter before the next step is initiated, until the central body’s mass reaches the

desired amount. (Intuitively, the finite time period allows the metrical perturb-

ations introduced by the movement of the matter in, and its distribution

around, the central body to radiate off to infinity.) One can represent this

process with a limiting ancestral family of Geroch’s type in, a more or less

obvious way, starting with Minkowski spacetime—namely, the empty, flat

laboratory, with each member of the ancestral family representing the labora-

tory at each stage of the construction as a bit more matter has been introduced

and the perturbations have settled down.

Now, consider at the beginning of the process a small patch of space in the

laboratory not too far from the position where the central body will be con-

structed. We want to try to track, as it were, the spacetime points in that patch

during the enlargement of the central body because we plan to investigate, say,

how the metrical structure in regions at that spatiotemporal remove from a

central aspherical body differ from each other for different masses of the

central body. (Because the EFE is non-linear, and there is no exact symmetry,

one cannot just assume that slightly aspherical spacetimes will scale in any

straightforward way with increases in the central mass.) There are several

ways one might go about trying to track the region as the construction pro-

gresses. One obvious, simple way is by the triangulation of distances from

some fixed markers in the laboratory. Because the metrical structure within

the lab is constantly changing, however, and doing so in very complex ways

during the periods when new matter is being introduced and distributed, and

14 See, for example, (Kelley [1955]) for an account of methods of compactification, including the

Alexandrov type.
15 This is a concrete instance where thinking of two different diffeomorphic presentations of the

same manifold—in this case, R
2
� S

2 and R
4 with a line removed—as different manifolds leads

to obvious difficulties, if not downright confusions.
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the concomitant metrical perturbations are radiating away, there is no canon-

ical way of implementing the triangulation procedures. In fact, the different

ways of doing so are exactly captured by the different choices of how to

identify points among the members of the ancestral family of spacetimes

(which in this case, recall, now represent the spacetime region enclosed by

the laboratory at different stages of the construction of the central body).

According to some of the concrete implementations of the triangulation pro-

cedure, that is, according to different choices of how to identify points among

the several members of the ancestral family, the patch one tries to track will

end up inside the central body; according to other procedures, it will end up

outside the central body. In consequence, what one means by ‘the set of space-

time points composing a small region at a fixed spatiotemporal position rela-

tive to the central body’ will depend sensitively on how one fixes and tracks

relative spatiotemporal positions, which is to say, depends sensitively on one’s

knowledge of the spacetime’s metrical structure.16

We are finally in a position to offer a precise criterion for the existence of

spacetime points independent of metrical structure that is to the investigative

contexts we have considered. There are, in fact, two natural criteria that sug-

gest themselves, one weaker than the other. The first is suggested by the ex-

ample of complexification and stated somewhat loosely:

Definition 1: Points in a spacetime manifold have existence independent of

metrical structure if there is a canonical method to identify spacetime points

during gradual modifications to the local spacetime structure.

My discussion of the example of complexification shows that, in this context

and using this criterion, spacetime points do not have existence independent of

metrical structure.

Now, based on the discussion of simplification, I propose a second

criterion, stronger than the first and formulated more precisely and rigorously.

Fix a limiting family with a choice of definite limit space. I say that a point in

the initial member of the limiting family vanishes (or that the point itself is a

vanishing point) with respect to the given family of frames if it has no point

16 One might object that, in this example, the experimentalist is really trying to track the same

points through space over time, not the same spatiotemporal points in different spacetimes. In

fact, though, since the goal of the investigation is to determine how global metrical structure in

slightly aspherical spacetimes differ for different values of the central mass, it is natural for the

experimentalist to consider each static phase of the laboratory—the period after the last bit of

mass has been added and the perturbations have settled down, but before the next bit of mass is

added—as a separate spacetime in its own right, for the purposes of comparison. An appropriate

analogue is the so-called physical process version of the first law of black-hole mechanics (Wald

[1994]; Wald and Gao [2001]), where one must identify two separate spacetimes (in the sense of

two different solutions to the EFE) that differ in that one conceives of the spacetime as the result

of a dynamical evolution of the other, even though there is no concrete representation of that

evolution as occurring in a single spacetime.

Erik Curiel16

 by guest on Septem
ber 5, 2016

http://bjps.oxfordjournals.org/
D

ow
nloaded from

 

http://bjps.oxfordjournals.org/


identifiable with it in the limit determined by the fixed choice of how to

identify that point across all the members of the family. I say that a point in

the limit space appears if there is no limiting sequence of points that converges

to it.

Definition 2: Points in a spacetime manifold have an existence independent

of metrical structure if there is no way to identify points across members of

any ancestral family of the spacetime so that points vanish or appear.

I do not demand that one be able to identify in a preferred way a spacetime

point in the limit with any point of any member of one of its ancestral families,

much less for all its ancestral families. This allows us to hold on to diffeo-

morphic freedom in the presentation of the limit space. I do not even demand

that the criterion hold for every possible spacetime model—perhaps in some

spacetimes it makes sense to attribute existence to spacetime points independ-

ent of metrical structure, whereas in others (say, completely homogeneous

spacetimes) it does not. I demand only that, for a given spacetime, one not

be able to make points in any of the spacetime’s ancestral families vanish and

not be able to make points in the spacetime, as the limit space, appear—a weak

demand. This should capture the idea that when we construct a spacetime

model and treat it as an idealized representation of a more complex system—

as it always is—then we can reliably identify spacetime points in our model

with points in the more complex system, albeit up to diffeomorphic presenta-

tion. If we cannot do this irrespective of the more complex model we start

from, then we cannot—without arbitrariness and artifice—regard results of an

investigation in the context of the idealized model as relevant to the physics of

the more complex system, for we will be unable to identify the regions in the

more complex system to which the results of the idealizing investigation per-

tain. The example of Schwarzschild spacetime as a limit of a family of

Reissner–Nordström spacetimes clearly does not satisfy the criterion, for

there are points that vanish in the limiting procedure (for example, those in

the shaded region of Figure 2). One may suspect that the existence of singular

structure in the two spacetimes fouls things up. The following result, however,

establishes that no spacetime satisfies the criterion, namely, that its failure is

universal and depends on no special properties of any spacetime model.17

Proposition 1. Every spacetime has a non-trivial ancestral family with vanish-

ing points. Every non-trivial ancestral family has a limit space with respect to

which some of its points vanish.

(The analogous proposition holds for points that appear.) In consequence, in

every relativistic spacetime we treat as an idealized model in the context of this

17 See (Curiel [unpublished]) for the proof.
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sort of scientific investigation, we can attribute existence to individual space-

time points (or not) only by reference to the metrical structure of the ancestral

family we use to construct the model, and the limiting process we choose for

the construction.

An obvious objection to the relevance of these arguments to the ontic status

of spacetime points is that I deal here only with idealizations and approxima-

tions, not with a real model of real spacetime. But we never work with any-

thing that is not an idealization—it’s idealizations all the way down, young

man, as part of the human condition. If you can’t show me how to argue for

the existence of spacetime points independently of metrical structure using our

best scientific theories as they are actually used in successful practice—a large

and essential component of scientific knowledge—then you are not relying on

real science to ground your arguments. You are paying only lip-service to the

idea that science should ground these sorts of metaphysical issues.

4 Pointless Constructions

The argument of Section 3 yields a conclusion that holds only in a limited

sphere, namely, those investigations based on the idealization of models of

spacetime by means of limits. One may wonder whether it could be parlayed

into a more general argument. I do not think so. Indeed, I think there is no

sound argument to the effect that, regardless of the context of the investiga-

tion, one can identify spacetime points or attribute existence to them only by

reference to prior metrical structure. Sometimes, in some contexts, one can

identify and attribute existence to spacetime points without any such refer-

ence. To show this, I will present an argument that all the structure accruing to

a spacetime, considered simply as a differential manifold that represents the

collection of all possible (or, depending on one’s modal predilections, actual)

physical events, can be given definition with clear physical content in the ab-

sence of metrical structure. The argument takes the form of the construction

of the point-manifold of a spacetime, its topology, its differential structure,

and all tensor bundles over it from a collection of primitive objects that, when

the construction is complete, acquires a natural interpretation as a family of

covering charts from the manifold’s atlas, along with the families of bounded,

continuous scalar fields on the domain of each chart. That idea yields the

following precise criterion the argument will rely on.

Definition 3. Points in a spacetime manifold have existence independent of

metrical structure if the manifold can be constructed from a family of scalar

fields, the values of which can be empirically determined without knowledge

of metrical structure.
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The basic idea of the construction is simple. I posit a class of sets of rational

numbers to represent the possible values of physical fields, with a bit of add-

itional structure in the form of primitive relations among them just strong

enough to ground the definition of a derived relation whose natural interpret-

ation is ‘lives at the same point of spacetime as’. A point of spacetime, then,

consists of an equivalence class of the derived relation. The derived relation,

moreover, provides just enough rope to allow for the definition of a topology

and a differential structure on the family of all equivalence classes, and from

this the definition of all tensor bundles over the resultant manifold, completing

the construction. The posited primitive and derived relations have a straight-

forward physical interpretation, as the designators of instances of a schematic

representation of a fundamental type of procedure the experimental physicist

performs on physical fields when attempting to ascertain relations of physical

proximity and superposition among their observed values. An important ex-

ample of such an experimental procedure is the use of the observed values of

physical quantities associated with experimental apparatus to determine the

values of quantities associated with other systems, those investigated with the

use of the apparatus. This interpretation of the relations motivates the claim

that the constructed structure suffices, for our purposes, as a representation of

spacetime in the context of a particular type of experimental investigation as

modelled by mathematical physics, and is not (only) an abstract mathematical

toy. Because of limitations of space, I give only a bare sketch of the construc-

tion; see (Curiel [unpublished]) for an exposition of the complete construction.

A ‘simple pointless field’ (or just ‘simple field’), �, is a disjoint union ]
p2Q4

fp,

indexed by Q
4 (the set of quadruples of rational numbers), such that

(1) every fp 2 Q;

(2) there is exactly one fp 2 � for each p 2 Q
4;

(3) therearetwostrictlypositivenumbers,Bl andBu; suchthatBl < jfpj < Bu

for all p 2 Q
4;

(4) the function � : Q
4
!Q defined by �ðpÞ ¼ fp is continuous in the

natural topologies on those spaces, except perhaps across a finite

number of compact three-dimensional boundaries in Q
4.

Our eventual interpretation of such a thing as a candidate result for an

experimentalist’s determination of the values for a physical field motivates

the set of conditions. That we index � over Q
4 means we assume that the

experimentalist by the use of actual measurements and observations alone can

impose on spacetime at most the structure of a countable lattice indexed by

quadruplets of rational numbers (and even this only in a highly idealized

sense); in other words, the spatiotemporal precision of measurements is lim-

ited. Condition 1 says that all measurements have only a finite precision in the
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determination of the field’s value. Condition 2 says that the field the experi-

mentalist measures has a definite value at every point of spacetime. Condition

3 says that there is an upper and a lower limit to the magnitude of values the

experimentalist can attribute to the field using the proposed experimental ap-

paratus and technique. For instance, any device for the measurement of the

energy of a system has only a finite precision, and thus can attribute only

absolute values greater than a certain magnitude, and the device will be

unable to cope with energies above a given magnitude. Condition 4 tries to

capture the ideas that (local) experiments involve only a finite number of

bounded physical systems (apparatuses and objects of study), and that clas-

sical physical systems bear physical quantities the magnitudes of which vary

continuously (if not more smoothly), except perhaps across the boundaries of

the systems.

A linkage is a relation imposed on a family of simple pointless fields, cap-

turing the idea that values of the various fields all live at the same point of

spacetime. One can think of the linkage as a coordinate system on an under-

lying, abstract point set, homeomorphic to an open set of Q
4. (For simplicity,

we restrict attention to linkages that define convex normal neighbourhoods;

this entails no real loss of generality.) To capture the idea of transformations

between coordinates systems, one defines a relation between linkages, a ‘cross-

linkage’, inducing a homeomorphism between two open sets of Q
4, naturally

construed as the intersection of the two coordinate systems. Now, to complete

the construction, we need to move from the rationals to the reals, to define the

manifold structure of the abstract point-set represented by a maximal set of

families of simple pointless fields. Roughly speaking, we take a double

Cauchy-like completion over elements of Q
4 linked with rational numbers

(values of the fields with their associated points in the underlying space).18

We thus obtain what is in effect the family of all continuous real scalar fields

on Q
4, though I refer to them as ‘pointless fields’ in so far as, at this point, they

are still only indexed disjoint unions. The limiting procedure, moreover, in-

duces on the family of pointless fields the structure of a module over Q, from

the modular structure over Q that accrued to the maximal family of simple

pointless fields. Finally, in the obvious way, we take the completion, as it were,

of a family of maximal cross-linkages on the original family of simple pointless

fields, resulting in a maximal family of homeomorphisms between open sets of

Q
4, the allowed transformations among all the induced coordinate systems on

our abstract point set, a complete fundamental family.

To complete the construction, we need only to define a topology and then a

compatible differential structure on the point-set, turning it into a true

18 In order to get the completion we require, standard Cauchy convergence does not in fact suffice.

We must instead use a more general method, such as Moore–Smith convergence based on

topological nets; see (Curiel [unpublished]) for details.
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differential manifold. The basic idea is that a complete fundamental family

represents the family of continuous real functions on a bounded, normal

neighbourhood of what will be the spacetime manifold. Because a spacetime

manifold must be paracompact (otherwise it could not bear a Lorentz metric),

there is always a countable collection of such bounded, normal neighbour-

hoods that cover it. This suggests:

Definition 4. A pointless topological manifold is an ordered pair consisting of a

countable set of maximal simple pointless families and a cross-linkage on them.

It is straightforward to verify, when one works all the details out, for exam-

ple, that a real scalar field on the constructed manifold is continuous if and

only if its restriction to any of the basic neighbourhoods defines a field in the

family associated with that neighbourhood. Now we can define the manifold’s

differential structure in a straightforward way using similar techniques. First,

demarcate the family of smooth scalar fields as a subset of the continuous

fields. One can do this in any of a number straightforward ways with clear

physical content based on the idea of directional derivatives, such as measur-

ing the rate of change of a physical scalar field in a given spatiotemporal

direction. (The algebraic modular structure of the fields comes into play in

the definition of the directional derivative.) The family of all smooth scalar

fields on a topological manifold, however, fixes its differential structure

(Chevalley [1947]). The directional derivatives themselves suffice for the def-

inition of the tangent bundle over the manifold, and from that one obtains all

tensor bundles, completing the construction.

After so much abstruse and, worse, tedious technical material, we can now

judge whether the construction supports the argument I want to found on it.

The use of Q
4 to index a simple pointless field represents the fact that all points

in a laboratory have been uniquely labelled by four rational numbers, say, by

the use of rulers and stop-watches. Such an operation neither measures nor

relies on knowledge of metrical structure, for it yields in effect only a chart on

that spacetime region. (No assumption need be made about the ‘metrical

goodness’ of the rulers and clocks.) Neither does any other operation used

in the construction rely on or even pertain to metrical structure. One deter-

mines the values of the simple fields, for example, by use of physical observa-

tions, none of which necessarily depend on knowledge of the ambient metrical

structure. To illustrate the idea, consider the use of a gravity gradiometer to

measure the components of the Riemann tensor in a region of spacetime,

which exemplifies many of the ideas in the construction. The gradiometer is

essentially a sophisticated torsion balance for measuring the quadrupole (and

higher) moments of an acceleration field.19 Its fixed centre and the ends of its

19 See, for example, (Misner et al. [1973], Section 16.5, pp. 401–2) for a description of the device

and its use.
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two rotatable axes continuously occupy at any given moment five proximate

points, and the values of linear and angular acceleration of each point yield

direct measures of the Riemann tensor’s components in a Fermi frame

adapted to the position and motion of the instrument. One then identifies

the spacetime points occupied by the parts of the instrument, by the

Riemann tensor’s components and their derivatives, by the values of its

scalar invariants, and so on.20 One does not have to postulate a prior metric

structure in order to perform the measurements and label the points, nor need

one have already determined the metrical structure by experiment. Indeed, in

the performance of the gradiometer measurements one determines much of

spacetime’s metrical structure. Because, moreover, the facts of intrinsic phys-

ical significance that the values of the fields and the relations among them

embody (Is this body in contact with another? Does heat flow from that body

to this or vice versa?) remain invariant under the action of a diffeomorphism,

it follows that the equivalence classes we used to construct points does so as

well. Thus, we can fix all the manifold structure, including metrical, only up to

diffeomorphism, as we expect. This shows that the construction delivers every-

thing we need and nothing more.

There is an obvious response to the argument based on this construction.

One may object that far from the argument’s having shown that the construc-

tion pushes us to attribute independent existence to spacetime points, it

instead suggests that points are defined only by reference to prior physical

systems, and hence exist in only a Pickwickian sense, dependent on the iden-

tifiability of those physical systems. This objection can be answered by, as it

were, throwing away the ladder. Once one has the identification of spacetime

points with equivalence classes of values of scalar fields, one can as easily say

that the points are the objects with primitive ontological significance, and the

physical systems are defined by the values of fields at those points, those values

being attributes of their associated points only per accidens. I do not pretend

to endorse such a move, but I do not have to. My constructive argument is ad

hominem.

5 The Debate between Substantivalists and Relationalists

I do not consider the idea of pointless manifolds deep or of great interest in its

own right.21 There are, I am sure, many other constructions in the same spirit.

If one were so inclined, I suppose one could try to take something like it to give

20 See, for example, (Bergmann and Komar [1960], [1962]) for a concrete, albeit purely formal,

example of a procedure for implementing this idea.
21 There are a few questions of potential interest that accrue to it. Is it possible to determine the

topology of a non-compact manifold by the postulation of a finite number of simple fields? If so,

does the minimum number depend on a topological invariant? Is it greater than the number of

fields we currently believe to have physical import in any case?
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a precise way for a relationalist to characterize the spacetime manifold.22 I am

not so inclined, because I do not think the contemporary debate between the

relationalist and the substantivalist has been well posed, and I am inclined to

think it never will be in any interesting sense. That is what I take to be the force

of the opposed constructions of Sections 3 and 4, taken in tandem. They show

that ‘dependence on prior metrical structure’ is formal, that is, without sub-

stantive content until given explication in the framework of an investigative

enterprise, even if that framework is given only in schematic form. Once one

grants this, however, the game is up. Different investigative frameworks can

and do yield natural criteria that lead to contrary conclusions.23

An amusingly poignant feature of the constructions shows this clearly: each

yields a conclusion contrary to what the traditional debates would have led

one to have expected based on the tools and techniques it employs. In the

second, one uses independent values of physical quantities (a stock in trade of

the relationalist) in order to identify and attribute existence to spacetime

points without a prior assumption of metric structure; and in the first, one

uses structures in mathematical physics that seem to presuppose the independ-

ent identifiability of spacetime points (a stock in trade of the substantivalist) in

order to argue that in fact they are not identifiable without a prior postulation

of metric structure. One may think that these features of the arguments make

them, in the end, self-defeating, but I do not think so. In the first, one impli-

citly assumes that complex models are themselves only idealizations of yet

more complex models. In the second, one implicitly assumes that, say, the

gradiometer is small enough and the temporal interval of the measurement

short enough in the experiment to justify the use of the Minkowski metric in

making the initial attributions of the magnitudes of spatiotemporal intervals

and relations of orthogonality among vectors; one then uses this to bootstrap

one’s way to a more accurate representation of the metrical structure of space-

time, which is what is done in practice. I think that these facets of the argu-

ments, perhaps more than anything else, illustrates the vanity of the

traditional debate: one can use the characteristic resources and moves of

each side to construct arguments contrary to it, once one takes the trouble

to make the question precise.

Most damning in my eyes, the constructions show the futility of the debate,

for they make explicit how very little one gains in comprehension or under-

standing by having taken the considerable trouble to have made the questions

precise. Indeed, one may feel with justice that nothing has been gained, but

22 See (Butterfield [1984]) for a survey of some ways one might attempt such a project.
23 This line of argument bears fruitful comparison to the ideas of Ruetsche ([2011]) in the context

of interpretations of quantum field theory.
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rather something has been lost in a pettifoggery of irrelevant technical detail.24

Although I conclude the traditional debate is without real content, I think

there is a related, interesting question one can give clear sense to: what in one’s

investigative framework is naturally taken to—or must one take to—have

intrinsic physical significance? Even putting aside existence and ontology as

emotive distractions, however, I do not think one can give even this question

substantive sense in the abstract: the question is a formal template that one

must give substance to by fixing the significance of its terms in presumably

different (but, also presumably, related) ways in different particular contexts.

Consider one way to rephrase the question that may seem, on the face of

things, to give it concrete content in abstraction from any schematic frame-

work: what propositions would all observers agree on? One cannot answer this

question in the abstract, or even give it definite sense, because one has not yet

fixed the way that one will schematically represent the observer (or experi-

mental apparatus) and the process of observation. In order to do so, one must

settle many questions of a more concrete nature. Will one use the same theory

to model the observation as one uses to model the system? Will one take the

observer to be a test system, in the sense that the values of its associated

physical quantities do not contribute to the initial-value formulation of the

equations of motion of one’s models? And so on. Until one settles such issues,

one cannot even say with precision what any single observer can or will ob-

serve, much less what all will agree on. In this sense, even claims such as ‘in

general relativity, only what is invariant under diffeomorphisms has intrinsic

physical significance’ have only schematic content. One must give definite

substance to the ‘what’ in ‘what is invariant’—substance that involves the

forms of the physical systems at issue and the methods available for their

probing and representation—before one can make the claim play any definite

role in our attempts to comprehend the world. I take this to be the lesson of

Stein ([1977]), namely, that the way to proceed in these matters is the one

Newton and Riemann relied on: we must infer what we can about the spatio-

temporal structure of the world from the roles it plays in characterizing phys-

ical interactions as revealed by our best experimental techniques and modelled

by our best theories; and on this basis, neither substantivalism nor relation-

alism can claim any great victory.

In the end, why should we ever have expected there to have been a single,

canonical way to explicate the physical significance of the idea of a spacetime

point, on the basis of which we might then attempt to determine whether such

a thing exists or not in some lofty or mundane sense? What, after all, is lost to

our comprehension of the physical world without such a unique, canonical

24 Jeremy Butterfield has tried to convince me that I dismiss too readily the possible philosophical

value of the technical constructions and arguments of Sections 3 and 4. I would like to think he

is right.

Erik Curiel24

 by guest on Septem
ber 5, 2016

http://bjps.oxfordjournals.org/
D

ow
nloaded from

 

http://bjps.oxfordjournals.org/


explication? After all, in these debates we purport to better comprehend the

‘physical’ world. Hadn’t we better ensure, then, that the terms of our argu-

ments have the capacity to come into contact in some important way with the

physical world by way of experiment and theory? Once we take that demand

seriously, we find an orgiastic throng of possible candidates to serve as con-

crete realizations of the question, some of which will be fruitful in some kinds

of enterprises, others in others, and, most likely, several in none at all. I think a

necessary (though not sufficient) condition for the scientific cogency and rele-

vance of the question of the existence of spacetime points is a demonstration

that an answer to it would contribute fruitfully to the proper comprehension

of the performance of an experiment or the proper construction of a model of

a physical system in the context of general relativity. (Recall this article’s

epigraph by Maxwell.)

One tempting way to try to justify, on scientific grounds, the debate between

the substantivalist and the relationalist invokes the idea that ontological clar-

ity by itself is a scientific virtue—it underpins real understanding of a theory; it

facilitates novel investigations in, and applications of, a theory; it provides the

resources for advancement of scientific knowledge in all its forms; and so on.

Before getting carried away, however, it behooves us to look at the history of

physics and ask when the settling of an intratheoretic ontological question

ever led to a real scientific advance. I think, in fact, the opposite is the case:

scientific advances often happen precisely when people stop worrying too

much about ontology. It was, for example, Newton’s willingness to remain

agnostic about the ontology of light that led him to develop his revolutionary

mathematical theory of light and colour in the 1660s, just as it was a similar

agnosticism with regard to the ontological basis of gravity that allowed him to

take the steps necessary for deriving the law of universal gravitation in

Principia (in particular, the application of the third law to the force the sun

seems to exert on the planets).25 In the development of electromagnetism,

similarly, it was exactly when Maxwell stopped looking for an explicit

model (ontology) of the electromagnetic field that he was able to construct

the full, final theory as we know it today (Maxwell [1965a]). And I find it

difficult to believe that quantum mechanics itself would ever have been dis-

covered if Heisenberg, Schrödinger, Dirac, et al. had demanded resolution of

all their many and deep ontological problems before they were willing to

commit themselves and advance their new theory.

In the spirit, again, of the epigraph to this article by Maxwell, I think there is a

better question at hand than that of the existence of spacetime points:

25 See (Newton [1958a], [1958b], [1958c], [1958d]) for Newton’s exposition of his theory of light

and colour, and for his own explicit explanation and defence of his ontological agnosticism.

Stein ([unpublished (a)]) gives a detailed and insightful discussion of this point. Stein ([1990a])

also discusses the role of Newton’s agnosticism in his arguments for universal gravitation.
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what mathematical structures best represent our scientific experience of spatio-

temporal localization? Again, this question cannot be answered in the abstract,

for it depends sensitively on the answers to other, more-or-less independent and

yet inextricable questions, such as: What mathematical structures best represent

our experience of other features of spatiotemporal phenomena, such as the lack of

absolute simultaneity, the orientability of space, and so on? What structures

representing various kinds of derivatives do we need to formulate equations of

motion? What structures for representation of Maxwell fields? And so on. One

has to attempt to address these questions in a dialectical fashion, answering part

of one here, seeing what adjustments are then required in other parts of the

manifold of possible structures, so to speak, and so on. The answer to one of

these questions in one context may be individual points of a spacetime manifold;

to another question in another context, it may be area and volume operators as in

loop quantum gravity. Instead of asking whether the manifold itself or the mani-

fold plus the metric is really spacetime, we should instead be asking what sorts of

structure with real physical significance a manifold by itself and a manifold with a

metric can each support—anything requiring only differential topology or geom-

etry for the former, and anything requiring Lorentz geometry for the latter. It is to

the investigation of such questions that I now turn.

6 Existence and Physicality: An Embarassment of Spacetime

Structures

The arguments of this article naturally extend themselves beyond the realm of

the debate over the existence of spacetime points, and do so in a way that sheds

further light on the futility of that debate. There are many different senses one

can give to the question of whether some putative entity or structure of any

type has real physical significance in the context of general relativity, each

more-or-less natural in different contexts. For lack of a better term, I shall say

that an entity (which, as we shall see, can encompass several different types of

thing), purportedly represented by a theoretical structure, has physicality if

one has a reason to take that structure seriously in a physical sense, namely, if

one can show that it plays an ineliminable or at least fruitful and important

role in the way that theory and experiment make contact with each other. Of

course, as I stressed in Section 2 and elaborated on in Section 5, such an

abstract, purely formal schema as ‘plays an ineliminable or at least fruitful

and important role in the way that theory and experiment make contact with

each other’ has no real content until one explicates it in the context of an

investigative framework. It is, in fact, one of the ‘important matters on which

sensible even if vague things can be said’, which Stein discussed at the begin-

ning of this article. As such, it is the examples that give the idea life.
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A Maxwell field, represented by the Faraday tensor, Fab, is manifestly phys-

ical. One important sense in which this is true turns on the fact that it con-

tributes to the stress-energy tensor on the righthand side of the EFE: the

Maxwell field possesses stress-energy, and in general relativity nothing is phys-

ical if not that.

Consider now a Killing field on spacetime, a vector field �a that satisfies

Killing’s equation

rða�bÞ ¼ 0; ð2Þ

and so generates an isometry, in the sense that £�gab ¼ 0. In this guise, it seems

not to possess the characteristics of a physical field, in so far as it enters the

equations of motion of no manifestly physical system, such as a Maxwell field.

In other words, it does not couple with phenomena we consider physical, and so

a fortiori does not contribute to the stress-energy tensor. Now, define the

2-index covariant tensor Pab � ra�b. Equation (2) implies that it is anti-sym-

metric. Let us say that it happens to also have vanishing divergence and curl,

rnPna ¼ 0 and r½aPbc� ¼ 0, and so satisfies the source-free Maxwell equations.

Is it eo ipso a true Maxwell field, and so physical? Not necessarily. There are

always an innumerable number of 2-forms on a spacetime that satisfy the

source-free Maxwell equations. At most, one of them represents a physical

Maxwell field. If, however, it just so happened that Pab were to represent the

physical Maxwell field on spacetime—one known as a Papapetrou field in this

case—the fact that one natural way to represent the field happened to generate

an isometry would appear to be an accident, in the sense that no property of the

field accruing to it by dint of its physicality, which is to say, by dint of its

satisfaction of the Maxwell equations and concomitant coupling with other

manifestly physical phenomena (such as spacetime curvature, by way of the

EFE), depends on the satisfaction of Equation (2) by �a (except in the trivial

sense that satisfaction of Equation (2) is necessary for �a to be a 4-vector po-

tential for a Maxwell field). Still, �a as a Killing field is a naturally distinguished

geometrical structure in the physical description of spacetime. It forms a part of

the description of spacetime independent of the particulars of the physical con-

stitution of any observed phenomena, particularly in so far as it places non-

trivial contraints on a manifestly physical structure, the spacetime metric. In

this sense, �a is physical; for the Maxwell field, by contrast, is not naturally

distinguished in this sense, but rather depends in an essential way on the pecu-

liar, contingent physical constitution of a particular family of phenomena.

In what sense, though, is the metric manifestly physical? The metric does

not itself contribute to the stress-energy content of spacetime, for one cannot

attribute a localized gravitational stress-energy to it.26 That is not to say that

26 See, for example, (Curiel [forthcoming (a)]).
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the metric does not appear in the stress-energy tensor of a given spacetime,

for it is almost always required for the construction of the stress-energy

tensor.27 The stress-energy tensor of a Maxwell field, for example, is

FanF n
b þ

1
4

gabFrsF
rs. (The metric appears not only explicitly in the second

term, but also implicitly in both terms, raising the contracted indices.) The

metric, however, is necessary both for posing the initial-value formulation of

every possible kind of field that may appear in a relativistic spacetime—in

particular all of those (such as the Maxwell field) that we regard as manifestly

physical—and for formulating the equations of motion of the fields. In par-

ticular, the metric dynamically couples with other physical systems, namely,

interacts with them in the strong sense that there always exist terms in the

equations of motion for any given field in which the metric appears as one

factor and the tensor representation of the field as another. For the Maxwell

field, the metric appears contravected, with the Faraday tensor in the field

equation representing the fact that its covariant divergence equals the charge-

current density of matter.28

The metric, of course, can play other roles as well, just as a Killing field can.

A vacuum spacetime with non-zero cosmological constant is based on an

extended form of the EFE, with an extra term equal to the metric times a

constant. One plausible way of reading the extended EFE is to have the metric

play two distinct roles simultaneously, one as the necessary ground of all

spatiotemporal structure (embodied in the Einstein tensor) and the other as

a component of the tensor representing the stress-energetic content of space-

time (that is, one interprets the extra term in the EFE as a stress-energy

tensor), depending on contingent features of the ambient matter field—in

this case, whatever field gives rise to the cosmological constant. Again, in

the former sense, as the ground of spatiotemporal structure, the metric is a

naturally distinguished structure in any physical description of spacetime; in

the latter sense, it rather depends on the peculiar, contingent physical consti-

tution of a particular family of phenomena.

Consider the Riemann tensor. Again, it manifests physicality in several

different ways, in different contexts. Perhaps the most important is in the

equation of geodesic deviation, where it directly measures the rate at which

infinitesimally neighbouring geodesics tend to converge towards or diverge

away from each other. In this case, the Riemann tensor’s physicality consists

in the fact that it encodes all information needed to model manifestly

27 Indeed, the only example I know of a stress-energy tensor for which the metric is not needed for

its definition is the case of a null gas, for which only the conformal structure of spacetime is

required. See (Lehmkuhl [2011]) for discussion of these issues.
28 That the other defining equation for a Maxwell field, representing the fact that the Faraday

tensor is curl-free, does not require the metric at all for its formulation—the exterior derivative is

determined by the differential structure of the underlying manifold—may push one to say that it

is not a dynamical equation of motion, but rather a kinematical constraint.
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observable phenomena, namely, the relative acceleration of nearby freely fall-

ing particles and the tidal force exerted between different parts of a freely

falling extended body. Another important role it plays in general relativity

is as the measure of the failure of the ambient covariant derivative operator

associated with the spacetime metric to commute with itself when acting on

vectors or tensors. The physical significance of this property is straightfor-

ward: it encodes the fact that in regions of non-trivial curvature, neighbour-

ing, initially parallel geodesics do not remain parallel, but rather diverge away

from or converge towards each other—the phenomenon of geodesic deviation.

The Einstein tensor itself presents an interesting case. It has no straightfor-

ward geometrical interpretation.29 It seems, moreover, to have no straightfor-

ward physical interpretation either—it enters into the equations of motion of

no known fields; it measures no quantitative feature of any known physical

phenomena; it does not represent a field possessing stress-energy; it constrains

the behaviour of no other manifestly physical structure; and so on. And yet it

is the structure that matter fields couple to (via the EFE) in their role as source

for spatiotemporal curvature. In this role, it dynamically couples with no

individual matter fields, but rather only to the aggregate physical quantity

‘stress-energy’ that they all possess and which, according to the fundamental

principle of the fungibility of all forms of energy,30 in no way differs qualita-

tively among all known fields. It seems, then, manifestly physical in some

sense, but it is difficult to put one’s finger clearly on that sense. This is an

example of a philosophically important problem whose resolution would pro-

vide real physical insight.

Global structures of various sorts (causal, topological, projective, confor-

mal, affine, and so on) present interesting cases as well.31 Consider the con-

formal structure of a spacetime. It governs and is embodied in the relative

behaviour of the null cones across all spacetime points. One natural interpret-

ation of the null cones is as determining a finite, unachievable upper-limit for

the velocities of material systems.32 The fact that the null cones determine a

topological boundary for the chronological future and past of every spacetime

point also has a natural interpretation in the same vein: if the chronological

future or past were topologically closed, then there would be a limiting upper

velocity for massive bodies that would be actually achievable by a massive

29 See (Curiel [forthcoming (b)], Section 2.1) for a discussion.
30 See (Maxwell [1952], Chapter 5, Section 97, [2001], Chapters 1,3,4,8,12) for illuminating discus-

sion of this principle.
31 I take a structure to be global if it is not local in the sense explicated by Manchak ([2009], p. 55). I

think Manchak’s definition of ‘local’ is superior, as judged by its physical significance in the

context of general relativity, to the one I proposed in (Curiel [1999], Section 5), though the latter

may still be of interest in purely mathematical contexts, or in contexts of physical investigation

that transcend the scope of a single theory.
32 See, however, (Geroch [unpublished]; Earman [unpublished]) for dissenting views.
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body using only a finite amount of energy. If one accepts these interpretative

glosses, then the conformal structure has physicality in so far as it constrains

the behaviour of manifestly physical systems.

So, to sum up, the notions of physicality mooted here are:

. contributes to Tab (for example, Maxwell field);

. required for initial-value formulation of manifestly physical fields (for

example, Maxwell field, gab);

. dynamically couples to manifestly physical entities (for example, Maxwell

field, gab);

. dynamically couples to manifestly physical quantities that more than one

type of physical system can bear (for example, Einstein tensor);

. acts as a measure of an observable aspect of manifestly physical entities

(for example, Riemann tensor);

. enters the field equation of a manifestly physical structure (for example,

Einstein tensor);

. constrains the behaviour of a manifestly physical entity (for example,

Killing field, conformal structure);

. plays an ineliminable (albeit physically obscure) role in the mathematical

structure required to formulate the theory (for example, Riemann tensor,

Einstein tensor).

I am confident there are yet more senses of physicality I have not touched

upon. One does not have to be an instrumentalist or an empiricist to accept

that the possible observability of physical phenomena is one of the most

fundamental reasons we have to think such things are physical in the first

place; see (Curiel [unpublished]) for a discussion of the relation of this idea

to that of physicality.

No matter how convincing or interesting or philosophically rich these ex-

amples and arguments may be, one might still want to respond that they show

nothing about the possible existence of spatiotemporal entities, and so in the

end they do not bear on the debate between substantivalism and relationalism.

I do not think that is the correct lesson to leave with, though. I take physicality

to be a necessary condition for the attribution of existence to a theoretical

entity. Thus is there are many possible ways an entity can manifest physicality,

and one can show that different entities manifest some but not others of them,

then it follows that it is meaningless to attribute existence simpliciter to such

theoretical entities. If there are two entities each manifesting a different type of

physicality, then in so far as each is a necessary condition for existence, if one

attributes existence to those entities, it must be of a different sort for each.

Thus, in so far as one wants to make sense of the idea of existence in the
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context of physical entities purportedly represented by theoretical structures

(if that is the sort of thing one likes to do), it cannot be univocal. To para-

phrase Aristotle, existence is said in physics, if at all, in many ways.

What light, if any, does all this shed on the cogency of the traditional debate

about the ontic status of spacetime? I think quite a bit. A spacetime point is

not physical in any of the ways I have explicated: they have no such things as

an initial-value problem, they have no equation of motion, they have no

property that dynamically couples to any physical field, and so on. How,

then, is one supposed to try to answer the question of whether or not they

exist in any way that purports to be grounded in physics?

7 Valedictory Remarks on Realism and Instrumentalism, and the

Structure of Our Knowledge of Physics

I think my conclusions about the vanity of metaphysical argumentation ab-

stracted from the pragmatics of the scientific enterprise carry over into the

general debate over realism and instrumentalism. Indeed, I consider the argu-

ment about relationalism and substantivalism to be an instance of the more

general form of argument one can give for existence claims about entities and

structures in science. An example will make the point.

Consider the question, ‘Do electrons exist?’. On its face, it seems immune to

the sorts of problems I raise about the ontic status of spatiotemporal structure.

Surely one can attribute canonical significance to this question independent of

investigative framework? In fact, one cannot. Think of the different contexts

in which the concept of an electron may come into play, and the natural ways

one may want to attribute physicality (or not) to electrons in those contexts. A

small sample:

. as a component in a quantum, non-relativistic model of the Hydrogen

atom;

. as an element in the relativistic computation of the Lamb shift;

. as a possible ‘constituent’ of Hawking radiation in an analysis of its

spectrum;

. as a measuring device in the observation of quark structure from deep

inelastic scattering of electrons off protons, as treated by the Standard

Model.

In the first case, one may want to attribute physicality to the electron in so

far as its associated quantities enter into the initial-value formulation of the

system’s equations of motion. In the second, one may base the attribution on

the fact that one identifies the electron as the bearer of definite values for the

kinematic Casimir invariants of spin and mass. Generally, there is is no good
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definition of an electron in the third case, because there is no unambiguous,

physically significant definition of particle in quantum field theory on a curved

spacetime, and so a fortiori no way to attribute physicality to such a thing.33 In

the fourth and final case, one can attribute physicality to the electron because

one can associate localized charge, spin, and lepton number with the mass-

energy resonance that represents the electron. Now, one cannot even formu-

late in a rigorous, precise way (and, indeed, often not even in a loose and

frowzy way) the criterion for physicality in any of these frameworks in the

terms of at least some of the others.

It follows that even in this case, any formulation of the question in abstract

terms—such as what all observers agree on, what has manifestly observable

effects, what couples with other systems we already think of as physical, or

what is essential to the formulation of the theory—remains empty until one

gives content to it by the fixation of a framework, even if only schematic. To be

clear, I do not claim that one must always make the investigative framework

of one’s work explicit, only that one ought to recognize it must be there in the

background, specifiable when push comes to shove, as it will from time to

time.

In the picture I have implicitly relied on in the construction of my argu-

ments, the structure of physics may be thought of as something like a differ-

ential manifold itself, with different techniques and concepts that find

appropriate application in different sorts of investigation, and even in similar

sorts of investigation of different subject matters, all covering their own idio-

syncratic patches of the global manifold, consonant with each other when they

overlap but with none necessarily able to cover the entirety of the space. In

that vein, I am confident there are many other interesting ways one can render

the idea of the physicality of putative entities and structures represented by

our best physical theories, variously useful or at least illuminating in investi-

gations of different sorts. In some of those senses, one will rightly, or at least

usefully or suggestively, say those things are physical. In others, one will not.

The words we use to further all the sorts of scientific and philosophical inves-

tigations we pursue do not matter, only the concepts behind the words, some

of which find natural application in some investigations and some of which do

not.

This is not instrumentalism. Among other things, I neither make nor rely on

any principled claim about how one ought to understand the structures of our

best theories as formal systems, the terms and relations with which we formu-

late them, and their broader or deeper relation to the world itself, only about

how we ought not understand them. The greatest physicists have always, it

33 In essence, this is because one has no privileged group of timelike symmetries in a generic

spacetime, as one has in Minkowski spacetime, on which to ground the notion of a particle;

see (Wald [1994]) for a detailed explanation.
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seems to me, had the capacity to think in both realist and instrumentalist ways

about both the best contemporary theories and the most promising lines of

theoretical attack as they were being developed. Often, they held both sorts of

views in their minds at the same time, keeping many avenues open, sometimes

moving forward along one, sometimes switching to another, sometimes strad-

dling the line, as best befit the demands of the investigation, with a concomi-

tant gain in richness of conception and depth of thought.34 In some contexts

and for some purposes, it is most useful to conceive, think, and speak in realist

terms, and in others, to do so in instrumentalist terms. They are both good, in

their place, and neither is correct sub specie æternitatis. In any event, what I

sketch here is certainly not anti-realism.

What I attempt in this article is a start to shifting the terms and viable

fundamental positions of the debate. The traditional debate asks: what is a

cogent ontological model of our best theory considered as a formal system? I

have argued that we should instead be asking: what is essential for theory and

experiment to make fruitful contact with each other? Only in that way does the

complete depth, breadth, and scope of scientific knowledge in all its guises and

aspects come to bear on the philosophical debate, as it should and must. And

so in turn, only in that way can we reasonably hope that the philosophical

debate will shed light on our scientific understanding of the world.

I am not against asking questions that, in traditional terms, seem to bear on

issues of realism and instrumentalism. I am against the focus on the questions

as meaningful and valuable in themselves, without regard to the roles they

may or may not play in the ongoing scientific enterprise of attempting to

comprehend the physical world. That focus, it seems to me, leads only to a

sterile form of ideological back-and-forth that has all but crowded out the

possibility of formulating and addressing questions of real scientific and philo-

sophical clarity and value.
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Number 91 in ColloquesInternationaux, Paris: Centre National de la Recherche

Scientifique, pp. 309–25.

Butterfield, J. [1984]: ‘Relationism and Possible Worlds’, British Journal for the

Philosophy of Science, 35, pp. 101–13.

Butterfield, J. [1989]: ‘The Hole Truth’, British Journal for the Philosophy of Science, 40,

pp. 1–28.

Chevalley, C. [1947]: Theory of Lie Groups I, Princeton, NJ: Princeton University Press.

Cohen, I. [1958]: Isaac Newton’s Papers and Letters on Natural Philosophy, Cambridge,

MA: Harvard University Press.

Curiel, E. [1999]: ‘The Analysis of Singular Spacetimes’, Philosophy of Science, 66, pp.

S119–45.

Curiel, E. [2001]: ‘A Plea for Modesty: Against the Current Excesses in Quantum

Gravity’, Philosophy of Science, 68, pp. S424–41.

Curiel, E. [2009]: ‘General Relativity Needs No Interpretation’, Philosophy of Science,

76, pp. 44–72.

Curiel, E. [2014]: ‘Classical Mechanics Is Lagrangian; It Is Not Hamiltonian’, British

Journal for the Philosophy of Science, 65, pp. 269–321.

Erik Curiel34

 by guest on Septem
ber 5, 2016

http://bjps.oxfordjournals.org/
D

ow
nloaded from

 

http://bjps.oxfordjournals.org/


Curiel, E. [forthcoming (a)]: ‘On Geometric Objects, the Non-existence of a

Gravitational Stress-Energy Tensor, and the Uniqueness of the Einstein Field

Equation’, Unpublished manuscript, submitted to Studies in History and

Philosophy of Modern Physics.

Curiel, E. [forthcoming (b)]: ‘A Primer on Energy Conditions’, in D. Lehmkuhl (ed.),

Towards a Theory of Spacetime Theories, Basel: Birkäuser.
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University of Pittsburgh Press, pp. 129–62.

Stein, H. [1977]: ‘Some Philosophical Prehistory of General Relativity’, in C. Glymour,

J. Earman (eds), Foundations of Space-Time Theories, Minneapolis, MN: University

of Minnesota Press, pp. 3–49.

Stein, H. [1989]: ‘Yes, but. . .: Some Skeptical Remarks on Realism and Anti-realism’,

Dialectica, 43, pp. 47–65.

Stein, H. [1990a]: ‘From the Phænomena of Motions to the Forces of Nature:

Hypothesis or Deduction?’, Philosophy of Science, 1990, pp. 209–22.

Stein, H. [1990b]: ‘On Locke, “the Great Huygenius, and the Incomparable Mr.

Newton”’, in P. Bricker and R. Hughes (eds), Perspectives on Newtonian Science,

Cambridge, MA: MIT Press, pp. 17–47.

Stein, H. [1994]: ‘Some Reflections on the Structure of Our Knowledge in Physics’, in

D. Prawitz, B. Skyrms and D. Westerståhl (eds), Logic, Methodology, and the
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