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ABSTRACT

One can (for the most part) formulate a model of a classical system in either the

Lagrangian or the Hamiltonian framework. Though it is often thought that those two

formulations are equivalent in all important ways, this is not true: the underlying geo-

metrical structures one uses to formulate each theory are not isomorphic. This raises the

question of whether one of the two is a more natural framework for the representation of

classical systems. In the event, the answer is yes: I state and sketch proofs of two technical

results—inspired by simple physical arguments about the generic properties of classical

systems—to the effect that, in a precise sense, classical systems evince exactly the geo-

metric structure Lagrangian mechanics provides for the representation of systems, and

none provided by Hamiltonian. The argument not only clarifies the conceptual structure

of the two systems of mechanics, but also their relations to each other and their respective

mechanisms for representing physical systems. It also shows why naı̈vely structural

approaches to the representational content of physical theories cannot work.

[Lagrange] grasped that he had gained a method of stating dynamical truths

in a way, which is perfectly indifferent to the particular methods of meas-

urement employed in fixing the positions of the various parts of the system.

Accordingly, he went on to deduce equations of motion, which are equally

applicable whatever quantitative measurements have been made, provided

that they are adequate to fix positions. The beauty and almost divine sim-

plicity of these equations is such that these formulae are worthy to rank with

those mysterious symbols which in ancient times were held directly to

indicate the Supreme Reason at the base of all things. (Whitehead [1948],

p. 63)
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1 Introduction

Many physical theories have different mathematical frameworks within which

one can construct models of physical systems the theory purports to treat.

Quantum mechanics, for example, can be formulated using either Heisen-

berg’s matrix mechanics or Schrödinger’s wave mechanics. Classical mech-

anics is no exception. One has available both the frameworks of Lagrangian

and Hamiltonian mechanics in which to formulate the equations of motion of

classical systems and construct concrete models for them.1

It is often held that these different frameworks are essentially equivalent.

(Even when this is not explicitly stated, the treatment of the two often seems to

assume it implicitly.) One will usually be more convenient to work with for

certain sorts of investigations but, the thought goes, there are always methods

for passing back and forth between the two, and in this passage nothing of

significance is gained or lost. I claim, to the contrary, that not only are they not

equivalent in any interesting, physically-significant sense but, more to the

point, they are strongly inequivalent (if one may say so) in an interesting,

physically-significant sense.

Given that is so, the question naturally arises: is there any natural sense in

which classical mechanics evinces the character of one rather than the other?

In this article, I argue that there is a natural sense in which this is so, and that,

in the event, classical mechanics evinces the character of Lagrangian mech-

anics: a classical system (roughly speaking, one appropriately modelled by

Newton’s Second Law) naturally accrues to itself a representation in the

framework of Lagrangian mechanics, based on the intrinsic geometry of its

family of possible dynamical evolutions. Its representation in Hamiltonian

mechanics, in contrast, does not arise naturally based on any structure intrin-

sic to its representation as a classical system but, rather, must be constructed

by hand and imposed by fiat, in a sense to be made precise. Most strikingly,

my arguments do not depend on vague or obscure concepts such as ‘simplicity’

or ‘amount of structure’, and do not require for their acceptance adherence to

1 Any decent book on analytical mechanics will cover both. All textbooks on analytical mech-

anics, however, are not created equal, especially with regard to sensitivity to the sorts of foun-

dational questions I shall address here. For that sort of sensitivity, among the best books I have

found are Whittaker ([1947]), Lanczos ([1970]), Pars ([1965]), Rosenberg ([1977]), and Arnold

([1978]). I am sorry to say that I find the popular and influential Goldstein ([1980]) to be dismal

in this regard.
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any metaphysical system. They are grounded in the geometry of the kinema-

tical and dynamical structures of the theories themselves, as determined by

empirically-founded descriptions of the generic behaviour of classical systems

I begin in Sections 2 and 3 by sketching a generic representation of classical

systems independent of both the Lagrangian and Hamiltonian frameworks,

but rich enough to allow one to pose questions about the proper empirical

descriptions of such systems and to allow one to characterize the intrinsic

geometry of important elements of that representation, such as that of the

family of a system’s allowed dynamical evolutions. Based on the arguments

and constructions of those two sections, I show in Section 4 that the geometric

structures characteristic of such a generic representation of classical systems is

naturally isomorphic, in a physically-significant sense, to the intrinsic geom-

etry of the Euler–Lagrange equation; I capture this idea precisely in theorem

(4.1) about the geometry of tangent bundles. In Section 5, I show why and how

there can be no such isomorphism with the intrinsic geometry of Hamilton’s

equation. These two results form the heart of the argument that classical

mechanics is Lagrangian, not Hamiltonian. In Section 6, I compare the way

the two frameworks represent classical systems to address puzzles raised by

the arguments of the previous sections. I conclude in Section 7 with a summary

of results, and a discussion of some of the consequences of the paper’s argu-

ments for structural approaches to the understanding of physical theory. For

those who do not want to work through all the technical details, I give at the

beginning of Sections 3–5 a brief summary of what I intend to accomplish and

at the end a summary of what has been achieved, along with suggestive com-

ments about its role in the overarching argument.2

I go on at some length in Sections 2 and 3 characterizing classical systems

and showing the intrinsic empirical structures they generically manifest, with

perhaps more caution and care than some readers will like, because those

arguments and constructions are among the clearest, most compelling cases

I know of the derivation of physically-significant formally-precise structure

accruing to an entire class of physical systems starting from the simplest of

empirical assumptions. It is, in fact, a sterling example of what structuralist

views of physical theory generally live for. It is therefore all the more

surprising that the constructions can be used to formulate what I think is a

devastating counterexample to naı̈vely structural views of physical theories.

Indeed, the strength of the putative counterexample to such views is in direct

2 Curiel ([unpublished]) gives a rigorous exposition of all the technical matter used and dis-

cussed in this article, along with real proofs of the two primary technical results, Theorems

4.1 and 5.1.
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proportion to the strength and naturalness of the constructions that lead one

to a case that, at first blush, should do nothing but substantiate it.3

One task of the philosopher of physics is to work out the conceptual struc-

ture of a physical theory—or at least an appropriate one, if it is not unique—to

isolate and characterize its mathematical and formal structures, and show how

natural physical interpretation accrues to them from an analysis of their

empirical application. Two of the most beautiful examples of this I know

are Russell’s The Analysis of Matter ([1927]) and Howard Stein’s paper ‘On

the Conceptual Structure of Quantum Mechanics’ ([1972]). I hope the argu-

ments and constructions of this article offer another example of how such a

thing can be done for classical mechanics, starting from a set of strikingly few

and weak empirical propositions. Those two works, however, wore their jus-

tification on their sleeves; the theories they analyzed and explicated, general

relativity and the nascent quantum theory in the former and mature quantum

mechanics in the latter, were (and still are, for that matter) recognized as the

most fundamental ones we have. Why should a similar project for classical

mechanics hold philosophical interest?

Indeed, with few exceptions, philosophers of physics have tended to give

short shrift to the philosophical problems that seem peculiar to classical mech-

anics and, in particular, those that arise from the foundations of the classical

Lagrangian and Hamiltonian frameworks.4 I think the neglect is unjustified,

for (at least) three reasons. First, sheer intellectual curiosity and the mettle of

philosophy jointly demand that we understand better one of the most mag-

nificent intellectual constructions in human history. That construction is not

only magnificent intellectually, however, which brings us to the second reason:

classical mechanics still tells us something deep about much of the physical

world—it’s what we use for moon-shots, after all. It’s hard for a theory to get

more empirically successful than that. It could not do so without reflecting

something important about the world, even if not at the deepest level. It is in

part the task of philosophy to make clear what that something important is.

Finally, just as classical mechanics is still a rich and deep mine for mathem-

atical investigation in many, if not most, fields of pure mathematics—much of

it inspired by argumentation of a blatantly physical flavour (for example,

Thom’s work on catastrophe theory and Arnold’s work on partial–differential

equations)—so it can be in philosophy as well, with regard to traditional

questions philosophers tend to examine in the context of quantum mechanics

3 My arguments and conclusions run directly counter to, among others, North ([2009]) and

French ([2009]), with regard to the bearing of this example on such issues. I discuss North’s

arguments at the end of Section 5.
4 Butterfield ([unpublished (a)], [unpublished (b)], [2007]), Belot ([2007]) and Smith ([2008]) are

notable exceptions.
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or relativity theory. I do not doubt that investigation of classical mechanics on

its own can suggest new approaches to the analysis of deeper theories.5

2 Abstract Classical Systems

Our first objective is to construct a framework for the description of classical

systems in a way independent of the details of any particular theoretical frame-

work.6 The description will include a characterization of a classical system’s

space of states and its family of dynamical evolutions. I will call a system so

represented an ‘abstract classical system’. This abstract characterization of

classical systems provides an appropriate framework for the constructions

and arguments we require.

I take as fundamental the idea of a system: roughly speaking, something one

can look at, interact with. A quantity associated with a system or type of

system is any property a system may bear amenable to experimental observa-

tion; it is a (possibly variable) magnitude that can be thought of as belonging

to the system, in so far as it can be measured (at least in principle) by an

experimental apparatus designed to interact with that type of system, in a

fashion conforming to a particular coupling of the system with its environ-

ment, which coupling may be modelled theoretically once a theory is in place.7

One assumes that, somehow or other—it does not matter for our purposes

how—one has fixed on a set of quantities that play a privileged role in the

description and comprehension of the system, those that are physically sig-

nificant. Linear acceleration and angular momentum are physically-significant

quantities in the Newtonian mechanics of rigid bodies, for example; the tem-

poral derivative of acceleration (the third temporal derivative of position), and

the magnitude computed by adding the numerical values of position and vel-

ocity at a point are not. (In this case, the physical significance of the former

quantities derives from many features of those quantities: in part from the fact

that the equations of motion, when expressed in terms representing those

quantities, take on their simple, canonical form with no extra spurious

terms appearing, i.e. the form of the equations of motion respects the

5 Earman ([1986], [2007]) on determinism in classical mechanics as compared to other theories is a

beautiful example of this.
6 I do not claim that one can describe actual classical systems in the context of a physical inves-

tigation with the use of no particular, theoretical framework, only that there is a way of ab-

stracting from the details of whatever theoretical apparatus may be involved in any given case, in

the way I attempt in this section.
7 This characterization of quantity involves (at least) one serious oversimplification. Not all

quantities’ values can be determined by direct preparation or measurement, not even in prin-

ciple. Some, such as that of entropy, can only be calculated from those of others that are

themselves directly preparable or measurable. Other quantities are ambiguous in this re-

gard—does the application of a ruler to a system to measure its length count as a coupling of

the system with its environment? These subtleties do not affect the article’s arguments.
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dynamics; in part from the fact that, under appropriate conditions, they obey

conservation laws associated with spacetime symmetries; and in part from the

fact that these quantities, in a sense one can make precise, mediate the cou-

pling of a classical system with other classical systems, which is to say, an

interaction the system can enter into.)

A state of a system is the aggregation of the values of its physically-

significant properties at an instant; it is represented by a proposition encap-

sulating all that can be known of the system physically, at least so far as the

pretheoretical, theoretical, and experimental resources one relies on are con-

cerned. If one can distinguish the values of the properties of the system at one

time from those at another time by the available resources, then the system is

in a state at the first time different from that at the second. A state, therefore,

can be thought of as a set of the values of quantities that jointly suffice for the

identification of a point of the space of states, which is itself the set containing

all states one has identified in practice and all those one extrapolates the

system can occupy. Since each state assigns a definite value for each quantity

to the system, a quantity is represented by a function on the space of states

that assigns to each state a definite value of some mathematical entity, such as

a real number or a vector in a vector space, depending on the nature of the

quantity.

As a brute fact about the physical world, every abstract classical system we

know of has this property: It has associated with it a number, either a single

positive, even integer or else infinity, which is the minimum number of inde-

pendent quantities whose values one must fix in order to individuate and

identify a state. This number is the same for all states the system can

occupy, no matter the set of quantities whose values one uses to label the

states, namely, the system’s degrees of freedom.8 (Mine is a non-standard

usage of ‘degrees of freedom’, which is often taken to refer to the dimension

of configuration space, which I will discuss below, not to that of the total space

of states.) These facts allow one to attribute further structure to the space of

states, those of a topological and a differential manifold. One derives the

topology by requiring all quantities to be continuous (except perhaps at a

countable number of points or across a finite number of compact boundaries),

and one derives the manifold structure by requiring that all quantities be

8 As stated, the claim is not correct. I know of exactly one example of a classical system that has an

odd number of degrees of freedom: it is a simple device, consisting of two rigid discs joined by a

straight, rigid axle connected to each by a universal joint at its center; it rolls without friction or

slippage on a curved surface. I claim that system has seven total degrees of freedom. (I’m sure

other examples along the same or similar lines can be constructed.) I do not know what to make

of such anomalies, so I ignore them for the sake of argument. For what it’s worth, I know of no

account or discussion of classical mechanics, either in the physical or the philosophical litera-

ture, that even remarks on their existence, so I can at least claim that my putting of them aside is

no worse practice than that of any other investigator I know of.
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smooth (except perhaps at a countable number of points or across a finite

number of compact boundaries).9 So quantities play a dual role, one local and

the other global: they individuate and identify the states, and they determine

the topological and differential structures of the space of states.

Every known abstract classical system has the property that at least some of

its quantities almost always change in value as time passes, which is to say, the

system in general occupies different states at different moments of time. The

collection of states it serially occupies during an interval of time, moreover,

forms a curve on the space of states parametrized by time, a ‘kinematically-

possible evolution’ (or just ‘possible evolution’), which is, in general, smooth.

From the family of all possible evolutions, one constructs the family of

kinematically-possible vector fields (or just ‘kinematical vector fields’), those

whose integral curves (the curves that ‘thread the arrows in the vector field’)

are possible evolutions. Since a vector field on a manifold can be thought of in

a natural way as a first-order ordinary differential equation, the kinematical

vector fields encode the equations of motion for all possible interactions of the

system with its environment. The solutions to the equations of motion are, by

construction, the system’s possible evolutions. The family of kinematical

vector fields provides a description of the possible histories of an abstract

classical system equivalent to that given by the family of possible evolution

curves, and one more convenient for our purposes, so I will mostly rely on it in

the discussion.10 Finally, there is a distinguished kinematical vector field, the

‘free kinematical vector field’, which represents the evolution of the system

when it is isolated from all external forces.

I claim that this characterization of abstract classical systems comprises all

basic, physically-significant structure required to found the investigation of

classical systems. It does not provide all the structure that comes into play in

all forms of investigations, but it does provide all the tools one requires to

define and construct all the other structures. A proper defense of this claim is

beyond this article’s scope, though the constructions of Section 3 will go some

way toward providing a sketch of one. Nor do I claim that this characteriza-

tion is canonical in the sense that no other one comprising other natural

structures one takes to be basic can be given. I claim only that it provides

one natural, necessary, and sufficient toolbox and supply of material for the

job. Nonetheless, I do claim that the structure it does provide is essential and

9 To allow countable numbers of discontinuities in the quantities requires the use of straightfor-

ward, but tedious and unilluminating, technical machinery in defining the topology and the

differential structure; we can ignore these sorts of problems for our purposes.
10 Again, this claim is not strictly speaking correct. If one allows collisions of perfectly rigid par-

ticles, for example, then evolution curves of the particles will be well defined up to and past the

point of collision, but in general the curves will have no tangent vector at the point of collision,

as the particles’ velocities can change discontinuously there. And again, we can put aside such

niceties for our purposes.
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minimal: no matter what else is the case, if one is going to represent a classical

system, one had better have a space of states and a family of vector fields to

represent its possible evolutions, or one had better be able to show that one

can reconstruct those two based on what one does have. If one cannot, then

one is not talking about a classical system in any sense of the idea that I am

familiar with.

Before leaving the section, I want to record a virtue of this way of thinking

of the framework of classical mechanics: it teases out several of the puzzling

features of classical mechanics that are otherwise easy to pass by without

remark, so familiar are they to those with even a passing acquaintance with

it. Although I do not address them in this article, I think it is worthwhile to

pause for a moment to list them. Why is it that no matter what set of different

quantities one uses to characterize the state of a system, one always needs only

a certain fixed number of such quantities, the same for all sets of quantities

(the degrees of freedom), no matter how different the quantities in each set

may be from those in other sets? What ought to count as a physically-

significant quantity? When ought two prima facie distinct quantities be treated

as physically different? For a Newtonian particle, the quantity formed by

taking the scalar product of the value of the position with that of the velocity

does not seem to be physically significant; it is often unclear whether five times

or five plus a significant quantity ought to count as a different quantity than

the original. It is not the case that two quantities ought to be counted as

different only if they can be varied independently of each other, for then

momentum and energy for a free particle would not be different quantities.

Perhaps the most fundamental question, which many of the others boil down

to, is this: why does the space of states of a classical system always have the

structure of a connected differentiable manifold? A closely related point is that

the following appears to be one of the principles of mechanics (whatever that

may come to) for abstract classical systems: there always exists a smooth

tangent vector field whose integral curves are the kinematically-possible evo-

lutions of the systems. The meaning of this: ‘ordinary differential equations

are appropriate for the modelling of classical systems’. Thus families of curves

on the space of states that do not have associated tangent vector fields simply

cannot be possible dynamical evolutions of the system. An example of such a

family of curves is that for a particle in a square potential well—presumably

here one would say that the square potential is an idealization and that, if one

looked closely enough, it would really be a very steep but still smooth poten-

tial. Another example is a family of curves that intersect each other; in this

case, simple determinism would fail. There are no a priori reasons why any of

these facts should hold. Most strikingly, none of these facts depends on the

fixation of a particular theory or framework for their statement or for their
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substantiation. They seem to reach down to and represent structure at a very

deep level of our understanding of classical systems.

3 The Possible Interactions of a Classical System and the

Structure of Its Space of States

I have gone into such detail in Section 2 in the characterization of abstract

classical systems because, as I will show in this section, that abstract frame-

work already provides the tools for a construction of startling physical

strength and depth. Starting from only very weak, almost trivial-seeming as-

sumptions, one can recover and describe in the framework of abstract classical

systems the family of kinematically-possible interactions (or just ‘possible

interactions’) any classical system can enter into with any other classical

system. Even more, one can show that the family of possible interactions

has a rich algebraic structure, concomitant with one that will show itself in

the family of kinematical vector fields. From these objects, finally, one can

show that the abstract classical space of states naturally possesses the structure

of a space that plays a foundational role in classical mechanics, namely, the

tangent bundle of configuration space, the natural theatre in which

Lagrangian mechanics plays itself out.11 The strength of the result derives

from the weakness of the system one uses to formulate it in, and the weakness

of the assumptions one uses to prove it. That result grounds the theorems of

Sections 4 and 5 whose natural interpretation is that classical systems evince

exactly the physically-significant structure of Lagrangian mechanics, nothing

more and nothing less, and none of the physically-significant structure of

Hamiltonian mechanics.

In traditional accounts of classical analytical mechanics (i.e. Lagrangian

and Hamiltonian mechanics), one distinguishes three sorts of quantity, the

configuration-like (or ‘configurative’), the velocity-like (or ‘velocital’), and the

momentum-like (or ‘momental’). The configurative and the velocital are used

in the formulation of Lagrangian mechanics, and the configurative and

momental for Hamiltonian mechanics. As their names suggest, the defining

properties of the velocital and the momental quantities for a generic abstract

classical system are the same as (or, at least, very similar to) those for velocity

and momentum, respectively, in Newtonian mechanics. Configurative quan-

tities are those having many or all of the same significant properties as position

in Newtonian mechanics. Indeed, most expositions of analytical mechanics

postulate the differences among these as primitive and foundational. We,

however, did not have to distinguish between different types of quantities in

the characterization of abstract classical systems in Section 2, and so nothing

11 The core of the construction is due to R. Geroch; I learned of it in conversation with him.
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like a configuration space (the set of all configurations, which naturally ac-

crues the structure of a differential manifold) showed its face; nor did any but

the simplest of algebraic and geometric structures appear in the construction

of the theory, nor any set of preferred coordinates (quantities), and so on. At

this stage, therefore, nothing in the description of an abstract classical system

seems to militate in favor of a Lagrangian as opposed to a Hamiltonian for-

mulation of it, or vice versa, if that is the sort of thing one wants. Part of the

goal of this section, however, is to distinguish configurative and velocital

quantities and explicate their properties. (We will not treat momental ones

until Section 5.)

Now, we want a way using only the concepts sketched in Section 2 to

characterize a property or set of properties (physical, structural, or

what-have-you) of the quantities a system possesses that will differentiate

the configurative from the velocital. With that in hand, we will be able to

construct the configuration space, in the traditional sense, of the abstract

classical system, which in turn will ground the argument for the naturalness

of Lagrangian mechanics for classical systems. As we will see, the character-

ization of the possible interactions a classical system can enter into with other

systems provides the tools to answer the question. To start, let us pose a more

concrete question about configuration space. What, for example, should one

choose as the configuration coordinates when trying to represent an electro-

magnetic field as a Lagrangian system, the electric or the magnetic field, and

why? Such a question would perhaps not seem so pressing to one raised on a

diet of traditional text books on analytical mechanics, in which the author

generally starts with configuration space (usually presented in some particular

coordinate system, the physical significance of which is itself not discussed)

and marches courageously forward.12 But the configuration spaces of physical

systems were not handed down by Prometheus with fire and, on the face of

things, it is rather a mystery where they come from, what they do, and why we

need them. Simple measurement of abstract classical systems, it seems, will get

one at most the abstract classical space of states and the allowed kinematical

vector fields, but it would not seem to get one by itself a preferred way to

factor the space of states, so to speak, into configurative and velocital parts.

Consider a simple example, say that of a free particle. Its state can be

completely described by giving its position and its velocity, each of which

can be thought of as a vector in ordinary, three-dimensional space; its space

of states is therefore six-dimensional. Using those two quantities to paramet-

rize the space of states (i.e. to label its points, the states), a representation of a

state has the form (x, v), where x is the particle’s position and v its velocity. We

12 This happens even in texts written by physicists who normally display a sensitivity to philo-

sophical problems, such as Whittaker ([1947], Chapter 2, Section 26, pp. 34–9).
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say this representation provides a natural coordinate system for the space, for

we know already that these two quantities play a privileged role in our com-

prehension of Newtonian mechanics: in their terms, the equations of motion

representing the particle’s evolution take their canonical form:

_x ¼ v

_v ¼ 0
ð3:1Þ

(I use emboldened signs to designate vectors. I abuse the notation in the usual

ways, using, for example, ‘v’ to designate promiscuously either a single vector

at a point or a vector field, and so on. A dot indicates differentiation with

respect to time, and ‘0’ designates the zero vector or vector field.) This is just

Newton’s Second Law, written out in more explicit form than usual, as a

system of coupled, first-order ordinary differential equations: the temporal

derivative of position is velocity, and that of velocity is acceleration (in this

case zero, since we have postulated that the system experiences no force, and

force is directly proportional to acceleration). The components of the kine-

matical vector field associated with this evolution are, in these coordinates, (v,

0). The first component of the vector field measures the rate of change of the

position, and the second that of velocity.

Now, if one turns on an interaction with the environment and pushes

the particle around, then during the interaction, the equations of motion

become

_x ¼ v

_v ¼ Fpush

ð3:2Þ

where Fpush is the force exerted on the particle during the interaction (up to a

multiplicative constant, the inverse of the inertial mass, which we ignore),

which may be a function of anything one likes; the components of the

associated kinematical vector field are (v, Fpush). One is not free to postulate

any new vector field one likes to represent the particle’s evolution during the

interaction, which is to say one cannot simply dream up just any sort of

interaction; one can ‘directly push around’ only the velocities. As a brute

empirical fact, there is no known interaction for changing the equation of

motion of x directly. (Indeed, that is part of why it is more often thought of

as a kinematical constraint than an equation of motion, but nothing in the

formal structure of the theory itself divorced from our empirical knowledge

allows one to distinguish between the equation for _x and that for _v in any

principled way—we discover the difference by empirical investigation.)

In consequence, the velocities need not evolve continuously as one switches

interactions on and off, for one can in principle turn the interaction on

and off as abruptly as one likes, whereas the position always evolves
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continuously.13 This empirical fact does allow us to distinguish between pos-

ition and velocity as physical quantities, and so between their respective equa-

tions of temporal evolution.

Consider now the example of a free electromagnetic field specified, say,

everywhere in space at a given instant of time. The space of states in this

case is infinite dimensional. In a natural coordinate system, a state is of the

form ðr � B, _B, r � E, _EÞ, where E and B are, respectively, the components of

the electric and magnetic fields in the fixed coordinate system. (It will be clear

in a moment why I use a coordinate system in which the components for the

state are r � B and r � E rather than simply B and E.) The equations of motion

are Maxwell’s equations,

r � B ¼ 0

_B ¼ �r � E

r � E ¼ 0

_E ¼ r � B

The components of the associated kinematical vector field are

ð0, � r � E, 0, r � BÞ. The only allowed interactions transform the equa-

tions thus,

r � B ¼ 0

_B ¼ �r � E

r � E ¼ �

_E ¼ r � B + |

where � is an electrical charge density and | its associated current. The

components of the associated kinematical vector field are

ð0, � r � E, �, r � B + |Þ. It also turns out to be the case here that the equa-

tions of motion of one set of coordinates, B and _B, allow their components to

only evolve continuously no matter what interaction is turned on or off—the

functional form of their components do not change, but remain zero and

13 This claim may appear to conflict with my earlier stipulation that the quantities specify the

manifold structure of the space of states by the requirement that they be smooth. The conflict is

illusory, though: there will inevitably be slippage between the rigorous mathematical structure

one constructs to represent the system and the results of actual measurements one makes. This

slippage and how one deals with it will depend on the particular ends of the project at hand, the

approximations and techniques one uses, and so on. One can ameliorate the slippage by allow-

ing some quantities in the formal representation to be discontinuous at a countable number of

points, as already mentioned in Footnote 9. Strictly speaking, moreover, the claim that only

configurative quantities evolve continuously is not correct if one allows true distributional

forces. In that case, for example, the position would evolve discontinuously under the action

of a force that had the form of the derivative of a delta function. Since I do not use this criterion

in the formal construction and argument that shows how to rigorously characterize configura-

tive quantities, such technicalities are irrelevant for our purposes. I intend the idea here only to

give heuristic motivation for the formal argument.
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�r � E, respectively, throughout the interaction—whereas the components

of the other set of coordinates can evolve discontinuously, depending on the

form of the interaction—again, we can in principle turn the charge density and

the current on and off as quickly as we like. This suggests that, by analogy

with the case of the Newtonian particles, we take ðr � B, _BÞ to encode the

system’s configuration and ðr � E, _EÞ its phase velocity.14

So far as is known, it is a brute fact about the physical world that all systems

adequately and appropriately described by classical mechanics have this prop-

erty: the equations governing the evolution of only some physical quantities

associated with the system change in form during its interactions with the

environment, whereas the equations of others remain always formally the

same no matter the interaction—one can ‘directly push around’ only some

of the quantities by coupling the system to another by an interaction. So one

generalizes: the configurative quantities are those that one cannot directly

push around via any of the allowed interactions of the system with its envir-

onment, those whose equations of motion remain invariably the same no

matter the system’s state and no matter any interaction the system enters

into. Hit a system with a stick, and the quantities whose equations of

motion do not alter across the change in evolution are configurative. It does

not seem possible to give a similarly natural characterization of velocital

quantities. We cannot say that they are the ones whose governing equations

alter in form or the ones whose values can change discontinuously under

interactions, for the same holds as well for mixed quantities, such as x � v

for the particle.15 One is tempted to say that velocital quantities are the

ones that ‘couple directly with external forces’, but I do not see a way of

making that idea precise in a way that excludes nonphysical, mixed quantities.

Perhaps one can say that the physically-significant velocital quantities always

seem to be characterized by a kinematical constraint expressing them in terms

of dynamical derivatives of configurative quantities, but it is not clear to me

that even this is true—E and B, for instance, are more or less symmetric in this

respect. Neither can one say that the velocital quantities are the ones func-

tionally independent of configurative ones since, in fact, in many cases they are

14 This argument, of course, presupposes that magnetic monopoles do not exist. Maxwell’s theory

with magnetic monopoles would not be a classical system in the sense I am characterizing here.
15 It is my sense that such faux quantities as x � v never play a significant role in an appropriate and

adequate model of a system. The present analysis perhaps sheds light on why this should be: the

configurative and velocital quantities of an abstract classical system play different roles in the

kinematics of the system’s representation, the one independent (‘to first-order’) of couplings to

the environment and the other entering directly into those couplings and (often) constrained to

satisfy a differential equation posed in terms of a configurative quantity, such as v ¼ _x. It does

not seem possible for a single physical property of a system to play both roles at once. Still, this

cannot be entirely right, for the angular momentum of a Newtonian particle with respect to a

fixed origin looks quite like one of these mixed quantities. So in the end the puzzle seems to

remain.
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not, being related to configurative ones by way of a differential relation. We

will see below, however, that, though velocital scalar quantities cannot be

characterized in a way analogous to that for configurative ones, velocital dir-

ections in the space of states, so to speak, can be characterized in a precise

sense.16

This result now justifies thinking of _x ¼ v as a kinematical constraint rather

than an equation of motion—the empirical observation gave us enough in-

formation to impose a way to differentiate the two formally-identical equa-

tions in each of the systems (3.1) and (3.2). A kinematical constraint in a

theory imposes fixed relations that must hold among the possible values of

some set of a system’s physical quantities at all times, no matter the interaction

the system actually enters into with its environment, in order for one to be able

to apply the theory to appropriately model a physical system. Theories do not

predict kinematical constraints; they demand them. I take a prediction to be

something that a theory, while meaningfully and appropriately modelling a

given system, can still get wrong. Newtonian mechanics, then, does not predict

that the kinematical velocity of a Newtonian body equal the temporal rate of

change of its position; rather, it requires it as a precondition for its own ap-

plicability. It cannot ‘get it wrong’. If the kinematical constraints demanded

by a theory do not hold for a family of phenomena, that theory cannot treat it.

One easy way to see this: If one uses Equations (3.2) to predict the motion of a

particle experiencing forces but one’s prediction fails for the equation govern-

ing _v, it does not necessarily mean that one is not dealing with a classical

particle, for one may simply have not accounted for all the forces the particle

experiences; if one’s determination fails for _x, however, one is not dealing with

a classical particle, for no error in accounting can explain that failure. Thus, it

does seem proper to think of _x ¼ v as a kinematical constraint rather than an

equation of motion in our example.17 This is a serious difference in physical

16 In many accounts of Lagrangian mechanics, the configurative quantities are taken as somehow

primary and the velocital as derived. My approach has the virtue of making clear that neither

configurative nor velocital quantities ought to be treated as primary or prior in any way. They

each stand on their own as physically-significant and, in principle, kinematically-independent

entities. Some philosophers, to the contrary, have taken the standard sort of exposition, in which

configurations are primary, to imply metaphysical theses of extraordinary weight. Wallace

([2003], p. 164), for example, says, ‘[t]he only ontologically primary entities in this picture are

the configurations and the paths through them: momentum, for instance, is only a derivative

property of a path, and (unlike in Hamiltonian mechanics) cannot be regarded as on a par with

configuration’. This remark becomes particularly poignant in light of the fact that, as we will see

below in Section 5, one cannot even define the notion of ‘configuration’ in Hamiltonian mech-

anics in any principled way. These remarks will become clearer after the exposition of

Lagrangian mechanics and the arguments connecting it to abstract classical systems, in

Section 4.
17 In one sense, _x ¼ v is a definition. But the fact that, in the context of classical mechanics, it is

something like a definition is not something one can determine from the mathematical machin-

ery of the theory alone and so, in that sense, it has non-trivial empirical content. It is not an

analytic statement. There is a sense in which particle velocity is an independent physical
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significance, which, among other things, should be reflected in the way an

account of the meaning of a theory assigns significance to the theory’s struc-

tural elements.

We now have a characterization of configurative quantities derived from the

intrinsic physics of abstract classical systems. The argument that led to that

characterization will now allow us to attribute a rich geometrical structure to

the family of kinematical vector fields and, at the same time, to introduce an

important new family of vector fields. Since the allowed interactions directly

affect only the values of the velocital quantities, the difference of two kine-

matical vector fields will always yield a vector field whose configurative com-

ponents vanish, but whose velocital components do not. It is easy to see this

from a quick look at the expressions for the kinematical vector fields of the

two examples—the first component is the same, so their difference is zero. For

the particle, for example, fix two forces, F1 and F2, and consider the respective

kinematical vector fields for each, ðv, F1Þ and ðv, F2Þ. Their difference is

ð0, F2 � F1Þ:

Similarly, for a Maxwell field, the difference of the kinematical vector fields for

two different charge and current distributions, ð�1, |1Þ and ð�2, |2Þ, takes the

form

ð0, 0, �2 � �1, |2 � |1Þ

or, more suggestively,

ðð0, 0Þ, ð�2 � �1, |2 � |1ÞÞ:

These difference vectors point only in velocital directions, as it were. Since the

components of vectors on the space of states represent the rates of change of

the quantities that form the coordinates, one can also say that these difference

vectors encode only non-trivial rates of change for velocital quantities,

namely, accelerations.

It is easy to see that all the vectors of that form have the structure of a vector

space: if I add two of them or multiply one by a real number, I get another

vector of the same form. I shall call such a vector field an ‘interaction vector

field’, because it encodes all and only information about a kinematically-

possible interaction the system can enter into. The examples, moreover,

make it plausible that the addition of any interaction vector field to any

kinematical vector field should itself yield a kinematical vector field—this

quantity, definable on its own without reference to its being the temporal derivative of position,

and so attributable to the state of a particle without reference to the rate of change of the

particle’s position. One could, for example, define it by the role it plays in defining kinetic

energy, and so measure it by the depth to which a particle intrudes into a body made of a

standard elastic substance when it hits the body at a right angle to the body’s surface. It is a

non-trivial fact that the quantity so measured happens to be the temporal derivative of position.
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makes physical sense because I can, in principle, hit the particle with as big or

as small a stick as I want, no matter its present dynamical state, and turn on as

large or as small a charged current as I choose to couple with the Maxwell

field. Thus, the set of kinematical vector fields has the structure of an affine

space, modelled on the vector space of interaction vector fields.18

We are finally in a position to show, first, that the form of the family of

interaction vector fields allows one to construct a system’s configuration space

in a distinguished geometrical way, and then to show that the abstract classical

space of states is naturally isomorphic with a very important space associated

with its configuration space, namely, its tangent bundle. That will complete

the arguments of this section. (That the space of states turns out to be natur-

ally isomorphic to the configuration space’s tangent bundle is important be-

cause the tangent bundle is the natural setting for the formulation of

Lagrangian mechanics, though this fact is obscured in standard presenta-

tions.) Now, because interaction vector fields point, so to speak, only in velo-

cital directions, at any given point they pick out a subspace of the space of

states that is half the dimension of the space of states itself.19 (One can see this

in the examples by noting that the representation of a vector always has the

same number of velocital as configurative slots.) If I fix a point on the space of

states and follow all the interaction vector fields off that point, then, intuitively

speaking, I will end up passing through a subspace of the space of states of half

its dimension. This constitutes the equivalence relation ‘is connected by an

integral curve of one of the interaction vector fields to’; each of those equiva-

lence classes, moreover, does indeed form a subspace of the space of states of

half its dimension. Since those subspaces are disjoint, there is a natural rep-

resentation of the space of states as the collection of all of them suitably ‘glued

together’. Now, if I move from point to point in one of those subspaces, the

configuration of the system does not change by construction because, again,

all the interaction vector fields defining the subspace point only in directions in

which velocital, but not configurative, quantities change in value. It follows

that all the points in a single subspace in some sense represent the system as

having the same configuration. We can thus construct the configuration space

of the space of states by forming an abstract collection of points in one-to-one

correspondence with those equivalence classes—the abstract point associated

with a given equivalence class represents the system’s configuration that class

corresponds to. Configuration space so constructed inherits the structure of a

18 An affine space is roughly speaking a vector space in which one ‘forgets the zero vector’. Only

the difference of the two elements in an affine space is defined, and it is always defined to be an

element of a vector space—the one the affine space is modelled on. The sum of two elements of

an affine space is not defined. See, for example, Artin ([1957]) for a rigorous exposition.
19 The latter property, obviously, depends on the fact that the space of states is even dimensional in

the finite case (see discussion just before Footnote 8).

Erik Curiel284

 at U
niversitaetsbibliothek M

uenchen on N
ovem

ber 15, 2015
http://bjps.oxfordjournals.org/

D
ow

nloaded from
 

http://bjps.oxfordjournals.org/


differential manifold from the abstract classical space of states by way of the

standard construction on quotient spaces.20

It is worth remarking as an aside that, on this conception of classical sys-

tems, the kinematical vector fields are, in a sense, fundamental than inter-

action vector fields, as one constructs the latter from the former. One may

take this, if one likes, as the geometrical representation of Newton’s meth-

odological imperative, stated in his preface to the Principia (Newton [1726],

p. 4), to begin with the phenomena, the behaviour of bodies, and derive there-

from the forces acting on the bodies: ‘for all the difficulty of philosophy seems

to consist in this—from the phænomena of motions to investigate the forces of

nature, and then from these forces to demonstrate the other phænomena’.

Likewise, the kinematically-possible vector fields are more fundamental

than configuration space—and so this analysis yields a surprising conclusion.

What counts as a configurative quantity for abstract classical systems cannot

be determined by examining a system in isolation; there is, rather, a deep

connection between configurative quantities and how the system can interact

with its environment. In other words, configuration space is an implicit de-

scription of the allowed interactions of the system with other systems: what

counts as a configurative quantity is not intrinsic to the system but is, rather, a

property of the system’s allowed forms of coupling to other systems—the

dynamical relations it can stand in to other systems (which, presumably,

depend in part on the properties of those other systems).21 This constitutes

much of the physical significance of what it means for a quantity to be

‘configuration-like’.

Now, to show that the abstract classical space of states is isomorphic to the

tangent bundle of configuration space, I first sketch the idea of a tangent

bundle. Roughly speaking, a point of a space’s tangent bundle is an ordered

pair consisting of a point of the space itself and a vector tangent to the space at

that point. Thus, the tangent bundle associates with every point in the original

space the vector space of all vectors tangent to the space at that point. To get

an intuitive feel for the thing, imagine a globe with a very thin, flat glass plate

20 I ignore technical details about possible obstructions (for example, topological) to the construc-

tion of the quotient space, as we expect spaces representing ordinary classical systems not to

manifest such pathologies. This is not to say that such cases present no problems of physical and

philosophical interest. In the case of Norton’s Dome (Norton [2008]), for example, it follows

from the discussion of Malament ([2008]) that one must exclude from the space of states all

points representing the marble as sitting at the dome’s apex in order to employ this construction

and so realize configuration space as a quotient space. I do not think extreme and pathological

examples of that sort bear on this article’s arguments. If one had an axe to grind about whether

or not Norton’s Dome is ‘really’ a classical system, I reckon one could try to use this article’s

arguments one way or the other. I personally don’t see them militating decisively for either

stance.
21 This is one important reason I think points of view such as that of Wallace ([2003]), briefly

discussed in Footnote 16, are not viable.
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touching it at exactly one point, such that every ray in the plate originating at

the point of contact—the osculating point—makes the same angle with the

globe. The plate then is the tangent plane of the point, containing every vector

tangent to the globe at that point. We can make this into a vector space by

declaring the zero vector to be the osculating point in the plane. Every vector

originating at the osculating point and contained in the plane, then, is a vector

tangent to the globe at that point. The tangent bundle itself is the space that

results from ‘gluing together’ all those tangent planes into a single whole. A

point of the globe’s tangent bundle, then, consists of a point of the globe and a

vector tangent to the globe at that point, i.e. an element of the point’s tangent

plane. The tangent bundle of an arbitrary manifold is the analogue of the

globe’s tangent bundle: we define a vector tangent to a point of the manifold

to be a vector tangent to a curve passing through the point; and a point of the

space’s tangent bundle is then an ordered pair consisting of a point of the

space and a vector tangent to the space at that point. Thus, one can think of a

manifold’s tangent bundle as the collection of all tangent planes over every

point of the manifold smoothly glued together into a single space. For a point,

p, in the manifold, the collection of all points, ðp, nÞ, in the tangent bundle, i.e.

all pairs such that n is a vector tangent to p, is called the fiber over p.

I construct the isomorphism by showing how to associate a point of the

abstract classical space of states with a point of the tangent bundle in such a

way that every point is associated with exactly one point of the other, all so

that the relations of ‘closeness’ among neighbouring points in each space is

preserved when one moves over to the other space by the mapping. Recall that

the family of kinematical vector fields of an abstract classical system has a

distinguished member, the free field. Starting from any state, an abstract clas-

sical system can freely evolve in any direction, with any velocity; in other

words, the free vector field includes all vectors tangent to all configurations,

i.e. all the possible rates of change of that configuration starting from that

state. Thus, the free kinematical field encodes all the system’s possible instant-

aneous configurations and their dynamical derivatives, and nothing more. It

follows that the value of the free vector field at a point of the space of states is

naturally associated with the configuration that state attributes to the system

and with the dynamical derivative (i.e. the velocity) of the configuration that

state attributes to the system. Such an ordered pair, however, is exactly a

unique point of the tangent bundle of configuration space, and all points on

that tangent bundle are realizable as one of those ordered pairs. It is easy to see

that the relations of closeness among points are preserved by construction. It

follows that, in so far as the free dynamical vector field is itself a naturally

distinguished vector field, one has a naturally distinguished isomorphism from

the abstract classical space of states to the tangent bundle of configuration

space, completing the construction.
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Theorem 3.1 (R. Geroch, unpublished)

There is a naturally distinguished diffeomorphism from the space of states of

an abstract classical system to the tangent bundle of its configuration space.22

Before moving on, it is worthwhile pausing to take stock of our progress.

From a weak physical assumption inferred directly from observation—that

interactions directly couple only with a classical system’s velocital quantities—

we have discovered an entirely new structure on the space of states, the vector

space of interaction vector fields; we have recovered a rich algebraic structure

on the space of kinematical vector fields, that of an affine space; we have

discovered a way to characterize configurative quantities in an invariant

way that, at the same time, clarifies their meaning (namely, they encode the

possible interactions); we have constructed the configuration space of the

system; and by invoking the distinguished kinematical vector field that repre-

sents the system’s free evolution, we have shown that the space of states is

naturally isomorphic to the tangent bundle over its configuration space. I find

these results remarkable for the depth and breadth of the physical knowledge

of the intrinsic nature of classical systems they encompass, especially in light of

the weakness of the assumptions we started from.

4 Classical Systems Are Lagrangian

I first describe how the structures of an abstract classical system, when carried

over to the tangent bundle of configuration space by the canonical isomorph-

ism constructed in the previous section, allow one to construct a Lagrangian

formulation for it. It will follow that abstract classical systems are Lagrangian

in a natural, precise sense. I then describe how having in hand a traditional

Lagrangian representation of a classical system, in the most minimal sense,

allows one to construct its abstract classical representation. In consequence,

Lagrangian systems are abstract classical systems, in a natural, precise sense.

The Euler–Lagrange equation, the heart of Lagrangian mechanics, takes a

scalar field (the Lagrangian) that depends on configurations and velocities and

(when well posed) determines as its solution a vector field that gives the evo-

lution of the system.23 That is why Lagrangian mechanics is most naturally

formulated on the tangent bundle of configuration space: the function that

determines the kinematically-possible evolutions has as its domain ordered

pairs consisting of a configuration and a velocity at that configuration, which

is just a point of the tangent bundle; and the evolution of a body consists of a

22 See Curiel [unpublished] for a precise statement of the theorem and a rigorous proof.
23 In fact, this is true only of the homogeneous Euler–Lagrange equation; the inhomogeneous

Euler–Lagrange equation can include so-called generalized forces, represented by 1-forms on

the tangent bundle. Although the difference between the two is important in several of the

rigorous, technical arguments, we do not need to worry about it for our purposes.
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curve whose points consist of pairs of configurations and velocities at those

configurations, which is just a curve on the tangent bundle.

Now, there is a natural way to associate a curve on any manifold, such as

configuration space, with a curve on its tangent bundle—a procedure known

as lifting the curve. A curve on configuration space, by definition, has a tan-

gent vector at every point it passes through—the tangent that represents the

rate of change of the curve at that point. A point of configuration space and a

vector at that point, however, is just a point in its tangent bundle, so the

collection of points forming the curve yields a collection of points on the

tangent bundle. It is easy to see that the smooth progression of points along

the curve on configuration space ensures that the family of points so lifted to

the tangent bundle themselves form a smooth curve. Thus, one can lift a vector

field on configuration space to the tangent bundle by lifting its integral curves,

yielding the vector field everywhere tangent to the lifted curves. I call such

vector fields on the tangent bundle ‘second order’, because they represent

second-order ordinary differential equations on configuration space, just as

a vector field on configuration space itself represents a first-order ordinary

differential equation. These vector fields are important because they form the

family of possible solutions to the Euler–Lagrange equation: it is a theorem

that a vector field represents a possible unique solution to the Euler–Lagrange

equation if and only if it is second order.24 This has as an important conse-

quence that not every vector in the tangent plane over a point of the tangent

bundle is admissible as initial data for the Euler–Lagrange equation, for not

every vector is second order. Only those that respect the kinematical con-

straints of Lagrangian mechanics—which, as will become clear below, is

equivalent to being second order—are admissible.

I claim this makes sense on physical grounds. One can think of a

second-order vector as the acceleration of a curve on configuration space: in

so far as a vector on the tangent bundle can be thought of as an infinitesimal

change in the configurative directions plus one in the velocital directions, a

second-order vector always has its infinitesimal rate of change in configurative

directions equal to the kinematical velocity of a body traversing the curve

lifted from configuration space, and its infinitesimal rate of change in velocital

directions equal to the rate of change of the kinematical velocity along the

curve, i.e. the body’s acceleration. In other words, a second-order vector field

represents physical evolutions that respect the kinematical constraints con-

necting configurative quantities to their respective associated velocital ones.

This is why it makes sense on physical grounds for solutions to the Euler–

24 More precisely, a vector field is second order if and only if it is the unique solution to the

Euler–Lagrange equation for some regular Lagrangian and some work 1-form (‘regular’ in a

sense to be made precise below in Equation (4.6)). I briefly discuss the character of possible

solutions for nonregular Lagrangians in Footnote 39.
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Lagrange equation to be second-order vector fields. Thus, the second-order

vector field on the tangent bundle that represents the evolution of a free

Newtonian particle, for example, has the same form as the free kinematical

vector field on the abstract classical space of states in the example of Section 3,

(v, 0), and likewise for a particle experiencing a force F, (v, F). This suggests

that there is an intimate relation between the kinematical vector fields of an

abstract classical system and the possible solutions to the Euler–Lagrange

equation. This will turn out to be correct.

In order to represent these objects in explicit terms, first note that a coord-

inate system, qi, on configuration space C naturally induces one on its tangent

bundle, TC, ðqi, vjÞ, where the vi represent vectors tangent to curves on C when

those curves are parametrized in terms of the qi—in other words, vi ¼ _qi.

These natural coordinates on the tangent bundle are the generalization of

(x, v) on the abstract classical space of states of the Newtonian particle.

((qi,vj) are natural on the tangent bundle in the same sense as (x, v) are on

the abstract classical space of states: the Euler–Lagrange equation takes on its

canonical form when expressed in their terms—the coordinates respect the

dynamics.) We will represent vectors explicitly as sums over the basis of vec-

tors defined by natural coordinate systems. For the standard Cartesian co-

ordinates, (x, y), on the plane, for example, the vectors defined by the x

coordinate, which we write ‘@=@x’, are the unit vectors pointing parallel to

the x-axis, one at each point of the plane, and the same for the y-coordinates;

at every point of the plane, then, any vector k can be written

kx

@

@x
+ ky

@

@y

where kx is its x-component, and so on.

Now, fix a natural coordinate system ðqi, vjÞ on TC. Any second-order

vector field, n, can be written in the form25

vi

@

@qi

+ nj

@

@vj

ð4:1Þ

in any natural coordinate system, where the nj are arbitrary functions of qi and

vk. The fact that vi, the kinematical velocity, is the component of the config-

urative part of the vector encodes the fact that n is second order. There is

another class of naturally distinguished vector fields on TC: the vertical ones.

A vertical vector field is one whose elements point straight up and down the

fibers, that is, that point only in non-configurative directions. Any vertical

vector field, g, has the form

�i

@

@vi

ð4:2Þ

25 From here on I will use the Einstein summation convention, where one implicitly assumes a sum

over the values of all repeated indices. Thus, for example, ‘vi
@
@qi

’ is short-hand for ‘
P

i

vi
@
@qi

’.
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where the �i are arbitrary functions of qi and vj. The families of vertical and

second-order vector fields have natural structures. The vertical vector fields

form a vector space; one can see this from the generic expression (4.2). The

second-order vector fields form an affine space modelled on the vertical vector

fields, as one can see from the generic expression (4.1).

Now, in order to write down the Euler–Lagrange equation, we will need first

to characterize some of the intrinsic geometrical structures that live on tangent

bundles.26 First, every tangent bundle comes naturally equipped with a dis-

tinguished vertical vector field, , (the Liouville vector field), which in natural

coordinates takes the form

, ¼ vi

@

@vi

:

In effect, this vector tells you how far a point at which it lives is from the origin

in the bundle’s fibers. Every tangent bundle also comes naturally equipped

with a one-up, one-down index tensor field, J, known as an almost-tangent

structure.27 (As a one-up, one-down tensor, one can think of it as a linear map

from tangent vectors to tangent vectors, or else as a linear map from differ-

ential forms, such as the gradient of a scalar field, to differental forms, or else

as a linear map from pairs consisting of a tangent vector and a differential

form to a scalar.) In natural coordinates, it has the form

J ¼
@

@vi

� dqi

where dqi is the differential of the coordinate function qi and � is the tensor

product. It is easy to see that J maps every second-order vector field to ,. In

fact, one can use this property to define the almost-tangent structure, if one

already knows the family of second-order vector fields, as one can conversely

use it to define the family of second-order vector fields if one already knows

the almost-tangent structure. In a similar manner, the almost-tangent struc-

ture uniquely characterizes the family of natural coordinates on the tangent

bundle. A coordinate system (qi, vj) is natural if and only if

JðrqiÞ ¼ 0

JðrviÞ ¼ dqi

ð4:3Þ

26 See, for example, Yano and Ishihara ([1973]) and de León and Rodrigues ([1989]) for a thorough

presentation of the geometrical structures I discuss.
27 Technically, an almost-tangent structure on a two n-dimensional manifold,N , is a smooth tensor

field Ja
b satisfying the following conditions:

(1) considered as a linear operator on the tangent planes of N , Ja
b has rank n everywhere

and

(2) Ja
n Jn

b ¼ 0.

It is not difficult to see that, as a linear operator, the range of Ja
b equals its kernel, an n-dimen-

sional distribution on N .
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Conversely, if one knows the family of natural coordinates on a tangent

bundle, one can define the almost-tangent structure. Thus, in a natural

sense, the almost-tangent structure completely captures the kinematical rela-

tions between the qs and the vs of natural coordinates on the tangent bundle,

the analogue of the kinematical constraint _x ¼ v for a Newtonian system.

Now, for a given scalar field on the tangent bundle, the Lagrangian, L, the

(homogeneous) Euler–Lagrange equation, when written in terms of these nat-

ural structures, takes the form

£�ðJðrLÞÞ � rL ¼ 0 ð4:4Þ

where £� is the Lie derivative with respect to the vector field, n, which, if it

exists, is the Lagrangian vector field associated with the Lagrangian L, i.e. the

solution to the Euler–Lagrange equation for that Lagrangian.28 It is straight-

forward to verify that, when written out in natural coordinates, Equation (4.4)

has the usual form

d

dt

@L

@vi

� �
�
@L

@qi

¼ 0 ð4:5Þ

Not every scalar field yields a well-posed Euler–Lagrange equation, however.

To state the conditions under which this is true, let us say that a Lagrangian,

L, is regular if

det
@2L

@vk @vl

���� ���� 6¼ 0 ð4:6Þ

in any natural coordinate system on TC. Only regular Lagrangians are guar-

anteed to have unique, second-order solutions. It is not obvious how the

condition (4.6) does this. Roughly speaking, the condition guarantees that a

certain anti-symmetric matrix the Lagrangian defines be invertible. (In fact,

the matrix necessarily has vanishing exterior derivative, and so is a symplectic

structure.) Both the invariant form of the Euler–Lagrange equation (4.4) and

the coordinate form (4.5) mask the presence of this matrix, but it is there under

the scenes, and the fact that it is invertible guarantees the existence of a unique

solution.29

We are now in a position to address the first problem we set ourselves in this

section, the construction of a Lagrangian formulation of an abstract classical

system using only the structure that the representation of an abstract classical

system makes available. We know already from Theorem 3.1 that the abstract

28 The choice of derivative operator does not matter, as it acts in the equation only on scalar fields.
29 One can see it most easily by re-writing the Lie derivative in Equation (4.4) with the use of an

arbitrary derivative operator on the tangent bundle; see Curiel ([unpublished]).
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classical space of states is canonically diffeomorphic to the tangent bundle of

configuration space. An argument similar to that used in Section 3 to prove

the theorem shows that, under this diffeomorphism, the image of the family of

interaction vector fields on the space of states is the vector space of vertical

vector fields on the tangent bundle, and the image of the family of

kinematical vector fields is the affine space of second-order vector fields.

Thus, the kinematically-possible evolutions of the abstract classical system

are exactly the possible solutions to the Euler–Lagrange equation posed on

the tangent bundle of the abstract classical system’s configuration space. A

technical argument given in Curiel ([unpublished]) shows that these structures

are necessary and sufficient for the construction of the geometrical structures

required to formulate the Euler–Lagrange equation. (It is essentially the same

argument, sketched below, that proves theorem 4.1.) In effect, as I remarked

earlier, to know the second-order vector fields is to know the almost-tangent

structure, and that is the geometrical structure necessary (and manifestly suf-

ficient) for the formulation of the Euler–Lagrange equation having those

vector fields as its family of solutions.30 Equivalently, to know how to formu-

late the kinematical constraints of abstract classical systems on the tangent

bundle, the relations (4.3) are necessary and sufficient for the formulation of

the Euler–Lagrange equation. This completes the argument for the first claim

of this section: abstract classical systems are Lagrangian.

We now consider the converse problem, as it were, whether in some sense

having in hand something like a traditional Lagrangian representation of a

classical system allows one to construct its abstract classical representation (in

the sense of Sections 2 and 3). We will pose the problem in the weakest possible

form, to lend correlative strength to the solution: how much, if at all, does the

structure of Lagrangian mechanics by itself—that is, the way that the Euler–

Lagrange equation associates vector fields with scalar fields—determine the

structure of an abstract space of states as a tangent bundle over configuration

space? If the Lagrangian structure on its own does allow one to reconstruct an

abstract space of states as a tangent bundle over configuration space, then we

can avail ourselves of the reverse of the arguments that proved Theorem 3.1 to

show that the abstract space of states must in fact be diffeomorphic to the

abstract classical space of states, that the configuration space of the former is

diffeomorphic to that of the latter, that the solutions to the Euler–Lagrange

equation on the abstract space of states are the pre-images of the kinematical

vector fields, and so on. It would follow that Lagrangian systems are abstract

classical ones.

30 North ([2009]) is thus simply wrong when she claims that one needs a Riemannian metric to

formulate Lagrangian mechanics. A Riemannian metric on a tangent bundle by itself is neither

necessary nor sufficient for a Lagrangian representation of a system.
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This is our question: if one knew of the tangent bundle of configuration

space merely as a differentiable manifold, the abstract space of states (i.e. one

did not know that it was a tangent bundle at all, much more the tangent

bundle of configuration space in particular), and one also knew the

Lagrangian dynamical vector field associated with any given Lagrangian—

say one had a black box that spat out the correct Lagrangian vector field three

seconds after one fed a Lagrangian into it—would this information alone

suffice to reconstruct the abstract space of states as the tangent bundle? If

the answer is yes, then we could define a canonical isomorphism from it to the

abstract classical space of states by fixing a distinguished vector field on it

(presumably, the one representing the free evolution of the system). Then the

converse of the argument that proved Theorem 3.1 would show that to know

how to give a minimal Lagrangian representation of a system on its space of

states would eo ipso suffice to reconstruct all the structure on the abstract

classical space of states accruing to it as an abstract classical system. In the

event, the answer to our question is yes.

To state somewhat precisely the theorem that answers the question, let the

Euler–Lagrange operator E be the (non-linear) functional that takes a scalar

field to its associated Lagrangian vector field on a manifold that supports the

formulation of the Euler–Lagrange equation in the first place. This means,

roughly speaking, that the operator’s space of solutions has the structure of an

affine space, which itself can be characterized by the existence of a family of

sets of coordinates on the manifold, each set satisfying relations that encode

the kinematical constraints relating q and v considered as natural coordinates

on the tangent bundle, namely, (4.3). Thus, a manifold has an Euler–Lagrange

operator if and only if it has a distinguished family of sets of coordinates that

severally satisfy those constraints, which in turn determines a distinguished

affine space of vector fields having a few particularly nice properties—the

family of solutions of the operator.

Theorem 4.1

A manifold has an Euler–Lagrange operator if and only if it is a tangent

bundle over another space; the operator’s action allows one to recover the

space over which it is the tangent bundle.

Roughly speaking, the proof goes like this: if one knows the action of the

operator, then one can construct its family of solutions; based on the affine

structure of the family of solutions, one can construct the distinguished family

of coordinates satisfying the constraints that natural coordinates on the tan-

gent bundle satisfy; those constraints by themselves already determine the

manifold to have the structure of a tangent bundle, because they require the

existence of an almost-tangent structure with a few particularly nice proper-

ties, and it is a theorem that such an almost-tangent structure can exist only on
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a tangent bundle.31 Thus, Theorem 4.1 implies that not all manifolds admit

the appropriate geometry for the formulation of the Euler–Lagrange equa-

tion. One can formulate the Euler–Lagrange equation only on a tangent

bundle. It is worth remarking on how surprising this result is: the geometry

of the Euler–Lagrange equation is rigid in a way that the geometry of

Hamilton’s equation is not. Merely being able to formulate the equation in

the first place, much more solve it, determines the global differential topology

of the entire space one would formulate the equation on.

Now all we need to do is to find a distinguished vector field on the tangent

bundle that is the analogue to the free kinematical vector field used in the

proof of Theorem 3.1. The solution to the free Lagrangian is the obvious

candidate, the unique solution for which the system experiences no acceler-

ations. It follows by construction that the solutions to the Euler–Lagrange

equation map to the kinematical vector fields on the abstract classical space of

states and the vertical vector fields map to the interaction vector fields. This

completes the argument for the second claim of this section: Lagrangian sys-

tems are abstract classical ones.

Before moving on, it is worth remarking once again how strong and deep

the results of this section are with regard to our understanding of the physics

of classical systems. From the weak premises of Sections 2 and 3, themselves

founded on entrenched empirical knowledge, we have deduced the fact that

classical systems evince the structure intrinsic to Lagrangian mechanics, noth-

ing more and nothing less: the family of possible solutions to the Euler–

Lagrange equation is isomorphic to the family of kinematical vector fields

of an abstract classical system; the family of possible interaction vector

fields of a Lagrangian system is isomorphic to that for an abstract classical

one; and the Lagrangian kinematical constraints are the same as for abstract

classical systems. It is worth remarking that this deduction would not have

been possible had we taken the theory of classical systems to consist only of its

family of models as the semantic view of theories holds. For these construc-

tions relied on structures global in the sense that one can formulate them only

as relations among the entire family of models (for example, the almost-

tangent structure), and fundamental in the sense that they are required for a

complete account of the meaning of any individual model in the first place, i.e.

for the complete semantic interpretation of each of the models (for example,

that the almost-tangent structure encodes the Lagrangian analogue of the

kinematical constraints of abstract classical systems).

31 Technically, the conditions are that the almost-tangent structure be integrable in the sense of

Fröbenius, and that it be complete in the sense that the flat affine connection it induces on every

leaf of the natural foliation of the space it induces be geodesically complete. Both of those

conditions are natural ones to impose on a structure representing classical systems. See Curiel

([unpublished]) for discussion.
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5 Classical Systems Are Not Hamiltonian

In this section, I briefly review the geometry of Hamiltonian mechanics before

discussing the ways it represents classical systems. It will quickly become clear

that the structure of an abstract classical system does not give us the resources

to construct its Hamiltonian formulation, and so abstract classical systems are

not Hamiltonian. Conversely, a minimal Hamiltonian representation of a

classical system will not allow one to recover its abstract classical structure,

so Hamiltonian systems are not abstract classical ones.

To introduce Hamiltonian mechanics, we first need to review a few defin-

itions. A cotangent vector at a point on a manifold is a linear map from

tangent vectors at that point to real numbers. One can think of it as a general-

ized differential form. (Cotangent vectors are also called ‘1-forms’.) The gra-

dient of a function rH is an example of a 1-form—it takes a vector and

returns the number that measures the rate of change of the function in the

direction the vector determines. The set of all cotangent vectors at a point

inherits the structure of a vector space from the set of tangent vectors at the

point. A cotangent vector field is a smooth assignment of cotangent vectors to

the points of the manifold. The cotangent bundle of a manifold is the same

thing as the tangent bundle except that instead of bundling the vector spaces of

tangent vectors with each of their respective points on the manifold, one

bundles the vector spaces of cotangent vectors with each of their respective

points. Thus, a point of the cotangent bundle of configuration space consists

of a point of configuration space and a 1-form at the point.

It is well known that one requires only a symplectic structure to formulate

Hamilton’s equation (see, for example, Arnold [1978]). For our purposes, one

can think of a symplectic structure as an anti-symmetric, invertible matrix

with vanishing exterior derivative. Thus one can use it to define a linear

map from pairs of vectors to scalars, from individual vectors to individual

1-forms, from individual 1-forms to individual vectors, and from pairs of

1-forms to scalars. For a given symplectic structure :, Hamilton’s equation

is written

n ¼ :ðrHÞ ð5:1Þ

We call � the Hamiltonian vector field associated with the Hamiltonian, H. (So

in this case, we treat the symplectic structure as a map from an individual

1-form, rH, to an individual tangent vector, n.) It is worth remarking at this

point that a symplectic structure is in no way equivalent to an almost-tangent

structure, and there is no natural way to construct one from the other.

Now, every cotangent bundle comes equipped with a canonical symplectic

structure,:. In order to recover the usual formulation in terms of coordinates

on the cotangent bundle, fix a natural coordinate system (qi, pj). (The
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coordinate system is natural in the same sense as those on the tangent bundle:

the pi are the components of the differential forms dqi generated by the co-

ordinates (qi) on configuration space.) In those coordinates, the symplectic

structure is

dqi ^ dpi

where^ is the exterior (anti-symmetric) product on 1-forms. Hamilton’s equa-

tion is then written as:

_qj ¼
@H

@pj

_pi ¼ �
@H

@qi

:

ð5:2Þ

It is straightforward to check that a transformation of that coordinate system

to any other natural one preserves the form of the symplectic structure and so,

a fortiori, of Equations (5.2) as well. Even though the formulation of

Hamiltonian mechanics is often, implicitly, restricted to a phase space (i.e.

space of states) isomorphic to a cotangent bundle over configuration space,

this need not be the case; any symplectic manifold (a manifold with a sym-

plectic structure) will do and manifolds not isomorphic to a cotangent bundle

can possess symplectic structures. A physically-significant example of this

occurs in the formulation of the Euler equations of motion for a rigid body

as a Hamiltonian system: to construct phase space in this case, one takes the

cotangent bundle of the group of spatial rotations and constructs its quotient

by the same group of rotations; this space carries a canonical symplectic struc-

ture, and Hamilton’s equation formulated in its terms is equivalent to Euler’s

equation written in ordinary configurative and momental coordinates. This

space, however, is not diffeomorphic to a cotangent bundle (see, for example,

Arnold [1978], pp. 318–30, Appendix 2). We therefore generalize natural co-

ordinates on a cotangent bundle to canonical coordinates on a symplectic

manifold: a coordinate system on a symplectic manifold is canonical if

Hamilton’s equations expressed in its terms has the form (5.2).

In a canonical coordinate system, the second half of the coordinates, the pi,

represent momental quantities, the analogue of the velocital quantities in ab-

stract classical systems (and Lagrangian mechanics). That is why (qi, pj) for an

abstract classical system represents a point of the cotangent bundle: the mo-

mentum of a free Newtonian particle is an example of a momental quantity.

Such quantities are naturally represented as 1-forms rather than as vectors, as

the velocital quantities are. One may wonder why this should be so, especially

in light of the fact that the momentum of a Newtonian particle is just mv, the

tangent vector representing its velocity multiplied by the scalar representing its

mass—surely a scalar multiplying a vector gives another vector and not a
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1-form, and so it seems that (qi, pj) ought to represent a point of the tangent

bundle. To see why momental quantities are properly represented by 1-forms,

first note that the momentum of the particle can be naturally thought of as a

linear map from vectors to scalars: it is the map that takes the vector v to the

scalar 1
2

mv2, the particle’s kinetic energy. This interpretation of the momen-

tum may seem odd, too abstract, even unnatural in the context of Newtonian

mechanics, but in fact it is exactly what one needs to represent the momental

quantities of more complex systems that have more complex relations among

the rates of change of its configuration on the one hand and its momenta on

the other. Angular momentum, for example, is not the scalar product of the

mass of a rotating body and the rate of change of its configuration. The con-

figuration of a cylinder spinning about its axis does not change at all, but it has

non-zero angular momentum. This angular momentum, moreover, does

define a linear map from the angular velocity of the cylinder to its rotational

kinetic energy. Thus, a 1-form is the proper representation for momental

quantities, having the exact form required to capture the relation between

generalized momenta and rates of change of generalized configurations.

That is the physical meaning of momentum in Hamiltonian mechanics.

Now, the linearity of Hamilton’s equation implies that the space of all

Hamiltonian vector fields (i.e. those vector fields that are solutions to

Hamilton’s equation for some scalar field) for all Hamiltonians is a vector

space. The sum of two Hamiltonian vector fields associated with two different

Hamiltonians is itself the Hamiltonian vector field associated with the sum of

the two Hamiltonians, or, more formally, if

:ðrH1Þ ¼ n1

:ðrH2Þ ¼ n2

then

:ðrðH1+H2ÞÞ ¼ n1 + n2:

A straightforward calculation shows, moreover, that the symplectic structure

induces the structure of a Lie algebra on that vector space, under the action of

the regular Lie bracket of vector fields on a manifold.32 In other words, the

vector space of Hamiltonian vector fields is closed under the action of the Lie

bracket.

Now, these facts imply that the family of kinematically-possible evolutions

of an abstract classical system, in so far as they are characterized by inter-

actions with no prior assumption of a geometrical structure as in Section 3,

cannot be naturally represented as Hamiltonian vector fields on phase space,

32 A Lie algebra is an anti-symmetric, bilinear product on pairs of vector fields that yields another

vector field. The exact definition is not important for our purposes, so if this isn’t clear to you,

don’t worry about it.
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for, by definition, an affine space is not isomorphic to a Lie algebra over a

vector space. It follows that there is no analogous structure in the Hamiltonian

representation of a system isomorphic to an abstract classical system’s family

of interaction vector fields. Because the family of Hamiltonian vector fields is

not an affine space, one has no way to characterize interactions as independent

vector fields defined by the difference between (a Hamiltonian representation

of) the two kinematical vector fields. One thus loses the capacity to identify

configuration space in the Hamiltonian formulation, which had better be the

case since phase space may not even be diffeomorphic to a cotangent bundle

over configuration space. One way to see this is that one has no way to for-

mulate the kinematical constraints appropriate to Lagrangian mechanics, the

relations (4.3), for one has no almost-tangent structure, but those kinematical

constraints are the natural ones for abstract classical systems. In consequence,

not only does the Hamiltonian formulation of a system not allow one to

express in a distinguished way the kinematical constraints essential to abstract

classical systems, but also it does not respect them, for it allows solutions to

the equations of motion that violate them. (I discuss this in some detail in

Section 6.)

In sum, then, the family of dynamical evolutions Hamiltonian mechanics

admits for systems it represents is not isomorphic to the family of kinematical

vector fields of an abstract classical system; the family of interaction vector

fields Hamiltonian mechanics admits is not isomorphic to the family of inter-

action vector fields of an abstract classical system; and Hamiltonian mech-

anics neither encodes nor even respects the kinematical constraints

fundamental to an abstract classical system. Thus, Hamiltonian systems are

in no way abstract classical ones, and abstract classical ones are not

Hamiltonian.

Still, Hamiltonian mechanics does in fact impose its own kinematical con-

straints among its natural quantities, and it will be illuminating to discuss

them. Since quantities are just scalar fields on phase space, we can reframe

the idea as the imposition of kinematical constraints on its canonical coord-

inates. Now, a symplectomorphism is an isometry of a symplectic structure,

i.e. a diffeomorphism of phase space that maps the symplectic structure to

itself. Let us say that the coordinate vector fields associated with a canonical

coordinate system (for example, @
@qi

for the qi) are themselves canonical. Then

Hamiltonian mechanics demands of the family of canonical coordinates that

all the associated canonical vector fields generate symplectomorphisms (i.e.

that the symplectic structure remains constant along the flow lines of the

canonical coordinate axes). Indeed, a stronger statement holds: a coordinate

system is canonical if and only if its associated coordinate vector fields are

Hamiltonian (i.e. are the solutions to Hamilton’s equation for some

Hamiltonian). That fact gives the precise sense in which the quantities that
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compose a canonical coordinate system are preferred for the parametrization

of the space of states. Not all Hamiltonian vector fields, however, arise in this

way (e.g. the zero vector field). The families of canonical vector fields do,

nevertheless, span the vector space of all Hamiltonian vector fields.

It will prove useful to have besides the first two another necessary and

sufficient condition for a set of quantities to form a canonical coordinate

system. A Poisson bracket, roughly speaking, is an anti-symmetric, bilinear

map from pairs of scalar fields to scalar fields that acts, in effect, like a kind of

derivative, measuring the respective rates of change of each function with

respect to those of the other. One arises naturally from a symplectic structure

:: the Poisson bracket for two scalar fields f and g is given by:

ff , gg ¼df :ðrf , rgÞ:

(Here, we treat the symplectic structure as a map from pairs of 1-forms to

scalar fields.) Then a coordinate system (qi, pj) is canonical if and only if

fqi, qjg ¼ 0

fqi, pjg ¼ �ij

fpi, pjg ¼ 0

ð5:3Þ

where dij is the Kronecker delta symbol, which equals one for i¼ j and zero

otherwise. It is manifest that families of coordinates satisfying these relations

need not satisfy the kinematical constraints of abstract classical (or

Lagrangian) systems, and vice versa.33 Even if phase space is diffeomorphic

to a cotangent bundle, for example, one can see by inspection that the con-

straints allow us to apply a symplectomorphism that does not respect the

bundle structure but mixes up the p’s and the q’s while preserving the form

of the symplectic structure. (The simplest one just swaps qi and pi—

Hamiltonian mechanics does not care whether you mind your p’s and q’s.)

In consequence, Hamiltonian mechanics does not respect the kinematical con-

straints that relate configurative and velocital quantities in abstract classical

systems.

One can think of these facts as a way to make precise the idea that config-

urative quantities and configuration space itself play no distinguished role in

Hamiltonian mechanics: one has no mathematical tools available to distin-

guish them in a physically-significant way. That makes physical sense, for the

symplectic structure, unlike the geometry of the tangent bundle, does not allow

33 It is of some interest to note that these constraints still represent the momental quantities as a

sort of dynamical derivative of the configurative quantities, analogous to the relation between

velocital and configurative quantities of an abstract classical or Lagrangian system, for the

Poisson bracket is, formally, a derivation on the algebra of scalar fields on a symplectic mani-

fold. In the Hamiltonian case, though, the relation is symmetric: one may as well think of the

kinematical constraints as saying that the configurative quantities are dynamical derivatives of

the momental quantities!
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one to reconstruct the space on which it resides as a cotangent bundle—any

even dimensional, orientable manifold can support a symplectic structure.

There is no Hamiltonian form of Theorem 4.1.

From a certain perspective, then, Lagrangian mechanics appears to be the

more fundamental of the two ways of representing systems in classical ana-

lytical mechanics, in the sense that one natural way to describe an abstract

classical system is by a manifold and two families of vector fields with appro-

priate structure, and it so happens that these are equivalent to Lagrangian

mechanics. This is not meant to be a mathematically derived a priori propos-

ition, but rather one deduced from a claim about actual classical systems, that

their kinematical vector fields always form affine spaces over vector spaces of

fields that represent interactions. It is not inconceivable that it could have been

the other way, that observation would have shown that the set of kinematical

vector fields of classical systems had the structure of a real Lie algebra based

on a symplectic structure. In this case, one presumes, an analogous argument

would have shown that Hamiltonian mechanics was the more fundamental in

this sense. In fact, to try to argue so will allow us to formulate and sketch the

proof of the closest analogue in Hamiltonian mechanics to Theorem 4.1.

Let us try, then, to construct for Hamiltonian mechanics the analogue of the

arguments of Section 3, to see whether we can recover the Hamiltonian sym-

plectic structure starting with the fundamental elements anologous to those we

used in the construction of configuration space for abstract classical systems.

In the event, we can. I give the quick and dirty version.

Let there be given an abstract space of states, a family of kinematical vector

fields on it and a set of kinematical constraints. (Behind the curtain, these are

really the Hamiltonian structures—the family of kinematical vector fields in

this case forms a vector space, for instance—but we do not yet know any of

that.) We first determine the class of vector fields that represent possible inter-

actions by requiring, as in the abstract classical case, that the addition of an

interaction to a possible evolution yield another possible evolution, as seems

plausible on physical grounds. It follows that the interaction vector fields for

Hamiltonian mechanics are identical with the Hamiltonian vector fields, be-

cause the Hamiltonian vector fields themselves already (behind the scenes)

form a vector space. By assumption, therefore, we can discover in the same

way as we did for abstract classical systems—by physical probing, observa-

tion, and generalization—that the family of interaction vector fields on the

abstract space of states is identical to the family of kinematical vector

fields. Since we demand that the addition of an interaction vector field to a

kinematically-possible one yield another kinematically-possible one, we con-

clude that the kinematical vector fields form a vector space.

Now, that all canonical vector fields are Hamiltonian implies that every

vector at a point of phase space is a member of some Hamiltonian vector
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field: you give me a point of phase space and a vector at it, and I can produce a

Hamiltonian vector field that takes the vector as its value at that point. (In

other words, there are no restrictions on what counts as good initial data for

the Hamiltonian initial value problem, another fact that shows that

Hamiltonian systems are not abstract classical ones.) By assumption, there-

fore, every vector at every point of the abstract space of the states is a member

of some kinematical vector field, which we can also discover by physical

probing. We say in this case that the vector space of kinematical vector

fields spans the tangent planes. (This does not imply that the fixed vector

space of kinematical vector fields spans the vector space of all vector fields

on the manifold. There are vector fields that cannot be written as a linear sum

of fields in the vector space of canonical vector fields, i.e. vector fields that are

not the solution to Hamilton’s equation for any Hamiltonian.) It follows that

starting from any point we can reach any nearby point to first order along

some kinematically-possible evolution, i.e. good initial data for the equation

of motion consists of a point of the space of states and any tangent vector at

that point. (One can also think of this as saying, roughly speaking, that any

allowable evolution can be perturbed to any other nearby one by changes of

no order higher than the first in natural coordinates.) Thus, the equation of

motion itself must be first order. That it is linear follows from the fact that it

must respect the kinematical constraints, which we know by assumption, be-

cause the constraints themselves respect the vector–space structure of the

kinematical vector fields. We do not know yet, however, what types of entities

the equation of motion is formulated in terms of. Is it a map from vector fields

to vector fields, or from scalar fields or collections of tensor fields to them?

And so on. We know only that the equation of motion is encoded in some

linear map from some family of entities to the Hamiltonian vector fields.

To address this question, we invoke the given kinematical constraints

(which, recall, are really the Hamiltonian ones). By assumption, we know

that there is a family of preferred coordinate systems the elements of each

of which jointly satisfy the relations (5.3). We use this to define a map � from

pairs of canonical vector fields to scalar fields:

�
@

@qi

,
@

@qj

 !
¼df fqi, qjg ¼ 0

�
@

@qi

,
@

@pj

 !
¼df fqi, pjg ¼ �ij

�
@

@pi

,
@

@pj

 !
¼df fpi, pjg ¼ 0:

ð5:4Þ

Restricting consideration to a single point, invoking the linearity and antisym-

metry of the Poisson bracket, and noting that the vectors @=@qi and @=@pj
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span the tangent space at that point, we conclude that � is a bilinear, non-

degenerate, anti-symmetric, linear map from pairs of vectors to scalars. In

other words, it is a two-index, anti-symmetric, invertible covariant tensor,

otherwise known as a two-form, and so we now write it emboldened, ‘:’, to

honor our convention; one can think of it as an invertible, anti-symmetric

matrix. Now extend it to a tensor field on a neighbourhood of the fixed point

by sweeping it along the flow lines of the canonical vector fields; this guaran-

tees that the canonical vector fields generate isometries of the two-form. To see

that the resulting tensor field is closed, and so a symplectic structure, it suffices

to compute its components in the given canonical coordinate system, which

turn out to be constant. It is thus a symplectic structure.

Another simple computation shows that the canonical coordinates and

vector fields satisfy the equations

:ðrqiÞ ¼ �
@

@pi

and

:ðrpiÞ ¼
@

@qi

:

One cannot yet think of these as instances of Hamilton’s equation, since the

relations are so far confirmed only for canonical coordinates and vector fields.

Linearity and the fact that the canonical vector fields span the space of all

Hamiltonian vector fields, however, jointly imply that the vector space of all

Hamiltonian vector fields is the space of solutions to equations of that form

for arbitrary scalar fields. Thus, :ðJ�Þ is the first-order linear operator that

encodes the equation of motion for all Hamiltonian vector fields, answering

our question: the equation of motion takes a scalar field and returns a

Hamiltonian vector field. Now it is Hamilton’s equation.

This proves a weak analogue to Theorem 4.1.

Theorem 5.1

Fix an even dimensional, orientable manifold with a vector space of vector

fields on it and a Poisson bracket structure. Then the Poisson bracket arises

from a symplectic structure and the vector space includes all and only solu-

tions to Hamilton’s equation formulated with it if and only if the vector space

spans the tangent planes, and the manifold has a family of coordinate systems

whose coordinate functions satisfy the relations (5.3) and whose associated

coordinate vector fields leave the vector space invariant under the action of the

Lie bracket.

The theorem is weaker than 4.1 in so far as it imposes no topological form

on phase space, as it should not. It is still strongly analogous to that theorem,
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however, in the sense that the kinematical constraints—in this case, the

Poisson brackets—are still seen to play a fundamental and constitutive role.

They are precisely the relations among a system’s natural quantities that must

obtain in order for Hamiltonian mechanics to be an appropriate framework

for representing the system.

To sum up, we have seen that the family of Hamiltonian vector fields is not

isomorphic to the family of an abstract classical system’s kinematical vector

fields, and that Hamiltonian mechanics does not allow one to define an iso-

morphic analogue to the interaction vector fields of an abstract classical

system. Since the abstract classical space of states is diffeomorphic to TC,

moreover, and that itself is diffeomorphic to T�C (the cotangent bundle of

configuration space), though not canonically so, it follows that the abstract

classical space of states is also diffeomorphic to T�C, though again not canon-

ically so. Since one can do Hamiltonian mechanics on any symplectic mani-

fold, however, there are Hamiltonian systems whose phase spaces are not

diffeomorphic to the space of states of any abstract classical system, namely,

phase spaces that are not cotangent bundles. Finally, and most important, the

kinematical constraints of the two frameworks do not encode isomorphic

relations: what one needs to assume physically of a system in order to be

able to apply the framework to appropriately model the system is different

in each case. Thus, abstract classical systems are not Hamiltonian, and

Hamiltonian ones are not abstract classical ones.

Before continuing the thread of my argument in the next section, I shall

briefly discuss why my conclusions run directly counter to those of North

([2009]), who claims that it is most natural to think of classical systems as

fundamentally Hamiltonian in character. I have three primary problems with

her account, which jointly explain the differences in our conclusions. First, she

makes a crucial error in assuming that a Riemannian metric is necessary for

the formulation of Lagrangian mechanics. As I explained in Footnote 29, a

Riemannian metric is neither necessary nor sufficient to formulate a Lagran-

gian representation of a system. Even when one does use a Riemannian metric

in the formulation of a Lagrangian representation of a system, its physical

significance is not at all clear, as different Lagrangians that yield the same

Lagrangian vector field can induce inequivalent metrics. Second, she relies on

a vague, unspecified notion of comparative simplicity of mathematical struc-

ture to argue that a symplectic structure, as used in Hamiltonian mechanics, is

simpler than a Riemannian metric, as used in Lagrangian mechanics. I have

no idea what to make of the idea of comparative simplicity in the vague sense

she deploys it. Depending on how one makes the idea precise—and I can think

of a number of more or less natural ways to try to do so—one will get different

answers to the question about symplectic structures and Riemannian metrics.

For example, say one defines it thus: for two structures definable in the context
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of a third, the simpler is the one that can be defined in a larger class of the third

structures. This captures the idea that the structure places fewer constraints on

its definitional context, and so is ‘intrinsically simpler’. By this criterion, Rie-

mannian metrics are far simpler than symplectic structures, for one can define

the former on any differential manifold but the latter only on a proper sub-

class of manifolds, those that are even dimensional and orientable. Third, her

interpretational claim depends on the assumption of a particular metaphysical

view, structural realism of a sort. My arguments are based on empirical and

mathematical grounds that require no particular metaphysical position either

for their formal application in the arguments or for their physical significance

in the arguments to be made clear (though they are compatible with many

different metaphysical positions, if that is the sort of thing one likes to take). I

think this sort of neutrality is what one should aim for in an analysis of the

conceptual structure of a physical theory.

6 How Lagrangian and Hamiltonian Mechanics Represent

Classical Systems

The arguments and conclusions of the previous two sections raise (at least)

four deep questions:

(1) If Hamiltonian mechanics does not respect the kinematical con-

straints intrinsic to abstract classical systems, how can it provide

adequate representations of classical systems (for example, the

simple harmonic oscillator)?

(2) Why does Lagrangian mechanics always respect the kinematical con-

straints of abstract classical systems?

(3) Since we know the Hamiltonian and Lagrangian formulations to be

related by the Legendre transform, what happens in the passage from

Lagrangian to Hamiltonian mechanics that expunges respect for

those constraints?

(4) Is any structure in Hamiltonian mechanics isomorphic to any struc-

ture in Lagrangian mechanics in a physically-significant sense?

I start with the first.

In order to apply Hamiltonian mechanics to model abstract classical sys-

tems, we have to impose the kinematical constraints of an abstract classical

system more or less by hand. We do this without explicit remark in ordinary

practice, by restricting attention to that small class of Hamiltonians that do in

fact model abstract classical systems, namely, those that satisfy pi ¼ �
j
i _qj,

where �j
i is a linear, generally invertible transformation—i.e. we demand

that the pi be linear functions of the _qj, the kinematical relation between
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momentum and velocity we expect for classical systems. This condition is weak

enough to represent the relation, for instance, between the rate of change of

configuration and both linear momentum and angular momentum, and no

weaker.

It follows from Hamilton’s equation that, for this relation to hold, H must

be a second-degree formula homogeneous in the pi, i.e. it must satisfy

@H

@pi

¼ �j
ipj ð6:1Þ

which in turn implies

H ¼ �mnpmpn+UðqjÞ ð6:2Þ

where U and every �mn is each an arbitrary function of the configurative

quantities only. Indeed, we must in fact restrict ourselves to this case for the

purposes of classical mechanics (as is always done without comment in text-

books), as one can see as follows. In general, that a Hamiltonian has this

restricted form implies that half of the relations in the coordinate formulation

of Hamilton’s equation, namely,

@H

@pi
¼ _qi ð6:3Þ

become physical tautologies, in the sense that they serve only to represent the

kinematical constraints of the abstract classical system, pi ¼ �
j
i _qj. Thus, that a

Hamiltonian has the form (6.2), where all the �mn depend only on the qi, is the

necessary and sufficient condition for it to model an abstract classical system.

Nonetheless, it is important to realize that, though the isomorphic relations in

the context of abstract classical systems or Lagrangian mechanics are not

predictions in the sense I explicated in Section 3—as they form part of the

kinematical infrastructure of the theory and so must hold as necessary pre-

conditions for the applicability of the theory in the first place—here, in

Hamiltonian mechanics, they are predictions. It is not necessary that they

hold in order for the theory to be meaningfully applied to model a system.

This can most easily be seen by the fact that Hamiltonians of any other form

do not satisfy this relation. H ¼ 1
2

pip
i +

P
j pj is a funny one. It gives _pi ¼ 0 for

the dynamics, like a free system, but vi ¼df _qi ¼ pi + 1, which makes no phys-

ical sense: the constant number 1 does not have the dimensions of a velocity.

(Another way to make the point: for ‘_qi ¼ pi + 1’ to make physical sense, there

would have to be a canonically distinguished system of units one had to use to

express values of position and momentum; otherwise one would get different

actual magnitudes for _qi depending on whether one used cm/s or km/h.)

H ¼ 1
2

pip
i + 1

6
ðpip

iÞ
3=2 gives even stranger behaviour. It yields

vi ¼df _qi ¼
@H

@pi
¼ pi +

1

4
pjp

j
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Solving this quadratic equation for pi in terms of vi gives

pi ¼
�1� ð1 + viÞ

1=2

2
:

Thus, there are two possible solutions for pi, both of which are complex for

values vi < �1. It follows that the Lagrangian one gets from using this H to

define the inverse-Legendre transform is also complex for those values of vi,

and so a fortiori does not yield a second-order vector field on the tangent

bundle. It is impossible to make physical sense of any of this in the realm of

the classical world.

Thus, Hamiltonian mechanics represents abstract classical systems only in

so far as we restrict ourselves to a subfamily of all the formally acceptable

Hamiltonians by the ad hoc use of conditions foreign to Hamiltonian

mechanics itself. Its structures do not provide the appropriate concepts and

tools to formulate in their terms the required strictures that treat configurative

quantities differently from momental, nor do they provide any natural justi-

fication for the restriction to Hamiltonians of the form (6.2). One way to see

this is as follows: One might think or even hope that restricting attention to the

‘physical’ Hamiltonians, those that satisfy the relation (6.2), might allow us to

recover the structures of an abstract classical system in a natural way. This

does not work, however. Not only does that family of vector fields not form an

affine space, it is not even invariantly defined precisely because the relation

(6.2) is not covariant under all canonical changes of coordinates.

Now, to address the second question listed at the beginning of the section,

recall that a curve on the space of states satisfies the Euler–Lagrange equation

if and only if it extremizes the variation of the standard action integral. (See,

e.g. Abraham and Marsden [1985], Theorem 3.8.3, p. 248.) More precisely, the

traditional formulation of Lagrangian mechanics poses the following

problem:

Given a function Lðqi, _qiÞ of the coordinates and their time de-

rivatives on configuration space, C, to find a family of curves

f��g�2�, for some indexing set �, such that every curve in the

family is an extremal, in the sense of the calculus of variations,

of the action functional

A½�� ¼

Z
�

Lð�ðtÞ, _�ðtÞÞ dt

where _�ðtÞ is the vector tangent to g at parameter value t.

We know already from Section 4 that any such extremal curve, g, must be

the canonical lift of a curve from configuration space to its tangent bundle;

this is just another restatement of the Lagrangian constraints. What happens if
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we attempt to drop this restriction? Consider the following completely general

variational problem:

Given the scalar field L on a manifoldN , to find a family of curves

f��g�2� on N , for some indexing set, �, such that through each

point of N exactly one curve passes, and each curve, ��, in the

family is an extremal of the action functional

S½�� ¼

Z
�

Lð�ðtÞÞ dt:

This problem has no non-trivial solution. If the integral must have an

extremal value in every direction, and not just those directions transverse to

those associated with something like lifts from a configuration space, then,

roughly speaking, its derivative must be zero in every direction. This implies

that the scalar field, L, must be a constant, and so every curve on the space of

states is a solution.34 This result is explained by the fact that, locally, all

smooth, non-singular vector fields, and so all well-behaved families of

curves, look exactly alike. If you’ve seen one, you’ve seen’em all.35 This is

why variational problems over unrestricted families of curves have no non-

trivial solutions. That one is able to find non-trivial solutions to

Lagrangian-type problems depends on the fact that one derives the Euler–

Lagrange equation not by considering variations over arbitrary curves but

only over curves that are canonical lifts on the tangent bundle, i.e. curves

along which half the coordinates are the dynamical derivatives of the other

half—curves along which the kinematical constraints of an abstract classical

system are respected.36

Thus, it is built into Lagrangian mechanics from the start, by necessity, that

the kinematical constraints of abstract classical systems be respected—one

cannot even formulate the theory without it—that is to say, one could not

even derive the Euler–Lagrange equation from a variational principle. This is

not to say that I think one must conceive of Lagrangian mechanics as based on

a variational principle. Indeed, in my preferred presentation of Lagrangian

34 It is not difficult to make this argument precise and rigorous.
35 Somewhat more precisely: given two n-dimensional manifolds, M and N , points p 2 M and

q 2 N , and smooth vector fields n and g that are, respectively, not singular at p and q, then one

can always find convex normal neighbourhoods, Op and Oq, containing p and q respectively and

a smooth mapping 	 :M!N , such that 	ðpÞ ¼ q, 	 is a diffeomorphism of Op to Oq, and

	�ðnÞ
��
	ðpÞ
¼ g

��
q
.

36 In the usual derivation of the Euler–Lagrange equations (e.g. Rosenberg [1977], chap. 9), this

restriction allows the switching of the order of differentiation and variation of certain terms that

in turn allows the crucial integration by parts; the nature and origin of the requirement is

masked in that case by the traditional presentation in terms of an arbitrary coordinate system

and the lack of recognition that the Lagrangian is a scalar field on TC not on C.
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mechanics (adumbrated in Section 4, presented more fully in Curiel [unpub-

lished]), one need make no reference, not even implicitly, to a variational

principle. One simply imposes the Euler–Lagrange equation as the generic

form of the equation of motion and demands that one’s space of states have

the geometrical resources for the formulation of the equation. It then turns out

that one has those resources on and only on a tangent bundle (the content of

Theorem 4.1). The point I am making here is only that, in so far as satisfaction

of the Euler–Lagrange equation is logically equivalent to the fact that a certain

variational problem be well posed, one can get some insight into the need for

Lagrangian systems to satisfy the kinematical constraints of an abstract clas-

sical system—they are necessary conditions for that variational problem to be

well posed.

Consideration of the variational problem also sheds light on why the

Lagrangian must be quadratic (at least) in the velocities for there to be a

unique solution to the Euler–Lagrange equation, i.e. why it makes physical

sense to demand that the Lagrangian be regular as defined by the relation

(4.6). Again, the variational problem will not be well posed unless one can

take non-trivial derivatives of the Lagrangian up to second order in the

velocity, since the crucial integration by parts that yields the Euler–

Lagrange equation demands this, on pain of giving, for example, the tau-

tology 0¼ 0 (for, say, the Lagrangian L ¼ kivi for a constant vector k) or

the contradiction 1¼ 0 (for, say, the Lagrangian L¼ kiqi for constant k).

This again stands in contradistinction to the case of Hamiltonian mech-

anics, in which one must impose the quadratic form of the Hamiltonian as

an ad hoc condition, precisely because every smooth scalar field yields a

consistent, unique solution to Hamilton’s equation, including H¼ kiqi for

constant k.

We now address the third question. What happens in the passage from a

Lagrangian to a Hamiltonian representation of an abstract classical system by

way of the Legendre transform: why does the structure of an abstract classical

system (in the sense of Sections 2 and 3) not get preserved? Fix a natural

coordinate system (qi, vj) on the tangent bundle, and let (qi, pj) be the natural

coordinate system on the cotangent bundle based on the same configuration

coordinates (qi). Then for a given Lagrangian, L, the action of the Legendre

transform—the natural mapping that takes a Lagrangian model of a system to

a Hamiltonian one—is fixed in these coordinates by the condition that

vi � @L
@vi
¼df pi, providing a map from TM to T�M. (Thus, the condition

that a Lagrangian be regular, Equation (4.6), also guarantees that the pi

form good coordinates on the cotangent bundle.)

In order to see why the affine-space structure of the Lagrangian vector fields

does not survive the transform, we need to determine what an arbitrary

second-order vector field maps to. What happens, for example, to physically
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pathological second-order vector fields when they are mapped to the cotan-

gent bundle? Consider the field

n ¼ vi

@

@qi

+vj

@

@vj

ð6:4Þ

This represents a system whose acceleration increases in proportion to its

velocity, which is to say that its velocity exponentially increases, and so it

will be highly unstable and shoot off to infinity in a finite amount of time at

the slightest provocation. (This is an example of a second-order vector field

that is not the solution to any Lagrangian for the homogeneous Euler–

Lagrange equation; one must use the inhomogeneous form, by including

nonconservative general forces, to find a Lagrangian that has this as the so-

lution.) Mapping the vector field (6.4) to T�C using the Legendre transform,

�L, defined by L ¼ 1
2

viv
i, a manifestly physical Lagrangian,37 we get

bn ¼ �L½n� ¼ pi

@

@qi

+pj

@

@pj

:

It is easy to see that this cannot be a Hamiltonian vector field on physical

grounds: because _pj ¼ pj, this system would not conserve energy.38 (It would

again represent a system that goes hurtling off to infinity in a finite time with

exponentially increasing velocity.) Thus, the Legendre transform does not

always map all Lagrangian vector fields to Hamiltonian ones. (It is of

course a theorem that any second-order vector field that is the solution to

the homogeneous Euler–Lagrange equation for a regular Lagrangian does get

mapped to a Hamiltonian vector field by the Legendre transform.)

What happens to Hamiltonians that do not respect the Lagrangian kine-

matical constraints when they get sent back to the Lagrangian formulation via

the inverse-Legendre transform? Consider the Hamiltonian H¼ p. This yields

a well-defined Hamiltonian problem, with the Hamiltonian vector field

_q ¼ 1

_p ¼ 0:

This seems to represent a free particle moving with velocity 1. (We ignore for

the moment that the proposition ‘the velocity equals 1’ makes no physical

sense without a fixation of units.) If you try to perform a reverse Legendre

transform to put it into Lagrangian form, then you get _q ¼ 1 and

L ¼df vp�H ¼ _q� 1, which does not yield a well-set Lagrangian problem.

More precisely, it yields the identity 0¼ 0 when you plug L into the

37 And, in fact, this L is a Lagrangian that yields the vector field (6.4) as a solution with the

appropriate generalized forces, so it is in that sense an appropriate Lagrangian is used for

defining the Legendre transform.
38 One can show this as well using a simple mathematical argument: there is no scalar field H(q, p),

such that �@H=@q ¼ p and @H=@p ¼ p.

Classical Mechanics Is Lagrangian; It Is Not Hamiltonian 309

 at U
niversitaetsbibliothek M

uenchen on N
ovem

ber 15, 2015
http://bjps.oxfordjournals.org/

D
ow

nloaded from
 

http://bjps.oxfordjournals.org/


Euler–Lagrange equation. Thus, not all Hamiltonian vector fields map to

second-order vector fields under the inverse-Legendre transform.

The Legendre transform does not respect the kinematical constraints of

Lagrangian mechanics because it, in effect, wipes out any notion of vertical-

ity—the idea that the interaction vector fields (the vertical vector fields on the

tangent bundle) are different from the kinematical vector fields, and yet define

their algebraic structure—in so far as the idea of verticality is defined by the

difference of two second-order vector fields on the tangent bundle, in virtue of

the affine–space structure of the second-order vector fields based on the vector

space of vertical vector fields. In wiping out verticality, it also wipes out the

kinematical link between change of configuration and the momental quantity

used to formulate the equation of motion, and the associated link between the

kinematical constraints and the form of allowable interactions for abstract

classical systems. One can make a stronger statement: any physically

significant transformation of a Lagrangian representation of a system into a

Hamiltonian one must wipe out verticality. Hamiltonian mechanics cannot

be formulated with it, as Lagrangian mechanics cannot be formulated

without it.

This leaves us the fourth and final question I posed in Section 6. In fact, we

have already got a promising start to the answer of this question. Although it

is next to impossible to see by looking only at the Euler–Lagrange equation,

when posed with a regular Lagrangian, it contains a closed, invertible two-

form—a symplectic structure, in seeming analogy with Hamiltonian mech-

anics—as part of the equation’s construction, as I discussed immediately

after condition (4.6). It is not a fixed symplectic structure as in Hamiltonian

mechanics, however. Rather, it depends on the Lagrangian, and so it differs in

different instances of the Euler–Lagrange equation. This stands in opposition

to the case in Hamiltonian mechanics where the symplectic structure is inde-

pendent of the Hamiltonian. Thus, although there is a formal isomorphism of

the two, they have different physical significances. In Hamiltonian mechanics,

the fact that the symplectic structure is fixed once and for all enforces the

satisfaction of the kinematical constraints (5.3), and it encodes the existence

and uniqueness of solutions to the equations of motion and the conservation

of energy, among many other things. All of these features are independent of

the individual Hamiltonian used in the equation. In Lagrangian mechanics, in

contrast, it is the Lagrangian itself that encodes existence and uniqueness of

solutions (which will obtain when and only when the Lagrangian is regular),

and there is not even a guarantee that energy is conserved, as one can, for

example, represent dissipative systems in the Lagrangian framework. And the

Lagrangian symplectic structure, when it even exists, has no logical relation to

the satisfaction of the Lagrangian kinematical constraints—the relations

(4.3)—which are themselves encoded in a wholly separate geometrical
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structure (the almost-tangent structure).39 Indeed, the kinematical constraints

are always satisfied even when the Lagrangian is not regular, and so even when

there is not a symplectic structure available, period.40

So, much for possible isomorphism of kinematical structures. I now briefly

address the question whether Lagrangian and Hamiltonian mechanics share

physically-significant structure in their dynamics. In fact, the question has a

simple answer. The dynamical constituents of models of individual systems in

Hamiltonian Mechanics, such as the equation of motion for a simple har-

monic oscillator, will not be isomorphic to any dynamical constituents of

the model for the same system in Lagrangian mechanics, for all the reasons

already given. That the global kinematics possess no common structures ne-

cessitates that individual models do not either, for the global kinematical

structures provide the scaffolding for the construction of the equations of

motion. Indeed, that is the physical significance of the difference between

Theorems 4.1 and 5.1.

One reflection of this, for instance, is the fact that Hamilton’s equation must

be first order and the Euler–Lagrange equation second order. The former

proposition was derived in the proof of Theorem 5.1. The latter is suggested

by the following argument (which can be made rigorous—see Curiel [unpub-

lished]). For an arbitrary vector field f on the tangent bundle, there always

exist three second-order vector fields n, g and h such that

f ¼ h� ½n, g�: ð6:5Þ

We already expect that a kinematically-possible evolution—more precisely, a

finite stretch of a curve representing one—connects any two points on the

space of states. (If not, then we could divide the space of states into pieces

not reachable from each other by any dynamical evolution, and which would

thus prima facie represent ‘different systems’—this is the physical significance

39 There are in fact extensions of Hamiltonian mechanics in which dissipative systems can be

treated, by allowing, for example, a time-dependent Hamiltonian. In effect, by doing this, one

must extend the phase space to include an extra dimension, that of time. One does not need to

extend the fundamental structures of Lagrangian mechanics in any such way in order to treat

dissipative systems within it. One simply uses the inhomogeneous form of the Euler–Lagrange

equation with a force 1-form that is not exact and that is not Lie-derived along the Lagrangian

vector field solving the inhomogeneous system. One need not even make it explicitly

time-dependent; a force proportional to minus the velocity is an example.
40 One might think that there cannot be well-defined solutions to the Euler–Lagrange equation

when the Lagrangian is not regular, but this is not so. Such solutions as do exist in such cases are

simply not unique. In general, if a Lagrangian is not regular, a simple argument shows it must

satisfy the condition Xn

j¼1

@2L

@vi@vj

¼ 0

(for each i) for there to exist (generally non-unique) solutions to the Euler–Lagrange equation.

In such cases, the individual solutions still do satisfy the kinematical constraints of Lagrangian

mechanics. See Curiel ([unpublished]) for details.
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of the demand that the space of states be pathwise connected in the sense of

topology.) Then Equation (6.5) states, roughly speaking, that we can get from

any point in the abstract classical space of states to any nearby point ‘to order

no higher than second’ along the kinematically-possible evolutions. Not every

two nearby points in the tangent bundle, i.e. the space of states, are connected

by a kinematically-possible vector field, because nearby points on the tangent

bundle can be separated in directions other than those picked out by the

second-order vector fields. This reflects the fact that only evolutions that re-

spect the constraints are kinematically possible, and not all curves on the

tangent bundle respect the constraints. On the Hamiltonian space of states,

however, every point is connected to every nearby point by a kinematically-

possible vector field, reflecting the fact that there are no functional constraints

among the configurative and momental quantities that reduce the dimension-

ality of the family of their compossible evolutions. Thus, the dynamical struc-

tures of the theories, as encoded in the equations of motion, cannot be

isomorphic in any physically-significant sense either.

Let us make this last point concrete and more precise by means of a simple

example, the simple harmonic oscillator. For simplicity, I assume the system is

one-dimensional (i.e. it can move only in one dimension and so has two de-

grees of freedom in my sense) and has its mass equal to 1 and its coefficient of

elasticity equal to 1
2
. Then the Hamiltonian is

H ¼
1

2
p2+

1

2
q2

and Hamilton’s equations are

_q ¼
@H

@p
¼ p

_p ¼ �
@H

@q
¼ �q

ð6:6Þ

which has as its phase portrait (i.e. the integral curves of the associated

Hamiltonian vector field) the expected circle on phase space as represented

by a Cartesian plane. If we use H to define the inverse-Legendre transform and

so pass to the Lagrangian formulation, we get as expected

v ¼df

@H

@p
¼ p

for the velocity, yielding the expected Lagrangian

L ¼df pv�H

¼ v2 �
1

2
p2 �

1

2
q2

¼
1

2
v2 �

1

2
q2
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This is a regular Lagrangian having as its solution to the Euler–Lagrange

equation the second-order vector field

_q ¼ v

_v ¼ �q
ð6:7Þ

whose integral curves are essentially the same circles as in the Hamiltonian

solution, only now on the tangent bundle (also represented as the Cartesian

plane). In other words, the integral curves representing the evolution of the

system in the two frameworks are isomorphic to each other.

At first sight, the relations (6.6) and (6.7) appear in perfect agreement with

each other. Indeed, the perfection of the apparent agreement makes it difficult

to see how the general claims of the previous paragraphs could be true, that

the dynamics of the Lagrangian and the Hamiltonian frameworks do not have

structures that are isomorphic in a physically-significant way. Still, the fact

that the phase portraits in both frameworks are circles does not falsify the

claim. All that fact says is that both frameworks yield brute descriptions of the

motion of the simple harmonic oscillator that quantitatively agree. My claim,

however, demands more than that. For it to hold, any structure in the model

of one framework that is mathematically isomorphic to a structure in the

model of the other must yet have a different physical significance. (We have

already seen an example of this at the global level: the variable symplectic

structure that lies hidden under the Euler–Lagrange equation has a physical

significance different to that of the canonical one that appears in Hamiltonian

mechanics.) And this is the case at the level of the individual model as well.

To see this, let us look in detail at the formally isomorphic relations (6.7)

and (6.6). As I argued in Section 3, the first relation in the Lagrangian pair

(6.7), _q ¼ v, is not a prediction the theory makes, but rather a stipulation, a

proposition necessary for the appropriate application of the theory to model

the system in the first place.41 One cannot meaningfully apply the theory while

having that proposition fail, for the framework requires the truth of that

statement for its own logical consistency. In that sense, it shares much of

the flavour, status, and behaviour of an analytic or L-statement in a

Carnapian framework, one true, roughly speaking, in virtue solely of the

meaning of its terms. It has still this difference from such statements,

though: it has non-trivial semantic content. It makes a non-trivial claim

41 Recall my characterization of a ‘prediction’ from Section 3, slightly modified so as to fit the

present context:

[S]omething that a theory, while meaningfully and appropriately modelling a given

system, can still get wrong. Lagrangian mechanics, then, does not predict that the

kinematical velocity of a Newtonian body equal the temporal rate of change of its

position; rather it requires it as a precondition for its own applicability. It can’t ‘get

it wrong’.
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about the behaviour of the physical systems. It is a proposition that can fail to

apply to a real physical system, in the sense that the temporal rate of change of

a system’s configuration can fail to equal the system’s kinematical velocity.

This happens in a variety of theories, for example, ordinary quantum mech-

anics, Bohmian quantum mechanics, some theories of relativistic fluid mech-

anics,42 et al.

The analogous relation in the Hamiltonian framework, the first of the pair

(6.6), has none of the same flavour, status, or behaviour. It is not a proposition

that must hold for one to be able to apply Hamiltonian mechanics to represent

a system meaningfully. Indeed, it is not even a proposition that always holds in

Hamiltonian mechanics. It holds only for those systems whose Hamiltonians

are of the form (6.2). A system whose Hamiltonian is of any other form will

not satisfy it. It, therefore, is a true prediction of the Hamiltonian framework.

(Both of the second relations in Equations (6.6) and (6.7) are also true pre-

dictions in my sense, and so have more or less the same physical significance.)

Thus, even when Lagrangian and Hamiltonian mechanics provide individ-

ual models of the same physical system, no structure in the individual model of

the one is isomorphic to any in the other in a way that has real, non-trivial

physical significance (over and above the fact that the two models yield the

same brute quantitative description of the behaviour of the system). The only

way to deny this conclusion is to claim that sameness of solutions to equations

of motion by itself—mere sameness in brute description of motion—ensures

sameness of physical significance, but that is nothing more than the most naı̈ve

form of verificationism.

7 The Conceptual Structure of Classical Mechanics

To summarize the primary conclusions of the article’s technical arguments:

(1) The global structures of an abstract representation of a classical

Newtonian system, as characterized in Sections 2 and 3, are necessary

and sufficient for the construction of a Lagrangian formulation for

the system;

(2) Those structures neither permit one to recover a Hamiltonian for-

mulation for it nor, conversely, do the structures of Hamiltonian

mechanics allow one to recover the structures of a Newtonian system;

(3) None of the fundamental, global, kinematical structures of Lagran-

gian mechanics is isomorphic to any in Hamiltonian mechanics;

(4) In consequence, the global dynamical structures of the two are not

isomorphic in any way that has physical significance;

42 See, for example, Landau and Lifschitz ([1975]) and Earman ([1978]).
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(5) In further consequence, no individual model in one shares physically-

significant, fundamental, non-trivial structure with any in the other,

even when the two are models of exactly the same classical system;

(6) None of these arguments could have been made by consideration of

individual models of physical systems only; they rely crucially on

relations among individual models, i.e. on global relations defined

on the entire family of a framework’s models

In sum, the conceptual structure of classical Newtonian mechanics, both at the

level of global structure and at the level of individual models, is that evinced by

the Lagrangian framework. This lesson could not have been learned from

looking only to see whether there were theoretical structures isomorphic to

empirical structures, simpliciter, as is often done in structuralist approaches to

the understanding of the physical theory. One must also look to see what

physical significance accrues to the structure in its theoretical and in its em-

pirical domain—what it requires, what status it has, what roles it plays, what

consequences follow from it, both globally and individually—to verify that the

formal isomorphism is not empty of true physical content.

To conclude the article, I shall analyze a little further the light I think this

article’s arguments shed on structuralist approaches to the understanding of

the physical theory. Roughly speaking, by ‘structuralist approach to the

understanding of physical theory’, I mean one that posits as the foundation

for the representational content of a theory a relation of structural similarity

between the formal apparatus of the theory on the one hand and empirical,

phenomenal structure on the other.43 That similarity relation may be one of

isomorphism, partial isomorphism, homomorphism, or anything of the sort.

For the purposes of my argument, the specific form is irrelevant, so I shall just

refer to such a thing as a ‘morphism’. It also does not matter, for the purposes

of my argument, whether the empirical structure is thought to consist of a data

model, or of real stuff in the world, or something else of the sort, so I will use

the term ‘phenomenal structure’ to refer promiscuously to any such thing used

in structuralist accounts. The important fact for our purposes is that, for a

structuralist, the morphism by itself characterizes the representational content

of theoretical structure. It follows that whatever semantic content accrues to

theoretical structure, it must be grounded on that morphism. Thus, where

there is no morphism, there is no representational content. The example of

the way that Hamiltonian mechanics represents classical Newtonian systems,

however, shows that this position is untenable, for, as the argument of Section

5 showed, there is no morphism of any kind between the structures one uses to

formulate Hamiltonian representations and the phenomenal structures of

43 See Brading and Landry ([unpublished]) for a particularly clear and thorough exposition of

positions of this sort.
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classical systems. But Hamiltonian mechanics does in fact provide good,

useful models of such systems. So what is going on?

To try to address that question, it will help to consider a pair of related

questions: whether sameness of meaning in two representations entails same-

ness of structure in them, and whether sameness of structure in two represen-

tations entails sameness of meaning. Now, when two frameworks provide

good representations of the same system, it is natural to think that, in a

strong sense, the two representations have the same empirical meaning. For

the structuralist, moreover, it will follow that there must be an appropriate

morphism between the structures of the two frameworks because, on their

own and ex hypothesi, each is appropriately morphic to the same structure,

namely, the phenomenal one the system evinces. For the structuralist, then, it

is natural to demand that sameness of meaning of representations entails

sameness of structure. But this articles’s arguments show that cannot be cor-

rect. The Lagrangian and the Hamiltonian models of the simple harmonic

oscillator in some sense surely ‘mean the same thing’, but there is no mean-

ingful sameness of the structure. The two models agree on all empirical prop-

ositions both theories can formulate about it but the formal entities and

relations that inform the semantic content of the propositions are hetero-

morphic. The two models, for example, agree on the following empirical prop-

osition, P: ‘the position and velocity of the simple harmonic oscillator jointly

satisfy the kinematical constraints essential to classical Newtonian systems,

such as that its velocity is the temporal derivative of its position’. Strictly

speaking, however, one cannot even formulate the proposition P in the frame-

work of Hamiltonian mechanics, because the framework does not differenti-

ate between configuration- and velocity-like quantities. The constraints for

classical Newtonian systems, however, treat configuration and velocity asym-

metrically. Thus, one cannot define a predicate in Hamiltonian terms that

represents the constraints. There is still, however, an obvious and important

sense in which P is not only meaningful in, but also true of, the Hamiltonian

model of the simple harmonic oscillator. There is a unique, true proposition, Q

(the first of the relations 6.6), in Hamiltonian mechanics whose translation

into Lagrangian terms by the inverse-Legendre transform is (the Lagrangian

formulation of) P (the first of the relations 6.7). Of course, this translation

works—i.e. is physically-significant—only when the Hamiltonian is restricted

by ad hoc measures to take the form (6.2). There is no morphic structure

between the two frameworks that underwrites the sameness in empirical

meaning: the inverse-Legendre transform does not map relevant structures

in the one to physically-significant structures in the other. Sameness of mean-

ing, then, does not imply sameness of structure.

Neither is the converse slogan true. For the structuralist, if two theoretical

representations appropriately model the same system, then it is natural to
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demand that the structures that are morphic between those representations

must mean the same thing and must play the same roles. Otherwise, it is

difficult to see how morphism of theoretical to phenomenal structure could

ground representational content. Again, this article’s arguments show that

this cannot be correct in general. The only structure formally morphic in

the Lagrangian and Hamiltonian frameworks—a symplectic structure, for

which the Legendre transform and its inverse do in fact act as isomorph-

isms—has different physical significance, and so different representational

content, in each framework. The canonical symplectic structure in

Hamiltonian mechanics plays (at least) three representational roles: it encodes

all the kinematical constraints; it ensures existence and uniqueness of solutions

to the equation of motion; and it ensures that energy (the Hamiltonian) is

conserved during the course of possible evolutions. It plays those roles in every

model, moreover, independently of the dynamics of any particular model, in

the sense that it is independent of the Hamiltonian, and is rather fixed once

and for all, the same for all Hamiltonian models. Thus, the Hamiltonian

symplectic structure encodes all and only the theory’s kinematics for all its

models; the Hamiltonian function of a particular model encodes all and only

the dynamics of that model and that model alone. In Lagrangian mechanics,

to the contrary, only some models have a symplectic structure, those whose

associated Lagrangians satisfy a particular condition, relation (4.6), and in

those models the symplectic structure’s only function is to ensure existence

and uniqueness of solutions to the equation of motion. It encodes none of the

kinematical constraints, and it does not ensure conservation of energy. Its role

in guaranteeing existence and uniqueness, moreover, depends on the dynamics

of the particular model, in so far as the Lagrangian symplectic structure of a

particular model is a function of the model’s Lagrangian itself (if the model’s

Lagrangian satisfies the relevant condition in the first place). In Lagrangian

mechanics, therefore, much of the kinematics is encoded in the algebraic struc-

ture of the space of possible evolutions, but some is encoded in the Lagrangian

for each model as well; the dynamics of an individual model is still encoded

entirely in the Lagrangian, but now it is not alone. Thus, sameness of structure

does not entail sameness of meaning.

Still, there is a strong intuition that, just because the two render the same

gross representations of the evolution of a large class of systems—which is to

say, Lagrangian and Hamiltonian models yield the same form for the pre-

dicted evolution (as for the simple harmonic oscillator)—it must follow that

the two have some physically-significant, morphic structure. Agreement in

prediction, however, simply does not imply the existence of morphic,

physically-significant structure. Even when there are morphic, physically-

significant structures, and as I emphasized above, they need not have the

same semantic content because they may play different roles in the
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representation of the physical system. The only way to deny this conclusion is

to claim that sameness of solutions to equations of motion by itself—mere

sameness in brute prediction—ensures sameness of semantic content but,

again, that is nothing more than the most naı̈ve form of verificationism.

Mere existence of morphisms between structures, then, cannot ground a se-

mantics of physical theory. Just because two theories represent the same sys-

tems and have morphic structures, it does not follow that the empirical

meaning of the morphic structures are the same in the two theories. The

physical roles the structures play in one theory, and so their semantic content,

may be distributed differently among the morphic structures in the other

theory, so to speak, or even among entirely different structures in no way

morphic to any in the other.

The discussion also shows why Tarskian (or Beth, as the case may be) se-

mantics is not adequate for physical theories. The argument has shown that

one can discover the profound differences between the semantics of

Lagrangian and Hamiltonian theories only by examination of their global

structures, not by the study of any individual model. The semantics of indi-

vidual models on their own do not suffice for the comprehension of the se-

mantics of their fundamental building blocks, such as the preferred quantities

by means of which states are to be individuated and identified and which in

their internal structure encode the kinematical constraints appropriate for

each framework. Relations that hold jointly among all the theory’s models

must be taken account of. One gets the affine structure of a classical Newtonian

system’s kinematical vector fields, for instance, only by treating the collection

of models as a unified space with its own global structures. In particular, one

cannot define the space of interaction vector fields when one restricts attention

to the collection of models in isolation from any global structure imposed on it

in the form of relations among the models, precisely because an interaction

vector field is defined as the difference of the two kinematical vector fields,

namely, the difference of vector fields in two separate models. Each model on

its own, in isolation from any relation to the free kinematical vector field,

cannot support the idea of an interaction vector field. In this sense, a theory’s

bare collection of models on its own does not suffice for the recovery of the full

semantics of each individual model, much more for the semantics of the theory

as a whole. So far as a proper accounting of semantics goes, a physical theory

must be more than its collection of models. It must include as well relations

among the models. This violates the principles of Tarskian semantics. It is

perhaps possible to extend or modify Tarskian semantics so as to take account

of relations among models, but that is beside the point. Traditional Tarskian

semantics as in fact deployed by the semantic view of theories does not provide

a rich enough set of tools to characterize all the semantic content of a physical

theory.
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The arguments of the article notwithstanding, I feel there is something

profoundly right about a structuralist point of view. The world as we have

known it does manifest in its parts clear and beautiful structures that find

elegant and verisimilar recapitulation in physical theories. The recovery of

Lagrangian mechanics from simple physical assumptions about classical sys-

tems provides as good an example of this as one could want. The way that

structuralist points of view have generally been expressed up to now, however,

with the naı̈vely, exuberantly optimistic idea that structure in theories always

stands in unambiguous, univocal relation with structure in the world, does not

work. In order to represent the structures in the world, the structures in

theories must stand in some definite relation to them. That relation, however,

cannot in general be mere morphism; it must be something more complex and

subtle.
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