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Abstract

Much controversy surrounds the question of what ought to be the proper definition of “singularity” in
general relativity, and the question of whether the prediction of such entities leads to a crisis for the
theory. I argue that there is no single canonical definition of such a things, and that none is required—
various definitions present themselves, respectively suitable for different sorts of investigations. In
particular, I argue that a definition in terms of curve incompleteness is adequate for most purposes,
though the idea that singularities correspond to “missing points” has insurmountable problems. I
conclude that singularities per se pose no serious problem for the theory, but their analysis does
bring into focus several problems of interpretation at the foundation of the theory often ignored in
the philosophical literature.

†I presented an earlier, adumbrated version of this paper at the Philosophy of Science Association’s biannual

meeting in 1998. That version was subsequently published in the proceedings of the conference (Curiel 1999).
‡This paper began life as a small criticism of a few points John Earman makes in chapter 2 of his book Bangs,

Crunches, Whimpers and Shrieks: Singularities and Acausalities in Relativistic Spacetimes, and grew as I grew to

realize more fully the complexity and subtlety of the issues involved. I will not always point out where I am in

agreement or disagreement with Earman, much less always discuss why this is so, though I will try to regarding the

most important points. The reader ought to keep in mind, though, that Earman’s book is the constant foil lurking

in the background. In intellectual matters, the sincerest form of flattery is not imitation, but rather the attempt to

understand and improve upon—in writing this paper, I grew to understand even more keenly than I had before not

only how difficult the issues here are, but also what a very good book Earman has written on it. If the reader needs

more background in the subject matter than I provide in this paper, I strongly urge him or her to consult it.
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1 Introduction

I suspect that, for many, talk of a singularity in the context of general relativity conjures up the
image of something like a rent in the fabric of spacetime.1 Perhaps unbounded curvature from the
self-gravitational collapse of a massive body tore the fabric, or perhaps the cloth was simply ill-woven
from the start, but in any case the idea of a flaw in the fabric of spacetime naturally accompanies
the word ‘singularity’. This metaphor, evocative as it may be, is perhaps misleading: a web of cloth
exists in space and time, and one naturally would rely (implicitly, at least) upon this fact were one
to define what one meant in saying the cloth were rent. For instance, one might define a cloth to
have a hole if one could thread a string through the cloth, tie the ends of the string together and
have the string touching disjoint components of the edge of the cloth.2 When thinking of spacetime,
though, one does not have the luxury of imagining it embedded in any physically meaningful way in
a larger space with respect to which one can try to define what one means by saying there is a hole.

One can think about holes in cloth in (at least) two ways: no cloth has been removed, but parts
of the cloth have simply been separated from each other (torn) for a length; a bit of the cloth has
actually been excised and removed. In the former case, all the points (bits) of the cloth are still
there but the topology has changed, whereas in the latter case there are actually points (bits) that
once were part of the cloth now missing from it. I wager that people usually conceive of singular
spacetimes in a way analogous to the latter idea when they think in a vague, intuitive way: there
are points missing from spacetime. For example, in thinking about the self-gravitational collapse
of a massive body, one might imagine the “point” in which all the matter in the body becomes

1By ‘spacetime’, I will always mean a smooth, 4-dimensional, connected, paracompact manifold endowed with a

fixed, smooth metric of Lorentz signature.
2More rigorously, this amounts to saying a 2-dimensional compact topological manifold has a hole if and only if it

has a boundary not homeomorphic to S1. Thus the torus does not have a hole, since it has no boundary; neither the

spherical shell with a small cap excised nor the Möbius strip has a hole, since the boundary of each is homeomorphic

to S1 (the spherical shell with a cap excised is homeomorphic to the planar disk); the finite cylinder has a hole, since

its boundary is homeomorphic to the disjoint union of S1 with itself (the finite cylinder is homeomorphic to a planar

annulus). I thank James Geddes for illuminating discussion on this question.
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eventually concentrated. In a normal collapse, the curvature of spacetime will in some sense become
unboundedly large as one approches this “point”, so, again loosely, one will not be able to define
the spacetime metric at that “point”—and now one sees why I have been enclosing ‘point’ in scare-
quotes, for spacetime comprises solely points of a manifold with a pseudo-Riemannian metric of
Lorentz signature defined thereat. The “point” to which all the matter collapsed is missing from
the spacetime.3

On a manifold endowed with a positive-definite Riemannian metric, one can give a precise char-
acterization, according quite well with our intuitions, of what it is for there to be missing points.
Turn the manifold into a pointwise-metric space (i.e., one possessing a true distance-function on
the space of ordered pairs of its points) via the usual construction: define the distance between any
two points to be the infimum of the lengths, with respect to the Riemannian metric, of all smooth
curves connecting them. The manifold has no missing points if and only if it is Cauchy complete
with respect to the constructed pointwise-metric. Intuitively speaking, if a sequence of points begins
to accumulate, there ought to be a place at which they actually do accumulate. If there are missing
points, one may take the Cauchy completion of the manifold in its guise as a pointwise-metric space
to fill in the gaps, as it were.

On a manifold with a pseudo-Riemannian metric of Lorentz signature, such as a spacetime in
general relativity, there is no natural way to construct a true pointwise-metric measuring the distance
between points of the manifold, so one cannot employ this technique to test whether a spacetime
has missing points. By the Hopf-Rinow-de Rham theorem, the manifold in the Riemannian case is
Cauchy complete with respect to the constructed pointwise-metric if and only if it is geodesically
complete with respect to the Riemannian metric.4 This naturally suggests that we define a spacetime
to have missing points if and only if it is geodesically incomplete with respect to the spacetime
pseudo-Riemannian metric. Now one faces a severe problem, which lies at the heart of the difficulty
in giving a precise and intuitively satisfying definition of singular structure as a point missing from
spacetime: there is no natural way to take a Cauchy-like completion of a spacetime manifold having
incomplete geodesics so as to give substance to the idea that there really “are” points that in some
sense ought to have been included in the spacetime in the first place.5 In the Riemannian case,
roughly speaking, one constructs the missing points by taking equivalence classes of incomplete
curves that get arbitrarily close to one another as measured by the constructed pointwise-metric. In
the pseudo-Riemannian case there is no natural way to measure how close two curves come to one
another, so, a fortiori, there is no natural way to define missing points as the equivalence classes of
incomplete curves that come arbitrarily close to each other.6

3More precisely, a point of a spacetime manifold ought to be considered a point of spacetime itself if and only if,

on the bundle of pseudo-Riemannian metrics over the manifold, the cross-section representing the spacetime’s metric

is well defined in the fiber over the point in question.
4 See Spivak (1979, ch. 9) for a precise statement and proof of the theorem, and for more information on the

constructed pointwise-metric and the Cauchy completion of a manifold endowed with a Riemannian metric.
5The scare-quotes now come from the fact that it is not clear in the slightest what sense may accrue to the

attachment of an existential quantifier to “points that are possibly spacetime points but in the event are not”. I touch

on this issue in §5. I will dispense with scare-quotes from hereon, the point having been made.
6Cauchy completeness of a Riemannian manifold with respect to the constructed distance-function happens also
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The usual tack taken at this point in the physics literature is simply to bracket the question
of missing points and define a spacetime to be singular if and only if it contains incomplete, inex-
tendible curves of a certain specified type, and the spacetime manifold itself satisfies a few collateral
conditions. The commonly accepted schema for fixing a rigorous definition of a singular spacetime,
then, is:7

A spacetime (M, gab) satisfying is singular if and only if there exists a curve γ

incomplete in the sense that .

Such a conception of singular structure actually has a lot to say for itself, as capturing the idea that
singular structure is somehow physically outré, even if one is not able to hook it up cleanly to an
idea of missing points. As Hawking and Ellis (1973, p. 258) put it with regard to one particular way
of filling in the blanks,

Timelike geodesic incompleteness has an immediate physical significance in that it presents
the possibility that there could be freely moving observers or particles whose histories
did not exist after (or before) a finite interval of proper time. This would appear to be
an even more objectionable feature than infinite curvature and so it seems appropriate
to regard such a space as singular.

The current paper has several concrete aims: to investigate particular ways that have been
proposed to fill in the blanks of the schematic definition with an eye to determining whether they
capture the spirit of the idea that an incomplete curve corresponds to singular structure; to examine
the relation between curvature pathology and singular structure so defined; to argue that the idea
of missing points ought not be central in thought about singular structure; and to argue that the
reasons most often given for condemning singular structure as unphysical do not withstand scrutiny.

to be equivalent to the following condition: every bounded (with respect to the constructed distance-function) subset

of the Riemannian manifold is relatively compact (Kobayashi and Nomizu 1963, p. 172). So far as I know, no one

has tried to parlay this equivalence into a definition of “missing points” in the pseudo-Riemannian case. Again,

since there is no distance-function in the pseudo-Riemannian case, there is no natural candidate for what ought to

count as bounded subsets of the manifold. A first stab might be: points are missing from the manifold if and only

if, for some p and q in the manifold, J+(p) ∩ J−(q) is not relatively compact, where J+(p) (J−(p)) is the causal

future (past) of the point p. If this could be made to work, it would have the great virtue of “localizing” the missing

point—when asked, “where is the point missing from?”, one could point to the salient J+(p) ∩ J−(q), and say,

“from that region.” The obvious problem with this candidate is that it fails to categorize Schwarzschild spacetime as

having a missing point, whereas one might have thought that Schwarzschild was the paradigm of a spacetime with a

missing point, viz., the “point” into which all the matter from a body undergoing self-gravitational collapse squeezes

itself. In fact, the first stab fails to categorize any globally hyperbolic spacetime as having missing points, since all

globally hyperbolic spacetimes by definition satisfy the proposed condition (Wald 1984, p. 209). Even though a fairly

obvious first candidate fails, it still might be interesting to explore whether one could propose a reasonable analogue

of “bounded subset” for the pseudo-Riemannian case and use this to define missing points. Of course, because of

the known examples of compact, geodesically incomplete spacetimes (cf., e.g., Misner 1963), one should expect that

any such characterization based on the relative compactness of bounded subsets would be bound to differ in what it

counts as singular from the traditional characterization in terms of geodesic completeness.
7See, for example, Hawking and Ellis (1973, pp. 256–61), Wald (1984, pp. 212–6), Clarke (1993, p. 10), and Joshi

(1993, pp. 161–2).

4



It also has one overarching, more nebulous aim: to try to give a sense of the philosophical riches
still waiting to be mined from thorough investigation of the foundations of general relativity—which
is to say, a sense of how little of this theory we even now comprehend, and how much we stand in
need of that comprehension if we wish to understand the world.

2 Curve Incompleteness

The path-breaking work of the mid-1960’s demonstrating the existence of singular structure in
generic solutions to the Einstein field equation invoked timelike or null geodesic incompleteness as
a sufficient condition for classifying a spacetime as singular,8 in so far as timelike and null geodesics
represent possible world-lines of particles and observers and, prima facie, it appears physically
suspect for an observer or a particle to be allowed to pop in or out of existence right in the middle
of spacetime, so to speak. There was, however, no consensus on what ought to count as a necessary
condition. In particular, workers at the time were unclear on the role played by curvature pathology
in singular structure. Hawking, for example, in his very early work, distinguished between the mere
incompleteness of the spacetime manifold (as characterized by the existence of incomplete geodesics)
and what he referred to as a “physical singularity” apparently meaning a spacetime region wherein, in
one of a number of technical senses, the magnitude of the curvature grows without bound: “Penrose
has shown that either a physical singularity must occur or space-time is incomplete if there is a
closed trapped surface. . . .”9 Context makes clear that Hawking relates the existence of a trapped
surface with the existence of pathology in the behavior of the curvature. It is worth remarking that,
based on a careful reading of Penrose (1965), to which Hawking here refers, it is not at all clear
that Penrose himself would have endorsed this statement of his result. In an apparent lightning-fast
sequence of changes of mind that strikingly illustrates the uncertain and fluid nature of the idea
of singular structure in the field at the time, in April, 1966, Hawking proposed the prediction of
singular structure (which, note, meant only the existence of incomplete timelike or null geodesics)
as a possible test of the validity of general relativity,10 whereas by February of the very next year
he concludes that the singularity theorems proved up to that point “probably” indicate not that
singular structure actually occurs in the universe but rather that general relativity breaks down in
the strong field regime!11

The field was ripe for a little sober reflection, happily provided by Geroch (1968b), who gave
the first extended discussion of the difficulty of framing a satisfactory definition of a singular space-

8Cf. Geroch (1966, 1967), Penrose (1965), and Hawking (1965, 1966a, 1966b, 1966c, 1966d, 1967).
9Hawking (1965, p. 689).

10Hawking (1966b, p. 511).
11Hawking (1967, p. 189). The dates referred to in the text (as opposed to those of the citations proper) are those on

which the journal recieved the papers for review, as indicated in the published versions. The second viewpoint seems

to represent Hawking’s settled opinion on the matter—cf. Hawking and Ellis (1973, §10.2) and Hawking and Penrose

(1996, p. 20). I do not take this oscillation of Hawking’s from position to position as an act worthy of derogation, far

from it. Rather, he seems to me to have been engaged in the practice of a good scientist: entertaining all the decent

possibilities presenting themselves so as to test them by use in his investigations, in order to see which bear fruit and

which do not.
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time.12 Geroch’s discussion begins in earnest with a Galilean dialogue, a form, as Earman (1995,
p. 27) notes, nicely suited for displaying the unsettled state of the topic.13 After concluding that
one can use neither the physical components of the Riemann curvature tensor nor any of the scalar
curvature-invariants to define precisely what one means by, and construct necessary and sufficient
conditions for, saying a spacetime contains regions wherein the curvature grows without bound in a
physically accessible manner,14 the discussants in the dialogue settle on simple geodesic incomplete-
ness as the criterion for singular structure, conceding that the definition is perhaps overly inclusive,
but better to brand 10 innocents than to allow one guilty man unmarked. The possible innocents
include spacetimes all of whose timelike and null geodesics are complete but that possess incomplete
spacelike geodesics (null and timelike complete and spacelike incomplete, for short). Spacelike in-
completeness (in the absence of the other two types of incompleteness) sets off no serious alarms,
or so thought commonly goes, for an incomplete spacelike geodesic seems to represent structure of
the spacetime not physically accessible to any observer in a direct way.15 Moreover, not only does
geodesic incompleteness lock up a few possible innocents but, as Geroch proceeds to show, it almost
certainly fails to nab a few clever guilty parties, for a spacetime can be geodesically complete and yet
possess an incomplete timelike curve of bounded total acceleration—that is to say, an inextendible
curve traversable by a rocket expending only a finite amount of fuel, along which an observer could
experience only a finite amount of proper time.

Because of these problems, null and timelike geodesic incompleteness continued to be used as a
sufficient condition for declaring a spacetime singular, but was (and still is) considered inadequate as
a definition.16 To analyze the structure of non-geodetic curves in the search for a necessary condition,
we require a method for characterizing their completeness. The following appears tempting at first
glance: an inextendible curve is incomplete just in case it has finite proper length. Even if one
puts aside for the moment the fact that every null curve has zero proper length, one still faces the
following problem with any approach based on proper time: every spacetime, including Minkowski

12Kundt (1963), Misner (1963) and Hawking (1967), among others, had already broached in a cursory manner

several of the topics Geroch discussed in the paper.
13Only Sagredo and Salviati discuss the issue, by Geroch’s report, with no word from Simplicio. I can speculate

only that the issue was too difficult for Simplicio’s limited capacities.
14The physical components of the Riemann tensor are its components relative to any pseudo-orthonormal tetrad;

roughly speaking, a scalar curvature-invariant is a scalar “function” of the metric, the Riemann tensor and its covariant

derivatives that is preserved under diffeomorphisms of the spacetime. See Ehlers and Kundt (1962) for details. I will

discuss in §3 why none of these suffice for constructing necessary conditions.
15See, e.g., Synge (1960, ch. I, §14, pp. 24–6) for a discussion of the physical content the measurement of spacelike

intervals in general relativity may possess. In a similar vein, one may also consult Geroch (1981). It would be of some

interest to investigate whether one could parlay discussions such as those two into arguments for the “physicality” of

incomplete spacelike geodesics.
16Hawking, in Hawking and Penrose (1996, p. 15), defines a singular spacetime as one which is timelike or null

geodesically incomplete, but I believe this is not meant as a serious attempt at a strict definition, merely an easy

criterion to work with in light of the fact that all known singularity theorems prove the existence of incomplete timelike

or null geodesics. It would be of interest, again, to investigate the question whether there exists a set of conditions that

“physically reasonable” spacetimes ought to satisfy, having as a consequence the existence of an incomplete spacelike

geodesic.
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space, has inextendible timelike curves of finite total proper length, viz., those of unbounded total
acceleration that go zooming off to infinity, so to speak, asymptotically approaching the speed of
light. Surely one does not want to classify Minkowski space as singular, and anyhow, if an observer
is able to reach infinity, as it were, even in a finite amount of time, the prevailing sentiment in the
physics community at large seems to be that such structure ought not qualify as singular.17 One
wants a method of winnowing such acceptably finite, inextendible curves from unacceptable ones.

Schmidt (1971) appears to have been the first to propose using so-called generalized affine pa-
rameters to define the completeness of general curves. Let M be an n-dimensional manifold with an

affine connection, γ(t) a curve through p = γ(0), and {
i

ξa(0)}i=1...n a basis for the tangent space at
p. One can now write γa(0), the vector tangent to γ at p, as a linear combination of the elements of
the chosen basis with coefficients γi(0):

γa(0) =
n∑

i=1

γi(0)
i

ξa(0)

If one parallel-transports the chosen basis along γ(t), one gets a similar expression at every point
on γ(t). The generalized affine parameter θ(t) of γ(t) associated with this basis is defined by:

θ(t) ≡
∫ t

0

(
n∑

i=1

(γi(t′))2
) 1

2

dt′

In effect, one treats the parallel-transported basis of vectors as though they were the orthonormal
basis of a Riemannian metric and then defines the “length” of γ(t) accordingly. The generalized
affine parameter of a curve does not depend on the basis chosen in one crucial respect: whether
or not the generalized affine parameter of the curve increases without bound. Furthermore, any
curve of unbounded proper length automatically has an unbounded generalized affine parameter,
but not vice-versa—any inextendible timelike curve of unbounded total acceleration and finite total
proper time in Minkowski space, for example, has an unbounded generalized affine parameter. A
spacetime in which every inextendible curve has an unbounded generalized affine parameter will be
referred to as b-complete.18 This sort of completeness promises to distinguish precisely what wanted
distinguishing, and works just as well for null as for timelike or spacelike curves. Thus, one has what
Earman (1995, p. 36) refers to as the “semioffical view”: a spacetime is said to be singular if and
only if it is b-incomplete.19 This definition is more general than geodesic completeness, in that it
implies, but is not implied by, the latter, as Geroch’s example demonstrates.

17I think this sentiment represents a hypocrisy on the part of the community, as I will discuss briefly just below

and in more detail in §6.
18‘b’ for ‘bundle’: with this construction one tacitly defines a natural, albeit basis-dependent, Riemannian metric

on the bundle of frames of the spacetime manifold to define completeness of curves.
19Strictly speaking, this is not the standardly accepted definition, since I have not mentioned anything about the

maximality of the spacetime in question, whether, that is, it can be embedded in (thought of as merely a part of) a

larger spacetime in such a way as to make previously incomplete, inextendible curves extendible. I will take up this

issue in §6.
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It is difficult to think of a more comprehensive criterion of completeness than b-completeness,
and I suspect its popularity arises from that fact,20 but that it sits comfortably with some of the
intuitions that drove the search for a definition of singular structure in the first place is not so clear on
reflection. That it counts some timelike curves of total finite proper time as complete (viz., some of
those of unbounded total acceleration) is perhaps its most unsettling feature, if one of the intuitions
driving the search for a definition of singular structure is the impropriety of having entities that can
exist for only a finite period of time. It is also a cumbersome and technically awkward criterion to
deploy in practice. In fact, perhaps the most damning fact about b-completeness is that, so far as
I know, it is never used in the statement or demonstration of any result of physical interest. All
the singularity theorems, for instance, demonstrate only the existence of null or timelike geodesics,
and are formulated only in those terms. For the moment, I will waive these qualms and accept
b-incompleteness as the definition of singular structure—when I refer to ‘incomplete curves’, unless
I explicitly state otherwise I will mean b-incomplete, inextendible curves. I will return to some of
these questions below in §6.

3 Explosive Curvature Growth along Incomplete Curves

While curve incompleteness seems to capture one aspect of the intuitive picture of singular structure,
it completely ignores a different aspect, curvature pathology. One may measure the growth and
diminution of the magnitude of spacetime curvature in various ways, but it turns out that the
unbounded growth of curvature according to any of these measures is neither necessary nor sufficient
for the existence of incomplete, inextendible curves. To get an idea of the independence of the
existence of incomplete curves from the presence of curvature pathology, consider the striking ease
with which examples of a spacetime with everywhere vanishing Riemann tensor and incomplete
geodesics can be constructed: excise from 2-dimensional Minkoswki space a closed set in the shape
of Ingrid Bergman. This example may strike one as cheating, since one has only to restore the excised
set to restore geodesic completeness (or, in fancier terms, to restore completeness one has only to
isometrically embed our mutilated spacetime by the natural inclusion map back into Minkowski
spacetime). So a slightly more sophisticated example: for some 0 < φ0 < π

2 , excise from Minkowski
space, represented in polar coordinates, the wedge consisting of all points with azimuthal coordinate
0 < φ < φ0; identify the corresponding points on the hyperplanes φ = 0 and φ = φ0. By a suitable
redefinition of the coordinate neighborhoods of the points on φ = 0, the resulting space can be given
the manifold structure of R4, and the Minkowski metric can be smoothly extended to the points at
φ = 0, r > 0. It cannot be smoothly extended to the points r = 0, however, and so those points

20Schmidt (1971) claims that b-completeness is for pseudo-Riemannian metrics the “natural” generalization of

completeness with respect to a Riemannian metric, in so far as it is equivalent to completeness with respect to a

Riemannian metric when used on a Riemannian manifold: geodesic completeness with respect to a Riemannian metric

is logically equivalent to b-completeness as defined by its affine connection. I do not know what ‘natural’ signifies

in this context, because the criterion in the Riemannian case may be formulated without the use of components of

geometric objects in an arbitrary coordinate system, but Schmidt’s method in the pseudo-Riemannian case cannot be

formulated without it.
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must be excised from the spacetime. The Riemann tensor of this spacetime vanishes everywhere,
but any geodesic that previously passed through the line r = 0 will now be incomplete; there is,
moreover, no other spacetime into which this spacetime can be embedded and in which the metric
can be smoothly extended.21 This sort of structure is known as a ‘conical singularity’, since the
singular structure has many of the same characteristics as that accruing to the two-dimensional real
plane with a wedge removed and the edges pasted together, so as to form a cone.

Perhaps this example will also strike the reader as too artificial, too contrived, to have any
physical relevance.22 I believe that on a matter such as the global topological structure of space-
time, about which we have so very little hard data and so little prospect of gathering any for the
foreseeable future, one should be wary of ignoring certain sorts of examples on the ground that
they appear artificial. That judgment has its roots in the schooling our intuitions have received
in our contemplation of well worked out examples of physical theories, which by and large tend to
include mathematical structures that strike us as “simple” and “natural”. This ought not escape our
notice: most such examples of physical theories are demonstrably false (Newtonian mechanics and
classical Maxwell theory) or have at the moment insuperable problems of interpretation (quantum
mechanics) or experimental accessibility (general relativity). We should beware of relying too much
on intutions trained in such schools—especially when one also recalls how much of our contem-
plation of those theories involves models of systems with physically unrealistic perfect symmetries
and vaguely jusified approximations, simplifications and idealizations. It may turn out, for all we
know, that spacetime instantiates just such topological structure as R4 with a closed set excised
(assuming, for the moment, that we can even make sense in a physically substantive and cogent
way of the idea of the global topological structure of spacetime). Perhaps the most important point
to notice, though, is that “R4 with certain closed sets excised” is a misleading description of such
a manifold. It suggests that we built that manifold from a more fundamental one, viz., R4. But
that manifold simply is a manifold all on its own, with no intrinsic reference to R4, or indeed any
other manifold. Because of certain facts about how we practice mathematics, the most convenient
presentation of that manifold happens to be “R4 with certain closed sets excised”. One could as
legitimately present R4 as that manifold glued together with certain other manifolds-with-boundary.
There are no good grounds I can see for suspecting that the universe heeds our preferred methods
for organizing mathematical structures.

In the event, I am happy to report that I do not need to rely on these constructions and consider-
ations to demonstrate, for those unmoved by my sermon, that curvature pathology has no necessary
connection to the existence of incomplete curves. Examples more acceptable to everyone present
themselves. The two most commonly used methods of measuring the growth of curvature intensity
are the behavior of scalar curvature-invariants along some particular curve through the region of

21This example is from Wald (1984, p. 214). See Ellis and Schmidt (1977, pp. 921–3) for further discussion of this

sort of singular structure.
22Ellis and Schmidt (1977, p. 932) exemplify this sort of simplicity-chauvinism: “We know lots of examples of

[flat singular spacetimes], all constructed by cutting and gluing together decent space-times; and because of this

construction, we know that these examples are not physically relevant.” See §5 for further remarks on this issue.
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interest, and the behavior of the physical components of the Riemann tensor as measured by a frame
parallel-propagated along some particular curve through the region of interest.23 (If any of the phys-
ical components grow without bound in such a frame on a particular curve, or oscillate endlessly
without settling down to a fixed, limiting value, then they will do so in all such frame-fields on that
curve). In accordance with customary usage, I will refer to the existence of an incomplete curve
along which the physical components of the Riemann tensor in a parallel-propagated frame do not
approach a finite, limiting value as p.p.-singular structure, and I will refer to the same of some scalar
curvature-invariant along an incomplete curve as s.p.-singular structure (‘s.p.’ for ‘scalar polyno-
mial’). Also in accord with custom, I will call the existence of an incomplete curve along which the
physical components of the Riemann tensor in parallel-propagated frames and all its scalar invariants
converge to finite values quasi-regular singular structure.24 Note that curvature pathology on these
definitions occurs not only if some feature of the curvature grows without bound along an incomplete
curve, but also if it oscillates indefinitely (even if only within finite bounds), never settling down to
a limiting value.

I believe there are two primary motivations for using a parallel-propagated frame in the terms of
which to express the components of the Riemann tensor. First, one naturally expects the presence
of curvature pathology to show itself, at the least, in misbehavior of the tidal forces an observer
would experience along his or her worldline.25 The intensity of tidal force, as measured in any
frame, is directly proportional to the components of the Riemann tensor in that frame, as one can
see by inspection of the equation of geodesic deviation. In a back-of-the-envelope sort of way, the
unbounded growth of the components of the Riemann tensor in a parallel-propagated frame would
seem to indicate that an observer traversing that curve would experience unbounded tidal forces
as well. Second, Clarke (1973) demonstrated that an incomplete curve in a singular spacetime
has a local extension if and only if the relevant incomplete curve constitutes quasi-regular singular
structure. A local extension is an isometric embedding of an open subset containing the incomplete
curve from the spacetime manifold into another spacetime in which the (image of the) curve can be
extended. Local extensions can exist even when the singular spacetime as a whole is not embeddable
as a proper open submanifold into a larger spacetime in which the (images of the) incomplete curves
can be extended.26 Many take the existence of local extensions to indicate that nothing local, such
as curvature pathology (narrowly construed), goes wrong in quasi-regular singular spacetime, but
rather some global structure impedes the extension of spacetime.

23A frame is a pseudo-orthonormal complete set of basis vectors for the tangent plane over a point of a manifold.

A frame-field is an assignment of frames to points in some specified region, e.g., along a curve or in an open set.
24Quasi-regular singular structure is perhaps the most psychologically disturbing, since it can be absolutely inob-

servable until one runs into it, so to speak, creating a hair-raising hazard for spacetime navigation.
25Tidal force is generated by the differential in intensity of the gravitational field, so to speak, at neighboring points

of spacetime. For example, when I stand, my head is farther from the center of the Earth than my feet, so it feels a

(practically negligible) smaller pull downward than my feet, inducing (practically negligible) stress on my body. For

a graphic illustration of the effects of tidal forces on observers in strong gravitational fields, see the description, in

Misner, Thorne, and Wheeler (1973, §32.6), of what would happen to a person standing on the surface of a collapsing

star—not for the faint of heart or weak of stomach.
26Ellis and Schmidt (1977, pp. 928–9).
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The motivation for using the behavior of scalar curvature-invariants as a criterion for the existence
of curvature pathology is somewhat more straightforward. First, all the points made with regard to
the components of the Riemann tensor in parallel-propagated frames hold as well for scalar invariants.
Even better, though, a scalar curvature-invariant at a point does not depend on what curve through
that point or what frame on a curve through that point one uses to probe the point: it is, as the
name suggests, invariant. Unbounded growth of a scalar curvature-invariant, moreover, is logically
equivalent to the unbounded growth of the components of the Riemann tensor as measured in every
frame-field along the curve, parallel-propagated or not. S.p.-singular structure, then, implies, but
is not implied by, p.p.-singular structure. In fact, all scalar curvature-invariants can be zero and
yet the Riemann tensor not be equal to zero, as in certain plane gravitational wave spacetimes.27

Spacetimes with colliding, thick gravitational waves provide examples of p.p.-singular structure in
regions where all scalar curvature-invariants are well behaved; more strikingly, spacetimes containing
colliding sandwich plane gravitational waves can exhibit p.p.-singular structure and yet all scalar
curvature-invariants remain identically zero.28 Finally, there are spacetimes containing colliding
plane gravitational wave having incomplete curves in regions of a spacetime in which the Riemann
tensor itself vanishes identically. These, the claim goes, provide examples of the existence of quasi-
regular singular structure less artificial than that of the conical singularity above.29 Thus the
existence of incomplete curves does not ipso facto necessitate any sort of curvature pathology as
conventionally quantified. That the misbehavior of the physical components of the Riemann tensor
in a parallel-propagated frame or of a scalar curvature-invariant in the limit as one traverses a
curve does not suffice to ensure that the curve be b-incomplete follows from examples of spacetimes
produced by Sussmann (1988) in which scalar curvature-invariants diverge asymptotically along
complete timelike and null geodesics.

Though there is no necessary connection of any sort between the existence of incomplete curves
and curvature pathology as quantified in the standard ways sketched above, Ellis and Schmidt (1977)
used b-completeness as a criterion to construct a classification of singular spacetimes according to
the behavior of the curvature along the incomplete curves, as quantified in those standard ways.
The classification has a binary, branching structure: first, an incomplete curve is said to constitute
essential singular structure if there is no larger spacetime into which the singular spacetime can be
embedded as a proper open submanifold, in which the (image of the) incomplete curve is extendible;
otherwise it is said to be inessential. Essential singular structure is then sub-divided into quasi-
regular and p.p.-singular structure; finally, p.p.-singular structure is subdivided into s.p.-singular

27Penrose (1960, p. 189).
28Konkowski and Helliwell (1992).
29There is something odd about this claim—though it is accepted without question in the physics and in the philoso-

phy literature—especially in comparison with the contrary claim concerning flat spacetimes with conical singularities:

no observations we have made or can make in the foreseeable future rule out the possibility of the existence of conical

singularities in the actual spacetime in which we reside, but innumerable observations we have already made demon-

strate with a hard finality that our spacetime cannot contain radiation of any sort in a form approximating to that

of plane-waves, not even in the most extravagant and inaccurate of approximations. Our spacetime is too lumpy.

Oughtn’t this make spacetimes containing plane-waves “more unphysical” than those containing conical singularities?
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and non-s.p.-singular structure. The thought behind the putative importance of the classification
scheme seems to be as follows. Very little is known about singular structure at the present time, in
part due to the difficulty of the mathematics involved in analyzing singular structure rigorously and
in part due to the vanishingly small amount of experimental access we can get to singular structure
in the foreseeable future. Nevertheless, the singularity theorems indicate that the spacetime we
actually inhabit is singular, so it behooves us to try to understand such structure as much as
possible. Classifying singular structure appears to be a way for us to organize and begin to get a
grip on such a daunting task, and the scheme proposed by Ellis and Schmidt does seem to have
many desirable features, such as clarity and simplicity. Earman (1995, pp. 37, 43–4) goes so far
as to proclaim one of the most seminal virtues of the definition of singular structure in terms of
b-completeness that it allows for a classification of this sort.

To be appropriate for such a task, I submit, the mathematically different species of singular
structure ought to exhibit sorts of physical behavior prima facie different from each other in a
physically significant way, as near as one can judge that sort of thing with the crude tools at our
disposal; otherwise it will be difficult to see the physical relevance of this so far purely mathematical
classification. As already noted, in a spacetime with s.p.-singular structure, the Riemann tensor
components will behave badly as expressed in any frame-field along the relevant incomplete curve,
and, moreover, will do so in general along any curve close enough, as it were, to the incomplete
curve.30 The tidal forces a body will suffer along its worldline are naturally measured in a spacelike
3-frame fixed rigidly in the body, orthogonal to the timelike unit vector tangent to the curve, itself
used to fill out the full 4-frame. Based on what has already been said, one might expect that the
state of motion of the observer along the curve, whether the observer is slowing down and speeding
up somewhat, or spinning on his or her axis, would have no effect on how the observer experiences
the curvature pathology: when a scalar curvature-invariant grows without bound along a curve,
after all, the tidal forces as measured in any frame along the curve also will grow without bound.
Interestingly enough, however, the state of motion of the observer as it traverses an incomplete curve,
in the person of so-called inertial effects, can be decisive in determining the physical response of an
object to the curvature pathology. Whether the object is spinning on its axis or not, for example,
or accelerating slightly in the direction of motion, may determine whether the object gets crushed
to zero volume along an s.p.-singular curve or whether it survives (roughly) intact all the way along
the curve.31

The effect of the observer’s state of motion on his or her experience of tidal forces can be even
more pronounced in the case of p.p.-singular structure that is not s.p.-singular, which is precisely
the existence of an incomplete curve along which there is a frame-field (necessarily not parallel-

30More precisely, in general there will exist an open neighborhood of the incomplete curve such that every curve

completely contained in the open neighborhood has Riemann components that are as badly-behaved as one likes in all

frames along the curve. The ‘in general’ hedges against the case where the scalar curvature-invariant oscillates wildly

along the incomplete curve; in this case, it may be possible for nearby curves to weave cleverly around the incomplete

curve in such a way as to avoid the peaks of oscillation, and so have well behaved Riemann tensor components. No

hard results are known either way in such cases.
31Ellis and Schmidt (1977, p. 944–7).
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propagated) relative to which the components of the Riemann tensor approach definite, finite limiting
values along the curve.32 In such a case, the frame-field in which the physical components of the
Riemann tensor stably approach a limit is related to any parallel-propagated frame-field by a Lorentz
transformation that, in an appropriate sense, behaves pathologically in the limit along the curve.
For a non-geodetic curve, the proper mode of transport along a curve of a frame rigidly fixed in
the body of an object traversing that curve is not parallel-propagation but Fermi-transport.33 A
Fermi-transported frame is related to a parallel-propagated frame by a continuously varying Lorentz
transform. It can happen, therefore, that an observer cruising along a p.p.-singular curve that is not
s.p.-singular would experience unbounded tidal forces and so be torn apart while another observer,
in a certain technical sense approaching the same limiting point as the first observer, accelerating
and decelerating in just the proper way, would experience perfectly well behaved tidal force, though
he would approach as near as one likes to the other poor fellow in the midst of being ripped to shreds.
Again, certain gravitational plane wave spacetimes provide good examples of this phenomenon: an
observer travelling along the incomplete timelike geodesic constituting the singular structure would
experience unbounded tidal acceleration, whereas any observer travelling arbitrarily close by would
not.34

Things can get stranger still. An incomplete geodesic contained entirely within a compact subset
of a spacetime, with accumulation point p, satisfying a certain genericity condition, necessarily
constitutes p.p.-singular structure, so that an observer freely falling along such a curve would be
torn apart by unbounded tidal forces as he or she approaches p; it can easily be arranged in such
circumstances, though, that a separate observer, who actually travels through p, will experience
perfectly well behaved tidal forces.35 Here we have an example of an observer being ripped apart by
unbounded tidal forces right in the middle of spacetime, as it were, while other observers cruising
peacefully by could reach out to touch him or her in solace in the final throes of agony. This
discussion points to a startling conclusion: curvature pathology, as standardly quantified, is not
in any physical sense a well defined property of a region of spacetime simpliciter ; rather, whether
or not phenomena both physically pathological itself and attributable directly to pathology in the
behavior of the Riemann tensor manifest themselves may sensitively depend on the sorts of devices,
including their states of motion, with which one probes the region of interest. These matters are far
more subtle and complicated than many, including Earman (1995), would lead one to believe.

Ellis and Schmidt (1977, p. 918) say, vis-à-vis their classificatory scheme (the canonical one
outlined above):

It is not claimed here that the singularities discussed are likely to occur in physically
realistic situations, but rather that only when we understand which singularities can
occur (a) in general space-times, and (b) in space-times with the field equations satisfied
for particular matter content, can we hope to discuss fruitfully their occurrence, equations

32Ellis and Schmidt (1977, p. 939).
33Hawking and Ellis (1973, pp. 80–1).
34Ellis and Schmidt (1977, p. 937).
35Hawking and Ellis (1973, pp. 290–2).
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of motion, and so on.

I do not mean to argue with the motivation for their classificatory scheme, but they beg a serious
question with their ‘which’ in the phrase “when we understand which singularities can occur”:
clearly the correlative demonstratives of this relative interrogative refer to the different species of
their classification, but why ought one think that their classification picks out physically relevant
differences among all possible singular structures? This question becomes more poignant when one
reflects on the fact that curvature pathologies provide the differentiæ for their speciation, and, as
I have attempted to show, curvature pathology as customarily quantified is not a straightforward
concept with clear and unambiguous physical content. I believe there is far more work to be done
straightening out the physical consequences of the existence of singular structure. The mathematics
has outrun the physics, but still masquerades as such.

Taub (1979) is the only person I know who shares in print36 my qualms about the physical
significance of the canonical classification scheme:

I have difficulty understanding the usefulness of the classification scheme of singularities
proposed. . . by Ellis and Schmidt. . . . I think that the important work on singularities
now being done would become much more important if it turned toward learning how to
deal with the physics associated with singularities. . .

He appears to be saying that one ought to concentrate first on trying to work out the behavior asso-
ciated with various singular structures we are more or less familiar with in a clear and unambiguous
way, and only then should one feel confident enough to begin classifying singular structures, based
on that clear physical knowledge, not on a purely mathematical scheme that becomes murky as soon
as one tries to think about it in physical terms. I heartily concur.37

4 Missing Points

We now have a precise definition of a singular spacetime, and some ideas about what such structure
implies and does not imply about the curvature of spacetime, but, as Earman notes, “it is not
true to an idea that is arguably a touchstone of singularities in relativistic spacetimes: spacetime
singularities correspond to missing points.”38 For those who would argue missing points ought to
be such a touchstone, Earman sketches what seems to me the most promising position, that, though
the idea of missing points and that of curve incompleteness lead to prima facie different concepts of

36Geroch has told me in conversation that he does not see the use of the classification scheme either, on the grounds

that he cannot see what physical content it has.
37A physically unambiguous sense of curvature pathology occurs in, e.g., the FRWL (Friedmann-Roberston-Walker-

Lemâıtre) metrics, wherein physical quantities such as the mass-density of ponderable matter grow without bound

along incomplete curves and thus scalar curvature-invariants correlatively grow without bound as well. This sort of

idea is developed nicely in a not very well known paper (to judge by its citation record) by Thorpe (1977). I think it

would be of interest to see whether a classification scheme based on some of Thorpe’s ideas could be constructed and

compared to the canonical classification.
38Earman (1995, p. 40).
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singular structure, they are extensionally equivalent in all physically reasonable singular spacetimes,
and so the two concepts are for all practical purposes in agreement.39 I will argue with this: missing
points ought not be a touchstone of discussion of singular structure in relativistic spacetimes.

Missing points, could they be defined, would correspond to a boundary for a singular spacetime—
actual points of an extended spacetime at which incomplete curves would terminate.40 My argument
therefore will alternate between speaking of missing points and speaking of boundary points, with no
difference of sense intended. In many cases of physical interest, such as the FRWL and Schwarzschild
metrics, one can attach boundary points by hand, so to speak, by visual inspection of the metric
expressed in an appropriate global coordinate system, though different coordinate systems can lead
to different topological structure for the boundary points. If one is to have a general notion of
missing points, corresponding to the existence of incomplete curves, determined by nothing more
than the metric structure of spacetime, clearly what is wanted is a method of attaching boundary
points that does not depend on the choice of coordinate system, and which, moreover, can be used
for any singular spacetime, not just the ones with ‘simple’ metric structure and global topology.

Before I begin examining the primary attempts to define boundary points for singular space-
times,41 it is well to note two oddities of the situation. In the case of a manifold with a Riemannian
metric, Cauchy completion provides a well defined notion of missing points, and, by the Hopf-Rinow
theorem, no points are missing from the manifold if and only if all geodesics of the Riemannian
metric are complete (see footnote 4). We have already seen that any definition of missing points
for a spacetime may—perhaps ought—not satisfy this condition: a spacetime can be geodesically
complete yet still be b-incomplete, as Geroch’s example illustrates. This already suggests that,
even were one able to come up with a satisfactory definition of missing points in the context of
Lorentzian metrics, it may not be extensionally equivalent to the existence of incomplete curves of
the physically relevant type. The second, and more striking, circumstance strengthens this suspicion:
compact spacetimes can contain incomplete, inextendible geodesics, as shown by a simple example
due to Misner (1963). In a sense that can be made precise, compact sets, from a topological point of
view, “contain every point they could possibly be expected to contain”,42 one consequence of which
is that a compact manifold cannot be embedded as an open submanifold of any other manifold, a
necessary pre-requisite for attaching a boundary to a singular spacetime—a manifold-with-boundary

39Earman (1995, p. 42). Earman continues on to say that even were one to grant this claim, the concept of singular

structure as based on the idea of missing points is still conceptually distinct from that based on incomplete curves,

and deserves in its own right to be examined. In reading the rest of the book one wishes that Earman had sketched a

little more what he had in mind here. In particular, in later chapters, where Earman maps out issues and problems

associated with the existence of singular structure, he never clarifies which conception of singular structure he is

working with, and how opting for one or the other of the two conceptions would alter the character of the issue or

problem at hand.
40Strictly speaking, such a space would not be a manifold in the usual sense of the term, but a manifold with

boundary. See Spivak (1979) for a discussion of manifolds with boundary.
41I will not consider in this paper the ‘ideal-point’ boundary construction of Geroch, Kronheimer, and Penrose

(1972), as it requires the singular spacetime to be past- and future-distinguishing, a fairly strong causality condition.

I intend to sidestep all questions about the physical plausibility or necessity of such conditions.
42See Geroch (1985, §30) for a discussion of this precise sense.
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minus its boundary is embeddable by the identity map as an open submanifold into itself, and, in
the case when the manifold-with-boundary has a (pseudo-)Riemannian metric, the embedding can
be made an isometry from the manifold cum metric on the full manifold to the interior of that
manifold endowed with the natural restriction of the full metric. We ought not expect then that any
definition of a boundary for singular spacetimes will cover every possible kind of singular structure,
unless we are willing to swallow outré topological structure.43

Schmidt (1971) produced the most well known boundary construction for singular spacetimes,
the so-called b-boundary based on the b-completeness criterion. An affine connection on a manifold
allows one to define in a natural way a family of Riemannian metrics on the frame bundle over that
manifold equivalent in the sense that they yield the same topology for the bundle-manifold, the
natural topology of the frame bundle. It follows that the bundle-manifold is Cauchy complete with
respect to one of these metrics if and only if it is so with respect to all. Schmidt showed, moreover,
that the bundle-manifold is Cauchy complete in this sense if and only if the spacetime manifold is
itself b-complete. To complete a singular spacetime in this scheme, then, one lifts all the incomplete
curves from the spacetime manifold to the frame bundle, takes the Cauchy completion of the frame
bundle with respect to one of the family of natural, topological, Riemannian metrics, and “projects
down” the constructed boundary from the frame bundle to form a boundary for spacetime.

The relativity community at first embraced Schmidt’s contruction with enthusiasm, to judge by
the remarks in chapter 8 of Hawking and Ellis’s canonical work The Large Scale Structure of Space-
Time. Shortly thereafter, however, Bosshard and Johnson separately showed that the b-boundary
had undesirable properties in the most physically relevant spacetimes known, the FRWL spacetimes,
which to a quite high degree of approximation accurately model the large scale structure of the
actual universe, and the Schwarzschild spacetimes, which represent the neighborhood of spherically
symmetric isolated bodies, such as stars.44 For closed FRWL spacetimes, the b-boundary consists
of a single point (the same for the big bang as for the big crunch) that is not Hausdorff-separated
from any point in the interior of the spacetime. Not only does one reach the same point, then, by
travelling either forward or backward in time, but that point is, in a certain sense, arbitrarily near

43As an aside, this discussion highlights the fact that the interplay between metric and topological structure in

the case of manifolds endowed with pseudo-Riemannian metrics is a far more delicate matter than it is, in general,

acknowledged to be, and, in any event, far more delicate than in the case of a Riemannian manifold. This point

does not seem to command the attention I think it ought to, in the philosophical as well as the physical literature;

indeed, the matter often seems to be handled with a surprisingly cavalier attitude. It is not uncommon, for example,

for a derivation of the Schwarzschild solution to yield, as the solution, the standard Schwarzschild coordinates, after

which the deriver, almost always without comment, takes the topology of the spacetime to be R2 × S2 as a matter

of course. The same often happens with derivations of the FRWL spacetimes as well. Of course, a presentation of

the metric in a particular coordinate-system does not determine the global topological structure of the manifold. It

determines only local geometry. It makes as much (or as little) sense to take the topology of a spacetime whose metric

can be represented in the Schwarzschild coordinates to be R4 as it does to take it to be R2 × S2. Compare this

state of affairs with that holding for a Riemannian manifold. The induced pointwise-metric (distance function) on

the manifold defines a natural topology on the manifold in the standard way: one demands that the family of open

balls of all radii centered on all points form a sub-basis for a topology. Conversely, a topological manifold selects a

preferred family of Riemannian metrics one may impose on it, those that yield the already given topology.
44Cf. Bosshard (1976), Johnson (1977), Bosshard (1979) and Johnson (1979).
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every single spacetime event! Similarly, the b-boundary of a Schwarzschild spacetime consists of a
single point not Hausdorff-separated from any interior point of the spacetime. This certainly will
not do for the advocates of missing points.45

A second (albeit temporally prior) method of constructing a boundary for singular spacetimes
due to Geroch (1968a) fares much better with physically relevant spacetimes.46 In this construc-
tion, the so-called g-boundary, geodesic incompleteness rather than b-incompleteness defines singular
structure, and one defines a boundary point to be an equivalence class of incomplete geodesics un-
der the equivalence relation ‘approach arbitrarily close to each other’ (in a certain technical sense).
The set of boundary points can be given a topology and, in many cases of physical interest, can
even be given a differentiable and metric structure, so that one can locally analyze the structure
of spacetime at a ‘singularity’ rather than mess around with troublesome limits along incomplete
curves.47 The g-boundary construction, moreover, yields the boundaries one might have expected
on physical grounds in spacetimes of particular physical interest: the g-boundary of a Schwarzschild
spacetime is a spacelike 3-surface, topologically S2×R, and that of a closed FRWL spacetime is the
disjoint union of two spacelike S3’s. Pathological topology rears its head here as well, though, in the
case of Taub-NUT spacetime:48 the g-boundary of this spacetime contains a point that again is not
Hausdorff-separated from any point in the interior of the spacetime.

The advocate of missing points who wants to hold on to the g-boundary may at this point retort
that Taub-NUT spacetime hardly constitutes a physically relevant spacetime for other reasons,
namely that it violates strong causality, which is to say that it contains causal curves that come
arbitrarily close to intersecting themselves. While I do not think this reply carries much weight,49

I have a better example at hand. Geroch, Can-bin, and Wald (1982) construct a geodesically
incomplete spacetime with no causal pathology for which a very large class of boundary constructions,
including the b- and the g-boundary, will yield pathological topology in the completed spacetime.
The conditions that a boundary construction must satisfy to fall prey to this example are quite
weak: each incomplete geodesic of a singular spacetime must terminate at some boundary point;

45The reactions to these problems vary widely. Clarke (1993), for instance, still embraces the b-boundary contruc-

tion, and defines a singularity to be a point on the b-boundary of a singular spacetime (§3.4). He barely mentions

these problems, noting only in passing that the topological structure of the singular spacetime with boundary can be

“very strange,”(p. 40) which I do not think qualifies as an adequate address of the issue. Wald (1984), on the other

hand, does not like the b-boundary construction precisely because of these problems (cf. pp. 213–4), and Joshi (1993)

does not even mention the possibility of attaching boundaries to singular spacetimes, speaking only of incomplete

curves.
46Hawking (1966c) apparently proposed a similar construction, but, as the essay was never published (I learned of

it from the bibliography of Hawking and Ellis (1973)), I have not been able to get a hold of it for examination.
47In certain contrived examples, there is an ambiguity in choice of topology for the g-boundary, but I will waive

this concern for the sake of argument. I have bigger fish to fry.

If one suspects that this use of ‘contrived’ represents a hypocrisy now on my part—well, it may and it mayn’t.

To quote Geach quoting Whitman, “Do I contradict myself? Very well, I contradict myself. I am large, I contain

multitudes.”
48Cf. Hawking and Ellis (1973, §5.3) for a thorough account of Taub-NUT spacetime.
49Earman (1995, chs. 6–7) explains better than I could why a violation of strong causality simpliciter does not

constitute an argument for the unphysicality of a spacetime.
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and, in a certain technical sense, the boundary points corresponding to incomplete geodesics that
are ‘close together’ must also be ‘close together’. The advocate of missing points may point out that
the example appears artificial and contrived, with closed sets excised here and conformal factors
plastered on there, and in short has no physical relevance. I would reply with the lesson of my
sermon from §3, and a remark that Geroch, Can-bin, and Wald (1982, p. 435) make: “The purpose
of [a boundary] construction, after all, is merely to clarify the discussion of various physical issues
involving singular space-times: general relativity as it stands is fully viable with no precise notion of
‘singular points.’ ” When we contemplate potential phenomena that we have little or no observational
access to, I submit that the standards for what can count as a physical account of a situation ought
to be priggishly severe, if we are not unwittingly to degenerate into pure mathematical discourse.50

A boundary-construction that yields topological pathology, and contains no precise criteria for what
ought to count as a ‘physically relevant’ spacetime, does nothing to clarify discussion of the physical
issues involved in analyzing singular spacetimes.

The abstract-boundary construction, or a-boundary, proposed by Scott and Szekeres (1994) ap-
pears at first glance to have the most promise for those wanting a natural, workable definition of
missing points for singular spacetimes.51 It also nicely exemplifies a feature of all missing point
constructions I know of or can easily imagine, their dependence on a prior characterization of in-
complete curves. For these two reasons, I will consider it in a little more detail than the previous
two. An envelopment of a manifold M is an ordered pair (N, φ) consisting of a manifold N and
an embedding φ into N of M as a proper open submanifold of the same dimension.52 Scott and
Szekeres propose that singular structure always arises by the deletion of points from an envelopment
of a singular manifold. Given an envelopment (N, φ) of M, a subset of its topological boundary in N

will be called a boundary set. Now, as it clearly is possible to envelop a given manifold in many ways
(if the manifold has any envelopment at all), one does not want to consider merely boundary sets
of manifolds under particular envelopments, but rather equivalence classes of boundary sets under
some appropriate equivalence relation. To this end, Scott and Szekeres propose the following:

Definition 4.1 A boundary set B of M in an envelopment (N, φ) is said to cover the boundary set
B′ of M in an envelopment (N′, φ′) if for every open neighborhood U ′ in N′ of B′ there exists an
open neighborhood U in N of B such that

φ ◦ φ′−1[U ′ ∩ φ′[M]] ⊂ U.

A boundary set B may cover another boundary set B′ while B′ does not cover B. One easily sees,
however, that defining B and B′ to be equivalent if they mutually cover each other does in fact

50Geroch stressed this point to me in a conversation in which he also dismissed the adequacy of his own g-boundary

construction merely because it gave unphysical results in the admittedly contrived (!) example of Geroch, Can-bin,

and Wald (1982). It gives very nice results in almost all other known types of examples.
51Whether the a-boundary construction satisfies the conditions of Geroch, Can-bin, and Wald (1982), and so

necessarily leads to pathological topology for certain spacetimes, is not clear, for as of yet Scott and Szekeres have

not defined a topology on the relevant entities of their construction. From the structure of the construction, I suspect

that any topology one could more or less naturally define for it would satisfy Geroch, Can-bin, and Wald’s conditions.
52When it can cause no confusion, I will often identify M with its image under the envelopment mapping.
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yield an equivalence relation; the equivalence class of the boundary set B under this relation will
be written ‘[B]’ and called an abstract boundary set. An equivalence class that contains a singleton
as a representative member will be called an abstract boundary point. The collection of all abstract
boundary points is the abstract or a-boundary, written ‘B[M]’.

Although B[M] by itself is defined without reference to any particular geometrical structure on
M, such as a pseudo-Riemannian metric or an affine connection, which Scott and Szekeres take to
be one of its cardinal virtues, to define singular structure they must select a class of curves C on M

satisfying what they call the bounded-parameter property: roughly speaking, the curves in C must
cover the manifold and must be such that the parameter along any of the curves grows without
bound if and only if it grows without bound along every “nice” reparametrization of the curve. The
class of geodesics on a manifold with affine connection and the class of C1 curves parametrized by
generalized affine parameter on a manifold with affine connection provide two examples of classes
of curves satisfying the bounded-parameter property. The idea is that curves in C will be used to
probe the boundary to distinguish points ‘at infinity’ from points that can be reached in a finite
parameter interval and hence are candidate singular points. The details of the construction and
definitions hereon out become quite complicated, so I will sketch only the most salient points.

First, for a candidate singular spacetime M, Scott and Szekeres wish to remove from consid-
eration all abstract boundary points that have a representative singleton boundary point in some
envelopment through which, in a certain technical sense, the spacetime metric can be smoothly
extended. In this case, the thought is, the original spacetime simply had not been made as ‘large’
as it reasonably could have. Such points will be called regular, and need not apply as potential
singular points. Next, one fixes the class of curves C, and defines the C-boundary to be the class
of a-boundary points that have, in some envelopment, a singleton representative that is the limit
point of a curve in C; such points are also referred to as approachable. All other a-boundary points
are unapproachable. It is straightforward to show that the property of being approachable or un-
approachable is invariant under the defining a-boundary equivalence relation, but one must keep in
mind that it depends entirely on the class C chosen. Given an envelopment N of M, a non-regular
boundary-point that is not the limit point of any curve of bounded parameter in C will be called a
point at infinity ; if, moreover, it cannot be covered by any regular boundary set of another envel-
opment, it will be called an essential point at infinity. This property is clearly invariant under the
a-boundary equivalence relation, and so one speaks of a-boundary points at infinity. A non-regular
boundary point p that is the limit point of some curve in C of bounded parameter will be called a
singular point. If there exists a non-singular boundary set of another envelopment that covers p,
then it is said to be removable; otherwise it is essential. Again, this property is invariant under the
a-boundary equivalence relation, so one says that [p] is an essentially singular a-boundary point.
These, finally, are the missing points Scott and Szekeres aimed to construct.

The most obvious problem facing the a-boundary approach is its physical significance, or lack
thereof. First off, a ‘point’ of the a-boundary is not a point in any usual sense of the term: an indi-
vidual boundary point of one envelopment of a manifold can always be made to cover an uncountable
number of boundary points in another envelopment. It is the case that, given any envelopment, the
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representative boundary set of an a-boundary point in that envelopment must be compact, but it is
not even true that every compact boundary set is a representative of some a-boundary point, nor does
the a-boundary point equivalence relation preserve connectedness and simple-connectedness—ought
one think of a candidate singularity as a single point or as a non-simply connected, non-connected
compact set? Then there is the unapproachability of some a-boundary points: it can happen, for
instance, that regular a-boundary points of a pseudo-Riemannian manifold are not approachable by
any geodesic of the metric. The existence of such extraneous points makes one wonder about the
physical relevance of those boundary points that are approachable by curves in the spacetime. It
is not also not clear what relevance the ‘covering’ relation they define has to anything physical: for
a given C, C-boundary sets may cover unapproachable boundary sets; non-regular unapprochable
boundary sets may cover approachable regular boundary sets; essential boundary points at infinity
may cover anything except singular boundary sets and may be covered by anything except regular
points; essential singular points may cover any kind of boundary set. Given the promiscuity of pos-
sible covering relations, I believe an argument is needed why this definition captures any physically
relevant information, an argument they do not provide.

Neither do Scott and Szekeres broach a technical point that raises a serious difficulty for their
approach at the very initial stages: some spacetimes, such as Taub spacetime, have two incomplete
curves such that the spacetime can be extended so as to make either one or the other curve extendible,
but no extension of the spacetime exists that makes both curves simultaneously extendible.53 On
Scott and Szekeres’s account, both of these curves run into regular boundary points, and so neither
will be counted as possible singularities, even though there is no actual envelopment of the spacetime
in which both curves are simultaneously extendible.

Finally, on this view, incomplete curves wholly contained in compact regions of spacetime cannot
count as singular structure, trivially so since compact manifolds cannot be embedded as proper open
submanifolds of another manifold. Scott and Szekeres not only gamely swallow this consequence, but
actually claim that it is a “sine qua non of any successful theory of singularities,”54 and cite Shepley
and Ryan (1978) as evidence for this claim.55 This is not only a contentious view, at best, which they
do not bother to argue for, and not only seems to run counter to the spirit of most considerations
forwarded in discussions of singular structure, which revolve around incomplete curves, but seems
seriously to conflict with their own stated criterion for selecting those points of the a-boundary that
will be singular points, viz., limit points of curves of bounded parameter, i.e., curves that are, in
some sense or other with (presumed) physical significance, incomplete.

This last point brings out my final consideration against the idea of missing points as touchstones
in the investigation of singular spacetimes: the definition of singular spacetimes by incomplete curves
is logically prior to the construction of missing points for singular spacetimes. All the missing point
constructions I know of, and all the ways I can more or less easily imagine trying to concoct a new
one, rely on probing the spacetime with curves of some sort or other to discover where points may be

53See, e.g., Ellis and Schmidt (1977, p. 920) and Hawking and Ellis (1973, §5.8).
54Scott and Szekeres (1994, p. 34).
55In fact, Shepley and Ryan provide only the briefest and most tendentious of justifications for this position.
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thought of as missing, just as in the Riemannian case one cannot complete a manifold until one knows
which Cauchy sequences do not have a limit point, or equivalently which geodesics are incomplete.
Even Scott and Szekeres, who make much of the fact that the construction of their a-boundary per
se does not depend on the existence of any particular geometrical structure on a manifold, such as
an affine connection and incomplete curves, cannot define singular points, which after all was the
point of the whole affair, without probing their boundary with some specified class of curves.56 One,
however, does not need any conception of a missing point, much less a definition of such a thing, to
define and investigate the existence of incomplete curves on a manifold. In sum, I disagree with the
gist of much of the discussion of Earman (1995, ch. 2), wherein he suggests that unclarity plagues
the semi-official definition of a singular spacetime, in terms of b-incompleteness, in so far as, on the
face of it, one does not know how it relates to the idea of missing points. Incomplete curves seem to
me a fine definition of singular structure on their own. I will try to make these considerations more
precise in the following section.

5 Local vs. Global Properties of a Manifold

There is at least one prima facie good reason why it would be useful to have a precise characterization
of points missing from singular spacetimes: one would then be able to “paste the points to the
boundary of the spacetime manifold” and so analyze the structure of the spacetime locally at the
singularity, instead of taking troublesome, perhaps ill-defined limits along incomplete curves. The
power and elegance of Penrose’s construction of conformal infinity for asymptotically flat spacetimes
lies precisely in the ability one gains to perform such analysis locally at infinity, without relying on
limits.57 The example of Geroch, Can-bin, and Wald (1982) already discussed makes the prospects
for a reasonable boundary construction for singular spacetimes grim. I believe this should not have
been surprising.

In desiring a boundary so as to have a place to analyze structure locally, one ought to be clear
on what one means by ‘locally’. One sometimes hears talk of a global, as opposed to a local, feature
of a spacetime, but I know of no precise characterization of the difference. I believe this distinction
plays a crucial role in a proper understanding of the standardly proposed definitions of a singular
spacetime in terms of incomplete curves. I therefore offer the following precise definition of this
distinction. I formulate it initially for topological properties both for the sake of generality and
because I think it easier to get a feel for the definition in the sparser arena of topological structure
than in the more cluttered arena of differentiable manifolds with an affine structure.

Consider the class T of all topological spaces. A topological property P is a subclass of this class.
A topological space S has the property P if S ∈ P.

Definition 5.2 A topological property P is local if it has the following feature: a given topological
space S has the property P if and only if S is such that every neighborhood of every point has a

56I thus think that Earman (1995, p. 42) was off-base when he suggested that the a-boundary might be used to “do

justice” to the idea of missing points for singular spacetimes.
57See Wald (1984, §11.1) for an account of Penrose’s construction.
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subneighborhood that, considered as a topological space in its own right, with the restriction topology,
has the property P.58

Roughly speaking, a local property must hold in arbitrarily small neighborhoods of every point of
a topological space, but not necessarily in every neighborhood of every point of the space; and
conversely, if the property holds in arbitrarily small neighborhoods of every point of a space, it must
hold for the entire space for it to be local.

Definition 5.3 A topological property is global if and only if it is not local.59

One could be sure of ascertaining for a given topological space whether the local property P held
or not by checking for P at individual points of the space (quite a few points, to be sure), whereas
a global property cannot be checked by examining the structure of the space at any collection of
points. As one should expect, local compactness, local connectedness and local simple connectedness
for example all come out to be local on this definition, whereas compactness, paracompactness,
connectnedness and simple connectedness come out to be global.60

In an analogous manner, one can now straightforwardly characterize properties of differentiable
manifolds and of differentiable manifolds with an affine connection as either local or global. Non-
trivial examples of local properties for a manifold include any structure residing entirely on the
tangent planes over every point. For our purposes, the most important fact about a manifold
with an affine connection arising from a pseudo-Riemannian metric is that both the property of
geodesic completeness and of geodesic incompleteness come out to be global properties, again as
one should expect. One might initially have thought that geodesic incompleteness, at least, ought
to have been a local property—if a geodesic came to an end abruptly, as it were, surely one ought
to be able to pinpoint where this happens. If one could do this, however, then it also would seem
that one could continue the geodesic. If there were a point on the manifold where the incomplete
geodesic terminated, one could, around that point, take a chart diffeomorphic to some open set of
Rn (assuming the manifold does not already have a boundary), push the geodesic and the connection
down to Rn, where the geodesic obviously would be extendible, and pull the extended version back to
the manifold, contradicting the hypothesis that the geodesic could not be continued. This cannotbe
done, however, for incomplete geodesics of a pseudo-Riemannian metric. All attempts to construct
“missing points” founder on this rock.

A point of spacetime, in the usual way of thinking of these matters, represents an event, a highly
localized occurrence in spacetime such as a snapping of fingers or the collision of two billiard balls.

58This sense of ‘local’ has nothing to do with that often bandied about in discussions about the foundations of

quantum mechanics.
59By this ‘not’, I do not mean the logical negation of the definition of ‘local’ but rather the class complement of

the class of local properties in the class of all topological properties—interestingly enough, these do not come to the

same thing. Were the logical negation of the definition of ‘local’ used to define ‘global’, this would entail that a space

with the global property P would have a point and a neighborhood of that point such that every subneighborhood of

that neighborhood did not have P. Compactness is clearly not a local property, and yet does not satisfy the logical

negation of the definition of ‘local’.
60Cf. Hocking and Young (1988) for definitions of these topological properties.
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It represents an instant of some ponderable object, the specious ‘now’ of some sentient being. When
thinking on cosmic scales, the sun, at a certain instant, can profitably be thought of as occupying
a single point of spacetime. In short, spacetime points pertain to discrete objects, very broadly
construed, that can be localized in an intuitive sense. There is no a priori reason to suspect that the
existence of an incomplete curve, a global phenomenon, could be tied in any natural or reasonable
way to the existence of a particular point in an extended manifold. Incomplete curves are not
discrete, localizable objects in the appropriate sense.

A detractor will likely balk at this line of thought, pointing to the case of Riemannian manifolds,
wherein incomplete curves can be naturally associated with points of an extended manifold. I would
reply that it is merely a happy accident in the Riemannian case that one can arrange this. One
has no grounds for suspecting that one will be able to do this in the general case, and in fact, as I
endeavored to show, one has reasons to suspect that in general one will not be able to do this, since
curve incompleteness is global and a missing point is, well, a point, and so prima facie “local”. Of
course, even for Lorentzian manifolds, in certain cases, one will be able to associate to an incomplete
curve a missing point in a natural way—e.g., in Minkowski spacetime (in some global coordinate
system) with the origin removed, to continue all the geodesics aimed at the missing origin one pastes
the origin back into the space and continues the geodesics through that point—in general, though,
one ought not expect the two to have anything to do with each other.

The demand that singular structure be localized at a place bespeaks an old Aristotelian sub-
stantivalism that invokes the maxim, “To exist is to exist in space and time.”61 When I speak of
‘Aristotelian substantivalism’ here, I refer to the fact that Aristotle thought that everything that
exists is a substance and that all substances can be qualified by the Aristotelian categories, two of
which are location in time and location in space. In particular, not only substantivalists but also
relationalists in debates about the nature of spacetime points could (and often do, I think) consis-
tently fall prey to this particular brand of substantivalism. By focusing attention on the way that
spacetimes can have actual features that do not rely on the existence or absence of any particular
point, and are not instantiated at any particuar point, I suspect that this distinction between global
and local properties of spacetime could have a salutary effect on the moribund debate between
substantivialists and relationalists. To lay my cards on the table, I suspect one could parlay these
considerations into a persuasive argument for the most salutary (to my mind) of effects on that
debate, its dismissal as a Scheineproblem.62

Geroch, Can-bin, and Wald (1982, p. 435) deserve the last word on this subject: “Perhaps the
localization of singular behavior will go the way of ‘simultaneity’ and ‘gravitational force.’ ”

61This formulation of the maxim is due to Earman (1995, p. 28).
62I would base such considerations and argument on those delivered by Stein (1989), against the cogency of the

traditional debate between realists and anti-realists, so called.
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6 The Finitude of Existence

The mind of man, by nature a monist, cannot accept two nothings; he knows there has
been one nothing, his biological inexistence in the infinite past, for his memory is utterly
blank, and that nothingness, being, as it were, past, is not too hard to endure. But
a second nothingness—which perhaps might not be so hard to bear either—is logically
unacceptable.

Ada
V. Nabokov

In this paper I have examined the standard characterizations of singular spacetimes and rejected
attempts to link singular structure to the existence of missing points, arguing that the characteri-
zation of singular structure in terms of incomplete curves is adequate for the purposes of all known
sorts of physical investigations touching on the subject. In the end, this is the only criterion I know
of that ought to matter when the issue is the cogency and cognitive content of a proposed physical
notion and concomitant methods of physical investigation and argumentation framed in the terms of
that notion. Before concluding, I turn to examine whether singular structure as thus characterized
is objectionable on physical or interpretive grounds, and whether one is forced to or ought to take
them as indicating the breakdown of classical general relativity, as some would have it. In the pro-
cess, I will examine whether b-completeness is wholly consistent with some of the explicit sentiments
behind using curve incompleteness as a criterion for singular structure.

Two types of worries, one psychological, the other physical, give rise to the dissatisfaction with
the existence of incomplete curves in relativistic spacetimes. Trying to imagine the experience of
an observer traversing one of the incomplete curves provokes the psychological anxiety, for that
observer would, of necessity, be able to experience only a finite amount of proper time’s worth of
observation, even were he, in Earman’s evocative conceit, to have drunk from the fountain of youth.
The physical worry arises from the idea that particles could pop in and out of existence right in
the middle of a singular spacetime, and spacetime itself could simply come to an end, as it were,
though no fundamental physical mechanism or process is known that could produce such effects.
These two types of worries are not always clearly distinguished from each other in discussions of
singular structure, but I think it important to keep in mind that in fact there are two distinct types
of problems envisaged for incomplete curves, requiring to some degree two separate sorts of response.

The existence of incomplete spacelike curves is often felt not to be so objectionable as that of
incomplete timelike or null curves, on the grounds that it represents structure beyond the direct
experience of any observer.63 I submit that, on this criterion, neither ought one be so bothered by
the existence of incomplete timelike or null curves, for an observer travelling along such a curve will
never directly experience the fact that he has only a finite amount of proper time to exist—there is

63See, e.g., Hawking and Ellis (1973, §8.1).
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no spacetime point, no event in spacetime, that corresponds to the observer’s ceasing to exist. This
is not to say that the person traversing this worldline cannot surmise the fact, perhaps based on
observation of the curvature in his immediate neighborhood, that he has only a finite amount of
time to exist; the claim, rather, is that there will never be an instant when the observer experiences
himself as dissipating, popping out of existence as it were. To disarm possible misunderstanding, I
emphasize that I am referring to, not the “popping out of existence” due to the observer’s possibly
being torn apart by unbounded tidal acceleration or being shot in the midst of his experiments by
a Luddite lunatic, but the “popping out of existence” that would come about because the observer
actually reached the “end” of his worldline, so to speak—for there is no end of the worldline to reach!
We may be unable to conceive of experiencing such a state of affairs, but this reflects limitations in
our psychological constitution, not an inherent flaw in general relativity.64

These considerations suggest as well a tension between the definition of singular structure by
b-incompleteness on the one hand and the intuitions that drove some to look to incomplete curves
as marks of singular structure in the first place on the other. Only the finitude of proper time
matters so far as the experience of a possible observer goes—a generalized affine parameter has
no clear physical significance—but, while a curve’s being b-incomplete implies that the curve is of
finite total proper time, the converse is not true: timelike curves of unbounded total acceleration in
Minkowski space can be of finite total proper time and yet be b-complete. I would even say that such
a curve should be more disturbing on reflection to those with such intuitions than an incomplete
null geodesic, for the concept of ‘proper time’ does not apply to null curves at all, even though they
are the possible paths of massless particles. The few people who even remark on the tension usually
mouth a few vague generalities about particles’ “reaching infinity”, the implication seeming to be
that, in so far as particles tracing out such worldlines are able to accomplish this recherché feat,
one should have no qualms about the discomfiture they may feel in having only a finite amount of
proper time in which to exist.

I speculate, with no hard evidence, that people have not wanted to count such curves as con-
stituting singular structure in large part because of vague worries about energy conservation—an
observer would require an “infinite amount of energy” to traverse a curve of unbounded total acceler-
ation. In general relativity, however, there is no rigorous, generic notion of energy conservation, not
globally or locally—there is not even a rigorous, generic, invariant definition of ‘energy’.65 Indeed,
the structure of general relativity offers up no a priori reason to suspect that it in any way excludes

64I remark in passing that those disturbed by the prospect of an observer’s having only a finite amount of proper

time in which to exist into the future ought to be troubled by the Big Crunch, if there is to be one, but I have found no

discussion of this point in the vast literature on singular structure, even by those relativists who display the germane

intuitions. The thought seems to be that one ought to abhor singular structure in the ‘interior’ of spacetime, because

one could imagine ‘encountering’ it on a walk through the park, so to speak. I do not think this a consistent stance,

though.

Also, there seems to be a feeling among workers in the area that incomplete spacelike curves are not so bad in so far

as they will have no observable effect on possible experiments one could perform in such a spacetime. I do not have

space or time to go into it here, but I do not think this view is correct. For a sketch of the grounds for my reasons

for saying so, see the account in Synge (1960, ch. 1, §14) of the physical significance of spacelike intervals.
65See, e.g., Curiel (2000b) and Curiel (2000a).
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a particle’s getting shot out asymptotically “to infinity” in finite total proper time, having started
from perfectly regular (in whatever sense of that term one likes) initial data. After all, it is not even
difficult to construct solutions to Maxwell’s equation on Minkowski spacetime in which a charged
test particle gets shot off “to infinity” in finite total proper time.66

An example of a spacetime that was b-complete for all timelike curves of bounded total acceler-
ation but not for timelike curves of unbounded total acceleration would clarify some of these issues,
and I conjecture that examples of such spacetimes exist. Those who would not want to count such
a spacetime as singular would be forced to give up b-incompleteness as the criterion for singular
structure—which, given the lack of a clear physical interpretation of b-incompleteness in general, as
opposed to incompleteness with respect to total proper time, I would not mind.67 Really, so long
as the idea of “reaching infinity” is given no precise content, and no argument is made to show
why such a thing ought to alleviate anxiety about observers having only a finite amount of proper
time in which to exist, there seems no reason to hold on to b-completeness. Of course, if incomplete
timelike curves of unbounded total acceleration constituted singular structure, then every solution
to Einstein’s field equations would be singular. Many would reject this conclusion out of hand, but
it does not seem intolerable to me. Singular structure would simply be one more type of global
structure that all spacetimes necessarily had, along with, e.g., paracompactness. Once so much was
settled, then one could further classify spacetimes, according to the needs of the project at hand,
by satisfaction of various more restrictive types of curve-completeness in order to produce more
restricted, physically significant types of singular structure, as the compactness of a spacetime is a
more restrictive type of paracompactness.

On physical grounds, curve incompleteness has been objected to because it seems to imply that
particles could be “annihilated” or “created” right in the middle of spacetime, with no known physical
force or mechanism capable of performing such a virtuosic feat of prestidigitation.68 The demand
that a spacetime be maximal, i.e., have no proper extension, often rests on similar considerations:
Clarke (1975, pp. 65–6) and Ellis and Schmidt (1977, p. 920) conjecture that maximality is required
by the lack of a physical process that could cause spacetime to draw up short, as it were, and
not continue on as it could have, were it to have an extension. This sort of argument, though,
relies (implicitly) on a certain picture of physics that does not sit so comfortably with general
relativity: that of the dynamical evolution of a system. From a certain quite natural point of
view in general relativity, spacetime does not evolve at all. It just sits there, sufficient unto itself,
very like the Parmenidean One. A solution to Einstein’s equation, after all, is an entire spacetime

66To see how one might do this, consider solutions to Laplace’s equation that exert along some particular, fixed

direction a force constantly increasing as one moves along that direction. Perhaps one places positive charges at regular

intervals along a geodesic starting from a given point, such that the magnitudes of the charges increase exponentially

as one moves along the geodesic away from the point. If one then fires off a negatively charged particle essentially

tangent to the given geodesic in the direction of increasing charge, the electric field of the charges will send it shooting

off with an exponentially increasing acceleration in the direction orthogonal to the geodesic.
67It is one of the few major shortcomings of Earman (1995) that he does not analyze the physical significance of

the various sorts of curve incompleteness.
68Cf., e.g., Hawking (1967, p. 189).
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simpliciter—and the topology may be naturally suggested by the form of the metric, as in the
case of the Schwarzschild coordinates, but one can always put the ‘same’ metric on a space with
an entirely different topology, and still have a solution to the field equations. From this point of
view, the question of a physical mechanism capable of causing the spacetime manifold not to have
all the points it could have had, as it were—which is essentially a topological question in the first
place—becomes less poignant, perhaps even misleading.69 Of course, an opponent of this point
of view could argue that such a move could foreclose the possibility of deterministic physics, to
which I would whole-heartedly agree, for we already know that general relativity does not guarantee
deterministic physics: there may be no Cauchy surface in our spacetime, or there may even be so
called naked singularities.70

Perhaps a more serious worry is that such a viewpoint would seem to deny that certain types of
potentially observable physical phenomena require explanation, when on their face they would look
puzzling, to say the least. Were we to witness particles popping in and out of existence, the mettle
of physics surely would demand an explanation. I would contend in such a case, however, that a
perfectly adequate explanation was at hand: we would be observing singular structure. If there were
no curvature pathology around, such a response might appear to be ducking the real issue, viz., why
is there this anomalous singular structure when all our strongest intuitions and most dearly held
metaphysical principles tell us it should be impossible?71 Far from ducking the issue, the viewpoint
I advocate is the only one I know of that gives us a toehold in looking for precise answers to such
questions—or, more precisely, in making such questions precise in the first place. Note that those
who balk at this viewpoint ought to be equally as troubled by the singular structure associated with
the Big Bang as they are by the example under discussion, for it just as surely lacks an explanation.
From the viewpoint I advocate, questions about what happened “before” the Big Bang, or why
the universe “came into being”, can come from their former nebulosity into sharper definition, for

69The invocation of problems arising from the principle of sufficient reason (if one thinks of these as problems at

all!) in postulating maximality makes the same assumption: that a “creative force”, in Earman’s words, would create

spacetime piece by piece, and not simply have it be there all at once, so to speak, in whatever form was desired. Under

such a conception, one might wonder why the creative force would stop at any particular point and not continue on

to ‘complete’ the spacetime. Such problems do not arise in the viewpoint I propound. Demanding maximality may

lead to Buridan’s Ass problems anyhow, for, as mentioned earlier, it can happen that global extensions exist in which

one of a given set of incomplete curves is extendible, but no global extension exists in which every curve in the set

is simultaneously extendible. Also, there may exist several physically quite different global extensions: the spacetime

covered by the usual Schwarzschild coordinates for r > 2M , for instance, can be extended analytically to Kruskal-

Schwarzschild spacetime, or it can be extended to a solution representing the interior of a massive spherical body.

The three criteria usually invoked in choosing an extension are: analyticity (as in the Kruskal extension); preservation

of a symmetry group (as in the interior Schwarzschild solution); limiting the Bondi news-function, e.g., incoming

radiation, in the extended spacetime. None seems very compelling. For example, why limit incoming radiation when

relativity treats radiation as every bit as real as ponderable matter, in the sense of contributing to the stress-energy

tensor and so to metric structure, irrespective of the presence of other fields or matter that may be considered sources

of the radiation? Indeed, I know of no convincing, rigorous way to distinguish “radiation” from “ponderable matter”

in general relativity.
70See Earman (1995, ch. 3) for a discussion of these phenomena.
71Speaking of which, I would love to have someone explain to me in a way that will not make me cringe what the

difference is between a philosophical intuition and a metaphysical principle.
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they become questions about the presence of certain global structure in the spacetime manifold, in
principle no different from paracompactness, connectedness or the existence of an affine connection,
and one can at least envisage possible forms of an answer to the (precise) question, “Are there any
factors that necessitate spacetime’s having such and such global structure?” And were we actually
to observe particles popping in and out of existence, we could formulate and begin trying to answer
the analogous questions.

The most serious problem I can imagine for the viewpoint I advocate is that of representing
our subjective experience, experience that seems inextricably tied up with ideas of evolution and
change. As I suggested earlier, this problem is not an idiosyncracy of the viewpoint I advocate,
but in fact arises from the character of general relativity itself: ‘dynamical evolution’ and ‘time’ are
subtle and problematic concepts in the theory no matter what viewpoint one takes, as attested by
the most notorious and seemingly intractable problem in the drive to ‘quantize’ gravity, the so-called
problem of time.72 My viewpoint has the virtue of calling attention to this very fact, that, to judge
by the preponderant mass of literature in both physics and philosophy, is often overlooked: general
relativity, in its own way, requires us to refashion the conceptual apparatus we use to comprehend
the physical world, to a rethink in a profound way several dearly held, deeply related concepts and
the relations among them, just as quantum mechanics has.

It has become fashionable of late to say that such problems point to the need to find an “inter-
pretation” of general relativity in the same sense in which the measurement problem in quantum
mechanics is taken to require that that theory be interpreted. Belot (1996), for instance, reaches
this conclusion on the basis of an investigation into the problems encountered in trying to develop
a quantum theory of gravity. I think this is a serious misunderstanding. Quantum mechanics de-
mands an interpretation because it is not clear how to model physical phenomena, how to model
the outcomes of experiments simpliciter : the predictions of standard quantum theory are in some
sense in contradiction with the outcomes of experiments, but not in such a way as to invalidate
the theory—an extraordinary state of affairs. There is no analogous problem in general relativity.
We know how to model in the terms of the theory experiments that manifest and probe every phe-
nomena suggested or predicted by the theory, with no inconsistency of any kind, for we know with
no ambiguity what are the fundamental, physical terms and principles of the theory in which one
articulates these models and draws conclusions on their basis. In a similar vein, the comprehension
of special relativity’s dismissal of the idea of absolute simultaneity did not require an interpretation
of the theory, in any sense of the term; it required only that investigators come to terms with the
fact that the fundamental terms of the theory does not allow for the rigorous, physically relevant
articulation of the fundamental terms of Newtonian physics. In quantum mechanics, we do not even
know what the fundamental terms and principles—‘measurement’? ‘observable’?—ought to be.

In a paper on the foundations of quantum mechanics, discussing the lack in general relativity of
an explicit representation of our experience of a privileged instant in our history, the “now”, Stein
(1984, p. 645) makes a remark most à propos to the present case: “. . . although relativity does not

72See Ashtekar (1991, §12.3) for a brief discussion of this problem.
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give us a representation of that experience[, the psychologically privileged status of the “now”], there
is no incompatibility between the experience and the theory: a gap is not a contradiction.”73 There
is a gap between the raw materials the theory provides us and the rich content of our experience to
be explained—but it is no flaw of or lacuna in general relativity—it is not in virtue of the lack of an
“interpretation”—that the theory does not illuminate the psychological experience we imagine will
accrue to an observer in any particular circumstance the theory predicts, no more than Newtonian
mechanics fell short in so far as it did not show why I understand by certain irritations of my eardrum
from perturbations in the ambient air pressure the import of the spoken word ‘gap’. It cannot be an
argument against general relativity that it predicts phenomena we find it difficult to envisage, when
we also know perfectly well how to model experiments that manifest and probe the phenomena. On
those grounds, I submit, every revolutionary physical theory ever proposed would have been DOA,
in light of the historical evidence concerning the reception by contemporaneous scientists of every
one of them.74
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