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Abstract
We study black holes produced via collapse of a spherically symmetric charged 
scalar field in asymptotically flat space. We employ a late time expansion and 
argue that decaying fluxes of radiation through the event horizon imply that 
the black hole must contain a null singularity on the Cauchy horizon and a 
central spacelike singularity.
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1. Introduction and summary

It is widely believed that long after black holes form their exterior geometry is described by 
the Kerr–Newman metric. The Kerr–Newman geometry naturally provides a mechanism for 
exterior perturbations to relax. Namely, perturbations are either absorbed by the black hole or 
radiated to infinity. Deep inside the black hole though, no such relaxation mechanism exists 
and the geometry depends on initial conditions.

While the geometry inside the black hole is not unique, it is natural to ask whether there are 
any universal features, such as the structure of singularities. Consider a black hole produced 
via gravitational collapse in asymptotically flat space, such as that shown in the Penrose dia-
gram in figure 1. The collapsing body—the blue shaded region—results in an event horizon 
(EH) forming. In accord with Price’s law [1, 2], collapse also results in an influx of radia-
tion through the EH which decays with an inverse power v−p of advanced time v. Penrose 
reasoned more than 50 years ago [3] that infalling radiation will be infinitely blue shifted at 
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the geometry’s Cauchy horizon (CH), located at v = ∞, leading to a singularity there. For 
Reissner–Nordström (RN) black holes it was subsequently argued by Poisson and Israel [4, 5] 
that curvature scalars blow up like e2κv, where κ is the surface gravity of the inner horizon of 
the associated RN solution, leading to a null singularity on the CH. Numerous studies [4–20] 
suggest that the presence of a null singularity at the CH is a generic feature of black hole 
interiors4.

For small spherically symmetric perturbations of two-sided black holes, the null singular-
ity on the CH can be the only singularity [22]. However, with large spherically symmetric 
perturbations, numerical simulations indicate that, in addition to a singular CH, a space-like 
singularity forms at areal radius r  =  0 [11, 12]. Likewise, for spherically symmetric one-side 
black holes, which form from gravitational collapse, numerical simulations also indicate the 
formation of a spacelike singularity at r  =  0 and a singular CH [13]. This means the singular 
structure of the spacetime is that shown in figure 1.

In this paper we focus primarily on one-side black holes (although we will discuss gener-
alizations of our analysis to two-sided black holes in section 5). We argue that the formation of 
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Figure 1. A Penrose diagram showing gravitational collapse of matter (blue shaded 
region) resulting in the formation of an EH. There is a decaying flux  ∼v−p of infalling 
radiation through the EH. The solid red lines denote singularities. There is a null 
curvature singularity on the CH, located at time v = ∞, and a spacelike singularity 
located at r  =  0.

4 A notable exception are near-extremal black holes in de Sitter spacetime [21].
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a central spacelike singularity is inevitable in the collapse of a spherically symmetric charged 
scalar field in asymptotically flat spacetime. Our analysis employs three key assumptions. 
Firstly, we assume Price’s Law applies, meaning there is an influx of scalar radiation through 
the horizon which decays like v−p for some power p  which is sufficiently large such that the 
mass M(v) and charge Q(v) of the black hole approach constants M(∞) and Q(∞) as v → ∞. 
The infalling radiation (which is left-moving in the Penrose diagram in figure 1) can scatter 
off the gravitational field and excite outgoing radiation (which is right-moving in the Penrose 
diagram). This, together with outgoing radiation emitted during collapse, means that the inter-
ior geometry of the black hole is filled with outgoing radiation.

Our second assumption is that the geometry at areal radius r  >  r− relaxes to the RN solu-
tion as v → ∞. The radii r± are the inner (−) and outer (+) horizon radii of the RN solution 
with mass M(∞) and charge Q(∞)5,

r± ≡ M(∞)±
√

M(∞)2 − Q(∞)2. (1)

Why is it reasonable to assume the geometry at r  >  r− relaxes to the RN solution? In the RN 
geometry, all light rays at r  <  r+ , propagate to r � r− as v → ∞. Therefore, the RN geometry 
naturally provides a mechanism for perturbations at r  >  r− to relax. To illustrate this further, 
in appendix we present a numerically generated solution to the equations of motion, equa-
tion (6) below.

Our third assumption is that at any fixed time v, the geometry at r  >  0 contains no singular-
ities. This assumption means the equations of motion can be integrated in all the way to r  >  0 
without running into a singularity. We note, however, that this assumption is inconsistent with 
the weakly perturbed two-sided black holes studied in [22], where at finite time v, the outgo-
ing branch of the singular CH lies at r ≈ r−. However, for one-sided black holes, numerical 
simulations indicate no singularities at r  >  0 at finite v [13]. Additionally, our numerical simu-
lations in the appendix also show no signs of singularities at r  >  0 at finite v.

The assumption that the geometry at r  >  r− relaxes to the RN solution has profound con-
sequences for late-time infalling observers passing through r−. Firstly, as v → ∞ outgoing 
radiation inside the black hole must be localized to a ball whose surface approaches r−. This 
follows from the fact that in the RN geometry, all outgoing light rays between r− < r < r+ 
approach r− as v → ∞. Moreover, from the perspective of infalling observers, the outgoing 
radiation appears blue shifted by a factor of eκv. This means that late-time infalling observers 
encounter an effective ‘shock’ at r  =  r− [23–26], where there is a searing ball of blue shifted 
radiation. In particular, upon passing through r−, infalling observers will measure a Riemann 
tensor of order e2κv and therefore experience exponentially large gravitational and tidal forces. 
Via Raychaudhuri’s equation, the ball of outgoing radiation focuses infalling null light rays 
from r  =  r− to r  =  0 over an affine parameter interval [23]

∆λ ∼ e−κv. (2)

The scaling (2) has been verified numerically for spherically symmetric charged black holes 
[24] and for rotating black holes [25].

The exponential focusing of infalling geodesics suggests that at late times there exists an 
expansion parameter ε ≡ e−κv � 1 in terms of which the equations of motion can be solved 
perturbatively in the region r  <  r−. This can be made explicit by employing the affine param-
eter λ of infalling null geodesics as a radial coordinate. With spherical symmetry the metric 
takes the form

5 Recall that the surface r  =  r− is null for the RN solution. This need not be the case out of equilibrium. Indeed, 
prior to collapse the surface r  =  r− is time-like. Our analysis below implies that r  =  r− is spacelike at late times.
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ds2 = −2Adv2 + 2dλdv + r2(dλ2 + sin2 θdθ2), (3)

where {θ,φ} are polar and azimuthal angles respectively. Both A and the areal coordinate 
r depend on v and λ. In this coordinate system curves with dv = 0 are radial infalling null 
geodesics affinely parameterized by λ. Shocks at r  =  r− then imply derivatives w.r.t. λ must 
diverge like eκv in the region r  <  r−. This means that inside r−, the equations of motion can be 
expanded in powers of λ derivatives (i.e. a derivative expansion). This is simply an expansion 
in powers of ε, which is exponentially small as v → ∞.

With the metric ansatz (3), initial data is naturally specified on some v = vo null surface. 
We consider the limit where vo is arbitrarily large. At v > vo we restrict our attention to 
the region inside two outgoing null surfaces M and F , as depicted in figure 2. On M we 
impose the boundary condition that there is an influx of scalar radiation decaying like v−p. 
In the shaded region between M and F  we solve the equations of motion with a derivative 
expansion in λ. Why have we bothered to introduce F ? Why not just integrate deeper into 
the geometry? It turns out the surface F  bounds the inner domain of validity of the derivative 
expansion: in the region enclosed by F  the derivative expansion can break down. However, as 
depicted in figure 2, we find that F  propagates inwards and intersects r  =  0 at a finite time v. 
In other words, the domain of dependence and validity of the derivative expansion initial value 
problem contains r  =  0 at late enough times.

We find that infalling radiation through M results in the Kretchmann scalar diverging like 
e2κv, consistent with previous demonstrations of a singular CH [4–19]. Additionally, we find 
that infalling radiation results in a cloud of radiation forming near r  =  0. This cloud always 
results in a spacelike singularity forming at r  =  0 at late enough times, irrespective of initial 
conditions at v = vo. In particular, the growing cloud of radiation results in the Kretchmann 
scalar diverging near r  =  0 like r−2αve2κv for some constant α > 0.

An outline of the rest of the paper is as follows. In section 2 we write the equations of 
motion, employing the affine parameter λ as a radial coordinate. In section 3 we present the 
leading order equations of motion within the derivative expansion. In section 4 we employ 
the leading order equations of motion to study the causal structure of singularities inside the 
black hole, and in section 5 we present concluding remarks. In the appendix, as an example, 
we present a numerical solution to the equation of motion.

2. Equations of motion

We consider the dynamics of spherically symmetric charged black holes with a charged scalar 
field Ψ and a gauge field Aµ. The equations of motion read

Rµν +
1
2

Rgµν = 8π(Tµν + τµν), DµFµν = Jν , D2Ψ = 0, (4)

where Dµ is the covariant derivative, Dµ = Dµ − iAµ is the gauge covariant derivative, and

Tµν = 2Re{(DµΨ)∗DνΨ} − gµν |DΨ|2, (5a)

τµν = −FµβFβ
ν − 1

4
gµνFαβFαβ , (5b)

Jµ = −2Im{Ψ∗DµΨ}, (5c)

are the scalar and electromagnetic stress tensors and electric current, respectively.

P M Chesler et alClass. Quantum Grav. 37 (2020) 025009
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We work in the gauge Aλ = 0. With the metric ansatz (3), the components of the equa-
tion of motion (4) then read

0 = r′′ + 8π|Ψ′|2r, (6a)

0 = (r d+r)′+2πr2E2 − 1
2

, (6b)

0 = A′′−2r′

r2 d+r +
1
r2 + 8π

(
2Re{Ψ

′∗D+Ψ} − E2
)

, (6c)

0 = d2
+r − A′d+r + 8πr |D+Ψ|2, (6d)

0 = (r D+Ψ)′ +Ψ′d+r − i
2

EΨ, (6e)

0 = (r2E)′ − 2r2Im{Ψ∗Ψ′}, (6f )

0 = d+E +
2E
r

d+r − 2Im{Ψ∗D+Ψ}, (6g)

where

E ≡ −A′
0, (7)

is the electric field. The derivative operators ′, d+ and D+ are defined to be

′ ≡ ∂λ, d+ ≡ ∂v + A∂λ, D+ = d+ − iA0. (8)

r = 0

r =
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v =
v
o

F

M
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∞
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Figure 2. A Penrose diagram showing the setup of our problem. We specify initial 
data on some infalling v = vo null surface and boundary data on some outgoing null 
surface M. In the shaded region we solve the equations of motion with a derivative 
expansion in λ. The outgoing null surface F  bounds the inner domain of validity of 
the derivative expansion, and always intersects r  =  0 at some finite time v. Decaying 
v−p infalling radiation through M always results in a null singularity at v = ∞ and a 
spacelike singularity at r  =  0, irrespective of initial data at v = vo.
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The ′ derivative is just the directional derivative along ingoing null geodesics whereas d+ is 
the directional derivative along outgoing null geodesics. D+ is simply the gauge covariant 
version of d+ .

Equation (6a) is an initial value constraint: if (6a) is satisfied at v = vo, then the remaining 
equations guarantee it will remain satisfied at later times. Equations (6d) and (6g) are radial 
constraint equations: if (6d) and (6g) are satisfied at one value of λ, the remaining equa-
tions guarantee they will remain satisfied at all values of λ.

The equations of motion (6) constitute a nested system of linear ODEs. Given Ψ at v = vo 
and boundary data on the outgoing null surface M, shown in the Penrose diagram in figure 2, 
equation (6a) can be integrated in from M to find r. Next, given Ψ and r, equation (6f ) can be 
integrated in from M to find A0. With Ψ, r and A0 known, equation (6b) can be integrated in 
from M to find d+ r. With Ψ, r, A0 and d+ r known, equation (6e) can be integrated in to find 
D+Ψ. With Ψ, r, A0, d+ r and D+Ψ known, equation (6c) can be integrated in from M to find 
A. With Ψ, A0, A and D+Ψ known, we can compute ∂vΨ and advance forward in time. Note 
the remaining equations, equations (6d) and (6g), which are radial constraint equations, can be 
implemented as boundary conditions in the aforementioned radial integrations.

3. Derivative expansion

Following our arguments in the introduction, in the region enclosed by the outgoing null 
surface M we shall solve the equations of motion (6) with a derivative expansion in λ. For 
pedagogical reasons we choose M to asymptote to r  =  r− as v → ∞. However, it will turn out 
that the precise choice of M does not matter for our analysis. One could equally well choose 
M to asymptote to some finite r  <  r−.

The metric (3) is invariant under the residual diffeomorphism

λ → λ+ ξ(v), (9)

where ξ(v) is arbitrary. We exploit this residual diffeomorphism invariance to choose coordi-
nates such that M lies at λ = 0, with the spacetime enclosed by M lying at λ < 0. Since M 
is null, this means

A|λ=0 = 0. (10)

Additionally, the gauge choice Aλ = 0 enjoys the residual gauge freedom

A0 → A0 + Λ(v), (11)

where Λ(v) is arbitrary. We exploit this residual gauge freedom to set

A0|λ=0 = 0. (12)

In order to account for rapid λ dependence, we introduce a bookkeeping parameter ε and 
assume the following scaling relations for the directional derivatives along infalling and out-
going null geodesics,

∂λ = O(1/ε), d+ = O(ε0). (13)

We then study the equations of motion (6) in the ε → 0 limit. We shall see below that as adver-
tised in the Introduction, ε = e−κv. Hence the ε → 0 is just the v → ∞ limit.

Why must we have d+ = O(ε0)? For any quantity f , the total v derivative of f  along out-

going geodesics is df
dv = d+f . Hence the scaling d+ = O(ε0) reflects the fact that quantities 

evaluated along outgoing null geodesics are not rapidly varying in v. The scalings (13) and 

P M Chesler et alClass. Quantum Grav. 37 (2020) 025009
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Gauss’ law (6f ) also imply E = O(ε0). Equation  (7) and the boundary condition (12) then 
imply

A0 = O(ε). (14)

Likewise, the scaling relations (13) and the Einstein equation  (6c) imply A′′ = O(1/ε). 
Together with the boundary condition (10), this means

A = O(ε). (15)

Further boundary conditions are needed on M. Firstly, we assume the influx of scalar 
radiation through M is a power law in accord with Price’s Law:

D+Ψ|λ=0 = d+Ψ|λ=0 ∼ v−p. (16)

We leave p  arbitrary. Second, we fix a Neumann boundary condition on A. The scaling 
A′ = O(ε0) implies ∂r(A′) = O(ε0). Hence it is reasonable to assume A′ remains continu-
ous in r across r− as ε → 0, or equivalently as v → ∞. We note this assumption is consistent 
with the numerical simulation presented in appendix. Additionally, we note this assumption 
is also constant with numerical solutions of the interior of rotating black holes [25]. With 
our assumption that the geometry at r  >  r− relaxes to the RN solution as v → ∞, this means 
A′|λ=0 must approach its RN limit,

A′|λ=0 = −κ, (17)

with κ the surface gravity of the associated Reissner–Nordström inner horizon,

κ =
Q(∞)2 − M(∞)r−

r3
−

. (18)

In the ε → 0 limit, equations (6b)–(6e) and (6g) read

0 = (r d+r)′, (19a)

0 = A′′−2r′

r2 d+r + 16πRe{Ψ
′∗d+Ψ}, (19b)

0 = d2
+r − A′d+r + 8πr |d+Ψ|2, (19c)

0 = (r d+Ψ)′ +Ψ′d+r, (19d)

0 = d+E +
2E
r

d+r − 2Im{Ψ∗d+Ψ}. (19e)

The remaining equations of motion (6a) and (6f ) do not change in the ε → 0 limit.
Equation (19a) can be integrated to yield

d+r = −ζ(v)
r

. (20)

The constant of integration ζ(v) can be determined from the radial constraint equation (19c). 
Consider this equation evaluated on M. Since d+ is the directional derivative along outgoing 
null geodesics, equation (19c) can be rewritten on M as an ODE for d+ r,

d
dv

d+r + κd+r = −8πr|d+Ψ|2, (21)

P M Chesler et alClass. Quantum Grav. 37 (2020) 025009
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where we have employed (17) to eliminate A′. Employing Price’s law (16), in the v → ∞ 
limit this equation is solved by (20) with

ζ(v) ∼ +v−2p. (22)

We emphasize that d+ r  <  0. This means there is no inner apparent horizon inside M, for at 
an apparent horizon d+ r  =  0. Since d+ r is the directional derivative of r along outgoing null 
geodesics, equations (20) and (22) yield the outgoing geodesic equation

dr
dv

= d+r ∼ −v−2p

r
. (23)

Equation (23) can be integrated to yield

r2 ∼ v1−2p + const. (24)

It follows that geodesics with r � rc end at r  =  0 whereas those with r > rc end on the CH at 
finite values of r. This is consistent with the Penrose diagrams in figures 1 and 2. The critical 
radius rc is given by

rc(v) ∼ v1/2−p. (25)

The remaining equations of motion (19b) and (19d) cannot be solved analytically without 
further approximations. In section 3.1 we shall solve these equations near M, where infall-
ing radiation can be treated perturbatively, and establish the self-consistency condition that λ 
derivatives indeed blow up like eκv. In section 3.2 we shall show that near r  =  0, λ derivatives 
blow up like r−αveκv where α > 0 is some constant. In section 3.3 we discuss the domain of 
validity of the derivative expansion.

3.1. Derivative expansion near M

In this section we solve equation (6) near M, meaning away from r  =  0. Since infalling radia-
tion decays as v → ∞, we can neglect its effects near M at late times. This is tantamount to 
imposing the boundary conditions d+r = d+Ψ = 0 on M. In this case equations (19a), (19b) 
and (19d) reduce to

d+r = 0, d+Ψ = 0, A′′ = 0. (26)

The first two equations here simply state that excitations in r and Ψ are transported along out-
going null geodesics. Using the boundary conditions (10) and (17), the solutions to (26) read

Ψ = χ(eκvλ), r = ρ(eκvλ), A = −κλ, (27)

where χ and ρ  are arbitrary6. The function χ encodes an outgoing flux of scalar radiation 
inside the black hole. This outgoing radiation need not fall into r  =  0, just as the Penrose dia-
gram in figure 1, suggests. Moreover, we see from (27) that A′ = −κ, even away from M. We 
note that this behavior is also see in the numerically generated solution presented in appendix. 
It follows that the boundary conditions we imposed on M are in fact valid in the interior of 
M, meaning our results are insensitive to the precise choice of M: we could have equally well 
chosen M to asymptote to some finite r  <  r− as v → ∞.

6 We note, however, that χ and ρ  are related to each other by the initial value constraint (6a).

P M Chesler et alClass. Quantum Grav. 37 (2020) 025009
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From (27) we see that λ derivatives blow up like eκv. Hence the derivative expansion is 
simply a late time expansion with expansion parameter ε ≡ e−κv. Additionally, from (6a) we 
see that r′ can only increase as λ, or equivalently r, decreases. This means that λ derivatives 
must be at least as large as eκv throughout the entire interior of M.

As mentioned above, the physical origin of large λ derivatives lies in the fact that from 
the perspective of infalling observers, outgoing radiation is blue shifted by a factor of 
eκv. Moreover, the exponentially diverging λ derivatives also imply that the Riemann tensor 
diverges like e2κv. It follows that infalling observers experience exponentially large gravita-
tional and tidal forces at r−. This is the gravitational shock phenomenon explored in [23–25].

3.2. Derivative expansion near r  =  0

The analysis in the preceding section neglected the effects of infalling radiation. However, as 
can be seen from (20), the amplitude of infalling radiation becomes non-negligible as r → 0. 
Consequently, its effects must be taken into account at small enough r. We show in this sec-
tion that when infalling radiation is not neglected, at small r derivatives w.r.t. λ blow up like 
r−αveκv where α is a positive constant. How does the r−αv enhancement arise? A clue comes 
from the initial value constraint (6a). As mentioned above, from this equation we see that r′ 
can only increase as λ, or equivalently r, decreases. If the scalar field Ψ diverges near r  =  0, 
then (6a) means that r′ can diverge there too. We shall see that such a divergence in Ψ is inevi-
table at late times due to the influx of scalar radiation through M.

To study the behavior of the scalar field near r  =  0 we have found it convenient to change 
radial coordinates from λ to r. In the (v, r) coordinate system we have

d+ = ∂v + (d+r)∂r,

= ∂v −
ζ

r
∂r,

 (28)

where in the last line we used (20). The scalar equation of motion (19d) then reads

∂r(rd+Ψ) =
ζ

r
∂rΨ (29)

where we have again used (20) to eliminate d+ r from the r.h.s. of (19d). We therefore reach the 
conclusion that in the ε → 0 limit the scalar field satisfies a decoupled linear wave equation.

The equation of motion (29) implies the ‘energy density’ 

E ≡ r|∂rΨ|2, (30)

satisfies the conservation law

∂vE + ∂rS = 0, (31)

where the flux S  is given by

S ≡ r2

ζ
|d+Ψ|2 − ζ |∂rΨ|2. (32)

Via Price’s law (16) and equation (22), the flux through M scales with v like

S|M ∼ v−2p

ζ
∼ 1. (33)

P M Chesler et alClass. Quantum Grav. 37 (2020) 025009
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Hence, the energy enclosed by M must increase linearly in v. Moreover, owing to the fact that 
the explicit time dependence in the equation of motion (29)—that from ζ(v)—is arbitrarily 
slowly varying at late times, the energy flux must be approximately constant in time through-
out the region enclosed by M.

Near the origin equation (29) can be solved with a Frobenius expansion,

Ψ(v, r) = log r
∑
n=0

Ψ(n)(v)
(

r
rc

)2n

+
∑
n=0

ψ(n)(v)
(

r
rc

)2n

, (34)

where rc is defined in (25). The condition ∂vS = 0 implies

∂v
[
Ψ(0)∂vΨ(0)

]
= 0. (35)

It follows that as v → ∞ we must have Ψ(0)(v) ∼
√

v. Evidently, driving the scalar field with 
a tiny decaying flux v−p of infalling radiation results in the growth of a cloud of scalar radia-
tion at r � rc with ever increasing radial derivatives as time progresses. It follows that for 
r � rc the energy density E must diverge like

E ∼ v
r

. (36)

Let us now return to using the affine parameter λ as a radial coordinate and investigate the 
consequences of equation (36) on the behavior of r′ as r → 0. Equation (6a) can be written

r′′ + 8πEr′2 = 0. (37)

Using (36), this equation can be integrated near r  =  0 to yield r′ ∼ r−αvC where C is a con-
stant of integration and α > 0 is a constant. Recall that near M we have r′ ∼ eκv and that r′ 
can only increase as r decreases. It follows that C ∼ eκv. We therefore conclude that for r � rc 
we have

r′ ∼ r−αveκv. (38)

Likewise, the chain rule implies that for r � rc we also have

Ψ′ ∼ r−αveκv. (39)

3.3. Domain of validity of the approximate equations of motion

In deriving the approximate equations of motion (19) we have neglected some terms which 
can diverge like 1/rq near r  =  0 for some fixed power q. The neglected divergent terms are a 
1/r2 term in equation (6c) and terms with the electric field E (which can diverge like 1/r2) in 
equations (6b), (6c) and (6e). Suppose initial data is specified at v = vo, as depicted in fig-
ure 2, with λ derivatives initially of order eκvo. If the initial scalar field data is non-singular 
at v = vo, meaning λ derivatives are initially finite at r  =  0, the approximate equations of 
motion need not be valid beyond the point where the neglected 1/rq terms become comparable 
to λ derivatives. In other words, the approximate equations of motion can break down when 
log 1

r ∼ v.
However, even with regular initial data, the analysis in the preceding section demonstrates 

infalling radiation enhances λ derivatives at late times by a factor of r−αv for some constant 
α > 0. The enhancement sets in at r ∼ rc and means that λ derivatives dominate over any 1/rq 
divergence at late enough times. In other words, at late enough times the approximate equa-
tions of motion (19) are valid all the way to r  =  0.
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What then is the domain of dependence and validity of the derivative expansion initial 
value problem? We can easily bound the inner domain of validity of the approximate equa-
tions of motion with some outgoing null surface F , as depicted in figure 2. Define F  to be the 
outgoing null surface with initial condition

r(vo)
2 = rc(vo)

2(1 − δ), (40)

with 0 < δ < 1. The evolution of F  is governed by the geodesic solution (24) and reads

r2 ∼ v1−2p − v1−2p
o δ. (41)

On F  we can compare the 1/rq divergences to λ derivatives. Consider first the limit δ → 0. 
In this case F  coincides with the critical radius rc and intersects r  =  0 at v = ∞. On F  the 
1/rq ∼ vq(2p−1) terms are always parametrically small compared to eκv. In other words, on F  
the 1/rq divergences are always negligible compared to λ derivatives, irrespective of the r−αv 
late-time enhancement. Consider then the case where δ is arbitrarily small but finite. In this 
case equation (41) implies that F  intersects r  =  0 at v = v∗ where v∗ = vo/δ

1/(2p−1). This 
means the 1/rq terms diverge on F  at finite time v = v∗ � vo. How do the 1/rq divergences 
compare to λ derivatives? In particular, do λ derivatives diverge faster? The answer is clearly 
yes due to the r−αv late-time enhancement: the exponent αv∗ can be made arbitrarily large by 
taking δ smaller whereas the exponent q is fixed. This means that, as depicted in figure 2, the 
domain of dependence and validity of the derivative expansion initial value problem always 
contains r  =  0 at late enough times.

4. Singular structure inside M

We now explore the consequences of the derivative expansion on the structure of singulari-
ties inside M. First we will study the singularity on the CH at v = ∞. Using the equations of 
motion (6) to eliminate second order derivatives, without approximation the Kretschmann 
scalar K ≡ RµναβRµναβ reads

K = 512π2Re{(Ψ′∗D+Ψ)2}+ 1536π2|Ψ′D+Ψ|2 + 48r′2(d+r)2

r4 − 256πr′d+r
r2 Re{Ψ′∗D+Ψ}

+
128π(1 − 8πr2E2)

r2 Re{Ψ′∗D+Ψ} − 48(1 − 4πr2E2)

r4 r′d+r + 320π2E4 +
12
r4 − 96πE2

r4 .
 (42)

From the scaling relations (38) and (39) we see that the dominant terms in K are the four in the 
first line. These all blow up like e2κv as v → ∞.

Let us first focus on the region near M, where we can employ the solutions (26) for outgo-
ing radiation. Without infalling radiation K is regular near M. However, due to the fact that 
λ derivatives blow up exponentially like eκv, a tiny amount of infalling radiation leads to K 
growing exponentially. Accounting for infalling radiation by employing (20), (22) and Price’s 
law (16) to determine d+ r and D+Ψ, we see that the most singular terms in K are the first two, 
which scale like

K ∼ e2κvv−2p. (43)

The physical origin of the exponential growth (43) is easy to understand. Consider for 
the sake of example two scalar wavepackets of wavelength L+ and L− and amplitude a+ and 
a−. When the wavepackets pass through each other the Kretchmann scalar will scale like 
(a+/L+)

2(a−/L−)
2. In the limit where either L± → 0, the crossing fluxes of radiation will 
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result in the Kretchmann scalar diverging. Inside the black hole the solution (26) provides an 
outgoing flux of scalar radiation while the influx is provided via Price’s law, (16). The final 
ingredient is that from the perspective of infalling observers, the outgoing radiation appears 
blue shifted by eκv (which manifests itself in our coordinate system as λ derivatives growing 
like eκv)7. This means that the crossing fluxes must result in a scalar curvature singularity on 
the CH which diverges like (43).

It is interesting to compare (43) to the contribution to the curvature from mass inflation [4, 
5]. The mass function m ∼ r′d+r  and hence, via the second term in (42), contributes to K a 
term ∼ m2 . From (20), (22) and (26) we see that m2 ∼ e2κvv−4p . Hence the contribution to the 
curvature from mass inflation is suppressed relative to that of the crossing fluxes by a factor of 
v−2p. Similar results have been reported for rotating black holes in [17].

We now consider K in the limit r → 0. Using the scaling relations (38) and (39) we see that 
the e2κv scaling in (43) must be enhanced to

K ∼ r−2αve2κv (44)

as r → 0. In other words, the exponential divergence near the CH becomes stronger when 
r → 0.

We now turn to the nature of the singularity at r  =  0. From (44) we see that the divergence 
in K near r  =  0 becomes stronger as v increases. This is due to the buildup of scalar radiation 
near r  =  0 from infalling radiation. Moreover, it follows from the outgoing null geodesic solu-
tion (24) that geodesics at r < rc with rc ∼ v1/2−p must terminate at r  =  0 in a finite time v. 
This means that the singularity at r  =  0 must be spacelike.

5. Concluding remarks

In this paper we have introduced a novel approximation scheme valid in the interior of black 
holes which is simply a late-time expansion. Together with a set of assumptions, we have 
employed this scheme to show that decaying 1/v p fluxes of radiation through the horizon 
necessitate the existence of a spacelike singularity at r  =  0. While we have focused on spheri-
cal symmetry, our analysis readily generalizes to geometries with no symmetry including that 
of rotating black holes. We shall report on this in a coming paper.

It is interesting that the structure of the singularity at r  =  0 is independent of the power p  
of the infalling radiation. Indeed, the scalar energy density (36) just grows linearly with time 
v. This happens because the energy flux through M is time-independent. It turn out that the 
energy flux S  through M is approximately time-independent so long as |d+Ψ|2|λ=0 is slowly 
varying compared to e−κv. In particular, with this assumption equations (20) and (21) yield 
ζ ∼ |d+Ψ|2|λ=0 and equation (32) implies S ∼ |d+Ψ|2|λ=0/ζ ∼ 1. This suggests our analysis 
can be generalized to de Sitter spacetime, where |d+Ψ|2|λ=0 decays exponentially instead of 
with a power law. It would be interesting to study the scenarios found in [21, 27, 28]. We leave 
this for future work.

We conclude by discussing the generalization of our analysis to two-sided black holes. 
Two-sided black holes have both singular ingoing and outgoing branches of the CH, where 
the geometry effectively ends. For weakly perturbed two-sided black holes, the outgoing 
branch of the CH lies at rCH(v) = r− − ε where ε → 0 characterizes the strength of the 
perturbations [22]. Therefore, when integrating the equations of motion (6) inwards along 
some v = const. geodesic, one cannot integrate beyond r = rCH, since a singularity is 

7 From the perspective of outgoing observers, ingoing radiation appears blue shifted by eκv.
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encounter ed there. Correspondingly, our analysis of spacelike singularities, which takes place 
at 0 � r < rc � r−, cannot be applied to weakly perturbed two-sided black holes. This is 
consistent with the results of [22], where it was demonstrated that weakly perturbed two-sided 
black holes only contain null singularities on the CH.

What happens when perturbations of two-sided black holes are large? With large perturba-
tions there is no reason to expect rCH(v) ≈ r−. Indeed, numerical simulations of two-sided 
black holes with large perturbations indicate that the CH contracts to r  =  0, at which point 
it meets a spacelike singularity [11, 12]. If at late times rCH(v) � rc(v), then our analysis in 
this paper should apply. Namely, Price Law tails result in a growing cloud of scalar radiation 
forming at r � rc, which itself necessitates the existence of a spacelike singularity at late 
enough times with the curvature near r  =  0 growing like (44). We shall report on numerical 
simulations of such a scenario in an upcoming paper.
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Appendix. Numerics

For the purpose of bolstering our assumptions that (i) the geometry at r  >  r− relaxes to the 
RN solution and (ii) that A′ = ∂λA varies smoothly across r−, here we present a numerical 
solution to the Einstein–Maxwell-Scalar system. For numerical simulations we have found 
it convenient to change radial coordinates from the affine parameter λ to areal radius r. The 
metric then takes the Bondi–Sachs form [29]

ds2 = e2B[−2Vdv2 + 2dvdr] + r2(dθ2 + sin2 θdθ2). (A.1)

We numerically solve the Einstein–Maxwell-Scalar equations of motion using the methods 
detailed in [30]. We employ pseudospectral methods with domain decomposition and adaptive 
mesh refinement in the radial direction. For initial data we set

Ψ = e−r4/w4
, (A.2)

with w  =  1/2. The mass and charge of the geometry were chosen to be M  =  0.9 and Q  =  0.78. 
With these parameters r−  =  0.45 and κ = 2.2. We then evolve the system from time v = 0 to 
v = 4.1.

In the left panel of figure A1 we plot rE = |r∂rΨ|2 at several times. Initially the support of 
|r∂rΨ|2 extends beyond r−. However, as v increases |r∂rΨ|2 becomes localized to a ball whose 
surface approaches r−. By Birkoff’s theorem, the geometry at r  >  r− must therefore approach 
the RN solution. Note derivatives of the scalar field at r  =  r− grow with time.

∂λA is related to B, V  and the electric field E via

∂A
∂λ

= 2(∂v + V∂r)B +
1
2r

e2B(1 − 4πr2E2)− V
r

. (A.3)

In the right panel of figure A1 we plot ∂λA at the same times shown in the left panel. At 
r  >  r−, ∂λA approaches the associated RN expression as v increases, with ∂λA|r=r− → −κ. 
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Moreover, at r  <  r− we see that ∂λA approaches −κ over an increasing large domain as v 
increases.
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