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PREFACE

The thirty-one papers collected in this volume represent most of the arti-
cles that I have published in the philosophy of science and related founda-
tional areas of science since 1970. The present volume is a natural succes-
sor to Studies in the Methodology and Foundations of Science, a collection
of my articles published in 1969 by Reidel (now a part of Kluwer).

The articles are arranged under five main headings. Part I contains six
articles on general methodology. The topics range from formal methods
to the plurality of science. Part II contains six articles on causality and
explanation. The emphasis is almost entirely on probabilistic approaches.
Part III contains six articles on probability and measurement. The impor-
tance of representation theorems for both probability and measurement
is stressed. Part IV contains five articles on the foundations of physics.
The first three articles are concerned with action at a distance and space
and time, the last two with quantum mechanics. Part V contains eight
articles on the foundations of psychology. This is the longest part and the
articles reflect my continuing strong interest in the nature of learning and
perception. Within each part the articles are arranged chronologically. I
turn now to a more detailed overview of the content.

The first article of Part I concerns the role of formal methods in the
philosophy of science. Here 1 discuss what is the new role for formal
methods now that the imperialism of logical positivism has disappeared.
The new imperialism of historicism is also now showing signs of fading.
We have, I hope, entered a pluralistic era of irenic appreciation of many
different ways of looking at science. In a closely related vein, Article
2 expresses skepticism about the methods used as yet to study the na-
ture of scientific revolutions. I contrast the literature on these matters
with methodologically more sophisticated approaches dealing with other
subjects in history, especially economic history. Article 3 examines the

xi
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limitations of the axiomatic method in ancient Greek mathematical sci-
ences, which have too often been viewed themselves as paradigms of the
axiomatic method. There is, I would claim, not too great a difference
between the situation then and now regarding the use of axiomatic meth-
ods in science. Article 4 expresses skepticism about the unity of science
and affirms the evident plurality of modern science, which has increased
even more since this article was written. Article 5 contrasts the role of
heuristics and the role of the axiomatic method in science and mathemat-
ics. Greater attention to working heuristics in various parts of science is
something I hope to devote more effort to in the future. What is said here
is a beginning. The final article (#6) in this section is on representation
theory and the analysis of structure, a favorite topic of mine, since I first
wrote about such matters in detail in the last chapter of my Introduction
to Logic, published in 1957.

Part II is focused on causality and explanation. Much of what I have
to say in the six articles in this part develops questions unanswered in
my monograph A Probabilistic Theory of Causalily, published in 1972.
Article 7 deals with causal analysis of hidden variables with, as would be
expected, special reference to quantum mechanics. This article could also
easily have been placed in Part IV on the foundations of physics. Article
8 is a long reply to criticisms of some of my views on causality by the late
Richard Martin. In answer to Martin’s criticisms I appropriately modified
some of my more sweeping claims and concentrated on the use of causal
concepts in science. In Article 9 I deal with a phenomenon that I would
have been skeptical of at one time, but no longer am, namely, giving good
scientific explanations of unpredictable phenomena. With a modern em-
phasis on chaos it is a topic we shall be hearing a great deal more about in
the future. In Article 10 dealing with conflicting intuitions about causal-
ity, I examine a number of puzzles, including Simpson’s paradox, which as
a Bayesian I do not find fundamentally paradoxical. Article 11 is the only
article written jointly with another person, in this case Mario Zanotti, and
is on probabilistic explanations. Here we prove the somewhat surprising
theorem that deterministic hidden variables can be found if and only if
the phenomenological variables have a joint probability distribution. In
the last article of this part (#12) I deal with non-Markovian causality
and show what conditions are required for non-Markovian causes to be
transitive, a puzzle that was left open in my 1971 monograph. I use some
earlier work of Eells and Sobers showing that a Markovian condition is
sufficient for transitivity.

Part III concerns the foundations of probability and the foundations
of measurement, two subjects that in my own work have been much inter-
twined. Article 13 gives a simple presentation of measurement structures
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of a variety of kinds. The elementary character comes from assuming
finiteness of the basic domain and equal-interval placement of the ob-
jects, as would be characteristic of the fundamental theory of various
measurement scales. Article 14 uses some of the same results to give a
more general theory of the measurement of belief, with the use of upper
and lower probabilities to characterize the nature of partial beliefs. Ar-
ticle 15 widens the domain of analysis to the logic of clinical judgment
with emphasis on Bayesian and other approaches. This is the only article
I have written on clinical judgment in medicine, although it is a subject I
have been interested in for a long time, and have worked with a number of
students on. I regret not having as yet written more in this direction, for
1t is a wonderful area in which to test one’s intuitions about the useful-
ness of probability and also fundamental measurement. Article 16 gives
arguments for randomizing, a topic of special importance to a sometime
Bayesian like myself. As is clear from the article, I reject an extreme
Bayesian viewpoint that sees no need for randomizing at all. I continue
to be reasonably satisfied with the arguments given in this article, but
I also see the need to accompany 1t with a more satisfactory technical
discussion of randomization in finite sequences. As evidence that I am
not completely a Bayesian about probability, Article 17 is concerned with
propensity representations of probability. Here I am especially concerned
to examine the way in which such representations of probability naturally
arise objectively in physics. Two important cases are considered. One
exemplifies Poincaré’s method of arbitrary functions, and the other the
important results one can get from the classical three-body problem to
show that randomness can be found in as strong a form as you desire
in simple deterministic systems consisting of a small number of parti-
cles. The last article in this part (#18) concerns general philosophical
arguments about the choice between indeterminism or instability and the
question of whether it matters which we choose. The concept of instabil-
ity as a replacement for that of indeterminism has not been considered as
much as it should in the philosophy of science. What I have to say needs
much further development.

Part IV is concentrated on the foundations of physics. Article 19 is
the only one written before 1970. It is an early article of mine from
1954 on Descartes and the problem of action at a distance, originally
published in the Journal of the Hislory of Ideas. In fact, it is a rewrite
of a chapter in my 1950 doctoral dissertation on the problem of action
at a distance. Article 20 concerns some open problems in the philosophy
of space and time. Most of the problems seem to still be with us, even
though the article was written 20 years ago. In a similar vein, Article 21
concerns Aristotle’s concept of matter and it’s relation to modern concepts
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of matter. Along the way I look at the theory of matter advocated by
Descartes, Boscovich, and Kant. In spite of my long-term interest in
Kant’s philosophy of science, this is the only article in the volume dealing
with Kant, and even the discussion here is somewhat en passant. Article
22 deals with Popper’s analysis of probability and quantum mechanics. It
is closely related to my views on the foundations of probability and could
just as well have been placed in Part III. Article 23 represents my most
recent views on the probabilistic foundations of quantum mechanics. It
was an article written for a symposium for the statistician Jack Good, on
the occasion of his 70th birthday. The theory of probability in quantum
mechanics is a weak theory of the mean, as I try to explain in detail in the
article. In my judgment the recognition of the probabilities being only
mean distributions is a much more important fact about probability in
quantum mechanics than is an attempt to develop a theory of probability
defined on structures that generalize classical Boolean algebra.

Part V is concerned with the foundations of psychology. Article 24 is
one I wrote in 1975 to chart a course from behaviorism to neobehavior-
ism. By “neobehaviorism” I meant the still standard practice in cognitive
psychology to use as data psychological responses, but at the same time
to admit the necessity of rich internal mental structures. Article 25 was
written for a conference on structural models of thinking and learning and
is concerned with learning theory for probabilistic automata and register
machines, with applications to education research, in particular the learn-
ing of elementary mathematics. The work here amplifies and makes more
concrete results that were part of my earlier work on stimulus-response
theory of finite automata. Article 26 moves to perception and analyzes
from both a historical and conceptual standpoint the question of whether
or not visual space is Euclidean. I will not state the answer here; you have
to read the article to find out. Article 27 is one concerned with Donald
Davidson’s views on psychology as a science. Davidson was a colleague
of mine at Stanford in the 50’s and we wrote several articles and a book
together on decision making. It was a pleasure to write an analysis of the
views on psychology he has expressed in articles published over the last
several decades. Article 28 is a rather long one on current directions in
mathematical learning theory. The first part surveys many different kinds
of work including perceptrons and cellular automata, and the second part
is devoted to amplifying and extending in a technical way my earlier work
on stimulus-response theory of finite automata. Article 29 is on deriving
models in the social sciences. Here I try to put emphasis on a theme I have
emphasized elsewhere, but nowhere else in this volume really, namely, on
the importance of studying and thoroughly understanding the methods
used for deriving models, starting of course with the classical methods of
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deriving differential equations in physics. I try to draw some contrasts
with various methods currently widely used in the social sciences. I end
with a model aimed at very specific psychological ideas but which depends
on classical methods for deriving the governing differential equation. Ar-
ticle 30 in this section returns to the theme of perception and analyzes the
principle of invariance with special reference to perception. The first part
deals with geometrical semantics for spatial prepositions. Here I extend
some earlier work with Colleen Crangle. In the second part I return to
the question of visual space being Euclidean and present more details of
recent experiments and relevent theory. Anyone who is not persuaded by
the answer given in Article 26, should also read the second half of this
article to be fully convinced of what is the correct answer to the question
of whether or not visual space is Euclidean. The final article (#31) is
one that I wrote for a recent symposium on reductionism in science. I
ask the question, Can psychological software be reduced to physiological
hardware? In this case I will give away the answer. The article consists
of four arguments for answering in the negative.

Broadly speaking, all of the articles on the foundations of psychology
are concerned either with learning or perception. Some of the work in
the part on probability and measurement could also easily be classified
as belonging to the foundations of psychology. In any case, my most
recent work in learning is not reflected in these articles for I am now
concentrating above all on machine learning of natural language. This
work is represented in the volume of my papers on language recently
published, Language for Humans and Robots (1991b).

Among philosophers of science I am probably best known for advocat-
ing set-theoretical models and methods in studying particular problems.
That interest and viewpoint are certainly reflected in the present volume.
On the other hand, I like to stress that the strong empirical aspect of
my work in the philosophy of science and also in science is present in
this volume, although not as adequately represented. The general point
I want to emphasize by mentioning this continuing concern with detailed
empirical data is that I very much believe in a pluralistic approach to both
philosophy and science. I am not at all dedicated to reducing all ques-
tions to those that can be framed in an explicit way within an appropriate
set-theoretical model.

In preparing these thirty-one articles for publication, I have made
no essential changes, but have of course corrected obvious mistakes or
misprints. In addition I have tried to standardize the notation in a given
area. However, given the diversity of topics covered and the conventions
of notation reigning in different disciplines, it has not been feasible to
introduce a completely standard notation throughout the volume. I have
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also deleted from some articles preliminary material of a standard formal
kind which appeared in an earlier article, in order to avoid the most
egregious forms of repetition. There is still some repetition in articles on
common topics since it would have been awkward to delete all areas of
overlap. I have also standardized the format of section headings, for the
original articles were published in journals with many different styles. The
references to the literature given in the various articles are all collected
together at the end in a single list. Footnotes in the original articles are
numbered beginning anew with each article. An index of authors referred
to is given. In place of a subject index, there is a detailed table of contents
at the beginning of the volume.

Acknowledgments for permission to reproduce the various articles are
given at the bottom of the first page of each article, but thanks are ex-
tended here to the many editors and publishers who generously agreed to
publication. Finally, I want to acknowledge the extensive work of Laura
Tickle, sometimes with Emma Pease’s assistance, in preparing this vol-
ume for publication in the now increasingly standard format of IATEX. I
also want to express my thanks to Kaija Lewis for her careful reading of
the proofs and final WTEX editing.

PATRICK SUPPES

Stanford, California



PART I

GENERAL
METHODOLOGY



THE ROLE OF FORMAL
METHODS IN THE PHILOSOPHY
OF SCIENCE

1. THE END OF IMPERIALISM

In the period that ran from Frege to the Vienna Circle and Carnap, a
strongly reductionist view of the philosophy of science held sway. The
significant problems should be reducible to problems that could be for-
malized within logic. Those that could not be treated in this fashion
should be dismissed as being too vague to be of interest. This description
is something of a caricature but I shall not convert it into a genuine his-
torical account. It is too familiar to all of us to be recounted here. My
point is, rather, to emphasize that such a reductionist view of the place of
formal methods in the philosophy of science is now faded. If anything, we
face currently a new imperialism of historical methods, but I am doubtful
that we will move to anything like a reductionist Hegelian position that
all gquestions are ultimately historical in nature.

The present pluralistic and schematic view of the philosophy of science
does have the danger of a lack of intellectual discipline. It can too easily
be said that any sort of method is appropriate, but in most areas of

*Reprinted from Current research in the philosophy of science, P. D. Asquith and
H. E. Kyburg, Jr. (Eds), 1979, pp. 16-27. East Lansing, MI: Philosophy of Science
Association.



4 PART I. GENERAL METHODOLOGY

science, as well as in the philosophy of science, no broad fundamental
theory seems achievable. We shall be faced for the foreseeable future with
a plurality of problems and methods. Yet I am stating the thesis in a
weaker form than I am prepared to affirm it. The absence of fundamental
theory dominating a given area of science or the philosophy of science is
a healthy and normal state of affairs. It is only during certain periods of
aberration that we seem to have a fundamental theory that is at all close
to being satisfactory in relation to the problems and data confronting
us. Ptolemy had such a theory when he was flourishing in Alexandria
and it was the case when Kepler rewrote the fundamental assumptions
of astronomy and later when Newton rewrote them once again. Other
examples of the hegemony of single fundamental theories can be drawn,
given certain periods of chemistry, perhaps recently from certain parts of
molecular biology, and even probably for a while in economics. It is my
view, however, that since World War II the engines of empiricism have
vastly outrun the horse-drawn carriages of theory. The facts that have
been accumulated have simply overwhelmed theory in almost every area.
The range of problems that have been posed has exceeded the capacity of
theory to handle, and we are now in most scientific domains in a happy
state of schematic and pluralistic approaches to most problems. High-
energy physicists still like to announce that with just another order of
magnitude of increase in the energies available we shall finally get to the
ultimate simples of the universe. Most outsiders who have followed such
repeated claims over the past two decades can scarcely be anything but
skeptical, and marvel at this latest expression of philosophical naiveté.

It is also worth mentioning that at the very time historical methods
are becoming increasingly important in the philosophy of science, formal
methods are assuming a comparable importance in history. Some acces-
sible examples of elementary quantitative research in history are to be
found in the volume edited by Aydelotte, Bogue, and Fogel (1971). Tech-
nically more sophisticated instances are abundant in the restricted area
of economic history.

Perhaps one of the best examples of the decline of theoretical hege-
mony is in psychology. During the 1940s and much of the 1950s, behav-
iorism was the dominant theoretical viewpoint and the organizing force,
from a methodological standpoint, throughout the parts of psychology
considered fundamental or basic by a large number of American psychol-
ogists. (The situation was rather different in Europe, but experimental
psychology is the most American of all of the fundamental scientific dis-
ciplines, and so I shall not try to comment on the European scene.) The
symbolic end of this hegemony was Chomsky’s famous review (1959) of
Skinner’s book on verbal behavior (1977), but the thrust of behaviorism
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continued into the middle 1960s, and it is only in the present decade that
the deep-lying nature of the theoretical disarray in psychology has become
so apparent. It is my conjecture, along the lines of what I have already
said in general, that the many separate theoretical enterprises now flour-
ishing in psychology will not be replaced in the future by a single unifying
discipline. In retrospect it is apparent that the claims of theoretical psy-
chology, as exemplified for instance in Clark Hull’s work of the 1930s and
1940s, are as intellectually absurd as the claims of Kant to establish an
a priori foundation of natural science—indeed, most philosophers would
probably find Kant more sensible, but then I think that is because they do
not often look at his detailed arguments as, for example, in the Metaphys-
ical Foundations of Natural Science but at the more general and therefore
less absurd views to be found in the Critique of Pure Reason.

One of the points that I want to make in these remarks about the
pluralism of theories is that, just as physicists have in the past been dom-
inated by the search for ultimate simples and ultimate theory, so philoso-
phers of science have sought certainty and completeness of theoretical
foundations for science. This search runs all the way from Aristotle’s
views on demonstration in the Posterior Analytics to Carnap on the logi-
cal structure of the world. The decline of this long search for bedrock does
not mean the end of the relevance of formal methods in the philosophy
of science but rather the beginning of a new era of realism about their
limitations as well as their potential.

The rest of this paper is concerned to expand on this last point. In the
next section I discuss the variety of formal methods that seem appropriate
in the philosophy of science. The following section is concerned with a
survey of some of the open problems in the philosophy of science, in the
analysis of which formal methods can play a role.

2. VARIETY OF FORMAL METHODS

The theme of my remarks is, as before, pluralistic in nature. I begin
with the point that there is no agreed upon formal methodology to be
used in the philosophy of science; a variety of methods are available and
appropriate. It is no longer a philosophically interesting question to seek
a single methodology.

At least four methods have a certain saliency; two of them have been
prominent in the last half century. The four I have in mind are: formal-
ization in first-order or second-order logic (extensional or intensional),
formalization within set theory, the procedural approach characteristic of
computer science, and the approach of informal rigor vividly supported
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by Georg Kreisel on various occasions. Broadly speaking, all of these
methods are characterized by some form of mathematical approach to
problems in the philosophy of science. It is not my thesis to argue that
all problems can be brought within the framework of one of these formal
approaches, but I would strongly resist the view that most problems of in-
terest lie outside of such methods. There are, of course some philosophers
who now have such a strongly historical orientation toward problems in
the foundations of science that there is skepticism about the use of formal
methods on any problems of significance. In my view, this is a momen-
tary fashion that is mistaken. A properly balanced philosophy of science
will encompass both formal and historical methods, and, indeed, some
of the more sophisticated problems in the history of science can well be
approached from a formal standpoint. Some of the claims about scientific
revolutions, for example, would seem to require quantitative and statisti-
cal analyses of data if they are to be taken as serious claims having the
same status as other scientific claims about natural or social phenomena.

Of the four methods of formalization I mention, logical formalization
is certainly the one that has received the most attention from philoso-
phers, and those who are not very conversant with science often tend to
think of this as the only kind of formalization. Many interesting results
have been achieved by such methods. Perhaps even more important, the
widespread and almost universal familiarity among philosophers of sci-
ence with the concepts of elementary formal logic have provided a useful
common framework for discussion of a great variety of problems.

On the other hand, I have emphasized in numerous publications for
many years the limitations of such formalization because of the richness
of structure characteristic of most developed scientific theories. I have
baptized this attitude of mine “to axiomatize a scientific theory is to define
a set-theoretical predicate.” I continue to think that such set-theoretical
methods are appropriate for a wide variety of problems in the philosophy
of science, and I have tried in various papers to make this view a concrete
one by providing a number of examples. Such set-theoretical methods are
not as widely used in the philosophy of science as methods of formal logic
but they are certainly better known and more widely accepted than the
last two methods I mentioned.

The procedural approach characteristic of computer science is just
gaining currency in the philosophy of science. It is almost certainly the
case that the pursuit of procedural or computational methods will be of
considerably more importance than the further extension of set-theoretical
methods in the development of fundamental psychological theories of cog-
nition, learning, and perception. More generally, procedural approaches
will probably come to be of greater importance theoretically in the phi-
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losophy of the social sciences than they now are. Because of the extensive
use of computational methods by most empirically oriented social sci-
entists, it seems likely that many future theoretical developments will
depend upon the use of computational ideas, rather than set-theoretical
concepts, for their formalization. Of course, such formalizations outside
of set theory are already familiar in constructive parts of the foundations
of mathematics but their use in science, as opposed to mathematics, will
have a different flavor because of the extensive computer orientation of
the methods.

I also want to mention the conjecture that procedural methods will
turn out to be especially important in developing an appropriate theory
of meaning and of comprehension for natural language. An example that
would not be accepted by many people is the proposal that the meaning
of a proper name may be taken to be the set of internal procedures by
which the individual that uses or recognizes the proper name attaches
properties or relations to the object denoted by the proper name. These
procedures or programs internal to a particular language user are private
and in detailed respects idiosyncratic. The appropriate notion for a public
theory of meaning is a notion of equivalence or congruence of programs
or procedures that is considerably weaker than this very strong sense of
idiosyncratic individual program. If this viewpoint is at all correct, the
search for any hard and fast sense of identity of meaning is mistaken—it
is hidden away in the internal programming of each individual and is a
notion of limited scientific interest. What we are after are congruences of
procedures that can collapse these private features across language users
to provide a public and stable notion of meaning.

Put still another way, procedural approaches are a natural method for
incorporating intensional and constructive ideas within the same concep-
tual framework. For this reason especially they would seem to have a
very considerable future as an appropriate method of formalization in the
philosophy of science.

Kreisel’s lively defense of informal rigor (see especially his 1967 arti-
cle) has been directed at overly formalistic and positivistic conceptions
of the foundations of mathematics and rather little at the philosophy of
science. His views are a proper propaedeutic to those who have been too
enthusiastic about formalism and not sufficiently attentive to the need for
informal and intuitive ideas of a definite nature about a subject in order
to have significant ideas about it. In my own view, some of the analyses
offered of the notion of causality in the philosophy of science suffer from a
lack of informal rigor, that is, from a lack of serious attention to detailed
scientific examples and the test of the formal ideas proposed against a
variety of systematic intuitive results. Kreisel has made the point to me
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in several conversations that the use of set-theoretical methods in the
philosophy of science is actually an example of informal rigor because it
is the intuitive notion of set that is being used and not one axiomatized
within first-order logic.

3. VARIETY OF OPEN PROBLEMS

I have divided this discussion of open problems to which formal methods
are relevant into three parts, one dealing with theories, one with method-
ology, and one with problems of experimental evidence.

Theories. The historical development of physics is being investigated in
fascinating ways by historians of science and by philosophers of science
using an historical approach. All of us will learn a great deal from this
work, whether we concentrate on Neugebauer’s history of ancient astron-
omy (1975), current work concerned with the history of quantum mechan-
ics, or any period in between. Although I am a strong advocate of formal
methods, I am also an inveterate reader who has learned much from a
variety of historically oriented works. My own generally skeptical views
about having certain knowledge of a clear and definite sort about any
complex phenomena have been much reenforced by Neugebauer’s skep-
ticism concerning the possibility of ever tracing causal influences in the
history of science.

But historical study of fundamental scientific disciplines is, I want to
insist once again, not the whole story for the philosophy of science. There
are many questions of great philosophical interest that are no more histor-
ical than the corresponding development of new science. All such work,
of course, should be properly historical in paying attention in technical
detail to prior work that is relevant. But this is not what is meant by
historically oriented studies and I only mention it because there has been
a tendency in the philosophy of science to write about subjects without
prior attention to the serious previous work. One of my own favorite ex-
amples of the view that ignorance is best is Norman Campbell’s work on
the theory of measurement, which reflects no serious acquaintance with
the deeper and more sophisticated earlier work of Helmholtz and Hoélder.

In those domains of physics that are properly regarded as being of
fundamental philosophical interest, the number of formal problems of
foundational interest is too large to enumerate here. It is easy to give
a long list of open formal problems in quantum mechanics alone, the
most important empirical scientific theory of this century. We are as yet
far from understanding the role of probability in quantum mechanics. At
an even more general level, there is still dispute about whether the final
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formulation of quantum mechanics should depend upon a nonstandard
special quantum logic. The role of the theory of measurement and the
explicit theory of the observer is also still a subject of controversy and one
whose clarification bears on a number of significant problems of theory
construction.

It is sometimes thought that the use of formal or axiomatic methods in
the study of such problems is quite foreign to the work of physicists them-
selves and should be regarded as a new kind of scholasticism introduced
by philosophers seeking to impale new angels on new needles.

Without entering into a dialectical discussion of this matter, I want to
quote one significant piece of evidence to the contrary, the introductory
paragraph of the well-known book on axiomatic quantum field theory by
Bogolubov, Logunov, and Todorov (1975) on the place of the axiomatic
approach in physics.

It is widely believed that axiomatization is a kind of polish-
ing, which is applied to an area of science after it has been,
for all practical purposes, completed. This is not true, even
in pure mathematics. Admittedly, the modern axiomatization
of arithmetic and Euclidean geometry marked the completion
of these disciplines (although at the same time it stimulated a
new science—mathematical logic, or metamathematics). For
most areas of contemporary mathematics, however, such as
functional analysis, axiomatization is a fundamental method
of exploration, a starting point. (Of course, the system of ax-
ioms may be modified as the subject develops.) In theoretical
physics, since the time of Newton, the axiomatic method has
served not only for the systematization of results previously
obtained, but also in the discovery of new results. (1975, p. 1)

I mention as examples two other areas of science in which open problems
exist for which formal methods are appropriate, and both the analysis
and results would be of philosophical interest.

One concerns the notion of causality in the work of modern mathemat-
ical economists and econometricians. There is an increasingly technical
literature on the use of causal notions in economics, especially as inter-
twined with a variety of detailed statistical methods for the analysis of
economic data. To some extent the methods are mathematically intricate
and relatively sophisticated because of the absence of the possibility of
experimentation in economics. More powerful analytical methods are re-
quired in order to make a firm identification of causal phenomena. As far
as I know there has not been any really thorough formal analysis from
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the standpoint of the philosophy of science of this large economic litera-
ture (a beginning may be found in Suppes (1970)). It is my belief that
we as philosophers could learn much from this literature and at the same
time we could bring to it a philosophical perspective that could contribute
something as well. A simple but elegant technical example of this litera-
ture is to be found in Hosoya’s (1977) proof of the general equivalence of
the Granger (1969) condition for noncausality and the Sims (1972) con-
dition. It is my impression that economics is almost the only science at
present in which one can find unabashed technical discussions of causality
in general terms and with careful theoretical development of concepts. (I
exclude in this remark the use of causality principles in physics which
refer essentially only to precedence in time.)

As a second example I mention the classical mind-body problem in the
new guise of software and its independence of hardware. One need not go
far in current neuroscience to realize that we are probably further from
understanding how the mind works at a neural level than we ever thought
we would be, at this point in time, say 30 or 40 years ago. The more work
that is done, the greater the mystery deepens and it now seems an ap-
propriate formal problem for psychology to establish under the weakest
and most reasonable assumptions possible the impossibility of reducing
complex phenomena to neurophysiological phenomena. The analogy here
is that from an inspection of computers one can say very little about the
kind of software that will be written for them, and if the problem were
approached, once the program is encoded, in a purely physical fashion, I
do not doubt that we would be unable ever to discover what the program
is. There is even some skepticism that a large operating system encoded
in binary digits could be fully understood if no external cognitive guides
were provided. In any case, the relation between brain and mind is much
worse because we do know so little about the detailed physical basis for
encoding complex mental events. It would be interesting to formulate
a variety of theorems about the impossibility of a reduction of mind to
brain. Such theorems should play the same role in psychology that im-
possibility theorems about hidden variables play in quantum mechanics.
The rigorous pursuit of the details should prove enlightening and should
give us new ideas about how to formulate the concepts of psychology in a
way that is properly independent of neurophysiology. (A somewhat more
detailed discussion of these matters is to be found in Suppes (1975).)

Methodologies. The two decades running from 1945 to 1965 were marked
by a more rapid expansion of work in mathematical statistics than in any
other period of history. This was the time when decision-theoretic ideas
were made the center of much of the theoretical literature in statistics.
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The spread of applied statistics in the empirical sciences has also been
more marked in the period since World War II than at any other time. At
least until rather recently, these developments in mathematical statistics
at both the theoretical and applied level have been largely ignored by
philosophers, even those interested in the foundations of probability and
induction.

Part of the reason for this separation between the statistical and philo-
sophical literature on the foundations of induction has been the develop-
ment of a separate strand of work by philosophers, generally labelled con-
firmation theory. A characteristic feature of confirmation theory has been
its use of particular formal methods, primarily those of elementary logic.
As a consequence, it has been difficult to make contact with the more
elaborate and mathematically more technical machinery of mathematical
statistics. Recently this situation has begun to change and there is now
an increasing number of philosophers becoming knowledgeable about the
foundations of statistics.

I would like briefly to mention some of the problems of statistical
methodology of great importance in applied work which have not yet re-
ceived definitive solutions. These are problems of obvious philosophical
interest, and they illustrate the important role of formal methods in the
foundations of probability and induction. First, there has been in the
last decade and a half a new and extensive body of work on the con-
cept of randomness. In the hands of Martin Lof and others, this concept
has now begun to have implications for the theory of statistics as well
as probability. A related question is the Bayesian problem of justifying
random-sampling procedures. Formal and axiomatic analysis of the ba-
sis for random sampling continues to be a prominent problem and one
that deserves philosophical consideration. More generally, the theory of
finite samples and the admissibility or inadmissibility of the concept of an
infinite population from which samples are drawn need further analysis.
Certainly finitistic Bayesians would not be willing to admit the appro-
priateness of the concept of an infinite population, but the concept, on
the other hand, has a long history of use and development in objective
statistical theory.

The theory of experimental design has had intensive technical devel-
opment since World War II, but the foundational principles are still in
an unsatisfactory state. The recent flurry of interest in Bayesian statis-
tics has not yet produced a satisfactory Bayesian theory of experimental
design. The foundational literature that derives from de Finetti has as
yet scarcely made contact with the technical problems of design. Almost
certainly the principle of exchangeability, whose importance de Finetti
has emphasized since the late 1920s, should play a prominent role in the



12 PART I. GENERAL METHODOLOGY

foundations of the relevant Bayesian concepts, but much remains to be
done to work out the formal theory.

This last mention of the role of the principle of exchangeability pro-
vides an opportunity to make a point that is implicit in what I have
already said. I see no basis for drawing a sharp separation between the
work that is to be done by philosophers interested in these problems and
by statisticians with similar interests. There is a necessary and even a
desirable overlap. It does not mean that philosophers must become pro-
fessional mathematical statisticians in order to pursue problems of the
foundations of statistics but it does mean, as in the case of the philoso-
phy of science in other areas, as, for example, the philosophy of quantum
mechanics, that detailed knowledge of relevant scientific work is a neces-
sary background of informed philosophical analysis. What I would urge
as strongly as possible is that philosophers meld their own formal meth-
ods with those of statisticians, in order to concentrate on the conceptual
problems of interest. In this necessarily superficial survey of problems,
I have especially mentioned problems of randomness of sampling, and of
experimental design, because it is just these problems of central impor-
tance in the conceptual foundations of statistics that have received quite
inadequate analysis in the philosophical literature on probability and in-
duction.

Problems of experimental evidence. 1 have for a long time worried about
formal models of data (1962). It is still my conviction that the philos-
ophy of science has a significant contribution to make to the theory of
how experimental evidence is used to test or evaluate scientific theories.
Obviously a variety of problems that arise in this context are primarily
statistical in character and would properly be treated under the heading of
methodologies as discussed above. However, a cursory examination of the
experimental literature in any developed part of science makes clear that
there is a plethora of problems about the relation of evidence to theory
that are not statistical in character and that need systematic analysis.
One task of formal analysis that I have tried to encourage several of
my students to undertake, but as yet without any major success, is the
detailed analysis of the relation between the major experimental evidence
supporting quantum mechanics and the theory itself. There is, as far as I
know, no place that systematically presents the evidence supporting the
classical theory in a methodologically meticulous fashion. Indeed, it is the
practice in textbooks and treatises on classical quantum mechanics not
to present supporting experimental evidence in any serious form at all.
A couple of years ago I wanted to determine how well the experimental
evidence supported the claim that radioactive decay obeys an exponential
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probability law. I was surprised to find how difficult it was to locate
in the literature a detailed statistical analysis of this problem and how
much it was neglected even in its most superficial aspects in the standard
discussions of radioactive decay. This, however, is a simple case. The
much more complicated cases of the main experimental data supporting
quantum mechanics are in a very unsatisfactory status from a systematic
viewpoint, and much remains to be done.

To some extent, one of the best traditions in this respect is in psy-
chology, but even here the formal theory of how experimental evidence is
related to theory is not as explicit as it should be. I do want to empha-
size the formidable character of the problems of organizing in a formal
way the relationship between experimental evidence and theory. In re-
cent years I have attempted to read some of the current experimental
literature in physics. It is almost as if I had decided to learn a foreign
language. Although I have a reasonable familiarity with certain areas of
theoretical discussion in physics, I found the experimental literature to
be an entirely different matter. The abbreviated technical descriptions
of equipment, its functional characteristics, and the description of the
data obtained, require a major effort of analysis to become conceptually
independent of the large preceding literature on the same topic. I can
now understand why my friends in physics tell me that the experimental
literature in one area is almost unreadable even by someone working in
a nearby area. I am not proposing that philosophers attempt to rework
a large part of this literature—the task is clearly an impossible one. It
would be of interest to have a detailed formal analysis of some particu-
lar areas of philosophical significance, for example, recent experiments on
hidden-variable theories, if only for the purpose of bringing out how com-
plicated the relation is between theory and experiment in the developed
domains of science. The stories we get from formal accounts in philosophy
unrelated to these details, or the equally simplified stories we get from
historical accounts of past work in science when matters were technically
much less complicated, are misleading. We need a corrective both to too
much emphasis on purely formal methods on the one hand and purely
historical methods on the other, by a proper and detailed look at current
experiments in developed parts of science.

4. FINAL REMARK ON HISTORICAL AND FORMAL METHODS

There has been throughout this conference an obvious intellectual tension
between those who advocate historical methods as the primary approach
in the philosophy of science and those who advocate formal methods.
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This tension in itself is a good thing. It generates both a proper spirit of
criticism and a proper sense of perspective. Each group can tell the other
about their weaknesses and the pursuit of philosophical matters can be
undertaken at a deeper level. There is no worse fate for a developing the-
ory or method than not to be confronted with opposing views that require
a sharpening of concepts and a detailed development of arguments. On
the other hand, there seems no reason not to find room in the philosophy
of science for a vigorous pursuit of both historical and formal approaches.

I share with my more historically oriented colleagues a kind of horror
at the thought of a formal philosophy of science that develops on its own,
independent of the rich material offered by the sciences themselves. I
have already mentioned some examples of this tendency and I join them
in encouraging the pursuit of problems and of methods that have a com-
plexity adequate to the actual work in developed sciences. But I also want
to remind those concerned with historical methods in the philosophy of
science that about ninety percent of all scientists who have ever lived are
now alive, and the development of science since World War II is the most
smashing success story in the history of thought. To be concerned only
with the long historical perspective and not to understand the systematic
details of modern science is as mistaken as the pursuit of empty formal
methods that make no contact with developed scientific theories and their
supporting experiments.

My intent is to end on the pluralistic note that there is more than
enough interesting and important work for all of us. The tyranny of any
single approach or any single method, whether formal or historical, should
be vanquished by a democracy of methods that will coalesce and separate
in a continually changing pattern as old problems fade away and new ones
arise.



THE STUDY OF SCIENTIFIC
REVOLUTIONS: THEORY AND
METHODOLOGY

The nature of scientific revolutions has become a fashionable topic both
in the history and in the philosophy of science. I shall not in this paper
attempt to review the many controversies that have filled the literature in
the past decade. My purpose is to try to take a longer view as to what the
proper role of philosophy should be in the study of scientific revolutions.
What I have to say is certainly tentative, and many of the ideas will
probably be regarded as wrong by a fair number of my colleagues. This is
not meant as a prefatory apology but simply as a prediction. I am quite
prepared to defend what I have to say but regard the present study of
such matters as so tentative and immature that to be at all certain of
the correctness of my views would be too dogmatic for my skeptical and
empirical view of philosophy, history, and science.

From the standpoint from which I approach the subject there are two
natural divisions. One is consideration of the theory of scientific revolu-
tions and the other is the methodology of evaluating the empirical sound-
ness of such theories. In saying something about these matters I shall not
make strenuous efforts to separate philosophy from other disciplines that
can approach the same problems.

*Reprinted from, La filosofia y las revoluciones cientificas: Teoria y praxis. México,
D. F.: Editorial Grijalbo, S. A., 1979, pp. 295-306, but with the original English text.
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1. THEORY

The theory of scientific revolutions seems to me to itself divide naturally
into three parts. The first part is simply the description of the structure
of science during the period that a presumed revolution took place. The
second part concerns the kinematics of the presumed revolution, what
is an appropriate description of the changes that took place, how can
we describe those changes, and can we meaningfully talk about them as
continuous or discrete in character? The third part concerns the dynamics
of the revolution. Here the search is for causes and especially a theory of
the causes.

Structure. As an example of the problems of having an adequate theory of
structure, let us consider the history of geometry. Because of the paucity
of texts, we can perhaps see in realistic terms the possibility of describing
the state of geometry as a mathematical or scientific discipline in 200 B.C.
in the Hellenistic world of Alexandria, Rhodes, Syracuse, and a few other
places. Even then, the theory of what is to be regarded as essential in that
structure and what is accidental or unimportant is not, as far as I can
see, clearly formulated anywhere. Moreover, there are puzzles that seem
difficult to solve in characterizing the structure; for example, how much
relative weight should we attach to the methods of proof that were used
as compared to the depth of the mathematical results that were obtained?

When we move across the centuries to the many rigorous formulations
of geometry given at the end of the 19th century, with the work of Hilbert
often being taken as a paradigm example, I at least find it even more
perplexing to characterize what is to be regarded as the structure of the
science of geometry. Are the rigorous axiomatic methods of Hilbert the
most important feature, or is the group-theoretic viewpoint of Klein more
fundamental? Moreover, this is to ask only the most elementary and
primitive question. A structure as we ordinarily think of it is not properly
characterized by simply listing its main features but rather by saying
how these features are related and interlocked. We can talk with some
precision about the structure of Euclidean Geometry in an abstract sense,
but can we talk in a reasonably meaningful way about the structure of
geometry as a scientific discipline at the end of the 19th century? What
I have said about geometry seems to me to apply as well to any other
major scientific discipline, running from astronomy to zoology.

The basis of the problem or, put another way, the reason for the
absence of any substantive theory of structure is similar, it seems to me, to
the absence of any systematic theory of structure for almost all historical
phenomena of human interest. In the same way that we can question
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what is meant by the structure of a scientific discipline at a given time,
we can ask about the structure of a society, the structure of a market, the
structure of a military campaign. In those cases that have been regarded
as of great historical interest it is fair to say that the concept of structure
that is imposed is rudimentary at best and most often left at a completely
impressionistic level. The reasons for this seem clear. We simply have
not yet developed adequate abstractions to provide the basis for a serious
theory of structure.

To my severe strictures about structure it is possible to reply that
an unreasonable standard is being set, but it is important to recognize
that here is a radical difference in that case between what we should
hope to achieve in a given part of science itself as, for example, in the
study of the structure of the atom, or the structure of the solar system,
and what we have as our intellectual ambition about the structure of
scientific revolutions. If the view is held that the theory of structure
of such revolutions cannot rise above the present impressionistic state
of affairs, then the theory of such matters will remain committed to a
romantic view of what may be regarded as the highest products of our
intellectual activities as human beings.

Kinematics. Without a theory of structure it is difficult to see how a
theory of kinematics or of change can be developed. The kinematical
theory of scientific revolution is in an even more primitive state than the
theory of their structure. It is hard to think even of a nontrivial scientific
problem that has yet been posed about such changes. Where indeed is to
be found a testable theory or hypothesis of change about any branch of
science?

Let us look at some typical questions that arise in the kinematics of a
wide variety of natural phenomena and ask whether these questions can
be transformed into meaningful programs of inquiry for the kinematics of
scientific revolutions. One classical kind of question is whether change is
continuous or discontinuous. The conservative postulate of most of clas-
sical physics, for example, is that change is continuous. In the case of
classical mechanics, the further requirement would be imposed that the
paths of particles are not merely continuous but piecewise twice differen-
tiable. In the theory of Brownian motion, we end up with the result that
the paths of particles are continuous but almost nowhere differentiable.
On the other hand, in quantum mechanics a fundamental change in atti-
tude was expressed in the discovery that the transitions between energy
states of atoms were discontinuous and discrete rather than continuous.
In the psychology of contemporary learning theory there has been an in-
tense study of various kinds of learning, with some being characterized as
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continuous in character and others as being discrete or all-or-none. The
differing theoretical assumptions that lead to these different kinematical
predictions have been laid out in explicit detail.

These comparisons, it may be said, are unreasonable and unwarranted.
Surely it is absurd, it may be claimed, to even think of distinguish-
ing between differentiable and nondifferentiable continuous trajectories
of change for scientific revolutions. With this point I agree, but the ex-
ample from psychology illustrates the kind of theoretical work that can
discriminate between our intuitive ideas of continuous versus discontinu-
ous phenomena. In the case of the examples of learning, the main studies
deal with experiments consisting of discrete trials, and there is no sharp
notion of differentiability directly definable for the phenomena. On the
other hand, very clear mutually contradictory hypotheses about the na-
ture of learning can be formulated and given exact expression. Still, it
may be said, the example is not appropriate because the study of his-
torical phenomena cannot hope to achieve the precision or quantitative
definiteness of developed experimental sciences.

But refuge in the nonexperimental character of historical phenomena
is no refuge at all because for many centuries the most exact science,
namely, astronomy, was and i1s wholly nonexperimental in character.

In rather brief and superficial terms it may be useful to make a com-
parison of an important but structurally simple kinematical theory of
historical phenomena. I have in mind data on the modern rise in popula-
tion. I take my discussion from McKeown (1976). Approximate estimates
of the modern rise of population are given by McKeown as follows: By
1750 the world population is estimated to have been about 750 million;
by 1830 it was one billion, two billion in 1930, three billion in 1960, and
four billion in 1975. Through these data points we can fit a remark-
ably simple nonlinear function, and the kinematical theory consists of
studying carefully which functions fit the data best. The example I have
quoted is rather crude; much more exact population estimates exist for
the more recent years and also for particular countries. In each case, the
surface kinematical problem is to fit to the data a function that has a
small number of parameters. For these kinds of data the problem is rel-
atively simple. The kinematical problem faced by Kepler was not, as it
was not for earlier Hellenistic astronomers, and especially if we regard, as
we would today, the epicycle theory as a kinematical theory of the motion
of the planets.

One problem about the kinematics of scientific revolutions that would
be interesting to me, but perhaps would be regarded as not so by many
philosophers and historians, would be the analysis of the rate of publica-
tion about a given topic across the period of a revolution. Do, for exam-
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ple, these spreads of publication have very similar mathematical form as
a nearly universal characteristic of scientific revolutions, at least in the
context of science since 1800, or are quite different rate functions to be
found? I fear that my colleagues interested in the history of science and
its relation to the philosophy of science have no real taste for such quanti-
tative questions, but this, it seems to me, is mainly because they are not
really interested in approaching their subject in a scientific fashion.

Dynamics. The population example cited earlier provides a good point to
begin the discussion of dynamics. Many of us are alarmed at the nonlinear
growth of population over the past hundred years, but of even greater
interest is the investigation of the causes of this growth. As McKeown’s
book shows in some detail, a satisfactory causal analysis is not easy to
come by, but some progress is possible and even some assessment of the
contribution of modern medical discoveries and measures can be made.
On the other hand, the theoretical status of causal analyses of major
political upheavals such as the French or Russian revolutions seems to be
in ashambles. An excellent survey was given some years ago by Howard K.
Beale (1946) on the variety of attitudes toward causality and the nature of
particular cause of the American Civil War. Here is how Beale summarizes
some of the variety of views:

Historians, whatever their predispositions, assign to the Civil
War causes ranging from one simple force or phenomenon
to patterns so complex and manifold that they include, in-
tricately interwoven, all the important movements, thoughts,
and actions of the decades before 1861. One writer finds in
events of the immediately preceding years an adequate expla-
nation of the War; another feels he must begin his story with
1831 or even 1820; still another goes back to the importation
of the first slaves, to descriptions of geographic differences be-
fore white men appeared, or to differentiation in Europe be-
tween those who settled North and South.... Moral, ideolog-
ical, political, economic, social, psychological explanations of
the War have been offered. Responsibility has been ascribed
both to action of men and to forces beyond human control.
Conspiracy, constitutional interpretation, human wickedness,
economic interest, divine will, political ambition, climate, “ir-
repressible conflict”, emotion, rival cultures, high moral prin-
ciples, and chance have severally been accredited with bringing
on the War. There is a Marxian interpretation; also a racist
theory. (pp. 55-56)
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Beale goes on to spell out this vast variety of causal explanations, and any
but the most dogmatic reader can scarcely end up with other than a highly
skeptical attitude that it is possible at the present state of historical theory
to provide a satisfactory or even partially satisfactory causal analysis of
a major political or social revolution or conflict.

For much of the history of science, the development of a causal theory
seems a futile exercise because of the paucity of data to test such a theory.
This attitude is well expressed by Neugebauer (1957) in the following
passage concerning causal theories of the origin of mathematics.

The Greeks themselves had many theories about the origin
of mathematics. A favored one, which is still kept alive in
modern textbooks, makes the necessity of repeated land mea-
surement responsible for geometry. Modern authors have of-
ten referred to the marvels of Egyptian architecture, though
without ever mentioning a concrete problem of statics solv-
able by the known Egyptian arithmetical procedure. A much
more sophisticated attitude is represented by Aristotle, who
considers the existence of a “leisure class”, to use a modern
term, a necessary condition for scientific work. Our factual
knowledge about the development of scientific thought and of
the social position of the men who were responsible for it is so
utterly fragmentary, however, that it seems to me completely
impossible to test any such hypothesis, however plausible it
may appear to a modern man. (pp. 151-152)

For science since 1800 or so, it may be felt that adequate data can
be collected to test reasonable causal ideas, but, as the example of the
American Civil War shows, we are faced in modern cases with the opposite
difficulty namely, the data are so rich and varied that we have no serious
idea as to how to make a scientific analysis of causes that can be properly
defended.

Tales of detail from either an internalist or externalist standpoint
about any particular scientific revolution are fascinating and intriguing
to me as well as to many others, but I do not find in these lovely tales
any trace of a serious scientific causal theory, and I am skeptical that in
any near future we shall have one.

A proper role for philosophers here, as in other aspects of historical
analysis, is to press the point about theory and to insist whether a com-
mitment is being made or a claim is being made about the theoretical
status of the propositions set forth on the nature of scientific revolutions.
There is irony in the fact that after decades of formalist effort in the phi-
losophy of science many philosophers seem to have been overcome by the
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richness of the data set in front of them by historians, no matter how
primitive the theory that accompanies these data may be.

2. METHODOLOGY

In a number of sciences—experimental psychology and econometrics are
perhaps the best examples—there is little development of the kind of de-
tailed and rigorous theory I have been calling for. It may be thought by
many that I am setting an unreasonable standard in drawing on devel-
oped theories in the physical sciences or in mathematics as models that
should be followed in a theory of scientific revolutions. There is, of course,
back of this issue a hoary problem of many years standing concerning the
ideographic or nomothetic character of historical investigations. I am as-
suming without further debate that the case for the nomothetic view is
overwhelming—at least 1t should be among those who want to make pre-
tentious claims about the structure or the nature of scientific revolutions.
My own attitude is plain: If the theory of scientific revolutions is primitive
or nonexistent, let us not burke the facts.

But even if the theory is primitive, we can, as in the case of much of
experimental psychology or econometrics, try to make serious scientific
progress by application of a careful and explicitly thought out method-
ology. Some order can be brought to the welter of empirical data and
some sense of cumulative progress can develop. A good many aspects of
the historical study of population changes satisfy such a standard. Even
that marvelous 18th century spinner of psychological fables, David Hume,
was cautious, highly empirical, and careful in dealing with estimates of
the population of the ancient world. The modern historical literature on
population has become technical and scientific and to my mind all to its
credit.

A valiant effort at developing a more quantitative methodology in the
history of science has been made by Derek Price in his 1961 book and in
a number of articles. Price has studied a number of phenomena of growth
in science: the number of journals, the number of physics abstracts since
1900, the growth in the number of papers in a given field of science,
and the growth in the number of scientists. He has investigated the ex-
tent to which exponential functions or other analytically simple nonlinear
functions fit the data. He has not looked very much at scientific revo-
lutions, but the kind of quantitative techniques he has begun to apply
would not be inappropriate, especially in the analysis of the rise and fall
of publications on a given scientific topic following its introduction into
the literature. But in many ways Price has been a lonely example; not
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many people have followed the line of work he has begun. Above all,
the detailed and tedious analysis of data required to pursue with any
thoroughness the program he has started has not really taken place, and
certainly not in the study of scientific revolutions. The result seems to
be the inevitable one that the quantitative study of the history of science
remains in a primitive state, just as the theory of scientific revolutions
remains in such a state.

There is a notorious case of applying quantitative methods in history
to which I would like to draw a parallel to what I think it would be
desirable to see happen in the study of scientific revolutions or, more gen-
erally, in the study of many aspects of the history of science. In 1974,
Robert William Fogel and Stanley L. Engerman published a controversial
work, Time on the Cross, subtitled The Fconomics of American Negro
Slavery. This work has become famous in the recent scholarship of Amer-
ican history for two reasons. First, it contravened a number of standard
historical theses about the conditions of slavery and the performance of
slaves in the pre-Civil War South. Second, the authors brought to bear
as a method of establishing their theses a battery of statistical tools and
techniques that have been developed and used extensively in economet-
rics but seldom, if at all, in the quantitative study of such matters as
were the focus of their book. The repercussions of the work of Fogel and
Engerman have been widespread in American circles of scholarship and
there has perhaps been a tendency for a lineup of acceptance by histo-
rians oriented toward social science, on the one hand, and rejection by
humanistically oriented historians on the other. But this is not the moral
of my tale. A much more interesting outcome, in my judgment, is the
painstaking and meticulous examination of the methodology of Time on
the Cross by a group of economic historians sophisticated in the methods
of econometrics. It is right and proper, in my view of things, that the
really careful and exacting critique of Fogel and Engerman’s work came
from David, Gutman, Sutch, Temen, and Wright (1976), writing in the
very spirit exemplified by Time on the Cross and not in terms of some
humanistic broadside.

Sadly enough, the same kind of critical assessment and detailed analy-
sis and reanalysis of data has not taken place within the framework begun
by Price in the history of science. Compared with the sophistication of
the methodology in Time on the Cross and the riposte of David et al.
in Reckoning with Slavery, the quantitative methodology begun by Price
is, especially from a statistical standpoint, still in its infancy. As Price
remarks, “It is perhaps especially perverse of the historian of science to
remain purely an historian and fail to bring the powers of science to bear
upon the problems of its own structure. There should be much scope for
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scientific attack on science’s own internal problems, yet, curiously enough,
any such attack is regarded with much skepticism” (p. 93).

In the same year that Time on the Cross appeared, 1974, the distin-
guished American historian Eugene D. Genovese also published a book
on American slavery entitled Roll, Jordan, Roll: The World the Slaves
Made. Genovese writes in the traditional historical manner, giving his
own Intuitive digest of the vast amount of data surveyed, especially the
personal accounts of the conditions of slavery in the old South. It is not
my purpose here to assess the merits of Genovese’s book, but one reviewer
made a remark that I think is most appropriate. The really fundamen-
tal difference between Time on the Cross and Roll, Jordan, Rollis that
the first can be proved wrong, and resoundingly so; the second is essen-
tially inaccessible to either proof or disproof, for the methods do not lend
themselves to any deeper analysis of evidence for or against any particular
thesis. Fogel and Engerman made many mistakes but they were honest
enough to lay out the data and to describe it in such a way that their
tracks could be traced. Not so Genovese. It is not a question of intellec-
tual dishonesty but a question of method. His tracks are covered not only
from others but from himself. He cannot give a rational account of the
methods by which his summary views or selections of individual sketches
were made. I am happy to leave the creative sources of hypotheses or even
of theories deep in the unconscious of the individual scientist or scholar
but I am not happy at all to leave the methodology of verification at the
same unconscious level. As far as I can see, this is where we still are in
the analysis of scientific revolutions.



3

LIMITATIONS OF THE
AXIOMATIC METHOD IN
ANCIENT GREEK
MATHEMATICAL SCIENCES

My thesis in this chapter is that the admiration many of us have for the
rigor and relentlessness of the axiomatic method in Greek geometry has
given us a misleading view of the role of this method in the broader frame-
work of ancient Greek mathematical sciences. By stressing the limitations
of the axiomatic method or, more explicitly, by stressing the limitations of
the role played by the axiomatic method in Greek mathematical science, I
do not mean in any way to denigrate what is conceptually one of the most
important and far-reaching aspects of Greek mathematical thinking. I do
want to emphasize the point that the use of mathematics in the math-
ematical sciences and in foundational sciences, like astronomy, compare
rather closely with the contemporary situation. It has been remarked by
many people that modern physics is by and large scarcely a rigorous math-
ematical subject and, above all, certainly not one that proceeds primarily
by extensive use of formal axiomatic methods. It is also often commented
upon that the mathematical rigor of contemporary mathematical physics,

*Reprinted from Theory change, ancient aziomatics, and Galileo’s methodology,
Pisa Conference Proceedings Vol. 1 (ed. by J. Hintikka, D. Gruender and E. Agazzi),
1980, pp. 197-213.
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in relation to the standards of rigor in pure mathematics today, is much
lower than was characteristic of the 19th century. However, my point
about the axiomatic method applies also to 19th-century physics. There
is little evidence of rigorous use of axiomatic methods in that century
either. This 1s true not only of the periodical literature but also of the
great treatises. Three casual examples that come to mind are Laplace’s
Celestial Mechanics, his treatise on probability, and Maxwell’s treatise on
electricity and magnetism.

Three examples from ancient Greek mathematical sciences that I have
chosen to comment on are Euclid’s Optics, Archimedes’ On the Fquilib-
rium of Planes, and Ptolemy’s Almagest.

1. EUCLID’S OPTICS

It is important to emphasize that Fuclid’s Optics is really a theory of
vision and not a treatise on physical optics. A large number of the propo-
sitions are concerned with vision from the standpoint of perspective in
monocular vision. Indeed, Euclid’s Optics could be characterized as a
treatise on perspective within Euclidean geometry. The tone of Euclid’s
treatise can be seen from quoting the initial part, which consists of seven
‘definitions’.

1. Let it be assumed that lines drawn directly from the eye pass through
a space of great extent;

2. and that the form of the space included within our vision is a cone,
with its apex in the eye and its base at the limits of our vision;

3. and that those things upon which the vision falls are seen, and that
those things upon which the vision does not fall are not seen;

4. and that those things seen within a larger angle appear larger, and
those seen within a smaller angle appear smaller, and those seen
within equal angles appear to be of the same size;

5. and that those things seen within the higher visual range appear
higher, while those within the lower range appear lower;

6. and, similarly, that those seen within the visual range on the right
appear on the right, while those within that on the left appear on
the left;

7. but that things seen within several angles appear to be more clear.
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(The translation is taken from that given by Burton in 1945.)

The development of Euclid’s Optics is mathematical in character, but
it is not axiomatic in the same way that the Flements are. For example,
FEuclid later proves two propositions, “to know how great is a given eleva-
tion when the sun 1s shining” and “to know how great is a given elevation
when the sun is not shining”. As would be expected, there is no serious
introduction of the concept of the sun or of shining but they are treated
in an informal, commonsense, physical way with the essential thing for
the proof being rays from the sun falling upon the end of a line. Visual
space 1s of course treated by Euclid as Euclidean in character.

It might be objected that there are similar formal failings in Euclid’s
Elements, but it does not take much reflection to recognize the very great
difference between the introduction of many sorts of physical terms in
these definitions from the Optics and the very restrained use of language
to be found in the Elements. Moreover, the proofs have a similar highly
informal character. It seems to me that the formulation of fundamental
assumptions in Euclid’s Optics is very much in the spirit of what has come
to be called, in our own time, physical axiomatics. There is no attempt
at any sort of mathematical rigor but an effort to convey intuitively the
underlying assumptions.!

2. ARCHIMEDES’ ON THE EQUILIBRIUM OF PLANES

Because I want to discuss the Archimedean treatise in some detail, a
review of the theory of conjoint measurement is needed. The mixture of
highly explicit axioms of conjoint measurement (as we would call them)
and very inexplicit axioms about centers of gravity make Archimedes’
treatise a peculiarly interesting example.

Conjoint measurement. In many kinds of experimental or observational
environments, the measurement of a single magnitude of property is not
feasible or theoretically interesting. What is of interest, however, is the
joint measurement of several properties simultaneously. The intended
representation 1s that we consider ordered pairs of objects or stimuli.
The first members of the pairs are drawn from one set, say A, and conse-
quently represent one kind of property or magnitude; the second members

1Ptolemy’s Optics is much more physical and experimental in character. A more
mathematical example, without any explicit axioms at all, is Diocles’ treatise On Burn-
ing Mirrors (Toomer, 1976). The detailed mathematical proofs are also interesting in
Diocles’ work because of the absence in most cases of reasons justifying the steps in
the argument, but, as in a modern nonaxiomatic text, familiar mathematical facts and
theorems are used without comment.
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of the pairs are objects drawn from a second set, say A,, and represent
a different magnitude or property. Given the ordered pair structure, we
shall only require judgments of whether or not one pair jointly has more
of the ‘conjoined’ attribute than a second pair.

Examples of interpretations for this way of looking at ordered pairs are
abundant. In Archimedes’ case, we are dealing with the measurement of
static moments of force, or torques, where the two properties that make up
the conjoint attribute are mass (or weight) and distance from the fulcrum.
Momentum is another familiar example of a conjoint attribute. Quite
different examples may be drawn from psychology or economics. For
instance, a pair (a, p) can represent a tone with intensity a and frequency
p, and the problem is to judge which of the two tones sounds louder. Thus
the individual judges (a,p) = (b, ¢) if and only if tone (a, p) seems at least
as loud as (b, q).

The axioms of conjoint measurement are stated in terms of a single
binary relation defined on the Cartesian product A; x A3. All the axioms
have an elementary character, except for the Archimedean axiom, which
I shall not formulate explicitly along with the other axioms, but which
I discuss below. In formulating the axioms, I use the usual equivalence
relation &2, which is defined in terms of =, i.e., (a,p) = (b,¢) if and only
if (a,p) = (b,q) and (b,q) = (a,p). Later, we shall also use the strict
ordering: (a,p) > (b, ¢) if and only if (a,p) = (b, ¢q) and not (b,q) = (a, p).
The axioms are embodied in the following definition.

DEFINITION 1. A structure (A1, A2,>) is a conjoint structure if and
only if the following azioms are satisfied for every a, b and ¢ in A; and
every p, q and rin As:

Aziom 1. If (a,p) == (b,q) and (b,q) = (c,7) then (a,p) = (c,7);
Aziom 2. (a,p) = (b,q) or (b,9) = (a,p);

Aziom 3. If (a,p) = (b,p) then (a,q) = (b, q);

Aziom 4. If (a,p) = (a,q) then (b,p) > (b,q);

Aziom 5. If (a,p) = (b,q) and (b,7) = (c,p) then (a,7) = (c, 9);

Aziom 6. There is an s in Ay such that (a,p) = (b, s);
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Aziom 7. There is a d in Ay such that (a,p) =~ (d, g);

Aziom 8. Archimedean aziom.

The intuitive content of most of the axioms is apparent. Axiom 1 is merely
the familiar requirement of transitivity and Axiom 2 that of strong con-
nectivity. Axioms 3 and 4 express the independence of one component
from the other. Axioms 3 and 4 actually follow from the other axioms,
but in the treatment of Krantz, Luce, Suppes, and Tversky (1971), weaker
solvability axioms are used than Axioms 6 and 7, and in that context, Ax-
ioms 3 and 4 are needed. In any case, they state an important conceptual
property. Axiom 5 states a cancellation property. When it is formulated
in terms of the equivalence relation & instead of >, it is called the Thom-
sen condition, especially in the theory of webs. As already remarked,
Axioms 6 and 7 state simple solvability axioms. Finally, Axiom 8 must
be some form of the Archimedean axiom. Of course, I mean not an axiom
directly pertinent to the treatise we are discussing here, but the familiar
Archimedean axiom which is usually attributed to Eudoxus and not to
Archimedes. In its most famihar form, it says that if we are given two
magnitudes and the first is less than the second, there is a finite multiple
of the first that is larger than the second. To formulate the axiom in
explicit mathematical form in the present context, with no concept of ad-
dition or multiplication directly given, is somewhat troublesome. Because
it is not important for our present discussion, I shall leave the axiom in
mexplicit form.

For subsequent discussion of the postulates stated in Archimedes’ trea-
tise, some elementary consequences of Axioms 1-4 of Definition 1 are
useful.

THEOREM 1. The relation = is an equivalence relation on A, X Ao, i.e.,
it 1s reflexive, symmetric and transitive on Ay x As; and the relation >
1s irreflexive, asymmetric and transitive on A; x Aj.

It is also desirable to define corresponding relations for each component.

Thus, for a and b in A;,a >; b if and only if for some p in Ay, (a,p) =
(b,p); and for p and ¢ in Az, p =2 ¢ if and only if for some a in Ay, (a,p) =
(a,q). Then as before, we may define for i = 1,2,z =; y if and only if
z=; yandy =; x; and ¢ >; y if and only if  =; y and not y >=; . Using
especially Axioms 3 and 4, the independence axioms, we may easily prove
the following theorem.

THEOREM 2. For i = 1,2, the relation =; is transitive and strongly
connected on A;, the relation =; is an equivalence relation on A; and the
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relation =; s irreflexive, asymmetric and transitive on A;.

We can prove that any structure satisfying the axioms of Definition 1 can
be given either an additive or a multiplicative representation in terms of
real numbers. Because the multiplicative representation is most pertinent
here, we shall state the basic representation theorem in that form. The
reader is referred to Krantz et al. (1971, Chapter 6) for the proof of the
theorem.

THEOREM 3. Let (A1, Ag, =) be a conjoint structure. Then there exzist
real-valued functions ¢, and p5 on Ay and A,y, respectively, such that for
a and b in Ay and p and q in Ay

e1(a)pa(p) > 1(b)p2(q) if and only if (a,p) >= (b,q).

Moreover, if ¢} and ¢ are any two other functions with the same prop-
erty, then there exist real numbers «, B, B2 > 0 such that

o1 = Pt

and
P2 = P2y,

provided there are elements a and b in Ay and p in A such that (a,p) -
(b,p), and elements p and ¢ in Ay and ¢ in Ay such that (¢,p) = (c,q).

More than the theory of conjoint measurement is needed to give a correct
analysis of Archimedes’ treatise, for he obviously assumes that weight and
distance are extensive or additive magnitudes. (This point is documented
in the later discussion.) It will therefore also be useful to have in front of
us the modern theory of extensive magnitudes. A rather complete pre-
sentation of the theory is to be found in Krantz et al. (1971, Chapter 3).
Because of their relative simplicity I shall state here the axioms of Suppes
(1951). In this case the Archimedean axiom is easily stated explicitly. A
binary operation o on the set A of magnitudes, as well as a binary relation
=, is introduced, and we define recursively 1z = z and nz = (n — 1)z o .
As before, the relations = and = are defined as expected in terms of >.

DEFINITION 2. A structure (A, =, 0) is a structure of extensive magni-
tudes if and only of the following azioms are satisfied for every a,b and c
m A:

Aziom 1. Ifx >y and y = z then z > z;

Aziom 2. (xoy)ozrzo(yoz);
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Aziom 3. Ifx =y thenzoz = zoy;
Aziom 4. If & = y then there is a z in A such that ¢ =~ yo z;
Aziom 5. oy » x;

Aziom 6. If x > y then there is a natural number n such that y > nz.

The six axioms of Definition 2 have an obvious content when A is a
set of positive numbers closed under addition and subtraction of smaller
numbers from larger ones, > is the numerical weak inequality, and o
is the operation of addition. It should be noted that Axiom 3 combines
monotonicity and commutativity. The numerical interpretation just given
is itself the basis of the following representation theorem.

THEOREM 4. Let (A, =,0) be a structure of extensive magnitudes. Then
there exists a real-valued function ¢ on A such that fora and b in A

e(a) > ¢(b) if and only if a = b,

and

p(aob) = p(a) + (b).
Moreover, if ¢’ is any other such function then there is a real number
a > 0 such that ¢’ = ap.

Archimedes’ postulates. With the axioms of conjoint and extensive mea-
surement given above as background, let us now turn to Archimedes’
postulates at the beginning of Book I of On the Equilibrium of Planes. 1
cite the Heath translation.

I postulate the following:

1. Equal weights at equal distances are in equilibrium, and
equal weights at unequal distances are not in equilibrium but
incline towards the weight which is at the greater distance.

2. If, when weights at certain distances are in equilibrium,
something be added to one of the weights, they are not in
equilibrium but incline towards that weight to which the ad-
dition was made.

3. Similarly, if anything be taken away from one of the

weights, they are not in equilibrium but incline towards the
weight from which nothing was taken.
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4. When equal and similar plane figures coincide if applied to
one another, their centers of gravity similarly coincide.

5. In figures which are unequal but similar the centers of
gravity will be similarly situated. By points similarly situated
in relation to similar figures I mean points such that, if straight
lines be drawn from them to the equal angles, they made equal
angles with the corresponding sides.

6. If magnitudes at certain distances be in equilibrium, (other)
magnitudes equal to them will also be in equilibrium at the
same distances.

7. In any figure whose perimeter is concave in (one and) the
same direction the centre of gravity must be within the figure.

Looking at the postulates, it is clear that postulates 1, 2, 3 and 6 fall
within the general conceptual framework of conjoint measurement, but
the remaining postulates introduce geometrical ideas that go beyond the
general theory of conjoint measurement. I shall have something more to
say about these geometrical postulates later. For the moment I want to
concentrate on what I have termed the conjoint postulates. The wording
of Postulates 2 and 3 makes it clear that Archimedes treated weight as
an extensive magnitude. We shall thus assume that W = (W, =;,0) is a
structure of extensive magnitudes, that (W x D, ») is a conjoint structure,
and that >; of W is the defined relation >, of the conjoint structure.
Also, to formulate Postulate 3 explicitly we need a subtraction operation
that is well defined for extensive structures: If z = y then 2 — y & 2z if
and only if z & yo 2.

The formulation of Postulates 1, 2,3 and 6 then assumes the following
elementary form, with subscripts of »=; and >4 dropped to simplify the
notation.

la. If wy = wy and dy = dy then (wy,d;) = (ws, d2).
1b. If wy = wy and dy > dy then (wy,d;y) = (wq,dy).
2. If (w1, dy) = (wa,d3) then (w10 2,d1) = (w2, ds).
3. If (w1, dy) = (w2,d3) and wy > z then (wy,d1) = (w2 — z,d3).

6. If (w1,d1) = (wa,d3), w3 = wy and wy = wy then (w3, di) =~
(’LU4, dz)

The first three propositions of Book I can be proved from these purely
conjoint postulates and the assumption that weight is an extensive magni-
tude. For detailed analysis I cite the Heath translation of the propositions
and their proofs.
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Proposition 1.

Weights which balance at equal distances are equal.

For, if they are unequal, take away from the greater the differ-
ence between the two. The remainders will then not balance
[Post. 3]; which is absurd.

Therefore the weights cannot be unequal.

Proposition 2.

Unequal weights at equal distances will not balance but will
incline towards the greater weight.

For take away from the greater the difference between the two.
The equal remainders will therefore balance [Post. 1]. Hence,
if we add the difference again, the weights will not balance but
incline towards the greater [Post. 2].

Proposition 3.

Unequal weights will balance at unequal distances, the greater
weight being at the lesser distance.

Let A, B be two unequal weights (of which A is the greater)
balancing about C' at distances AC, BC respectively.

Then shall AC be less than BC'. For, if not, take away from A
the weight (A — B). The remainders will then incline towards
B [Post. 3]. But this is impossible, for (1) if AC = CB, the
equal remainders will balance, or (2) if AC > CB, they will
incline towards A at the greater distance [Post. 1].

Hence AC < CB.

Conversely, if the weights balance, and AC <CB, then A> B.

My aim is to catch the spirit of Archimedes’ formulation of these
first three propositions and their proofs within the formalization I have
given. To be as explicit as possible about my procedure, I use in the
proofs elementary properties of extensive magnitudes that follow from
the axioms of Definition 2, but only properties of conjoint structures that
follow from Archimedes’ postulates, not the full set of Definition 1.

PROPOSITION 1. If (wl, dl) ~ (’U)g,dg) and dl ~ dg then w1 &N wo.

Proof. Suppose wy = ws. Let 2 = w; — wy. Then wy — z & wy. Then
by Postulate 1a

(1) (w1 — z,d1) ~ (ws,dy),

but by Postulate 3 and the hypothesis of the theorem



34 PART I. GENERAL METHODOLOGY

(2) (wg,d2) = (w1 — 2,dy1),
and (1) and (2) are from the definitions of = and = jointly absurd.
PROPOSITION 2. Ifw1 > wy and dy = dy then (wl,dl) - (’wz, dg)
Proof. Let z = w1 — we. Then wy — 2z & we, and by Postulate 1a

(w1 — z,d1) = (w2, da).
Therefore, by Postulate 2
(w1 — z1) 0 21,d1) = (wa,d2),
and (w; — 2z1) 0 21 = wy, SO
(w1,d1) = (w2,ds).

PROPOSITION 3. If w; = ws and (w1, d1) & (wg,d2) then dy = d;.
Proof. Suppose not dy > d;. Let z = w; — wy. Then by Postulate 3,

(1) (U)Z,d2)>- (wl —Z,dl),
but this we shall show is absurd. First if d; & ds, then by Postulate la
(2) (wl —zlydl) ~ (wzydz))

and (as in the proof of Prop. 1) (1) and (2) are jointly absurd. On the
other hand, if d; > ds, then by Postulate 1b

(3) (w1 — z1,d1) > (w2,d2),

and (1) and (3) are jointly absurd (from the asymmetry of »). Hence
dy = dj.

On one point my formalization is clearly not faithful to Archimedes. I
have replaced his symmetrical relation unequal by the asymmetric >, but
this is a trivial formal difference, easy to eliminate if desired.

The remaining propositions of Book I use the concept of center of
gravity in either their formulations or proofs, and I defer the consideration
of this much-disputed concept.

The postulates and propositions as I have reformulated them above are
a part of the elementary theory of conjoint measurement on the assump-
tion that the first component is a structure of extensive magnitudes as
well. A casual perusal of modern textbooks on mechanics reveals quickly
enough that postulates like the ones formulated here are not an explicit
part of modern discussions of static moments of force. The reason is
simple. Once a numerical representation is assumed, explicit conjoint
axioms are not necessary. Take Postulate la, for instance, and use the
multiplicative representation:
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If o1(w1) = p1(ws) and @a(dy) = p(dy) then
p1(wi)pa(d) = pi1(w2)pa(ds),

but this is just an elementary truth of arithmetic and consequently not
necessary to assume.

The important historical fact is that the concept of a numerical rep-
resentation was missing in Greek mathematics, and consequently explicit
conjoint axioms were needed. There seems little doubt that Archimedes’
statement of such axioms is historically the earliest instance of an explicit
approach to conjoint measurement, certainly at least in terms of extant
texts of Greek mathematics and science.

It has been noted by many modern commentators that Greek math-
ematicians were completely at ease in comparing ratios of different sorts
of magnitudes, e.g., the ratio of two line segments to that of two areas.
Given this tradition it is natural to query why Archimedes did not state
the Postulates of Book I in terms of ratios. The answer it seems to me
is clear. Proof that two weights balance at distances reciprocally propor-
tional to their magnitudes, which is Propositions 6 and 7 of Book 1, is
the Greek equivalent of a numerical representation theorem in the the-
ory of measurement. The conjoint postulates that Archimedes formulates
provide a simple qualitative basis from which the Greek ‘representation
theorem’ can be proved. (I shall have more to say later about this proof.)

I know of no other instance of conjoint concepts in Greek mathematics
and science. Certainly modern examples like momentum were not con-
sidered, and no such concepts were needed in Archimedes’ other physical
work, On Floating Bodies. It is perhaps for this reason that the level
of abstraction to be found, for example, in Book V of Euclid’s Elements
is not reached in On the Equilibrium of Planes.? A higher level of ab-
straction was superfluous because other pairs of magnitudes satisfying
like postulates were not known.

2The attitude toward abstraction is very clearly expressed by Aristotle in the Pos-
terior Analytics (Book I, 5, 74a 17-25). “An instance of (2) would be the law that
proportionals alternate. Alternation used to be demonstrated separately of numbers,
lines, solids, and durations, though it could have been proved of them all by a single
demonstration. Because there was no single name to denote that in which numbers,
lengths, durations, and solids are identical, and because they differed specifically from
one another, this property was proved of each of them separately. Today, however, the
proof is commensurately universal, for they do not possess this attribute gue lines or
gue numbers, but gue manifesting this generic character which they are postulated as
possessing universally”. The reference to (2) is to one kind of error we can make in
drawing a conclusion that is too specific or concrete. Errors of type (2) arise “when
the subjects belong to different species and there is a higher universal, but it has no
name” (74a 7).
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Centers of gravity. The most difficult conceptual problem of Archimedes’
treatises concerns the status of the concept of center of gravity of a plane
figure. This concept is essential to the formulation of Postulates 4, 5
and 7, but it is quite evident, on the other hand, that these postulates
in themselves do not provide a complete characterization of the concept.
By this I mean that if we knew nothing about centers of gravity except
what is stated in Postulates 4, 5 and 7, we would not be able to derive the
theorems in which Archimedes is interested, and which he does derive. As
Dijksterhuis (1956) points out, it is possible to argue that the concept of
center of gravity is being taken over by Archimedes from more elementary
discussions and thus really has the same status as the geometrical concept
of similarity in his treatise. On the face of it, this argument seems sounder
than that of Toeplitz and Stein (published in Stein, 1930), who propose
that the postulates are to be taken as implicitly defining centers of gravity
once the postulates are enlarged by the obvious and natural assumptions.

It is also clear that a standard formalization of Archimedes’ theory, in
the sense of first-order logic, cannot be given in any simple or elegant way.
It is possible to give the standard formalization of the part of the theory
embodied in Postulates 1, 2, 3 and 6, as we have seen in the previous
section.

Quite apart from the question of standard formalization, there are se-
rious problems involved in giving a reconstruction in set-theoretical terms
of Archimedes’ postulates. In such a set-theoretical formulation, we can
without difficulty use a geometrical notion like similarity. If we take over
from prior developments a definition of center of gravity, then it would
seem that Postulate 4, for example, would simply be a theorem from
these earlier developments and would not need separate statement. Put
another way, under this treatment of the concept of center of gravity, no
primitive notion of Archimedes’ theory would appear in Postulate 4 and
thus it would clearly be an eliminable postulate. The same remarks apply
to Postulates 5 and 7. It would seem that Archimedes has constructed a
sort of halfway house; his postulates do not give a complete characteriza-
tion of centers of gravity, but on the other hand, they cannot be said to
depend upon a completely independent characterization of this concept.

Schmidt (1975) gives an interesting axiomatic reconstruction of Archi-
medes’ theory, but his elegant postulates for centers of gravity are re-
stricted to plane polygonal figures, whereas in Book II Archimedes is
especially concerned with centers of gravity of parabolic segments. The
‘reduction’ of such segments to rectangles of equal area requires the results
found in Archimedes’ treatise Quadrature of the Parabola. (Schmidt’s
treatment of the ‘conjoint’ axioms discussed above does not use the stan-
dard modern results on conjoint measurement.)
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It is worth noting that the fundamental pair of propositions (6 and
7) asserting the law of the lever, or what we may also term the law of
static torque, does not really need any geometrical facts about centers
of gravity, as do later propositions of Book I, and the whole of Book II.
Archimedes could have used something like the following definition to get
as far as Proposition 7: The center of gravity of (wy,dy) and (we,ds) is
the distance d3 such that (wy,ds — ds) & (ws,ds — d1). This definition
assumes that distances are extensive magnitudes, but there is little dif-
ficulty about this assumption. It seems obvious to me why it is unlikely
Archimedes even momentarily would have considered such a definition.
The mathematically difficult and geometrically significant propositions
all deal with the centers of gravity of geometric figures; in fact, the whole
of Book II is concerned with finding the centers of gravity of parabolic
segments, and for this purpose a geometric concept of center of gravity is
a necessity.

From a purely axiomatic standpoint, therefore, Archimedes is no more
satisfactory than a modern physical treatise with some mathematical pre-
tensions. A good comparative example, perhaps, is von Neumann’s book
(1932/1955) on quantum mechanics, which contains a beautifully clear ax-
iomatic development of the theory of Hilbert spaces, but not of quantum
mechanics itself.

3In closing this discussion, it is worth noting that Mach (1942), in his famous trea-
tise on mechanics, seems to be badly confused on what Archimedes’ work is all about.
The focus of Mach'’s analysis is the famous Proposition 6 asserting that commensurable
magnitudes are in equilibriuin at distances reciprocally proportional to their weights.
Mach is particularly exercised by the fact that “the entire deduction (of this propo-
sition) contains the proposition to be demonstrated by assumption if not explicitly”
(p- 20). A central point of Mach's confusion seems to be a complete misunderstanding
as to the nature of the application of mathematics to physics. He seems to have no
real conception of how mathematics is used to derive particular propositions from gen-
eral assumptions, and what the relation of these general assumptions to the particular
proposition is. He seems to think that any such proposition as the one just quoted
must somehow be established directly from experience. His mistaken sentiments on
these matters are clearly expressed in the following passage:

From the mere assumption of the equilibrium of equal weights at equal
distances is derived the inverse proportionality of weight and lever arm!
How is that possible? If we were unable philosophically and a priori to
excogitate the simple fact of the dependence of equilibrium on weight
and distance, but were obliged to go for that result to experience, in how
much less a degree shall we be able, by speculative methods, to discover
the form of this dependence, the proportionality! (p. 19)

This last quotation shows, it seems to me, the basic fact that is usually not explicitly
admitted in discussing Mach’s views on the foundations of mechanics. He simply had
no coherent or reasonable conception of how mathematics can be used in science, and
his wrong-headed analysis of Archimedes is but one of many instances that support
this conclusion.
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3. PTOLEMY’S ALMAGEST

The third and most important example I cite is Ptolemy’s Almagest. It
is significant because it is the most important scientific treatise of an-
cient times and because it does not contain any pretense of an axiomatic
treatment.

It is to be emphasized that Ptolemy uses mathematical argument, and
indeed mathematical proof, with great facility, but he uses the mathemat-
ics in an applied way. He does not introduce explicit axioms about the
motion of stellar bodies, but reduces the study of their motion to geo-
metrical propositions, including of course the important case of spherical
trigonometry.

Near the beginning of the Almagest, Ptolemy illustrates very well in
the following passage the spirit of the way in which assumptions are
brought in:*

And so in general we have to state that the heavens are spheri-
cal and move spherically, that the earth in figure is also spher-
ical to the senses when taken in all its parts; in position lies
right in the middle of the heavens, like a geometrical center;
and in magnitude and distance has the ratio of a point with
respect to the sphere of the fixed stars, having no local mo-
tion itself at all. And we shall go through each of these points
briefly to bring them to mind (p. 7).

There then follows a longer and more detailed discussion of each of these
matters, such as the proposition that the heavens move spherically. My
point is that the discussion and the framework of discussion are very much
in the spirit of what we think of as nonaxiomatic mathematical sciences
today. There is not a hint of organizing these ideas in axiomatic fashion.
When Ptolemy gets down to details he has the following to say:

But now we are going to begin the detailed proofs. And we
think the first of these is that by means of which is calculated
the length of the arc between the poles of the equator and
the ecliptic, and which lies on the circle drawn through these
poles. To this end we must first see expounded the method of
computing the values of chords inscribed in a circle, which we
are now going to prove geometrically, once for all, one by one

(p- 14).

4The quotations given here are adapted from the translation by Taliaferro (1952),
but after this article was written the definitive English translation by Toomer (1984)
appeared, which will be standard reference in English for many years. The two passages
cited do not differ materially from Toomer’s.
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The detailed discussion, then, on the size of chords inscribed in a circle
emphasizes, above all; calculation and would make a modern physicist
happy by its tone and results as well. This long and important analysis
of computations is concluded with a numerical table of chords.

The thesis I am advancing is illustrated, in many ways even more
strikingly, by the treatment of the motion of the moon in Book IV. Here
Ptolemy is concerned to discuss in considerable detail the kind of observa-
tions that are appropriate for a study of the moon’s motion and especially
with the methodology of how a variety of observations are to be rectified
and put into a single coherent theory.

Various hypotheses introduced in later books, e.g., the hypothesis of
the moon’s double anomaly in Book V, are in the spirit of modern astron-
omy or physics, not axiomatic mathematics. Moreover, throughout the
Almagest, Piolemy’s free and effective use of geometrical theorems and
proofs seems extraordinarily similar in spirit to the use of the differential
and integral calculus and the theory of differential equations in a modern
treatise on some area of mathematical physics.

4. CONCLUDING REMARKS

In this analysis of the use of axiomatic methods and their absence in ex-
plicit form in ancient mathematical sciences such as optics and astronomy,
I have not entered into a discussion of the philosophical analysis of the
status of axioms, postulates and hypotheses. There is a substantial an-
cient literature on these matters running from Plato to Proclus. Perhaps
the best and most serious extant discussion is to be found in Aristotle’s
Posterior Analytics. Aristotle explains in a very clear and persuasive way
how geometrical proofs can be appropriately used in mechanics or optics
(75b 14ff). But just as Aristotle does not really have any developed ex-
amples from optics, mechanics or astronomy, so it seems to me that the
interesting distinctions he makes do not help us understand any better the
viewpoint of Euclid toward the ‘definitions’ of his optics or the postulates
of Archimedes about centers of gravity cited above.

Many of you know a great deal more than I do about the history of
Greek mathematics and Greek mathematical sciences, but, all the same,
I want to venture my own view of the situation I have been describing.
I may be too much influenced by my views about contemporary science,
but I find little difference between contemporary physics and the prob-
lems of Greek science I have been describing. Physicists of today no more
conform to an exact canon of philosophical analysis in their setting forth
of physical principles or ideas than did those ancient scientists and mathe-
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maticians who wrote about the subjects I have been discussing. There was
certainly a sense of methodology deeply embedded in Euclid, Archimedes
and Ptolemy, but it was not a sense of methodology that was completely
explicit or totally worked out, just as Aristotle’s own general principles
are never exemplified in any detailed and complicated scientific examples
of an extended sort. The gap between philosophical analysis, canons of
axiomatic method, and actual working practice was about the same order
of magnitude that it is today. What is surprising, I think, from a philo-
sophical standpoint is that the gap seems, if anything, to have widened
rather than narrowed over the past 2000 years.



4

THE PLURALITY OF SCIENCE

What I have to say falls under four headings: What is unity of science,
unity and reductionism, the search for certainty, and the search for com-

pleteness.

1. WHAT IS UNITY OF SCIENCE SUPPOSED TO BE?

To answer this initial question, I turned to the introductory essay by Otto
Neurath (1938) for Volume 1, Part 1, of the International Encyclopedia
of Unified Science. He begins this way:

Unified science became historically the subject of this Encyclo-
pedia as a result of the efforts of the unity of science movement,
which includes scientists and persons interested in science who
are conscious of the importance of a universal scientific atti-
tude.

The new version of the idea of unified science is created by the
confluence of divergent intellectual currents. Empirical work
of scientists was often antagonistic to the logical constructions
of a priori rationalism bred by philosophico-religious systems;
therefore, “empiricalization” and “logicalization” were consid-

*Reprinted from PSA 1978, Vol 2 (ed. by P. Asquith and I. Hacking), 1981, 3-16.
East Lansing MI: Philosophy of Science Association. I am indebted to Georg Kreisel
for a number of penetrating criticisms of the first draft of this paper.

41
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ered mostly to be in opposition—the two have now become
synthesized for the first time in history (1938, p. 1).

Later he continues:

All-embracing vision and thought is an old desire of human-
ity.... This interest in combining concepts and statements
without empirical testing prepared a certain attitude which
appeared in the following ages as metaphysical construction.
The neglect of testing facts and using observation statements
in connection with all systematized ideas is especially found
in the different idealistic systems (1938, pp. 5-6).

Later he says:

A universal application of logical analysis and construction
to science in general was prepared not only by empirical pro-
cedure and the systematization of logico-empirical analysis of
scientific statements, but also by the analysis of language from
different points of view (1938, pp. 16-17).

In the same volume of the Encyclopedia, the thesis about the unity of
the language of science is taken up in considerably more detail in Carnap’s
analysis of the logical foundations of the unity of science. He states his
well-known views about physicalism and, concerning the terms or predi-
cates of the language, concludes:

The result of our analysis is that the class of observable thing-
predicates is a sufficient reduction basis for the whole of the
language of science, including the cognitive part of the every-
day language (1938, p. 60).

Concerning the unity of laws, Carnap reaches a negative but optimistic
conclusion—optimistic in the sense that the reducibility of the laws of one
science to another has not been shown to be impossible. Here is what he
has to say on the reduction of biological to physical laws:

There is a common language to which both the biological and
the physical laws belong so that they can be logically com-
pared and connected. We can ask whether or not a certain
biological law is compatible with the system of physical laws,
and whether or not it is derivable from them. But the answer
to these questions cannot be inferred from the reducibility of
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the terms. At the present state of the development of sci-
ence, it is certainly not possible to derive the biological laws
from the physical ones. Some philosophers believe that such a
derivation is forever impossible because of the very nature of
the two fields. But the proofs attempted so far for this thesis
are certainly insufficient (1938, p. 60).

Later he has the same sort of thing to say about the reduction of psychol-
ogy or other social sciences to biology.

A different and less linguistic approach is to contrast the unity
of scientific subject matter with the unity of scientific method.
Many would agree that different sciences have different sub-
ject matters; for example, in no real sense is the subject matter
of astronomy the same as that of psychopharmacology. But
many would affirm that in spite of the radically different sub-
ject matters of science there are important ways in which the
methods of science are the same in every domain of investi-
gation. The most obvious and simple examples immediately
come to mind. There is not one arithmetic for psychological
theories of motivation and another for cosmological theories of
the universe. More generally, there are not different theories
of the differential and integral calculus or of partial differential
equations or of probability theory.

There is a great mass of mathematical methods and results that are avail-
able for use in all domains of science and that are, in fact, quite widely
used in very different parts of science. There is a plausible prima facie
case for the unity of science in terms of unity of scientific method. This
may be one of the most reasonable meanings to be attached to any central
thesis about the unity of science. However, I shall be negative even about
this thesis in the sequel. '

2. UNITY AND REDUCTIONISM

What I have said earlier about different sciences having obviously differ-
ent subject matters was said too hastily because there is a historically
important sense of unity. One form or another of reductionism has been
central to the discussion of unity of science for a very long time. I con-
centrate on three such forms: reduction of language, reduction of subject
matter, and reduction of method.
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Reduction of language. Carnap’s views about the reduction of the lan-
guage of science to commonsense language about physical objects remain
appealing. He states his general thesis in such a way that no strong claims
about the reduction of psychology to physics, for example, are implied,
and I am sure much is correct about what he has had to say. On the
other hand, it seems appropriate to emphasize the very clear senses in
which there is no reduction of language. The reduction certainly does not
take place in practice, and it may be rightly claimed that the reduction
in theory remains in a hopelessly vague state.

There are many ways to illustrate the basis for my skepticism about
any serious reduction of language. Part of my thesis about the plurality
of science is that the languages of the different branches of science are
diverging rather than converging as they become increasingly technical.
Let me begin with a personal example. My daughter Patricia is taking
a PhD in neurophysiology, and she recently gave me a subscription to
what is supposed to be an expository journal, entitled Neurosciences:
Research Program Bulletin. After several efforts at reading this journal,
I have reached the conclusion that the exposition is only for those in
nearby disciplines. I quote one passage from an issue (1976) dealing with
neuron-target cell interactions.

The above studies define the anterograde transsynaptic regu-
lation of adrenergic ontogeny. Black and co-workers (1972b)
have also demonstrated that postsynaptic neurons regulate
presynaptic development through a retrograde process. Dur-
ing the course of maturation, presynaptic ChAc activity in-
creased 30- to 40-fold (Figure 19), and this rise paralleled the
formation of ganglionic synapses (Figure 20). If postsynaptic
adrenergic neurons in neonatal rats were chemically destroyed
with 6-hydroxydopamine (Figure 24) or immunologically de-
stroyed with antiserum to NGF (Figure 25), the normal de-
velopment of presynaptic ChAc activity was prevented. These
data, viewed in conjunction with the anterograde regulation
studies lead to the conclusion that there is a bidirectional flow
of regulatory information at the synapses during development
(1976, p. 253).

This is by no means the least intelligible passage. It seems to me it illus-
trates the cognitive facts of life. The sciences are diverging and there is no
reason to think that any kind of convergence will ever occur. Moreover,
this divergence is not something of recent origin. It has been present for
a long time in that oldest of quantitative sciences, astronomy, and it is
now increasingly present throughout all branches of science.
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There is another point I want to raise in opposition to a claim made by
some philosophers and philosophically minded physicists. Some persons
have held that in the physical sciences at least, substantial theoretical
unification can be expected in the future and, with this unification, a
unification of the theoretical language of the physical sciences, thereby
simplifying the cognitive problem of understanding various domains. I
have skepticism about this thesis that I shall explain later, but at this
point I wish to emphasize that it takes care of only a small part of the
difficulties. It is the experimental language of the physical sciences as
well as of the other sciences that is difficult to understand, much more
so for the outsider than the theoretical language. There is, I believe, no
comparison in the cognitive difficulty for a philosopher of reading theo-
retical articles in quantum mechanics and reading current experimental
articles in any developed branch of physics. The experimental literature
is simply impossible to penetrate without a major learning effort. There
are reasons for this impenetrability that I shall not attempt to go into on
this occasion but stipulate to let stand as a fact.

Personally I applaud the divergence of language in science and find in
it no grounds for skepticism or pessimism about the continued growth of
science. The irreducible pluralism of languages of science is as desirable
a feature as is the irreducible plurality of political views in a democracy.

Reduction of subject matter. At least since the time of Democritus in
the 5th century B.C., strong and attractive theses about the reduction
of all phenomena to atoms in motion have been set forth. Because of
the striking scientific successes of the atomic theory of matter since the
beginning of the 19th century, this theory has dominated the views of
plain men and philosophers alike. In one sense, 1t is difficult to deny
that everything in the universe is nothing but some particular swarm of
particles. Of course, as we move into the latter part of the 20th century,
we recognize this fantasy for what it is. We are no longer clear about
what we mean by particles or even if the concept as originally stated is
anywhere near the mark. The universe is indeed made of something but
we are vastly ignorant of what that something is. The more we probe, the
more 1t seems that the kind of simple and orderly view advanced as part
of ancient atomism and that seemed so near realization toward the end of
the 19th century is ever further from being a true description. To reverse
the phrase used earlier, it is not swarms of particles that things are made
of, but particles that are made of swarms. There are still physicists about
who hold that we will one day find the ultimate simples out of which all
other things are made, but as such claims have been continually revised
and as the complexity of high-energy physics and elementary particle
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theory has increased, there seems little reason that we shall ever again be
able to seriously believe in the strong sense of reduction that Democritus
had attractively formulated.

To put the matter in a skeptical fashion, we cannot have a reduction of
subject matter to the ultimate physical entities because we do not know
what those entities are. I have on another occasion (1974a) expressed my
reasons for holding that Aristotle’s theory of matter may be sounder and
more sensible than the kind of simpleminded atomistic reductionist views
dominating our thinking about the physical world for 200 years.

There is another appealing argument against reduction of subject mat-
ter in the physical sense that does not rest on the controversy about the
status of mental events but on what has happened in the development
of computers. Perhaps for the first time we have become fully and com-
pletely aware that the same cognitive structures can be realized in phys-
ically radically different ways. I have in mind the fact that we now have
computers that are built on quite different physical principles for example,
old computers using vacuum tubes and modern computers using semicon-
ductors can execute exactly the same programs and can perform exactly
the same tasks. The differences in physical properties are striking be-
tween these two generations of computers. They stand in sharp contrast
to different generations of animal species, which have very similar physi-
cal constitutions but which may have very different cultural histories. It
has often been remarked upon that men of quite similar constitutions can
have quite different thoughts. The computer case stands this argument
on its head—it is not that the hardware is the same and the software
different but rather that the hardware is radically different and the soft-
ware of thoughts the same. Reduction in this situation, below the level
of the concepts of information processing, seems wholly uninteresting and
barren. Reduction to physical concepts is not only impractical but also
theoretically empty.

The same kinds of arguments against reductionism of subject matter
can be found even within physics. A familiar example is the currently
accepted view that it is hopeless to try to solve the problems of quantum
chemistry by applying the fundamental laws of quantum mechanics. It
is hopeless in the same way that it is hopeless to program a computer to
play the perfect chess game by always looking ahead to all possible future
moves. The combinatorial explosion is so drastic and so overwhelming
that theoretical arguments can be given that not only now but also in
the future it will be impossible by direct computation to reduce the prob-
lems of quantum chemistry to problems of ordinary quantum mechanics.
Quantum chemistry, in spite of its proximity to quantum mechanics, is
and will remain an essentially autonomous discipline. At the level of com-
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putability, reduction is not only practically impossible but theoretically
so as well.

An impressive substantive example of reduction is the reduction of
large parts of mathematics to set theory. But even here, the reduction
to a single subject matter of different parts of mathematics has a kind
of barren formality about it. It is not that the fact of the reduction
is conceptually uninteresting but rather that it has limited interest and
does not say much about many aspects of mathematics. Mathematics,
like science, is made up of many different subdisciplines, each going its
own way and each primarily sensitive to the nuances of its own subject
matter. Moreover, as we have reached for a deeper understanding of the
foundations of mathematics we have come to realize that the foundations
are not to be built on a bedrock of certainty but that, in many ways
developed parts of mathematics are much better understood than the
foundations themselves. As in the case of physics, an effort of reduction
is now an effort of reduction to we know not what.

In many ways a more significant mathematical example is the reduc-
tion of computational mathematics to computability by Turing machines,
but as in the case of set theory, the reduction is irrelevant to most com-
putational problems of theoretical or practical interest.

Reduction of method. As I remarked earlier, many philosophers and sci-
entists would claim that there is an important sense in which the methods
of science are the same in every domain of investigation. Some aspects of
this sense of unity, as I also noted, are well recognized and indisputable.
The common use of elementary mathematics and the common teaching
of elementary mathematical methods for application in all domains of sci-
ence can scarcely be denied. But it seems to me it is now important to
emphasize the plurality of methods and the vast difference in methodology
of different parts of science. The use of elementary mathematics—and I
emphasize elementary because almost all applications of mathematics in
science are elementary from a mathematical standpoint—as well as the
use of certain elementary statistical methods does not go very far toward
characterizing the methodology of any particular branch of science. As
I have emphasized earlier, it is especially the experimental methods of
different branches of science that have radically different form. It is no
exaggeration to say that the handbooks of experimental method for one
discipline are generally unreadable by experts in another discipline (the
definition of ‘discipline’ can here be quite narrow). Physicists working in
solid-state physics cannot intelligibly read the detailed accounts of method
in other parts of physics. This is true even of less developed sciences like
psychology. Physiological psychologists use a set of experimental methods
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that are foreign to psychologists specializing, for example, in educational
test theory, and correspondingly the intricate details of the methodology
of test construction will be unknown to almost any physiological psychol-
ogist.

Even within the narrow domain of statistical methods, different dis-
ciplines have different statistical approaches to their particular subject
matters. The statistical tools of psychologists are in general quite differ-
ent from those of economists. Moreover, within a single broad discipline
like physics, there are in different areas great variations in the use of statis-
tical methods, a fact that has been well documented by Paul Humphreys
(1976).

The unity of science arose to a fair degree as a rallying cry of philoso-
phers trying to overcome the heavy weight of 19th-century German ide-
alism. A half century later the picture looks very different. The period
since the Encyclopedia of Unified Science first appeared has been the
era of greatest development and expansion of science in the history of
thought. The massive enterprise of science no longer needs any philo-
sophical shoring up to protect it from errant philosophical views. The
rallying cry of unity followed by three cheers for reductionism should now
be replaced by a patient examination of the many ways in which differ-
ent sciences differ in language, subject matter, and method as well as by
synoptic views of the ways in which they are alike. Related to unity and
reduction are the two long-standing themes of certainty of knowledge and
completeness of science. In making my case for the plurality of science, I
want to say something about both of these unsupported dogmas.

3. THE SEARCH FOR CERTAINTY

From Descartes to Russell, a central theme of modern philosophy has
been the setting forth of methods by which certainty of knowledge can be
achieved. The repeatedly stated intention has been to find a basis that
is, on the one hand, certain and, on the other hand, adequate for the
remaining superstructure of knowledge, including science. The introduc-
tion of the concept of sense data and the history of the use of this concept
have dominated the search for certainty in knowledge, especially in the
empirical tradition, as an alternative to direct rational knowledge of the
universe.

All of us can applaud the criticism of rationalism and the justifiable
concern not to accept the possibility of direct knowledge of the world
without experience. But it was clearly in a desire to compete with the
kind of foundation that rationalism offered that the mistaken additional
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step was taken of attempting to ground knowledge and experience in a way
that guaranteed certainty for the results. The reduction of the analysis
of experience to sense data is itself one of the grand and futile themes
of reductionism, in this case largely driven by the quest for certainty.
Although it is not appropriate to pursue the larger epistemological issues
involved, I would like to consider some particular issues of certainty that
have been important in the development of modern scientific methods.

Errors of measurement. With the development of scientific methodology
and probability theory in the 18th century, it was recognized that not only
did errors in measurements rise but also that a systematic theory of these
errors could be given. Fundamental memoirs on the subject were written
by Simpson, Lagrange, Laplace, and others. For our purposes, what is
important about these memoirs is that there was no examination of the
question of the existence or nonexistence of an exact value for the quantity
being measured. It was implicit in these 18th-century developments, as
it was implicit in Laplace’s entire theory of probability, that probabilistic
considerations, including errors, arise from ignorance of true causes and
that the physical universe is so constituted that in principle we should be
able to achieve the exact true value of any measurable physical quantities.
Throughout the 19th century it was implicit that it was simply a matter
of tedious and time-consuming effort to refine the measured values of
any quantity one more significant digit. Nothing fundamental stood in
the way of making such a refinement. It is a curious and conceptually
interesting fact that, as far as I know, no one in this period enunciated
the thesis that this was all a mistake, that there were continual random
fluctuations in all continuous real quantities, and that the concept of an
exact value had no clear meaning.

The development of quantum mechanics in this century made physi-
cists reluctantly but conclusively recognize that it did not make sense
to claim that any physical quantity could be measured with arbitrary
precision in conjunction with the simultaneous measurement of other re-
lated physical quantities. It was recognized that the inability to make
exact measurement is not due to technological inadequacies of measuring
equipment but is central to the fundamental theory itself.

Even within the framework of quantum mechanics, however, there has
tended to be a large conceptual equivocation on the nature of uncertainty.
On the one hand, the claim has been that interference from the measur-
ing apparatus makes uncertainty a necessary consequence. In this context
some aspects of uncertainty need to be noted. It is not surprising that if
we measure human beings at different times and places we expect to get
different measurements of height and weight. But in the case of quantum
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mechanics what is surprising is that variation is found in particles sub-
mitted to “identical” experimental preparations. Once again a thesis of
simplicity and unity is at work. Electrons should differ only in numerical
identity, not in any of their properties. And if this is not true of electrons,
there should be finer particles discoverable that do satisfy such a principle
of identity.

The other view, and the sounder one in my judgment, is that random
fluctuations are an intrinsic part of the behavior of microscopic phenom-
ena. No process of measurement is needed to generate these fluctuations;
they are a part of nature and lead to a natural view of the impossibil-
ity of obtaining results of arbitrary precision about microscopic physical
quantities.

If we examine the status of theory and experiments in other domains of
science, it seems to me that similar claims about the absence of certainty
can be made. The thrust for certainty associated with classical physics,
British empiricism, and Kantian idealism is now spent.

4. THE SEARCH FOR COMPLETENESS

Views about the unity of science, coupled with views about the reduction
of knowledge to an epistemologically certain basis like that of sense data,
are often accompanied by an implicit doctrine of completeness. Such a
doctrine is often expressed by assumptions about the uniformity of na-
ture and assumptions about the universe being ultimately totally ordered
and consequently fully knowable in character. Unity, certainty, and com-
pleteness can easily be put together to produce a delightful philosophical
fantasy.

In considering problems of completeness, I begin with logic and math-
ematics but have as my main focus the subsequent discussion of the em-
pirical sciences.

Logic is the one area of experience in which a really satisfactory theory
of completeness has been developed. The facts are too familiar to require
a detailed review. The fundamental result is Godel’s completeness the-
orem that in first-order logic a formula is universally valid if and only if
it is logically probable. Thus, our apparatus of logical derivation is ade-
quate to the task of deriving any valid logical formula, that is, any logical
truth. What we have in first-order logic is a happy match of syntax and
semantics.

On the other hand, as Kreisel has emphasized in numerous publica-
tions (e.g., (1967)), this match of syntax and semantics is not used in the
proof of logical theorems. Rather, general set-theoretical and topological
methods are continually drawn upon. One reason is that proofs given in
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the syntax of elementary logic are psychologically opaque and therefore in
nontrivial cases easily subject to error. Another is that it is not a natural
setting for studying the relation of objects that are the focus of the theory
to other related objects; as an example, even the numerical representa-
tion theorem for simple orderings cannot be proved in first-order fashion.
Completeness of elementary logic is of some conceptual interest, but from
a practical mathematical standpoint useless.

Incompleteness of arithmetic. The most famous incompleteness result oc-
curs at an elementary level, namely, at the level of arithmetic or elemen-
tary number theory. In broad conceptual terms, Godel’s result shows that
any formal system whose language is rich enough to represent a minimum
of arithmetic is incomplete. A much earlier and historically important
incompleteness result was the following.

Incompleteness of geometric constructions. The three classical construc-
tion problems that the ancient Greeks could not solve by elementary
means were those of trisecting an angle, doubling a cube, and squar-
ing a circle. It was not until the 19th century that these constructions
were shown to be impossible by elementary means, thereby establishing
a conceptually important incompleteness result for elementary geometry.

Incompleteness of set theory. In the latter part of the 19th century, on
the basis of the work of Frege in one direction and Cantor in another, it
seemed that the theory of sets or classes was the natural framework within
which to construct the rest of mathematics. Research in the 20th century
on the foundations of set theory, some of it recent, has shown that there
is a disturbing sense of incompleteness in set theory, when formulated
as a first-order theory. The continuum hypothesis as well as the axiom
of choice is independent of other principles of set theory, and, as in the
case of geometry, a variety of set theories can be constructed, at least
first-order set theories.

The continuum hypothesis, for example, is decidable in second-order
set theory, but we do not yet know in which way, that is, as true or
false. Thus there is clearly less freedom for variation in second-order set
theory, but also at present much less clarity about its structure. The
results of these various investigations show unequivocally that the hope
for some simple and complete foundation of mathematics is not likely to
be attained.

Theories with standard formalization. The modern logical sense of com-
pleteness for theories with standard formalization, that is, theories for-
malized within first-order logic, provides a sharp and definite concept
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that did not exist in the past. Recall that the characterization of com-
pleteness in this context is that a theory is complete if and only if every
sentence of the theory is either valid in the theory or inconsistent with
the theory—that is, its negation is valid in the theory.

In back of this well-defined logical notion is a long history of discussions
in physics that are vaguer and less sharply formulated but that have a
similar intuitive content.

Kant’s sense of completeness. Although there is no time here to examine
this history, it is worth mentioning the high point of its expression as
found in Kant’s Metaphysical Foundations of Natural Science. Kant’s
claim is not for the completeness of physics but for the completeness of
the metaphysical foundations of physics. After giving the reason that it
is desirable to separate heterogeneous principles in order to locate errors
and confusions, he gives as the second reason the argument concerning
completeness.

There may serve as a second ground for recommending this
procedure the fact that in all that is called metaphysics the
absolute completeness of the sciences may be hoped for, which
is of such a sort as can be promised in no other kind of cog-
nitions; and therefore just as in the metaphysics of nature in
general, so here also the completeness of the metaphysics of
corporeal nature may be confidently expected....

The schema for the completeness of a metaphysical system,
whether of nature in general or of corporeal nature in partic-
ular, is the table of the categories. For there are no more pure
concepts of the understanding, which can concern the nature
of things. (1970, pp. 10-11).

It need scarcely be said that Kant’s argument in terms of the table of
the categories scarcely satisfied 18th-century mathematical standards, let
alone modern ones. His argument for completeness was not subtle, but
his explicit focus on the issue of completeness was important and original.

The unified field theory. After Kant, there was important system building
in physics during the 19th century, and there were attempts by Kelvin,
Maxwell, and others to reduce all known physical phenomena to mechan-
ical models, but these attempts were not as imperialistic and forthright in
spirit as Kant’s. A case can be made, I think, for taking Einstein’s general
theory of relativity, especially the attempt at a unified field theory, as the
real successor to Kant in the attempt to obtain completeness. 1 do not
want to make the parallel between Kant and Einstein too close, however,
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for Einstein does not hold an a priori metaphysical view of the founda-
tions of physics. What they do share is a strong search for completeness
of theory. Einstein’s goal was to find a unified field theory defining one
common structure from which all forces of nature could be derived. In the
grand version of the scheme, for given boundary conditions, the differen-
tial equations would have a unique solution for the entire universe, and all
physical phenomena would be encompassed within the theory. The geo-
metrodynamics of John Wheeler and his collaborators is the most recent
version of the Einstein vision. Wheeler, especially, formulates the prob-
lem in a way that is reminiscent of Descartes: “Are fields and particles
foreign entitles immersed in geometry, or are they nothing but geometry?”
(1962, p. 361).

Had the program of Einstein and the later program of Wheeler been
carried to completion, my advocacy of skepticism toward the problem of
completeness in empirical science would have to retreat from bold asser-
tion of inevitable incompleteness. However, it seems to me that there is,
at least in the current scientific temperment, total support for the thesis
of incompleteness. Grand building of theories has currently gone out of
fashion in fields as far apart as physics and sociology, and there seems to
be a deeper appreciation of the problems of ever settling, in any definitive
way, the fundamental laws of complex phenomena.

As the examples I have mentioned—and many others that I have not—
demonstrate, in most areas of knowledge it is too much to expect theories
to have a strong form of completeness. What we have learned to live with
in practice is an appropriate form of completeness, but we have not built
this working practice explicitly into our philosophy as thoroughly as we
might. It is apparent from various examples that weak forms of complete-
ness may be expected for theories about restricted areas of experience. It
seems wholly inappropriate, unlikely, and, in many ways, absurd to ex-
pect theories that cover large areas of experience, or, in the most grandiose
cases, all of experience, to have a strong degree of completeness.

The application of working scientific theories to particular areas of
experience is almost always schematic and highly approximate in charac-
ter. Whether we are predicting the behavior of elementary particles, the
weather, or international trade—any phenomenon, in fact, that has a rea-
sonable degree of complexity—we can hope only to encompass a restricted
part of the phenomenon.

It is sometimes said that it is exactly the role of experimentation to
isolate particular fragments of experience that can be dealt with in rela-
tively complete fashion. This is, I think, more a dogma of philosophers
who have not engaged in much experimentation than it is of practicing
experimental scientists. When involved in experimentation, I have been
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struck by how much my schematic views of theories also apply to experi-
mental work. First one concrete thing and then another is abstracted and
simplified to make the data fit within the limited set of concepts of the
theory being tested.!

Let me put the matter another way. A common philosophical con-
ception of science is that it is an ever closer approximation to a set of
eternal truths that hold always and everywhere. Such a conception of sci-
ence can be traced from Plato through Aristotle and onward to Descartes,
Kant, and more recent philosophers, and this account has no doubt been
accepted by many scientists as well. It is my own view that a much bet-
ter case can be made for the kind of instrumental conception of general
terms by Peirce, Dewey, and their successors. In this view scientific ac-
tivity is perpetual problem solving. No area of experience is totally and
completely settled by providing a set of basic truths; but rather, we are
continually confronted with new situations and new problems, and we
bring to these problems and situations a potpourri of scientific methods,
techniques, and concepts, which in many cases we have learned to use
with great facility.

The concept of objective truth does not directly disappear in such a
view of science, but what we might call the cosmological or global view of
truth is looked at with skepticism just as is a global or cosmological view
of completeness. Like our own lives and endeavors, scientific theories are
local and are designed to meet a given set of problems. As new prob-
lems arise new theories are needed, and in almost all cases the theories
used for the old set of problems have not been tested to the fullest extent
feasible nor been confirmed as broadly or as deeply as possible, but the
time is ripe for something new, and we move on to something else. Again
this conception of science does not mean that there cannot be continued
correction in a sequence of theories meeting a particular sequence of prob-
lems; but it does urge that the sequence does not necessarily converge. In
fact, to express the kind of incompleteness I am after, we can even make
the strong assumption that in many domains of experience the scientific
theory that replaces the best old theory is always an improvement, and
therefore we have a kind of monotone increasing sequence. Nonetheless,
as in the case of a strictly monotone increasing sequence of integers, there
is no convergence to a finite value—the sequence is never completed—and
so it is with scientific theories. There is no bounded fixed result toward
which we are converging or that we can hope ever to achieve. Scientific
knowledge, like the rest of our knowledge, will forever remain pluralistic
and highly schematic in character.

1 This idea is developed in some detail in Suppes (1962).



HEURISTICS AND THE
AXIOMATIC METHOD

1. THE PLACE OF THE AXIOMATIC METHOD

Over the last 100 years a variety of arguments have been given for using
the axiomatic method in mathematics and in science. There is not uniform
agreement that the method is always appropriate or useful. However,
there is, I think, general agreement that the use of such methods has
revolutionized the presentation of mathematics and has had significant
impact in the empirical sciences as well.

Various arguments in favor of giving an explicit axiomatic analysis of
structures in a given discipline have been given. The standard arguments
concentrate on matters of clarity, explicitness, generality, objectivity, and
self-containedness (Suppes, 1968).

Arguments of another sort are sometimes found in physics. I quote
one example from quantum field theory (Bogolubov, Logunov, Todorov,
1975).

It is widely believed that axiomatization is a kind of polish-
ing, which is applied to an area of science after it has been,
for all practical purposes, completed. This is not true, even

*Reprinted from Methods of heuristics (ed. by R. Groner, M. Groner and W. F.
Bischof), 1983, pp. 79-88. Hillsdale, NJ: Erlbaum. I am indebted to Georg Kreisel for
several useful criticisms of an earlier draft.
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in pure mathematics. Admittedly, the modern axiomatization
of arithmetic and Euclidean geometry marked the completion
of these disciplines (although at the same time it stimulated a
new science—mathematical logic, or metamathematics). For
most areas of contemporary mathematics, however, such as
functional analysis, axiomatization is a fundamental method
of exploration, a starting point. (Of course, the system of ax-
ioms may be modified as the subject develops.) In theoretical
physics, since the time of Newton, the axiomatic method has
served not only for the systematization of results previously
obtained, but also in the discovery of new results (p. 1).

What I want to do in the present chapter is rather similar. The ar-
gument I want to concentrate on is sometimes stated very informally,
but it is often implicit and behind the scenes. It is that the use of the
axiomatic method has a positive heuristic value in understanding a sub-
ject, in solving problems in it, and in formulating new problems. At the
most satisfactory level, this chapter would contain some conceptual ideas
about the heuristic value of the axiomatic method and would then go
on to present detailed empirical evidence in support of or against these
conceptual claims. As you might imagine, I am not able to provide any
detailed empirical data, but what I have to say should in principle be
testable.

I also want to make clear that my analysis is not meant to be a pane-
gyric for the axiomatic method. Application of the method in some parts
of science has had a negative effect. I should also mention that, in spite
of the fact that axiomatic methods have certainly been developed and
applied mainly in pure mathematics, I consider on an equal basis the
physical and social sciences.

When azioms are appropriate. The preceding quotation from a well-
known treatise on quantum field theory represents one important view-
point. I now want to move to the social sciences. Economics uses mathe-
matical methods, and in particular axiomatic methods, to a much greater
extent than any other social science. As some of my economist friends put
it, you have to know some modern mathematics in order not to become
technologically obsolete as an economist. In a subject like economics that
has been developed over many years, that has close ties to politics in many
of its intellectual roots and that often reflects strong national biases, the
virtues of the extensive use of mathematical methods, and especially ax-
iomatic methods, are apparent. Economists from all parts of the world
converse easily and clearly about their basic assumptions when they op-
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erate within the axiomatic frameworks that are so much a common part
of contemporary work in economics.

For different reasons the use of axiomatic methods has played a sim-
ilar positive role in sociology. For over 100 years sociology has been al-
most overwhelmed with large-scale, high-sounding theories. Inside some
of these theories are some interesting and original ideas, but these creative
seeds have often been lost in the mounds of chaff. What is happening in
sociology reminds me of what has sometimes been said of the 17th century;
Newton’s Principia was not only a work marvelous for its deep results but
also for its intellectual purity and austerity. The speculative and over-
wrought ideas of Descartes and others about the nature of matter and of
physical phenomena, exemplified most strikingly in Descartes’ Principles
of Philosophy, were replaced by something that was substantial and solid
throughout. The modern tendency in sociology represents a correspond-
ing move from Cartesian method to Newtonian analysis. Good examples
of modern work are Coleman (1964), Fararo (1973), and Blalock, Aganbe-
gian, Borodkin, Boudon, and Capecchi (1975). These three works are of
quite a different sort. Coleman’s treatise is an early and influential book
in the extended application of mathematical methods to standard prob-
lems in sociology. Fararo’s book is closer to being a standard textbook,
and the multiple-authored book edited by Blalock et al. provides reprints
of many current articles relevant to mathematical and axiomatic studies
in sociology. The material in these three volumes is a far cry from the
kind of philosophical sociology that is still very prominent in many parts
of Europe and that was dominant throughout the world a few decades
ago. The mathematical methods in sociology I am referring to have the
heuristic virtue of forcing those who use them to achieve a certain degree
of explicitness and precision of formulation. It is too easily forgotten how
important 1t is to convert certain subject matters from vague qualitative
discussions to disciplined mathematically based discourse. It is also too
easy to think that this is a problem that has only been faced by the social
sciences. A little reading in Descartes, Boscovich, or any of a number of
other authors provides evidence that physics had a similar problem before
the 19th century.

The story is somewhat different in psychology, which has always been
more data bound and experimentally bound than either economics or
sociology. The earlier attempts at axiomatization in psychology were
more 1n the spirit of Descartes than Newton. Leibniz said in a famous
phrase that Descartes’ treatise on physics, the Principles of Philosophy
Jjust mentioned, was a roman de physigue. I have said the same of Piaget’s
attempts at axiomatization in psychology and have called them a roman
de psychologie (Suppes, 1973a). I would say the same also of the earlier
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work of the learning theorists of the 1930s and 40s, for example, Tolman
and Hull. Do not misunderstand me, novels are not necessarily bad; they
have a place even in science. The speculative system of Descartes played
in its own way a major role in the development of physics in the 17th
century. The same can be said, in an even more positive way, about the
work of Piaget, Tolman, and Hull.

Since 1950 there has been a great variety of axiomatic work in psy-
chology, most of it closely linked to experimental data. I am thinking of
the work in learning theory, decision theory, measurement theory, formal
models of perception, and psychophysical processes, to mention what are
perhaps the most important areas. On the other hand, the story has
not been one of unmitigated success. Much of the work in contemporary
cognitive psychology is not even mathematical in character, let alone ax-
iomatic. There is no doubt a feeling among many cognitive psychologists
that it is premature to think of the development of cognitive structures in
mathematical terms. I do not think these cognitive psychologists holding
the views I attribute to them are entirely wrong. They are just misguided!

2. HEURISTIC VERSUS NONHEURISTIC AXIOMS

I assume for the remainder of this chapter that for many scientific theories
it is appropriate to attempt to give a thorough axiomatic treatment. What
I want to do is to classify various axiomatic analyses as heuristic or not.
By an axiomatic analysis being “heuristic,” I mean that the analysis yields
axioms that seem intuitively to organize and facilitate our thinking about
the subject, and in particular our ability to formulate, in an ordinarily
self-contained way, problems concerned with the phenomena governed by
the theory and their solutions.

In considering these examples, I have in mind that the axiomatic
method is relatively neutral regarding its heuristic value. It seems to
me that there are examples, well-known in fact in the literature, that
do facilitate our thinking. On the other hand, there are also well-known
examples that represent a sophisticated mathematical foundation of a dis-
cipline, but that are formulated in such a way that they prohibit natural
and intuitive ways of thinking about problems, especially new problems
in the discipline. By calling some axiomatic analyses unheuristic, I do
not mean to suggest that they do not have value for other reasons. 1 do
mean to suggest that they do not represent the kind of transparent and
conceptually satisfactory solution we should aim at whenever possible.

First heuristic ezample: field of real numbers. The construction of real
numbers by Dedekind cuts or as equivalence classes of Cauchy sequences
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completes an important 19th-century program on the arithmetization of
analysis, but the resulting objects, taken as the real numbers in a literal
fashion, are unnatural to deal with. In contrast, the standard axioms for
the field of real numbers using the least upper-bound axiom for complete-
ness seem very natural and intuitive. The axioms express the algebraic
content of the rational operations on the real numbers in a simple and
elegant way (I recognize, of course, that there is a slight variance on how
the axioms are formulated in this respect, but these minor variations are
not of concern here). Moreover, the least upper-bound axiom, to the ef-
fect that every nonempty bounded set of real numbers has a least upper
bound, also seems easy to comprehend, even though it has a very different
character from the other axioms. Elementary proofs in real analysis can
use these axioms in a way that is easy for students to understand and
for instructors to explain. Part of the heuristic value of the axioms is, [
believe, that all but the least upper-bound axiom can be formulated with
free variables only. This leaves the algebraic structure transparent and
easy for the student to manipulate.

Second heuristic ezample: Kolmogorov’s axioms for probability. To appre-
ciate the clarity and definite intuitive foundation Kolmogorov (1933) gave
to the concept of probability in his well-known axiomatization, one needs
only to examine the literature on the foundations of probability prior to
his work. Even basic general properties were not entirely clear. Certainly
the appropriate generality was not obtained together with axioms whose
conceptual foundation was easy to understand. By formulating the ax-
ioms in terms of a measure on a algebra of sets, with the sets interpreted as
events, he provided an axiomatic foundation that has dominated 50 years
of probability theory. The earlier work of Borel and Keynes, for exam-
ple, lacked both clarity and generality. Also important in Kolmogorov’s
treatment was the explicit introduction of random variables as the main
tool used in advanced probability work.

To a remarkable degree, Kolmogorov’s approach has simply obliter-
ated in the mathematical literature of probability theory the earlier foun-
dational formulations. Before Kolmogorov’s work it used to be said that
probability was a subject that could not be treated in a proper mathe-
matical fashion because the foundations were so unclear. The heuristic
value of Kolmogorov’s work was to clear away the underbrush of the past
and leave a new and adequate axiomatic formulation standing unsup-
ported by any need for historical references to earlier work. This elim-
ination of the past is one of the great heuristic virtues of simplification
that the axiomatic method can achieve when used in the best possible
form.



60 PART I. GENERAL METHODOLOGY

It is also important to recognize that a brilliant piece of axiomatic work
like that of Kolmogorov need not be in any absolute sense final. It is just
that it provides a basis for going forward in a new and unencumbered
fashion.

For many reasons, I do not think that Kolmogorov’s axioms are re-
ally the natural ones for many physical applications, but this is a minor
complaint in the perspective of what was accomplished by his axiomatic
presentation in the 1930s.

A nonheuristic ezample: Mackey’s azioms for quantum mechanics. Be-
cause of its mathematical clarity and thoroughness, Mackey’s (1957, 1963)
axiomatic foundations of classical quantum mechanics have been generally
well-received and cited often as the standard work on the subject. I take
the view here that heuristically this is a bad example of axiomatization.
As might be expected, I hope that what I have to say will be intrinsically
more interesting than the rather laudatory general things I said about the
two previous examples cited as good heuristic instances.

Let me first try to put in a general way my central objection to
Mackey’s axiomatization. There are two main points I want to make.
First, the axioms about the probability distribution of operators are for-
mulated for single operators. There is no natural discussion about the
causal development of a quantum-mechanical system and, consequently,
the way in which one would intuitively think of a temporal sequence of
operators being causally related. I expect, of course, that these causal re-
lations will be stochastic in nature, but they are intuitively important to
consider, indeed essential to the dynamical aspects of the theory. Second,
if we think in natural terms of the trajectory of a particle, for example,
we must think of it as a continuous sequence of operators being able to
ask at each instant in time in which Borel sets the value of the operator
lies. I submit that if physics had started this way, no serious complex
problem would ever have been solved. A more natural and intuitive way
of thinking of trajectories of particles is needed. It might be said that
Mackey is just cleaning up what the physicists have said in an informal
way. I think that a case can be made for this. My point is not to criticize
Mackey’s work as introducing discrepancies between the way physicists
talk and the axioms he has given, but rather that the axioms taken liter-
ally present a wrong picture of how to think about physical problems in
quantum mechanics.

I mention at this point the more important of Mackey’s axioms. Briefly
speaking, Mackey proceeds in the following fashion for the time-indepen-
dent case. Let © be the set of observables and let S be the set of states;
any structure on the sets © and S is explicitly stated in the axioms. The
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function p(A,a, F) is defined whenever A € ©,c € S and E is a Borel
set of real numbers. Intuitively p(4, a, E) is the probability of measuring
observable A in set E' when the state of the system is «. The first axiom
states in fact that for every A in © and « in S, p(A4, a, E) is a probability
measure in the argument E on the set of all real numbers. The second
axiom guarantees uniqueness of observables with a given probability dis-
tribution, and similarly for states. It is a kind of extensionality axiom for
observables and states.

If p(A,a,E) = p(A',o,E) for all « in S and Borel sets E then

A=A and if p(A,a,F) = p(A, &/, E) for all A in © and all Borel sets
E then a = o'.
The remaining axioms are more technical and are not given here. Proper-
ties as two-valued observables are defined, and a certain partial ordering
in terms of probability distributions on properties is defined. The final
and most powerful axiom is then the assertion that the set of all proper-
ties under the given ordering is isomorphic to the partially ordered set of
all closed subspaces of a separable infinite-dimensional complex Hilbert
space.

The last axiom also makes clear another heuristic weakness. The cor-
respondence between operators and observables is left at the postulation
of a one-to-one correspondence. Clearly, not much real physics could be
done within this framework. What is important from the standpoint of
physics is the derivation of the important correspondences and the pro-
vision of tools for the derivation of others that may be wanted. Thus,
the various arguments that are given for the standard operator for posi-
tion and the standard operator for momentum need to be, I would claim,
incorporated directly into the axiomatic framework in order to have a
heuristically acceptable set of axioms.

In criticizing so severely Mackey’s axioms from a heuristic standpoint,
I am not suggesting that it is either obvious or easy how to replace them
by axioms for quantum mechanics that are heuristically of the right sort.
Mackey (1963) himself agrees with this point: “It is not yet possible to
deduce the present form of quantum mechanics from completely plausible
and natural axioms (p. 62).” My view is that, given the way in which
classical quantum mechanics developed historically, only a rather radical
shift in our thinking will lead to a heuristically transparent formulation.

Starting with a quotation from the treatise of Bogolubov et al., on
quantum field theory, I have stressed the heuristic value of the axiomatic
method in simplifying subject matters so as to make discoveries easier
and the exposition of subjects pedagogically more accessible. It seems
to me that Mackey’s treatment fails on both these points in spite of the
other virtues of his classical work.
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3. AXIOMATIC ANALYSIS OF QUALITATIVE DERIVATIONS

It is widespread folklore in physics and engineering that if one gets di-
verted into proving theorems nothing of real interest will come out from a
physical standpoint. The focus of physics should be on solving problems
and not on proving theorems. Leave that business to the mathemati-
cians. We could agree that there is a proper division of work here and
that, moreover, without any consideration of division of work it is still
better and more useful to have the solution of a hard problem than the
proof of a trivial theorem (or vice versa).

It is also a standard claim that graduate students in physics and in
engineering are not expected to be able to prove theorems. It is not a
part of their training. When physicists discuss axiomatics, it is sometimes
called physical axiomatics, because it is not meant to have the status of
a genuine axiomatic analysis.

There is little doubt about the importance attached in engineering and
physics to students’ having the ability to derive from qualitative princi-
ples an appropriate differential equation. Such derivations are considered
an essential part of problem-solving skills. Good teachers have a lot of
important things to say about how one is to think about such derivations,
but the systematic theory is quite undeveloped. Indeed, it is a common
thing to juxtapose the quite informal state of such problem solving to for-
mal theorem proving. However, I think this is a false division. We should
be able to give an axiomatic analysis of such qualitative derivations in
the same spirit that we analyze other systematic phenomena. Now it is
quite true that this axiomatic analysis could miss the heuristic spirit that
seems so central to learning how to make such derivations, but it should
be an important criterion of evaluation that the axioms do not miss this
heuristic spirit.

I want to be clear that the giving of such an axiomatic analysis of the
foundation of qualitative derivations in physics, engineering, and other
sciences does not in itself constitute a heuristic analysis, but I think that
it is an important and essential step that will guide students in their
attempts to give proper derivations.

What I am asking for corresponds in many ways to the analysis of
the concept of mathematical proof, but I am not interested here in the
direction so characteristic of proof theory, namely, the reduction of proofs
to an explicit form consisting of a large number of elementary steps. I
am interested more in the analysis of mathematical proofs as they are
presented by good writers in textbooks and treatises. This later kind of
analysis, which is what many mathematicians expect, I think, from proof
theory, is nearly as undeveloped as the analysis of qualitative derivations.
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Mathematicians are generally aware of the rigorous and explicit theory
of proofs that has developed since Hilbert, but they are not always sensi-
tive to the differences between this explicit formal theory and the actual
practices in giving proofs in mathematics. As we move from mathematics
to sciences, awareness of this gap assumes a different form. In the classical
tradition of problem solving I have alluded to, there is no concern at all
for formal proofs. In spite of these differences, I think there is a natural
and homogeneous common ground that can be occupied by a theory of
informal mathematical proofs and a theory of qualitative derivations in
engineering, physics, and the other sciences.

There is a final historical point I want to make on the place of the
axiomatic method in the kind of analyses I have just been discussing.
It is commonly observed that the explicit role of the axiomatic method
in mathematics is less important now than it was at the turn of the
century. The detailed discussion of axioms and consideration of their
independence, consistency, and completeness were the focus of intensive
inquiry especially in the foundations of geometry. The lack of current
concern for such questions can be seen in the lack of attention they receive
in the treatise of Bourbaki covering so many parts of modern mathematics.
As developments of particular disciplines have matured, the emphasis
has shifted from explicit axiomatic methods to the identification of basic
structures. It is this identification of basic structures without regard to
the finer points of the axiomatic assumptions that is characteristic of
Bourbaki and many other systematic treatises in modern mathematics.

It seems to me, on the other hand, that the rather primitive status of
the theory of qualitative derivations or the theory of informal proofs is
precisely a subject calling for a sustained attempt at axiomatic analysis.
We should anticipate interesting results of the sort that should contribute
to the development of better heuristics in both theorem proving as it is
actually done informally and in problem solving as it is now done in the
quantitative and mathematically oriented empirical sciences.

4. CONCLUDING REMARK ON THE DISTINCTION BETWEEN HEURISTICS
AND AXIOMATICS

It is possible to take a line that says that what I have urged in the pre-
ceding section blurs the distinction between the axiomatic analysis of
informal proofs and derivations and the codification of heuristics for the
activities of giving such informal proofs and derivations. It is possible to
take this line but I think it is important to maintain the distinction. The
axiomatic analysis of qualitative derivations of differential equations in a
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given domain can aim at a kind of informal rigor characteristic of contem-
porary mathematics, especially characteristic of the kinds of discussions
of such matters in modern probability theory, for example. On the other
hand, I see the development of heuristics as being more psychological and
much more incomplete. The real problem is to develop a useful heuristics
that is, on the one hand, not a collection of general banalities but, on the
other hand, is not simply an axiomatic analysis of the process that is the
focus of inquiry.

To make this distinction more vivid, let me consider an example in
my own experience. I am responsible at Stanford for a computer-assisted
instruction course in axiomatic set theory. This is an intermediate un-
dergraduate course giving students their first introduction to the subject.
Proofs are given in an informal style but the computer program the stu-
dents address in giving their proofs must construct internally a formal
representation. We also have for certain parts of the course, and we hope
in the future to have in more parts, hints that are given to the student
about constructing a proof of a given theorem. Our objective is to have
contingent hints that are based on an analysis of the student’s proof and
that give him advice on how to complete it. In constructing a computer
program able to give such contingent hints we have no intention of being
able to provide an adequate analysis of every proof a student might give.
Some of the theorems are rather hard and some of the partial proofs will
be too deviant for the heuristic program to understand them. In contrast,
the informal proof procedures are meant to be complete in the sense that
a student knows that he has available machinery adequate to giving the
proof. Moreover, we know from our own experience that a variety of
proofs can be constructed for any of the theorems assigned by using the
informal proof procedures available. I would expect this contrast to con-
tinue. It is why I think a deeper theory of heuristics than anything I have
suggested should be to a large extent psychological in character.

Another way of putting the matter is that a virtue of the axiomatic
method is that it brings an unusual and sometimes startling degree of
explicitness to the analysis of a subject matter, and I do not think of
heuristics as doing this. If a heuristic achieves a total degree of explicit-
ness, it passes from being a heuristic to being an algorithm. The contrast
I have in mind, put still another way, is that axiomatic analysis primar-
ily deals with the analysis of a subject matter. Heuristics should deal
with a process or activity. We are as incomplete in the formulation of
heuristics as we are incomplete in the formulation of rules for learning
or performing any finely tuned skill. Readers of Polya can increase their
skill in problem solving just as readers of a good manual on tennis can
improve their game. But in both cases the rules that are formulated are
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only hints at how the skill should in fact be exercised. From simply read-
ing the statement of rules about serving or hitting a good backhand in
tennis it would be impossible, in fact, to play the game well. Not only
are the rules quite incomplete in statement, but a person must actually
practice in a nonverbal and active way the skills themselves in order to
acquire any competence. Exactly the same thing, it seems to me, is true
of heuristics. We cannot hope to teach each other at a deep level how
to discover new theorems or to solve new problems in any detailed way.
We can only provide heuristics to point in certain directions that make us
perform more efficiently and more effectively. The rules of heuristics are
as incomplete, fragmentary, and insufficient as are manuals of any other
skill, from tennis to glass blowing.



REPRESENTATION THEORY AND
THE ANALYSIS OF STRUCTURE

A central topic in the philosophy of science is the analysis of the structure
of scientific theories. Much of my own work has been concerned with this
topic, but in a particular guise. The fundamental approach I have advo-
cated for a good many years is the analysis of the structure of a theory in
terms of the models of the theory. In a general way, the best insight into
the structure of a complex theory is by seeking representation theorems
for its models, for the syntactic structure of a complex theory ordinarily
offers little insight into the nature of the theory. I develop that idea here
in a general way, and expand upon things I have written earlier. I begin
with some informal introductory remarks about the nature of representa-
tions. The first section is devoted to the central concept of isomorphism
of models of a theory, the second section to the nature of representation
theorems, with some elementary examples given, and the third section to
the related question of invariance and meaningfulness of a representation.

A representation of something is an image, model, or reproduction
of that thing. References to representations are familiar and frequent in
ordinary discourse.! Some typical instances are these:

*Reprinted from Philosophia Naturalis, 25 (1988), 254-268.

1Other meanings of representation will not be analyzed here, even though a close
affinity can be found for many of them, as in ‘The representation of the union ap-
proached management yesterday’.

67
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Sleep is a certain image and representation of death.

The Play is a representation of a world I once knew well.

It is the very representation of heaven on earth.

The representation of Achilles in the painting was marvelous.

This is a representation of the triumphal arch erected by Au-
gustus.

An intuitive and visual representation of nuclear forces is not
possible.

In some cases we can think of a representation as improving our under-
standing of the object represented. Many of us certainly understand the
proportions of a building better—especially the layout of the interior—
after examining its architectural drawings.

The formal or mathematical theory of representation has as its pri-
mary goal such an enrichment of the understanding, although there are
other goals of representation of nearly as great importance—for instance,
the use of numerical representations of measurement procedures to make
computations more efficient. Representation in the formal sense to be
developed here has also been closely associated with reduction. An ad-
mirable goal accepted on almost all sides is to reduce the unknown to the
known. Controversies arise when claims about reduction are ideological
rather than scientific in character. It is usually not appreciated how in-
volved and technical the actual reduction of one part of science—even a
near neighbor—is to another.

Philosophical claims about the reduction—and thus representation—
of one kind of phenomena or set of ideas by another are as old as philos-
ophy itself. Here is Epicurus’ reduction of everything to simple bodies,
i.e., atoms, and space in his letter to his follower Herodotus:

Moreover, the universe is bodies and space: for that bodies
exist, sense itself witnesses in the experience of all men, and
in accordance with the evidence of sense we must of neces-
sity judge of the imperceptible by reasoning, as I have already
sald. And if there were not that which we term void and place
and intangible existence, bodies would have nowhere to exist
and nothing through which to move, as they are seen to move.
And besides these two nothing can even be thought of either
by conception or on the analogy of things conceivable such
as could be grasped as whole existences and not spoken of as
the accidents or properties of such existences. Furthermore,
among bodies some are compounds, and others those of which
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compounds are formed. And these latter are indivisible and
unalterable.

This passage from Epicurus, written about 300 B.C., is nearly duplicated
in several places in Lucretius’ long poem De Rerum Natura written about
250 years later. The reduction of all phenomena to the motion of atoms
in the void was a central theme of ancient atomism, and the speculative
development of the ideas of significance for the scientific developments
that occurred much later.

A claimed reduction much closer to the formal spirit promoted here
and one of great importance in the history of ideas is Descartes’ reduction
of geometry to algebra. He puts the matter this way in the opening lines
of his La Geometrie (1637, 1954, p. 2):

Any problem in geometry can easily be reduced to such terms
that a knowledge of the lengths of certain straight lines is suf-
ficient for its construction. Just as arithmetic consists of only
four or five operations, namely, addition, subtraction, multi-
plication, division and the extraction of roots, which may be
considered a kind of division, so in geometry, to find required
lines it is merely necessary to add or subtract other lines; or
else, taking one line which I shall call unity in order to relate
it as closely as possible to numbers, and which arbitrarily, and
having given two other lines, to find a fourth line which shall
be to one of the given lines as the other is to unity...

The difference between these two theses of reduction could hardly be
greater in the degree to which they were carried out at the time of their
conception. The ancient atomists could establish in a satisfactory sci-
entific sense practically nothing about their reductive thesis. Descartes’
detailed mathematical treatment constituted one of the most important
conceptual breakthroughs of early modern mathematics. On the other
hand, Descartes’ attempted reduction of matter to nothing but extension
in his Principles of Philosophy (1644) was in its way just as speculative
as that of Epicurus or Lucretius.

I emphasize that these comparisons are not meant to encourage a
reductionistic methodology that asserts we should only talk about reduc-
tions that can be fully carried out from a formal standpoint. Nothing
could be further from the truth. As an unreconstructed pluralist, I am
happy to assign a place of honor to speculation as well as results, espe-
cially in view of how difficult it is to establish specific results on reduction
for any advanced parts of science. We just need to recognize speculation
for what 1t is.
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1. ISOMORPHISM OF MODELS

One of the most general and useful set-theoretical notions that may be
applied to a theory is the concept of two models of a theory being iso-
morphic. Roughly speaking, two models of a theory are isomorphic when
they exhibit the same structure from the standpoint of the basic concepts
of the theory. The point of the formal definition of isomorphism for a
particular theory is to make this notion of same structure precise. It is to
be emphasized, however, that the definition of isomorphism of models of a
theory is not dependent on the detailed nature of the theory, but is in fact
sufficiently independent often to be termed “axiom free.” The use of the
phrase “axiom free” indicates that the definition of isomorphism depends
only on the set-theoretical character of models of a theory. Thus two
theories whose models have the same set-theoretical character, but whose
substantive axioms are quite different, would use the same definition of
isomorphism.

These ideas may be made more definite by giving the definition of iso-
morphism for algebras that are often groups. Here a structure (4, o, e,71)
is an algebra if A is a nonempty set, o is a binary operation from A x A
to A, e is an element of A, and ~! is a unary operation from A to A.

DEFINITION 1. An algebra 2 = (A, o, e,”!) is isomorphic to an
algebra A’ = (A’, o, e’,_l') if and only if there is a function f such that

(i) the domain of f is A and the range of f is A’
(i) f is a one-one function,
(i) ifz and y are in A, then f(z o y) = f(z) o f(y),
(iv) ifz isin A, then f(z=1) = f(z)~V,
(v) fle)=¢"

When we ask ourselves whether or not two distinct objects have the same
structure, we obviously ask relative to some set of concepts under which
the objects fall. It is an easy matter to show that the relation of isomor-
phism just defined is an equivalence relation among algebras, i.e., it is
reflexive, symmetric, and transitive. As a rather interesting example, we
might consider two distinct but isomorphic groups which have application
in the theory of measurement. Let one group be the additive group of
integers. In this case, the set A is the set of all integers, the operation o
is the operation of addition, the identity element e is 0, and the inverse
operation ~! is the negative operation. As the second group, isomorphic
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to the first, consider the multiplicative group of all integer powers of 2.
In this case, the set A’ is the set of all numbers that are equal to 2 to
some integer power, the operation o’ is the operation of multiplication,
the identity element is the integer 1, and the inverse operation is the stan-
dard reciprocal operation, i.e., the inverse of z is 1/z. To establish the
isomorphism of the two groups % = (4, +, 0,—) and A’ = (4’,-,1,71),
we may use the function f such that for every integer n in the set A

f(n)y=2".
Then it is easy to check that the range of f is A’, that f is one-one, and

F(m o n) = f(m+n) =20 =m0 = f(m) - £(n)
= f(m) o' f(n), ,
f™Y) = f(-n)=2"" =5 = f(m)7,

and

f(0)=2°=1.

It should be apparent that the same isomorphism between additive and
multiplicative groups is possible if we let the set of objects of the additive
group be the set of all real numbers, positive or negative, and the set of
objects of the multiplicative group be the set of all positive real numbers.
From the standpoint of the theory of measurement, this isomorphism
is of interest primarily because it means that there is no mathematical
basis for choosing between additive and multiplicative representations.
Standard discussions of extensive quantities, for example, those concern-
ing the measurement of mass or distance, often do not emphasize that
a multiplicative representation is as acceptable and correct as an addi-
tive representation. Because measurements of mass or distance are never
negative, it may be thought that the remarks about groups do not apply
precisely, for the additive groups considered all have negative numbers as
elements of the group. The answer is that in considering the actual mea-
surements of mass or distance, we restrict ourselves to the semigroup of
positive elements of the additive group in question. However, the details
of this point are not relevant here. Concerning the earlier remark that
isomorphism or sameness of structure is relative to a set of concepts, note
that the integers and the multiplicative group of powers of two differ in
many number-theoretical properties.

As another simple example of a theory axiomatized by defining a
set-theoretical predicate, we may consider the ordinal theory of mea-
surement. Models of this theory are customarily called weak orderings
and we shall use this terminology in defining the appropriate predicate.
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The set-theoretical structure of models of this theory is a nonempty
set A and a binary relation R defined on this set. Let us call such
a couple A = (A, R) a simple relation structure. We then have the
following.?

DEFINITION 2. A simple relation structure 2 = (A,R) is a weak
ordering if and only if for every z,y, and z in A

(i) if zRy and yRz then zRz,
(ii) zRy or yRz.

The definition of isomorphism of simple relation structures should be ap-
parent, but for the sake of explicitness I give it anyway, and emphasize
once again that the definition of isomorphism depends only on the set-
theoretical structure of the simple relation structures and not on any of
the substantive axioms imposed.

DEFINITION 3. A simple relation structure A = (A, R) is isomorphic to
a simple relation structure A = (A', R') if and only if there is a function
f such that

(i) the domain of f is A and the range of f is A',
(i1) f is a one-one function,
(i) #f z and y are in A then xRy if and only if f(z)R' f(y).

To illustrate this definition of isomorphism let us consider the question,
“Are any two finite weak orderings with the same number of elements iso-
morphic?” Intuitively it seems clear that the answer should be negative,
because in one of the weak orderings all the objects could stand in the re-
lation R to each other and not so in the other. It will be interesting to ask
what is the counterexample with the smallest domain we can construct
to show that such an isomorphism does not exist in general. It is clear at
once that two one-element sets will not do, because within isomorphism
there is only one weak ordering with a single element, namely the order-
ing that makes that single element stand in the given relation R to itself.
However, a counterexample can be found by adding one more element.
In one of the weak orderings we can let R be the universal relation, i.e.,
R = Ax A, the Cartesian product of A with itself, and in the other, let R’

2Notice that we use R to represent the weak ordering rather than the qualitative
relation > much used elsewhere in this volume. The reason for this choice here is
so as not to prejudge the direction of the ordering, which is intuitively implied by
.
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be a “minimal” relation satisfying the axioms for a weak ordering. More
formally, let

A = {1,2}

R {(1,1),(2,2),(1,2),(2,1)}
A = A

R = {(1,1),(2,2),(1,2)}.

Then it is easily checked that % = (A, R) and A’ = (A’, R') are both weak
orderings with domains of cardinality two, but A cannot be isomorphic to
A’. For suppose there were a function f establishing such an isomorphism.
Then we would have

1 R2 if and only if f(1) R' f(2)
and
2 R1 if and only if f(2) R f(1),
but we also have 1 R 2 and 2 R 1, whence
1) f(1) R f(2) and £(2) R’ f(1),

but this is impossible, for if f(1) = 1, then f(2) = 2, and thus from (1)
2 R’ 1, but we do not have 2 R’ 1. On the other hand, as the only other
possible one-one function, if f(1) = 2 then f(2) = 1, and again we must
have from (1) 2 R’ 1, contrary to the definition of R’'.

2. REPRESENTATION THEOREMS

In attempting to characterize the nature of the models of a theory the
notion of isomorphism enters in a central way. Perhaps the best and
strongest characterization of the models of a theory is expressed in terms
of a significant representation theorem. By a representation theorem for a
theory the following is meant. A certain class of models of a theory distin-
guished for some intuitively clear conceptual reason is shown to exemplify
within isomorphism every model of the theory. More precisely, let M be
the set of all models of a theory, and let B be some distinguished subset
of M. A representation theorem for M with respect to B would consist
of the assertion that given any model M in M there exists a model in B
isomorphic to M. In other words from the standpoint of the theory every
possible variation of model is exemplified within the restricted set B. It
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should be apparent that a trivial representation theorem can always be
proved by taking B = M. A representation theorem is just as interesting
as the intuitive significance of the class B of models and no more so. An
example of a simple and beautiful representation theorem is Cayley’s the-
orem that every group is isomorphic to a group of transformations. One
source of the concept of a group, as it arose in the nineteenth century,
comes from consideration of the one-one functions which map a set onto
itself. Such functions are usually called transformations. It is interest-
ing and surprising that the elementary axioms for groups are sufficient to
characterize transformations in this abstract sense, namely, in the sense
that any model of the axioms, i.e., any group, can be shown to be isomor-
phic to a group of transformations. (For a discussion and proof of this
theorem, see Suppes, (1957), Ch. 12.)

Certain cases of representation theorems are of special interest. When
the set B can be taken to be a unit set, 1.e., a set with exactly one element,
then the theory is said to be categorical. Put another way, a theory is cat-
egorical when any two models are isomorphic. Thus, a categorical theory
has within isomorphism really only one model. Examples of categorical
theories are the elementary theory of numbers when a standard notion
of set is used, and the elementary theory of real numbers with the same
standard notion of set. It has sometimes been asserted that one of the
main differences between nineteenth- and twentieth-century mathematics
is that nineteenth-century mathematics was concerned with categorical
mathematical theories while the latter deals with noncategorical theories.
It is doubtful that this distinction can be made historically, but there
is certainly a rather sharp conceptual difference between working with
categorical and noncategorical theories. There is a clear sense in which
noncategorical theories are more abstract.

From a psychological standpoint a good case can probably be made
for the view that a theory is regarded as abstract when the class of mod-
els becomes so large that any simple image or picture of a typical model
is not possible. The range of models is too diverse; the theory is very
noncategorical. Another closely related sense of “abstract” is that certain
intuitive and perhaps often complex properties of the original model of
the theory have been dropped, as in the case of groups, and we are now
prepared to talk about models which satisfy a theory even though they
have a much simpler internal structure than the original intuitive model.
This meaning of “abstract” is very close to the etymological one.

Homomorphism of models. In many cases within pure mathematics a
representation theorem in terms of isomorphism of models turns out to
be less interesting than a representation theorem in terms of the weaker
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notion of homomorphism. A good example of this sort within the philos-
ophy of science is provided by theories of measurement, and the gener-
alization from isomorphism to homomorphism can be illustrated in this
context. When we consider general practices of measurement it is evident
that in terms of the structural notion of isomorphism we would, roughly
speaking, think of the isomorphism as being established between an em-
pirical model of the theory of measurement and a numerical model. By
an empirical model we mean a model in which the basic set is a set of
empirical objects and by a numerical model one in which the basic set is
a set of numbers. However, a slightly more detailed examination of the
question indicates that difficulties about isomorphism quickly arise. In
all too many cases of measurement, distinct physical objects are assigned
the same number, and thus the one-one relationship required for isomor-
phism of models is destroyed. Fortunately, this weakening of the one-one
requirement for isomorphism is the only respect in which we must change
the general notion, in order to obtain an adequate account for theories
of measurement of the relation between empirical and numerical models.
The general notion of homomorphism is designed to accommodate exactly
this situation. To obtain the formal definition of homomorphism for two
algebras or two simple relation structures as previously defined, we need
only drop the requirement that the function establishing the isomorphism
be one-one. When this function is many-one but not one-one, we have a
homomorphism that is not an isomorphism.?

These remarks may be made more concrete by considering the theory
of weak orderings as a theory of measurement. It is easy to give a simple
example of two weak orderings such that the first is homomorphic to the
second, but not isomorphic to it. Let

A = {1,2}

R {(1,1),(2,2),(1,2),(2,1)}
Al {1}

R = {(1,1)}

and

fy =1

3A weaker notion of homomorphism is generally used in algebra. The condition
that, e.g., structures (A, R) and (A’, R’) be homomorphic with f being the mapping
A onto A’ is that if Ry then f(z)R'f(y), rather than if and only if. However, in
the theory of measurement and in other applications in the philosophy of science, the
definition used here is more satisfactory.
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f2) = 1.

From these definitions it is at once obvious that the weak ordering
A = (A, R) is homomorphic under the function f to the weak ordering
A = (A, R).

The point in showing the homomorphism is that we have

1 R 2 if and only if f(1) R’ f(2),

as well as

2 R 1if and only if f(2) R’ f(1),
and both these equivalences hold just because
f)=r2)=1

On the other hand, it is also clear simply on the basis of cardinality
considerations that 2l is not isomorphic to ', because the set A has two
elements and the set A’ has one element. It is also evident that %’ is
not homomorphic to %. This also follows from cardinality considerations,
for there is no function whose domain is the set A’ and whose range is
the set A. As this example illustrates, the relation of homomorphism
between models of a theory is not an equivalence relation; it is reflexive
and transitive, but not symmetric.

By a numerical weak ordering I mean a weak ordering A = (4, <)
where A is a set of numbers. The selection of the numerical relation < to
represent the relation R in a weak ordering is arbitrary, in the sense that
the numerical relation > could just as well have been chosen. However,
choice of one of the two relations < or > is the only intuitively sound
possibility. The following theorem provides a homomorphic representa-
tion theorem for finite weak orderings, and thus makes the theory of finite
weak orderings a theory of measurement.

THEOREM 1. Every finite weak ordering is homomorphic to a numerical
weak ordering.

Proof: Let 2 = (A, R) be a finite weak ordering.
Probably the simplest approach is first to form equivalence classes of
objects in A, with respect to the obvious equivalence relation E defined
in terms of R:
zFy if and only if zRy & yRzx.
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Thus, using the standard notation “[z]” for equivalence classes, i.e.,
[2] = {y : y € Ak zEy},
we first order the equivalence classes according to R. Explicitly, we define
[z]R*[y] if and only if zRy.

It is straightforward to prove that R* is reflexive, antisymmetrical, tran-
sitive, and connected in the set A/FE of equivalence classes, or, in other
words, that it is a simple ordering of A/E. Since A is a finite set, nec-
essarily A/F is finite. Let [21] be the first element of A/E under the
ordering R*, [z3] the second,. .., and [z,] the last element. Consider now
the numerical function g defined on A/E, defined as follows:

g([z;])=ifori=1,...,n.

Then the function g establishes an isomorphism between the ordering
A/E = (A/E, R*) and the numerical ordering N = (N, <), where N is
the set of first n positive integers. (The details of this part of the proof
are tedious but obvious.) We then define the numerical function f on 4,
for every y in A, by:

fly)=i ffandonlyif y € [z,

ie., if y is in the 7** equivalence class under the ordering R* . The function
f establishes a homomorphism between 2 and N, as desired.

Theorem 1 was restricted to finite weak orderings for good reason; 1t
is false if this restriction is removed. The classic counterexample is the
lexicographical ordering of the plane.

Let A be the set of all ordered pairs (z, y) of real numbers, and let the
relation R be defined by the equivalence (z1, z3) R (y1,y2) if and only if
z1 < yh,or £1 = y; and zo < yo. Suppose that there exists a real-valued
function f satisfying the equivalence:

(1) f(z) < f(y) if and only if zRy.
We fix ¢4 and y, with z, < y, and define for each z;:
f'(@1) = f(z1, 22)
F'(z1) = f(z1,92).

In terms of these functions define the following function g from real num-
bers to intervals:
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g(21) = [f'(w1), f"(z1)].

On the assumption that the ordering is lexicographic, ¢ must be one-one
since two distinct numbers are mapped into two disjoint intervals. For
instance, if #; > 2} then f'(z1) = f(z1,22) > f(z},y2) = f’(«}). But it
i1s well known that there can be no one-one correspondence between the
uncountable set of real numbers and the countable set of nondegenerate
disjoint intervals. Thus no such function g can exist, and a fortiori there
can be no function f satisfying (1) for the lexicographic ordering.

Embedding of models. We have seen that the notion of two models being
homomorphic is a generalization of the notion of two models being isomor-
phic. A still more general and therefore weaker relation between models
is that of one model being embedded in another. To prove an embedding
theorem for a theory is to prove that there is an interesting class M of
models such that every model of the theory is isomorphic, or at least
homomorphic, to a submodel belonging to M. The exact definition of
submodel will vary slightly from one theory to another depending on the
set-theoretical character of its models. For example, if 2 = (4,0,e,71)
is an algebra as defined above, then an algebra ' = (4’,¢/, e’,‘ll) is a
subalgebra of % if A’ is a subset of A, 0o’ is the operation o restricted to
A’ (i, o =onN (A x A’ x A')), ¢ = ¢, and -1" is the operation ~!
restricted to A’. In the case of simple relation structures the definition is
still simpler. Let % = (A4, R) and 2’ = (A’, R') be two such structures.
Then 2’ is a submodel of 2 if A’ is a subset of A and R’ is the relation
R restricted to A’ i.e.,, ' = RN (A x A).

Theorem 1 could have been formulated as an embedding theorem along
the following lines. Let Re be the set of real numbers. Then it is apparent
at once that (Re, <) is a numerical weak ordering as defined earlier, and
every finite weak ordering can be homomorphically embedded in (Re, <),
i.e., is homomorphic to a submodel of (Re, <).

3. INVARIANCE AND MEANINGFULNESS

In connection with any measured property of an object, or set of objects, it
may be asked how unique is the number assigned to measure the property.
For example, the mass of a pebble may be measured in grams or pounds.
The number assigned to measure mass is unique once a unit has been
chosen. A more technical way of putting this is that the measurement of
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mass is unique up to a similarity transformation.?

The measurement of temperature in °C or °F has different charac-
teristics. Here an origin as well as a unit is arbitrarily chosen: techni-
cally speaking, the measurement of temperature is unique up to a lin-
car transformation.’ Other formally different kinds of measurement are
exemplified by (1) the measurement of probability, which is absolutely
unique (i.e., unique up to the identity transformation), and (2) the or-
dinal measurement of such physical properties as hardness of minerals,
or such psychological properties as intelligence and racial prejudice. Or-
dinal measurements are commonly said to be unique up to a monotone
increasing transformation.®

Use of these different kinds of transformations is basic to the main
idea of this section. An empirical hypothesis, or any statement in fact,
which uses numerical quantities is empirically meaningful only if its truth
value is invariant under the appropriate transformations of the numerical
quantities involved. As an example, suppose a psychologist has an ordinal
measure of 1.QQ., and he thinks that scores S(a) on a certain new test
T have ordinal significance in ranking the intellectual ability of people.
Suppose further that he is able to obtain the ages A(a) of his subjects. The
question then is: Should he regard the following hypothesis as empirically
meaningful?

HYPOTHESIS 1. For any subjects a and b, if S(a)/A(a) < S(b)/A(d),
then 1.Q.(a) < L1.Q. (b).

From the standpoint of the invariance characterization of empirical mean-
ing, the answer is negative. To see this, let 1.Q. (a) > L1.Q. (b), let A(a)
=7, A(b) = 12, S(a) = 3, S(b) = 7. Make no transformations on the
[.Q. data, and make no transformations on the age data. But let ¢ be
a monotone-increasing transformation which carries 3 into 6 and 7 into
itself. Then we have 3 :

< —
7 12
4 A real-valued function ¢ is a similarity transformation if there is a positive number
a such that for every real number z
¢(x) = az.
In transforming from pounds to grams, for instance, the multiplicative factor o is
453.6.
5A real-valued function ¢ is a linear transformation if there are numbers o and 3
with o > 0 such that for every number x
d(z) = az + B.
In transforming from Centigrade to Fahrenheit degrees of temperature, for instance,
a=9/5and 8 = 32.
6 A real-valued function ¢ is a monotone increasing transformation if, for any two
numbers ¢ and y, if z < y, then ¢(z) < ¢(y). Such transformations are also called
order-preserving.
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but
6 7

- Z T
7712
and the truth value of Hypothesis 1 is not invariant under ¢.

The empirically significant thing about the transformation character-
istic of a quantity is that it expresses in precise form how unique is the
structural isomorphism between the empirical operations used to obtain a
given measurement and the corresponding arithmetical operations or re-
lations. If, for example, the empirical operation is simply that of ordering
a set of objects according to some characteristic, then the corresponding
arithmetical relation is that of less than (or greater than), and any two
functions which map the objects into numbers in a manner preserving the
empirical ordering are adequate. More exactly, a function f is adequate
if, and only if, for any two objects a and b in the set, a stands in the given
empirical relation to b if and only if

fla) < £(b) 7

It is then easy to show that, if f; and f, are adequate in this sense,
then they are related by a monotone-increasing transformation. Only
those arithmetical operations and relations which are invariant under
monotone-increasing transformations have any empirical significance in
this situation.

When we turn from the examination of numerical quantities to models
of more complex theories, we obtain results of a similar character. For
example, in examining classical mechanics we get a representation that is
unique, when units of measurement are fixed, up to a Galilean transfor-
mation, that is, a transformation to some other inertial system. In the
case of relativistic structures of particle mechanics, the uniqueness is up
to Lorentz transformations.

To give an example of an elementary result, we can state the unique-
ness theorem corresponding to the representation theorem (Theorem 1)
for finite weak orders.

THEOREM 2. Let A = (A, R) be a finite weak order. Then any two
numerical weak orderings to which it is homomorphic are related by a
strictly increasing numerical function.

Put in other language, the numerical representation of finite weak orders

is unique up to an ordinal transformation. Invariance up to ordinal trans-
formations is not a very strong property of a measurement, and it is for

7For simplicity we shall consider here only the arithmetical relation <. There is no
other reason for excluding >.
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this reason that Hypothesis 1 turned out not to be meaningful, because
the hypothesis was not invariant under monotone transformations of the
measurement data.

I have not mentioned as yet what is probably the most important,
certainly the most important historical domain, in which invariance and
meaningfulness were applied, namely, geometry. Here is a famous quo-
tation from Felix Klein from his Erlangen address of 1872 (see Klein,
1893—1I have made occasional minor changes in the quotation of the En-
glish translation).

For geometric properties are, from their very idea, indepen-
dent of the position occupied in space by the configuration in
question, of its absolute magnitude, and finally of the sense in
which its parts are arranged. The properties of a configura-
tion remain therefore unchanged by any notions of space, by
transformation into similar configurations, by transformation
into symmetrical configurations with regard to a plane (reflec-
tion), as well as by any combination of these transformations.
The totality of all these transformations we designate as the
principal group of space-transformations: geometric proper-
ties are not changed by the transformations of the principal
group. And, conversely, geometric properties are character-
ized by their remaining invariant under the transformations
of the principal group. For, if we regard space for the moment
as immovable, etc., as a rigid manifold, then every figure has
an individual character; of all the properties possessed by it as
an individual, only the properly geometric ones are preserved
in the transformations of the principal group. (p. 218)

Thus, under Klein’s view, which is now widely adopted, one can recognize
a meaningful Euclidean relation between points just by testing whether or
not the relation is invariant under the group of Euclidean motions. Corres-
pondingly, one can tell whether a relation between points is topologically
meaningful by determining whether the relation is invariant under any
homomorphism.

Moving back to the general scheme of things, a representation theorem
should ordinarily be accompanied by a matching invariance theorem stat-
ing the degree to which a representation of a structure is unique. In the
mathematically simple and direct cases it is easy to identify the group as
some well-known group of transformations. For more complicated struc-
tures, for example, structures that satisfy the axioms of a scientific theory,
it may be necessary to introduce more complicated apparatus, but the ob-
Jective is the same, to wit, to characterize meaningful concepts in terms
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of invariance.

One note to avoid confusion: it is when the concepts are given in
terms of the representation, for example, a numerical representation in
the case of measurement, or representation in terms of Cartesian coor-
dinates in the case of geometry, that the test for invariance is needed.
When purely qualitative relations are given which are defined in terms
of the qualitative primitives of a theory, for example, those of Euclidean
geometry, then it follows at once that the defined relations are invariant
and therefore meaningful. On the other hand, the great importance of
the representations and the reduction in computations and notation they
achieve, as well as understanding of structure, make it imperative that
we have a clear understanding of invariance and meaningfulness for rep-
resentations which may be in appearance, rather far removed from the
qualitative structures that constitute models of the theory.

In the case of physics, the primitive notions themselves of a theory are
not necessarily invariant. For example, if we axiomatize mechanics in a
given frame of reference, then the notion of position for a particle, for ex-
ample, is not invariant but is subject to a transformation itself. A more
complicated analysis of invariance and meaningfulness is then required
in such cases. The general point is clear, however: the study of repre-
sentation is incomplete without an accompanying study of invariance of
representation.
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EXPLANATION
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CAUSAL ANALYSIS OF HIDDEN
VARIABLES

My contribution to this symposium is focused on the retreat from strong
conditions of causality that have been forced upon us by quantum me-
chanics. My intent is to describe in more or less successive stages the
retreat from the paradise of deterministic causation. This retreat has
taken place through a thicket of quantum-mechanical details. It is my
intention to describe the general principles involved but to refer to the
literature for proofs and full technical elaboration, even of matters that
are crucial to the conceptual development.

The history of the efforts to prove or disprove the possibility of hid-
den variables begins at least with von Neuman and includes important
work by Kochen and Specker and others, but much of the recent analysis
has centered around Bell’s inequality and related results. In spite of its
importance and significance I shall ignore this earlier history and begin
with these recent discussions.

The experimental situation most referred to by Bell and others is
a system in which we are generating two spin-1/2 particle initially in
the singlet state. We measure the spin of each particle as it leaves the
source, one going in one direction and the other in the opposite direction.
The puzzles and paradoxes arise from the strong dependencies we find

*Reprinted from PSA 1980, Vol. 2 (ed. by P. Asquith and R. Giere), 1981, 563-571.
East Lansing, MI: Philosophy of Science Association.
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between the spins of the two particles that are spatially separated, but
which originated from the source in the singlet state at the same time.

There are five assumptions about these systems that are essentially
noncontroversial, which I shall state here but not formulate in an explicit
mathematical fashion.

(i)

(i)

(iii)

Azial symmetry. For any direction of the measuring apparatus the
expected spin is 0, where spin is measured by +1 and —1 for spin
+1/2 and spin —1/2, respectively. Further, the expected product
of the spin measurements is the same for different orientations of
the measuring apparatuses, as long as the angle between the mea-
suring apparatuses remains the same. By the angle between the
measuring apparatuses we refer to the angle between the different
orientations. Thus, one apparatus, the one on the left, for example,
might be oriented up and the one on the right 90 degrees away, taken
counterclockwise. Notice that the assumption of axial symmetry is
just like a standard assumption about the isotropy of space.

Opposite measurement for same orientation. The correlation be-
tween the spin measurements is —1 if the two measuring appara-
tuses have the same orientation. This assumption is theoretically
sound but in actual measurements the correlations obtained are not
precisely —1. We shall weaken this assumption in some of the sub-
sequent discussion.

Independence of the hidden variable. The expectation of any func-
tion of the hidden variable. which we shall in accordance with the
literature call A, is independent of the orientation of the measuring
apparatus. It is generally agreed that the hidden variable which
gives us a causal analysis of the motion of the two spin-1/2 parti-
cles should not itself be affected by the way in which we happen to
orient the measuring apparatus.

Locality. The spin measurement obtained with one apparatus is
independent of the orientation of the other measuring apparatus.

Quantum-mechanical correlations. The quantum-mechanical covari-
ance for the spin of the two particles, given the values +1 and —1
as stated above, is —cos 6, where 6 is the angle between the orien-
tations of the two measuring apparatuses.

Using these assumptions, with some changes here and there, we now
proceed to chronicle the retreat to ever weaker causal conditions.



CAUSAL ANALYSIS OF HIDDEN VARIABLES 87
1. DETERMINISTIC CAUSES

It is natural in the framework of classical physics to add to the assump-
tions just given above that, given the hidden variable A and the orientation
of the measuring apparatus, the result of the spin measurement should
be determined uniquely. In other words, intuitively the hidden variable A
should be a deterministic cause.

It is shown in Bell (1964, 1966) and with particular clarity in Wigner
(1970) that under these assumptions there can be no hidden variable, so
that the search for deterministic causes is mistaken.

In an earlier paper, Zanotti and I (1976) weaken the deterministic
assumption to conditional statistical independence, that is, to the as-
sumption that the expectation of a product of the spin measurements,
given A and the orientation of the measuring apparatuses, is equal to the
product of the expectations under the same conditions. Our argument is a
straightforward probabilistic one. We first show that statistical indepen-
dence, given A, together with a correlation of ~1, implies determinism. I
mention this assumption of conditional statistical independence because
I shall be returning to it throughout the paper.

Within the deterministic framework of classical physics, the negative
results of Bell constitute in the minds of many people the most definitive
refutation of the search to expand classical quantum mechanics into a
more encompassing classical theory of deterministic causes.

2. DE FINETTI’S THEOREM

Given that the case for determinism is hopeless in the context of quantum
mechanics, the first line of retreat is to look for causal hidden variables
that render the correlated spin phenomenon conditionally independent.
The general rubric here, of widespread application in modern statistics, is
that a proper probabilistic causal analysis should render the phenomeno-
logical data statistically conditionally independent. This is precisely the
role of a probabilistic common cause. There is a famous theorem of de
Finetti’s that looks as if it might have some application here because of
the very general results about conditional independence.

Before stating the theorem, I need to say something about the prin-
ciple of exchangeability. It is a principle of symmetry that has not been
used in physics in any extended way. The principle was introduced by de
Finetti to provide a natural alternative in the subjective theory of proba-
bility to objective theories of independence. The subjective aspects of the
principle are of no importance here but only its strong form of symmetry.
Here is a simple example to illustrate exchangeability. Suppose we flipped
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ten times a coin whose bias is unknown. Then the flips will not be inde-
pendent because the outcomes of preceding flips will provide information
about the probability of a head on the next flip. On the other hand,
given the number of heads that occur in ten trials, the trials in which the
heads occur are of no importance. In other words, we have permutational
invariance in the sense that the probability of a sequence of ten outcomes
with a fixed number of trials is the same regardless of exactly on which
trials heads occur. Notice that exchangeability as a principle of symmetry
radically reduces the number of probabilities that have to be determined.
In the case of the ten flips of a coin, instead of considering 2'° sequences
of possible outcomes we can reduce this to just 11, the probabilities of 0 to
10 heads. A little later I shall reintroduce the principle of exchangeability
in the particular application of the spin experiments.

Given the principle of exchangeability, de Finetti’s theorem may be
stated in the following form: An infinite sequence of random variables is
exchangeable if and only if there exists a random variable, which we may
think of as causal, such that the random variables in the infinite sequence
have identical conditional distributions and are conditionally indepen-
dent given this causal random variable. (For those used to thinking of de
Finetti’s theorem in terms of mixtures of distributions, what the formu-
lation I am referring to does is simply treat the weightings of the mixing
as being identified with a causal random variable.) For infinite sequences
of random variables, my interpretation of de Finetti’s theorem is that ex-
changeability is equivalent to being able to find a causal mechanism that
renders the random variables of the original phenomenon conditionally
independent. As a simple example, take the case of flipping a coin that
may have a bias. As has already been mentioned, we have exchangeabil-
ity but not independence of the flips phenomenologically because, as the
flips continue, their outcomes give us information for predicting future
outcomes but if we know the causal random variable—in this case, the
parameter of the bias—then we have conditional independence and the
proper abstract causal account of the phenomenon. It is important to re-
alize in these formulations that of course the causal mechanism identified
is abstract and in general will in no sense be the fullest one possible. What
is important about the theorem from the standpoint of causal concepts
is that it shows the close relation between properly designed experiments
for investigating causes of phenomena and the principle of exchangeabil-
ity.

It has not always been recognized that de Finetti’s theorem is a fun-
damental contribution to the theory of causality. An infinite sequence, of
course, is approximated by large numbers of trials in actual experimenta-
tion. What the theorem shows is that if we have an experimental design
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in which exchangeability is satisfied phenomenologically, then we know on
the basis of de Finetti’s theorem alone that a common cause can be found
that will render the phenomenological data conditionally independent—
just as any good common cause should. Satisfaction of exchangeability is
a nontrivial matter in experiments, but it is also important to recognize
that the causal results implied by de Finetti’s theorem are already a step
away from a purely deterministic causal requirement. There is a good
deal more to be said about de Finetti’s theorem from the standpoint of
the general theory of causality but I shall move on now to the case of two
exchangeable events.

3. EXCHANGEABILITY IN THE SPIN EXPERIMENTS

The kind of symmetry expressed in the principle of exchangeability applies
directly to the spin experiments that are a centerpiece of the literature
surrounding Bell’s results. This point is really uncontroversial and is an
accepted part of the phenomenological data of the spin experiments. To
be completely explicit it will be useful to express exchangeability in a
formal way. Let X be the random variable for the measuring apparatus
on the left—and on occasion we will call it apparatus I-—and let Y be
the random variable for expressing the measurement on the right with
apparatus II. Exchangeability of X and Y may then be expressed as
follows:

PX=1,Y=-1)=PX=-1,Y=1).

The symmetry of experimental design immediately satisfies this principle
for the spin experiments.

Now if we extend de Finetti’s theorem to this much weaker and sim-
pler situation of two exchangeable random variables, then we would want
a causal hidden variable A such that X and Y are conditionally indepen-
dent, given A, and, secondly, the conditional distributions of X and Y
are identical, given A. This second requirement of identity of conditional
distributions is a fundamental aspect of de Finetti’s result and a standard
classical demand in the theory of causality. It is, in its own way, a theoret-
ical principle of symmetry as opposed to the phenomenological principle
of exchangeability. Thus, for example, when we throw out a pair of dice
that have the same bias, that is, have the same causal hidden variable
A, we expect identity of conditional distributions, namely, the conditional
probability of a face is the same for both. The principle of symmetry is an
old and classical one—there is no basis for the conditional distributions
to be different. I emphasize a point that is sometimes forgotten in these
discussions, that the actual outcomes will be different most of the time,



90 PART II. CAUSALITY AND EXPLANATION

in particular 5/6 of the times in the case of fair dice, even though the
conditional distributions are identical.

Now for a second point about two exchangeable random variables such
as X and Y. It is easy to show that, in general for just two random
variables as opposed to de Finetti’s infinite sequence, an underlying causal
hidden variable need not necessarily exist.

Zanotti and I (1980) proved the following theorem giving necessary
and sufficient conditions on the phenomenological data for two exchange-
able hidden variables such as X and Y to have a causal hidden variable
that will render them conditionally independent with identical conditional
distributions. The condition is that their correlation be nonnegative. 1
restate the theorem in the following more formal fashion.

THEOREM 1. Let X and Y be two-valued random variables, for defi-
niteness with possible values 1 and —1, and with positive variances, 1.e.,
0(X),0(Y) > 0. In addition, let X and Y be exchangeable. Then a nec-
essary and sufficient condition that there exist a hidden variable A such
that E(XY|= X = X) = E(X|A = A)E(Y|XA = )) and E(X|A = )) =
E(Y|X = X) for every value A (ezcept possibly on a set of measure zero)
is that the correlation of X and Y be nonnegative.

Some related results about finite sequences of exchangeable random vari-
ables are to be found in Diaconis (1977). It is, as one might expect, easy
to show that in the case of an infinite exchangeable sequence of random
variables all pairs of random variables must necessarily have nonnegative
correlation, so the condition that is imposed here is not one that is really
stronger than one that holds for the infinite sequence of de Finetti’s the-
orem. It is just that this condition now needs to be made explicit for the
weaker case of two random variables.

From what was said at the beginning about negative correlations in
the case of the spin experiments, it is obvious that the necessary and suf-
ficient condition for the existence of a causal hidden variable A will not be
satisfied. Thus, in its most natural form our retreat from deterministic to
probabilistic common causes that yield identical conditional distributions
is not successful. Notice how little of quantum mechanics has been used
in the present result—only the existence of negative correlations, not as
in the case of Bell’s earlier papers the specific covariance or correlation
result for quantum mechanics in terms of the cosine of the angle between
the orientation of the two apparatuses. What this theorem shows is that
strong causal intuitions cannot be satisfied, even at the probabilistic level,
in quantum mechanics. Something has to give and it must be either the
requirement of conditional independence or the requirement of identity of
conditional distribution. The first is a principle of locality and the second
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a natural principle of symmetry. There is a more detailed discussion of
these matters in Suppes and Zanotti (1980). Here I continue the line of
retreat.

4. PROBLEM OF MORE THAN TWO EXCHANGEABLE VARIABLES

As an illustration of how complicated the general theory of causality is,
I mention the fact that there are no pretty and simple conditions now
known in terms of the phenomenological data of pairwise covariances or
correlations that guarantee an underlying causal hidden variable for n
exchangeable variables, when n > 2. In other words, the pairwise inter-
actions between the variables can assume a complicated pattern and it is
not clear what are the natural necessary and sufficient conditions on this
pattern to guarantee the existence of an underlying common cause. In
other words, the right generalization of Theorem 1 for n > 2 is not at all
obvious.

5. BELL’S STOCHASTIC INEQUALITY

Bell (1971) derived a useful and important inequality that requires no
deterministic assumption. Let A and A’ be two random variables corre-
sponding to two orientations of the left apparatus and random variables
B and B’ be two orientations of the apparatus on the right in the spin ex-
periments. Let us assume now that there is a causal hidden variable that
renders the random variables conditionally independent but, I emphasize,
does not necessarily guarantee identity of conditional distributions. Bell
shows that the requirement of statistical conditional independence implies
the following inequality:

(1) —2< E(AB) - E(AB') + E(A'B) + E(A'B’) < 2.

It is then easy to select angle values for the difference in orientation on
the left and the right for the four expectations shown in this inequality
such that the inequality is violated by the quantum-mechanical result (v)
given above.

In our continual retreat, what we have now done is drop the theoretical
symmetry of identical conditional distributions, kept only the locality
condition of conditional independence, and yet, as Bell’s inequality shows
in the formulation he gives, there cannot exist an underlying common
cause because of violation of his inequality. The central point for the
present exposition is that still further retreat is required.
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6. CAUSAL HIDDEN VARIABLES WITHOUT CONDITIONAL
INDEPENDENCE

The results of Bell’s inequality and the earlier results on exchangeability
suggest that the best we can do is look for causal hidden variables that
do not guarantee conditional independence but something less strong.
If we look at examples in medicine and the social sciences where the
search for conditional correlations is standard and the focus is the search
for a common cause that factors out phenomenological correlations, it is
absolutely standard not to expect to get results as strong as conditional
independence. These applications of causal ideas are of course in highly
empirical nontheoretical situations. The analysis does not take place in
an environment where a strong fundamental theory is available.

A proper attitude about quantum mechanics is perhaps that it sug-
gests a similar kind of result but at a deep theoretical level for physics.
The demand for conditional independence is too strong a causal demand.

Unfortunately, once we give up conditional independence, within the
framework of classical physics there is no obvious weaker but still quite
general condition to impose on a causal theory for quantum and other
phenomena. On the other hand, if we introduce relativistic considerations
there is a natural way of expressing locality, namely, that if the state of
the system is given just prior to the occurrence of an event of interest,
no other earlier information about the system can change the conditional
probability of the occurrence of the event in question. The so-called in-
dependence of path assumption is standard in stochastic processes and
is easy to formulate in a relativistic setting. It prohibits, of course, in-
stantaneous action at a distance and depends upon assuming that the
propagation of any action cannot be faster than that of the velocity of
light. It would take us beyond the framework of classical quantum me-
chanics to enter into this principle and I only mean to suggest that it is a
way of finding a new line of retreat, hopefully one on which we can stand
and move no further to the rear.

Some of the foundational discussions of quantum mechanics, both by
philosophers and physicists, often imply, at least implicitly, that causal
analysis of quantum phenomena is not really possible. Such a general
conclusion seems to me clearly mistaken. We cannot have a causal theory
of quantum phenomena as rich in structural properties as are the theories
of nineteenth-century classical physics. Even the weaker but still powerful
concept of a common probabilistic cause will not be usable without some
changes. But causal notions are implicit in all systematic quantum phe-
nomena, and I am confident that we will ultimately have a satisfactory
general analysis of causal concepts applicable to quantum phenomena. Of
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course, by “satisfactory” I do not mean that all classical requirements will
be met but rather that we shall have a concept of cause that is as strong
and as complete as is consistent with current well-supported theories of
quantum phenomena. The process of this clarification will undoubtedly
have ramifications all the way back to ordinary talk about causes, and
ultimately we shall have a new way of thinking about causes.



8

SCIENTIFIC CAUSAL TALK

It is a pleasure to reply to Martin’s comments on my theory of proba-
bilistic causality, for he raises issues that occur in a rather natural way
and that no doubt have been of concern to others (Martin, 1981). I have
divided my reply into four major topics, which I have organized in a dif-
ferent order from that of their occurrence in Martin’s comments. The
topics are: the problem of a unified language of causality, the role of set
theory in science, the language of events in science and ordinary talk and
problems of intensionality.

1. PROBLEM OF A UNIFIED LANGUAGE OF CAUSALITY

Martin is concerned that the probabilistic theory I have introduced does
not adequately account for both scientific and ordinary occurrences of
causal terms. In my monograph (Suppes, 1970) I claimed that a unified
account could be given. Ten years later I am less optimistic about this
and I think T would accept his criticism that I did not really accomplish
this task, and I would now agree it is a mistake to try to have a unified
language of any tightness and completeness. I have become increasingly
persuaded of the plurality of science and of other realms of experience
(Suppes, 1981). There are, of course, common elements to scientific and
ordinary talk; there is not some sharp division of the kind Carnap wanted,

*Reprinted from Theory and Decision, 13 (1981), 363-380. Written as a reply to
Martin (1981)
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for example, in his two senses of probability. Yet there is a great deal of
diversity and no real reason to think that these diverse uses will tend to
converge in the future. I shall give some detailed examples later in terms
of the language of random variables.

It is clear that of the two directions my analysis of causal language
might go it is more directed toward scientific practice. I do want to
reemphasize that I do not think there is a sharp division between scientific
talk and ordinary talk. In the article on the plurality of science I in fact
argue for there being a veritable Tower of Scientific Babel, with each
subdiscipline in science having its unique concepts and language. This is
especially true of advanced experimental work. There is a common core of
ordinary talk that almost all of us understand who speak English as a first
language or as a highly developed second language. This core does not
contain very much scientific language, but among subsets of speakers and
listeners there is a common core of causal and probabilistic talk that goes
smoothly over into more exact scientific talk. I shall not here try to chart
that transition, which I think could in fact be documented empirically.

2. SET THEORY IN SCIENCE

One of Martin’s points is that my use of a set-theoretical framework is
mistaken, for such an apparatus is not needed scientifically. He pro-
poses instead to use various philosophical variants, such as an axiom-
atized Boolean algebra or a language of part-whole as exemplified by
mereology. 1 think he is flatly and unequivocally wrong. The idiosyn-
cratic languages he talks about are of interest in philosophy but for very
special reasons, and they cut off philosophical discourse about causality
from the mainstream of scientific talk. It is worth noting that none of
the more complicated set-theoretical machinery I consider is duplicated
in any way by Martin—for instance, the detailed and extensive learning-
theory example which uses a probability space of countable sequences, or
the entire apparatus of random variables which is the standard appara-
tus in modern probability theory and modern mathematical and applied
statistics. The kind of language moves that Martin proposes would lead
to further isolation of philosophical talk about these matters, an isolation
that has already been too noticeable in the literature on confirmation and
the foundations of induction.

I am quite willing to accept that with enough effort, all of the stan-
dard machinery characteristic of modern probability theory, not to speak
of statistical theory, could be built up in one of Martin’s idiosyncratic
frameworks. But this would seem to me to be a terrible waste of time, and
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at the same time would isolate the developments from the large and inter-
esting literature in science, mathematics, and statistics on these matters.

To drive this point home, I would like to consider one extended exam-
ple to show why set-theoretical apparatus is natural even if not necessary.
The purpose of this example is to introduce standard mathematical con-
cepts that are needed for a causal analysis but that would not be readily
available in any of the language frameworks suggested by Martin.

We may take as an example of suitable complexity the theory of lin-
ear learning models set forth in Estes and Suppes (1959a). We assume
that on every trial the organism can make exactly one of r responses,
A;,i=1,...,r and that after each response it receives one of r 4 1 rein-
forcements, E;,j = 0,1,...,r. A learning parameter 6 , which is a real
number such that 0 < # < 1, describes the rate of learning in a manner
to be made definite in a moment. A possible realization of the theory is
an ordered triple X = (X, P,0) of the following sort. X is the set of all
sequences or ordered pairs (i, j) of natural numbers with i = 1,...,r and
7=0,1,...,r. Pisaprobability measure on the smallest o-algebra B(X)
of cylinder sets of X, and @ is a real number as already described. (Cylin-
der sets are those events definable by the outcome of a finite number of
trials.) To define the models of the theory, we need a certain amount of
notation. Let A;, be the event of response j on trial n; Et , the event
of reinforcement k on trial n, and for  in X, let [z,] be the equivalence
class of all sequences in X that are identical with x through trial n, and
let Py, = P(Aj,n|[x]n—;). We may then characterize the theory by the
following set-theoretical definition.

DEFINITION. A triple X = (X, P,6) is a linear learning model «f and
only if the following three azioms are satisfied for every n, every r in X
with P([z],,) > 0 and every j and k:

1. Ife€ Eyp and j =k and k # 0 then
Projnr = (1= 0)psjn +6;
2. Ifr € Eyp and j# k and k # 0 then
Prjnt1 = (1 = O)pojn;

3. Ifx € Ey,p, then
P:cj,n+1 = Pzjn-

The three axioms express assumptions concerning the effects of rein-
forcement and nonreinforcement. The first two say, in effect, that when a
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reinforcing event occurs, the response class corresponding to it increases
in probability and all others decrease. A similar assumption is utilized in
a number of stochastic and statistical models of learning. The third ax-
iom expresses the assumption that response probabilities are unchanged
on nonreinforced trials.

The critical point for the present discussion is the characterization of
the probability measure P. It is easy to show that three conceptual in-
gredients enter into determining uniquely the probability of any event’s
happening, for example, any response or response sequence. The first
ingredient is the initial probability of response at the beginning of the ex-
periment before any reinforcements have been delivered; the second is the
learning parameter # that determines how fast change in behavior takes
place under various reinforcement schedules; and the third is the sched-
ule of reinforcements, which in general will be probabilistic in character
and contingent upon previous reinforcements or responses. These three
ingredients are the three causal factors, and theoretically the only causal
factors determining the probability measure P, which fixes the probabil-
ity of any event. The quantitative causal relations between events are all
in turn determined by the measure P.

Of course, what I have just given is an informal analysis. In order to
make it clear that the apparatus Martin refers to is far too elementary, I
give the statement of the theorem and its complete proof in an appendix.
The theorem can be regarded as a theorem about causality in learning
theory. The rather lengthy and somewhat technical developments seem
unavoidable in establishing precise results about the causal structure of
models of the theory. I note among other things that the proof depends
upon the well-known theorem of topology that a decreasing sequence of
nonempty compact sets has a nonempty intersection. Secondly, the the-
orem does not hold for a finitely additive measure on all subsets of X,
but only on the o-algebra B(X) of cylinder sets, a somewhat delicate
set-theoretical point.

3. LANGUAGE OF EVENTS

There is a considerable area of agreement between Martin and me concern-
ing what he has to say about my discussion of events and his objections
to my analysis being in certain directions too simplified. The language of
events comes into play in much ordinary talk and in many parts of science.
I would again take a pluralistic view that it is probably not possible to
give a tightly unified account of these many different uses.

First I want to make a couple of technical remarks in response to some
things that Martin says. He objects to my restriction to instantaneous
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events, and I certainly agree that, in general, this is not adequate. I cer-
tainly agree that this simplification restricts the applications of the formal
concepts I introduced. I took it that it would be feasible but technically
somewhat complicated to make the extension to noninstantaneous events.

One way to put what is somewhat surprising about Martin’s objec-
tions to my use of standard event-language is that he simply does not
consider the standard usage. It is as if someone were writing a treatise on
the foundations of physics and assumed for that purpose classical mathe-
matics. Someone who objected to classical mathematics might then raise
objections to this use in physics of classical mathematics, but for most
purposes such a move would be regarded as rather strange. It is part of
the pluralism of approach I have already urged that when we are doing
the foundations of causality, we should not try at the same time to reform
the standard concepts of probability theory. Reforming or changing the
standard concepts of probability is, for other purposes, a useful matter,
but it is not even useful when it is idiosyncratic in the way that Martin’s
discussion 1s. The kind of discussion and framework he suggests in terms
of mereology simply isolates all such discussion from the standard devel-
opment of probability theory, as I have already argued. I have labored the
point, but it seems to me to be worth laboring because adopting Martin’s
recommendations would isolate philosophical discussion of causality and
a consequence of that isolation would be consideration only of the most
elementary points about causality.

Martin objects, in particular, to my use of negation. Here I simply
again followed standard usage. Complementation of an event is comple-
mentation with respect to the sample space or probability space. Such
set-theoretical complementation is meant to correspond to the absence
of occurrence of an event. My treatment here is standard and, as Jane
Austin would say, unexceptionable. It is certainly possible to argue that
in the translation of some ordinary talk this particular approach will not
work. Certainly for the most general setting we might want to cite the
fact that the complement of a set is not defined in Zermelo-Fraenkel set
theory. Another point from another direction is that when the appara-
tus of random variables is used, as I claim most standard usage actually
adopts for detailed statistical work, there is no longer a natural concept
of negation in terms of random variables but only by reference once again
to the sample space on which the random variable is defined.

It is certainly true that, in a certain sense, the notion of event as
having definite physical properties is treated in a rather cavalier fashion
in standard probability theory. I take it the reason for this is mainly the
desire for flexibility and generality. When we are concerned with more
specific philosophical questions or more specific physical questions, as for
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example in a discussion of how one should use the concept of event in
relativistic physics, we may want to say a good deal more. I certainly
want to admit that such extensions are proper but I also want to make
clear that I think the direction Martin takes the discussion is mistaken.

For a general theory of causality with any pretension to be useful in
a wide variety of sciences, it seems mistaken to tie down the concept of
event by more detailed assumptions, as for example the kind that are
easily suggested by physical theories. I do not see the concept of event
as used in theories of space-time, for example, being of any real use and
therefore of value in the formulation of causal concepts in economics or
sociology. It is tempting to state my own general metaphysical views on
the concept of physical events and to try to support my claim that the
proper space for representing such events is atomless, but this does not
seem the proper occasion.

4. INTENSIONALITY AND PROCEDURAL SEMANTICS

Martin quotes my own admission that the standard set-theoretical frame-
work of probability concepts I adopt does not give a fully satisfactory
treatment of intensional matters, especially for subjective theories of prob-
ability. Free substitution of terms that are held to be identical in the
extensional sense leads to contradictions in the standard fashion.

On this point I agree with Martin and I agree with my earlier self. I
remain, however, firm in the conviction that the handling of these inten-
sional matters is not important in the framework of developing a causal
theory for scientific purposes. A full-blown apparatus to handle these
matters in completely explicit fashion will be another step toward the
isolation I have already spoken of.

On the other hand, I think Martin is right in insisting that such in-
tensional matters can be important in the sensitive analysis of causal
concepts as they are referred to in ordinary talk. My own approach to
such matters is to pursue, not for this reason alone but more generally in
the interest of psychological realism, a move from set-theoretical to pro-
cedural semantics (Suppes, 1980, 1982). Unfortunately, it does not seem
practical to go into these rather intricate matters in the short space of
this reply.

I have covered what seems to me are the main points that Martin dealt
with in some detail. He makes some passing mention of my references to
different interpretations of probability but he does not develop this theme,
and it therefore seems appropriate not to go into a discussion here. I will
affirm, however, what I said in the original monograph. It seems to me
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there is a place for different uses of probability concepts ranging from that
of a purely theoretical measure used as illustrated in several examples
in the monograph in the formulation of theory. There is also a purely
experimental use where one restricts oneself at most to a Bayesian prior if
at all, and the data that carry the day from a probabilistic standpoint are
the relative frequencies obtained in the experiment. There also remains
the possibility of a generally subjective interpretation. I do not think it
is necessary or perhaps even useful to try to draw a sharp line between
these various uses. It is part of my pluralistic attitude to expect them.
It is important to identify certain core properties that we expect any
interpretation of probability to have.

I have enjoyed writing this reply to the substantive objections Martin
makes to my ideas about causality. As is obvious, we disagree on many
issues, but I do not expect to be able to offer precise arguments that will
be regarded by him or by others as decisive. I do not think the subject
of causality is like that. It has a glorious history and will have, no doubt,
a robust pluralistic future. I hope only to help keep future efforts at
analysis from being too much diverted from the mainstream of science to
idiosyncratic philosophical bayous.

5. APPENDIX

In empirical applications of the learning theory described in the main
text, the term py; , is to be interpreted as the probability of response A;
for a particular subject on trial n. In principle, the values of p;;, can be
predicted for all sequences and all n, given p;1,r and 6 (see Theorem 1
below). In practice, however, it is impracticable to evaluate trial by trial
probabilities for individual subjects, so in experimental tests of the model
we usually deal only with the average value of p;; , over all sequences ter-
minating on a given trial, i.e., with p; ,. The latter can be predicted for
all n, given the values of p; 1,7 and 8, and sufficient information concern-
ing probabilities or reinforcement and nonreinforcement (see Theorem 2
below).

We now turn to the two general theorems mentioned. The first the-
orem says that if p; 1,7 and 6 are given, then p,; , is determined for all
sequences z and all trials n. In formulating the theorem we make this
idea precise by considering two models of the theory for which p; 1,7 and
@ are the same.

THEOREMI . Let X = (X, P,0) and X' = (X, P’,8) be two linear models
for simple learning such that p;j1 = p},. Then if P([z]n—1) > 0 and
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P'([2]n=1) > 0, we have:
/
Pzjn = Pgjn-

Proof. Suppose the theorem is false. Let n be the smallest integer
such that (for some j and z)

(1) Pzjn # P;j,n
(By hypothesis of the theorem, n > 1.) Now if

(2) P([z)n-1) >0
and
(3) P'([z]n-1) > 0,

then by our hypothesis on n we have:
(4) Prjn-1= Pejn_1-

There are now three cases to consider: ¢ € Ejn, ¢ € By, with k # j
and k # 0, and ¢ € Ep,. Since the proof is similar for all three cases,
each requiring application of the appropriate one of the three axioms, we
consider only the first case:

() z € Bjn.
From (2), (3), (5) and Axiom 1 we infer immediately:
(6) Pzjn = (1= 0)Pejn-1+0  pojn = (1= Ojn_y + 0.

From (4) and (6) we conclude:
Pzjn = p:cj,n’

which contradicts (1) and establishes our supposition as false.

The second theorem establishes the fundamental result that given the
initial probabilities of response of the subject, and the conditional prob-
abilities of reinforcement, then a unique model of simple learning is de-
termined. Moreover, no restrictions on these probabilities are required
to establish the theorem. The significant intuitive content of this last
assertion is that the experimenter may conditionalize the probabilities
of reinforcement upon preceding events of the sample space in whatever
manner he pleases.

Some preliminary definitions and lemmas are needed. The third def-
inition introduces the notion of an experimenter’s partition of X. The
intuitive idea is that the conditional probabilities of reinforcing events
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on trial n depend on any partition of the equivalence classes [z],-; and
responses on the nth trial.!

DEFINITION 1. E(n) = {£ : there is an z in X and a j such that
E=[2ln1NAjn}

Z(n) is the finest experimenter’s partition of X which we can use on the
nth trial. It is immediately obvious that
LEMMA 1. For every n, E(n) is a partition of X.
We now use Z(n) to define the general notion of an experimenter’s par-
tition H(n), but for this definition we explicitly need the notion of one
partition of a set being finer than another. (The definition is so phrased
that any partition is finer than itself.)
DEFINITION 2. If A and B are partitions of X, then A is finer than B
if, and only if, for every set A in A there is a set B in B such that A C B.

We than have:
DEFINITION 3. H(n) is an ezperimenter’s partition of X (at trial n) if,
and only if, H(n) is a partition of X and Z(n) is finer than H(n).

Finally, we need a lemma which provides a recursive equation for
P([z],) in terms of a given experimenter’s partition on trial n. Notice
that (iv) of the hypothesis of the lemma is a condition controlled by the
experimenter, not by the subject.
LEMMA 2. Let H(n) be an experimenter’s partition of X. Let

(i) n € H(n),

(1) 2], CAjn NErn N1,

(%ii) P(A;nN[z]n-1) >0,

(IV) P(Ek,nlAj,n n [w]n—l) = P(Ek,nln)'

Then

P([z]n) = P(Exn|mpzjnP([]n-1).

Proof. By (ii) of the hypothesis
P([z]s) = P(Ekn N Ajn N [2]n-1),
whence,
P([z]n) = P(BinlAjn N [z]n-1) P(Ajn[2]n-1) P([2]n-1)-

Applying (iii) and (iv) to the first term on the right and the definition of
Pp; » to the second, we obtain the desired result.

1A partition of a nonempty set X is a family of pairwise disjoint, nonempty subsets
of X whose union is equal to X.
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We are now prepared to state and prove the uniqueness theorem. Re-
garding the notation of the theorem it may be helpful to keep in mind
that g; 1 is the a priori probability of making response j on the first trial,
and 7,k is the conditional probability of reinforcing event k on trial n
given the event 7 of an experimenter’s partition H(n). It should be obvi-
ous why we use the notation g;; rather than p;; (and at the beginning
of the proof ¢g; » rather than pg;jn); namely, the function p is defined in
terms of the measure P whose unique existence we are establishing.

THEOREM 2. Let X be an r-response space and let 0 be a real number
in the interval (0, 1], and let the numbers g; 1 be such that

r
3,1 20, Z‘Ij,l =L
j=1

For every n let H(n) be an experimenter’s partition of X, and let v be a
function defined for every n and k and every n € H(n) such that

r
Tnk,n > 0; Z7nk,n =1
k=0

Then there exists a unique probability measure P on B(X) such that
(i) (X,p,0) is a linear model of simple learning,

(i) g1 = pj1,

(i) yok,n = P(Egnn)-

(iv) If n € H(n) and W is an n — 1 cylinder set such that W C n and
P(W) > 0 then P(Epn|W) = P(Egn|n.)

Proof. We first define recursively a function ¢ intuitively correspond-
iIlg to p, i'e'7 qzj,n = Pzjn-

(1) ¢z5,1 = gj1
(2) Qa:j,n = (1 - G)sz,n—l + 06(], (‘:(.’E, n-— 1)) + eq:cj,n—lé(o) (‘:(1‘, n-— 1))7
where § is the usual Kronecker delta function:

.oy 1 ifj=k
E(J,k)_{ 0 if j #k,

and

(3) E(z,n) =k if and only if [z], C Ekn.
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(In effect, (2) combines all three axioms of the theory into one to provide
this recursive definition.)
For subsequent use we prove by induction that

(4) qu]’,n =1

For n = 1, the proof follows at once from (1) and the hypothesis of
the theorem that
Z Qzj1 = 1.
J

Suppose now that

Z‘I:cj,n—l =1
J

There are two cases to consider. If z € E} », for some k # 0 then from (2)
and (3) we have at once:

qu]n —Z(l_a)q:v]n 1+0
—(I‘Q)Eq:v]n 1+6
—(1-0)40

If £ € By, then
Y asim =Y (1= 8)gajn—1 + 0gzjn_1]
J J
= Z‘I:cj,n—l
J
=1

Following Lemma 2 we now recursively define P([z],) in terms of q and
the function ¥ introduced in the hypothesis of the theorem.

(5)
{ P(l2]1) = ¢j1m €@y
P([x]n) = 7ng(:c,n),n%'j’,n-—IP([-'L']n-—l)a

where
[z]1 € Aj1  [z)s Cmo€ H(1)
[z], € Ajin  [2]n C 0 € H(n).
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We first need to show that the function P may be extended in a well-
defined manner to any cylinder set C. To this end we prove by induction

that if
C= U[‘ci]nl = U[yi]nz
i=1 i=1
then
(6) Y P(ziln) = Y P([3lna)-
i=1 i=1

When n; = ny the proof is trivial. Without loss of generality we may
assume that n; < no; 1.e., there is a positive integer ¢ such that n;+¢ = ns.
We proceed by induction on ¢. But first we observe that the family of sets
[z;]n, constitutes a partition of C, as does the family of sets [yi]n,++, and
the latter is a refinement of the former. Whence for each set [z;],,, there
is a subset I of the first ma positive integers such that

(7) [zi]n, = U[yh ny+t-

hel

And on the basis of (7) to establish (6) it is obviously sufficient to show
that

P([zi]n,) = ZP([yh]n1+t)-

hel

Now if ¢ = 1 then
[xi]nl = [mi]nl n UAj:"1+1 n U Ek7n1+1
- UU([zz]ﬂl N A] ni+1 N Ek n+1)
= U [Ynln,+1-
hel
Since for h € I, [yn]n, = [2i]n,, we infer from the above and (5) that

2 PUwnlnitr) =323 ok +14sin, P(2in,)

hel
= Z zjn, P([zi]n,) by hypothesis on ¥
J

= P([2iln,) by (4).
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Suppose now that (6) holds for ¢. Then there are sets I; and I of
positive integers such that

(@i, = U [Wrln,+: N UAj,n1+t+1 N U Eknitt41
hel, J k

= U [Zg)ns+e41-

gel>

Since for each ¢ € I; there is an h in [; such that
(Zglns+t = [Ynlni+¢,
similarly to the case for t = 1 we infer that

D P(zdntat) =D D Yok btk 19zina 4t P(Wnln, 41)

g€lz J k hel

=Y P([unln40)

hel,
= P([‘rl]fh)’

by our inductive hypothesis, which completes the proof of (6) and justifies
the extension of P to any cylinder set: if

C = U[a:i]n
then
(8) P(C) =} P(lzila).*

We now want to show that P is a probability measure on the algebra
of cylinder sets of X. Since the functions ¢ and v are non-negative it
follows at once from (5) and (8) that the nonnegativity probability axiom
is satisfied, i.e., for every cylinder set C, P(C) > 0.

Now 1t 1s easy to select a subset Y of X such that

X = J[=h,

€Y

2In using the notation

C = U[:L',]n
=1

we always assume that sets [z;], are distinct (and consequently pairwise disjoint in
this case); otherwise the extension of P would be incorrect.
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whence by virtue of (5) and (8)

P(X)=> P(zh) =D gj1ves
€Y Jj k
= qu,l Z7nk,1
J k

=1-1
=1

which establishes that P(X) = 1.

To verify finite additivity of the measure P, let C; and C5 be two
cylinder sets such that Cy N Cy = 0. Without loss of generality we may
assume they are both non-empty n-cylinder sets, and we may represent
them each by

C, = U [xi]n
i=1

ma

Cy = U [mh]ny

h=mi+1
and by hypothesis, for each i =1,...,m;and h=m; +1,...,ms

[z:]n N [zR]n = 0.
Whence

P(01U02) :P(U[zz]n)

i=1

=3 Plleih)

:ZP([zi]n)-i- Zﬁ P([zh]n)

h=m;+1
= P(C1) + P(Cs).

Now for countable additivity. Let (Ci,Ca,...,Cy,...) be a decreasing
sequence of cylinder sets, that is,

(9) Cnt1 C G,

and
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(10) Cn=0.
n=1

Suppose now that

(11) lim P(C,) #0.

(This limit must exist since the sequence is bounded and monotone de-
creasing. The monotonicity follows from (9) and the properties of P
already established.)
In fact, let
lim P(Cp)=s>0.

n-—00

Hence for every n
P(Cp) > s,

and it follows-at once that
(12) Cn # 0.

We now use a topological argument to show that
o0
() Cn #0,
n=1

contrary to (10). The idea is simple; details will be omitted to avoid too
serious a diversion. We know that X is the countably infinite product
of a finite set. Hence, every cylinder set of X is compact in the product
topology of the discrete topology on this finite set; in particular for every
n, C, is compact. Also by virtue of (12) every C,, is non-empty. But it
is a well-known theorem of topology that a decreasing sequence of non-
empty compact sets has a non-empty intersection, which contradicts (5).
Thus our supposition (11) is false and the measure P is continuous from
above at zero, which implies countable additivity.

Finally, the unique extension of P to the o-algebra of cylinder sets
follows from the standard theorem on this extension (see Kolmogorov,
1933, p. 17). The verification that the measure P defined by (5), (8) and
the extension just mentioned has properties (ii)—(iv) of the theorem is
straightforward and will be omitted.
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EXPLAINING THE
UNPREDICTABLE

It has been said-—and I was among those saying it—that any theory of
explanation worth its salt should be able to make good predictions. If
good predictions could not be made, the explanation could hardly count as
serious. This is one more attempt at unification I now see as misplaced. I
want to examine some principled reasons why the thrust for predictability
was mistaken. I begin with the familiar sort of example of explanation,
the kind that occurs repeatedly in analyses of the past.

Hume’s (1879) long and leisurely discussion of Charles I in his History
of England provides a number of excellent examples. Here is one in which
he is discussing Charles’ decision to take action against the Scots in 1639.

So great was Charles’ aversion to violent and sanguinary mea-
sures, and so strong his affection to his native kingdom, that
it is probable the contest in his breast would be nearly equal
between these laudable passions and his attachment to the hi-
erarchy. The latter affection, however, prevailed for the time,
and made him hasten those military preparations which he
had projected for subduing the refractory spirit of the Scot-
tish nation. (History of England, Volume V| p. 107)

*Reprinted from Erkenntnis, 22 (1985), 187-195. The first version of this article
was given at the Pacific Division meeting of the American Philosophical Association
at a symposium on models of explanation, March 24, 1984. I am indebted to Jens Erik
Fenstad for a number of helpful comments on the earlier draft.
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Hume faces the standard difficulty of assessing attitudes and attachments
when there is any sort of complex issue at stake. Charles’ conflict between
loyalty to Scotland and attachment to the religious hierarchy has the
kind of psychological instability that makes prediction impossible. But
from our perspective of looking back on the past, we are satisfied—at
least many of us are—by the explanation that Charles’ religious ties and
commitments won out. By saying that we are satisfied I do not mean to
suggest any ultimate sense of satisfaction.

The central feature of this example, the instability of Charles’ con-
flicting feelings that are nearly equally matched, is the source of drama
In many important historical events, in the tensions surrounding private
choices of colleges to attend, careers to follow, and spouses to wed. The
importance of such conflict and instability in our lives is mirrored in the
importance they assume in the novels, plays, and movies that both express
and define our ways of feeling and talking.

This instability and unpredictability of human affairs are in no sense
restricted to conflicts of feeling. The vicissitudes of politics and war have
been recorded and analyzed since Thucydides. In that long tradition,
almost without exception there have been sound attempts at explanation
but scarcely any attention given to what seemed to be the impossible
task of predicting the outcomes. There is, in fact, a general view of the
matter that is not correct in every detail but that expresses a major truth.
Real conflicts occur in human affairs when the outcomes are uncertain,
because the forces controlling them are unstable. One-sided battles that
are known in advance by all concerned parties to be such are the exception
rather than the rule. Napoleon thought he could conquer Russia, and at
least some of his generals believed him. Hitler and at least some of his
generals thought they could conquer the world. After the fact we can
easily see how foolish they were.

One view of the American adversarial system of justice is that only
conflicts in the law that have unpredictable outcomes should reach the
stage of being tried in court. When the facts and the law are clear, early
settlement should be reached, because the clarity about the facts and the
law makes the situation stable and the outcome predictable. This rule
does not always work but it probably covers a substantial majority of
instances of legal conflict. Of course I do not want to overplay the ar-
gument for stability as the reason for settlement prior to trial. Just the
expenses alone of a trial push the parties for settlement even when the
facts and the law taken together do not provide a stable view of what
the nature of a settlement should be. All the same the stability of the
facts and the law i1s an important ingredient in many cases of conflict.
The conflict goes nowhere because of the sound advice of a good attor-
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ney who convinces his client to control his anger and ignore his ruffled
feathers. Major institutions of our society are organized to a large extent
to deal with the instability generated by conflict. If the phenomena in
question were predictable, much of the need for the institutions would
be eliminated. There may still be Utopian social planners that dream
of eliminating conflict and tension in some ideally structured future soci-
ety, but most of us are prepared to accept conflict as part of the human
condition and to work on ways to minimize it locally without hope of
eliminating it.

The difficulties of predicting outcomes in the kind of human situations
I have been describing are familiar. The complexity and subtlety of human
affairs are often singled out as features that make a science of human
behavior impossible, at least a predictive science in the way in which parts
of physics and chemistry are predictive. Moreover, given the absence of
powerful predictive methods, there are those who go on to say that the
behavior in question is not explainable. I have already indicated my
difference from this view.

I now want to move on to my main point. There is, I claim, no
major conceptual difference between the problems of explaining the un-
predictable in human affairs and in non-human affairs. There are, it is
true, many remarkable successes of prediction in the physical sciences
of which we are all aware, but these few successes of principled science
making principled predictions are, in many ways, misleading.

Let me begin my point with a couple of simple examples. Suppose
we balance a spoon on a knife edge. With a little steadiness of hand
and patience, this is something that any of us can do. The spoon comes
approximately to rest, perhaps still oscillating a little up and down. Our
problem is to predict which way the spoon will fall, to the left or the right
side of the knife blade, when there is a slight disturbance from a passing
truck or some other source. In most such situations we are quite unable
to make successful predictions. If we conduct this experiment a hundred
times we will probably find it difficult to differentiate the sequence of
outcomes from that of the outcomes of flipping a fair coin a similar number
of times. Of course, in each of the particular cases we may be prepared
to offer a sound schematic explanation of why the spoon fell to the left or
to the right, but we have no serious powers of prediction.

Let me take as a second example one that I have now discussed on
more than one occasion. The example originates with Deborah Rosen
and was reported in my 1970 monograph on causality. A golfer makes a
birdie by accidentally hitting a limb of a tree at just the right angle. The
birdie is made by the ball’s proceeding to go into the cup after hitting the
limb of the tree. This kind of example raises difficulties for probabilistic
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theories of causality of the kind I have advocated. I do not want to go
into the difficulties at this point but rather to use this simple physical
example as a clear instance of having a good sense of explanation of the
phenomenon, but not having any powers of predicting it. A qualitative
explanation is that the exact angle at which the ball hit the limb of the tree
deflected it into the cup. We cover the difficulties of giving a quantitative
explanation by the usual qualitative method of talking about the ball’s
hitting the limb at “just the right angle.” Of course, this is elliptical for
“hitting the ball at just the right angle, just the right velocity, and just the
right spin.” The point is that we do not feel there is any mystery about
the ball’s hitting the limb and then going into the cup. It is an event that
we certainly did not anticipate and could not have anticipated, but after
it has occurred we feel as comfortable as can be with our understanding
of the event.

There is a principled way of describing our inability to predict the tra-
jectory of the golf ball. The trajectory observed with the end result of the
ball’s going into the cup is a trajectory followed in an unstable environ-
ment. We cannot determine the values of parameters sufficiently precisely
to predict the golf ball will hit the limb of the tree at just the right angle
for bouncing into the cup because the right conditions of stability do not
obtain. To put it in a familiar way, very small errors in the measurement
of the initial conditions lead to significant variations in the trajectory—
here significant means going or not going into the cup. Correspondingly,
when intentions are pure and simple we can expect human behavior to be
stable and predictable, but as soon as major conflicts arise, e.g., of the
sort confronting Charles I, the knowledge of intentions is in and of itself
of little predictive help, though possibly of great explanatory help after
the fact. To put it in a summary way, Charles I facing the Scots and our
golf ball share a common important feature of instability.

Here is another simple example of a physical system of the sort much
studied under what is currently called chaos in classical dynamics. We
have a simple discrete deterministic system consisting of a ball being ro-
tated around the circumference of a fixed circle, each move “doubling”
the last. The only uncertainty is that we do not know the initial position
with complete precision. There is a small uncertainty not equal to zero
in our knowledge of the starting position of the ball. Then, although the
motion of the system is deterministic, with each iteration around the cir-
cumference of the ball the initial uncertainty expands. More particularly,
it i1s easy to show that after n iterations the uncertainty will be 2" times
the initial uncertainty. So it is obvious that after a sufficient number of
iterated moves the initial uncertainty expands to fill the entire circum-
ference of the circle, and the location of the ball on the circle becomes
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completely unpredictable.! Though the system just described is slightly
artificial, it is enormously simple, with very limited degrees of freedom. It
is an excellent example of an unstable dynamical system—the instability
coming from the fact that a small uncertainty in the initial conditions
produces an arbitrarily large uncertainty in subsequent location.

The general principle that I am stressing in these analyses that stretch
from the mental conflicts of Charles I to simple rotating balls is the pres-
ence of instability as the central feature that makes prediction impossible.
Fortunately, after the events have occurred we can often give a reasonable
explanation.

I do not want to suggest that the absence of stability as such is the
only cause for failure of prediction. We can take the view that there is
an absence of determinism itself as in probabilistic quantum phenomena
and in other domains as well. It will suffice here to consider some simple
quantum examples. Perhaps the best is that of radioactive decay. We
cannot predict when a particle will decay. We observe the uneven intervals
between the clicking of a Geiger counter. After the events of decay have
occurred we offer an “explanation,” namely, we have a probabilistic law
of decay. There is no hope of making an exact prediction but we feel
satisfied with the explanation. Why are the intervals irregular? They are
irregular because the phenomena are governed in a fundamental sense by
a probabilistic decay law. Don’t ask for a better explanation—none 1is
possible.

I do not mean to suggest that instability and randomness are the
only causes of not being able to make predictions. I do suggest that
they provide principled explanations of why many phenomena are not
predictable and yet in one sense are explainable.

The point I want to emphasize is that instability is as present in purely
physical systems as it is in those we think of as characteristically human.
Our ability to explain but not predict human behavior is in the same gen-

1A more technical description of such a simple deterministic description goes like
this. Instead of moving around a circle, we consider a first-order difference equation,
which is a mapping of the unit interval into itself:

Tp41 = 22n (mod 1),
where mod 1 means taking away the integer part so that T, 41, lies in the unit interval.
So if 1 = 2/3, 32 = 1/3,z3 = 2/3, 74 = 1/3, etc., and if 3] = 2/3+ e, z} =
1/3 + 2e, ©} = 2/3 + 4e, and in general

U 1/3+4+ 2% (mod 1) for n even
ntl = 1 2/3+ 2% (mod 1) for » odd

the instability of this simple system is evident, for the initial difference in z; and zi,
no matter how small, grows exponentially.
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eral category as our ability to explain but not predict many physical phe-
nomena. The underlying reasons for the inability to predict are the same.
The concept of instability which accounts for many of these failures is one
of the most neglected concepts in philosophy. We philosophers have as a
matter of practice put too much emphasis on the contrast between deter-
ministic and probabilistic phenomena. We have not emphasized enough
the salient differences between stable and unstable phenomena. One can
argue that the main sources of probabilistic or random behavior lie in
instability. We might even want to hold the speculative thesis that the
random behavior of quantum systems will itself in turn be explained by
unstable behavior of classical dynamical systems. But whether this will
take place or not, much ordinary phenomena of randomness in the macro-
scopic world can best be accounted for in terms of instability. This is true
of the behavior of roulette wheels as much as it is of the turbulence of air
or the splash of a baby’s bath.

A disturbing example of instability is to be found in the theory of
population growth. A reasonable hypothesis is that the rate of growth
is proportional to the current size of the population. The exponential
solution of this equation is unstable. This means that slight errors either
in the initial population count or in the constant of proportionality for
the breeding rate can cause large errors in prediction, quite apart from
any other influences that might disturb the correctness of the equation.?

It is worth saying once more in somewhat more abstract terms the
central meaning of stability in the theory of dynamical systems. What I
paraphrase here is the classical Lyapunov condition for a stable solution.3
The 1dea is straightforward and already stated once intuitively. A solu-
tion is Lyapunov-stable if two different trajectories keep arbitrarily close
together as they arise from different initial conditions provided the initial
conditions are sufficiently close. So the intuitive idea of stability is that

2The differential equation expressing that growth of population 22 is proportional

dt
to present population is
— = ax,
dt
and the solution is
z = be®,
which is Lyapunov unstable, as defined in Note 3.
3The classical Lyapunov condition for a system of ordinary differential equations is
the following, which formalizes the intuitive description in the text. Let a system of
differential equations

d .
(1) {Z’:f,'(:vl,...,a:n,t), i=1,...,n
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a trajectory can be known with any desired precision, given sufficiently
small errors of measurement in determining the initial conditions. This
is exactly what is not characteristic of instability. Very fine variations
in the initial conditions of a roulette wheel, not to speak of variations in
its motion produce very large differences in outcome. Namely, in almost
identical conditions we have on one occasion a red and on another oc-
casion a black outcome. Now I am not suggesting that this exact idea
of the stability of a dynamical system can be applied to our analysis of
the behavior of Charles I deciding what to do with the Scots. There is,
however, an underlying and robust notion of stability that reflects the
instability in his behavior in a faithful way, just as much as it reflects the
instability of a roulette wheel and its resulting random behavior.

The general qualitative concept of stability is this. A process is stable
if it is not disturbed by causes of small magnitude. Thus, a chair is stable
if it cannot be easily pushed over. A political system is stable if it can
withstand reasonably substantial shocks. A person is stable if he is not
continually changing his views. More specifically, a person’s belief in a
given proposition is stable if it can only be changed by very substantial
new evidence. We often say something similar about feelings. One of the
features of a stable personality is constancy of feeling. The Lyapunov
formal definition of stability can be put under this qualitative tent.

Some of the best and most sophisticated predictive science is about
well-defined stable systems, but here I am interested in the opposite story.
When a system is unstable we can predict its behavior very poorly. Yet
in many instances we can still have satisfactory explanations of behavior.
There are at least three kinds of explanation that may qualify as satis-
factory analyses of unpredictable behavior. The first and most satisfying
arises from having what is supported by prior evidence as a highly accu-
rate quantitative and deterministic theory of the phenomena in question.
Classical physics has constituted the most important collection of such
theories. In the golf-ball example discussed earlier we feel completely con-
fident that no new fundamental physical principles are needed to give an
account of the ball’s surprising trajectory. It was and will remain hopeless
to accurately predict such trajectories with their salient but unexpected

be given. A solutiony;(t),7 =1,...,n of (1) with initial conditions y;(t0) is a Lyapunov
stable solution if for any real number ¢ > O there is a real number § > 0 such that
for each solution x;(t),i =1,...,n, if

lzi(to) —wi(to)| <8, i=1,...,n

then
|z; () —wi(t)| <e, i=1,...,n
for all t > to.
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qualitative properties. Our serenity, however, is principled. Classical
mechanical systems that are unstable have unpredictable behavior but
the physical principles that apply to them are just those that are highly
successful in predicting the behavior of stable systems. The explanatory
extrapolation from stable to unstable systems seems conceptually highly
justified by prior extensive experience. Moreover, in cases of importance,
we can often estimate relevant parameters after the fact. Such estimates
Increase our confidence in our explanatory powers. Ex post facto stress
analyses of structural failures in airplanes, bridges, and buildings are good
instances of what I have in mind.

Application of fundamental theory or quantitative estimate of param-
eters seems out of the question in the second kind of explanation of unpre-
dictable behavior I consider. Here I have in mind familiar common sense
psychological explanations of unpredictable behavior, exemplified in the
passage from Hume about Charles I. Consider, for instance, a standard
analysis of an election that was said to be “too close to call.” A variety of
techniques are applied after the fact to explain the result: the bad weather
affected Democrats more than Republicans, the last-minute interview of
one candidate went badly, the rise in interest rates the past two weeks
hurt the Republican candidate, and so on and so on. Simple psychological
hypotheses relate any one of these explanatory conditions to the behavior
of voters. Most of us have faith in at least some of these explanations,
but we have no illusion that they are derived from a fundamental theory
of political behavior. We also recognize the instability of the outcomes
and the consequent difficulty of prediction.

The third kind of explanation of unpredictable behavior does not
apparently depend on instability but on randomness. As has already
been noted, the random behavior of classical mechanical systems, roulette
wheels, for example, can be attributed to instability, but this is not the
case for quantum phenomena. In either case, however, the important
point is that explanation cannot go behind some basic probabilistic law
that assigns a probability distribution to the phenomena in question. We
explain the irregular pattern of radioactive decay or other data by the
probability law thought to govern the phenomena. Individual events, no
matter how controlled the environment, cannot be predicted with accu-
racy. Yet at a certain level we feel we have explained the phenomena.

Chaos, the original confusion in which all the elements were mixed
together, was personified by the Greeks as the most ancient of the gods.
Now in the twentieth century, chaos has returned in force to attack that
citadel of order and harmony, classical mechanics. We have come to rec-
ognize how rare and special are those physical systems whose behavior
can be predicted in detail. The naivete and hopes of earlier years will not
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return. For many phenomena in many domains there are principled rea-
sons to believe that we shall never be able to move from good explanations
to good predictions.
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CONFLICTING INTUITIONS
ABOUT CAUSALITY

In this article I examine five kinds of conflicting intuitions about the na-
ture of causality. The viewpoint is that of a probabilistic theory of causal-
ity, which I think is the right general framework for examining causal
questions. It is not the purpose of this article to defend the general thesis
in any depth but many of the particular points I make are meant to offer
new lines of defense of such a probabilistic theory. To provide a conceptual
framework for the analysis, I review briefly the more systematic aspects
of the sort of probabilistic theory of causality I advocate. I first define
the three notions of prima facie cause, spurious cause, and genuine cause.
The technical details are worked out in an earlier monograph (Suppes,
1970) and are not repeated.

DEFINITION 1. An event B is a prima facie cause of an event A if and
only if (i) B occurs earlier than A, and (ii) the conditional probability of
A occurring when B occurs is greater than the unconditional probability
of A occurring.

Here is a simple example of the application of Definition 1 to the
study of the efficacy of inoculation against cholera (Greenwood & Yule
1915, cited in Kendall & Stuart 1961). I also discussed this example in

*Reprinted from, Midwest Studies in Philosophy IX (ed. by P. A. French, T. E.
Uehling, Jr. and H. K. Wettstein), 1984, pp. 150-168.
This article overlaps with Chapter 3 of my Probabilistic Metaphysics, (1984).
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my 1970 monograph. The data from the 818 cases studied are given in
the accompanying tabulation.

Not attacked Attacked Totals

Inoculated 276 3 279
Not inoculated 473 66 539
Totals 749 69 818

The data clearly show the prima facie efficacy of inoculation, for the
mean probability of not being attacked is 749/818 = 0.912, whereas the
conditional probability of not being attacked, given that an individual was
inoculated, is 276/279 = 0.989. Here A is the event of not being attacked
by cholera and B the event of being inoculated.

In many areas of active scientific investigation the probabilistic data
are not so clear-cut, although they may be scientifically and statistically
significant. I have selected one example concerning vitamin A intake
and lung cancer to illustrate the point. The results are taken from Bjelke
(1975). The sample of Norwegian males 45-75 years of age was drawn from
the general population of Norway but included a special roster of men who
had siblings that had migrated to the United States. In 1964, the sample
reported their cigarette smoking habits. More than 90 percent of those
surviving in 1967 completed a dietary questionnaire sufficiently detailed
to permit an estimate of vitamin A intake. On January 1, 1968, of the
original sample, 8,278 were alive. Their records were computer-matched
against the records of the Cancer Registry of Norway as of March 1, 1973.

The sample was classified into two groups according to an index of
vitamin A intake as inferred from the dietary questionnaire, with 2,642
classified as having low intake and 5,636 as not low—I am ignoring in
this recapitulation many details about this index. There were for the
sample, as of March 1, 1973, 19 proven cases of carcinomas other than
adenocarcinomas, which we ignore for reasons too detailed to go into here.
Of the 19 proven cases, 14, i.e., 74 percent occurred among the 32 percent
of the sample—the 2,642, who had a low intake of vitamin A. Only 5 cases,
i.e., 26 percent, occurred among the 68 percent of the sample who had a
high intake of vitamin A. Let C be the event of having a lung carcinoma
and let L be low intake of vitamin A. Then for the sample in question

P(C) = .0023 < P(C|L) = .0053.

Using Definition 1 we infer that low intake of vitamin A is a prima facie
cause of lung cancer. The probabilities in question are small but the
results suggest further scientific investigation of the proposition that high
intake of vitamin A may help prevent lung cancer.
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It is now widely accepted that cigarette smoking causes lung cancer,
but as the present data show, the incidence of lung cancer in the general
population is so small that it is a primary medical puzzle to explain why so
few smokers do get lung cancer. This study is meant to be a contribution
to solving this puzzle.

An important feature of this study is that the results are fragile enough
to warrant much further investigation before any practical conclusion is
drawn—such as the admonition to heavy smokers to eat lots of carrots.
In my view, perhaps a majority of scientific studies of causal connections
have a similar tentative character. It is mainly science far from the fron-
tiers, much worked over and highly selected, that has clear and decisive
results.

A common argument of those who oppose a probabilistic analysis of
causality is to claim that it is not possible to distinguish genuine prima
facie causes from spurious ones. This view is mistaken. Because in my
sense spuriousness and genuineness are opposites, it will be sufficient to
define spurious causes, and then to characterize genuine causes as prima
facie causes that are not spurious.

For the definition of spurious causes, I introduce the concept of a
partition at a given time of the possible space of events. A partition is
just a collection of incompatible and exhaustive events. In the case where
we have an explicit sample space, it 1s a collection of pairwise disjoint,
nonempty sets whose union is the whole space. The intuitive idea is
that a prima facie cause is spurious if there exists an earlier partition
of events such that no matter which event of the partition occurs, the
joint occurrence of B and the element of the partition yields the same
conditional probability for the event A as does the occurrence of the
element of the partition alone. To repeat this idea in slightly different
language, we have:

DEFINITION 2. An event B is a spurious cause of A if and only if B is
a prima facie cause of A, and there is a partition of events earlier than
B such that the conditional probability of A, given B and any element of
the partition, is the same as the conditional probability of A, given just
the element of the partition.

The history of human folly is replete with belief in spurious causes.
One of the most enduring is the belief in astrology. The better ancient
defenses of astrology begin on sound empirical grounds, but they quickly
wander into extrapolations that are unwarranted and that would pro-
vide upon deeper investigation excellent examples of spurious causes.
Ptolemy’s treatise on astrology, Tetrabiblos, begins with a sensible dis-
cussion of how the seasons, the weather, and the tides are influenced by
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the motions of the sun and the moon. But he then moves rapidly to
the examination of what may be determined about the temperament and
fortunes of a given individual. He proceeds to give genuinely fantastic
explanations of the cultural characteristics of entire nations on the basis
of their relation to the stars. Consider, for example, this passage:

Of these same countries Britain, (Transalpine) Gaul, Ger-
many, and Bastarnia are in closer familiarity with Aries and
Mars. Therefore for the most part their inhabitants are fiercer,
more headstrong, and bestial. But Italy, Apulia, (Cisalpine)
Gaul, and Sicily have their familharity with Leo and the sun;
wherefore these peoples are more masterful, benevolent, and
co-operative (63, Loeb edition).

Ptolemy is not an isolated example. It is worth remembering that Kepler
was court astrologer in Prague, and Newton wrote more about theology
than physics. In historical perspective, their fantasies about spurious
causes are easy enough to perceive. It is a different matter when we ask
ourselves about future attitudes toward such beliefs current in our own
time.

The concept of causality has so many different kinds of applications
and is at the same time such a universal part of the apparatus we use to
analyze both scientific and ordinary experience that it is not surprising
to have a variety of conflicting intuitions about its nature. I examine five
examples of such conflict, but the list is in no sense inclusive. It would
be easy to generate another dozen just from the literature of the last ten
years.

1. SIMPSON’S PARADOX

Simpson (1951) showed that probability relationships of the kind exem-
plified by Definition 1 for prima facie causes can be reversed when a finer
analysis of the data is considered. From the standpoint of the framework
of this article, this is just a procedure for showing that a prima facie cause
is a spurious cause, at least in the cases where the time ordering follows
the definitions given. In Simpson’s discussion of these matters and in the
related literature, there has not been an explicit attention to temporal
order, and I shall ignore it in my comments on the ‘paradox’. There is
an intuitively clear and much discussed example of sex bias in graduate
admissions at Berkeley (Bickel, Hammel, & O’Connell, 1975). When data
from the university as a whole were considered, there seemed to be good
evidence that being male was a prima facie cause for being admitted to
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graduate school. In other words, there was a positive bias toward the
admission of males and a negative bias toward the admission of females.
On the other hand, when the data were examined department by depart-
ment it tuned out that a majority of the departments did not show such
a bias and in fact had a very weak bias toward female admission. The
conflict in the data arose from the large number of female applications
to departments that had a large number of rejections independent of the
sex of the applicant. As is clear from this example, there is no genuine
paradox in the problem posed by Simpson. There is nothing inconsistent,
or in fact even close to inconsistent, in the results described, which are
characteristic of the phenomenon.

Cartwright (1979) proposes to meet the Simpson problem by imposing
further conditions on the concept of one event being a cause of another.
In particular, she wants to require that the increase in probability charac-
teristic of prima facie causes defined above is considered only in situations
that are “otherwise causally homogeneous with respect to” the effect. I
am skeptical that we can know when situations are causally homogeneous.
In the kind of example considered earlier concerning high intake of vitamin
A being a potential inhibitor of lung cancer, it is certainly not possible to
know or even to consider causally homogeneous situations. This is true of
most applications of causal notions in nonexperimental settings and even
in many experimental situations. T am also skeptical at a conceptual or
philosophical level that we have any well-defined notion of homogeneity.
Consider, for example, the data from Berkeley just described. There is
no reason that we could not also pursue additional hypotheses. We might
want to look at partial data from each department where the data were
restricted just to the borderline cases. We might test the hypothesis that
the female applicants were more able than the males but that at the bor-
derline there was bias against the females. So far as I know, such a more
refined analysis of the data has not been performed but there is no reason
conceptually that we might not find something by entertaining such addi-
tional questions. My point is that there is no end to the analysis of data
in a practical sense. We can, of course, exhaust finite data theoretically
by considering all possible combinations, but this is only of mathematical
significance.

A conflict of intuition can arise as to when to stop the refinement of
data analysis. From a practical standpoint, many professional situations
require detailed rules about such matters. The most obvious example is in
the definition of classes for actuarial tables. What should be the variables
relevant to fixing the rates on insurance policies? I have in mind here
not only life insurance but also automobile insurance, property insurance,
etc. I see a conflict at the most fundamental level between those who
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think there is some ultimate stopping point that can be determined in
the analysis and those who do not.

There is another point to be mentioned about the Simpson problem.
It is that if we can look at the data after they have been collected and
if the probabilities in question are neither zero nor one, it is then easy
to artificially define events that render any prima facie cause spurious.
Of course, in ordinary statistical methodology it would be regarded as a
scandal to construct such an event after looking at the data, but from
a scientific standpoint the matter is not so simple. Certainly, looking
at data that do not fit desired hypotheses or favorite theories is one of
the best ways to get ideas about new hypotheses or new theories. But
without further investigation we do not take seriously the ex post facto
artificial construction of concepts. What is needed is another experiment
or another set of data to determine whether the hypotheses in question are
of serious interest. There is, however, another point to be made about such
artificial concepts constructed solely by looking at the data and counting
the outcomes. It is that somehow we need to exclude such concepts to
avold the undesirable outcome of every prima facie cause being spurious,
at least every naturally hypothesized prima facie cause. One way to do
this of course Is to characterize the notion of genuine cause relative to
a given set of concepts that may be used to define events considered as
causes. Such an emendation and explicit restriction on the definition
given above of genuine cause seems appropriate.!

2. MACROSCOPIC DETERMINISM

Even if one accepts the general argument that there is randomness in na-
ture at the microscopic level, there continues to be a line of thought that
in analysis of causality in ordinary experience it is useful and, in fact, in
some cases almost mandatory to assume determinism. I will not try to
summarize all the literature here but will concentrate on the arguments
given in Hesslow (1976,1981), which attempt to give a deep-running ar-
gument against probabilistic causality, not just my particular version of
it. (In addition to these articles of Hesslow, the reader is also referred
to Rosen [1978] and for a particularly thorough critique of deterministic
causality, Rosen [1982].)

1As Cartwright (1979) points out, it is a historical mistake to attribute Simp-
son’s paradox to Simpson. The problem posed was already discussed in Cohen and
Nagel’s well-known textbook (1934), and according to Cartwright, Nagel believes that
he learned about the problem from Yule’s classic textbook of 1911. There has also been
a substantial recent discussion of the paradox in the psychological literature (Hintzman
1980; Martin 1981).
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As a formulation of determinism that avoids the global character of
Laplace’s, both Hesslow and Rosen cite Anscombe’s (1975, p. 63) principle
of relevant difference, “If an effect occurs in one case and a similar effect
does not occur in an apparently similar case, then there must be a rele-
vant further difference.” Although statistical or probabilistic techniques
are employed in testing hypotheses in the biological and social sciences,
Hesslow claims that “there is nothing that shows that these hypotheses
themselves are probabilistic in nature. In fact one can argue that the op-
posite is true, for statistics are commonly used in a way that presupposes
determinism, namely, in various kinds of eliminative arguments.”

Hesslow’s intuitions here are very different from mine, so there is a
basic conflict that could best be resolved by extensive review of the bi-
ological, medical, and social science literature. I shall not attempt that
here but state what I think is wrong with one of Hesslow’s ideal examples.
He says that these kinds of eliminative arguments all have a simple struc-
ture. He takes the case of Jones, who had a fatal disease but was given a
newly discovered medicine and recovered. We conclude, he says, that the
cause of his recovery was M, the event of taking medicine. Now he says
at the beginning that Jones had a “universally fatal disease.” The first
thing to challenge is the use of the adverb universally. This is not true
of all the diseases of interest. Almost no diseases that are the subject for
analysis and study by doctors are universally fatal. It is a familiar fact
that when medicine is given we certainly like to attribute the recovery
to medicine. But ordinarily the evidence is not overwhelming, because
in the case of almost all diseases there is evidence of recovery of individ-
uals who were not treated by the medicine. This is true of all kinds of
diseases, from the plague to pneumonia. In making this statement, I am
certainly not asserting that medicine is not without efficacy but only that
Hesslow’s claim is far too simple. The actual data do not support what
he says.

Hesslow’s claim that this is a case of determinism is puzzling because
in his own explicit formulation of the argument he says, “Thus, (proba-
bly) M caused R,” where R is the event of recovery. He himself explicitly
introduces the caveat of probability. What he states is that “because
something caused the recovery and, other causes apparently being scarce,
M is the most likely candidate.” Determinism comes in the use of some-
thing, but the conclusion he draws is probabilistic in character and could
just as well have been drawn if he had started with the view that in most
cases an identifiable agent caused the recovery but that in the remaining
cases the recovery was spontaneous. Moreover, I would claim that there
is no powerful argument for the determinism of the kind Hesslow was
trying to give. One could look from one end of the medical literature to
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the other and simply not find the kind of need for the premises he talks
about.

There is a point to be clear about on this matter. Because one is not
endorsing determinism as a necessary way of life for biological and social
scientists, it does not mean that the first identification of a probabilistic
cause brings a scientific investigation of a given phenomenon to an end. It
is a difficult and delicate matter to determine when no further causes can
be identified. I am not offering any algorithms for making this determi-
nation. I am just making a strong claim that we do get along in practice
with probabilistic results and we do not fill them out in an interesting
deterministic fashion.

3. TYPES AND TOKENS

There are a host of conflicting intuitions about whether causality should
mainly be discussed in terms of event types or event tokens, and also
how the two levels are related. I restrict myself here to two issues, both
of which are fundamental. One is whether cases of individual causation
must inevitably be subsumable under general laws. The second is whether
we can make inferences about individual causes when the general laws are
merely probabilistic.

A good review of the first issue on subsumption of individual causal
relations under general laws is given by Rosen (1982), and I shall not try
to duplicate her excellent discussion of the many different views on this
matter. Certainly, nowadays probably no one asserts the strong position
that if a person holds that a singular causal statement is true then the
person must hold that a certain appropriate covering law is true. One
way out, perhaps most ably defended by Horgan (1980) is to admit that
direct covering laws are not possible but that there are at work underneath
precise laws, formulated in terms of precise properties that do give us
the appropriate account in terms of general laws. But execution of this
program certainly is at present, and in my own view will forever be, at
best a pious hope. In many cases we shall not be able to supply the
desired analysis.

There is a kind of psychological investigation that would throw in-
teresting light on actual beliefs about these matters. Epistemological or
philosophical arguments of the kind given by Horgan do not seem to me to
be supportable. It would be enlightening to know if most people believe
that there is such an underlying theory of events and if somehow it gives
them comfort to believe that such a theory exists. The second and more
particular psychological investigation would deal with the kinds of beliefs
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individuals hold and the responses they give to questions about individual
causation. Is there a general tendency to subsume our causal accounts of
individual events under proto-covering laws? It should be evident what I
am saying about this first issue. The defense that there are laws either of
a covering or a foundational nature cannot be defended on philosophical
grounds, but it would be useful to transform the issue into a number of
psychological questions as to what people actually do believe.

The second issue is in a way more surprising. It has mainly been em-
phasized by Hesslow. It is the claim that inferences from generic statistical
relations to individual causal relations are necessarily invalid. Thus, he
concludes that “if all generic causal relations are statistical, then we must
either accept invalid inferences or refrain from talking about individual
causation at all” (1981, p. 598). It seems to me that this line of argument
is definitely mistaken and I would like to try to say why as clearly as I
can. First of all, I agree that one does not make a logically or a math-
ematically valid argument from generic statistical relations to individual
causal relations. It is in the nature of probability theory and its applica-
tions that the inference from the general to the particular is not in itself
a mathematically valid inference The absence of such validity, however,
in no way prohibits using generic causal relations that are clearly statisti-
cal in character to make inferences about individual causation. It is just
that those inferences are not mathematically valid inferences—they are
inferences made in the context of probability and uncertainty. I mention
as an aside that there 1s a large literature by advocates of a relative fre-
quency theory of probability about how to make inferences from relative
frequencies to single cases. Since I come closer to being a Bayesian than a
relative frequentist, I shall not review these arguments, but many of the
discussions are relevant in arguing from a different viewpoint than mine
about Hesslow’s claims.

First, though, let me distinguish sharply between the generic relations
and the individual relations and what I think is the appropriate terminol-
ogy for making this distinction. The language I prefer is that the generic
relations are average or mean relations. The individual relations at their
fullest and best depend upon individual sample paths known in great de-
tail. An individual sample path is the continuous temporal and spatial
path of development of an individual’s history. There is in this history
ordinarily a great deal of information not available in simple mean data.
I can say briefly and simply what the expected or mean life span is of
an adult male who is now forty-five years old and is living in the United
States, but if I consider some single individual and examine him in terms
of his past history, his ancestors, his current state of health, his employ-
ment, etc., I may come to a very different view of his expected number of
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remaining years. Certainly it would be ludicrous to think that there is a
logically valid inference from the mean data to the individual data.

But for a Bayesian or near Bayesian like myself, the matter has a rather
straightforward solution. First of all, probabilities as matters of belief are
directly given to individual events and their individual relationships. Sec-
ond, by the standard theorem on total probability, when I say that a given
individual has an expected lifetime of twenty years, I have already taken
account of all the knowledge that I have about him. Of course, if I learn
something new, the probability can change, just on the basis of the the-
orem on total probability. Now the central point is that ordinarily much
of what I know about individuals is based upon generic causal relations.
I simply do not know enough to go very much beyond generic relations,
and thus my probabilistic estimate of an individual’s expected remaining
lifetime will very much depend on a few generic causal relations and not
much else. The absence of logical validity in relating the generic to the
individual in no way keeps me from talking about individual causation,
contrary to Hesslow’s claim. In fact, I would say that what I have said
is just the right account of how we do talk about individual causation in
the cases where we know something about generic probabilistic causal re-
lations. We know, for example, that heavy clouds are a good sign of rain,
and when accompanied by a drop in atmospheric pressure an even better
sign. We know that these two conditions alone will not cause rain with
probability one, but there is a strong probabilistic causal relation. We go
on to say, well, rain is likely sometime this afternoon. We are quite happy
with our causal views of the matter based on a couple of generic causal
relations. Intimate details of the kind available to meteorologists with
the professional responsibility to predict the weather are not available, let
us say, in the instance being discussed. The meteorologist faced with a
similar problem uses a much more complex theory of generic relations in
order finally to issue his prediction for the afternoon. It is also important
to note, of course, that on the kind of Bayesian view I am describing here
there is no algorithm or simple calculus for passing by probability from
generic causal relationships to individual ones, even for the trained mete-
orologist. It is a matter of judgment as to how the knowledge one has is
used and assessed. The use of the theorem on total probability mentioned
above depends on both conditional and unconditional probabilities, which
in general depend on judgment. In the case where there is very fine sci-
entific knowledge of the laws in question it might be on occasion that the
conditional probabilities are known from extensive scientific experimen-
tation, but then another aspect of the problem related to the application
to the individual event will not be known from such scientific experimen-
tation except in very unusual cases, and judgment will enter necessarily.
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4. PHYSICAL FLOW OF CAUSES

In his excellent review article on probabilistic causality, Salmon (1980)
puts his finger on one of the most important conflicting intuitions about
causality. The derivations of the fundamental differential equations of
classical physics give in most cases a very satisfying physical analysis of
the flow of causes in a system, but there is no mention of probability. It is
characteristic of the areas in which probabilistic analysis is used to a very
large extent that a detailed theory of the phenomena in question is miss-
ing. The examples from medicine given earlier are typical. We may have
some general ideas about how a vaccine works or about the mechanisms
for absorbing vitamin A, but we do not have anything like an adequate
detailed theory of these matters. We are presently very far from being
able to make any kind of detailed theoretical predictions derived from
fundamental assumptions about molecular structure, for example. Con-
cerning these or related questions we have a very poor understanding in
comparison with the kinds of models successful in various parts of classical
physics about the detailed flow of causes. I think Salmon is quite right in
pointing out that the absence of being able to give such an analysis is the
source of the air of paradox of some of the counterexamples that have been
given. The core argument is to challenge the claim that the occurrence
of a cause should increase the probability of the occurrence of its effect.

Salmon uses as a good example of this phenomenon the hypothetical
case made up by Deborah Rosen and reported in my 1970 monograph. A
golfer makes a birdie by hitting a limb of a tree at just the right angle,
not something that he planned to do. The disturbing aspect is that if
we estimated the probability of his making a birdie prior to his making
the shot and we added the condition that the ball hit the branch, we
would ordinarily estimate the probability as being definitely lower than
that he would have made a birdie without this given condition. On the
other hand, when we see the event happen we have an immediate physical
recognition that the exact angle that he hit the branch played a crucial
role in the ball’s going into the cup. In my 1970 discussion of this example,
I did not take sufficient account of the conflict of intuition between the
general probabilistic view and the highly structured physical view. I now
think it is important to do so and I very much agree with Salmon that the
issues here are central to a general acceptability of a probabilistic theory
of causality. I therefore want to make a revised response.

There are at least three different kinds of cases in which what seem
for other reasons to be prima facie causes in fact turn out to be negative
causes, i.e., the conditional probability of the effect’s occurring is lowered
given the cause. One sort of case involves situations in which we know a
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great deal about the classical physics. A second kind of case is where an
artificial example can be constructed and we may want to make claims
about observing a causal chain. Salmon gives a succinct and useful exam-
ple of this kind, which I discuss. Third, there are the cases in which we
attribute without any grounds some surprising event as a cause of some
significant effect. In certain respects the ancient predilection for omens
falls under this category, but I shall not expand upon this view further.

In the first kind of case there is a natural description of the event
after the fact that makes everything come out right. Using the golf ball
example as typical, we now describe the event as that of the golf ball’s
hitting the branch at exactly the right angle to fall into the cup. Given
such a description we would of course make the conditional probability
close to one, but it is only after the fact that we could describe the event
in this fashion. On the other hand, it is certainly too general to expect
much to come out of the event described simply as the golf ball’s hitting
the limb of the tree. It is not really feasible to aim before the event
at a detailed description of the event adequate to make a good physical
prediction. We will not be given the values of parameters sufficiently
precisely to predict that the golf ball will hit the limb of the tree at an
angle just right for bouncing into the cup. Consequently, in such cases
we cannot hope to predict the effects of such surprising causes, but based
upon physical theories that are accurate to a high degree of approximation
we understand that this is what happened after we have observed the
sequence of events. Another way of putting the matter is that there is a
whole range of cases in which we do not have much hope of applying in an
interesting scientific or commonsense way probabilistic analysis, because
the causes will be surprising. Even in cases of extraordinary conceptual
simplicity, e.g., the N-body problem with only forces of gravitation acting
between the bodies, extended prediction of behavior for any length of time
is not in general possible. Thus, although a Bayesian in such matters, I
confess to being unable to make good probabilistic causal analyses of
many kinds of individual events. In the same fashion, I cannot apply
to such events, in advance of their happening, detailed physical theories.
The possibilities of application in both cases seem hopeless as a matter
of prediction. This may not be the way we want the world to be but this
is the way it is.

Salmon also gives an example that has a much simpler physical de-
scription than the golf ball example. It involves the eight ball and the
cue ball on a pool table with the player having a 50-50 chance of sinking
the eight ball with the cue ball when he tries. Moreover, the eight ball
goes into the corner pocket, as Salmon says, “if and almost only if his cue
ball goes into the other far corner pocket.” Let event A be the player’s
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attempting the shot, B the dropping of the eight ball in the corner pocket,
and C the dropping of the cue ball into the other corner pocket. Under
the hypotheses given, B is a prima facie cause of C, and Salmon is con-
cerned about the fact that A does not screen B off from C, i.e., render
B a spurious cause of C. Salmon expresses his concern by saying that
we should have appropriate causal relations among A, B, and C with-
out having to enter into more detailed physical theory. But it seems to
me that this example illustrates a very widespread phenomenon. The
physical analysis, which we regard as correct, namely, the genuine cause
of C, i.e., the cue ball going into the pocket, is in terms of the impact
forces and the direction of motion of the cue ball at the time of impact.
We certainly believe that such specification can give us a detailed and
correct account of the cue ball’s motion. On the other hand, there is an
important feature of this detailed physical analysis. We must engage in
meticulous investigations; we are not able to make in a commonsense way
the appropriate observations of these earlier events of motion and impact.
In contrast, the events A, B, and C are obvious and directly observable.
I do not find it surprising that we must go beyond these three events for
a proper causal account, and yet at the same time we are not able to do
so by the use of obvious commonsense events. Aristotle would not have
had such an explanation, from all that we know about his physics. Why
should we expect it of untutored common sense?

The second class of example, of which Salmon furnishes a very good
instance, is when we know only probability transitions. The example he
considers concerns an atom in an excited state. In particular, it is in the
fourth energy level. The probability is one that it will necessarily decay
to the zeroeth level, i.e., the ground state. The only question is whether
the transitions will be through all the intermediate states three, two, and
one, or whether some states will be jumped over. The probability of going
directly from the fourth to the third state is 3/4 and from the fourth to
the second state is 1/4. The probability of going from the third state to
the first state is 3/4 and from the third state to the ground state 1/4.
Finally, the probability of going from the second state to the first state
is 1/4 and from the second state directly to the ground state 3/4. It is
required also, of course, that the probability of going from the first state
to the ground state is one. The paradox arises because of the fact that if a
decaying atom occupies the second state in the process of decay, then the
probability of its occupying the first state is 1/4, but the mean probability
whatever the route taken of occupying the first state is the much higher
probability of 10/16. Thus, on the probabilistic definitions given earlier
of prima facie causes, occupying the second state is a negative prima facie
cause of occupying the first state.
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On the other hand, as Salmon emphasizes, after the events occur of the
atom going from the fourth to the second to the first state, many would
say that this sequence constitutes a causal chain. My own answer to this
class of examples is to meet the problem head on and to deny that we want
to call such sequences causal sequences. If all we know about the process is
just the transition probabilities given, then occupancy of the second state
remains a negative prima facie cause of occupying the first state. The
fact of the actual sequence does not change this characterization. In my
own constructive work on causality, I have not given a formal definition of
causal chains, and for good reason. I think it is difficult to decide which
of various conflicting intuitions should govern the definition.

We may also examine how our view of this example might change if
the probabilities were made more extreme, i.e., if the mean probability of
occupying the first energy state comes close to one and the probability of
a transition from the second to the first state is close to zero. In such cases
when we observe the sequence of transitions from the fourth to the second
to the first state, we might be inclined to say that the atom decayed to the
first state in spite of occupying the second state. By using such phrases
as in spite of we indicate our skepticism that what we have observed is a
genuine causal chain.

5. COMMON CAUSES

It was a virtue of Reichenbach to have recognized that a natural principle
of causality is to expect events that are simultaneous, spatially separated,
and strongly correlated, to depend upon some common cause to gener-
ate the correlation. There are a variety of controversial questions about
the principle of common cause, and the source of the controversy is the
absence of clear and widely accepted intuitions about what we should ex-
pect of such causes. Should we expect such causes to exist? Thus, when
we observe phenomenologically simultaneous events strongly correlated,
should we always be able to find a common cause that eliminates this
phenomenological correlation in the sense that, when we condition on the
common cause, the new conditional correlation is zero? Another question
concerns the determinism of common causes. Ought we to expect such
causes to be deterministic, or can we find common causes that are strictly
probabilistic? In a recent essay, Van Fraassen (1982) expresses the view
that the causes must be deterministic in the following way.

But a belief in the principle of the common cause implies a
belief that there is in the relevant cases not merely a compat-
ibility (so that deterministic hidden variables could be intro-
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duced into models for the theory) but that all those hidden
events which are the common causes, are real, and therefore,
that the world is really deterministic (p. 208).

Salmon (1982) in his reply to Van Fraassen suggests that the principle of
common cause is sometimes used as an explanatory principle and some-
times as a principle of inference. Also he implicitly suggests a third and
different use as a maxim of rationality, which is a use also considered by
Van Fraassen. The maxim is: search for a common cause whenever fea-
sible to explain simultaneous events that are strongly correlated. Using
the principle as a maxim does not guarantee any explanations nor any
inferences but can be important in the strategy of research. The dia-
logue between Salmon and Van Fraassen in the two articles mentioned
contains a number of useful points about common causes, but rather
than consider in detail their examples, counterexamples, arguments, and
counterarguments to each other, I want to suggest what I think is a rea-
sonable view of the principle of common cause. In doing so I shall avoid
references to quantum mechanics except in one instance. I shall also gen-
eralize the discussion to more than two events, because in many scientific
applications it is not adequate to consider the correlations of only two
events.

First let me say more explicitly what I shall mean by common cause.
The exposition here will be rather sketchy. The technical details of many
of the points made are given in the Appendix.

Let A and B be events that are approximately simultaneous and let

P(AB) # P(A)P(B);

i.e., A and B are not independent but correlated. Then the event C is a
common cause of A and B if

(i) C occurs earlier than A and B;
(i) P(AB|C) = P(A|C)P(B|C);
(i) P(AB|C) = P(A|C)P(B|C).

In other words, C renders A and B conditionally independent, and so
does C, the complement of C. When the correlation between A and B is
positive, i.e., when

P(AB) > P(A)P(B),

we may also want to require:

(iv) C is a prima facie cause of A and of B.
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I shall not assume (iv) in what follows. I state in informal language a
number of propositions that are meant to clarify some of the controversy
about common causes. The first two propositions follow from a theorem
about common causes proved in Suppes and Zanotti, (1981).

PROPOSITION 1. Let events Ay, Ag, ---, A, be given with any two of
the events correlated. Then a necessary and sufficient condition for it to
be possible to construct a common cause of these events is that the events
A1, As, ..., A, have a joint probability distribution compatible with the
given pairwise correlations.

An important point to emphasize about this proposition is its generality
and at the same time its weakness. There are no restrictions placed on the
nature of the common causes. Once any sorts of restrictions of a physical
or other empirical kind are imposed, then the common cause might not
exist. If we simply want to know whether a common cause can be found as
a matter of principle as an underlying cause of the observed correlations
between events, then the answer is not one that has been much discussed
in the literature. All that is required is the existence of a joint probability
distribution of the phenomenological variables. It is obvious that if the
candidates for common causes are restricted in advance, then it is a simple
matter to give artificial examples that show that among possible causes
given in advance no common cause can be found. The ease with which
such artificial examples are constructed makes it obvious that the same
holds true in significant scientific investigations. When the possible causes
of diseases are restricted, for example, it is often difficult for physicians
to find a common cause among the given set of candidates.

PROPOSITION II. The common cause of Proposition I can always be
constructed so as to be deterministic.

Again, without restriction, determinism is always open to us. On the
other hand, it is easy to impose some natural principles of symmetry that
exclude deterministic causes when the correlations are strictly probabilis-
tic, L.e., the correlations between the events at the phenomenological level
are not themselves deterministic. Explicit formulations of these principles
of symmetry are given in the Appendix.

PROPOSITION III. Conditions of symmetry can easily be found such
that strictly probabilistic correlations between phenomenologically observed
events have as a common cause one that is strictly probabilistic.

This last proposition is special in nature, of course. It refers to principles
of symmetry discussed in the Appendix. The conditions are sufficient
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but not necessary. It would be desirable to find significant necessary and
sufficient conditions that require the common cause to be probabilistic
rather than deterministic in character.

Finally, I state one application to quantum mechanics.

PROPOSITION IV. There are correlated phenomenological data that can-
not have a common cause that is theoretically consistent with quanium
mechanics, because there can be no joinit probability distribution of the
data, as described in Proposition I

APPENDIX ON COMMON CAUSES

In this Appendix I present a number of theorems about inferences from
phenomenological correlations to common causes. In the framework of
quantum mechanics, the theorems are mainly theorems about hidden vari-
ables. Most of the proofs will not be given, but references will be cited
where they may be found. The content of this Appendix follows closely
the first part of Suppes and Zanotti (1984).

To emphasize conceptual matters and to keep technical simplicity in
the forefront, I consider only two-valued random variables taking the val-
ues +1. We shall also assume symmetry for these random variables in
that their expectations will be zero and thus they will each have a posi-
tive variance of one. For emphasis we state:

GENERAL ASSUMPTION. The phenomenological random variables
Xi,..., XN have possible values 1, with means E(X;) =0,1<i < N.

We also use the notation X, Y and Z for phenomenological random vari-
ables. We use the notation E(XY) for covariance, which for these sym-
metric random variables is also the same as their correlation p(X,Y).

The basic meaning of common cause that we shall assume is that when
two random variables, say X and Y, are given, then in order for a hidden
variable A to be labeled a common cause, it must render the random
variables conditionally independent, that is,

(1) E(XY|A) = E(X[A)E(Y[A).

We begin with a theorem asserting a deterministic result. It says that if
two random variables have a strictly negative correlation, then any cause
in the sense of (1) must be deterministic, that is, the conditional variances
of the two random variables, given the hidden variable X, must be zero.
We use the notation o(X|A) for the conditional standard deviation of X
given A, and its square is, of course, the conditional variance.
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THEOREM 1. (Suppes and Zanotti, 1976). If
(i) E(XY[\) = E(X|A)E(Y|A)
(ii) p(X,¥) =1
then
o(X|A) = o(Y|A) = 0.

The second theorem asserts that the only thing required to have a
common cause for N random variables is that they have a joint probability
distribution. This theorem is conceptually important in relation to the
long history of hidden variable theorems in quantum mechanics. For
example, in the original proof of Bell’s inequalities, Bell (1964) assumed a
causal hidden variable in the sense of (1) and derived from this assumption
his inequalities. What Theorem 2 shows is that the assumption of a hidden
variable is not necessary in such discussions—it is sufficient to remain
at the phenomenological level. Once we know that there exists a joint
probability distribution then there must be a causal hidden variable, and
in fact this hidden variable may be constructed so as to be deterministic.

THEOREM 2. (Suppes and Zanotti, 1981). Given phenomenological
random variables X1,..., Xy then there exists a hidden variable A, a
common cause, such that

E(Xy,...,XnA) = E(X1|A) - - E(Xn|A)

if and only if there exists a joint probability distribution of X1,...,XnN.
Moreover, A may be constructed as a deterministic cause, i.e., for 1 <
it < N

a(X;|A) = 0.

6. EXCHANGEABILITY

We now turn to imposing some natural symmetry conditions both at
a phenomenological and at a theoretical level. The main principle of
symmetry we shall use is that of exchangeability. Two random variables
X and Y of the class we are studying are said to be exchangeable if the
following probabilistic equality is satisfied.

(2) PX=1Y=-1)=P(X=-1,Y=1).

The first theorem we state shows that if two random variables are ex-
changeable at the phenomenological level then there exists a hidden causal
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variable satisfying the additional restriction that they have the same con-
ditional expectation if and only if their correlation is not negative.

THEOREM 3. (Suppes and Zanotti, 1980). If X and Y are ezchangeable,
then there exists a hidden variable X such that

(i) A is a common cause of X and Y,
(1) E(X|A) = E(Y[N)
if and only if
p(X,Y) >0.

There are several remarks to be made about this theorem. First, the phe-
nomenological principle of symmetry, namely, the principle of exchange-
ability, has not been used in physics as explicitly as one might expect.
In the context of the kinds of experiments ordinarily used to test hidden
variable theories, the requirement of phenomenological exchangeability
is uncontroversial. On the other hand, the theoretical requirement of
identity of conditional distributions does not have the same status. We
emphasize that we refer here to the expected causal effect of A. Obviously
the actual causal effects will in general be quite different. We certainly
would concede that in many physical situations this principle may be too
strong. The point of our theorems is to show that once such a strong theo-
retical principle of symmetry is required then exchangeable and negatively
correlated random variables cannot satisfy it.

Theorem 4 strengthens Theorem 3 to show that when the correla-
tions are strictly between zero and one then the common cause cannot be
deterministic.

THEOREM 4. (Suppes and Zanotti, 1984). Given the conditions of
Theorem 3, if 0 < p(X,Y) < 1 then A cannot be deterministic, i.e.,
a(X|A),o(Y|A) # 0.

Proof. We first observe that under the assumptions we have made:

Min{P(X=1Y=-1),P(X=1,Y=1),P(X=-1,Y = -1)} > 0.

Now, let © be the probability space on which all random variables are
defined. Let A = {4;},1 <i < N and H = {H;},1 < j < M be two
partitions of 2. We say that H is a refinement of A in probability if and
only if for all i’s and j’s we have:

If P(A;N Hj) > 0 then P(Ai N Hj) = P(Hj).

Now let A be a causal random variable for X and Y in the sense of
Theorem 3, and let A have induced partition # = {H;}, which without
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loss of generality may be assumed finite. Then A is deterministic if X is
a refinement in probability of the partition A= {4;} generated by X and
Y, for assume, by way of contradiction, that this is not the case. Then
there must exist ¢ and j such that P(A4; N H;) > 0 and

P(A,‘ ﬂHj) < P(Hj),

but then 0 < P(A,lHJ) < 1.
We next show that if A is deterministic then E(X|A) # E(Y|X), which

will complete the proof.
Let, as before, H = {H;} be the partition generated by A. Since we

know that
L;PX=1Y=-1,H;)=PX=1Y=-1)>0
there must be an H; such that
PX=1Y=-1,H;) >0,

but since A is deterministic,  must be a refinement of A and thus as

already proved
P(X=1,Y =-1|H;) =1,

whence

PX=1Y=1H;) = 0
PX=-1,Y=-1H;) = 0,

and consequently we have
3)

{ P(X=1|H;)=P(Y =-1|H;) =1
P(X=-1H;)=P(Y=1|H;)=0

Remembering that E(X|A) is a function of A and thus of the partition
‘H, we have from (3) at once that

E(X[\) # E(Y|A).
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WHEN ARE PROBABILISTIC
EXPLANATIONS POSSIBLE?

The primary criterion of adequacy of a probabilistic causal analysis is
that the causal variable should render the simultaneous phenomenolog-
ical data conditionally independent. The intuition back of this idea is
that the common cause of the phenomena should factor out the observed
correlations. So we label the principle the common cause criterion. If we
find that the barometric pressure and temperature are both dropping at
the same time, we do not think of one as the cause of the other but look
for a common dynamical cause within the physical theory of meteorology.
If we find fever and headaches positively correlated, we look for a common
disease as the source and do not consider one the cause of the other. But
we do not want to suggest that satisfaction of this criterion is the end
of the search for causes or probabilistic explanations. It does represent a
significant and important milestone in any particular investigation.
Under another banner the search for common causes in quantum me-
chanics is the search for hidden variables. A hidden variable that satisfies
the common cause criterion provides a satisfactory explanation “in classi-
cal terms” of the quantum phenomenon. Much of the earlier discussion of
hidden variables in quantum mechanics has centered around the search for
deterministic underlying processes, but for some time now the literature
has also been concerned with the existence of probabilistic hidden vari-

*Reprinted from Synthese, 48 (1981), 191-199. Written jointly with Mario Zanotti.
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ables. It is a striking and important fact that even probabilistic hidden
variables do not always exist when certain intuitive criteria are imposed.
One of the simplest examples was given by Bell in 1971, who extended
his earlier deterministic work to construct an inequality that is a conse-
quence of assuming that two pairs of values of experimental settings in
spin-1/2 experiments must violate a necessary consequence of the common
cause criterion, that is, the requirement that a hidden variable render the
data conditionally independent. It is easy to show that Bell’s inequality
is a necessary but not sufficient condition for conditional independence.
However, we shall not pursue further matters involving specific quantum
mechanical phenomena in the present context.

Our aims in this short article are more general. First we establish a
necessary and sufficient condition for satisfaction of the common cause
criterion for events or two-valued random variables. The condition is
existence of a joint probability distribution. We then consider the more
difficult problem of finding necessary and sufficient conditions for the
existence of a joint distribution. We state and prove a general result
only for the case of three (two-valued) random variables, but it has as a
corollary a pair of new Bell-type inequalities.

The limitation from a scientific standpoint of the first result on sat-
isfaction of the common cause criterion is evident. The mere theoretical
existence of a common cause is often of no interest. The point of the
theorem is clarification of the general framework of probabilistic analy-
sis. The theorem was partially anticipated by some unpublished work of
Arthur Fine on deterministic hidden variables.

The second theorem about the existence of a joint distribution is more
directly applicable as a general requirement on data structures, for it is
easy to give examples of three random variables for which there can be no
joint distribution. Consider the following. Let X, ¥, and Z be two-valued
random variables taking the values 1 and —1. Moreover, let us restrict
the expectation of the three random variables to being zero, that 1s,

E(X) = E(Y) = E(Z) = 0.

Now assume that the correlation of X and Y is —1, the correlation of Y
and Z is —1, and the correlation of X and Z is —1. It is easy to show
that there can be no joint distribution of these three random variables.

THEOREM ON COMMON CAUSES. Let X;,...,X,, be two-valued ran-
dom wvariables. Then a necessary and sufficient condition that there is
a random variable A such that Xy,...,X,, are conditionally independent
given X is that there exists a joint probability distribution of X4,...,X,.
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Proof. The necessity is trivial. By hypothesis
PX;=1,..., X, =1 A=) =0, P(X; = 1|]A = }).

We now integrate with respect to A, which has, let us say, measure p, so
we obtain

P(Xlzl,...,xn:1):/P(X1:1,...,Xn:1|A=)\):d,u(/\).

The argument for sufficiency is more complex. To begin with, let £ be
the space on which the joint distribution of Xy,...,X,, is defined. Each
X; generates a partition of Q:

Ai={w:we & X;(w) =1}
A ={w:w e & X;(w) = -1}

Let P be the partition that is the common refinement of all these two-
element partitions, i.e.,

PZ{Al...An,Al...Zn,...,zi...zn},

where juxtaposition denotes intersection. Obviously P has 2" elements.
For brevity of notation we shall denote the elements of partition P by Cj,

and the indicator function for C; by 6,-, le.,

S _ lifwe Cj
Cilw)= { 0 otherwise.

We now define the desired random variable A in terms of the C;.

(1) A=Y o;C;

where the a; are distinct real numbers, ie., a; # a; for i # j. The
distribution gz of A is obviously determined by the joint distribution of
the random variables X, ..., X,,.

Using (1), we can now express the conditional expectation of each X;
and of their product given A.

@) BN = 5 s fo, Xidu(N)
and

(3) E(X;---XaA) =3 % Jo, X1+ Xadp(X).
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We need to show that the product of (2) over the X;’s is equal to (3). We
first note that in the case of (2) or (3) the integrand, X; in one case, the
product X - --X,, in the other, has value 1 or —1. (So A as constructed
is deterministic—a point we comment on later.) Second, the integral over
the region Cj is just P(C}). So we have

(4) E(X;|A) = Z sgnc,;(Xi)C;j

where sgnc,;(X;) is 1 or —1, as the case may be for X; over the region
C;. From (4) we then have

(5) 07, B(Xi 1)) =15 Y sgne, (X4)C;.
j

Given that the product éj 6,-, =0, if j # j', we may interchange product
and summation in (5) to obtain

(6) ILEX;IA) = > Misgne, (X:)Cj,
J

but by the argument already given the right-hand side of (6) is equal to
E(X;---Xp|A) as desired.

There are several comments we want to make about this theorem and
its proof. First, because the random variables X; are two-valued, it is suf-
ficient just to consider their expectations in analyzing their conditional
independence. Second, and more important, the random variable A con-
structed in terms of the partition P yields a deterministic solution. This
may be satisfying to some, but it is important to emphasize that the
artificial character of A severely limits its scientific interest. What the
theorem does show is that the general structural problem of finding a
common cause of a finite collection of events or two-valued random vari-
ables has a positive abstract solution. Moreover, extensions to infinite
collections of events or continuous random variables are possible but the
technical details will not be entered into here. We do emphasize that the
necessary inference from conditional independence to a joint distribution
does not assume a deterministic causal structure.

The place where the abstract consideration of common causes has
been pursued the most vigorously is, of course, in the analysis of the
possibility of hidden variables in quantum mechanics. Given the negative
results of Bell already mentioned, it is clear how the Theorem on Common
Causes must apply: the phenomenological events in question do not have
a joint distribution. We are reserving for another occasion the detailed
consideration of this point.
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Within the present general framework it is important to explore fur-
ther the existence of nondeterministic common causes. Many important
constructive examples of such causes are to be found in many parts of
science, but the general theory needs more development. One simple
example is given at the end of this article.

We turn now to the second theorem about the existence of a joint
distribution for three two-valued random variables, which could be the
indicator functions, for example, for three events. We assume the possible
values as 1 and —1, and the expectations are zero, so the variances are 1
and the covariances are identical to the correlations.

JOINT DISTRIBUTION THEOREM. Let X, Y, and Z be random vari-
ables with possible values 1 and —1, and with

EX)=E(Y)=E(Z)=0.

Then a necessary and sufficient condition for the existence of a joint prob-
ability distribution of the three random variables is that the following two
wnequalities be satisfied.

-1 < EXY)+E(YZ)+ E(XZ) <1+2Min{E(XY), E(YZ), E(XZ)}.
Proof. We first observe that
(1) E(XY) = p11- — p1o- — po1+ + Poo-,

where
pro- = P(X=1,Y = —1),etc.

(We use 0 rather than —1 as a subscript for the —1 value for simplicity
of notation. The dot refers to Z.)
It follows easily from (1) that

(2) poo = p11e = & + EEY).
and similarly

(3) Poro =pi1 = + E fz ,

(4) poo=pa1 =75 + E(—}Z),

® por- = o = § = 2070,

© pou =pro =} - 22,

(M D01 =p10 = % -£ ZZ
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Using (2)—(7) we can directly derive the following seven equations for
the joint distribution—with p;;; being treated as a parameter along with
E(XY), E(YZ), and E(XZ):

P10 = % + EQ:'JQ — DN
Prov = % + ﬂ¥2 — P11
Pour = % + E(ZZ) - P111
(8) < pioo = pi11 — E(JZ_YZ _ EL’:_Z_E
Poio = P111 — ﬂ’:—Y) - @
Poo1 = P111 — E(%l - E(%l
o= 3200 200 2,

From (8) we derive the following inequalities, where o = 4py1;:
([ 1+ E(XY)>a

1+ FXZ) >«

1+ E(YZ) > «

(9) s E(YZ)+ E(XZ) < «
EXY)+E(YZ) <L«

E(YZ)+ E(XZ) <

1+ E(XY) + E(XZ) + (YZ) > a

\

From the last inequality of (9), we have at once
(10) ~1< E(XY) + B(XZ) + (YZ),

because o must be nonnegative. Second, taking the maximum of the
fourth, fifth, and sixth inequalities and the minimum of the first, second,
and third, and adding Min(E(XY), E(XZ), E(YZ)) to both sides, we
obtain

(11) E(XY) + E(XZ)+ (YZ) < 1+ 2 Min{E(XY), E(XZ), E(YZ)}.
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Inequalities (10) and (11) represent the desired result. Their necessity,
l.e., that they must hold for any joint distribution of X, Y, and Z, is
apparent from their derivation.

Sufficiency follows from the following argument. Let

I

Ci
Co

Max{E(XY) + E(XZ), E(XY) + E(YZ), E(XZ) + E(YZ)},
Min{E(XY), E(XZ), E(YZ)}.

fl

It is an immediate consequence of (10) and (11) that
(12) C1 <14 Gy,
(13) 1+ Ci+C2 >0.

Assume now that Cy > 0.
We may then choose a@ = 4p;11 so that

a=pC1+(1-B)(1+Cs), for0< <L
On the other hand, if C; < 0, choose « so that
a=p(1+C1+Cy), for0<pg<1.

It is straightforward to show that for either case of C}, any choice of
# in the closed interval [0,1] will define an a/4 = pi1; satisfying the
distribution equation (8).

The two theorems we have proved can be combined to give a pair of Bell-
type inequalities. Two differences from Bell’s 1971 results are significant.
First, we give not simply necessary, but necessary and sufficient conditions
for existence of a hidden variable. Second, we deal with three rather than
four random variables. As would be expected from the proofs of the two
theorems, our method of attack is quite different from Bell’s.

The corollary is an immediate consequence of the two theorems.

COROLLARY ON HIDDEN VARIABLES. Let X, Y, and Z be random
variables with possible values 1 and —1, and with

E(X) = E(Y) = E(Z) =0.

Then a necessary and sufficient condition for the existence of a hidden
variable or common cause X with respect to which the three given ran-
dom variables are conditionally independent is that the phenomenological
correlations satisfy the inequalities

~1< E(XY)+ E(YZ)+ E(XZ) < 1+ 2 Min{E(XY), E(YZ), E(XZ)}.
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NONDETERMINISTIC EXAMPLE. The deterministic result of the The-
orem on Common Causes can, as already indicated, be misleading. We
conclude with a simple but important example that is strictly probabilis-
tic.

Let X and Y be two random variables that have a bivariate normal
distribution with |p(X,Y]| # 1, ie., the correlation to be factored out
by a common cause is nondeterministic, and without loss of generality
E(X) = E(Y) = 0. It is a standard result that the partial correlation of
X and Y with Z held constant is (for a proof, see Suppes, 1970, p. 116).

PXY) - p(X,2)p(Y,Z)
\/1 - pZ(X’ Z)\/l - pZ(Y7 Z)

Because a multivariate normal distribution is invariant under an affine
transformation, we may take

E(Z) =0,
E(Z?) =1.

If p(X,Y) >0, we set ‘
p(X,2) = p(Y,Z) = /p(X,Y).
If p(X,Y) <0, we set
p(X,Z) = —p(Y,Z) = /|p(X,Y)].

It is straightforward to check that we now have a proper multivariate
normal distribution of X, Y, and Z with

p(XY-Z)=0

and p(X,Z) and p(Y,Z) nondeterministic.
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NON-MARKOVIAN CAUSALITY
IN THE SOCIAL SCIENCES WITH
SOME THEOREMS ON
TRANSITIVITY

When we consider familiar observable properties of a physical object we
postulate almost without thinking that these properties are determined by
the particular atomic structure of the object at the moment of observation.
If we know the current atomic structure we firmly believe that it is not
necessary to know anything about the history of the object. It may well be
that in many practical instances this assumption is a theoretical one that
we cannot put into practice, but it is a deep and important theoretical
assumption about the Markovian character of the physical world. It is a
standard theoretical move in physics to postulate a concept of state such
that if we know the state of a system at a given time we need know nothing
about the system at any earlier time in order to analyze and predict its
future behavior. This radical Markovian truncation of the past is one of
the most essential general concepts in the physical sciences.

It is an important methodological and scientific question to what ex-
tent a similar viewpoint can be made to work in the social sciences. I have
deliberately not said that it was a general philosophical issue. The reason

*Reprinted from Synikese, 68 (1986), 129-140.
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for this omission is obvious. It is reasonable to believe that a person’s be-
liefs and actions at a given time are determined by the current encoding
of his past experience in his central nervous system and by the current
state of the many chemical substances in his body at the present instant,
together with the current circumstances of his environment. Almost none
of us accept a philosophical view of action at a distance across time so that
an event that occurred in the past directly affects an action taking place
now. In the present instance, however, our philosophical views although
perhaps correct in general principle are too complacent and do not readily
form a basis in many areas for serious scientific endeavor. The difficulty
is easy to describe. We are not able to give a theory or description of the
current state of a person, or more generally of a society, with sufficient
accuracy and detail to be of much direct use in scientific analysis of any
personal or social phenomenon of interest.

The scientific problem is that of being able to postulate detailed in-
ternal states that have essential properties of uniformity across many
different situations. The great success of the physical sciences has de-
pended upon the structural identity of substances, at least in relation
to the phenomenological properties we have as yet investigated with any
thoroughness. In essential ways, all atoms of a given kind, for example,
hydrogen, mercury, etc., are identical in structure, or there are in almost
all circumstances a very small number of variants. In contrast, it seems
a plausible negative thesis that in the case of persons nothing like such
uniformity of structure holds for the properties we consider essential, for
example, the internal psychological structure of a person’s memory, feel-
ings, etc. There is much to support such a negative thesis at the present
time and, therefore, many reasons to be skeptical that a powerful and
scientifically useful concept of state can be introduced in ways that ren-
der the postulated processes of a person or a social group Markovian in
character.

Whatever the status of the general conceptual argument I have been
trying to give, the empirical evidence on the kinds of models that are
actually used in the social sciences very much supports my thesis. What
I want to do in the remainder of this article is to explore various aspects of
this non-Markovian kind of analysis, and to speculate on its consequences
for theory construction.

To begin with, I show that transitivity of probabilistic causality does
not depend upon a Markov condition although, as has been shown by
Eells and Sober (1983), such a Markov condition is sufficient even though
too restrictive. It is easy to want to hold that any reasonable theory of
causality should be transitive in character, that is, if A is a cause of B
and B is a cause of C, then A should be a cause of C. As we shall see, this
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is a characteristic feature of a wide class of non-Markovian processes. It
would be disturbing for the theory of non-Markovian causality if this were
not so. In the second section, I in fact turn to examples of such processes,
drawn from psychology, in particular from learning theory. The third
section considers examples of such processes familiar from econometrics.

To avoid any misunderstanding in the examples that follow, I note
that by Markov condition I mean first-order Markov condition. We can,
of course, have a second-order or a third-order Markov condition especially
in the case of discrete trials or time periods, but the basic intuition about
states, and the familiar use of the concept in physics, is certainly only in
terms of first-order Markov processes. In some of the examples, only a
finite segment of the past is included, but that is usually for purposes of
practical simplification. Further refinements and more accurate analysis
can be obtained by further extension into the past.

1. TRANSITIVITY OF NON-MARKOVIAN CAUSES

In Suppes (1970) I gave a specific counterexample to show that proba-
bilistic causation need not be transitive. For the purposes of this discus-
sion I have in mind my definition of prima facie cause. Event By is a
prima facie cause of event A; if and only if (i) # < t—these subscripts
refer, of course, to time of occurrence of an event, (i) P(By) > 0, and
(iil) P(A¢|By) > P(A;). Eells and Sober (1983), as already mentioned,
showed that a Markov condition is sufficient to guarantee transitivity of
prima facie causes, as just defined. To facilitate comparison with their
proof 1 use the same letters for causes as they do: C» is a prima facie
cause of Fy,, which is itself a prima facie cause of Fy, with t’ < t' < t.
Hereafter I drop the time subscript since it plays no role in the proof.
As for other notation, juxtaposition of letters standing for events denotes
intersection and a bar over such a letter denotes complementation.

THEOREM 1. Given

(i) P(F|C) > P(F[C),
(i) P(E|F) > P(E|F), _ _ L
(iii) P(E|FC) > P(E|FC) and P(E|FC) > P(E|FC),

with P(FC), P(FC), P(FC),P(FC) > 0.
Then
P(E|C) > P(E|D).

Before giving the proof, note that condition (iii) replaces the Markov con-
dition. Cause C can directly affect the occurrence of E (strict inequality
in (ii1)). Equality in both conjuncts of (iii) is just the first-order Markov
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condition. I label (iii) the principle of remote causes, for in the natural
temporal interpretation, C is remote in time from E rather than contigu-
ous. The name does not say as much as it should, for it is also important
that C act on E in the same positive way that it acts on F'.

Proof. We have at once from the theorem on total probability

(1) P(E|C) = P(E|FC)P(F|C) + P(E|FC)P(F|C)
and
(2) P(E|C) = P(E|FC)P(F|C) + P(E|FC)P(F|C).

From (i) and (ii)
(3) P(E|IF)(P(F|C) - P(FIC))+ P(EIF)(P(F|C) — P(F|C)) > 0.

Using now P(F|C) = 1 — P(F|C) and P(F|C) =1 — P(F|C), we obtain
from (3)

(4) P(EIF)(P(FIC) = P(FIC)) + P(E[F)(P(F|C) - P(F|C)) >0,
and so rearranging (4)

(5) P(E|F)P(F|C)+ P(E[F)P(F|C) > P(E|F)P(F|C) + P(E|F)

P(F[0).
It follows easily from (iii) that
(6) P(E|FC) > P(E|F) > P(E|FC)
and
(7) P(E[FC) > P(E|F) > P(EFC).

From (5)~(7) we infer

(8) P(E|FC)P(F|C) + P(E|FC)P(F|C) > P(E|FC)P(F|C) +
P(E[FC)P(F|[C).

From (1), (2), and (8) we have at once, as desired,
P(E|C) > P(E|C).

It is immediately obvious that the counterexample to transitivity given
earlier by me (Suppes 1970, p. 58) does not satisfy condition (iii). It is
also easy to show that (iii) is sufficient but not necessary for transitivity.

Eells and Sober (1983) also prove a theorem involving several inter-
mediary causes. The event C causes each of the events F; and they in
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turn cause E. Their Markov condition in this case can be generalized in
a similar fashion—see (III) of Theorem 2 below. For comparison, I again
use their notation.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>