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34.4 Bäcklund transformations 538
34.5 The Belinski–Zakharov technique 543
34.6 The Riemann–Hilbert problem 547

34.6.1 Some general remarks 547
34.6.2 The Neugebauer–Meinel rotating disc solution 548

34.7 Other approaches 549
34.8 Einstein–Maxwell fields 550
34.9 The case of two space-like Killing vectors 550

35 Special vector and tensor fields 553
35.1 Space-times that admit constant vector and tensor fields 553

35.1.1 Constant vector fields 553
35.1.2 Constant tensor fields 554

35.2 Complex recurrent, conformally recurrent, recurrent and
symmetric spaces 556
35.2.1 The definitions 556
35.2.2 Space-times of Petrov type D 557
35.2.3 Space-times of type N 557
35.2.4 Space-times of type O 558

35.3 Killing tensors of order two and Killing–Yano tensors 559
35.3.1 The basic definitions 559
35.3.2 First integrals, separability and Killing or Killing–

Yano tensors 560
35.3.3 Theorems on Killing and Killing–Yano tensors in four-

dimensional space-times 561
35.4 Collineations and conformal motions 564

35.4.1 The basic definitions 564
35.4.2 Proper curvature collineations 565
35.4.3 General theorems on conformal motions 565
35.4.4 Non-conformally flat solutions admitting proper

conformal motions 567



xviii Contents

36 Solutions with special subspaces 571
36.1 The basic formulae 571
36.2 Solutions with flat three-dimensional slices 573

36.2.1 Vacuum solutions 573
36.2.2 Perfect fluid and dust solutions 573

36.3 Perfect fluid solutions with conformally flat slices 577
36.4 Solutions with other intrinsic symmetries 579

37 Local isometric embedding of four-dimensional
Riemannian manifolds 580

37.1 The why of embedding 580
37.2 The basic formulae governing embedding 581
37.3 Some theorems on local isometric embedding 583

37.3.1 General theorems 583
37.3.2 Vector and tensor fields and embedding class 584
37.3.3 Groups of motions and embedding class 586

37.4 Exact solutions of embedding class one 587
37.4.1 The Gauss and Codazzi equations and the possible

types of Ωab 587
37.4.2 Conformally flat perfect fluid solutions of embedding

class one 588
37.4.3 Type D perfect fluid solutions of embedding class one 591
37.4.4 Pure radiation field solutions of embedding class one 594

37.5 Exact solutions of embedding class two 596
37.5.1 The Gauss–Codazzi–Ricci equations 596
37.5.2 Vacuum solutions of embedding class two 598
37.5.3 Conformally flat solutions 599

37.6 Exact solutions of embedding class p > 2 603

Part V: Tables 605

38 The interconnections between the main
classification schemes 605

38.1 Introduction 605
38.2 The connection between Petrov types and groups of motions 606
38.3 Tables 609

References 615

Index 690



Preface

When, in 1975, two of the authors (D.K. and H.S.) proposed to change
their field of research back to the subject of exact solutions of Einstein’s
field equations, they of course felt it necessary to make a careful study
of the papers published in the meantime, so as to avoid duplication of
known results. A fairly comprehensive review or book on the exact solu-
tions would have been a great help, but no such book was available. This
prompted them to ask ‘Why not use the preparatory work we have to
do in any case to write such a book?’ After some discussion, they agreed
to go ahead with this idea, and then they looked for coauthors. They
succeeded in finding two.

The first was E.H., a member of the Jena relativity group, who had been
engaged before in exact solutions and was also inclined to return to them.

The second, M.M., became involved by responding to the existing au-
thors’ appeal for information and then (during a visit by H.S. to London)
agreeing to look over the English text. Eventually he agreed to write some
parts of the book.

The quartet’s original optimism somewhat diminished when references
to over 2000 papers had been collected and the magnitude of the task
became all too clear. How could we extract even the most important
information from this mound of literature? How could we avoid constant
rewriting to incorporate new information, which would have made the
job akin to the proverbial painting of the Forth bridge? How could we
decide which topics to include and which to omit? How could we check
the calculations, put the results together in a readable form and still finish
in reasonable time?

We did not feel that we had solved any of these questions in a completely
convincing manner. However, we did manage to produce an outcome,
which was the first edition of this book, Kramer et al. (1980).

xix



xx Preface

In the years since then so many new exact solutions have been published
that the first edition can no longer be used as a reliable guide to the
subject. The authors therefore decided to prepare a new edition. Although
they knew from experience the amount of work to be expected, it took
them longer than they thought and feared. We looked at over 4000 new
papers (the cut-off date for the systematic search for papers is the end
of 1999). In particular so much research had been done in the field of
generation techniques and their applications that the original chapter had
to be almost completely replaced, and C.H. was asked to collaborate on
this, and agreed.

Compared with the first edition, the general arrangement of the ma-
terial has not been changed. But we have added five new chapters, thus
reflecting the developments of the last two decades (Chapters 9, 10, 23, 25
and 36), and some of the old chapters have been substantially rewritten.
Unfortunately, the sheer number of known exact solutions has forced us
to give up the idea of presenting them all in some detail; instead, in many
cases we only give the appropriate references.

As with the first edition, the labour of reading those papers conceiv-
ably relevant to each chapter or section, and then drafting the related
manuscript, was divided. Roughly, D.K., M.M. and C.H. were responsi-
ble for most of the introductory Part I, M.M., D.K. and H.S. dealt with
groups (Part II), H.S., D.K. and E.H. with algebraically special solutions
(Part III) and H.S. and C.H. with Part IV (special methods) and Part V
(tables). Each draft was then criticized by the other authors, so that its
writer could not be held wholly responsible for any errors or omissions.
Since we hope to maintain up-to-date information, we shall be glad to
hear from any reader who detects such errors or omissions; we shall be
pleased to answer as best we can any requests for further information.
M.M. wishes to record that any infelicities remaining in the English arose
because the generally good standard of his colleagues’ English lulled him
into a false sense of security.

This book could not have been written, of course, without the efforts of
the many scientists whose work is recorded here, and especially the many
contemporaries who sent preprints, references and advice or informed us
of mistakes or omissions in the first edition of this book. More immedi-
ately we have gratefully to acknowledge the help of the students in Jena,
and in particular of S. Falkenberg, who installed our electronic files, of
A. Koutras, who wrote many of the old chapters in LaTeX and simulta-
neously checked many of the solutions, and of the financial support of the
Max-Planck-Group in Jena and the Friedrich-Schiller-Universität Jena.
Last but not least, we have to thank our wives, families and colleagues



Preface xxi

for tolerating our incessant brooding and discussions and our obsession
with the book.

Hans Stephani
Jena

Dietrich Kramer
Jena

Malcolm MacCallum
London

Cornelius Hoenselaers
Loughborough

Eduard Herlt
Jena





List of Tables

3.1 Examples of spinor equivalents, defined as in (3.70). 42

4.1 The Petrov types 50
4.2 Normal forms of the Weyl tensor, and Petrov types 51
4.3 The roots of the algebraic equation (4.18) and their mul-

tiplicities. 55

5.1 The algebraic types of the Ricci tensor 59
5.2 Invariance groups of the Ricci tensor types 60

8.1 Enumeration of the Bianchi types 96
8.2 Killing vectors and reciprocal group generators by Bianchi

type 107

9.1 Maximum number of derivatives required to characterize
a metric locally 121

11.1 Metrics with isometries listed by orbit and group action,
and where to find them 163

11.2 Solutions with proper homothety groups Hr, r > 4 165
11.3 Solutions with proper homothety groups H4 on V4 166
11.4 Solutions with proper homothety groups on V3 168

12.1 Homogeneous solutions 181

13.1 The number of essential parameters, by Bianchi type, in
general solutions for vacuum and for perfect fluids with
given equation of state 189

xxiii



xxiv List of Tables

13.2 Subgroups G3 on V3 occurring in metrics with multiply-
transitive groups 208

13.3 Solutions given in this book with a maximal G4 on V3 208
13.4 Solutions given explicitly in this book with a maximal G3

on V3 209

15.1 The vacuum, Einstein–Maxwell and pure radiation solu-
tions with G3 on S2 (Y,aY ,a > 0) 231

16.1 Key assumptions of some static spherically-symmetric per-
fect fluid solutions in isotropic coordinates 251

16.2 Key assumptions of some static spherically-symmetric per-
fect fluid solutions in canonical coordinates 252

16.3 Some subclasses of the class F = (ax2+2bx + c)−5/2 of
solutions 257

18.1 The complex potentials E and Φ for some physical prob-
lems 281

18.2 The degenerate static vacuum solutions 285

21.1 Stationary axisymmetric Einstein–Maxwell fields 325

24.1 Metrics ds2 = x−1/2(dx2+dy2)−2xdu [dv + M(x, y, u)du]
with more than one symmetry 382

24.2 Symmetry classes of vacuum pp-waves 385

26.1 Subcases of the algebraically special (not conformally flat)
solutions 408

28.1 The Petrov types of the Robinson–Trautman vacuum so-
lutions 424

29.1 The possible types of two-variable twisting vacuum met-
rics 443

29.2 Twisting algebraically special vacuum solutions 444

32.1 Kerr–Schild space-times 492

34.1 The subspaces of the potential space for stationary
Einstein–Maxwell fields, and the corresponding subgroups
of SU(2, 1) 523

34.2 Generation by potential space transformations 530
34.3 Applications of the HKX method 537
34.4 Applications of the Belinski–Zakharov method 546



List of Tables xxv

37.1 Upper limits for the embedding class p of various metrics
admitting groups 586

37.2 Embedding class one solutions 595
37.3 Metrics known to be of embedding class two 603

38.1 The algebraically special, diverging vacuum solutions of
maximum mobility 607

38.2 Robinson–Trautman vacuum solutions admitting two or
more Killing vectors 608

38.3 Petrov types versus groups on orbits V4 609
38.4 Petrov types versus groups on non-null orbits V3 610
38.5 Petrov types versus groups on non-null orbits V2 and V1 610
38.6 Energy-momentum tensors versus groups on orbits V4

(with LξFab = 0 for the Maxwell field) 611
38.7 Energy-momentum tensors versus groups on non-null or-

bits V3 611
38.8 Energy-momentum tensors versus groups on non-null or-

bits V2 and V1 612
38.9 Algebraically special vacuum, Einstein–Maxwell and pure

radiation fields (non-aligned or with κκ + σσ �= 0) 613
38.10 Algebraically special (non-vacuum) Einstein–Maxwell and

pure radiation fields, aligned and with κκ + σσ = 0. 614





Notation

All symbols are explained in the text. Here we list only some important
conventions which are frequently used throughout the book.

Complex conjugates and constants

Complex conjugation is denoted by a bar over the symbol. The abbrevi-
ation const is used for ‘constant’.

Indices

Small Latin indices run, in an n-dimensional Riemannian space Vn, from
1 to n, and in space-time V4 from 1 to 4. When a general basis {ea} or its
dual {ωa} is in use, indices from the first part of the alphabet (a, b, . . . , h)
will normally be tetrad indices and i, j, . . . are reserved for a coordinate
basis {∂/∂xi} or its dual {dxi}. For a vector v and a l-form σ we write
v = vaea = vi∂/∂xi, σ = σaω

a = σidxi. Small Greek indices run from
1 to 3, if not otherwise stated. Capital Latin indices are either spinor
indices (A, B = 1, 2) or indices in group space (A, B = 1, . . . , r), or they
label the coordinates in a Riemannian 2-space V2 (M, N = 1, 2).

Symmetrization and antisymmetrization of index pairs are indicated by
round and square brackets respectively; thus

v(ab) ≡ 1
2(vab + vba), v[ab] ≡ 1

2(vab − vba).

The Kronecker delta, δab , has the value 1 if a = b and zero otherwise.

Metric and tetrads

Line element in terms of dual basis {ωa}: ds2 = gabω
aωb.

Signature of space-time metric: (+ + +−).
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Commutation coefficients: Dc
ab; [ea, eb] = Dc

abec.
(Complex) null tetrad: {ea} = (m, m, l, k), gab = 2m(amb) − 2k(alb),

ds2 = 2ω1ω2 − 2ω3ω4.
Orthonormal basis: {Ea}.
Projection tensor: hab ≡ gab + uaub, uau

a = −1.

Bivectors

Levi-Civita tensor in four dimensions: εabcd; εabcdm
amblckd = i.

in two dimensions: εab = −εba, ε12 = 1
Dual bivector: X̃ab ≡ 1

2εabcdX
cd.

(Complex) self-dual bivector: X∗
ab ≡ Xab + iX̃ab.

Basis of self-dual bivectors: Uab ≡ 2m[alb], Vab ≡ 2k[amb],
Wab ≡ 2m[amb] − 2k[alb].

Derivatives

Partial derivative: comma in front of index or coordinate, e.g.

f,i ≡ ∂f/∂xi ≡ ∂if, f,ζ ≡ ∂f/∂ζ.

Directional derivative: denoted by stroke or comma, f|a ≡ f,a ≡ ea(f);
if followed by a numerical (tetrad) index, we prefer the stroke, e.g.
f|4 = f,ik

i. Directional derivatives with respect to the null tetrad
(m, m, l, k) are symbolized by δf = f|1, δf = f|2, ∆f = f|3, Df = f|4.

Covariant derivative: ∇; in component calculus, semicolon. (Sometimes
other symbols are used to indicate that in V4 a metric different from
gab is used, e.g. hab||c = 0, γab:c = 0.)

Lie derivative of a tensor T with respect to a vector v: LvT .
Exterior derivative: d.

When a dot is used to denote a derivative without definition, e.g. Q̇,
it means differentiation with respect to the time coordinate in use; a
prime used similarly, e.g. Q′, refers either to the unique essential space
coordinate in the problem or to the single argument of a function.

Connection and curvature

Connection coefficients: Γa
bc, va;c = va,c + Γa

bcv
b.

Connection 1-forms: Γ a
b ≡ Γa

bcω
c, dωa = −Γ a

b ∧ ωb.
Riemann tensor: Rd

abc, 2va;[bc] = vdR
d
abc.
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Curvature 2-forms: Θa
b ≡ 1

2R
a
bcdω

c ∧ ωd = dΓ a
b + Γ a

c ∧ Γ c
b.

Ricci tensor, Einstein tensor, and scalar curvature:

Rab ≡ Rc
acb, Gab ≡ Rab − 1

2Rgab, R ≡ Ra
a.

Weyl tensor in V4:

Cabcd ≡ Rabcd + 1
3Rga[cgd]b − ga[cRd]b + gb[cRd]a.

Null tetrad components of the Weyl tensor:

Ψ0 ≡ Cabcdk
ambkcmd, Ψ1 ≡ Cabcdk

albkcmd,

Ψ2 ≡ Cabcdk
ambmcld,

Ψ3 ≡ Cabcdk
albmcld, Ψ4 ≡ Cabcdm

albmcld.

Metric of a 2-space of constant curvature:

dσ2 = dx2 ± Σ2(x, ε)dy2,

Σ(x, ε) = sinx, x, sinhx resp. when ε = 1, 0 or −1.

Gaussian curvature: K.

Physical fields

Energy-momentum tensor: Tab, Tabu
aub ≥ 0 if uau

a = −1.
Electromagnetic field: Maxwell tensor Fab, Tab = F ∗c

a F
∗
bc/2.

Null tetrad components of Fab:

Φ0 ≡ Fabk
amb, Φ1 ≡ 1

2Fab(k
alb + mamb), Φ2 = Fabm

alb.

Perfect fluid: pressure p, energy density µ, 4-velocity u,

Tab = (µ + p)uaub + pgab.

Cosmological constant: Λ.
Gravitational constant: κ0.
Einstein’s field equations: Rab − 1

2Rgab + Λgab = κ0Tab.

Symmetries

Group of motions (r-dim.), Gr; isotropy group (s-dim.), Is;
homothety group (q-dim.), Hq.

Killing vectors: ξ, η, ζ, or ξA, A = 1, . . . , r
Killing equation: (Lξg)ab = ξa;b + ξb;a = 0.
Structure constants: CC

AB; [ξA, ξB] = CC
ABξC .

Orbits (m-dim.) of Gr or Hq: Sm (spacelike), Tm (timelike), Nm (null).





1
Introduction

1.1 What are exact solutions, and why study them?

The theories of modern physics generally involve a mathematical model,
defined by a certain set of differential equations, and supplemented by a
set of rules for translating the mathematical results into meaningful state-
ments about the physical world. In the case of theories of gravitation, it
is generally accepted that the most successful is Einstein’s theory of gen-
eral relativity. Here the differential equations consist of purely geometric
requirements imposed by the idea that space and time can be represented
by a Riemannian (Lorentzian) manifold, together with the description of
the interaction of matter and gravitation contained in Einstein’s famous
field equations

Rab − 1
2Rgab + Λgab = κ0Tab. (1.1)

(The full definitions of the quantities used here appear later in the book.)
This book will be concerned only with Einstein’s theory. We do not, of
course, set out to discuss all aspects of general relativity. For the basic
problem of understanding the fundamental concepts we refer the reader
to other texts.

For any physical theory, there is first the purely mathematical problem
of analysing, as far as possible, the set of differential equations and of
finding as many exact solutions, or as complete a general solution, as
possible. Next comes the mathematical and physical interpretation of the
solutions thus obtained; in the case of general relativity this requires global
analysis and topological methods rather than just the purely local solution
of the differential equations. In the case of gravity theories, because they
deal with the most universal of physical interactions, one has an additional
class of problems concerning the influence of the gravitational field on

1



2 1 Introduction

other fields and matter; these are often studied by working within a fixed
gravitational field, usually an exact solution.

This book deals primarily with the solutions of the Einstein equations,
(1.1), and only tangentially with the other subjects. The strongest reason
for excluding the omitted topics is that each would fill (and some do fill)
another book; we do, of course, give some references to the relevant lit-
erature. Unfortunately, one cannot say that the study of exact solutions
has always maintained good contact with work on more directly physical
problems. Back in 1975, Kinnersley wrote “Most of the known exact solu-
tions describe situations which are frankly unphysical, and these do have
a tendency to distract attention from the more useful ones. But the situa-
tion is also partially the fault of those of us who work in this field. We toss
in null currents, macroscopic neutrino fields and tachyons for the sake of
greater ‘generality’; we seem to take delight at the invention of confusing
anti-intuitive notation; and when all is done we leave our newborn metric
wobbling on its vierbein without any visible means of interpretation.” Not
much has changed since then.

In defence of work on exact solutions, it may be pointed out that certain
solutions have played very important roles in the discussion of physical
problems. Obvious examples are the Schwarzschild and Kerr solutions for
black holes, the Friedmann solutions for cosmology, and the plane wave
solutions which resolved some of the controversies about the existence of
gravitational radiation. It should also be noted that because general rel-
ativity is a highly non-linear theory, it is not always easy to understand
what qualitative features solutions might possess, and here the exact so-
lutions, including many such as the Taub–NUT solutions which may be
thought unphysical, have proved an invaluable guide. Though the fact is
not always appreciated, the non-linearities also mean that perturbation
schemes in general relativity can run into hidden dangers (see e.g. Ehlers
et al. (1976)). Exact solutions which can be compared with approximate
or numerical results are very useful in checking the validity of approxima-
tion techniques and programs, see Centrella et al. (1986).

In addition to the above reasons for devoting this book to the classi-
fication and construction of exact solutions, one may note that although
much is known, it is often not generally known, because of the plethora
of journals, languages and mathematical notations in which it has ap-
peared. We hope that one beneficial effect of our efforts will be to save
colleagues from wasting their time rediscovering known results; in partic-
ular we hope our attempt to characterize the known solutions invariantly
will help readers to identify any new examples that arise.

One surprise for the reader may lie in the enormous number of known
exact solutions. Those who do not work in the field often suppose that the
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intractability of the full Einstein equations means that very few solutions
are known. In a certain sense this is true: we know relatively few exact
solutions for real physical problems. In most solutions, for example, there
is no complete description of the relation of the field to sources. Problems
which are without an exact solution include the two-body problem, the
realistic description of our inhomogeneous universe, the gravitational field
of a stationary rotating star and the generation and propagation of grav-
itational radiation from a realistic bounded source. There are, on the
other hand, some problems where the known exact solutions may be
the unique answer, for instance, the Kerr and Schwarzschild solutions
for the final collapsed state of massive bodies.

Any metric whatsoever is a ‘solution’ of (1.1) if no restriction is imposed
on the energy-momentum tensor, since (1.1) then becomes just a definition
of Tab; so we must first make some assumptions about Tab. Beyond this
we may proceed, for example, by imposing symmetry conditions on the
metric, by restricting the algebraic structure of the Riemann tensor, by
adding field equations for the matter variables or by imposing initial and
boundary conditions. The exact solutions known have all been obtained
by making some such restrictions. We have used the term ‘exact solution’
without a definition, and we do not intend to provide one. Clearly a met-
ric would be called an exact solution if its components could be given, in
suitable coordinates, in terms of the well-known analytic functions (poly-
nomials, trigonometric funstions, hyperbolic functions and so on). It is
then hard to find grounds for excluding functions defined only by (linear)
differential equations. Thus ‘exact solution’ has a less clear meaning than
one might like, although it conveys the impression that in some sense the
properties of the metric are fully known; no generally-agreed precise def-
inition exists. We have proceeded rather on the basis that what we chose
to include was, by definition, an exact solution.

1.2 The development of the subject

In the first few years (or decades) of research in general relativity, only a
rather small number of exact solutions were discussed. These mostly arose
from highly idealized physical problems, and had very high symmetry. As
examples, one may cite the well-known spherically-symmetric solutions
of Schwarzschild, Reissner and Nordström, Tolman and Friedmann (this
last using the spatially homogeneous metric form now associated with the
names of Robertson and Walker), the axisymmetric static electromagnetic
and vacuum solutions of Weyl, and the plane wave metrics. Although such
a limited range of solutions was studied, we must, in fairness, point out
that it includes nearly all the exact solutions which are of importance
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in physical applications: perhaps the only one of comparable importance
which was discovered after World War II is the Kerr solution.

In the early period there were comparatively few people actively work-
ing on general relativity, and it seems to us that the general belief at that
time was that exact solutions would be of little importance, except per-
haps as cosmological and stellar models, because of the extreme weakness
of the relativistic corrections to Newtonian gravity. Of course, a wide va-
riety of physical problems were attacked, but in a large number of cases
they were treated only by some approximation scheme, especially the
weak-field, slow-motion approximation.

Moreover, many of the techniques now in common use were either un-
known or at least unknown to most relativists. The first to become pop-
ular was the use of groups of motions, especially in the construction of
cosmologies more general than Friedmann’s. The next, which was in part
motivated by the study of gravitational radiation, was the algebraic clas-
sification of the Weyl tensor into Petrov types and the understanding of
the properties of algebraically special metrics. Both these developments
led in a natural way to the use of invariantly-defined tetrad bases, rather
than coordinate components. The null tetrad methods, and some ideas
from the theory of group representations and algebraic geometry, gave
rise to the spinor techniques, and equivalent methods, now usually em-
ployed in the form given by Newman and Penrose. The most recent of
these major developments was the advent of the generating techniques,
which were just being developed at the time of our first edition (Kramer
et al. 1980), and which we now describe fully.

Using these methods, it was possible to obtain many new solutions, and
this growth is still continuing.

1.3 The contents and arrangement of this book

Naturally, we begin by introducing differential geometry (Chapter 2) and
Riemannian geometry (Chapter 3). We do not provide a formal textbook
of these subjects; our aim is to give just the notation, computational
methods and (usually without proof) standard results we need for later
chapters. After this point, the way ahead becomes more debatable.

There are (at least) four schemes for classification of the known exact so-
lutions which could be regarded as having more or less equal importance;
these four are the algebraic classification of conformal curvature (Petrov
types), the algebraic classification of the Ricci tensor (Plebański or Segre
types) and the physical characterization of the energy-momentum ten-
sor, the existence and structure of preferred vector fields, and the groups
of symmetry ‘admitted by’ (i.e. which exist for) the metric (isometries
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and homotheties). We have devoted a chapter (respectively, Chapters 4,
5, 6 and 8) to each of these, introducing the terminology and methods
used later and some general theorems. Among these chapters we have in-
terpolated one (Chapter 7) which gives the Newman–Penrose formalism;
its position is due to the fact that this formalism can be applied immedi-
ately to elucidating some of the relationships between the considerations
in the preceding three chapters. With more solutions being known, un-
witting rediscoveries happened more frequently; so methods of invariant
characterization became important which we discuss in Chapter 9. We
close Part I with a presentation of the generation methods which became
so fruitful in the 1980s. This is again one of the subjects which, ideally,
warrants a book of its own and thus we had to be very selective in the
choice and manner of the material presented.

The four-dimensional presentation of the solutions which would arise
from the classification schemes outlined above may be acceptable to rela-
tivists but is impractical for authors. We could have worked through each
classification in turn, but this would have been lengthy and repetitive (as
it is, the reader will find certain solutions recurring in various disguises).
We have therefore chosen to give pride of place to the two schemes which
seem to have had the widest use in the discovery and construction of
new solutions, namely symmetry groups (Part II of the book) and Petrov
types (Part III). The other main classifications have been used in subdi-
viding the various classes of solutions discussed in Parts II and III, and
they are covered by the tables in Part V. The application of the genera-
tion techniques and some other ways of classifying and constructing exact
solutions are presented in Part IV.

The specification of the energy-momentum tensor played a very impor-
tant role because we decided at an early stage that it would be impossible
to provide a comprehensive survey of all energy-momentum tensors that
have ever been considered. We therefore restricted ourselves to the fol-
lowing energy-momentum tensors: vacuum, electromagnetic fields, pure
radiation, dust and perfect fluids. (The term ‘pure radiation’ is used here
for an energy-momentum tensor representing a situation in which all the
energy is transported in one direction with the speed of light: such ten-
sors are also referred to in the literature as null fields, null fluids and null
dust.) Combinations of these, and matching of solutions with equal or
different energy-momentum tensors (e.g. the Schwarzschild vacuoli in a
Friedmann universe) are in general not considered, and the cosmological
constant Λ, although sometimes introduced, is not treated systematically
throughout.

These limitations on the scope of our work may be disappointing to
some, especially those working on solutions containing charged perfect
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fluids, scalar, Dirac and neutrino fields, or solid elastic bodies. They
were made not only because some limits on the task we set ourselves
were necessary, but also because most of the known solutions are for the
energy-momentum tensors listed and because it is possible to give a fairly
full systematic treatment for these cases. One may also note that un-
less additional field equations for the additional variables are introduced,
it is easier to find solutions for more complex energy-momentum tensor
forms than for simpler ones: indeed in extreme cases there may be no
equations to solve at all, the Einstein equations instead becoming merely
definitions of the energy-momentum from a metric ansatz. Ultimately, of
course, the choice is a matter of taste.

The arrangement within Part II is outlined more fully in §11.1. Here we
remark only that we treated first non-null and then null group orbits (as
defined in Chapter 8), arranging each in order of decreasing dimension of
the orbit and thereafter (usually) in decreasing order of dimension of the
group. Certain special cases of physical or mathematical interest were sep-
arated out of this orderly progression and given chapters of their own, for
example, spatially-homogeneous cosmologies, spherically-symmetric solu-
tions, colliding plane waves and the inhomogeneous fluid solutions with
symmetries. Within each chapter we tried to give first the differential
geometric results (i.e. general forms of the metric and curvature) and
then the actual solutions for each type of energy-momentum in turn; this
arrangement is followed in Parts III and IV also.

In Part III we have given a rather detailed account of the well-developed
theory that is available for algebraically special solutions for vacuum, elec-
tromagnetic and pure radiation fields. Only a few classes, mostly very spe-
cial cases, of algebraically special perfect-fluid solutions have been thor-
oughly discussed in the literature: a short review of these classes is given
in Chapter 33. Quite a few of the algebraically special solutions also admit
groups of motions. Where this is known (and, as far as we are aware, it
has not been systematically studied for all cases), it is of course indicated
in the text and in the tables.

Part IV, the last of the parts treating solutions in detail, covers solutions
found by the generation techniques developed by various authors since
1980 (although most of these rely on the existence of a group of motions,
and in some sense therefore belong in Part II). There are many such
techniques in use and they could not all be discussed in full: our choice
of what to present in detail and what to mention only as a reference
simply reflects our personal tastes and experiences. This part also gives
some discussion of the classification of space-times with special vector and
tensor fields and solutions found by embedding or the study of metrics
with special subspaces.
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The weight of material, even with all the limitations described above,
made it necessary to omit many proofs and details and give only the
necessary references.

1.4 Using this book as a catalogue

This book has not been written simply as a catalogue. Nevertheless, we
intended that it should be possible for the book to be used for this purpose.
In arranging the information here, we have assumed that a reader who
wishes to find (or, at least, search for) a solution will know the original
author (if the reader is aware the solution is not new) or know some of
its invariant properties.

If the original author1 is known, the reader should turn to the alphabet-
ically-organized reference list. He or she should then be able to identify the
relevant paper(s) of that author, since the titles, and, of course, journals
and dates, are given in full. Following each reference is a list of all the
places in the book where it is cited.

A reader who knows the (maximal) group of motions can find the rele-
vant chapter in Part II by consulting the contents list or the tables. If the
reader knows the Petrov type, he or she can again consult the contents
list or the tables by Petrov type; if only the energy-momentum tensor
is known, the reader can still consult the relevant tables. If none of this
information is known, he or she can turn to Part IV, if one of the special
methods described there has been used. If still in doubt, the whole book
will have to be read.

If the solution is known (and not accidentally omitted) it will in many
cases be given in full, possibly only in the sense of appearing contained in
a more general form for a whole class of solutions: some solutions of great
complexity or (to us) lesser importance have been given only in the sense
of a reference to the literature. Each solution may, of course, be found
in a great variety of coordinate forms and be characterized invariantly
in several ways. We have tried to eliminate duplications, i.e. to identify
those solutions that are really the same but appear in the literature as
separate, and we give cross-references between sections where possible.
The solutions are usually given in coordinates adapted to some invari-
ant properties, and it should therefore be feasible (if non-trivial) for the
reader to transform to any other coordinate system he or she has dis-
covered (see also Chapter 9). The many solutions obtained by generating
techniques are for the most part only tabulated and not given explicitly,

1 There is a potential problem here if the paper known to the reader is an unwitting
re-discovery, since for brevity we do not cite such works.
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since it is in principle possible to generate infinitely many such solutions
by complicated but direct calculations.

Solutions that are neither given nor quoted are either unknown to us or
accidentally omitted, and in either case the authors would be interested
to hear about them. (We should perhaps note here that not all papers
containing frequently-rediscovered solutions have been cited: in such a
case only the earliest papers, and those rediscoveries with some special
importance, have been given. Moreover, if a general class of solutions is
known, rediscoveries of special cases belonging to this class have been
mentioned only occasionally. We have also not in general commented,
except by omission, on papers where we detected errors, though in a few
cases where a paper contains some correct and some wrong results we
have indicated that.)

We have checked most of the solutions given in the book. This was done
by machine and by hand, but sometimes we may have simply repeated
the authors’ errors. It is not explicitly stated where we did not check
solutions.

In addition to references within the text, cited by author and year,
we have sometimes put at the ends of sections some references to paral-
lel methods, or to generalizations, or to applications. We would draw
the reader’s attention to some books of similar character which have
appeared since the first edition of this book was published and which
complement and supplement this one. Krasiński (1997) has extensively
surveyed those solutions which contain as special cases the Robertson–
Walker cosmologies (for which see Chapter 14), without the restric-
tions on energy-momentum content which we impose. Griffiths (1991)
gives an extensive study of the colliding wave solutions discussed here in
Chapter 25, Wainwright and Ellis (1997) similarly discusses spatially-
homogeneous and some other cosmologies (see Chapters 14 and 23),
Bičák (2000) discusses selected exact solutions and their history, and
Belinski and Verdaguer (2001) reviews solitonic solutions obtainable by
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J.K. Kowalczyński, A. Krasiński, K. Lake, D. Lorenz, M. Mars, J.D.
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Part I
General methods

2
Differential geometry without a metric

2.1 Introduction

The concept of a tensor is often based on the law of transformation of
the components under coordinate transformations, so that coordinates
are explicitly used from the beginning. This calculus provides adequate
methods for many situations, but other techniques are sometimes more
effective. In the modern literature on exact solutions coordinatefree geo-
metric concepts, such as forms and exterior differentiation, are frequently
used: the underlying mathematical structure often becomes more evident
when expressed in coordinatefree terms.

Hence this chapter will present a brief survey of some of the basic ideas
of differential geometry. Most of these are independent of the introduction
of a metric, although, of course, this is of fundamental importance in the
space-times of general relativity; the discussion of manifolds with metrics
will therefore be deferred until the next chapter. Here we shall introduce
vectors, tensors of arbitrary rank, p-forms, exterior differentiation and Lie
differentiation, all of which follow naturally from the definition of a differ-
entiable manifold. We then consider an additional structure, a covariant
derivative, and its associated curvature; even this does not necessarily in-
volve a metric. The absence of any metric will, however, mean that it will
not be possible to convert 1-forms to vectors, or vice versa.

9
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Since we are primarily concerned with specific applications, we shall em-
phasize the rules of manipulation and calculation in differential geometry.
We do not attempt to provide a substitute for standard texts on the sub-
ject, e.g. Eisenhart (1927), Schouten (1954), Flanders (1963), Sternberg
(1964), Kobayashi and Nomizu (1969), Schutz (1980), Nakahara (1990)
and Choquet-Bruhat et al. (1991) to which the reader is referred for fuller
information and for the proofs of many of the theorems. Useful introduc-
tions can also be found in many modern texts on relativity.

For the benefit of those familiar with the traditional approach to tensor
calculus, certain formulae are displayed both in coordinatefree form and
in the usual component formalism.

2.2 Differentiable manifolds

Differentiable manifolds are the most basic structures in differential ge-
ometry. Intuitively, an (n-dimensional) manifold is a space M such that
any point p ∈ M has a neighbourhood U ⊂ M which is homeomorphic
to the interior of the (n-dimensional) unit ball. To give a mathematically
precise definition of a differentiable manifold we need to introduce some
additional terminology.

A chart (U ,Φ) in M consists of a subset U of M together with a one-to-
one map Φ from U onto the n-dimensional Euclidean space En or an open
subset of En; Φ assigns to every point p ∈ U an n-tuple of real variables,
the local coordinates (x1, . . . , xn). As an aid in later calculations, we shall
sometimes use pairs of complex conjugate coordinates instead of pairs
of real coordinates, but we shall not consider generalizations to complex
manifolds (for which see e.g. Flaherty (1980) and Penrose and Rindler
(1984, 1986)).

Two charts (U ,Φ), (U ′,Φ′) are said to be compatible if the combined
map Φ′ ◦ Φ−1 on the image Φ(U ∪ U ′) of the overlap of U and U ′ is
a homeomorphism (i.e. continuous, one-to-one, and having a continuous
inverse): see Fig. 2.1.

An atlas on M is a collection of compatible charts (Uα,Φα) such that
every point of M lies in at least one chart neighbourhood Uα. In most
cases, it is impossible to cover the manifold with a single chart (an example
which cannot be so covered is the n-dimensional sphere, n > 0).

An n-dimensional (topological) manifold consists of a spaceM together
with an atlas on M. It is a (Ck or analytic) differentiable manifold M
if the maps Φ

′ ◦ Φ−1 relating different charts are not just continuous
but differentiable (respectively, Ck or analytic). Then the coordinates are
related by n differentiable (Ck, analytic) functions, with non-vanishing
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M
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Φ
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Φ−1

Fig. 2.1. Two compatible charts of a differentiable manifold

Jacobian at each point of the overlap:

xi
′

= xi
′
(xj), det(∂xi

′
/∂xj) �= 0. (2.1)

Definitions of manifolds often include additional topological restrictions,
such as paracompactness and Hausdorffness, and these are indeed essen-
tial for the rigorous proof of some of the results we state, as is the precise
degree of smoothness, i.e. the value of k. For brevity, we shall omit any
consideration of these questions, which are of course fully discussed in the
literature cited earlier.

A differentiable manifold M is called orientable if there exists an atlas
such that the Jacobian (2.1) is positive throughout the overlap of any pair
of charts.

If M and N are manifolds, of dimensions m and n, respectively, the
(m + n)-dimensional product M×N can be defined in a natural way.

A map Φ : M → N is said to be differentiable if the coordinates
(y1, . . . , yn) on V ⊂ N are differentiable functions of the coordinates
(x1, . . . , xn) of the corresponding points in U ⊂M where Φ maps (a part
of) the neighbourhood U into the neighbourhood V. If Φ(M) �= N ,
Φ(M) is called a submanifold of N : submanifolds P ⊂ N of dimension
p < n can also be defined by the existence of charts (V,Ψ) in N such
that P ∩ V ⊂ R

p × 0 where the 0 is the zero of R
n−p. A submanifold of

dimension n− 1 will be called a hypersurface.
A smooth curve γ(t) in M is defined by a differentiable map of an

interval of the real line into M, γ(t) : −ε < t < ε→M (or sometimes by
a similar map of a closed interval [ε, ε]). A differentiable map Φ : M→N
and its action on a curve are illustrated in Fig. 2.2.



12 2 Differential geometry without a metric

n1y , . . . , y x , . . . , x 1 )n )(

Φ
o
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Φ(γ(t))
pΦ(   )

N (

Fig. 2.2. The map of a smooth curve γ(t) to Φ(γ(t))

2.3 Tangent vectors

In general a vector cannot be considered as an arrow connecting two
points of the manifold. To get a consistent generalization of the concept
of vectors in En, one identifies vectors on M with tangent vectors. A
tangent vector v at p is an operator (linear functional) which assigns to
each differentiable function f on M a real number v(f). This operator
satisfies the axioms

(i) v(f + h) = v(f) + v(h),
(ii) v(fh) = hv(f) + fv(h),

(iii) v(cf) = cv(f), c = const.
(2.2)

It follows from these axioms that v(c) = 0 for any constant function c.
The definition (2.2) is independent of the choice of coordinates. A tangent
vector is just a directional derivative along a curve γ(t) through p: expand-
ing any function f in a Taylor series at p, and using the axioms (2.2), one
can easily show that any tangent vector v at p can be written as

v = vi ∂/∂xi. (2.3)

The real coefficients vi are the components of v at p with respect to the
local coordinate system (x1, . . . , xn) in a neighbourhood of p. According
to (2.3), the directional derivatives along the coordinate lines at p form
a basis of an n-dimensional vector space the elements of which are the
tangent vectors at p. This space is called the tangent space Tp. The basis
{∂/∂xi} is called a coordinate basis or holonomic frame.

A general basis {ea} is formed by n linearly independent vectors ea;
any vector v ∈ Tp is a linear combination of these basis vectors, i.e.

v = vaea. (2.4)

The action of a basis vector ea on a function f is denoted by the symbol
f|a ≡ ea(f). In a coordinate basis we use a comma in place of a solidus,
f,i ≡ ∂f/∂xi. A non-singular linear transformation of the basis {ea}
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induces a change of the components va of the vector v,

ea′ = La′
beb, va

′
= La′

bv
b, La′

bLa′
c = δcb . (2.5)

A coordinate basis {∂/∂xi} represents a special choice of {ea}. In the older
literature on general relativity the components with respect to coordinate
bases were preferred for actual computations. However, for many purposes
it is more convenient to use a general basis, often called a frame or n-bein
(in four dimensions, a tetrad or vierbein), though when there is a metric,
as in Chapter 3, these terms may be reserved for the cases with constant
lengths. Well-known examples are the Petrov classification (Chapter 4)
and the Newman–Penrose formalism (Chapter 7).

The set of all tangent spaces at points p in M forms the tangent bundle
T (M) of M. To make this a differentiable manifold, the charts on T (M)
can be defined by extending the charts (U, Φ) of M to charts (U×R

n, Φ×
Id) where Id is the identity map on R

n, i.e. we can use the components
(2.3) to extend coordinates xi on M to coordinates (xi, vj) on T (M). The
tangent bundle thus has dimension 2n. If M is a Ck manifold, T (M) is
Ck−1.

We can construct a vector field v(p) on M by assigning to each point
p ∈ M a tangent vector v ∈ Tp so that the components vi are differ-
entiable functions of the local coordinates. Thus a vector field can be
regarded as a smooth map M → T (M) such that each point p → v(p),
and is then referred to as a section of the tangent bundle.

From the identification of vectors with directional derivatives one con-
cludes that in general the result of the successive application of two vec-
tors to a function depends on the order in which the operators are ap-
plied. The commutator [u,v] of two vector fields u and v is defined by
[u,v](f) = u(v(f))− v(u(f)). For a given basis {ea}, the commutators

[ea, eb] = Dc
abec, Dc

ab = −Dc
ba, (2.6)

define the commutator coefficients Dc
ab, which obviously vanish for a coor-

dinate basis: [∂/∂xi, ∂/∂xj ] = 0. Commutators satisfy the Jacobi identity

[u, [v,w]] + [v, [w,u]] + [w, [u,v]] = 0 (2.7)

for arbitrary u, v,w, from which one infers, for constant Dc
ab, the identity

Df
d[aD

d
bc] = 0. (2.8)

2.4 One-forms

By definition, a 1-form (Pfaffian form) σ maps a vector v into a real
number, the contraction, denoted by the symbol 〈σ,v〉 or v�σ, and this
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mapping is linear:

〈σ, au+ bv〉 = a〈σ,u〉+ b〈σ,v〉 (2.9)

for real a, b, and u, v ∈ Tp. Linear combinations of 1-forms σ, τ are
defined by the rule

〈aσ + bτ ,v〉 = a〈σ,v〉+ b〈τ ,v〉 (2.10)

for real a, b. The n linearly independent 1-forms ωa which are uniquely
determined by

〈ωa, eb〉 = δab (2.11)

form a basis {ωa} of the dual space T ∗
p of the tangent space Tp. This basis

{ωa} is said to be dual to the basis {eb} of Tp. Any 1-form σ ∈ T ∗
p is a

linear combination of the basis 1-forms ωa;

σ = σaω
a. (2.12)

For any σ ∈ T ∗
p , v ∈ Tp the contraction 〈σ,v〉 can be expressed in terms

of the components σa, va of σ, v with respect to the bases {ωa}, {ea} by

〈σ,v〉 = σav
a. (2.13)

The differential df of an arbitrary function f is a 1-form defined by the
property

〈df,v〉 = v(f) ≡ vaf|a. (2.14)

Specializing this definition to the functions f = x1, . . . , xn one obtains
the relation

〈dxi, ∂/∂xj〉 = δij , (2.15)

indicating that the basis {dxi} of T ∗
p is dual to the coordinate basis

{∂/∂xi} of Tp. Any 1-form σ ∈ T ∗
p can be written with respect to the

basis {dxi} as
σ = σidxi. (2.16)

In local coordinates, the differential df has the usual form

df = f|aωa = f,idxi. (2.17)

From 1-forms at points in M we can build the 1-form bundle T ∗(M)
of M, also called the cotangent bundle of M, and define fields of 1-forms
on M, analogously to the constructions for vectors, the components σi
of a 1-form field being differentiable functions of the local coordinates.
In tensor calculus the components σi are often called ‘components of a
covariant vector’.
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2.5 Tensors

A tensor T of type (r, s), and of order (r + s), at p is an element of the
product space

Tp(r, s) = Tp ⊗ · · · ⊗ Tp︸ ︷︷ ︸
r factors

⊗T ∗
p ⊗ · · · ⊗ T ∗

p︸ ︷︷ ︸
s factors

and maps any ordered set of r 1-forms and s vectors,

(σ1, . . . ,σr;v1, . . . ,vs), (2.18)

at p into a real number. In particular, the tensor u1 ⊗ · · · ⊗ ur ⊗ τ 1 ⊗
· · · ⊗ τ s maps the ordered set (2.18) into the product of contractions,
〈σ1,u1〉 · · · 〈σr,ur〉〈τ 1,v1〉 · · · 〈τ s,vs〉. The map is multilinear, i.e. linear
in each argument. In terms of the bases {ea}, {ωb} an arbitrary tensor T
of type (r, s) can be expressed as a sum of tensor products

T = T a1···ar
b1···bsea1 ⊗ · · · ⊗ ear ⊗ ωb1 · · · ⊗ ωbs , (2.19)

where all indices run from 1 to n. The coefficients T a1···ar
b1···bs with covari-

ant indices b1 · · · bs and contravariant indices a1 · · · ar are the components
of T with respect to the bases {ea}, {ωb}. For a general tensor, the factors
in the individual tensor product terms in (2.19) may not be interchanged.

Non-singular linear transformations of the bases,

ea′ = La′
aea, ωa

′
= La′

aω
a, La′

bLa′
c = δcb , (2.20)

change the components of the tensor T according to the transformation
law

T a′1···a′r
b
′
1···b′s = La′1

a1
· · ·La′r

arLb′1
b1 · · ·Lb′s

bsT a1···ar
b1···bs . (2.21)

For transformations connecting two coordinate bases {∂/∂xa}, {∂/∂xa′},
the (n × n) matrices La′

a, La′
a take the special forms La′

a = ∂xa
′
/∂xa,

La′
a = ∂xa/∂xa

′
.

The following algebraic operations are independent of the basis used
in (2.19): addition of tensors of the same type, multiplication by a real
number, tensor product of two tensors, contraction on any pair of one con-
travariant and one covariant index, and formation of the (anti)symmetric
part of a tensor.

Maps of tensors. The map Φ (Fig. 2.2) sending p ∈ M to Φ(p) ∈ N
induces in a natural way a map Φ∗ of the real-valued functions f defined
on N to functions on M,

Φ∗f(p) = f(Φ(p)). (2.22)
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Moreover, induced maps of vectors and 1-forms

Φ∗ : v ∈ Tp → Φ∗v ∈ TΦ(p),

Φ∗ : σ ∈ T ∗
Φ(p) → Φ∗σ ∈ T ∗

p ,
(2.23)

are defined by the postulates:

(i) the image of a vector satisfies

Φ∗v(f)|Φ(p) = v(Φ∗f)|p, (2.24a)

Φ∗v being the tangent vector to the image curve Φ(γ(t)) at Φ(p), if v is
the tangent vector to γ(t) at p (see Fig. 2.2);

(ii) the maps (2.23) preserve the contractions,

〈Φ∗σ,v〉|p = 〈σ,Φ∗v〉|Φ(p). (2.24b)

It follows immediately from (2.24a) that, for any u and v,

[Φ∗u,Φ∗v] = Φ∗[u,v]. (2.25)

Let us denote local coordinates in corresponding neighbourhoods of
p and Φ(p) by (x1, . . . , xm) and (y1, . . . , yn) respectively. The map of a
1-form σ is given simply by coordinate substitution,

Φ∗ : σ = σi(y)dyi → Φ∗σ = σi(y(x))
(
∂yi/∂xk

)
dxk = σ̃k(x)dxk,

(2.26)
i = 1, . . . , n, k = 1, . . . ,m.

These maps can immediately be extended to tensors of arbitrary type
(r, s) provided that the inverse Φ−1 exists, i.e. that Φ is a one-to-one
map. In this case, (2.24b) can be rewritten in the form

〈Φ∗σ,Φ−1
∗ v〉|p = 〈σ,v〉|Φ(p). (2.27)

Note that Φ∗ maps tensors on N to tensors on M, starting from a map
Φ of M to N . Although (2.26) looks like a coordinate transformation, it
defines new tensors, Φ∗σ etc. In contrast, under the transformation (2.20)
of the basis of a given manifold M any tensor remains the same object;
only its components are changed. Tensors are invariantly defined.

Up to now we have considered tensors at a given point p. The general-
ization to tensor bundles and tensor fields is straightforward. As special
cases we have defined fields of 1-forms and vector fields on M at the
ends of §§2.3 and 2.4. In the next few sections we shall introduce various
derivatives of tensor fields. For brevity, we shall call tensor fields simply
tensors.
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2.6 Exterior products and p-forms

Let α1, . . . ,αp denote p 1-forms. We define an algebraic operation ∧, the
exterior product or wedge product (up to a factor) by the axioms: the
exterior product α1 ∧α2 ∧ · · · ∧αp
(i) is linear in each variable, and
(ii) vanishes if any two factors coincide.
From these axioms it follows that the exterior product changes sign if any
two factors are interchanged, i.e. it is completely antisymmetric. From the
basis 1-forms ω1, . . . ,ωn we obtain

(n
p

)
independent p-forms

ωa1 ∧ · · · ∧ ωap , 1 ≤ a1 < a2 < · · · < ap ≤ n, p ≤ n. (2.28)

Axiom (ii) implies that these exterior products vanish for p > n.
A general p-form α

(p)
is a linear combination of the p-forms (2.28),

α
(p)

= αa1···apω
a1 ∧ · · · ∧ ωap , (2.29)

where all the indices run from 1 to n, the restriction in (2.28) for the
indices having been dropped. If {ωa} is a dual coordinate basis {dxi} this
expansion has the form

α
(p)

= αii···ipdxi1 ∧ · · · ∧ dxip . (2.30)

The exterior product can be extended to forms of arbitrary degree by
the rule that

(α1 ∧ · · · ∧αp) ∧ (β1 ∧ · · · ∧ βq) = α1 ∧ · · · ∧αp ∧ β1 ∧ · · · ∧ βq. (2.31)

Exterior multiplication is associative and distributive. However, the com-
mutative law is slightly changed:

α
(p)
∧ β
(q)

= (−1)pq β
(q)
∧ α
(p)

. (2.32)

This property can easily be derived from the axioms defining exterior
products of 1-forms and from expansions like (2.29).

In analogy with the contraction of a vector v and a 1-form σ, which
gives a function, we define the contraction of a vector v and a p-form to
give a (p− 1)-form,

v�α
(p)

= β
(p−1)

, (2.33)

which we assume to be linear in both v and α
(p)

. This implies that the

exterior product ∧ is just the antisymmetrization of the tensor product ⊗,
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so that the p-forms are precisely the antisymmetric tensors of type (0, p)
(antisymmetric covariant tensors). The factor of proportionality is fixed
by the rule that if α

(p)
and β

(q)
have the components αa1···ap and βb1···bq ,

respectively, then their exterior product has the components(
α
(p)
∧ β
(q)

)
a1···apb1···bq = α[a1···apβb1···bq ], (2.34)

which leads, for example, to ω1 ∧ ω2 = (ω1 ⊗ ω2 − ω2 ⊗ ω1)/2. The
component form of (2.33) is then

(v�α
(p)

)a2···ap = vbαba2···ap . (2.35)

A p-form α
(p)

is said to be simple if it admits a representation as an

exterior product of p linearly independent 1-forms,

α
(p)

= α1 ∧α2 ∧ · · · ∧αp. (2.36)

2.7 The exterior derivative

In §2.4 we defined the differential df of a function f by the equation
(2.14). The operator d generates a 1-form df from a 0-form f by

d : f → df = f,idxi. (2.37)

We generalize this differentiation to apply to any p-form. The exterior
derivative d maps a p-form into a (p + 1)-form and is completely deter-
mined by the axioms:

(i) d(α+ β) = dα+ dβ, (2.38a)

(ii) d
(
α
(p)
∧ β
(q)

)
= dα

(p)
∧ β
(q)

+ (−1)p α
(p)
∧ d β

(q)
, (2.38b)

(iii) df = f,idxi, (2.38c)

(iv) d(df) = 0. (2.38d)

Because of axiom (2.38a) it is sufficient to verify the existence and unique-
ness of the exterior derivative for the p-form fdxi1 ∧ · · · ∧ dxip . One can
prove (see e.g. Flanders (1963)) that

d(fdxi1 ∧ · · · ∧ dxip) = df ∧ dxi1 ∧ · · · ∧ dxip . (2.39)

and that all the axioms (2.38) are then satisfied.
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From a general p-form (2.30) we obtain the (p + 1)-form

dα
(p)

= αi1···ip,jdx
j ∧ dxi1 ∧ · · · ∧ dxip (2.40)

by exterior differentiation. The (completely antisymmetric) components
of dα

(p)
involve only partial derivatives of the components αi1···ip . We re-

mark that axiom (2.38d) is just the equality of the mixed second partial
derivatives of f ,

d(df) = d(f,idxi) = f,i,jdxj ∧ dxi = 0. (2.41)

From (2.40) we see that
d(dα) = 0 (2.42)

for any p-form α.
The following theorems, for proofs of which we refer the reader to the

literature (e.g. for Theorem 2.2 see Flanders (1963)), hold locally, i.e. in
a neighbourhood of a point p.

Theorem 2.1 (Poincaré’s theorem). If α is a p-form (p ≥ 1) and
dα = 0, then there is a (p− 1)-form β such that α = dβ. In components,

α[i1···ip,j] = 0 ⇔ αi1···ip = β[i1···ip−1,ip]. (2.43)

Theorem 2.2 (Frobenius’s theorem). Let σ1, . . . ,σr be r 1-forms lin-
early independent at a point p ∈ M. Suppose there are 1-forms τAB
(A,B = 1, . . . , r) satisfying dσA = τAB ∧ σB. Then in a neighbourhood
of p there are functions fAB, hA such that σA = fABdhB.

Other formulations of Frobenius’s theorem. Introducing the r-form Σ ≡
σ1 ∧ · · · ∧σr, we can replace the condition dσA = τAB ∧σB by either of
the two equivalent conditions:

(i) dσA ∧Σ = 0,

(ii) there exists a 1-form λ such that dΣ = λ ∧Σ .

In the case of a single 1-form σ we have the result

σ ∧ dσ = 0 ⇔ σ = fdh, (2.44)

or in components,
σ[a,bσc] = 0 ⇔ σa = fh,a. (2.45)

The surfaces h = constant are called the integral surfaces of the equation
σ = 0, f−1 being the integrating factor.
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Frobenius’s theorem is important in the construction of exact solutions
because it allows us to introduce local coordinates f , h adapted to given
normal 1-forms (see e.g. §27.1.1).

The rank q of a 2-form α is defined by

α ∧ · · · ∧α︸ ︷︷ ︸
q factors

�= 0, α ∧ · · · ∧α︸ ︷︷ ︸
(q+1) factors

= 0, 2q ≤ n. (2.46)

Using this definition we can generalize the statement (2.44) to

Theorem 2.3 (Darboux’s theorem). Let σ be a 1-form and let the 2-form
dσ have rank q. Then we can find local coordinates x1, . . . , xq, ξ1, . . . , ξn−q
such that

if σ ∧ dσ ∧ · · · ∧ dσ︸ ︷︷ ︸
q factors

{
= 0 : σ = x1dξ1 + · · ·+ xqdξq,

�= 0 : σ = x1dξ1 + · · ·+ xqdξq + dξq+1.
(2.47)

(For a proof, see Sternberg (1964).)

This theorem gives the possible normal forms of a 1-form σ. Special-
izing Darboux’s theorem to a four-dimensional manifold one obtains the
following classification of a 1-form σ in terms of its components:

q = 0 : σ[a,b] = 0 : σa = ξ,a

q = 1 : σ[a,b] �= 0, σ[a,bσc,d] = 0, σ[a,bσc] = 0 : σa = xξ,a

σ[a,b] �= 0, σ[a,bσc,d] = 0, σ[a,bσc] �= 0 : σa = xξ,a + η,a

q = 2 : σ[a,bσc,d] �= 0 σa = xξ,a + yη,a.

(2.48)

The real functions denoted by x, y, ξ, η are independent. The second
subcase is just Frobenius’s theorem applied to a single 1-form σ.

Now we give a theorem concerning 2-forms.

Theorem 2.4 For any 2-form α of rank q there exists a basis {ωa} such
that

α = (ω1 ∧ ω2) + (ω3 ∧ ω4) + · · ·+ (ω2q−1 ∧ ω2q). (2.49)

If dα = 0, then we can introduce local coordinates x1, . . . , xq, ξ1, . . . , ξn−q
such that

α = dx1 ∧ dξ1 + · · ·+ dxq ∧ dξq. (2.50)

(For a proof, see Sternberg (1964).)

To conclude this series of theorems, we consider a map Φ : M → N
between two manifolds, as in (2.23), and show by induction
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Theorem 2.5 For the exterior derivative dα of a p-form α we have

d(Φ∗α) = Φ∗(dα). (2.51)

Proof: Let us denote local coordinates in corresponding neighbourhoods
of p ∈ M and Φ(p) ∈ N by (x1, . . . , xm) and (y1, . . . , yn) respectively.
Obviously, (2.51) is true for a 0-form f :

d(Φ∗f) =
∂(Φ∗f)
∂xk

dxk =
∂f(y(x))

∂yi
∂yi

∂xk
dxk = Φ∗(df). (2.52)

Suppose the relation is valid for the (p − 1)-form β and let α = fdβ.
(This is sufficiently general.) Then,

d(Φ∗α) = d[(Φ∗f)d(Φ∗β)] = d(Φ∗f) ∧ d(Φ∗β) = Φ∗(dα). (2.53)

We do not consider integration on manifolds, except to note that the
operator d of exterior derivation has been defined so that Stokes’s theorem
can be written in the simple form∫

∂V
α =
∫
V

dα, (2.54)

where α is any (k−1)-form and ∂V denotes the oriented boundary of a k-
dimensional manifold with boundary V. (An n-dimensional manifold with
boundary is defined by charts which map their neighbourhoods U into the
half space Hn defined by xn ≥ 0 rather than into En, the boundary then
being the set of points mapped to xn = 0.)

2.8 The Lie derivative

For each point p ∈ M, a vector field v on M determines a unique curve
γp(t) such that γp(0) = p and v is the tangent vector to the curve. The
family of these curves is called the congruence associated with the vec-
tor field. Along a curve γp(t) the local coordinates (y1, . . . , yn) are the
solutions of the system of ordinary differential equations

dyi

dt
= vi(y1(t), . . . , yn(t)) (2.55)

with the initial values yi(0) = xi(p).
To introduce a new type of differentiation we consider the map Φt drag-

ging each point p, with coordinates xi, along the curve γp(t) through p into
the image point q = Φt(p) with coordinates yi(t). For sufficiently small
values of the parameter t the map Φt is a one-to-one map which induces
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a map Φ∗
tT of any tensor T , called Lie transport . The Lie derivative of

T with respect to v is defined by

LvT ≡ lim
t→0

1
t
(Φ∗

tT − T ). (2.56)

The tensors T and Φ∗
tT are of the same type (r, s) and are both evaluated

at the same point p. Therefore, the Lie derivative (2.56) is also a tensor
of type (r, s) at p. The Lie derivative vanishes if the tensors T and Φ∗

tT
coincide. In this case the tensor field T remains in a sense the ‘same’ under
Lie transport along the integral curves of the vector field v. However,
the components of T with respect to the coordinate basis {∂/∂xi} may
vary along the curves. Using coordinate bases {∂/∂xi} and {∂/∂yi}, we
compute the components of the Lie derivative. The relations

∂yi

∂xk

∣∣∣∣∣
t=0

= δik,
dyi

dt

∣∣∣∣∣
t=0

= vi,
dxi

dt

∣∣∣∣∣
t=0

= −vi (2.57)

will be used. We start with the Lie derivatives of functions, 1-forms, and
vectors:

function f : Lvf = vif,i (= v(f)). (2.58)

Proof:

Φ∗
t f |p = f(y(x, t)), Lvf |p =

∂f

∂yi
dyi

dt

∣∣∣∣∣
p

.

1-form σ: Lvσ = (vmσi,m + σmvm,i)dxi. (2.59)

Proof:

Φ∗
tσ|p = σj(y(x, t))

∂yj

∂xi
dxi,

Lvσ|p =

[
∂σj
∂ym

dym

dt
∂yj

∂xi
+ σj

∂

∂xi

(
dyj

dt

)]
t=0

dxi.

vector u: Lvu = (vmui,m − umvi,m)
∂

∂xi
. (2.60)

Proof:

Φ∗
tu|p = uj (y(x, t))

∂xi

∂yj
∂

∂xi
,

Lvu|p =

[
∂uj

∂ym
dym

dt
∂xi

∂yj
+ uj

∂

∂yj

(
dxi

dt

)]
t=0

∂

∂xi
.
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The Lie derivative of u with respect to v is equal to the commutator
[v,u],

Lvu = [v,u] = vm
∂

∂xm

(
ui

∂

∂xi

)
− um

∂

∂xm

(
vi

∂

∂xi

)
. (2.61)

Two commuting vector fields generate a family of two-dimensional sub-
manifolds of M on which the parameters of the integral curves of both
vector fields can be taken as coordinates.

From the Leibniz product rule and (2.59), (2.60) one obtains the com-
ponents of the Lie derivative of an arbitrary tensor,

(LvT )ij···kl··· = vmT ij···
kl···,m − Tmj···

kl···vi,m − T im···
kl···vj ,m − · · ·

+ T ij···
ml···vm,k + T ij···

km···vm,l + · · · . (2.62)

Equation (2.61) and the Jacobi identity (2.7) imply that when applied to
vectors

LuLv − LvLu = L[u,v], (2.63)

and (2.58) and the Leibniz rule then imply that this is true for any tensor.
From (2.51), (2.56), it follows that the Lie derivative applied to forms

commutes with the exterior derivative:

d(Lvα) = Lv(dα) (2.64)

for any p-form α. Of course, this rule can also be verified by using (2.40),
(2.62) in terms of components.

As will be seen later, the Lie derivative plays an important role in
describing symmetries of gravitational fields and other physical fields.

The exterior derivative and the Lie derivative are operations defined on
a differentiable manifold without imposing additional structures. Both op-
erations are generalizations of the partial derivative. The exterior deriva-
tive is a limited generalization acting only on forms. The Lie derivative
depends on the vector v not only at p, but also at neighbouring points.
To introduce invariantly defined derivatives which have neither of these
defects we have to impose a new structure on M, and we proceed to do
so in the following section.

2.9 The covariant derivative

The covariant derivative ∇v in the direction of the vector v at p maps
an arbitrary tensor into a tensor of the same type. If v is unspecified, the
covariant derivative ∇ generates a tensor of type (r, s + 1) from a tensor
of type (r, s). In particular, for a vector u we have the expansion

∇u = ua;bea ⊗ ωb (2.65)



24 2 Differential geometry without a metric

with components ua;b as yet unspecified. The directional covariant deriva-
tive is given by the vector

∇vu = (ua;bvb)ea. (2.66)

The covariant derivative of the basis vector ea in the direction of the basis
vector eb can be expanded in terms of basis vectors:

∇bea = Γc
abec, Γc

ab = 〈ωc,∇bea〉. (2.67)

For consistency of (2.67) with the Leibniz rule applied to (2.11), the co-
variant derivative of a dual basis {ωa} is given by

∇bω
a = −Γa

cbω
c. (2.68)

The coefficients Γc
ab, called the connection coefficients, relate the bases at

different points of M, and they have to be imposed as an extra structure
on M. We restrict ourselves to covariant derivatives satisfying

∇uv −∇vu = [u,v] (2.69)

for two arbitrary vectors u and v. This relation is equivalent to the equa-
tion

2Γc
[ab] = −Dc

ab, (2.70)

where the commutation coefficients are defined by (2.6). In a coordinate
basis, the connection coefficients Γc

ab have a symmetric index pair (ab).
Therefore a covariant derivative satisfying (2.69) is called symmetric (or
torsionfree).

Using the symmetry axiom (2.70), we may replace the partial deriva-
tives in (2.40) and (2.62) for the components of, respectively, the exterior
derivative and the Lie derivative by covariant derivatives, so that the
commas can be replaced by semicolons.

Once the connection coefficients are prescribed, the components ua;c of
the covariant derivative of u in the direction of the basis vector ec are
completely determined,

∇cu = ∇c(uaea) = (ua|c + Γa
dcu

d)ea = ua;cea, (2.71a)

and the components of the covariant derivative ∇T of a tensor (2.19) are

T a1···ar
b1···bs;c = (T a1···ar

b1···bs)|c + Γa1
dcT

d···ar
b1···bs + · · ·+ Γar

dcT
a1···d

b1···bs

−Γd
b1cT

a1···ar
d···bs − · · · − Γd

bscT
a1···ar

b1···d, (2.71b)

where the symbol f|a ≡ ea(f) = f,iea
i has been used. Note that (2.71b)

is valid for a general basis {ea}.
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Since the bases {ea}, {ωa} are linear combinations of coordinate bases,

ea = ea
i∂/∂xi, ωa = ωa

idxi, (2.72)

the connection coefficients (2.67) can be written with respect to these
bases as

Γc
ab = ωc

kea
k
;ieb

i = −ea
kωc

k;ieb
i . (2.73)

These are also referred to as the Ricci rotation coefficients. For the exterior
derivative of the basis 1-forms we get

dωa = ωa
i,jdxj ∧ dxi = ωa

i;jdxj ∧ dxi = Γa
bcω

b ∧ ωc. (2.74)

Introducing the connection 1-forms

Γ a
b ≡ Γa

bcω
c, (2.75)

we can write (2.74) in the form

dωa = −Γ a
b ∧ ωb (2.76)

due to Cartan (the first Cartan equation). For a given basis, the antisym-
metric part Γa

[bc] of the connection coefficients can be computed from
this.

The definition of the covariant derivative is equivalent to a definition
of parallellism; the relation is that if w(q) is the vector at q parallel to
u(p) at p, and v(p) is the tangent vector at p to a curve γ from p = γ(0)
to q = γ(ε), the covariant derivative ∇vu is the limit of [w(q) − u(q)]/ε
as ε → 0. Thus, a tensor T is said to be parallelly-transported along the
curve with tangent vector v if ∇vT = 0. An autoparallel curve is one
whose tangent vector is parallel to itself along the curve.

2.10 The curvature tensor

The curvature tensor (Riemann tensor), R = Ra
bcdea ⊗ ωb ⊗ ωc ⊗ ωd is

a tensor of type (1, 3) mapping the ordered set (σ; w,u,v) of a 1-form σ
and three vectors w,u,v into the real number

σaw
bucvdRa

bcd = 〈σ, (∇u∇v −∇v∇u −∇[u,v])w〉
= σa[(wa

;cv
c);dud − (wa

;cu
c);dvd − wa

;c(udvc;d − vduc;d)]

= σa(wa
;cd − wa

;dc)vcud. (2.77)

As the components σa, vc, ud can be chosen arbitrarily we arrive at the
Ricci identity

wa
;cd − wa

;dc = wbRa
bdc. (2.78)
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The general rules (2.71) for the components of the covariant derivative of
a tensor imply the formula

Ra
bcd = Γa

bd|c − Γa
bc|d + Γe

bdΓa
ec − Γe

bcΓa
ed −De

cdΓa
be. (2.79)

In a coordinate basis, the last term vanishes. The components (2.79) of
the curvature tensor satisfy the symmetry relations

Ra
bcd = −Ra

bdc, Ra
[bcd] = 0. (2.80)

The covariant derivatives of the curvature tensor obey the Bianchi
identities

Ra
b[cd;e] = 0. (2.81)

By contraction we obtain the identities

Ra
bcd;a + 2Rb[c;d] = 0, (2.82)

where the components Rbd of the Ricci tensor are defined by

Rbd ≡ Ra
bad. (2.83)

If a vector is parallelly transported round a closed curve, the initial
and final vectors will in general not be equal: this phenomenon is called
holonomy. For infinitesimally small curves the holonomy is given by an
integral of the curvature tensor over an area enclosed by the curve, and
conversely this gives an alternative way to define curvature.

A compact and efficient method for calculating the components (2.79)
with respect to a general basis is provided by Cartan’s procedure. Defining
the curvature 2-forms Θa

b by

Θa
b ≡ 1

2R
a
bcdω

c ∧ ωd, (2.84)

equation (2.79) is completely equivalent to the second Cartan equation

dΓ a
b + Γ a

c ∧ Γ c
b = Θa

b, (2.85)

which gives an algorithm for the calculation of the curvature from the con-
nection. We collect the relations between the various quantities in Fig. 2.3.
In this notation the Bianchi identities (2.81) are the components of

d2Γ a
b = dΘa

b −Θa
c ∧ Γ c

b + Γ a
c ∧Θc

b = 0. (2.86)
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Γa
bc (2.79) ✲ Ra

bcd

✻

(2.75)

❄
Γ a

b (2.85) ✲ Θa
b

✻

(2.84)

❄

Fig. 2.3. How to get the curvature from the connection

2.11 Fibre bundles

The tensor bundles introduced in §2.4 are examples of fibre bundles. A
simple picture of a fibre bundle E over a manifold M can be obtained
by imagining a copy of another manifold F , the fibre, to be attached to
each point of M in such a way that for suitable regions where coordinates
xj are given on M and ξa on the fibre, the fibre bundle has coordinates
(xj , ξa), i.e. E is locally M×F ; M is called the base manifold. On regions
where two coordinate systems in M apply, the corresponding coordinate
transformations of E are given by the usual coordinate transformations in
M together with fibre transformations ξb

′
= ξb

′
(ξa) for each p ∈M; these

fibre transformations belong to a group of transformations of F called
the structure group of the bundle. (For the tangent bundle the structure
group just consists of linear transformations of R

m.) The structure group
is often a Lie group G, as defined in Chapter 8. (For fuller details, see e.g.
Steenrod (1951), Crampin and Pirani (1986).)

The map π : E → M; (p, f) !→ p is called the projection onto the base
manifold M. A map σ : M → E which for each point p in M gives a
unique point σ(p) ∈ π−1(p) is called a section, consistently with the use
of this term above. All the maps involved in the definition must of course
be suitably smooth. If F is a vector space, the bundle is called a vector
bundle.

The frame bundle F (M) for a manifoldM has as the fibre F at p the set
of all possible bases of Tp(M), so the structure group is the group of non-
singular linear transformations GL(n,R). Similarly T ∗

p (M) defines the
coframe bundle. Various restricted (co)frame bundles can be obtained by
restricting the set of allowed (co)frames, the most common case, in space-
times, being restriction to one of the special classes of tetrads, orthonormal
or null (see Chapter 3). In frame bundles the structure group and the fibre
can be identified, F ∼= G, i.e. each choice of frame can be obtained by
applying a unique element of the structure group to a basic choice of
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frame: a bundle with this property is called a principal bundle. Frame
bundles play an essential role in the theory underlying Cartan’s method
for testing equivalence of metrics (see Chapter 9).

Given a point in p ∈ F (M) and any tangent vector v at π(p) ∈ M,
tangent to a curve γ(t) say, we can use the connection to define the
parallelly-transported frame at neighbouring points of γ(t), i.e. to define
a corresponding lifted curve in F (M). The set of all such lifted curves
defines an n-dimensional plane at p, called horizontal, and the tangent
to the lifted curve at p defines a vector in T (FM)), the horizontal lift of
v. The distribution of horizontal subspaces in fact completely defines the
connection. The basis corresponding to p can be lifted to give a uniquely
defined basis of horizontal vectors at p. One-forms on M can be lifted to
the horizontals in F (M) by π∗; at a point p, they have a uniquely-defined
basis given by lifting the basis of 1-forms dual to the basis defined by p.

Now consider a general curve through p ∈ F (M) with tangent vector
V , and a frame {ea}. The change of frame along the horizontal part of
V , defined by π∗(V ), is given by the usual connection, while the change
due to the vertical part of V , i.e. the part tangent to the fibre, is given by
(2.5) with La

b = Γ̂b
acV

c, where Γ̂b
ac depends on the parametrization of

GL(n,R). The quantities Γ̂b
ac can be added to Γb

ac to define a connection
Γa

b on the bundle; the formulae for covariant derivatives given in §2.9, in
particular (2.76), can then all be extended to F (M). Moreover, given the
connection (and the structure group) the 1-form fields ωa and Γ a

b are
a uniquely defined basis on F (M). Similar remarks apply to the various
restricted (co)frame bundles.

From this connection, one can define a curvature in F (M). Direct cal-
culation shows (see e.g. Araujo et al. (1992)) that the non-zero compo-
nents of the curvature of F (M) at p are just given by those of the usual
curvature at π(p) in the frame {ea} which p represents, and (2.85) still
applies although Γ a

b and Θa
b now refer to the connection and curva-

ture on F (M). Part of the reason is that since the action of the structure
group on a fibre maps the horizontal subspaces to one another in a unique
way, transport in the vertical direction has no holonomy and correspond-
ingly components of the curvature in the vertical direction are zero. One
should note that the curvature components are invariantly-defined scalars
on F (M) since they are known for a given point in M and frame.

The exterior derivative of the components of curvature on F (M) obeys

dRabcd = Rabcd;eω
e+RebcdΓ

e
a+RaecdΓ

e
b+RabedΓ

e
c+RabceΓ

e
d , (2.87)

where Rabcd;e is evaluated, in the tetrad given by p, at π(p) ∈ M, and
similar equations hold for higher derivatives.
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Jet bundles J (n)(X,U) are another type of fibre bundle of interest in
exact solutions (see Chapter 10). They are used in describing systems
of differential equations. Here the base manifold X is the space of inde-
pendent variables and the fibre is the set U of values of the dependent
variables and their first n partial derivatives with respect to the X. A
(partial) differential equation, or a system of such equations, specifies a
submanifold in a jet bundle.



3
Some topics in Riemannian geometry

3.1 Introduction

In Chapter 2 we treated differential geometry without a metric. In or-
der to define covariant derivatives we imposed an extra structure on the
differential manifold M, the connection. Adding a further structure, the
metric gab, and postulating gab;c = 0, we arrive at Riemannian geometry.

General relativity is based on the concept of space-time, which is a four-
dimensional differentiable (C∞, Hausdorff) manifold M endowed with a
Lorentzian metric gab which can be transformed to

gab = ηab ≡ diag(1, 1, 1,−1) (3.1)

at any point of M, i.e. space-time is a normal-hyperbolic Riemannian
space V4. In what follows, a knowledge of fundamental facts about Rie-
mannian geometry as given in most textbooks on general relativity is pre-
sumed; we give here only some notation and results used in the remainder
of this book. For further details the reader is referred to standard texts
on Riemannian geometry, e.g. Eisenhart (1949) and Schouten (1954).

3.2 The metric tensor and tetrads

We introduce as a new structure a symmetric tensor of type (0,2), called
the metric tensor g, which endows each vector space Tp with a scalar
product (inner product)

ea · eb = gab. (3.2)

The tensor g, sometimes called the line element ds2, is written

g = ds2 = gabω
aωb. (3.3)

30
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The scalar product of two vectors v, w is given by

v ·w = gabv
awb. (3.4)

Two vectors v, w are orthogonal if their scalar product vanishes. A non-
zero vector v is said to be spacelike, timelike or null , respectively, when
the product v · v = gabv

avb is positive, negative or zero. In a coordinate
basis, we write the line element ds2 as

ds2 = gijdxidxj . (3.5)

The contravariant components, gab, form the matrix inverse to gab. Raising
and lowering the indices of the tensor components has to be performed in
the usual manner:

va = gabv
b, va = gabvb. (3.6)

In this sense, the vector vaea and the 1-form vaω
a represent the same

geometric object.
In space-time, an orthonormal basis or orthonormal tetrad or Lorentz

frame {Ea} consists of three spacelike vectors Eα and one timelike vector
E4 ≡ t, such that

{Ea} = {Eα, t} = {x,y,z, t}, gab = xaxb + yayb + zazb − tatb
(3.7)⇔ Eα ·Eβ = δαβ , t · t = −1, Eα · t = 0.

If one has a fluid with four-velocity parallel to t, the symbol t is often
replaced by u.

Complex null tetrads play an important role. A complex null tetrad
consists of two real null vectors k, l and two complex conjugate null
vectors m, m:

{ea} = (m,m, l,k),
(3.8)

gab = 2m(amb) − 2k(alb) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


(gab are the components of g with respect to the complex null tetrad), i.e.
the scalar products of the tetrad vectors vanish apart from

kala = −1, mama = 1. (3.9)
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In terms of a coordinate basis, a complex null tetrad {ea} and its dual
{ωa} will take the form

e1 = mi ∂

∂xi
, e2 = m i ∂

∂xi
, e3 = li

∂

∂xi
, e4 = ki

∂

∂xi
;

ω1 = mi dxi, ω2 = mi dxi, ω3 = −ki dxi, ω4 = −li dxi.
(3.10)

The explicit expressions for the directional derivatives f|a of a function f
with respect to the complex null tetrad (3.8) are

f|1 = f,im
i, f|2 = f,im

i, f|3 = f,il
i, f|4 = f,ik

i. (3.11)

An orthonormal tetrad (3.7) and a complex null tetrad (3.8) may be
related by √

2m = E1 − iE2,
√

2m = E1 + iE2,√
2 l = E4 −E3,

√
2k = E4 +E3.

(3.12)

In flat space-time, (3.12) implies the relations

ζ = 1√
2
(x + iy), ζ̄ = 1√

2
(x− iy), u = 1√

2
(t− z), v = 1√

2
(t + z), (3.13)

between the null coordinates ζ, ζ̄, u, v (adapted to the basis vectors
m = ∂ζ , m = ∂ζ̄ , l = ∂u, k = ∂v) and the Minkowski coordinates x, y,
z, t (adapted to the basis vectors E1 = ∂x, E2 = ∂y, E1 = ∂z, E4 = ∂t).
Here we have adopted the convention ∂ζ = ∂/∂ζ etc. In some approaches
the coordinates ζ, ζ, u and v are considered as four independent complex
variables, thus leading to a complexification of Einstein’s field equations
and the task of regaining real cuts from its complex solutions. Sometimes
also the mixed form of a real null tetrad or half null tetrad (x, y, l, k) is
used.

Lorentz transformations give rise to the following changes of the basis
(3.8):

null rotations (l fixed),

l′ = l, m′ =m+ El, k′ = k + Em+ Em+ EEl, E complex; (3.14)

null rotations (k fixed),

k′ = k, m′ =m+ Bk, l′ = l+ Bm+ Bm+ BBl, B complex; (3.15)

spatial rotations in the m–m-plane,

m′ = eiΘm, Θ real; (3.16)
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special Lorentz transformations (boosts) in the k–l-plane,

k′ = Ak, l′ = A−1l, A > 0. (3.17)

The transformations (3.14)–(3.17) contain six real parameters. The trans-
formations preserving the k-direction are

k′ = Ak, m′ = eiΘ(m+Bk), l′ = A−1(l+Bm+Bm+BBk). (3.18)

Symmetric connection coefficients (2.67) are uniquely determined by
adding the metric condition

∇g = 0 ⇔ gab;c = 0 = gab|c − 2Γ(ab)c, Γabc ≡ gadΓd
bc. (3.19)

Combining the metric condition (3.19) and the symmetry condition (2.70)
one obtains the general formula

Γabc = 1
2(gab|c+gac|b−gbc|a+Dcab+Dbac−Dabc), Dabc ≡ gadD

d
bc, (3.20)

expressing the connection coefficients in terms of the metric tensor and
the commutation coefficients. We mention two cases of special interest:

coordinate basis (holonomic frame): Dijk = 0: Γi[jk] = 0,

Γi
jk ≡ { i

jk} (= Christoffel symbols);

constant metric (rigid frame): gab|c = 0: Γ(ab)c = 0.

In a holonomic frame, the connection coefficients Γabc are symmetric in
the index pair (bc), while in a rigid frame they are antisymmetric in the
index pair (ab).

When using tetrad methods for a rigid frame, it is common to calcu-
late simultaneously the components of the basis vectors for the essential
coordinates of the metric under study and the connection (and hence
commutation) coefficients, which involve only those coordinates. In or-
der to obtain a coordinate form for the metric, one then has to integrate
(2.6) successively for the remaining unknown coordinate components of
the tetrad basis. The coordinates {yα} not appearing in the commutation
coefficients can be chosen so that the operators ∂yα are the ‘constants of
integration’ arising in this process. The relevant integrability conditions
are the Jacobi identities: for further discussion, in the null tetrad context,
see §7.3.

In §2.9 autoparallels were introduced. One can also consider geodesic
curves, those for which the total length, measured using the metric, is
extremal. The tangent vector v of a geodesic satisfies

∇vv = fv; in components: vbva;b = fva. (3.21)
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By a suitable scaling of the parameter of the geodesic curve we can make
the function f in (3.21) vanish, so that the curve is also autoparallel.
Such a parameter is called an affine parameter τ and in terms of such a
parameter the geodesic equation becomes

Dvi

dτ
≡ vkvi;k = 0. (3.22)

3.3 Calculation of curvature from the metric

The components of the curvature tensor are given by (2.79). In a coor-
dinate basis, one may simply substitute the Christoffel symbols into this
expression. However, Cartan’s method for the calculation of curvature is
more compact and efficient in many applications. It immediately yields
the tetrad components. The algorithm is divided into two steps.

(i) Calculation of the connection 1-forms (2.75), Γ a
b = Γa

bcω
c, from the

first Cartan equation (2.76) and the metric condition (3.19),

dωa = −Γ a
b ∧ ωb, dgab = Γ ab + Γ ba, (3.23)

which determine Γ ab uniquely. In a rigid frame (dgab = 0), at most six
independent connection 1-forms survive.

(ii) Calculation of the curvature 2-forms Θa
b (2.84) from the second

Cartan equation (2.85),

Θa
b = dΓ a

b + Γ a
c ∧ Γ c

b = 1
2R

a
bcdω

c ∧ ωd. (3.24)

This calculus gives the components Ra
bcd with respect to a general basis

{ea}.
For the complex null tetrad {ea} = (m,m, l,k), the second Cartan

equation (3.24) takes the form of three complex equations,

dΓ 41 + Γ 41 ∧ (Γ 21 + Γ 43) = 1
2R41cdω

c ∧ ωd, (3.25a)

dΓ 32 − Γ 32 ∧ (Γ 21 + Γ 43) = 1
2R32cdω

c ∧ ωd, (3.25b)

d(Γ 21 + Γ 43) + 2Γ 32 ∧ Γ 41 = 1
2(R21cd + R43cd)ωc ∧ ωd, (3.25c)

where the indices refer to the basis vectors e1 =m, e2 =m, e3 = l, and
e4 = k; Γ 41 = Γ 42 = Γ abk

amb, Γ 21 = Γ 12 = Γ abm
amb, etc. (Exchang-

ing the indices 1 and 2 implies complex conjugation.)
The metric can be used to lower the first index on the curvature and

one then has symmetries additional to (2.80), the full set being

Rabcd = −Rbacd = −Rabdc = Rcdab, Ra[bcd] = 0. (3.26)
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3.4 Bivectors

Bivectors are antisymmetric tensors of second order, or 2-forms,

X = Xabω
a ∧ ωb. (3.27)

A simple bivector , Xab = u[avb], represents a 2-surface element spanned
by the two tangent vectors u = uaea and v = vaea. This surface element
is spacelike, timelike or null according to whether XabX

ab is positive,
negative or zero, respectively.

Taking a particular orientation of (a neighbourhood in) M, we define
the Levi-Civita 4-form ε to be −4!

√−gω1 ∧ω2 ∧ω3 ∧ω4, where g is the
determinant of the matrix gab of metric tensor components with respect
to a positively-oriented basis {ea}. Its components are written εabcd, and,
if the positively-oriented basis is an orthonormal tetrad {Ea} as in (3.7),
are defined by

ε1234 = −1. (3.28)

This amounts to a choice of orientation of the four-dimensional manifold
in which the basis {Ea} represents a Lorentz frame with E4 pointing
toward the future and with a right-handed spatial triad as {Eα}. If that
basis is related to the complex null tetrad (3.8) by the formula (3.12),
then (3.28) can be written as

εabcdm
am blckd = i. (3.29)

The corresponding three-dimensional tensor obtained by contraction with
a timelike unit vector u = E4, giving components εabcdu

d, will be denoted
εαβγ , where as usual α, β, γ = 1, 2, 3.

With the aid of the Levi-Civita 4-form we define the dual bivector
∼
X,

in index notation, by
X̃ab ≡ 1

2εabcdX
cd. (3.30)

To avoid confusion we emphasize that the concepts of dual basis and
dual bivector have entirely distinct meanings. Repeated application of
the duality operation (3.30) gives

(X̃ab) ˜ = −Xab. (3.31)

A bivector is called null (or singular) if

XabX
ab = 0 = XabX̃ab (3.32)

holds. Two bivectors X and Y satisfy the identities

XacYb
c − X̃bcỸa

c = 1
2gabXcdY

cd, X̃abY
ab = XabỸ

ab, (3.33)
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which can be verified from the well-known formula

εabcdε
fghd = −6δf[aδ

g
b δ

h
c]. (3.34)

The complex bivector defined by

X∗
ab ≡ Xab + iX̃ab (3.35)

is self-dual, i.e. it fulfils the condition

(X∗
ab) ˜ = −iX∗

ab. (3.36)

A self-dual bivector is completely determined by a timelike unit vector
u and the projection

Xa ≡ X∗
abu

b, Xau
a = 0, ucu

c = −1, (3.37)

according to the equation

X∗
ab = 2u[aXb] + iεabcducXd = 2(u[aXb])

∗. (3.38)

As consequences of this important relation we get

X∗
abX

∗ab = −4XaX
a, X∗

αβ = iεαβγXγ . (3.39)

A general self-dual bivector can be expanded in terms of the basis
Zµ = (U ,V ,W ) constructed from the complex null tetrad (3.8) by

Z1 ≡ U = 2m ∧ l : Uab = −lamb + lbma,

Z2 ≡ V = 2k ∧m : Vab = kamb − kbma, (3.40)

Z3 ≡W = 2(m ∧m− k ∧ l) : Wab = mamb −mbma − kalb + kbla.

All contractions vanish except

UabV
ab = 2, WabW

ab = −4. (3.41)

With the aid of (3.29) we can verify that the bivectors (3.40) are self-
dual: Z̃α

ab = −iZα
ab. The complex conjugate bivectors U , V , W form

a basis {Zα} of the space of anti-self-dual bivectors, i.e. those obeying
Z̃α
ab = iZα

ab.
The null rotations (3.14), (3.15) induce the following transformations

of the bivectors (3.40):

l fixed:

U
′
ab = Uab, V

′
ab = Vab − EWab + E2Uab, W

′
ab = Wab − 2EUab, (3.42a)
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k fixed:

V
′
ab = Vab, U

′
ab = Uab −BWab + B

2
Vab, W

′
ab = Wab − 2BVab. (3.42b)

A general bivector can be expanded in terms of the basis {Zα,Zα}:

Xab = cαZ
α
ab + dαZ

α
ab. (3.43)

Finally, we mention the relation

Zα
a[bZ

β
c]
a = 0. (3.44)

Ref.: For bivectors and their application, see also Debever (1966), Zund
and Brown (1971), and Israel (1970). For the connection between bivectors
and the complex 3-space used in Chapter 4 see Cahen et al. (1967).

3.5 Decomposition of the curvature tensor

The curvature tensor, with components (2.79) with respect to a basis
{ea}, can be uniquely decomposed into parts which are irreducible repre-
sentations of the full Lorentz group,

Rabcd = Cabcd + Eabcd + Gabcd, (3.45)

where the following abbreviations have been used:

Eabcd ≡ 1
2(gacSbd + gbdSac − gadSbc − gbcSad), (3.46)

Gabcd ≡ 1
12R(gacgbd − gadgbc) ≡ 1

12Rgabcd, (3.47)

Sab ≡ Rab − 1
4Rgab, R ≡ Ra

a. (3.48)

R and Sab respectively denote the trace and the traceless part of the Ricci
tensor Rab defined by (2.83).

The decomposition (3.45) defines Weyl’s conformal tensor Cabcd (see
§3.7 for the relation of this tensor to conformal transformations). It and
the other parts in the decomposition (3.45) have the same symmetries
(3.26) as the Riemann tensor. Moreover, we have the relations

Ca
bad = 0, Ea

bad = Sbd, Ga
bad = 1

4gbdR. (3.49)

The Weyl tensor is completely traceless, i.e. the contraction with respect
to each pair of indices vanishes, and it has ten independent components.
A space-time with zero Weyl tensor is said to be conformally flat.
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A decomposition slightly different from (3.45)–(3.48) is

Rab
cd = Cab

cd − 1
3Rδa[cδ

b
d] + 2δ[a[cR

b]
d]. (3.50)

Because the tensors Cabcd, Eabcd, Gabcd have two pairs of bivector indices
we can introduce the notions of the left dual and the right dual, e.g.

∼Cabcd ≡ 1
2εabefC

ef
cd, C ∼

abcd ≡ 1
2εcdefCab

ef . (3.51)

It turns out that these dual tensors obey the relations

∼Cabcd ≡ C ∼
abcd,

∼Eabcd ≡ −E ∼
abcd,

∼Gabcd ≡ G∼
abcd. (3.52)

For algebraic classification (see Chapters 4, 5 and 9) it is convenient to
introduce the complex tensors

C∗
abcd ≡ Cabcd + iC ∼

abcd,
∼C∗

abcd = −iC∗
abcd, (3.53)

E∗
abcd ≡ Eabcd + iE ∼

abcd,
∼E∗

abcd = +iE∗
abcd, (3.54)

G∗
abcd ≡ Gabcd + iG∼

abcd,
∼G∗

abcd = −iG∗
abcd. (3.55)

The ‘unit tensor’ defined by

Iabcd ≡ 1
4(gabcd + iεabcd) = 1

2(VabUcd + UabVcd)− 1
4WabWcd (3.56)

(so that IabcdZ
αcd = Zα

ab, cp. (3.40), and G∗
abcd = (R/3)Iabcd) is self-

dual with respect to both pairs of bivector indices. Therefore Iabcd admits
the double expansion, given in (3.56), in terms of the basis {Zα}. The
decompositions

C∗
abcd = cαβZ

α
abZ

β
cd, E∗

abcd = eαβZ
α
abZ

β
cd, (3.57)

are valid for the tensors defined by (3.53), (3.54).
Because of the tracelessness of C∗

abcd we have the explicit expansion

1
2C

∗
abcd = Ψ0UabUcd + Ψ1(UabWcd + WabUcd) + Ψ2(VabUcd + UabVcd

+ WabWcd) + Ψ3(VabWcd + WabVcd) + Ψ4VabVcd, (3.58)

the five complex coefficients Ψ0, . . . ,Ψ4, being defined by

Ψ0 ≡ Cabcdk
ambkcmd, Ψ3 ≡ Cabcdk

albm cld,

Ψ1 ≡ Cabcdk
albkcmd, Ψ4 ≡ Cabcdm

albm cld,

Ψ2 ≡ Cabcdk
ambm cl d = 1

2Cabcdk
alb(kcld −mcm d).

(3.59)
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In these definitions, C∗
abcd/2 may be substituted for Cabcd. The vari-

ous terms in (3.58) admit the following physical interpretation (Szekeres
1965): the Ψ4-term represents a transverse wave in the k-direction, the
Ψ3-term a longitudinal wave component, and the Ψ2-term a ‘Coulomb’
component; the Ψ0- and Ψ1-terms represent transverse and longitudinal
wave components in the l-direction.

With the aid of (3.42) we find the transformation laws of Ψ0, . . . ,Ψ4

under the null rotations (3.14), (3.15):

l fixed: Ψ′
4 = Ψ4, Ψ′

3 = Ψ3 + EΨ4,

Ψ′
2 = Ψ2 + 2EΨ3 + E2Ψ4,

(3.60)
Ψ′
1 = Ψ1 + 3EΨ2 + 3E2Ψ3 + E3Ψ4,

Ψ′
0 = Ψ0 + 4EΨ1 + 6E2Ψ2 + 4E3Ψ3 + E4Ψ4.

k fixed: Ψ′
0 = Ψ0, Ψ′

1 = Ψ1 + BΨ0,

Ψ′
2 = Ψ2 + 2BΨ1 + B

2Ψ0,
(3.61)

Ψ′
3 = Ψ3 + 3BΨ2 + 3B 2Ψ1 + B

3Ψ0,

Ψ′
4 = Ψ4 + 4BΨ3 + 6B 2Ψ2 + 4B 3Ψ1 + B

4Ψ0.

Generalizing (3.37), (3.38), we can express C∗
abcd in terms of the complex

tensor
−Qab ≡ C∗

abcdu
bud ≡ Eac + iBac, ucu

c = −1, (3.62)

according to the formula

−1
2C

∗
abcd = 4u[aQb][duc] + ga[cQd]b − gb[cQd]a

+ iεabefueu[cQd]
f + iεcdefueu[aQb]

f . (3.63)

Eac and Bac respectively denote the ‘electric’ and ‘magnetic’ parts of the
Weyl tensor for the given four-velocity ua (Matte 1953). The components
Qab satisfy the relations

Qa
a = 0, Qab = Qba, Qabu

b = 0, (3.64)

and can be considered as a symmetric complex (3×3) matrix Q with zero
trace. Using (3.40), (3.58) and (3.62), and expressing the 3×3 matrix with
respect to the orthonormal basis given by (3.12),

Q =


Ψ2 − 1

2(Ψ0 + Ψ4) 1
2 i(Ψ4 −Ψ0) Ψ1 −Ψ3

1
2 i(Ψ4 −Ψ0) Ψ2 + 1

2(Ψ0 + Ψ4) i(Ψ1 + Ψ3)

Ψ1 −Ψ3 i(Ψ1 + Ψ3) −2Ψ2

 . (3.65)
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The matrix Q determines ten real numbers corresponding to the ten in-
dependent components of the Weyl tensor.

3.6 Spinors

Spinor formalism provides a very compact and elegant framework for nu-
merous calculations in general relativity, e.g. algebraic classification of the
Weyl tensor (Chapter 4) and the Newman-Penrose technique (Chapter 7).

It can be shown that the (connected) group SL(2,C) of linear transfor-
mations in two complex dimensions, with determinant of modulus 1, has
a two-to-one homomorphism onto the group L↑

+. The space on which
SL(2,C) acts is called spinor space, and its elements are (one-index)
spinors with components ϕA. Spinor indices like A obviously range over
1 and 2, or, commonly, 0 and 1. Every proper Lorentz transformation de-
fines an element of SL(2,C) up to overall sign. Since the defining property
of L↑

+ (within all linear transformations in four dimensions) is that it is the
(connected) group preserving the Minkowski metric, and since SL(2,C)
is defined (within all linear transformations of two complex dimensions)
as the (connected) group that preserves determinants, we expect that the
determinant-forming 2-form in spin space, with components

εAB =
(

0 1
−1 0

)
= εAB, (3.66)

will play the role of the metric. Spinor indices are raised and lowered
according to the rule

ϕA = εABϕB ⇔ ϕA = ϕBεBA. (3.67)

Note that ϕAε
AB �= εBAϕA. The scalar product of two spinors (with

components ϕA and ψA) is then defined by

εABϕAψB = ϕAψ
A = −ϕAψA. (3.68)

If ϕB transforms under SA
B ∈ SL(2,C), the complex conjugate spinor

ϕḂ must, for consistency, transform under the complex conjugate S
Ȧ
Ḃ,

and similarly ϕA transforms under the inverse of SA
B. Dotted indices are

used to indicate that the complex conjugate transformations are to be
applied. The order of dotted and undotted indices is clearly irrelevant.
One can obviously build multi-index spinors, in just the same way that
tensors are developed from vectors.

It is now natural to seek a correspondence between the vectors v of
Minkowski space and spinors. To do so we shall need not one-index
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spinors, but two-index spinors vAḂ, because the sign ambiguity arising
from the map of SL(2,C) to L↑

+ must be removed and it must be possible
to relate the length of a vector in the Minkowski metric (quadratic in
the components va) to a determinant (also quadratic in the entries of a
(2×2) matrix). Such a map will be given by any set of spin tensors σaAḂ
satisfying

σaAḂσaCḊ = −δC
A
δḊ
Ḃ

⇔ σaAḂσbAḂ = −δba. (3.69)

Then va corresponds to vAḂ by

va = −σaAḂvAḂ ⇔ vAḂ = σa
AḂva. (3.70)

(Note that the formulae here exhibit some sign changes as compared with
Penrose (1960), due to a change of convention about the signature of the
space-time metric.) The spin tensors will be Hermitian,

σa
AḂ = σaBȦ ≡ σa

AḂ. (3.71)

Given a null vector, its spinor counterpart must be an outer product
ζAηḂ since the matrix vAḂ must have determinant zero and thus be of
rank 1. Given a null tetrad (m,m, l,k) and a pair of basis spinors oA, ιA

such that oAι
A = 1 (a dyad), one can choose the map σa

AḂ so that in
the orthonormal tetrad associated with (m,m, l,k) by (3.12), and in the
spin basis consisting of oA, ιA themselves (so oA = (1, 0) and ιA = (0, 1)),
one has

σ1
AḂ =

1√
2

(
0 1
1 0

)
, σ2

AḂ =
1√
2

(
0 i
−i 0

)
,

σ3
AḂ =

1√
2

(
1 0
0 −1

)
, σ4

AḂ =
1√
2

(
1 0
0 1

)
.

(3.72)

Then

ma ↔ oAῑḂ, m a ↔ ιAōḂ, la ↔ ιAῑḂ, ka ↔ oAōḂ. (3.73)

One can check from (3.69), (3.70) that this is consistent with the normal-
ization of (m,m, l,k). Conversely (3.73) could be used to define a dyad
so that (3.72) arises.

The null rotations (3.14), (3.15) correspond to the transformations

o′A = oA + EιA, ι′A = ιA + BoA. (3.74)

In Table 3.1 we give some examples of spinor equivalents of tensors, con-
structed according to the relation (3.70). The spinor form of the de-
composition (3.45) of the curvature tensor is obtained from the spinor
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Table 3.1. Examples of spinor equivalents, defined as in (3.70)

Indices a, b, c, d correspond to index pairs AẆ , BẊ, CẎ , DŻ respectively.

Tensor Spinor equivalent
Metric gab: εABεẆ Ẋ ; εAB from (3.66)

Levi-Civita tensor εabcd: εAẆBẊ
CẎ DŻ ≡ i(δA

CδB
DδẆ

ŻδẊ
Ẏ

−δA
DδB

CδẆ
Ẏ δẊ

Ż)

Null vector na: ζAηẆ
Real null vector, na = na ±ζAζẆ

Bivector Xab: εABζẆ Ẋ + εẆ ẊηAB, η[AB] = 0 = ζ [ȦḂ]

Real bivector Fab: εABΦẆ Ẋ + εẆ ẊΦAB, Φ[AB] = 0

Dual bivector F̃ab: i(εABΦẆ Ẋ − εẆ ẊΦAB)
Complex self-dual

bivector F ∗
ab: 2ΦABεẆ Ẋ

Vab, Uab, Wab: oAoBεẆ Ẋ , ιAιBεẆ Ẋ , −2o(AιB)εẆ Ẋ

Curvature tensor Rabcd: χABCDεẆ ẊεẎ Ż + εABεCDχẆ ẊẎ Ż

+ ΦABẎ ŻεCDεẆ Ẋ + εABεẎ ŻΦẆ ẊCD,

ΦABĊḊ = Φ(AB)(ĊḊ) = ΦCDȦḂ = ΦABĊḊ

Weyl tensor Cabcd: ΨABCDεẆ ẊεẎ Ż + εABεCDΨẆ ẊẎ Ż ,
ΨABCD = χ(ABCD)

C∗
abcd: 2ΨABCDεẆ ẊεẎ Ż

Traceless Ricci tensor Sab: 2ΦABẆẊ

equivalent of Rabcd by using the relation

χ
ABCD = ΨABCD + 1

12R(εACεBD + εADεBC). (3.75)

The reason why spinors are frequently used in general relativity is that
the spinor formalism simplifies some relations involving null vectors and
bivectors. For example, Table 3.1 shows that the Weyl tensor has a com-
pletely symmetric spinor equivalent ΨABCD while the corresponding ten-
sorial symmetry relations (3.26), (3.49) are much more complicated. In ad-
dition, the definitions (3.59) of the complex tetrad components Ψ0, . . . ,Ψ4
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are very symmetric in the spinor calculus:

Ψ0 = ΨABCDoAoBoCoD, Ψ1 = ΨABCDoAoBoCιD,

Ψ2 = ΨABCDoAoBιCιD, Ψ3 = ΨABCDoAιBιCιD,

Ψ4 = ΨABCDιAιBιCιD.

(3.76)

Up to now we have been concerned only with algebraic relations. The
covariant derivatives also have their spinor equivalents:

∇AḂ = σaAḂ∇a ⇔ ∇a = −σa
AḂ∇AḂ. (3.77)

The Bianchi identities (2.81), written as

Rab[cd;e] = 0 ⇔ R∼
abcd

;d = 0 (3.78)

(Lanczos 1962), when transcribed into spinor language become

∇D
ĖχABCD = ∇C

ḞΦABĖḞ . (3.79)

For vacuum fields (Rab = 0), in virtue of (3.75), these equations take the
simpler form

∇D
ĖΨABCD = 0. (3.80)

The Weyl tensor Cabcd can be written in terms of the derivatives of a
third order tensor Labc, the Lanczos potential (Lanczos 1962). The spinor
equivalent of this relation reads

ΨABCD = ∇D
ṠLABCṠ . (3.81)

In vacuum, Labc satisfies a wave equation, see Illge (1988), Dolan and
Kim (1994) and Edgar and Höglund (1997) for references.

The directional derivatives along the null tetrad (m,m, l,k) are de-
noted by the symbols

D ≡ ka∇a = −oAōḂ∇AḂ, ∆ ≡ la∇a = −ιAῑḂ∇AḂ,
(3.82)

δ ≡ ma∇a = −oAῑḂ∇AḂ, δ̄ ≡ m a∇a = −ιAōḂ∇AḂ.

Ref.: For spinors see Penrose and Rindler (1984, 1986) and Bichteler
(1964).

3.7 Conformal transformations

A special type of map of metric spaces is given by dilatation (or
contraction) of all lengths by a common factor which varies from point
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to point,
ĝab = e2Ugab, ĝab = e−2Ugab, U = U(xn). (3.83)

The connection coefficients and the covariant derivative of a 1-form σ are
transformed to

Γ̂c
ab = Γc

ab + 2δc(aU,b) − gabU
,c, U ,c ≡ gcdU,d,

∇̂aσ̂b = ∇aσb − U,bσa − U,aσb + gabU
,cσc, σ̂a = σa.

(3.84)

The curvature tensors of the two spaces with metrics ĝab and gab are
connected by the relation

e2U R̂da
bc = Rda

bc + 4Y [a[b δ
d]
c] ,

Y a
b ≡ U ,a

;b − U ,aU,b + 1
2δ

a
bU,eU

,e ,
(3.85)

which holds for n-dimensional Riemannian spaces V̂n and Vn (the covari-
ant derivative is taken with respect to gab). From (3.85) one obtains the
equation

R̂ab = Rab + (2− n)Yab − gabYc
c (3.86)

for the Ricci tensors in V̂n and Vn. In three dimensions, this equation
takes the form

R̂αβ = Rαβ − U,α;β + U,αU,β − gαβ(U,γ
;γ + U,γU

,γ). (3.87)

The application of (3.86) to a (flat) space V2 yields

dŝ2 = e2U (dx2 + dy2) : R̂AB = KĝAB, K = −e−2UU ,A
,A. (3.88)

A space is called conformally flat if it can be related, by a conformal
transformation, to flat space. A space V2 is always conformally flat. A
space V3 is conformally flat if and only if the Cotton tensor

Ca
bc ≡ 2(Ra

[b − 1
4Rδa[b);c] (3.89)

vanishes, see Schouten (1954); York (1971) defined a related conformally
invariant tensor density. A space Vn, n > 3, is conformally flat if and only
if the conformal tensor

Cabcd ≡ Rabcd + R(gacgbd − gadgbc)/(n− 1)(n− 2)

− (gacRbd − gbcRad + gbdRac − gadRbc)/(n− 2) (3.90)

(for V4, see (3.50)) vanishes. The conformal tensor components Ca
bcd are

unchanged by (3.83).
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The special case U = const of (3.83), i.e. ĝab = k2gab with constant k,
corresponds to a general symmetry of Einstein’s field equations (1.1), see
§10.3: applied to an already known solution, it may lead to a (trivial) new
solution, related to the old by a homothety, and often described by the
same metric form with rescaled values of parameters such as mass.

Other than such trivial homothetic relations, attempts to generate one
solution from another by conformal transformation are restricted for va-
cuum and Einstein spaces by:

Theorem 3.1 (Brinkmann’s theorem). If two distinct Einstein space-
times are properly conformally related, then they are either (a) both va-
cuum pp-waves (see Chapter 24) or (b) both conformally flat, one being
flat and the other a de Sitter space-time (Brinkmann 1925).

Daftardar-Gejji (1998) has generalized this theorem to the cases where
the two Einstein tensors are equal and where they differ by a cosmolog-
ical constant term. In the former case, both spaces are (not necessarily
vacuum) pp-waves; in the latter, for perfect fluids with µ �= 0, both spaces
are Robertson–Walker (see Chapter 14) with equations of state µ+3p = 0
or µ = p. Further results for other energy-momentum tensors are summa-
rized in §10.11.2.

3.8 Discontinuities and junction conditions

In the preceding discussion we have not pointed out differentiability re-
quirements: in practice exact solutions are almost always given in a form
which is analytic or at least C∞. However, physical models often require
two or more such regions to be joined across a hypersurface of disconti-
nuity, for example at the boundary between a star and interstellar space.
This book does not attempt a systematic discussion of such possible solu-
tions, but in this section we briefly introduce the conditions which must be
imposed at such a boundary. We shall assume an elementary knowledge
of distribution theory.

In general a jump discontinuity in the metric would, by (3.20), lead
to a δ-function in the connection and thence, by (2.79), to products of
δ-functions in the curvature, which are not among the usually allowed
distributions. So attention is usually restricted to the case where the con-
nection has at worst a jump discontinuity and the curvature at worst a
δ-function (see e.g. Taub (1980): for methods that go beyond this restric-
tion see e.g. Grosser et al. (2000) and references therein). To meet this
requirement the space-time manifold must be at least C1 and piecewise
C3. If there is a δ-function, it models a thin shell or surface layer of matter
or an impulsive gravitational wave.
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We consider manifolds V + and V − with respective metrics g+ and g−
and bounding hypersurfaces Σ+ and Σ− which are to be identified as
a single hypersurface Σ in space-time. In either V + or V −, there is a
map Φ : Σ → V , so one can define the first fundamental form on Σ by
the pullback Φ∗(g) (see §2.5) of the metric. The first requirement at a
boundary is that the first fundamental forms calculated on the two sides
are the same. This enables us to pass from a coordinate-free description
to one in terms of coordinates: Mars and Senovilla (1993b), generalizing
work of Clarke and Dray (1987), showed that if V +, V − and Φ are C3,
g+ and g− are C2 and the first fundamental forms induced on Σ are the
same, then there is a C1 atlas of charts covering the whole space-time and
a continuous metric on the whole space-time which coincides with g+ in
V + and with g− in V −. In the subsequent discussion, use of such an atlas
is assumed.

In general Σ may be null in some regions and non-null elsewhere. Older
literature treats only cases where Σ has the same character everywhere.
The null case is more awkward because the first fundamental form is
degenerate and the vector normal to Σ is tangent to Σ. Here we follow
Mars and Senovilla (1993b) and treat all cases simultaneously by using
a vector n normal to Σ (taken in the direction from V − to V +) and a
suitably smooth ‘rigging’ vector field l on Σ with the property n · l = 1;
for non-null surfaces n and l (or −l) can both be taken to be the unit
normal. Define the tensor H = Φ∗(∇l), i.e.

Hab = P c
aP

d
bld;c, (3.91)

where P a
b = δab − lanb projects into Σ. The second fundamental form K

is given by the same formula (3.91) with n in place of l. Then if there
is a discontinuity [Hab] = (Hab)|V+

− (Hab)|V− , the Riemann tensor has a
δ-function singularity with coefficient

Qa
bcd = 2{na([Hb[c]nd])− nb([Ha

[c]nd])}, (3.92)

which for the non-null case can easily be written in terms of the second
fundamental form [Kab] = (n ·n)[Hab]. The resulting coefficient for the δ-
function part of the Einstein tensor (the energy-momentum of the surface
layer) is

τbc = 2na[Ha(b]nc) − (n · n)[Hbc]− [Ha
a]nbnc − 1

2gbc|ΣH, (3.93)

where H = 2[Hab]nanb−2(n·n)[Ha
a]; this can again readily be expressed,

in the non-null case, in terms of Kab.
The Einstein tensor has no δ-function part (no surface layer) if and only

if n is non-null and [Hab] = 0, or n is null, na[Hab] = 0 and [Ha
a] = 0.
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If [Hab] = 0 the possible (step function) discontinuities in the Riemann
tensor satisfy na[Gab] = 0 = na[Ca

bcd]P c
eP

d
f and can be characterized

by specific Riemann tensor components (Mars and Senovilla 1993b).
In the non-null case, the required conditions for a matching without

a δ-function part in terms of the equality of first and second fundamen-
tal forms were given first by Darmois (1927) (a formulation in terms of
the connection in C1 coordinates had earlier been given by Sen (1924)).
They guarantee the existence of coordinates, e.g. Gaussian normal co-
ordinates on both sides of Σ, in which the metric and its first deriva-
tive are continuous, which is the form of junction condition given by
Lichnerowicz (1955), and similarly the existence of coordinates in which
the conditions of O’Brien and Synge (1952) are true. The coordinate forms
(Lichnerowicz or O’Brien and Synge) imply the Darmois form. In that
sense the formulations are equivalent (Bonnor and Vickers 1981). How-
ever, if other coordinates are used the O’Brien and Synge conditions, for
example, give additional, and physically unnecessary, restrictions.

For the null case, the corresponding restriction of the above results has
been developed in Taub (1980), Clarke and Dray (1987), Barrabés (1989)
and Barrabés and Israel (1991).

Junction conditions are hard to use in exact solutions except when
the hypersurface Σ shares a symmetry with the space-time. Most of the
applications have been to cases with spherical, cylindrical or plane sym-
metry. The best known example in the non-null case is the Einstein and
Straus (1945) or ‘Swiss cheese’ model, in which the Schwarzschild solution
(15.19) is matched to a Friedmann Robertson–Walker solution (14.6). For
some examples in the null case see Chapter 25 on colliding plane waves.

Note that if two space-times M1 and M2 are each divided into two
regions, giving V +1 , V −

1 , V +2 and V −
2 , and if V +1 is matched with V −

2 , then
the same conditions will match V +2 with V −

1 .
The conditions stated above concern the gravitational field, and thus,

indirectly, the total energy-momentum (see Chapter 5). However, in non-
vacuum space-times, the matter content will have its own field equations
leading to additional boundary conditions which also have to be imposed.
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The Petrov classification

There are two approaches to the classification of the Weyl tensor – the
eigenvalue problem for the matrix Q and the principal null directions –
which are completely equivalent. This classification enables one to divide
the gravitational fields in an invariant way into distinct types: the Petrov
(1954) types (we use this term although other authors obtained analogous
results, see Géhéniau (1957), Pirani (1957), Debever (1959, 1964), Bel
(1959) and Penrose (1960)). The connection between the Penrose and
Debever approaches has been discussed by Adler and Sheffield (1973) and
Ludwig (1969). For introductions to the subject, see also Synge (1964)
and Pirani (1965).

4.1 The eigenvalue problem

We are interested in invariant characterizations of a gravitational field,
independent of any special coordinate system. For this purpose we inves-
tigate the algebraic structure of the tensors Cabcd and Eabcd introduced in
(3.45)–(3.48). The classification of Sab (which is equivalent to Eabcd) will
be treated in Chapter 5. Here we consider the classification of the Weyl
tensor Cabcd (Petrov classification).

The starting point is the eigenvalue equation

1
2CabcdX

cd = λXab (4.1)

with eigenbivectors Xab and eigenvalues λ. With each solution (Xab, λ)
of this eigenvalue equation is associated its complex conjugate solution
(Xab, λ). Without loss of generality we can rewrite (4.1) in the form

1
4C

∗
abcdX

∗cd = λX∗ab . (4.2)

48
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We note that an analogous equation with Eabcd in place of Cabcd would
be inconsistent because of the property (3.54).

Multiplying the eigenvalue equation (4.2) by a timelike unit vector ua,
and taking into account the definitions (3.37), (3.62), and the expressions
(3.38), (3.63), we reduce the eigenvalue problem to the simple form

QabX
b = λXa, (4.3)

which is completely equivalent to the original formulation. In the three-
dimensional vector notation suggested by (3.64) we write this as

Qr = λr, (4.4)

i.e. we now have to determine the eigenvectors r and the eigenvalues λ
of the complex symmetric and traceless (3 × 3) matrix Q: from the four-
dimensional Lorentz frame we have passed to a three-dimensional complex
space with Euclidean metric.

The group SO(3, C) of proper orthogonal transformations in this com-
plex 3-space is isomorphic to the group L↑

+ of proper orthochronous
Lorentz transformations. The transformation matrices of these two
groups,

SO(3, C) : Xβ′ = Aα
β′Xα, Aα

γ′Aβ
γ′ = δαβ ,

(4.5)
L↑
+ : X∗

a′b′ = Λc
a′Λd

b′X
∗
cd, Λa

c′Λb
c′ = δab ,

are related by the formula

Aα
β′ = Λα

β′Λ44′ − Λ4β′Λα
4′ + iεαγδΛγ

β′Λδ
4′ , (4.6)

which follows from (3.39): each Lorentz transformation induces a unique
orthogonal transformation in the complex 3-space. The isomorphism is
explicitly verified in Synge (1964).

The eigenvalue problem (4.4) leads to the characteristic equation
det(Q− λI) = 0, and determines the orders [m1, . . . ,mk] of the elemen-
tary divisors (λ−λ1)m1 , . . . , (λ−λk)mk , m1+ · · ·+mk = 3, belonging to
the eigenvalues λ1, . . . , λk.

4.2 The Petrov types

The distinct algebraic structures studied by Petrov (1954) (see also Petrov
(1966)) are characterized by the elementary divisors and multiplicities of
the eigenvalues discussed above; the results are displayed in Table 4.1.
The algebraic type of the matrix Q provides an invariant characteriza-
tion of the gravitational field at a given point p; these characteristics
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Table 4.1. The Petrov types

Round brackets indicate that the corresponding eigenvalues coincide, e.g.
[(11) 1] means: simple elementary divisors, and λ1 = λ2 �= λ3.

Petrov Orders of the Matrix criterion
types elementary divisors

[m1, . . . , mk]

I [111] (Q− λ1I)(Q− λ2I)(Q− λ3I) = 0

D [(11) 1] (Q+ 1
2λI)(Q− λI) = 0

II [2 1] (Q+ 1
2λI)2(Q− λI) = 0

N [(2 1)] Q2 = 0

III [3] Q3 = 0

O Q = 0

are independent of the coordinate system and of the choice of the tetrad
at p.

Table 4.1 also gives matrix criteria for the distinct Petrov types. At a
given point p, the field is of the Petrov type corresponding, in Table 4.1,
to the most restrictive of the criteria which the matrix Q satisfies; for
instance

Type III ⇔ Q3 = 0, Q2 �= 0. (4.7)

A real (or purely imaginary) matrix Q has simple elementary divisors
(Petrov types I , D or O). No vacuum solution with a purely magnetic
Weyl tensor is known (McIntosh et al. 1994).

In order to determine the Petrov type of a given metric we can calculate
the complex matrix Q with respect to an arbitrary orthonormal basis
{Ea} and use the invariant criteria listed in Table 4.1 (see also §9.3).

Gravitational fields of Petrov types D , II , N , III , and O are said to be
algebraically special .

Lorentz rotations, or, equivalently, elements of the group SO(3, C), can
be applied to find simple normal forms for the various types (Table 4.2).
The normal forms of Q and Cabcd are uniquely associated.

Apart from reflections, which are not considered here, the basis {Ea}
(see (3.7)) of the normal form of a non-degenerate Petrov type (I , distinct
λα; II , λ �= 0; or III ) is uniquely determined; for the non-degenerate
types there is no subgroup of L↑

+ preserving the corresponding normal
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forms given in Table 4.2. We call the uniquely determined basis {Ea} the
Weyl principal tetrad.

In the case of Petrov type I we have spacelike and timelike 2-planes
(‘blades’) associated with the complex self-dual eigenbivectors

V −U = 2(E[4E1] + iE[2E3]),

i(V +U) = 2(E[4E2] + iE[3E1]), (4.8)

W = 2(E[4E3] + iE[1E2]),

and the intersections of these 2-planes determine the principal tetrad.
The principal tetrad is only partially determined by the metric for the

two degenerate Petrov types D (I , λ1 = λ2), and N (II , λ = 0). It is not
difficult to find the remaining subgroups of L↑

+ which preserve the normal
forms

C∗
abcd = −1

2λ(gabcd + iεabcd)− 3
2λWabWcd for type D , (4.9)

C∗
abcd = −4VabVcd for type N . (4.10)

In type D metrics this invariance group consists of special Lorentz trans-
formations in the E3–E4-plane and spatial rotations in the E1–E2-plane.
In terms of the complex null tetrad, these transformations are given by
(3.16), (3.17). In type N metrics the invariance group with V ′

ab = Vab is
just the two-parameter subgroup (3.15).

The spinor form (§3.6) of the eigenvalue equation (4.2) with the eigen-
bivector X∗

ab ↔ ηABεĊḊ reads

ΨABCDηCD = ληAB. (4.11)

The invariants

I ≡ 1
2ΨABCDΨABCD = 1

2(λ21 + λ22 + λ23),
(4.12)

J ≡ 1
6ΨABCDΨCDEFΨEF

AB = 1
6(λ31 + λ32 + λ33) = 1

2λ1λ2λ3,

of the Weyl tensor are useful in Petrov classification, since the eigenvalues
satisfy λ3 − Iλ − 2J = 0; algebraically special fields (all Petrov types
except type I ) satisfy the relation

I3 = 27J2 (4.13)

and, in particular, for the types III , N and O both invariants (4.12)
vanish, I = J = 0.
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In terms of the electric and the magnetic parts (3.62) of the Weyl tensor,
the invariant I can be written as

I = 1
2(EabEab −BabBab) + iEabBab (4.14)

(Matte 1953).
Next we give two theorems valid for vacuum fields (Rab = 0).

Theorem 4.1 A type I vacuum solution for which one of the eigenvalues
λα of the Weyl tensor vanishes over an open region (so that J = 0 in that
region) must be flat space-time (Brans 1975).

Theorem 4.2 Vacuum fields satisfying the equation Rabcd;e
e = αRabcd

are either type N (α = 0) or type D (α �= 0) (Zakharov 1965, 1970).

The proof of Theorem 4.2 follows immediately from Rab = 0 and the
identity (Zakharov 1972)

Rabcd;m
m = Rm

nabR
n
mcd + 2(Rm

adnR
n
cbm −Rm

bdnR
n
cam) (4.15)

written down with respect to a principal tetrad (cp. the normal forms in
Table 4.2).

4.3 Principal null directions and determination of the Petrov
types

For Petrov types II and III , the real and imaginary parts of the eigen-
bivector Vab = 2k[amb] represent 2-spaces containing the real null vector
k. The normal forms (Table 4.2) for these types are adapted to this pre-
ferred null vector, which is significant in what follows.

The classification based on the distinct possible solutions of the eigen-
value problem (4.4) is equivalent to the characterization of the Weyl (con-
formal) tensor in terms of principal null directions k with the property
(Penrose 1960)

k[eCa]bc[dkf ]k
bkc = 0 ⇔ Ψ0 ≡ Cabcdk

ambkcmd = 0. (4.16)

There are at most four such null vectors; to determine them, we apply
the inverse of the null rotation (3.14) to an arbitrary complex null tetrad
(m′,m′, l′,k′) defined by (3.8). By this means the null vector k′ can be
transformed into any other real null vector except l′. The coefficients
Ψ0, . . . ,Ψ4 defined by (3.59) then undergo the transformations (3.60), in
particular,

Ψ0 = Ψ0
′ − 4EΨ1

′ + 6E2Ψ2
′ − 4E3Ψ3

′ + E4Ψ4
′, (4.17)
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and so, from the condition (4.16), we obtain an algebraic equation of at
most fourth order for the complex number E:

Ψ0
′ − 4EΨ1

′ + 6E2Ψ2
′ − 4E3Ψ3

′ + E4Ψ4
′ = 0. (4.18)

The invariants (4.12) are given by

I ≡ Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ 2
2 ,

J ≡
∣∣∣∣∣∣
Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

Ψ2 Ψ1 Ψ0

∣∣∣∣∣∣ . (4.19)

Starting with the normal forms for the various Petrov types given in
Table 4.2 and in (4.9), (4.10), we can calculate the roots E given in
Table 4.3. Conversely, by solving (4.18) for E for a given Weyl tensor,
we can determine its Petrov type.

The four distinct principal null directions of a Petrov type I space
need not span a four-dimensional space (Trümper 1965). If there exists an
observer (with four-velocity ua) who sees the Weyl tensor as purely electric
or purely magnetic, cp. §3.5, then (McIntosh et al. 1994) the principal null
directions are linearly dependent, so (McIntosh and Arianrhod 1990a) the
invariant I defined in (4.12) is real and M = I3/J2 − 6 is non-negative
(possibly infinite). In the pure electric case I is positive and J is real, while
in the pure magnetic case I is negative and J is imaginary. One may note
that by conformal transformation one can, from a given metric with pure
electric or magnetic Weyl tensor, construct others, with different Ricci
tensors.

In types D and III there is an additional principal null direction l not
obtainable with the aid of the null rotations (3.14); l fulfils the condition

l[eCa]bc[dlf ]l
blc = 0 ⇐⇒ Ψ4 ≡ Cabcdl

am blcm d = 0. (4.20)

In an arbitrarily given tetrad we can determine the Petrov type by
determining the roots of the quartic algebraic equation (4.18). If the order
of this equation is (4−m), then there are (4−m) principal null directions k,
and l represents an m-fold principal null direction. The Petrov type can be
obtained immediately, by inspection of Table 4.3, once the multiplicities
of the roots of (4.18) are known. An equivalent method for determining
the Petrov type is based on the eigenvalue equation (4.4). One can use
the invariant criteria for the matrix Q which are listed in Table 4.1, Q
being calculated with respect to an arbitrary orthonormal basis {Ea}.
For further discussion and references to efficient methods of computation
see Chapter 9.
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Table 4.3. The roots of the algebraic equation (4.18) and their multiplicities

The corresponding multiplicities of the principal null directions are
symbolically depicted on the right of this table.

Type Roots E Multiplicities

I
√
λ2 + 2λ1 ±

√
λ1 + 2λ2√

λ1 − λ2
(1,1,1,1) ✻

✲✁
✁
✁✕

✑
✑✑✸

D 0, ∞ (2,2)
✡✡❏❏ ✘✘

✄✄
�

��
�

II 0, ± i
√
3
2λ (2,1,1)

✡✡❏❏


✼

✲

III 0, ∞ (3,1)
✡✡❏❏


✼

N 0 (4)
✡✡❏❏

A Weyl tensor is said to be algebraically special if it admits at least
one multiple principal null direction (the multiplicity of a null direction
is equal to the multiplicity of the corresponding root of the algebraic
equation (4.18)).

One can show the validity of the following equations (Jordan et al.
1961)

k[eCa]bc[dkf ]k
bkc = 0 ⇐⇒ Ψ0 = 0, Ψ1 �= 0, (4.21)

Cabc[dkf ]k
bkc = 0 ⇐⇒ Ψ0 = Ψ1 = 0, Ψ2 �= 0, (4.22)

Cabc[dkf ]k
c = 0 ⇐⇒ Ψ0 = Ψ1 = Ψ2 = 0, Ψ3 �= 0, (4.23)

Cabcdk
c = 0 ⇐⇒ Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0, Ψ4 �= 0, (4.24)

for principal null directions k of multiplicity 1, 2, 3 and 4 respectively.
An equivalent formulation of the criterion (4.22) is

kakcC∗
abcd = λkbkd, λ �= 0. (4.25)
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Fig. 4.1. Penrose diagram

Any two of the following conditions for a null direction k imply the third
(Hall 1973)

Cabc[dkf ]k
bkc = 0, Rabc[dkf ]k

bkc = 0, Ra[bkc]k
a = 0. (4.26)

The last condition in (4.26) means that k is a Ricci eigendirection (§5.1).
Type D is characterized by the existence of two double principal null

directions, k and l,

Cabc[dkf ]k
bkc = 0 ⇐⇒ Ψ0 = Ψ1 = 0, Ψ2 �= 0,

Cabc[dlf ]l
blc = 0 ⇐⇒ Ψ4 = Ψ3 = 0, Ψ2 �= 0.

(4.27)

Type O (zero Weyl tensor) does not single out any null directions.
In the Penrose diagram (Fig. 4.1) the arrows point in the direction of

increasing multiplicity of the principal null directions; every arrow indi-
cates one additional degeneration.

The classification in terms of principal null directions can be formu-
lated in terms of spinors (Penrose 1960). The completely symmetric spinor
ΨABCD can be written as a symmetrized product of one-index spinors,
which are uniquely determined apart from factors. The proof is an ap-
plication of the fundamental theorem of algebra: any polynomial may be
factorized over C into linear forms,

ΨABCDζAζBζCζD = (oAζA)(βBζB)(γCζC)(ιDζD). (4.28)

The Petrov types are then characterized by the criteria:

Type I : ΨABCD ∼ o(AβBγCιD),

D : ΨABCD ∼ o(AoBιCιD),

II : ΨABCD ∼ o(AoBγCιD),

III : ΨABCD ∼ o(AoBoCιD),

N : ΨABCD ∼ o(AoBoCoD)

(4.29)

(ka ←→ oAōḂ, la ←→ ιAῑḂ).



5
Classification of the Ricci tensor and the

energy-momentum tensor

5.1 The algebraic types of the Ricci tensor

In §3.5 we decomposed the curvature tensor into irreducible parts. The
invariant classification of the Weyl tensor was treated in Chapter 4. Now
we consider the algebraic classification of the remaining part, the traceless
Ricci tensor Sab.

In a Riemannian space, every second-order symmetric tensor defines a
linear mapping which takes a vector v into another vector w. To classify
Sab, it is natural to examine the eigenvalue equation

Sa
bv

b = λ̂va. (5.1)

Because a term proportional to gab merely shifts all eigenvalues by the
same amount, we may as well consider the eigenvalue equation for the
Ricci tensor Ra

b

Ra
bv

b = λva; λ = λ̂ + 1
4R. (5.2)

In a positive definite metric, a real symmetric matrix can always be
diagonalized by a real orthogonal transformation. However, the Lorentz
metric gab leads to a more complicated algebraic structure; the elemen-
tary divisors can be non-simple, and the eigenvalues can be complex. The
eigenvalue equation (5.2) determines the orders m1, . . . ,mk of the ele-
mentary divisors belonging to the various eigenvalues. The Segre notation
(1884), which also appears in Weiler (1874), gives just these orders, and
round brackets indicate that the corresponding eigenvalues coincide. If
two eigenvalues are complex conjugates they are symbolized by Z and Z.

The Plebański notation (1964) indicates whether the space spanned by
the eigenvectors belonging to a certain real eigenvalue is timelike (T ),
null (N) or spacelike (S). The multiplicity of the eigenvalue is written in
front of this symbol. Finally the orders of the corresponding factors in

57
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the minimal polynomial for the Ricci tensor (considered as a matrix) are
added as indices enclosed in brackets.

Table 5.1 gives a complete list of all possible types for the Ricci tensor
Ra

b of a space-time in both Segre and Plebański notation. In accordance
with the conventions established in §§3.1 and 3.2 we have arranged the
eigenvalues in such an order that those whose corresponding eigenvectors
are null or timelike (or complex) appear last, and we have used a comma
to separate these from the eigenvalues with spacelike eigenvectors. The
table also gives the possible physical interpretations of the types discussed
in detail in §5.2. Further refinements of the classification given are possible
(see e.g. Ludwig and Scanlan (1971)). A limiting diagram for the Segre
types can be found in Paiva et al. (1998).

One can establish the list of possibilities by the following sequence of
results (Churchill 1932, Hall 1976a). We first define an invariant 2-plane
(at any point) as a two-dimensional subspace of the tangent space which
is mapped to itself by Ra

b; any vector v lying in an invariant 2-plane is
mapped by Ra

b to a vector w in the same plane.

(1) There is always an invariant 2-plane.
Proof : Either there are two real eigenvectors, or (at least) one complex
eigenvector. In the former case the two eigenvectors give the required
plane; in the latter case, the real and imaginary parts of the eigenvector
do the same.

(2) The 2-plane orthogonal to that given in (1) is also invariant.
Proof : If the 2-plane of (1) is timelike or spacelike, taking an orthonormal
basis with E1, E2, lying in the 2-plane breaks Ra

b into block diagonal
form, and so shows the orthogonal 2-plane is invariant. If the 2-plane of
(1) is null, let k, x span it. Then in an expansion of Rab using a null tetrad
(m, m, l, k) with

√
2m = x+iy only terms in kakb, k(alb), k(axb), k(ayb),

xaxb and yayb survive. Thence k, y span another invariant 2-plane.

(3) If Ra
b has an invariant timelike (or spacelike) 2-plane, it has two dis-

tinct spacelike eigenvectors.
Proof : By (2) above the spacelike and timelike cases are the same and Ra

b

takes block diagonal form in an orthonormal tetrad. The (2 × 2) matrix
acting on the spacelike 2-plane can be diagonalized by spatial rotation in
the usual way for symmetric matrices.

(4) If Ra
b has an invariant null plane, it has a null eigenvector.

Proof : In the proof of (2), we see that k is a null eigenvector.

Following Hall (1976a), one can now enumerate the cases listed in
Table 5.1 by taking a null tetrad basis and systematically considering first
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Table 5.1. The algebraic types of the Ricci tensor (for explanation, see the text)

Segre notation Plebański notation Physical interpretations

A1 [111, 1] [S1 − S2 − S3 − T ](1111)
[11(1, 1)] [S1 − S2 − 2T ](111)
[(11)1, 1] [2S1 − S2 − T ](111)
[(11)(1, 1)] [2S − 2T ](11) Non-null Maxwell field
[1(11, 1)] [S − 3T ](11)
[(111), 1] [3S − T ](11) Perfect fluid
[(111, 1)] [4T ](1) Λ-term

A2 [11, ZZ] [S1 − S2 − Z − Z](1111)
[(11), ZZ] [2S − Z − Z](111)

A3 [11, 2] [S1 − S − 2N ](112)
[1(1, 2)] [S − 3N ](12)
[(11), 2] [2S − 2N ](12)
[(11, 2)] [4N ](2) Null Maxwell field, pure rad.

B [1, 3] [S − 3N ](13)
[(1, 3)] [4N ](3)

the cases where Ra
b has a null eigenvector, and then the cases where

there is no null eigenvector. In the table the different cases are divided
into classes according to whether or not there is a timelike (and hence
also a spacelike) invariant 2-plane. The distinct types are

A: Timelike invariant 2-plane

A1: Two real orthogonal eigenvectors exist in this plane
A2: No real eigenvectors exist in this plane
A3: One double null real eigenvector exists in this plane.

B: Null invariant 2-plane: one triple null real eigenvector exists.

In each case one can transform Rab to a canonical form:

A1: Rab = λ1xaxb + λ2yayb + λ3zazb − λ4uaub, (5.3a)

A2: Rab = λ1xaxb + λ2yayb + λ3k(alb) + λ4(kakb − lalb), (5.3b)

A3: Rab = λ1xaxb + λ2yayb − 2λ3k(alb) ± kakb, (5.3c)

B: Rab = λ1xaxb + λ2yayb + λ3k(alb) + k(axb). (5.3d)
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Table 5.2. Invariance groups of the Ricci tensor types

Invariance group Ricci tensor types

None [111, 1], [11, ZZ], [11, 2], [1, 3]
Spatial rotations (3.16) [(11)1, 1], [(11), ZZ], [(11), 2]
Boosts (3.17) [11(1, 1)]
Boosts (3.17) and rotations (3.16) [(11)(1, 1)]
SO(3) rotations [(111), 1]
SO(2, 1): three-dimensional Lorentz group [1(11, 1)]
One-parameter group of null rotations [1(1, 2)], [(1, 3)]
Null rotations (3.15) and rotations (3.16) [(11, 2)]
Full Lorentz group [(111, 1)], Ra

b = 0

Here (x, y, z, u) is an orthonormal tetrad, and (x,y,k, l) a real (or half-)
null tetrad. In each case the associated orthonormal tetrad is called the
Ricci principal tetrad.

The Ricci tensor types are called degenerate when there is more than
one elementary divisor with the same eigenvalue; in the Segre notation
these degeneracies are indicated by round brackets (in Table 5.1).

If the Ricci tensor is non-degenerate and the elementary divisors are
simple, the type is said to be algebraically general. Otherwise it is called
algebraically special. These ideas are analogous to those for Petrov types
(Chapter 4). As we see in the next section, the physically most important
types are algebraically special.

The Ricci principal tetrads of the non-degenerate types (where the
eigenvalues of different elementary divisors are distinct) are uniquely de-
termined (cp. §4.2), but in other cases some freedom is allowed. We list
the possibilities in Table 5.2.

Ref.: For other approaches to the classification of symmetric tensors see
Crade and Hall (1982), Penrose and Rindler (1986) and Chapter 9.

5.2 The energy-momentum tensor

The Einstein field equations (1.1)

Rab − 1
2Rgab + Λgab = κ0Tab (5.4)

(κ0 being Einstein’s gravitational constant and Λ the cosmological con-
stant) connect the Ricci tensor Rab with the energy-momentum tensor
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Tab. The Bianchi identities (2.81) imply the important relation

κ0T
ab
;b = (Rab − 1

2Rgab );b = 0. (5.5)

As well as vacuum fields (empty spaces)

Rab = 0, (5.6)

with zero Tab and Λ, we shall consider solutions of the field equations
(5.4) for the following physically relevant energy-momentum tensors:

(i) electromagnetic field (Maxwell field):

Tab = FacFb
c − 1

4gabFcdF
cd = 1

2(FacFbc + F̃acF̃b
c) = 1

2F
∗c
a F

∗
bc,

(5.7)
F ∗
ab ≡ Fab + iF̃ab, F̃ab ≡ 1

2εabcdF
cd, F ∗ab

;b = 0,

(ii) pure radiation field (null dust):

Tab = Φ2kakb, kak
a = 0, (5.8)

(iii) perfect fluid:

Tab = (µ + p)uaub + pgab, uau
a = −1. (5.9)

In the perfect fluid case we normally assume µ + p �= 0, µ > 0. In
the particular case where Tab = 0 and Λ �= 0, or where Tab is of perfect
fluid type (5.9) but with µ + p = 0, we shall say the Ricci tensor is
of Λ-term type. Thus the perfect fluid solutions formally include Λ-term
cases, the Einstein spaces Rab = Λgab. They also include the combination
of a perfect fluid and a Λ-term. The latter can be incorporated in the
fluid quantities by substituting (p − Λ/κ0) for p and (µ + Λ/κ0) for µ;
of course this substitution may violate the condition µ > 0. Note that
no invariant direction for ua is determined by a Λ-term; the kinematic
quantities defined in §6.2 have no invariant meaning in this case. In the
other non-vacuum cases the cosmological constant Λ is usually set equal
to zero; occasionally solutions including Λ are listed.

In general we do not consider superpositions of these energy-momentum
tensors.

By virtue of the field equations (5.4), Tab has the same algebraic type
as Rab. We shall now determine these types for the energy-momentum
tensors (5.7)–(5.9).

(i) The complex self-dual electromagnetic field tensor F ∗
ab can be ex-

panded in terms of the basis (U , V , W ) (see §3.4) as

1
2F

∗
ab = Φ0Uab + Φ1Wab + Φ2Vab, (5.10)
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Φ0, Φ1, Φ2 being complex functions. There is an invariant, F ∗
abF

∗ab =
16(Φ0Φ2−Φ 2

1 ). If it is non-zero, the electromagnetic field is said to be non-
null (or non-singular), while if the invariant is zero, the electromagnetic
field is said to be null (or singular). In either case one can, with the aid
of a tetrad rotation, set Φ0 = 0.

A non-null electromagnetic field and the corresponding energy-
momentum tensor (5.7) can be transformed into

F ∗
ab = 2Φ1Wab = 4Φ1(m[amb] − k[alb]), (5.11)

Tab = 4Φ1Φ1(m(amb) + k(alb)) (5.12)

(the null tetrad is adapted to the two null eigendirections of the Maxwell
field). In terms of an orthonormal tetrad related to the null tetrad by
(3.12), expression (5.12) can be rewritten in the canonical form (5.3a),

Tab = Φ2(xaxb + yayb − zazb + uaub), Φ2 = 2Φ1Φ1. (5.13)

In the principal tetrad (x, y, z, u) so defined, the electric and magnetic
fields (Ea and Ba) are parallel to each other,

Ea + iBa ≡ F ∗
abu

b = (E + iB)za = 2Φ1za. (5.14)

From the canonical form (5.13) one infers that for gravitational fields
produced by a non-null electromagnetic field the Ricci tensor has the type
[(11)(1,1)] with λ1 = λ2 = −λ3 = −λ4 = 2κ0Φ1Φ1 = κ0(E2 + B2)/2; the
double roots have equal magnitude and opposite sign. The Ricci tensor
obeys the relation

(Rb
a − λgba)(Rc

b + λgcb) = 0 (5.15)

(compare the similar equations for the Q-matrix in Table 4.1).
A null electromagnetic field and the corresponding energy-momentum

tensor (5.7) can be transformed into

F ∗
ab = 2Φ2Vab = 4Φ2k[amb], (5.16)

Tab = Φ2kakb, Φ2 = 2Φ2Φ2. (5.17)

Obviously, the Ricci tensor is [(11,2)] with eigenvalue zero.
Of course, having the correct structure (5.12) or (5.17) of the energy-

momentum tensor does not guarantee that the corresponding F ∗
ab satisfies

the Maxwell equations.

(ii) The energy-momentum tensor (5.8) of a pure radiation field has the
same algebraic type as (5.17). However, it need not arise from a Maxwell
field, and when such a Maxwell field exists it need not be unique (see
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e.g. (13.47)). The same form of energy-momentum tensor also arises from
other types of directed massless radiation, for example, massless scalar
fields or neutrino fields. It may be considered as representing the incoher-
ent superposition of waves with random phases and polarizations but the
same propagation direction. For any particular solution with Tab = Φ2kakb
one may investigate whether or not there is a null electromagnetic field
satisfying the (sourcefree) Maxwell equations or whether one could ac-
tually solve the equations for the other possibly underlying physical
fields.

(iii) The energy-momentum tensor (5.9) of perfect fluid type has the
algebraic type [(111),1]; three eigenvalues coincide. For dust solutions (p =
0) the triple eigenvalue of Tab is equal to zero and the eigenvalues of Rab

are λ1 = λ2 = λ3 = −λ4 = κ0µ/2. Energy-momentum tensors of Λ-term
type are clearly of algebraic type [(111,1)].

Energy-momentum tensors of the perfect fluid type also arise from
scalar fields ψ with a timelike gradient ψ,a, and in particular massless
scalar fields give ‘stiff matter ’ µ = p. It may happen that a perfect fluid
admits an interpretation as a viscous fluid (King and Ellis 1973) or a mag-
netohydrodynamic field (and an electromagnetic field as a viscous fluid),
see e.g. Tupper (1981, 1983), Raychaudhuri and Saha (1981) and Hall and
Negm (1986).

The energy-momentum tensors (5.7)–(5.9) (and the associated Ricci
tensors) have very simple algebraic types, namely [(11)(1,1)], [(11,2)] and
[(111),1].

5.3 The energy conditions

A physically reasonable energy-momentum tensor has to obey the dom-
inant energy condition: the local energy density as measured by an ob-
server with 4-velocity u is non-negative and the local energy flow vector
q is non-spacelike,

Tabu
aub ≥ 0, (5.18a)

qaqa ≤ 0, qa ≡ T a
bu

b. (5.18b)

For discussion of energy conditions, see Plebański (1964) and Hawking
and Ellis (1973). The dominant energy condition (5.18) should hold for
all timelike (unit) vectors u and, by continuity, these inequalities must
still be true if we replace u by a null vector k.

For type [111,1] (and its degeneracies), Tab can be diagonalized, so that
Tab = diag(p1, p2 , p3 , µ), and (5.18) is then satisfied if

µ ≥ 0, −µ ≤ pα ≤ µ (α = 1, 2, 3). (5.19)
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These inequalities hold for a non-null electromagnetic field (see (5.13))
and impose reasonable restrictions on the energy density µ and pressure
p (p = p1 = p2 = p3) of a perfect fluid. The dominant energy condition
(5.18) is also satisfied by the energy-momentum tensors of pure radiation
fields and null electromagnetic fields.

Types [11,ZZ] and [1,3] (and their degeneracies) in Table 5.1, i.e. types
A2 and B, violate even the weak energy condition (5.18a). Therefore these
types are not physically significant.

5.4 The Rainich conditions

Locally, a gravitational field originates in a non-null electromagnetic field
(outside matter and charges), or is a Rainich geometry , if and only if
the space-time metric and its derivatives satisfy the Rainich conditions
(Rainich 1925, Misner and Wheeler 1957). These conditions naturally split
into two parts:

algebraic : Ra
bR

b
c = 1

4δ
a
cRbdR

bd �= 0, Ra
a = 0,

(5.20)
uaua < 0 ⇒ Rabu

aub > 0,

analytic : αa,b − αb,a = 0, αa ≡ (RmnR
mn)−1εabcdRb

eR
ed;c. (5.21)

To prove this assertion of Rainich’s ‘already unified theory’ one first
has to find the so-called ‘extremal’ field fab which satisfies

fabf̃
ab = 0, fabf

ab < 0, f̃ab ≡ 1
2εabcdf

cd, (5.22)

and then obtain from fab a solution Fab of the Maxwell equations with
the aid of a duality rotation

Fab = fab cosα− f̃ab sinα, F̃ab = fab sinα + f̃ab cosα (5.23)

at each point p of V4.
The Einstein–Maxwell system of simultaneous equations (outside the

charge and current distribution) reads

Rab = 1
2κ0(FacFb

c + F̃acF̃b
c) ⇔ Rab = 1

2κ0(facfb
c + f̃acf̃b

c), (5.24)

F ab
;b = 0 = F̃ ab

;b ⇔ fab;b − α,bf̃
ab = 0 = f̃ab;b + α,bf

ab. (5.25)

The Einstein equations (5.24) can be rewritten, using (3.46) and (5.20),
in the form

Eabcd = 1
2(gacRbd − gbcRad + gbdRac − gadRbc) = 1

2κ0(fabfcd + f̃abf̃cd).
(5.26)
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Together with (5.22), they imply the formula

κ0fabfcd = Eabcd − (RmnR
mn)−1/2EabefEcd

ef , (5.27)

which enables one to find fab (up to an overall sign) provided that (5.20)
is satisfied. The explicit determination of fab can most easily be carried
out in a tetrad system in which Ra

b has the diagonal form

Ra
b = diag(λ, λ,−λ,−λ), λ > 0, (5.28)

in accordance with the algebraic Rainich conditions (5.20).
As the next step one has to determine the scalar field α in the duality

rotation (5.23) so that Fab is a solution of the Maxwell equations (5.25),
from which one obtains

α,b = 2(fmnf
mn)−1(f̃bafac;c + fabf̃

ac
;c). (5.29)

(The identity (3.33) for arbitrary bivectors has been applied to fab and
f̃ab.) In order to express the gradient α,a in terms of geometrical quanti-
ties, one uses the relations

E ∼
abcd = 1

2εcdef (δeaR
f
b − δebR

f
a) = 1

2κ0(fabf̃cd − f̃abfcd),
(5.30)

Eabcd
;d = 1

2(Rac;b −Rbc;a) = 1
2κ0(f

abf cd + f̃abf̃ cd);d,

which follow from (5.26). The resulting formula

α,a = −8 (κ0fmnf
mn)−2E ∼

abcdE
cdbf

;f = (RmnR
mn)−1εabcdRb

eR
ed;c = αa

(5.31)
enables one to find the ‘complexion’ α (up to an additive constant) pro-
vided that (5.21) is satisfied. Hence, a Rainich geometry determines the
associated electromagnetic field Fab uniquely up to a constant duality
rotation. This method, implemented in the computer algebra package
CLASSI (Åman 2002), was used to check Maxwell fields for Einstein–
Maxwell solutions in this book.

The problem of determining a null electromagnetic field from the geom-
etry has not yet been completely solved (Jordan and Kundt 1961, Ludwig
1970).

5.5 Perfect fluids

In order to describe a perfect fluid completely, the energy-momentum
tensor (5.9) of perfect fluid type has to be supplemented by an equation
of state expressing, say, the density ρ of rest mass as a function of the
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energy density µ and the pressure p (taking a picture of a fluid composed of
conserved microscopic particles). Conservation of the number of particles
can be formulated as

(ρua);a = 0. (5.32)
The conservation law T ab

;b = 0 and the thermodynamic relation

dh = dp/ρ + Tds, h ≡ (µ + p)/ρ, (5.33)

where h and s denote respectively the specific enthalpy and entropy, lead
to the equation

Ωabu
b = −Ts,a, Ωab ≡ (hua);b − (hub);a. (5.34)

From (5.34) we obtain s,au
a = 0 (isentropic motion).

For constant specific entropy s, (5.33) reads

dµ = (µ + p)dρ/ρ, (5.35)

i.e. both µ and p depend only on ρ, or, p is a function of µ : p = p(µ).
Two approaches are commonly used to deal with perfect fluid solutions:

either a relation p = p(µ) is prescribed, or µ and p are evaluated from the
field equations, there being, in general, no relation p = p(µ) between them.
We shall not investigate the question of whether or not solutions of the
latter type allow a thermodynamic interpretation in accordance with
(5.33) and so have physical significance; for a discussion of this prob-
lem and further references see e.g. Krasiński et al. (1997) and Israel and
Stewart (1980). On the other hand one can construct physical situations,
such as the presence of viscous fluids, in which it becomes imperative to
consider more general Ricci tensor types than those treated in this book.

In those cases where an equation of state of a perfect fluid is prescribed
before the field equations are solved, a ‘barotropic equation of state’ p =
p(µ) of the simple form

p = (γ − 1)µ, (5.36)
where γ is a constant, has frequently been taken; we shall refer to such
cases as ‘γ-law perfect fluids’. Cases regarded as of particular interest are
the ‘dust’ case

p = 0, γ = 1, (5.37)
the ‘incoherent radiation’ case

p = µ/3, γ = 4/3, (5.38)

so called because it represents the superposition of waves of a massless
field (e.g. the electromagnetic field) with random propagation direction,
and the ‘stiff matter’ case

p = µ, γ = 2. (5.39)
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Because (5.39) leads to a sound speed equal to the velocity of light, the
characteristics of its governing equations are the same as those of the
gravitational field, and consequently such solutions can often be derived
from vacuum solutions as described in Theorem 10.2.

The question of whether a thermodynamic perfect fluid can be deter-
mined from the geometry in a manner analogous to the Rainich treat-
ment of the Maxwell field (§5.4) has also been addressed. The problem
divides into two questions: whether the Ricci tensor Rab has the correct
algebraic structure, and whether the necessary thermodynamic relations
above can be satisfied, see Coll and Ferrando (1989) and Quevedo and
Sussman (1995) for further references.
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Vector fields

6.1 Vector fields and their invariant classification

Vector fields in four-dimensional Riemannian spaces are frequently charac-
terized by the properties of their first covariant derivatives and the invari-
ants of the fields which can be built from these derivatives. The methods
being standard, we give only the definitions and some simple applications
for further reference. The physical meaning and the interpretation of the
invariants in question can be found in the literature (Ehlers 1961, Jordan
et al. 1961).

A vector field v(xi) is said to be hypersurface-orthogonal or non-
rotating or normal, if it is proportional to a gradient,

va = λf,a, (6.1)

i.e. if and only if the rotation ωa,

ωa := εabcdvb;cvd, (6.2)

vanishes. (A factor 1
2 might be expected on the right-hand side of (6.2),

by analogy with (3.30) or (6.18), and is often used in defining the vorticity
of a fluid, cp. §6.2.1, but would complicate other formulae later in this
book.)

A vector field v(xi) is said to be geodesic if it is proportional to the
tangent vector field t of a congruence of geodesics (see (3.22)),

va = λta, Dta/dτ = 0, (6.3)

τ being an affine parameter. Equation (6.3) is equivalent to

v[avb];cv
c = 0. (6.4)

68
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A vector field v is said to be recurrent (or parallel), if its covariant
derivative is proportional to itself,

va;b = vaKb, (6.5)

K = Ki∂/∂xi being the recurrence vector. As can be checked, a recurrent
vector is geodesic and non-rotating and its components can therefore be
written as va = λf,a. Together with (6.5) this gives

f,a;b = f,a(Kb − λ,b/λ). (6.6)

If v is non-null (f ,af,a �= 0), then (6.6) implies

Ka =
λ,a
λ

+
f ,bf,b;a
f ,cf,c

=
1
2

(lnλ2f ,bf,b),a, (6.7)

K is a gradient, and a function α = (λ2f ,bf,b)−1/2 can be found such that

αva = wa, wa;b = 0. (6.8)

Consequently, a non-null recurrent vector field is proportional to a (co-
variantly) constant vector field.

If v is null, we can infer from (6.6) that the null vector k (ka ≡ f,a)
obeys

ka;b = βkakb, (6.9)
because f,a;b is symmetric in a and b, and the right-hand side must be
symmetric too. This null vector is proportional to a constant vector only if
β,[akb] = 0. Space-times admitting a recurrent null vector are algebraically
special (Debever and Cahen 1961, Öktem 1976).

A vector field ξ is a conformal motion if it satisfies

Lξgab ≡ ξa;b + ξb;a = 2φ(xk)gab. (6.10)

If φ is constant, ξ is a homothetic vector, and if φ = 0 a Killing vector
satisfying Killing’s equation

ξa;b + ξb;a = 0. (6.11)

Because of their considerable importance, we devote an extra chapter
to Killing and homothetic vectors and groups of motion (Chapter 8);
conformal motions are discussed in Chapter 35.

Two vector fields v, w are said to be surface-forming if the Lie deriva-
tive of one vector with respect to the other lies in the plane defined by v
and w,

vawb
;a − wavb;a = (Lvw)b = −(Lwv)b = λvb + µwb, (6.12)

or, equivalently,
εabcdv

bwc(Lvw)d = 0. (6.13)
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6.1.1 Timelike unit vector fields

The covariant derivative of a timelike unit vector field u(xi), uaua = −1,
can be decomposed as follows:

ua;b = −u̇aub + ωab + σab + Θhab/3,

u̇a := ua;bu
b = Dua/dτ, u̇au

a = 0,

ωab := u[a;b] + u̇[aub], ωabu
b = 0,

(6.14)
σab := u(a;b) + u̇(aub) −Θhab/3, σabu

b = 0,

hab := gab + uaub, habu
b = 0,

Θ := ua;a.

Physically, the timelike vector field u is often taken to be the 4-velocity
of a fluid, and the quantities u̇a, Θ, ωab and σab are accordingly called
acceleration, expansion, rotation (or vorticity) and shear, respectively.

When we study the conformal properties of space-time, it is interesting
to know how these invariants change under a conformal transformation
ĝab = e2Ugab, cp. (3.83). The world lines xi(τ) being the same, the 4-
velocities are related to each other by ûa = e−Uua, ûb = eUub, and we
obtain

σ̂ab = eUσab, Θ̂ = e−U (Θ + 3uaU,a),
(6.15)

ω̂ab = eUωab, ̂̇ua = u̇a + uaubU
,b + U,a ,

for the invariant parts of their derivatives.

6.1.2 Geodesic null vector fields

To get the decomposition of the covariant derivative of a (affinely parame-
trized) geodesic null vector field k(xi) fulfilling

ka;bk
b = 0, (6.16)

one usually introduces the complex null tetrad (m,m, l,k) defined in
(3.8). The result is

ka;b = 2 Re [(Θ + iω)mamb − σmamb] + vakb + kawb,

vaka = 0 = waka,
(6.17)

Θ := 1
2k

a
;a, ω2 := 1

2k[a;b]k
a;b,

σσ := 1
2k(a;b)k

a;b − 1
4 (ka;a)2 .
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k is given, but the vectors m, m, l are not uniquely defined by it. Never-
theless, the quantities Θ, ω2 and σσ are invariants of k and independent
of the choice of the null tetrad.

As a consequence of (3.29) and of (6.17), ω may also be defined by

1
2ε

abcdkbkc;d = ωka. (6.18)

As can be seen from (6.17), ka;b obeys εabcdka;bkc;d = 0 (the rank of the
matrix ka;b is maximally two); this and the identity εabcdkc;da = 0 allow
one to conclude from (6.18) that

(ωka);a = ω,ak
a + 2Θω = 0. (6.19)

The null geodesic congruence k is hypersurface-orthogonal if and only if
ω vanishes. If an arbitrary null congruence is normal, it is also geodesic.

Physically, geodesic null vector fields can be interpreted as the tangent
vectors of optical rays. Accordingly, the quantities Θ, ω and σ are called
expansion (or divergence), twist (or rotation) and shear, respectively. The
decomposition (6.17) implies

ρ := −(Θ + iω) = −ka;bm
am b,

(6.20)
σ := −ka;bm

amb, κ := −ka;bm
akb = 0.

The expressions ρ, σ and κ are three of the twelve (complex) Newman–
Penrose spin coefficients, see §7.1. Note that we have changed the sign of
σ in (6.17) and (6.20) from that of Ehlers and Kundt (1962) to achieve
conformity with the usual definition of the spin coefficients.

If we carry out a conformal transformation ĝab = e2Ugab, see (3.83), but
retain the condition ka;bk

b = 0 for the transformed vector, then the null
vector field has to be transformed by k̂a = ka; this implies

k̂a;b = ka;b − kaU,b − kbU,a + gabk
cU,c (6.21)

and
ω̂ = e−2Uω, Θ̂ = e−2U (Θ + kaU,a). (6.22)

The importance of the invariant classification of vector fields in the
context of exact solutions is twofold. If a solution defines a preferred
vector field (velocity field, eigenvector field of the Weyl tensor, etc.), a
classification of the vector field is also a classification of the solution in
question. On the other hand, the existence of a vector field an with some
special properties (shearfree, rotationfree, etc.) imposes conditions on the
metric via

2aa;[bc] = adR
d
abc. (6.23)

We shall discuss this in detail in the following section.
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6.2 Vector fields and the curvature tensor

6.2.1 Timelike unit vector fields

The main idea of this section is to evaluate the Ricci identity (6.23),

ua;bc − ua;cb = Rd
abcud, (6.24)

using the decomposition (6.14),

ua;b = −u̇aub + ωab + σab + Θhab/3, (6.25)

and see what limitations on the metric (curvature tensor) follow from the
existence of a vector field u with special derivative properties.

Writing down (6.24) in detail, one easily gets

1
2R

d
abcud = −u̇a(ωbc − u̇[buc])− u̇a;[cub] + ωa[b;c] + σa[b;c] + 1

3Θ,[chb]a

+ 1
3Θ(uaωbc − uau̇[buc] + ωa[cub] + σa[cub] + 1

3Θha[cub]),(6.26)

and from this, by contraction and/or multiplication with ub,

Ra
bua = u̇aωab − u̇a;aub − u̇aσab + ωa

b;a

+ σab;a − 2
3Θ,b + 1

3Θ̇ub + 1
3Θ2ub, (6.27)

Rd
abcudu

b = u̇au̇c − ωabω
b
c − 1

3

(
Θ̇ + 1

3Θ2
)
hca

− σabσ
b
c − 2

3Θσac + hdah
e
c(u̇(d;e) − σ̇de), (6.28)

Ra
buau

b = u̇a;a + ωabω
ab − σabσ

ab − Θ̇−Θ2/3. (6.29)

Equation (6.29) is often called the Raychaudhuri equation (Raychaudhuri
1955).

Formulae (6.27)–(6.29) may be considered as equations governing the
temporal variation of ua, σab and Θ. In the context of exact solutions,
however, we prefer to interpret them as equations determining some com-
ponents of the curvature tensor if the properties of the vector field are
prescribed or known. The implications of (6.26)–(6.29) for the self-dual
Weyl tensor C∗

abcd can be calculated using the definition (3.50) and the
previous equations. The result is

C∗
abcdu

auc = u̇bu̇d − ωbcω
c
d − σbcσ

c
d − 2

3Θσbd + hebh
f
d

[
u̇(e;f) − σ̇ef

]
− 1

3hbd(u̇
a
;a + ωaeω

ae − σaeσ
ae) + 1

2h
e
bh

f
dRef

− 1
6hbdh

efRef − ihg(bεd)c
efuc [ωge;f + σge;f − u̇gωef ] . (6.30)
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The most remarkable property of this formula is the simplicity of the
imaginary part of the tensor Qab ≡ −C∗

acbdu
cud = Ebd+ iBbd. As shown

in Chapter 4, the Petrov classification is the classification of this tensor
Qab, and if Qab is real (i.e. the Weyl tensor is purely electric, Bab = 0)
then the space-time is of Petrov type I, D or O. The following theorems
hold:

Theorem 6.1 If a space-time admits a timelike unit vector field u sat-
isfying

Bbd ≡ hg(bεd)c
efuc [ωge;f + σge;f − u̇gωef ] = 0, (6.31)

then it is of Petrov type I, D or O (Trümper 1965).

Theorem 6.2 If there is a shearfree perfect fluid (σab = 0) with four-
velocity u such that the Weyl tensor is purely electric, then the four-
velocity is hypersurface-orthogonal (ωab = 0), or ωa is a Weyl eigenvector
with eigenvalue −(µ + p)/3 (Glass 1975, Barnes 1984). The rotating so-
lutions are given by (21.61) (Collins 1984, Senovilla 1987b).

Theorem 6.3 If a space-time has a purely electric Weyl tensor and ad-
mits an irrotational timelike unit vector field u with non-vanishing shear,
then the eigenframes of the shear and the Weyl tensor coincide. For
Petrov type I, all the eigenvectors of this frame are hypersurface ortho-
gonal (Barnes and Rowlingson 1989).

Simple examples of vector fields satisfying (6.31) are those which are
hypersurface-orthogonal and shearfree (ωab = 0 = σab). All vacuum so-
lutions admitting such a vector field are static (Barnes 1973b). Shearfree
and non-rotating perfect fluids were also discussed by Barnes (1973b);
those of type I are necessarily static.

Diverging vacuum type D solutions (Chapters 28 and 29) are twistfree
exactly if the Weyl tensor is purely electric (McIntosh et al. 1994).

For static metrics, characterized by the existence of a timelike non-
rotating Killing vector ξ, the vector field u = ξ/

√−ξaξa obeys ua;b =
−u̇aub because of the Killing equation (6.11). Consequently, all static
metrics are of type I, D or O.

Rigid motions of a (test) body correspond to vector fields u satisfying
Θ = 0 = σab, i.e. Luhab = 0. Einstein spaces admitting rigid motions
are either flat, or of constant curvature, or they are degenerate static
metrics of class B (Wahlquist and Estabrook (1966); see also Mason and
Pooe (1987)).

The energy-momentum tensor being specified, (6.26)–(6.31) together
with the Bianchi identities can be used to derive results relevant to exact
solutions; for example, if a perfect fluid with non-constant pressure p is
geodesic, then it is irrotational (Synge 1937). Another such result is:
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Theorem 6.4 For shearfree dust, Θ(ωabωab) = 0 (Ellis 1967).

Much effort has been put into trying to prove the analogous result for
perfect fluids, i.e. to show that all shearfree perfect fluids with an equation
of state p = p(µ), p+µ �= 0, are non-rotating (ωab = 0) or non-expanding
(Θ = 0) or both. All known solutions support this conjecture, but so
far it has been shown to be true only for subcases, e.g. if Θ and µ or
Θ and ω are functionally dependent (Lang and Collins 1988, White and
Collins 1984, Sopuerta 1998a), for a purely electric Weyl tensor (Collins
1984), for a purely magnetic Weyl tensor or an equation of state µ +
3p = const (Lang 1993), for vanishing acceleration (Senovilla et al. 1998),
for Petrov type N (Carminati 1987), and for Petrov type III (for which
necessarily Θ = 0 and ωab �= 0) (Carminati and Cyganowski 1997). For the
history of this conjecture and a more complete list of its confirmations, see
Collins (1986), Lang (1993), Sopuerta (1998a) and Van den Bergh (1999).

Dust solutions which are non-rotating and have a purely electric Weyl
tensor are called silent universes. Lists of those universes, and discus-
sions of the conjecture that there are no spatially inhomogeneous silent
universes of Petrov type I, can be found in Sopuerta (1997), van Elst
et al. (1997) and Mars (1999). A corresponding discussion of solutions
with a purely magnetic Weyl tensor is given in Maartens et al. (1998).

Ref.: For additional relations between the Weyl tensor and kinematic
properties of a 4-velocity see also Lesame et al. (1996) and Collins and
Wainwright (1983). For an application in covariant characterization of
space-times see van Elst and Ellis (1996).

6.2.2 Null vector fields

One can perform a detailed evaluation of

ka;bc − ka;cb = Rd
abckd, (6.32)

similar to the one which was carried out for timelike vector fields in the
preceding section. This is best done by means of the Newman–Penrose
formalism, which we shall introduce in the next chapter. We only mention
here one conclusion which can be drawn without specifying the tetrad
(m,m,k, l): from (6.32) and (6.17) we get (for geodesic null vector fields)

Θ,ak
a − ω2 + Θ2 + σσ = −1

2Rabk
akb, (6.33)

and, using (6.19), we can write this in the form

(Θ + iω),aka + (Θ + iω)2 + σσ = −1
2Rabk

akb. (6.34)

Ref.: For spacelike congruences see e.g. Tsamparlis and Mason (1983).



7
The Newman–Penrose and related

formalisms

7.1 The spin coefficients and their transformation laws

The null tetrad formalism due to Newman and Penrose (1962) has proved
very useful in the construction of exact solutions, in particular for study-
ing algebraically special gravitational fields (for some of the earliest ex-
amples, see Kinnersley (1969b), Talbot (1969), and Lind (1974)). Despite
the fact that we have to solve a considerably larger number of equations
than arise when we use coordinates directly, this formalism has great
advantages. All differential equations are of first order. Gauge transfor-
mations of the tetrad can be used to simplify the field equations. One
can extract invariant properties of the gravitational field without using
a coordinate basis. We give here an outline of this important approach
to general relativity; see also Frolov (1977), Penrose and Rindler (1984,
1986) and Stewart (1990).

Using the complex null tetrad {ea} = (m,m, l,k), and recalling the
definition (2.67),

∇bea = Γc
abec, (7.1)

of the connection coefficients Γc
ab, we can define the so-called spin coeffi-

cients, 12 independent complex linear combinations of the connection co-
efficients. Explicitly, the spin coefficients are defined in tensor and spinor
notation as follows:

−κ ≡ Γ144 = ka;bm
akb = maDka = oAōḂoC∇AḂoC , (7.2a)

−ρ ≡ Γ142 = ka;bm
am b = maδ̄ka = ιAōḂoC∇AḂoC , (7.2b)

−σ ≡ Γ141 = ka;bm
amb = maδka = oAῑḂoC∇AḂoC , (7.2c)

−τ ≡ Γ143 = ka;bm
alb = ma∆ka = ιAῑḂoC∇AḂoC , (7.2d)

75
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ν ≡ Γ233 = la;bm
alb = m a∆la = −ιAῑḂιC∇AḂιC , (7.2e)

µ ≡ Γ231 = la;bm
amb = m aδla = −oAῑḂιC∇AḂιC , (7.2f)

λ ≡ Γ232 = la;bm
am b = m aδ̄la = −ιAōḂιC∇AḂιC , (7.2g)

π ≡ Γ234 = la;bm
akb = m aDla = −oAōḂιC∇AḂιC , (7.2h)

−ε ≡ 1
2(Γ344 − Γ214) = 1

2(ka;blakb −ma;bm
akb)

= 1
2(laDka −m aDma) = oAōḂιC∇AḂoC , (7.2i)

−β ≡ 1
2(Γ341 − Γ211) = 1

2(ka;blamb −ma;bm
amb)

= 1
2(laδka −m aδma) = oAῑḂιC∇AḂoC , (7.2j)

γ ≡ 1
2(Γ433 − Γ123) = 1

2(la;bkalb −ma;bm
alb)

= 1
2(ka∆la −ma∆ma) = −ιAῑḂoC∇AḂιC , (7.2k)

α ≡ 1
2(Γ432 − Γ122) = 1

2(la;bkam b −ma;bm
am b)

= 1
2(kaδ̄la −maδ̄ma) = −ιAōḂoC∇AḂιC , (7.2l)

where we have used the notation (3.82), i.e.

D ≡ ka∇a = −oAōḂ∇AḂ, ∆ ≡ la∇a = −ιAῑḂ∇AḂ,
(7.3)

δ ≡ ma∇a = −oAῑḂ∇AḂ, δ̄ ≡ m a∇a = −ιAōḂ∇AḂ,

for the directional derivatives D, ∆, δ, δ . Some of these spin coefficients
have already been introduced in (6.20). From the spinor expressions for
the spin coefficients and from the relation

oAι
A = 1 =⇒ ιC∇AḂoC = oC∇AḂιC (7.4)

it follows that all connection coefficients can be expressed in terms of the
12 complex spin coefficients (7.2). One can also give the spin coefficients
as partial derivatives, e.g. κ = k[a,b]m

akb. These formulae can be obtained
from the commutator relations (see (7.6) below) and are given e.g. in
Cocke (1989).
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Since the metric components in the complex null basis are constant,
the commutators introduced previously in (2.6) and (2.70),

[ea,eb] = Dc
abec, Dc

ab = −2Γc
[ab], (7.5)

are given explicitly in the present notation as follows:

(∆D −D∆) = (γ + γ̄)D + (ε + ε̄)∆− (τ + π̄)δ̄ − (τ̄ + π)δ, (7.6a)

(δD −Dδ) = (ᾱ + β − π̄)D + κ∆− σδ̄ − (ρ̄ + ε− ε̄)δ, (7.6b)

(δ∆−∆δ) = −ν̄D + (τ − ᾱ− β)∆ + λ̄δ̄ + (µ− γ + γ̄)δ, (7.6c)

(δ̄δ − δδ̄) = (µ̄− µ)D + (ρ̄− ρ)∆− (ᾱ− β)δ̄ − (β̄ − α)δ. (7.6d)

These relations and the rigid frame conditions are equivalent to (7.2), as
noted by Papapetrou (1971a, 1971b). The application of the commutator
relations (7.6a)–(7.6d) to scalar functions (e.g. the space-time coordinates
xi) may yield information useful in solving the field equations.

In many applications, the null direction k is fixed; under Lorentz trans-
formations (3.18) preserving this direction, i.e. under

k′ = k, m′ =m+ Bk, l′ = l+ Bm+ Bm+ BBk, (7.7a)

and
k′ = Ak, m′ = eiΘm, l′ = A−1l, (7.7b)

the spin coefficients have the following transformation laws (Carmeli and
Kaye 1976, Stewart 1990):

κ′ = κ, τ ′ = τ + Bσ + Bρ + BBκ,

ρ′ = ρ + Bκ, α′ = α + B(ε + ρ) + B 2κ,

σ′ = σ + Bκ, β′ = β + Bσ + Bε + BBκ,

ε′ = ε + Bκ, π′ = π + 2Bε + B 2κ + DB,

γ′ = γ + Bα + B(τ + β) + BB(ρ + ε) + B 2σ + B 2Bκ,

λ′ = λ + B(π + 2α) + B 2(ρ + 2ε) + B 3κ + BDB + δ B,

µ′ = µ + 2Bβ + Bπ + B 2σ + 2BBε + BB 2κ + BDB + δB,

ν ′ = ν + B(2γ + µ) + Bλ + B 2(τ + 2β) + BB(π + 2α) + B 3σ

+BB 2(ρ + 2ε) + BB 3κ + ∆B + BδB + Bδ B + BBDB,

(7.7c)
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and

κ′ = A2e iΘκ, ν ′ = A−2e −iΘν, ε′ = A
[
ε + 1

2D(lnA + iΘ)
]
,

ρ′ = Aρ, µ′ = A−1µ, β′ = eiΘ
[
β + 1

2δ(lnA + iΘ)
]
,

σ′ = Ae2iΘσ, λ′ = A−1e−2iΘ, γ′ = A−1
[
γ + 1

2∆(lnA + iΘ)
]
,

τ ′ = eiΘτ, π′ = e−iΘπ, α′ = e−iΘ
[
α + 1

2δ(lnA + iΘ)
]
.

(7.7d)

To get the transformation law for a null rotation (3.14) about l,

l′ = l, m′ = Em, k′ = k + Em+ Em+ EEl, (7.8)

one can take (7.7c), replace B by E, and make the interchange
(κ, σ, ρ, τ, β, ε) ←→ (ν,−λ,−µ,−π,−α,−γ).

7.2 The Ricci equations

To derive the curvature in terms of the spin coefficients, it is convenient
to work with the connection forms

Γ 14 ≡ makbΓabcω
c = −σω1 − ρω2 − τω3 − κω4,

Γ 23 ≡ m albΓabcω
c = µω1 + λω2 + νω3 + πω4, (7.9)

1
2(Γ 12 + Γ 34 ) ≡ 1

2(mam b + lakb)Γabcω
c = −βω1 − αω2 − γω3 − εω4,

introduced in §3.3. We now take the second Cartan equation in the form
(3.25). On the right-hand side of these equations we insert the decompo-
sition (3.45) of the curvature tensor, using the following abbreviations for
the tetrad components of the traceless Ricci tensor (Sab ≡ Rab − gabR/4)
and the Weyl tensor:

Φ00 ≡ 1
2Sabk

akb = ΦABĊḊoAoB ōĊ ōḊ = Φ00 = 1
2R44, (7.10)

Φ01 ≡ 1
2Sabk

amb = ΦABĊḊoAoB ōĊ ῑḊ = Φ10 = 1
2R41, (7.11)

Φ02 ≡ 1
2Sabm

amb = ΦABĊḊoAoB ῑĊ ῑḊ = Φ20 = 1
2R11, (7.12)

Φ11 ≡ 1
4Sab(k

alb + mam b) = ΦABĊḊoAιB ōĊ ῑḊ

= Φ11 = (R43 + R12)/4, (7.13)

Φ12 ≡ 1
2Sabl

amb = ΦABĊḊoAιB ῑĊ ῑḊ = Φ21 = 1
2R31, (7.14)
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Φ22 ≡ 1
2Sabl

alb = ΦABĊḊιAιB ῑĊ ῑḊ = Φ22 = 1
2R33; (7.15)

Ψ0 ≡ Cabcdk
ambkcmd = ΨABCDoAoBoCoD, (7.16)

Ψ1 ≡ Cabcdk
albkcmd = ΨABCDoAoBoCιD, (7.17)

Ψ2 ≡ −Cabcdk
amblcm d = ΨABCDoAoBιCιD, (7.18)

Ψ3 ≡ Cabcdl
akblcm d = ΨABCDoAιBιCιD, (7.19)

Ψ4 ≡ Cabcdl
am blcm d = ΨABCDιAιBιCιD (7.20)

(the definitions (7.16)–(7.20) agree with (3.59), (3.76)). On the left-hand
side of equations (3.25) we calculate the exterior derivatives dΓ ab, using
the notation (7.3) for the directional derivatives. We thus arrive at the
Ricci identities, often called the Newman–Penrose equations:

Dρ− δ̄κ = ρ2 + σσ̄ + (ε + ε̄)ρ− κ̄τ − κ(3α + β̄ − π) + Φ00, (7.21a)

Dσ − δκ = (ρ + ρ̄)σ + (3ε− ε̄)σ − (τ − π̄ + ᾱ + 3β)κ + Ψ0, (7.21b)

Dτ −∆κ = (τ + π̄)ρ + (τ̄ + π)σ + (ε− ε̄)τ − (3γ + γ̄)κ

+Ψ1 + Φ01, (7.21c)

Dα− δ̄ε = (ρ + ε̄− 2ε)α + βσ̄ − β̄ε− κλ− κ̄γ + (ε + ρ)π + Φ10,(7.21d)

Dβ − δε = (α + π)σ + (ρ̄− ε̄)β − (µ + γ)κ− (ᾱ− π̄)ε + Ψ1, (7.21e)

Dγ −∆ε = (τ + π̄)α + (τ̄ + π)β − (ε + ε̄)γ − (γ + γ̄)ε

+τπ − νκ + Ψ2 + Φ11 −R/24, (7.21f)

Dλ− δ̄π = ρλ + σ̄µ + π2 + (α− β̄)π − νκ̄− (3ε− ε̄)λ + Φ20, (7.21g)

Dµ− δπ = ρ̄µ + σλ + ππ̄ − (ε + ε̄)µ− π(ᾱ− β)− νκ

+Ψ2 + R/12, (7.21h)

Dν −∆π = (π + τ̄)µ + (π̄ + τ)λ + (γ − γ̄)π − (3ε + ε̄)ν

+Ψ3 + Φ21, (7.21i)

∆λ− δ̄ν = −(µ + µ̄)λ− (3γ − γ̄)λ + (3α + β̄ + π − τ̄)ν −Ψ4, (7.21j)

δρ− δ̄σ = ρ(ᾱ + β)− σ(3α− β̄) + (ρ− ρ̄)τ + (µ− µ̄)κ

−Ψ1 + Φ01, (7.21k)
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δα− δ̄β = µρ− λσ + αᾱ + ββ̄ − 2αβ + γ(ρ− ρ̄) + ε(µ− µ̄)

−Ψ2 + Φ11 + R/24, (7.21l)

δλ− δ̄µ = (ρ− ρ̄)ν + (µ− µ̄)π + µ(α + β̄) + λ(ᾱ− 3β)

−Ψ3 + Φ21, (7.21m)

δν −∆µ = µ2 + λλ̄ + (γ + γ̄)µ− ν̄π + (τ − 3β − ᾱ)ν + Φ22, (7.21n)

δγ −∆β = (τ − ᾱ− β)γ + µτ − σν − εν̄ − β(γ − γ̄ − µ)

+αλ̄ + Φ12, (7.21o)

δτ −∆σ = µσ + λ̄ρ + (τ + β − ᾱ)τ − (3γ − γ̄)σ − κν̄ + Φ02, (7.21p)

∆ρ− δ̄τ = −(ρµ̄ + σλ) + (β̄ − α− τ̄)τ + (γ + γ̄)ρ + νκ

−Ψ2 −R/12, (7.21q)

∆α− δ̄γ = (ρ + ε)ν − (τ + β)λ + (γ̄ − µ̄)α + (β̄ − τ̄)γ −Ψ3. (7.21r)

The definitions of {ea}, ∇a, Γa
bc and Ra

bcd coincide with those of the
original paper (Newman and Penrose 1962). Whenever the metric is em-
ployed to move indices we have to remember the change of signature (for
sign conventions see Ernst (1978a)).

The Einstein field equations have not been used so far: they give con-
ditions on, or relations between, the quantities ΦAB′ and Λ in the above
equations.

In the Newman–Penrose formalism, the Maxwell equations read

DΦ1 − δ̄Φ0 = (π − 2α)Φ0 + 2ρΦ1 − κΦ2, (7.22)

DΦ2 − δ̄Φ1 = −λΦ0 + 2πΦ1 + (ρ− 2ε)Φ2, (7.23)

δΦ1 −∆Φ0 = (µ− 2γ)Φ0 + 2τΦ1 − σΦ2, (7.24)

δΦ2 −∆Φ1 = −νΦ0 + 2µΦ1 + (τ − 2β)Φ2, (7.25)

where the notation

Φ0 ≡ Fabk
amb = 1

4F
∗
abV

ab = ΦABoAoB, (7.26)

Φ1 ≡ 1
2Fab(k

alb + m amb) = −1
8F

∗
abW

ab = ΦABoAιB, (7.27)

Φ2 ≡ Fabm
alb = 1

4F
∗
abU

ab = ΦABιAιB, (7.28)

is used for the tetrad components of the electromagnetic field tensor (cp.
(5.10)). The Ricci tensor components (7.10)–(7.15) of Einstein–Maxwell
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fields are given by

Φαβ = κ0ΦαΦβ, α, β = 0, 1, 2. (7.29)

Ref.: Hall et al. (1987) developed an analogous formalism for (2+1)-dimen-
sional space-times, Stoeger et al. (1992) for a tetrad incorporating a time-
like unit vector, and Ramos and Vickers (1996b) a calculus based on a
single null direction which generalizes the GHP-formalism to be treated
in §7.4.

7.3 The Bianchi identities

The Bianchi identities (3.78) (better referred to as equations in this
context),

Rab[cd;e] = 0, (7.30)

are the remaining set of equations to be satisfied. Written in terms of the
tetrad components and the directional derivatives, they have the form

Rab[cd|f ] = −2Rabe[cΓ
e
df ] + Γe

a[cRdf ]eb − Γe
b[cRdf ]ea. (7.31)

In full, they read (Pirani 1965, p. 350):

δ̄Ψ0 − DΨ1 + DΦ01 − δΦ00 = (4α− π)Ψ0 − 2(2ρ + ε)Ψ1 + 3κΨ2

+ (π̄ − 2ᾱ− 2β)Φ00 + 2(ε + ρ̄)Φ01 + 2σΦ10 − 2κΦ11 − κ̄Φ02, (7.32a)

∆Ψ0 − δΨ1 + DΦ02 − δΦ01 = (4γ − µ)Ψ0 − 2(2τ + β)Ψ1 + 3σΨ2

+ (2ε− 2ε̄ + ρ̄)Φ02 + 2(π̄ − β)Φ01 + 2σΦ11 − 2κΦ12 − λ̄Φ00, (7.32b)

δ̄Ψ3 − DΨ4 + δ̄Φ21 −∆Φ20 = (4ε− ρ)Ψ4 − 2(2π + α)Ψ3 + 3λΨ2

+ (2γ − 2γ̄ + µ̄)Φ20 + 2(τ̄ − α)Φ21 + 2λΦ11 − 2νΦ10 − σ̄Φ22, (7.32c)

∆Ψ3 − δΨ4 + δ̄Φ22 −∆Φ21 = (4β − τ)Ψ4 − 2(2µ + γ)Ψ3 + 3νΨ2

+ (τ̄ − 2β̄ − 2α)Φ22 + 2(γ + µ̄)Φ21 + 2λΦ12 − 2νΦ11 − ν̄Φ20, (7.32d)

DΨ2 − δ̄Ψ1 + ∆Φ00 − δ̄Φ01 + 1
12DR =

− λΨ0 + 2(π − α)Ψ1 + 3ρΨ2 − 2κΨ3

+ (2γ + 2γ̄ − µ̄)Φ00 − 2(τ̄ + α)Φ01 − 2τΦ10 + 2ρΦ11 + σ̄Φ02, (7.32e)

∆Ψ2 − δΨ3 + DΦ22 − δΦ21 + 1
12∆R =

σΨ4 + 2(β − τ)Ψ3 − 3µΨ2 + 2νΨ1

+ (ρ̄− 2ε− 2ε̄)Φ22 + 2(π̄ + β)Φ21 + 2πΦ12 − 2µΦ11 − λ̄Φ20, (7.32f)
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DΨ3 − δ̄Ψ2 −DΦ21 + δΦ20 − 1
12 δ̄R =

− κΨ4 + 2(ρ− ε)Ψ3 + 3πΨ2 − 2λΨ1

+ (2ᾱ− 2β − π̄)Φ20 − 2(ρ̄− ε)Φ21 − 2πΦ11 + 2µΦ10 + κ̄Φ22, (7.32g)

∆Ψ1 − δΨ2 −∆Φ01 + δ̄Φ02 − 1
12δR =

νΨ0 + 2(γ − µ)Ψ1 − 3τΨ2 + 2σΨ3

+ (τ̄ − 2β̄ + 2α)Φ02 + 2(µ̄− γ)Φ01 + 2τΦ11 − 2ρΦ12 − ν̄Φ00, (7.32h)

DΦ11 − δΦ10 − δ̄Φ01 + ∆Φ00 + 1
8DR =

(2γ − µ + 2γ̄ − µ̄)Φ00 + (π − 2α− 2τ̄)Φ01 + (π̄ − 2ᾱ− 2τ)Φ10

+ 2(ρ + ρ̄)Φ11 + σ̄Φ02 + σΦ20 − κ̄Φ12 − κΦ21, (7.32i)

DΦ12 − δΦ11 − δ̄Φ02 + ∆Φ01 + 1
8δR =

(−2α + 2β̄ + π − τ̄)Φ02 + (ρ̄ + 2ρ− 2ε̄)Φ12 + 2(π̄ − τ)Φ11

+ (2γ − 2µ̄− µ)Φ01 + ν̄Φ00 − λ̄Φ10 + σΦ21 − κΦ22, (7.32j)

DΦ22 − δΦ21 − δ̄Φ12 + ∆Φ11 + 1
8∆R =

(ρ + ρ̄− 2ε− 2ε̄)Φ22 + (2β̄ + 2π − τ̄)Φ12 + (2β + 2π̄ − τ)Φ21

− 2(µ + µ̄)Φ11 + νΦ01 + ν̄Φ10 − λ̄Φ20 − λΦ02. (7.32k)

The consistency, completeness and integrability of the Newman–
Penrose formalism has been considered in a number of papers, e.g.
Papapetrou (1971a, 1971b) and Edgar (1980, 1992). As given here, the
equations are a set of differential equations for the tetrad components ea

i

with respect to a coordinate basis {∂/∂xi}, the spin coefficients (7.2) and
the Riemann tensor components (7.10)–(7.20), the corresponding equa-
tions being respectively either the commutator relations (7.6) together
with the rigid frame condition dgab = 0 or the definitions (7.2), the Ricci
(Newman–Penrose) equations (7.21) and the Bianchi equations (7.32). It
is (implicitly) assumed that the connection coefficients and Riemann ten-
sor components not mentioned explicitly in (7.2) and (7.10)–(7.20) can
be found from the symmetry relations Γ(ab)c = 0 and (3.26).

There is redundancy between these equations in the sense that some
of them (or combinations of some of them) are integrability conditions
for others. The underlying reason is that (7.6) and (7.21) are versions
of the Cartan structure equations (2.76) and (2.85), which have as inte-
grability conditions the first and second Bianchi identities, i.e. d2ωa = 0
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(or equivalently the Jacobi identities (2.7) or the symmetry given by the
second part of (2.80)) and d2Γ a

b = 0 or (2.81); however, the situation is
complicated by the fact that the Cartan equations have been contracted
with tetrad vectors, substitutions have been made from (7.6) in (7.21),
and so on. Details of the resulting relations, which show that the general
system is complete and consistent, are given by Edgar (1980, 1992), not
only for the Newman–Penrose formalism but for general sets of tetrads
with constant metrics and for the GHP formalism discussed in §7.4.

In the system as defined above, the integrability conditions of the sec-
ond Bianchi equations (2.86), d2Θa

b = 0, which could be called the third
Bianchi identities, are identically satisfied. The analysis above could, how-
ever, be extended by introducing derivatives of Riemann tensor compo-
nents as extra variables so that the third Bianchi identities become addi-
tional equations, and so on.

One may note that the 36 real equations formed by the real and imagi-
nary parts of (7.21) can be combined into the 16 real Jacobi (first Bianchi)
equations for the commutators (7.6) and 20 real equations giving the
Riemann tensor components (7.10)–(7.20) as differential expressions in
the spin coefficients. Thus if functions Γa

bc(xi) for the spin coefficients are
given which satisfy the 16 Jacobi relations, the integrability conditions of
the commutator equations (7.6) are satisfied and one can integrate the
commutator relations for the ea

i and thence the line-element, without
considering the remaining 20 real components of (7.21), or (7.32). (Here
we assume that there are no analytic or topological obstructions to the in-
tegrability.) However, calculation of the derivatives of the spin coefficients
implies at least partial knowledge of the ea

i already.
It is less simple to characterize useful subsystems which involve Rabcd

and guarantee integrability of the remaining equations, because to satisfy
either the remaining 20 real parts of the Ricci equations or the Bianchi
equations we need both Γa

bc(xi) and Rabcd(xi) (and information on how
to calculate their tetrad derivatives). In principle for any given situation
the completeness of a given subset could be studied by specialization of
the results of Edgar (1980, 1992).

In practice, additional constraints are always imposed. For example, the
consistency of the general vacuum case was studied by Papapetrou (1971a,
1971b). A number of papers have studied the system for Petrov type I
vacua arising from the further specialization to a tetrad in which Ψ0 = Ψ4

and Ψ1 = Ψ3 = 0, i.e. the tetrad of the canonical form in Table 4.2,
valid in a region where the Petrov type does not degenerate and the
special tetrad can be chosen in a smooth manner. In this case the tetrad
conditions and their derivatives have to be added to the Newman–Penrose
system, and the third Bianchi equations are also needed. The resulting
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additional equations in Ψ0 and Ψ2 and their derivatives (Brans 1977,
Edgar 1979) are called the post-Bianchi or Brans–Edgar equations (they
were first derived as conditions on a spin-2 field in space-time by Bell and
Szekeres (1972)). The consistency conditions, i.e. fourth Bianchi identities,
were explicitly checked, some of them turning out to depend algebraically
on the Ricci equations in this case, but consistency is guaranteed a priori
by the fact that the Newman–Penrose system could in principle be solved
in a general tetrad and then the special tetrad could have been found
pointwise, algebraically.

Individual investigations, such as many of those quoted in later chap-
ters, use various combinations of assumptions and may therefore require
a separate consistency analysis (which may be negative: see for example
Theorem 33.2); the assumptions may also imply that only a particular
subset of the general set of equations is needed, which might for example
not explicitly include the commutator equations, these instead following
as consistency conditions (Edgar 1992).

Ref.: For further discussion of the post-Bianchi equations see Lud-
wig (1996), Bonanos (1996) and references therein.

7.4 The GHP calculus

Geroch et al. (1973) developed a modified calculus, the GHP-formalism,
adapted to physical situations in which a pair of real null directions is
naturally picked out at each space-time point. (Further modified and ex-
tended versions of the formalism were given by Held (1974a, 1975) and
Ludwig (1988).) This version of the spin coefficient method leads to even
simpler formulae than the standard Newman–Penrose technique.

In spinor notation, the most general transformation preserving the two
preferred null directions and the dyad normalization oAι

A = 1 is given by

oA −→ CoA, ιA −→ C−1ιA, C complex. (7.33)

The corresponding two-parameter subgroup of the Lorentz group (boost
and spatial rotations) affects the complex null tetrad (m,m, l,k) as fol-
lows (cp. (7.7b)):

k −→ Ak, l −→ A−1l, m −→ eiΘm; A = CC̄, eiΘ = CC̄−1. (7.34)

A scalar η which undergoes the transformation

η −→ CpC̄qη (7.35)

is called a weighted scalar of type (p, q), or a spin- and boost-weighted
scalar of type (12(p− q), 12(p+ q)). The components of the Weyl and Ricci
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tensors, and the spin coefficients κ, λ, µ, ν, π, ρ, σ, τ , have the types

Ψ0 : (4, 0), Ψ1 : (2, 0), Ψ2 : (0, 0), Ψ3 : (−2, 0), Ψ4 : (−4, 0),
Φ00 : (2, 2), Φ01 : (2, 0), Φ10 : (0, 2), Φ02 : (2,−2), Φ20 : (−2, 2),
Φ11 : (0, 0), Φ12 : (0,−2), Φ21 : (−2, 0), Φ22 : (−2,−2), (7.36)

κ : (3, 1), λ : (−3, 1), µ : (−1,−1), ν : (−3,−1),
π : (−1, 1), ρ : (1, 1), σ : (3,−1), τ : (1,−1).

In the GHP calculus the replacement

k←→ l, m←→m, (7.37)

is indicated by a prime on the symbols, for instance

κ′ ≡ −ν, σ′ ≡ −λ, ρ′ ≡ −µ, τ ′ ≡ −π, β′ ≡ −α, ε′ ≡ −γ. (7.38)

There is also the star operation given by

k←→m, l←→m, (7.39)

which leads to

κ∗ ≡ σ, λ∗ ≡ ν, µ∗ ≡ π, ρ∗ ≡ τ, β∗ ≡ ε, α∗ ≡ γ,
(7.40)

κ̄∗ ≡ −λ̄, µ̄∗ ≡ −τ̄ , ρ̄∗ ≡ −π̄, σ̄∗ ≡ −ν̄, β̄∗ ≡ −γ̄, ᾱ∗ ≡ −ε̄.

Applied to a type (p, q) scalar η, the operations given by the substitutions
(7.37) and (7.39) and by complex conjugation respectively produce scalars
η′ of type (−p,−q), η∗ of type (p,−q) and η̄ of type (q, p). The prime and
star conventions considerably reduce the notational effort, and are helpful
in checking formulae; e.g. the Newman–Penrose equation (7.21n) is simply
the primed version of (7.21a), etc.

The spin coefficients β, β′, ε, ε′ transform, under the tetrad change
(7.33)–(7.34), according to inhomogeneous laws (7.7d) containing deriva-
tives of C (resp. A and Θ). Therefore, these spin coefficients do not appear
directly in the modified equations. However, they enter the new derivative
operators acting on weighted scalars η of type (p, q):

þη ≡ (D − pε− qε̄)η, þ′η ≡ (∆ + pε′ + qε̄′)η,
(7.41)

ðη ≡ (δ − pβ + qβ̄′)η, ð′η ≡ (δ̄ + pβ′ − qβ̄)η.

One can understand this transformation of operators as an example of
‘absorption of torsion’ (Gardner 1989, Olver 1995).

The operators þ and ð (‘thorn’ and ‘edth’) respectively map a scalar
of type (p, q) into scalars of types (p + 1, q + 1) and (p + 1, q − 1). In
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consequence of the definitions (7.38) and (7.41), the commutators (7.6),
Ricci (Newman–Penrose) equations (7.21), and Bianchi equations (7.32)
get new explicit forms. They contain only scalars and derivative opera-
tors of good weight, and split into two sets of equations, one being the
primed version of the other. It is important to note that the new commu-
tators include weight-dependent terms, which, as can be seen from (7.41),
contain some of the information formerly in the Newman–Penrose equa-
tions (7.21), so that to extract the full information contained in them one
must apply them to quantities of non-zero weight, as well as some of zero
weight.

To use this formalism for exact solutions, one attempts to choose the
tetrad invariantly, any remaining gauge freedom being used to simplify
formulae, and then find as many zero-weighted independent combinations
of the variables as possible (Edgar and Ludwig 1997b). These can then be
used as invariantly-defined coordinates. By completing the tables for the
action of the operators (7.41) on these coordinates and on some suitable
object of non-zero spin and boost weight, adding new variables and tables
where needed (cp. Kerr (1998)), one may be able to carry out a complete
integration of the field equations, the advantage of the method being that
the first part of the integration is a coordinate-free procedure, and the
final coordinates are invariantly chosen.

Examples of elegant discussions on these lines are given by Held for a
class of type D vacuum metrics (1974a) and algebraically special metrics
in general (1975), and by Edgar and Ludwig (1997b) for conformally
flat pure radiation metrics. The GHP technique is also useful in dealing
with fields in algebraically special background metrics, especially the Kerr
metric, see e.g. Breuer (1975).

Ref.: For a presentation of the GHP-formalism see also Penrose and
Rindler (1984).

7.5 Geodesic null congruences

In §6.1 we dealt with geodesic null congruences, whose tangent vector
fields k satisfy

κ ≡ −ka;bm
akb = 0, (7.42)

and introduced the complex divergence ρ and the complex shear σ,

ρ ≡ −ka;bm
am b = −(Θ + iω), σ ≡ −ka;bm

amb, (7.43)

(see (6.17) and (6.20)), in agreement with the definitions (7.2b), (7.2c), of
these spin coefficients. If σ = 0, the congruence will be called shearfree.
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Here we consider the possible simplifications of the Newman–Penrose
equations when the null vector k is geodesic. Null vector fields which are
both geodesic and shearfree will be the subject of the next section.

Choosing k so that the geodesics are affinely parametrized, we have

ka;bk
b = 0 ⇔ κ = 0, ε + ε̄ = 0. (7.44)

Then (7.21a) is equivalent to the propagation equation (6.34),

Dρ = ρ2 + σσ̄ + Φ00. (7.45)

If k is a double principal null direction of the Weyl tensor (Ψ0 = Ψ1 = 0),
then for vacuum fields the Bianchi identity (7.32e) takes the simple form

DΨ2 = 3ρΨ2. (7.46)

If the null tetrad {ea} is parallelly propagated along the geodesic null
congruence k, we obtain

κ = ε = π = 0, (7.47)

i.e. three (complex) spin coefficients are zero. This choice of tetrad is
very convenient for certain calculations; the left-hand sides of (7.21a)–
(7.21i) become directional derivatives Dρ, . . . ,Dν of the remaining spin
coefficients and thus in a coordinate system with k = ∂r, these equations
determine the r-dependence of the spin coefficients.

A simple geodesic principal null direction k of a vacuum field is non-
twisting, k[a;bkc] = 0 (Kammerer 1966).

7.6 The Goldberg–Sachs theorem and its generalizations

The Goldberg–Sachs theorem is very useful in constructing algebraically
special solutions. It exhibits a close connection between certain geomet-
rical properties of a null congruence and Petrov type. The original paper
(Goldberg and Sachs 1962) presents the proof of two theorems:

Theorem 7.1 If a gravitational field contains a shearfree geodesic null
congruence k (κ = 0 = σ) and if

Rabk
akb = Rabk

amb = Rabm
amb = 0, (7.48)

then the field is algebraically special, and k is a degenerate eigendirection;

Cabc[dke]k
bkc = 0 ⇔ Ψ0 = 0 = Ψ1. (7.49)

Remark: The conditions (7.48) are invariant with respect to the null
rotations (7.7a).
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Theorem 7.2 If a vacuum metric (Rab = 0) is algebraically special, then
the multiple principal null vector is tangent to a shearfree geodesic null
congruence.

Combining these two theorems one obtains the well-known form of the
Goldberg–Sachs theorem:

Theorem 7.3 (Goldberg–Sachs theorem). A vacuum metric is algebraic-
ally special if and only if it contains a shearfree geodesic null congruence,

κ = 0 = σ ⇔ Ψ0 = 0 = Ψ1. (7.50)

All statements in (7.50) remain unchanged under conformal transfor-
mations (3.83). This remark leads to an obvious generalization of the
Goldberg–Sachs theorem, namely to any gravitational field that is con-
formal to a vacuum field (Robinson and Schild 1963). The Goldberg–Sachs
theorem was proved in Newman and Penrose (1962) using the formalism
outlined in §§7.1–7.3. From the Bianchi equations (7.32a)–(7.32k) it is
easily seen that with the assumption Ψ0 = 0 = Ψ1 we obtain κ = 0 = σ.
The converse is more difficult to prove. In the special case ρ = 0 we obtain
Ψ0 = 0 = Ψ1 from equations (7.21b), (7.21k). If ρ �= 0 one can always set
α+ β̄ = 0 by tetrad rotations and from (7.21b), (7.21d), (7.21e) and (7.44)
we arrive at Ψ0 = 0, Ψ1 = ρπ. Various steps using the commutators and
Bianchi equations lead to the final result π = 0 = Ψ1.

For empty space-times which are algebraically special on a given sub-
manifold S, which is either a spacelike hypersurface or a timelike world
line, the vector field tangent to a principal null direction of the curva-
ture tensor and pointing, on S, in the repeated principal null direction is
geodesic and shearfree on S (Collinson 1967).

We give (without proof) an interesting theorem (Mariot 1954, Robinson
1961) which allows a reformulation of the Goldberg–Sachs theorem.

Theorem 7.4 (Mariot–Robinson theorem). An arbitrary space-time V4
admits a geodesic shearfree null congruence if and only if V4 admits an
electromagnetic null field (‘test field’) satisfying the Maxwell equations
in V4:

κ = 0 = σ ⇔ F ∗
abk

b = 0, F ∗ab
;b = 0. (7.51)

Conditions (7.48) show that only a part of the vacuum field equations is
needed to prove Theorem 7.1. Thus we have the

Corollary. The Weyl tensor of Einstein–Maxwell fields with an electro-
magnetic null field is algebraically special.
Proof: The Ricci tensor obeys the conditions (7.48) and the Maxwell
equations demand that k is geodesic and shearfree (Theorem 7.4).
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A generalization of the Goldberg–Sachs theorem, not restricted to va-
cuum solutions, is due to Kundt and Thompson (1962) and Robinson and
Schild (1963):

Theorem 7.5 (Kundt–Thompson theorem). Any two of the following
imply the third:

(A) the Weyl tensor is algebraically special, k being the repeated null
vector.

(B) k is shearfree and geodesic (σ = κ = 0).

(C) V abCabcd
;dV ce = 0 for Petrov type II or D,

V abCabcd
;d = 0 for Petrov type III,

UabCabcd
;dV ce = 0 for Petrov type N.

Proof: By elementary calculation we derive the following equations
(Szekeres 1966b):

Type II, D (Ψ0 = Ψ1 = 0): V abCabcd
;dV ce = 6Ψ2(σke−κme), (7.52a)

Type III (Ψ0 = Ψ1 = Ψ2 = 0): V abCabcd
;d = 4Ψ3(σkc− κmc), (7.52b)

Type N (Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0):

UabCabcd
;dV ce = 2Ψ4(σke − κme), (7.52c)

from the decomposition (3.58). Here we have used the definitions (3.40)
of the complex self-dual bivectors Uab, Vab, Wab, and the normalization
(3.9) of the complex null tetrad. From (7.52) it is clear that (A), (B) ⇒
(C) and (A), (C) ⇒ (B). The proof that (B), (C) implies (A) is less trivial
and is omitted here. Condition (C) of the Kundt–Thompson theorem may
be replaced (Bell and Szekeres 1972) by the condition (C′): there exists
a null type solution (ΦAB···M = ΦoAoB · · · oM ) of the zero rest-mass free
field equation ∇AẊΦAB···M = 0 for some spin value s > 1.

For vacuum fields, condition (C) of Theorem 7.5 is automatically true
and (A) ⇔ (B) is just the Goldberg–Sachs theorem (Theorem 7.3). This
follows from the Bianchi identities (3.78) written in the form

Cabcd
;d = Rc[a;b] − 1

6gc[aR,b] (7.53)

(this form can be obtained by using the relations (3.50) and (3.52)).
Suppose we have an algebraically special Einstein–Maxwell field with a

non-null electromagnetic field such that one of the eigendirections of the
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Maxwell tensor is aligned with the multiple principal null direction of the
Weyl tensor. Then it follows from the Bianchi identities (7.32a), (7.32b),
and expressions (7.29), (5.12) that

(2κ0Φ1Φ1 + 3Ψ2)σ = 0, (−2κ0Φ1Φ1 + 3Ψ2)κ = 0 (7.54)

(Kundt and Trümper 1962). If Ψ2 = 0 (Petrov type III and more special
types), then κ = σ = 0. If Ψ2 �= 0 one obtains κσ = 0, i.e. either κ or σ
must vanish. Relation (7.52a) also leads to (7.54).

Unfortunately, the Kundt–Thompson theorem does not directly specify
the most general matter distribution which would allow one to conclude
that (A) ⇒ (B). For instance, the assumption that the Ricci tensor is of
pure radiation type,

Rab = κ0Φ2kakb = κ0Tab, (7.55)

does not guarantee condition (C) for fields of Petrov type N ; in gen-
eral the shear of k does not vanish, cp. §26.1. However, if Tab in (7.55)
is the energy-momentum tensor of an electromagnetic (null) field, the
congruence k is necessarily shearfree because of the above corollary to
Theorem 7.4.



8
Continuous groups of transformations;

isometry and homothety groups

In this chapter we shall summarize those elements of the theory of continu-
ous groups of transformations which we require for the following chapters.
As far as we know, the most extensive treatment of this subject is to be
found in Eisenhart (1933), while more recent applications to general rel-
ativity can be found in the works of Petrov (1966) and Defrise (1969),
for example. General treatments of Lie groups and transformation groups
in coordinatefree terms can be found in, for example, Cohn (1957),
Warner (1971) and Brickell and Clark (1970), but none of these cover
the whole of the material contained in Eisenhart’s treatise.

Einstein’s equations have as the possible generators of similarity solu-
tions either isometries or homotheties (see §10.2.3). Hence we treat these
types of symmetry here, the other types of symmetry, which are more gen-
eral in the sense of imposing weaker conditions, but are more special in the
sense of occurring rarely in exact solutions, being discussed in Chapter 35.
Isometries have been widely used in constructing solutions, as the results
described in Part II show. Many of the solutions found also admit proper
homotheties (homotheties which are not isometries), and these are listed
in Tables 11.2–11.4, but only since the 1980s have homotheties been used
explicitly in the construction of solutions.

8.1 Lie groups and Lie algebras

We begin by introducing the concepts of Lie groups and Lie algebras, and
the relation between them. A Lie group G is (i) a group (in the usual sense
of algebra), with elements q0, q1, q2, . . . say, q0 being the identity element,
and (ii) a differentiable manifold (§2.2) such that the map Φ : G×G→ G
given by the algebraic product (q1, q2) → q1q2 is analytic. Coordinates in
(a neighbourhood of the identity q0 of) G are called group parameters,

91
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and the analytic functions describing Φ in such coordinates are called
composition functions.

We shall not discuss the differentiability conditions required to ensure
that a continuous group (and, in later sections, the action of a continuous
transformation group) is analytic; for these see e.g. Cohn (1957). In our
applications such conditions always hold. Moreover, as in the rest of the
book, many of the results stated apply only locally, i.e. in a neighbour-
hood: for example, in what follows, we may say that a manifold is invariant
under a group, whereas all that we really require is that a neighbourhood
(on which we solve the Einstein equations) is isometric to a neighbour-
hood in a space with the stated symmetry. In a few places where the dis-
tinction is crucial we shall remind the reader of it by inserting ‘locally’.
Schmidt (1971) and Hall (1989) give some results on the relation of local
and global groups of transformations.

Our aim is to study transformation groups. An abstract Lie group nat-
urally has associated with it two transformation groups. One of them
consists of the left translations, the left translation associated with q ∈ G
being the map Lq of G to G such that

q′ −→ qq′; (8.1a)

the other consists of right translations Rq defined similarly by

q′ −→ q′q. (8.1b)

Each of these has associated with it a set of vector fields related to one-
dimensional subgroups of transformations in the same way as v is related
to Φt in §2.8.

As is easily seen, right translations commute with left translations,

RqLq′ = Lq′Rq. (8.2)

If we follow the convention that maps are written on the left (e.g.
Lq(q′) = qq′), then the left translation group is isomorphic to G and
is called the parameter group, while the right translation group is alge-
braically dual to G. (If maps are written on the right, ‘right’ and ‘left’
must be interchanged in all subsequent statements.) The vector fields re-
lated to left translations turn out to be right-invariant vector fields, which
we now study.

A right-invariant vector field v on G is defined to be one satisfying

(Rq)∗v = v (8.3)

(for definitions, see (2.23), (2.24)). The value v(q) of such a vector field
at a point q gives, and is given by, its value v(q0) at the group identity:

v(q) = (Rq)∗ v(q0), v(q0) = (Rq−1)∗ v(q). (8.4)
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Equations (8.4) show that the group G has the same dimension r at all
points, and that the set of all right-invariant vector fields and the tangent
space Tq0 to G at q0 are isomorphic vector spaces. An r-dimensional group
is denoted by Gr and said to be of r parameters.

The transformations Φt generated by a right-invariant vector field v,
in the way described in §2.8, clearly commute with right translations. If
Φtq0 = q(t), we find

Φtq
′ = ΦtRq′q0 = Rq′Φtq0 = Rq′q(t) = q(t)q′, (8.5)

so that Φt = Lq(t); the right-invariant vector fields represent infinitesi-
mal left translations. From (2.25), the commutator of two right-invariant
vector fields is also right-invariant, so that if we take a basis {ξA, A =
1, . . . , r} of the space of right-invariant vector fields we must have

[ξA, ξB] = CC
ABξC , CC

AB = −CC
BA. (8.6)

The coefficients CC
AB are known as the structure constants of the group.

A Lie algebra is defined to be a (finite-dimensional) vector space in which
a bilinear operation [u,v], obeying [u,v] = −[v,u] and the Jacobi identity
(2.7), is defined. Thus we have proved

Theorem 8.1 A Lie group defines a unique Lie algebra.

It is possible to show that the converse also holds.

Theorem 8.2 Every Lie algebra defines a unique (simply-connected) Lie
group.

For a proof, see e.g. Cohn (1957). The elements of the Lie algebra, or
a basis of them, are said to generate the group. Noting that the Jacobi
identity (2.7) holds for (8.6) if and only if

CE
[ABCF

C]E = 0, (8.7)

we can rewrite Theorem 8.2 as

Theorem 8.3 (Lie’s third fundamental theorem). Any set of constants
CA

BC satisfying CA
BC = CA

[BC] and (8.7) are the structure constants of
a group.

Theorem 8.2 does not imply that a given Lie algebra arises from only
one Lie group. For example the Lorentz group L↑

+ and the group SL(2,C)
(see §3.6) have the same Lie algebra. It is true, however, that all connected
Lie groups with a given Lie algebra are homomorphic images of the one
specified in Theorem 8.2.
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All the above work can be repeated interchanging left and right. We
shall denote a basis of the Lie algebra of left-invariant fields by {ηA, A =
1, . . . , r}. For all A and B, (8.2) implies

[ξA,ηB] = 0. (8.8)

Clearly there must be some position-dependent matrix MA
B(q) such that

ηA = MA
BξB, with inverse (M−1)AB. Equations (8.8) and (8.6) show

that
[ηA,ηB] = −MA

CMB
DCE

CD(M−1)FEηF , (8.9)

so that the structure constants DA
BE of the basis {ηA} are related to the

CA
BE . Choosing ηA = −ξA at q0 shows that the Lie algebras, and hence

the Lie groups, of the left and right translations are isomorphic. However,
it is more usual to take ηA = ξA, leading to

DA
BC = −CA

BC . (8.10)

The commutators [u,v] of the right-invariant vector fields are the in-
finitesimal generators of the commutator subgroup of G (i.e. that formed
from all products of the form q1q2(q1)−1(q2)−1). This is also known as the
(first) derived group, and its Lie algebra, which is spanned by CA

BCξA,
is the derived algebra. A group is said to be Abelian if every pair of ele-
ments commutes: for Lie groups, this is true if and only if all the structure
constants are zero. A subgroup H of a group G is said to be normal or
invariant if qhq−1 ∈ H for any h ∈ H and q ∈ G; for Lie groups this is
true if and only if the generators ζi (i = 1, . . . , p) of H obey

[ξA, ζi] = Cj
Aiζj (8.11)

for all A and i. A group is said to be simple if it has no invariant subgroup
other than the group itself and the identity, and semisimple if it similarly
has no invariant Abelian subgroup. The derived group is always invariant.
If the sequence {Gri}, where Gri is the derived group of Gri−1 and Gr0 =
Gr, satisfies r > r1 > · · · > rk = 0, then the group Gr is said to be
solvable (or integrable); this can be tested by calculating the dimensions
of the successive derived algebras.

Any subalgebra of the Lie algebra of a Lie group generates a Lie sub-
group, and a subalgebra with basis {ζi} satisfying (8.11), known as an
ideal, generates an invariant subgroup.

It is possible to define canonical coordinates on a Lie group G in such
a way that a given basis {ξA} has ξA = ∂/∂xA at q0; actually, this can
be done in more than one way (Cohn 1957).
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8.2 Enumeration of distinct group structures

Linear transformations of the basis {ξa} transform the CA
BC of (8.6)

as a tensor. To find distinct algebras we need sets of constants CA
BC

which cannot be related by such a linear transformation. The enumer-
ations therefore naturally use properties, such as the dimension of the
derived algebra, which are invariant under these transformations. Meth-
ods of enumerating all complex Lie algebras are wellknown, being useful in
pure mathematics and quantum physics, but the enumeration of the real
Lie algebras, although its foundations have also long been known, is not so
widely studied. We give here the distinct structures for groups G2 and G3,
and some information on classification of the G4. We omit the full list of
G4 because many cases do not arise in exact solutions. MacCallum (1999)
gives an enumeration and compares it with previous classifications such
as those of Petrov (1966) and Patera and Winternitz (1977).

In a G2 there is only one (non-trivial) commutator; hence all G2 are
solvable. If the G2 is Abelian, it is called type G2I. If it is non-Abelian,
one can choose ξ1 in the derived algebra, and scale ξ2 so that

[ξ1, ξ2] = ξ1; (8.12)

this case is called type G2II.
The G3 were originally enumerated by Bianchi (1898). There are nine

types, Bianchi I to Bianchi IX , two of which, VI and VII , are one-
parameter families of distinct group structures. Complex transformations
relate types VIII and IX , and types VI and VII . Bianchi’s method began,
like that above for the G2, by considering the dimension of the derived
algebra, but we shall obtain the result in a different way (Schücking,
unpublished, 1957, Estabrook et al. 1968, Ellis and MacCallum 1969).
Taking any completely skew tensor εABC on the Lie algebra we write
1
2C

D
BCεBCE = NDE+εDEFAF , AD ≡ 1

2C
B
DB, NDE = N (DE), (8.13)

so that, with εDEF obeying εABCεDEF = 6δA[DδBE δCF ] as usual,

CD
BC = εBCFN

DF + 2δD[CAB]. (8.14)

The Jacobi identity (8.7) reduces to

NDEAE = 0. (8.15)

NDE is defined up to an overall factor (since εABC is). Its invariant prop-
erties are its rank and the modulus of its signature. In types VI and VII
there is a further invariant h, defined by

(1− h)CA
BAC

D
CD = −2hCA

DBCD
AC , (8.16)
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Table 8.1. Enumeration of, and canonical structure constants for, the Bianchi
types

Class G3A G3B

Type I II V I0 V II0 V III IX V IV III V Ih V IIh

Rank (NDE) 0 1 2 2 3 3 0 1 2 2 2
|Signature 0 1 0 2 1 3 0 1 0 0 2

(NDE)|
A 0 0 0 0 0 0 1 1 1

√−h
√
h

N1 0 1 0 0 −1 1 0 0 0 0 0
N2 0 0 −1 1 1 1 0 0 −1 −1 1
N3 0 0 1 1 1 1 0 1 1 1 1
Dimensions 9 6 4 4 3 3 6 4 4 4 4
of canonical basis freedom

which supplies the one parameter required to subdivide these Bianchi
types: in type VI, h < 0, and in type VII, h > 0. The relation between
h and Bianchi’s parameters q for types VI and VII is given by h =
−(1 + q)2/(1 − q)2 and h = q2/(4 − q2) respectively. Bianchi type III is
the same as VIh with h = −1.

There are two main classes of G3, Class G3A (AE = 0) and Class G3B
(AE �= 0). In all cases, by rotation and rescaling of the basis {ξA}, one
can set NDE = diag(N1, N2, N3), AE = (A, 0, 0), with N1, N2, N3 equal
to 0 or ±1 as appropriate, and A =

√
hN2N3 (for Bianchi types VI , VII ,

and III ). Thus one obtains Table 8.1 which lists all types and canonical
forms of the structure constants. All types are solvable, except VIII and
IX which are semisimple. The canonical form does not uniquely specify
the basis. The dimension of the subgroup of the linear transformations
which preserves the canonical form is shown in Table 8.1 (for a proof see
Siklos (1976a)).

The G4 can similarly be divided into two classes by whether AE =
1
2C

B
EB = 0 or not. In the first case one has (Farnsworth and Kerr 1966):

Theorem 8.4 If AE = 0, then either (i) the structure constants of the
G4 can be written in the form

CA
BC = ΘA

[BPC] (8.17)

or (ii) if no form (8.17) exists, there is a non-zero vector LA such that

CA
BCLB = 0 (8.18)
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As a corollary of this theorem, we have

Theorem 8.5 (Egorov). Every G4 contains a G3 (locally); (see Petrov
(1966), p. 180).

Proof. If AE �= 0, the Jacobi identities yield ABCB
CD = 0, showing

that the derived algebra is three-dimensional (at most). If AE = 0 the
forms (8.17), (8.18) show clearly that the derived algebra is again at most
three-dimensional. In all cases the derived algebra (together, if necessary,
with enough linearly independent vectors to make the dimension three)
generates a G3.

A slightly different proof was found by Kantowski (see Collins (1977a)).
Patera and Winternitz (1977) have explicitly calculated all subgroups G2
and G3 of the real G4.

Another result due to Egorov (see Petrov (1966), p. 180) is

Theorem 8.6 Every G5 contains a subgroup G4.

8.3 Transformation groups

Let M be a differentiable (analytic) manifold and G a Lie group of r
parameters. An action of G on M is an (analytic) map µ : G ×M →
M; (q, p) → τqp. Each element q of G is associated with a transformation
τq : M →M. It is assumed that the identity q0 of G is associated with
the identity map I : p→ p of M, and that

τqτq′p = τqq′p (8.19)

so that the transformations τq form a group isomorphic with G. The group
is said to be effective (and the parameters essential) if τq = I implies
q = q0; only such groups need be considered.

The orbit (or trajectory, or minimum invariant variety) of G through a
given p inM is defined to beOp = {p′ : p′ ∈M and p′ = τqp for some q ∈
G}. It is a submanifold of M. The group G is said to be transitive on its
orbits, and to be either transitive on M (when Op = M) or intransitive
(Op �= M). It is simply-transitive on an orbit if τqp = τq′p implies q = q′;
otherwise it is multiply-transitive. A group may be simply-transitive on
general orbits but multiply-transitive on some special orbit(s). The set of
q in G such that τqp = p forms a subgroup of G called the stability group
S(p) of p. If p′ ∈ Op, so that there is a q in G such that τqp = p′, and if
q′ ∈ S(p), then τqτq′τq−1p′ = p′ and hence qq′q−1 ∈ S(p′). Thus S(p) and
S(p′) are conjugate subgroups of G, and have the same dimension, s say;
for brevity, one often refers to the stability subgroup Ss of an orbit.

For each orbit, a map µp : G → Op; q → τqp can be defined. The map
(µp)∗ then maps the right-invariant vector fields on G to vector fields
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tangent to Op. It can be shown that the choice of base point p in Op does
not affect (µp)∗. Hence, using a map (µp)∗ in each Op, we can define a Lie
algebra of vector fields on M by taking the image of the Lie algebra of
G. At the risk of some confusion we use {ξA} to denote a basis of either
Lie algebra. The two algebras are isomorphic because G is assumed to be
effective, and so (µp)∗v = 0 for all p only if v = 0.

The stability group of p is generated by those v such that (µp)∗v =0 at
p; this is clearly the kernel of the map (µp)∗ at q0. Denoting the dimension
of Op by d we thus have

r = d + s. (8.20)

The classical theorems on continuous transformation groups can be
expressed as

Theorem 8.7 (Lie’s first fundamental theorem). An action µ : G×M→
M of a continuous (Lie) group of transformations defines and is defined
by a linear map of the right-invariant vector fields on Gr onto an r-
dimensional set of (smooth) vector fields on M.

Theorem 8.8 (Lie’s second fundamental theorem). A set of r (smooth)
linearly independent vector fields {ξA} on M obeying (8.6) defines and is
defined by a continuous (Lie) group of transformations on M.

A single generator ξ of a transformation group Gr gives rise to a one-
parameter subgroup Φx (see §2.8) of Gr, and by choosing one point p
in each orbit of this group as x = 0 we can find a coordinate x in M
such that ξ = ∂x (the term trajectory is sometimes reserved for such one-
dimensional orbits). If there are m commuting generators {ξA} (forming
an Abelian subgroup), all non-zero at p, then one can thus find m coor-
dinates (x1, . . . , xm) such that ξA = ∂/∂xA (A = 1, . . . ,m).

8.4 Groups of motions

Manifolds with structure, such as Riemannian manifolds Vn, may admit
(continuous) groups of transformations preserving this structure. In a Vn,
the map Φt corresponding (as in §2.8) to a conformal motion obeying
(6.10) has the property (Φtg)ab = e2Ugab, where U is the integral of the φ
in (6.10) along a curve, i.e. it preserves the metric up to a factor. This is
a conformal transformation (§3.7), whence the name conformal motion.
It is a homothety if φ is constant, and a motion (or isometry), whose
generator obeys Killing’s equation (6.11) and which preserves the metric,
if φ = 0. Here we shall consider motions. Homothety groups are discussed
further in §8.7 and more general symmetries in §35.4.
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The set of all solutions of Killing’s equation (6.11), i.e.

ξa;b + ξb;a = 0, (8.21)

can easily be seen to form a Lie algebra (8.6) and hence, by Theorem 8.8,
to generate a Lie group of transformations, called a group of motions or
isometry group. If we use the coordinate x adapted to a Killing vector ξ,
so that ξ = ∂x, then gab is independent of x.

Some special terminology is used for groups of motions. The stability
group of p in a group Gr of motions is called the isotropy group Is of
p. We use the term generalized orthogonal group for the set of linear
transformations of the tangent space at p which preserve scalar products
formed with the metric g by (3.4). By Lie dragging, (2.60), Is gives rise
to the linear isotropy group Î of p, acting in the tangent space to the
orbit Op at p, which is a subgroup of the generalized orthogonal group.
For a space-time, the generalized orthogonal group is the Lorentz group.
The orbits (with dimension d) of a group of motions may be spacelike,
null, or timelike submanifolds, and these are denoted by Sd, Nd and Td,
respectively. If we use Vd it denotes either an Sd or a Td. A space Vd on
which a group of motions acts transitively is called homogeneous.

The quantity Kab = ξa;b = ξ[a,b], the Killing bivector, can be interpreted
in terms of a Lorentz transformation between a tetrad Lie-dragged along
an integral curve of ξA and one parallelly transported along the same
curve (a rotation if Kab is simple and spacelike, a boost if Kab is simple
and timelike and a null rotation if Kab is null) (Kobayashi and Nomizu
1969, Hall 1988a). Properties of the Killing bivector can be related to
those of the curvature (see e.g. Catenacci et al. (1980)): for example, a
non-flat vacuum with a null Killing bivector must be algebraically special.

We now consider the question of the dimension r of the (maximal)
group of motions admitted by a given Riemannian manifold. A useful
step is provided by the following result.

Theorem 8.9 If a Killing vector field ξ has ξa = 0 and ξa;b = 0 at a
point p, then ξ ≡ 0.

Proof. Locally, any point p′ may be joined to p by a geodesic, with tangent
vector v at p, say. Then ξ fixes p and v (by (2.60)), and preserves the
affine parameter distance along the geodesic with tangent vector v at p.
It thus fixes p′. Thus ξ = 0 at any point p′.

Under appropriate smoothness conditions this can also be proved by
considering the linear differential equation (8.22).

From this result we see that (i) the isotropy and linear isotropy groups of
p are isomorphic, and (ii) a Killing vector field will be completely specified
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given the n(n+ 1)/2 values of ξa and ξa;b at a point p. Thus we have only
to check if there are further restrictions on these values. In general all
such restrictions for systems of partial differential equations are obtained
by repeated differentiation (see e.g. Eisenhart (1933)). In the case of the
Killing equation, the first differentiation of (8.21) gives

(LξΓ )abc = 0 ⇔ ξa;bc = Rabcdξ
d, (8.22)

which, together with (8.21), gives a system of first-order differential equa-
tions for the quantities ξa, ξb;c. Vectors satisfying (only) (8.22) are called
affine collineations, cp. §35.4. The integrability conditions given by further
differentiation are exactly the equations

LξR = 0, Lξ(∇a1 · · · ∇aNR) = 0, N = 1, 2, . . . (8.23)

for the successive covariant derivatives of the Riemann tensor R. Each of
these gives an equation linear in ξa and ξb;c (as we see from §2.8). Since
there can be at most n(n + 1)/2 independent conditions, we see there
must exist an integer Q such that the conditions (8.23) for N > Q depend
algebraically on those for N ≤ Q at any point. From this argument, and
similar considerations for the isotropy group (ξa = 0) and the group of
conformal motions, one obtains the following results.

Theorem 8.10 If the rank of the linear algebraic equations (8.23) for
ξa and ξa;b is q, then the maximal group Gr of motions of the Vn has
r = 1

2n(n + 1)− q parameters.

Theorem 8.11 For a Vn admitting a group Gr of motions, the rank of
the linear algebraic equations (8.23) for ξa;b with ξc = 0 is p if and only
if there is an isotropy subgroup Is, s = 1

2n(n− 1)− p (Defrise 1969).

Theorem 8.12 The maximal order of a group Gr of conformal transfor-
mations in a Vn is r = 1

2n(n + 1)(n + 2) (see e.g. Eisenhart 1949).

To find the Killing vectors of a metric, or, alternatively, to find the re-
strictions on the metric and curvature of a space admitting a group Gr

of motions with given r, one can use (8.23). Petrov (1966) largely worked
by this method. For a given metric, one can often obtain results equiva-
lent to (8.23) by remarking that any invariantly-defined geometric object
(e.g. a principal null direction of the Weyl tensor, the velocity vector of
a perfect fluid, the bivector fields defined by the eigenblades of a type D
Weyl tensor) must be invariant under the isometries; the coordinates are
usually adapted to some such invariant structure, and this facilitates the
calculation.
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In particular, scalar invariants of the Riemann tensor and its derivatives
(see §9.1) must be invariant under isometries. Kerr (1963b) proved that in
a four-dimensional Einstein space, the number of functionally independent
scalar invariants is 4 − d, where d is the dimension of the orbits of the
maximal group of motions.

Ref.: Swift et al. (1986) considered classes of solutions where the isometries
are specializations of diffeomorphisms preserving the whole class.

8.5 Spaces of constant curvature

A two-dimensional Riemannian space has only one independent compo-
nent, R1212 say, of its curvature tensor. The tensor gabcd, defined as in
(3.47), has the same index symmetries as Rabcd, and is non-zero (be-
ing, in two dimensions, essentially the determinant of gab). Thus in two
dimensions

Rabcd = K(gacgbd − gadgbc). (8.24)

K is called the Gaussian curvature.
In a Riemannian space of more than two dimensions one can, at any

point p, form a two-dimensional submanifold by taking all geodesics
through p whose initial tangent vector is of the form αv + βw, where
α, β are real and v and w are fixed vectors at p. Equation (8.24) then
defines the sectional curvature K of this two-dimensional manifold, as-
suming it is non-null, and it can be shown that

K =
Rabcdv

awbvcwd

(gacgbd − gadgbc)vawbvcwd
. (8.25)

The space Vn is said to be of constant curvature if K in (8.25) is indepen-
dent of p and of v and w. Then (8.25) leads to

Qabcd + Qadcb + Qcbad + Qcdab = 0,

Qabcd ≡ Rabcd −K(gacgbd − gadgbc),
(8.26)

and the Riemann tensor symmetries yield (8.24) for the Riemann tensor
of the Vn, with constant K.

If we take a space of constant curvature, conditions (8.23) are all identi-
cally satisfied, so by Theorem 8.10 there is a group of motions of 12n(n+1)
parameters.

If a space Vn admits an isotropy group of 12n(n−1) parameters, it is the
whole of the relevant generalized orthogonal group (see Theorem 8.11). In
this case (8.25) is independent of the choice of v and w and, as above, we
obtain (8.26) and (8.24). The Bianchi identities Rab[cd;e] = 0, contracted
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on b and d, yield (n− 2)(K,agce −K,cgae) = 0, and contracting again on
a and e gives (n − 2)(n − 1)K,c = 0. Thus, if n ≥ 3, K is constant and
the space admits a Gr (r = 1

2n(n + 1)) of motions. Conversely if a space
Vn admits a Gr (r = 1

2n(n+ 1)) of motions then by (8.20) it admits an Is
(s = 1

2n(n − 1)) of isotropies and is thus of constant curvature if n ≥ 3.
If n = 2, a G2 (or G3) of motions must be transitive and then LξR = 0
for the Riemann tensor leads to K = constant.

Collecting together these arguments we find we have proved

Theorem 8.13 A Riemannian space is of constant curvature if and only
if it (locally) admits a group Gr of motions with r = 1

2n(n + 1).

Theorem 8.14 A Riemannian space Vn (n ≥ 3) is of constant curvature
if and only if it (locally) admits an isotropy group Is of s = 1

2n(n − 1)
parameters at each point.

Theorem 8.15 A two-dimensional Riemannian space admitting a G2 of
motions admits a G3 of motions.

Substituting (8.24) into the definition (3.50) of the Weyl tensor we find
Ca

bcd = 0, and so (3.85) can be solved to find the factor e2U in (3.83)
relating the metric to that of a flat space of the same dimension and
signature, g̊ab = diag(ε1, . . . , εn), where ε1, . . . , εn = ±1 as appropriate.
Equations (3.85) are satisfied if

2(e−U ),ab = Kg̊ab, (e−U ),a(e−U ),a = K(e−U − 1), (8.27)

the solution of which can be transformed to

e−U = 1 + 1
4Kg̊abx

axb. (8.28)

Hence the metric of a space Vn of constant curvature can always be writ-
ten as

ds2 =
dxadxa(

1 + 1
4Kxbxb

)2 (8.29)

(indices raised and lowered with g̊ab), for any value of K or signature of
Vn, and any two metrics of the same constant curvature and signature
must be locally equivalent.

A space Vn of non-zero constant curvature, K �= 0, can be considered
as a hypersurface

ZaZ
a + k(Zn+1)2 = kY 2, K = kY −2, k = ±1, (8.30)

in an (n + 1)-dimensional pseudo-Euclidean space with metric

ds2 = dZadZa + k(dZn+1)2. (8.31)
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For each parametrization of Za and Zn+1 in terms of coordinates (e.g.
angular coordinates) in Vn, in accordance with the surface equation (8.30),
the metric of Vn can be obtained from (8.31), and the relation

xa =
2Za

1 + (1−KZbZb)1/2
(8.32)

yields the transformation from the xa in (8.29) to the new coordinates in
Vn.

In the remainder of this section we consider some special cases which
play an important role in general relativity. The metric

ds2 =
dx2 + dy2 + dz2 − dt2[

1 + 1
4K(x2 + y2 + z2 − t2)

]2 (8.33)

of a space-time V4 of constant curvature (de Sitter space if K > 0 or anti
de Sitter space if K < 0) can be given in the equivalent form

ds2 =
dr2

1−Kr2
+ r2(dϑ2 + sin2 ϑ dϕ2)− (1−Kr2)dt2. (8.34)

In this metric, K can be related to a Λ-term (see §5.2) by Λ = 3K.
Gravitational fields often admit subspaces of constant curvature. On a

single subspace, K is of course constant, but it may have differing values
on different subspaces (see Chapter 36).

The metric

ds2 =
dx2 + dy2 + dz2[

1 + 1
4K(x2 + y2 + z2)

]2 (8.35)

of a three-dimensional positive-definite space (e.g. a spacelike hypersur-
face in a space-time), the Killing vectors of which are given by (12.25),
can be transformed (cp. (37.13)–(37.14)) to the form

ds2 = a2
[
dr2 + Σ2(r, k)(dϑ2 + sin2 ϑ dϕ2)

]
, K = ka−2, (8.36)

Σ(r, k) = sin r, r or sinh r, respectively, when k = 1, 0 or − 1. (8.37)

The metrics of 2-spaces of constant curvature have six distinct types

ds2 = Y 2
[
(dx1)2 ± Σ2(x1, k)(dx2)2

]
, K = kY −2, (8.38)

with Σ(x1, k) as in (8.37). In the case of a metric with signature zero, and
k = −1, the parametrization

Z1 = Y sinx1 sinhx2, Z2 = Y sinx1 coshx2, Z3 = Y cosx1, (8.39)
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leads (Barnes 1973a) to the form

dσ2 = Y 2[−(dx1)2 + sin2 x1(dx2)2]. (8.40)

The specific case of spacelike surfaces S2 frequently occurs. For these

dσ2 =
2dζdζ̄(

1 + 1
2Kζζ̄
)2 , ζ =

1√
2

(x1 + ix2) , (8.41)

where x1, x2 are as in (8.29). For k = 1, ζ =
√

2/K cot(ϑ/2) exp(iϕ) gives
the usual form for the sphere of radius Y

dσ2 = Y 2(dϑ2 + sin2 ϑ dϕ2). (8.42)

For k = −1, the transformation z = (1 + z′)/(1− z′), z′ =
√
−1
2Kζ, leads

to
dσ2 = 4Y 2

dz dz̄
(z + z̄)2

. (8.43)

Besides (8.41)–(8.43), other coordinate systems are frequently used in
the literature, e.g. for S2, k = −1,

dσ2 = Y 2(dϑ2 + cosh2 ϑ dϕ2), (8.44)

dσ2 = Y 2(dx2 + e2xdy2). (8.45)

All the results given above follow from well-known classical methods
and theorems and are described in many texts, e.g. Eisenhart (1933),
Petrov (1966), Plebański (1967), Weinberg (1972).

8.6 Orbits of isometry groups

From the previous section we know a great deal about orbits Vn of groups
of motions Gr with r = 1

2n(n + 1). In the present section we shall discuss
orbits of smaller groups of motions. We first note the following well-known
theorems (see e.g. Eisenhart (1933)).

Theorem 8.16 If the orbits of a group of motions are hypersurfaces then
their normals are geodesics, and if the hypersurfaces are non-null they
are geodesically parallel, i.e. taking an affine parameter along the normal
geodesics as the coordinate xn, the metric has the form

ds2 = gµνdxµxν + ε(dxn)2, µ, ν = 1, . . . , (n− 1), ε = ±1. (8.46)

Theorem 8.17 (Fubini’s theorem). A Riemannian manifold Vn of di-
mension n ≥ 2 cannot have a maximal group of motions of 12n(n+ 1)− 1
parameters.
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8.6.1 Simply-transitive groups

If a group is simply-transitive, the map µp : G → Op used in §8.3 is an
isomorphism and thus (µp)∗ can be used to map the left-invariant vector
fields. Taking a basis of these, {eA = ηA;A = 1, . . . , r}, in each orbit, the
metric in the orbit is

dσ2 = (ηA · ηB)ωAωB = gABω
AωB, (8.47)

where the ωA are dual, in Op, to the ηA. For any Killing vector ξ, (8.21)
and (8.8) show that LξgAB = 0, so that the gAB are constant in the orbit.

If a simply-transitive group Gr is intransitive on the Vn, one can choose
a basis {eA = ηA;A = 1, . . . , r} separately in each orbit, and complete a
basis {ea; a = 1, . . . , n} of the tangent space at one point p in each orbit
by adding (n − r) arbitrary vectors, in a suitably smooth way. If vector
fields {ea; a = r + 1, . . . , n} are then defined throughout Op by using the
(τq)∗ on the {ea} at p we find, using the dual basis {ωa}, that

ds2 = gabω
aωb (8.48)

with gab constant in each orbit. This can be done in such a way that
ωa = ωA for A = 1, . . . , r: for a non-nullOp one can use vectors orthogonal
to Op to complete the basis; this cannot be done for a null Op because
the null normal lies in the orbit but a related prescription can be given.

The vector fields ηA generate a group of transformations on each orbit,
called the reciprocal group; it will not necessarily have any of the symmetry
properties of the transformation group Gr, i.e. in the present case it will
not in general consist of isometries.

It is often convenient to choose an orthonormal basis of reciprocal group
generators in each orbit. Their Lie algebra cannot then be completely
reduced to canonical form because only the generalized orthogonal group
of linear transformations, and not the general linear group, is available.
For a simply-transitive G3 on S3 we can reduce the commutators of such
orthonormal reciprocal group generators {Eα;α = 1, 2, 3} to the form

[Eα,Eβ] = γδαβEδ,
1
2γ

δ
αβε

αβϕ = n(δϕ) + εδϕνaν , (8.49)

n(δϕ) = diag(n1, n2, n3) and aν = (a, 0, 0), (8.50)

where εαβγ is the natural skew tensor defined by gαβ (up to sign). In the
case of a G4 simply-transitive on space-time the orthonormal reciprocal
group generators have commutators

[Ea,Eb] = Dc
abEc, (8.51)

where, from (8.10) and Theorem 8.4, Dc
ca �= 0 or (8.17) or (8.18) holds.
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Most steps in this argument do not use the fact that the {ξA} are
motions, and so, by a very similar argument, one can prove (Hoenselaers
1988), in n dimensions,

Theorem 8.18 An n-dimensional simply-transitive group of affine col-
lineations with generators {ξA} exists if and only if there is a frame {ηA}
the Ricci rotation coefficients of which are constant; the ηA generate the
reciprocal group and the bases are related by (8.8).

In the case of a (non-null) orbit of a simply-transitive group the cur-
vature tensor of the orbit is easily calculated from (3.20) and (2.79), re-
membering that here, using (8.47), the gAB and DC

AB are constants. One
gets

ΓCAB = 1
2(DACB + DBCA −DCAB), (8.52)

RD
ABC = ΓE

ACΓD
EB − ΓE

ABΓD
EC −DE

BCΓD
AE , (8.53)

RAB = −1
2D

E
DAD

D
EB − 1

2D
E
DADE

D
B + 1

4DADEDB
DE

− 1
2(DD

DE)(DAB
E + DBA

E), (8.54)

where indices are to be raised and lowered by gAB and gAB. One can,
by the choice giving (8.10), use the group structure constants directly.
For space-time metrics with groups G3 simply-transitive on hypersurfaces
(e.g. spatially-homogeneous cosmologies), it will be convenient to have
expressions for ξA, ηA and ωA obeying (8.10), (8.47) and Table 8.1 in
terms of the canonical coordinates mentioned at the end of §8.1. These
are given as Table 8.2. Note that such coordinates can still be chosen in
many different ways, owing to the initial basis freedom listed in Table 8.1
and the freedom of choice of p for µp in the orbit (§8.3).

8.6.2 Multiply-transitive groups

Here we consider only non-null orbits. Schmidt (1968) has shown how to
calculate all possible Lie algebras for a given isotropy group and dimension
and signature of orbit, and how to find the curvature of the resulting
orbits.

The method is as follows. The isotropy subgroup Is of a chosen point
p must be a (known) subgroup of the generalized orthogonal group and
hence the commutators of its generators, {Y i; i = 1, . . . , s}, are known.
The basis of generators of the complete group of motions can be completed
by adding d non-zero Killing vectors {ξα;α = 1, . . . , d} which may be
chosen at p in a way adapted to the isotropy group (e.g. if Is consists
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of null rotations fixing a vector k, choose ξ1 = k). The action of the
(linear) isotropy group on vectors at p is known (from that of the gener-
alized orthogonal group) and hence the commutators [ξα,Y i] are known
up to terms in Y j , i.e. the structure constants Cβ

αi are known. The
unknown structure constants Cj

iα, Cj
αβ , Cγ

αβ must satisfy the Jacobi
identities (8.7) and all possibilities can then be enumerated. One can add
to Schmidt’s remarks that if the group has a simply-transitive subgroup,
this latter must have a basis {Zα;α = 1, . . . , d} agreeing with {ξα} at p.
Therefore one must have

Zα = ξα + Aα
iY i, (8.55)

where the Aα
i are constants. One can easily evaluate the commutators

[Zα,Zβ], and the condition that these should be spanned by the Zα (so
that a subalgebra is generated) gives restrictions on the Aα

i. All possible
simply-transitive subgroups can thus be determined.

Using the basis vector fields {ξα} in a neighbourhood of p, it is possible
to determine the curvature of Op at p as follows (Schmidt 1971). The
connection coefficients are given by

∇ξαξβ = Γγ
βαξγ . (8.56)

The commutator gives
−2Γγ

[αβ] = Cγ
αβ (8.57)

at p. Note that [ξα, ξγ ] · ξβ = Cβαγ need only hold at p, since Y i · ξβ
need not and in general will not be zero elsewhere. The symmetric part
Γγ
(αβ) of the connection can be found using the Killing equations which

yield Γβαγ + Γγαβ = 0 and thus

2Γγ(αβ) = Cβαγ + Cαβγ , (8.58)

whence

2∇ξαξβ = [ξα, ξβ ] + {[ξα, ξγ ] · ξβ + [ξβ, ξγ ] · ξα}gγδξδ. (8.59)

Now to compute the next derivative, and hence the Riemann tensor,
by (2.77), we need ∇ξαg and ∇ξαY i. The first of these involves only
∇ξαξβ and ∇ξαξγ since Lξαg = 0; these are already known at p. Also
∇ξαY i = ∇Y i

ξα + [ξα,Y i] and since Y i = 0 at p, this simplifies, at p, to
∇ξαY i = [ξα,Y i] which is known. Thus the components of the Riemann
tensor of the orbit can be evaluated at p in the basis {ξα}.

We now give some examples of this method with applications in the se-
quel. First we determine the possible isometry groups of two-dimensional
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positive-definite spaces of constant curvature. The isotropy Y is a spatial
rotation, and ξ1 and ξ2 can be chosen at p so that

[ξ1, Y ] = ξ2 + αY , [ξ2, Y ] = ξ1 + βY . (8.60a)

A linear transformation ξ1 → ξ1 + βY , ξ2 → ξ2 + αY eliminates α and
β. Using the finite rotation Φ : (ξ1, ξ2) → (−ξ1, −ξ2), Φ[ξ1, ξ2] = [ξ1, ξ2]
implies

[ξ1, ξ2] = KY . (8.60b)

By the method outlined above one can compute the Riemann tensor and
show that K is its constant curvature. Clearly the isometry group is a G3
of Bianchi type IX, VII0, or VIII respectively when K is positive, zero or
negative. On changing the basis to Z1 = ξ1+αY , Z2 = ξ2+βY we find

[Z1,Z2] = −αZ1 − βZ2 + (K + α2 + β2)Y . (8.61)

Thus there is a simply-transitive subgroup of type G2I if K = 0 (given by
α = β = 0), and a one-parameter family of simply-transitive subgroups
of type G2II (conjugate to one another within the G3) if K < 0, given
by α = |K| sinϕ, β = |K| cosϕ for arbitrary angle ϕ. The second of these
results does not appear to be widely known. If K > 0 there are no simply-
transitive subgroups; this is equivalent to the statement that the rotation
group of three-dimensional space (whose orbits are the spheres centred
at the origin) has no two-dimensional subgroup. The three-dimensional
‘Lorentz group’ (Bianchi VIII ), however, has simply-transitive G2 sub-
groups; they are generated by the combinations of a null rotation and a
boost.

It is quite useful to calculate the Killing vectors for the S2 of constant
curvature. For the form (8.41) they have components given by

ξζ = 1
2γKζ2 + iaζ + γ̄ (8.62)

where a is real and γ complex.
A second application of Schmidt’s method is to prove that the maximal

isotropy group of a space-time cannot consist of a (non-trivial) combina-
tion of a boost and a spatial rotation. If it did, the full isometry group
must be G5 on V4 (because a G3 on V2 or G4 on V3 would have isotropies
acting only in two- or three-dimensional subspaces of the tangent space).
Using a basis at p in which ξ1 and ξ2 are spacelike unit vectors in the
rotation plane, and ξ3 and ξ4 null vectors in the boosted plane such that
ξ3 · ξ4 = −1, Schmidt’s calculation shows that the four Killing vectors
(ξ1, ξ2, ξ3, ξ4) form an Abelian group and thus the space is flat. Hence
its isotropy group is really an I6.
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The result of Theorem 8.16 is a special case of a phenomenon known
as orthogonal transitivity. This occurs when the orbits of a group of mo-
tions are submanifolds of a Vn which have orthogonal surfaces and is of
particular interest for space-times admitting a group G2I (see Chapter 17
et seq.). Schmidt proved a number of further theorems on this matter,
including

Theorem 8.19 If a group Gr of motions of r = 1
2d(d + 1), (d > 1),

parameters has orbits of dimension d the orbits admit orthogonal sur-
faces (Schmidt 1967).

8.7 Homothety groups

The equation defining a homothetic (or ‘homothetic Killing’) vector,

(Lξg)ab = ξa;b + ξb;a = 2Φgab, Φ = const, (8.63)

implies related equations for other geometrically defined tensors, e.g.

(LξR)abcd = 0, LξR = −2ΦR, (8.64)

and conversely these equations give a sequence of integrability conditions
in the same way as (8.23). Note that from (8.64) Einstein spaces with Λ �=
0 cannot admit proper homothetic motions. In classifying homotheties,
the ‘homothetic bivector’ ξ[a,b] is of importance; for example, if it vanishes
and ξ is null, the space-time must be algebraically special (McIntosh and
van Leeuwen 1982).

Now consider a homothety group (i.e. a Lie group each of whose ele-
ments is a homothety). A basis of its generators will obey

(LξAg)ab = ΦAgab, (8.65)

where each ΦA is a constant, possibly 0, and in general ΦA �= ΦB if
A �= B. Since the Lie derivative is linear (over R) in the vector field used,
the generators w = CAξA satisfy Lwgab = (σcwc)gab for some 1-form
σ. Generators satisfying σcwc = 0 are isometries and so a space-time
admitting a group Hr of homothetic motions necessarily admits a group
Gr−1 of motions. From (2.63) the commutator of any two homotheties or
isometries must be an isometry, so the Gr−1 is an invariant subgroup of
the Hr. The structure constants of the basis (8.65) must satisfy

CA
BCΦA = 0, (8.66)

(Yano 1955) and so dσ = 0. The generators of the Hn can thus be chosen
so that only one of them is a proper homothety (i.e. a homothetic motion
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which is not an isometry, so Φ �= 0 in (8.63)), and this generator can itself
be scaled so that Φ = 1.

Using these properties, Eardley (1974) has enumerated all possible
H3, giving a refinement of the classification of Table 8.2 (see also
McIntosh (1979)), and Koutras (1992b) has enumerated the possible H4,
by refinement of the classification in MacCallum (1999).

As a special case of Theorem 35.12, a sufficiently smooth space-time
admitting a group of homothetic motions is locally conformal, except
where the homothety has a fixed point, to a space-time admitting the same
group as a group of motions, unless it is a pp-wave or conformally flat.
Although the related space-time will have an energy-momentum tensor of
a different and perhaps unphysical type, this may still provide a way to
find solutions with proper homothetic motions since the relation between
the two metrics must be as given in §3.7; see Kerr (1998).

In a region where a proper homothety has no fixed point, one can
consider a coordinate z such that ξ = ∂z. Then one can write the metric
as ds2 = e2Φzds20 where ds20 is independent of z. A change of origin of
z can then be used to remove an overall scale parameter in the metric.
Moreover, invariants such as the eigenvalues of the Ricci tensor will have a
simple exponential behaviour along integral curves of ξ, which may imply
the existence of a singularity (Collins and Lang 1986, Hall 1988b).



9
Invariants and the characterization

of geometries

When discussing solutions, we should often like to be able to decide, in
an invariant manner, whether two metrics, each given in some specific
coordinate system, are identical or not, or whether a given metric is new
or not. For such purposes it is useful to have an invariantly-defined and
unique complete characterization of each metric. Such a characterization
can be attempted using scalar polynomial invariants, whose definition
and construction are discussed in §9.1. However, it turns out that those
invariants do not characterize space-times uniquely.

A method which does provide a unique coordinate-independent char-
acterization, using Cartan invariants, is described in §9.2. This enables
one to compare metrics given in differing coordinate systems, which dis-
tinguishes the results from those on uniqueness of the metric given the
coordinate components for curvature and its derivatives (for which see
e.g. Ihrig (1975), Hall and Kay (1988)). That uniqueness is related to the
structure of the holonomy group, defined for each point p as the group of
linear transformations of the tangent space at p generated by the holon-
omy (see §2.10) for different closed curves, or of the infinitesimal holonomy
group, which is generated by the curvature and its derivatives but is equal
to the holonomy group at almost all points in simply-connected smooth
manifolds. These groups are subgroups of the Lorentz group and their
properties can also be related to classification of curvature and the exis-
tence of constant tensor fields (Goldberg and Kerr 1961, Beiglböck 1964,
Ihrig 1975, Hall 1991).

To apply the method using Cartan invariants in practice, one may pro-
ceed by finding the Petrov type (Chapter 4) and Segre type (Chapter 5)
of the space-time, and §9.3 discusses the methods for doing so. The re-
mainder of this chapter concerns applications of these ideas.

112
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All the considerations here concern purely local equivalence. If two met-
rics are given which cover disjoint regions of a single analytic space-time,
the fact that each is in the analytic continuation of the other cannot
be detected by these methods. Conversely, topological identifications, or
non-trivial homotopies of the metric as a section of the bundle of sym-
metric tensors (called ‘kinks’; see e.g. Whiston (1981)), may give locally
equivalent but globally inequivalent metrics. A further limitation is that
we assume that all classifying quantities, discrete or continuous, are re-
spectively constant or sufficiently smooth in the (open) neighbourhoods
considered. For classifications like the Petrov type this follows from the
smoothness of the invariants whose vanishing or otherwise characterizes
the type; for smooth metrics such types change only on submanifolds of
lower dimension.

In principle a space-time for which a Cauchy problem is well posed, and
all its properties, can also be characterized by Cauchy data on a suitable
hypersurface, since such data completely determine (a neighbourhood in)
the space-time (see e.g. Friedrich and Rendall (2000)).

The method described in §9.2 and various of the methods described in
§9.3 have been implemented in computer algebra programs. We do not de-
scribe such programs here as this information would rapidly become out-
dated: instead we refer interested readers to the reviews of Hartley (1996)
and MacCallum (1996). However, we do discuss some efficiency consider-
ations in §9.3. In preparing this book, we used the system CLASSI (Åman
2002), based on SHEEP and REDUCE, as described in MacCallum and
Skea (1994).

9.1 Scalar invariants and covariants

Scalars constructed from the metric and its derivatives must be functions
of the metric itself and the Riemann tensor and its covariant derivatives
(Christoffel 1869). In a manifold M of n dimensions, at most n such
scalars can be functionally independent, i.e. independent functions on
M. (The term ‘functional independence’ may also, confusingly, be used
for functional independence over the bundle of symmetric tensors or some
jet bundle thereof.) The number of algebraically independent scalar in-
variants, i.e. invariants not satisfying any polynomial relation (called a
syzygy) is rather larger: it can be calculated, e.g. by considering Taylor
expansions of the metric and of the possible coordinate transformations
(Siklos 1976a). The result (Thomas 1934) is that in a general Vn the num-
ber of algebraically independent scalars constructible from the metric and
its derivatives up to the pth order (the Riemann tensor and its derivatives
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up to the (p− 2)th) is 0 for p = 0 or p = 1 and

N(n, p) =
n[n + 1][(n + p)!]

2n! p!
− (n + p + 1)!

(n− 1)! (p + 1)!
+ n, (9.1)

for p ≥ 2, except for N(2, 2) = 1. Thus in a general space-time the
Riemann tensor has N(4, 2) = 14 algebraically independent scalar invari-
ants. In particular cases, including all exact solutions here, the number is
reduced.

It is natural to try to express the algebraically independent scalar in-
variants as polynomials in the curvature and its derivatives, i.e. scalar
polynomial invariants, and to aim to find such a set which contains the
maximum number of independent scalar invariants even in special cases.
One may also attempt to find a set of such invariants {I1, I2, . . . , In}
that is complete in the sense that any other such scalar can be written
as a polynomial (or, in some definitions, a rational function, i.e. a ratio
of polynomials) in the Ij but no invariant in the set can be so expressed
in terms of the others. It has been shown that any complete set of scalar
polynomial invariants of the Riemann tensor, and any set which always
contains a maximal set of independent scalars, contains redundant ele-
ments. Such sets contain more than 14 scalars, in four dimensions, and
these are related by syzygies (but the syzygies cannot be solved for one of
the invariants as a polynomial in the others). Hence all attempts to sat-
isfy the above aims for space-times using 14 explicit scalar polynomials in
the Riemann tensor failed (these attempts are reviewed in Zakhary and
McIntosh (1997)).

The smallest known set of scalar polynomial invariants for the Riemann
tensor which will always contain a maximal set of algebraically in-
dependent scalars consists of 17 polynomials (Zakhary and McIntosh
1997), though 16 suffice for perfect fluids and Einstein-Maxwell fields
(Carminati and McLenaghan 1991). The origin of many of the syzygies
can be understood in terms of the vanishing of any object skewed over
(n+1) indices in n dimensions (Harvey 1995, Bonanos 1998, Edgar 1999).
The smallest set known to be complete has 38 scalars (Sneddon 1999).

For the Weyl tensor, there are four scalar invariants given by the real
and imaginary parts of I and J defined by (4.12). The Ricci tensor de-
fines the invariant Ricci scalar and the three eigenvalues of (5.1) which
satisfy

λ4 − 1
2I6λ

2 − 1
3I7λ + 1

8(I26 − 2I8) = 0, (9.2)
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where the scalar polynomial invariants Ik are given by

I6 = Sa
bS

b
a = 4ΦABẊẎ ΦABẊẎ ,

I7 = Sa
bS

b
cS

c
a = 8ΦABẊẎ ΦA

E
Ẋ
ŻΦEBŻẎ , (9.3)

I8 = Sa
bS

b
cS

c
dS

d
a = 16ΦABẊẎ ΦACẊŻΦCDŻẆΦDBẆ Ẏ .

The further invariants of the Riemann tensor needed to make up the set of
17 mentioned above, or the larger complete set, will not be given in detail
here. They involve contractions between the Weyl and Ricci curvatures
and are known as mixed invariants; they give information on the relative
alignment of frames defined by the Weyl and Ricci tensors.

Less attention has been given, except in the context of possible La-
grangians in quantum gravity (cp. Fulling et al. (1992)), to the explicit
construction of scalar polynomial invariants or algebraically invariant
scalars of higher differential order in general metrics.

Even if algebraically independent or complete, no set of scalar poly-
nomial invariants serves to characterize all space-times uniquely, though
they are often sufficient to prove inequivalence, may be useful in proving
equivalence (Cartan 1946, Eleuterio and Mendes 1982), and are impor-
tant in investigating singularities and other properties. One can see this
easily by noting that homogeneous plane waves and flat space both have
all scalar polynomial invariants, of all orders, equal to zero (Jordan et al.
1960). Non-vacuum solutions, and metrics without symmetries, can also
have this property (see e.g. Bueken and Vanhecke (1997), Skea (2000)).
Algebraically special solutions with a cosmological constant provide ex-
amples of inequivalent metrics with equal but non-zero scalar polynomial
invariants of all orders (Siklos 1985, Bičák and Pravda 1998, Pravda 1999).
These ambiguities, and the consequent inadequacy of scalar polynomial
invariants as classifying quantities, are associated with the indefiniteness
of the metric and the non-compactness of the Lorentz group (Schmidt
1998).

Thus to find a set of invariants defined by the Riemann tensor and
its derivatives that will always suffice to characterize a space-time, one
must follow a different approach. A starting point is that 14 invariants
of the Riemann tensor can be considered to arise from the four inde-
pendent real eigenvalues of the Ricci tensor and the four real quantities
in the canonical forms of the Weyl tensor (Table 4.2), together with six
parameters specifying the Lorentz transformation between the Weyl and
Ricci principal tetrads (Ehlers and Kundt 1962). More generally one can
define tetrads invariantly from the Riemann tensor and its derivatives
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and then use the remaining non-zero components of those tensors in the
chosen tetrads, which are scalar contractions between the curvature or its
derivatives and the tetrad vectors, as the scalar invariants required. These
are the so-called Cartan invariants or Cartan scalars. That they are not
equivalent to the scalar polynomial invariants can be seen by consider-
ing plane waves again; in that case the surviving Cartan invariant of the
Riemann tensor is Ψ4 = 1, whereas all the scalar polynomial invariants
are zero. We describe in the next section how the Cartan invariants can
be used to locally characterize space-times.

One may also consider covariants of the Riemann tensor and its deriva-
tives. In general, for a given tensor or spinor and a scalar polynomial
invariant obtained by contracting it with arbitrary vectors or spinors, a
covariant is defined to be any other scalar polynomial in the same vari-
ables; for example, a covariant of φABȦζ

AζB ζ̄Ȧ is a scalar expression in
the coefficients φABȦ and the variables ζB, ζ̄Ȧ. Covariants differ from in-
variants in that they do not depend solely on the (metric and the) tensor
or spinor itself. The degree of a covariant is the degree in the tensor or
spinor, e.g. in φABȦ. Covariants and invariants together are called con-
comitants. For example, the covariants

Q = ΨAB
EFΨCDEF ζ

AζBζCζD,
(9.4)

R = ΨABC
KΨDE

LMΨFKLMζAζBζCζDζEζF ,

of the expression (4.28) involving the Weyl spinor are used in some meth-
ods of Petrov classification; see §9.3.

9.2 The Cartan equivalence method for space-times

The method to be outlined here is a specialized form of a more general
method, due to Cartan, applicable to the equivalence of sets of differential
forms on manifolds under appropriate transformation groups (Gardner
1989, Olver 1995). For sufficiently smooth metrics, it gives sets of scalars
providing a unique local characterization, and thus leads to a procedure
for comparing metrics.

To relate two apparently different metrics, we need to consider coordi-
nate or basis transformations, and therefore to consider a frame bundle
as defined in §2.11. The basis of the method is that if the metrics are
equivalent, the frame bundles they define are identical (locally). More-
over, the frame bundles possess uniquely-defined bases of 1-form fields,
{ωa, Γ a

b}, as described in §2.11, which would therefore also be identical
for equivalent metrics. The same is more generally true for any (suffi-
ciently smooth) manifolds equipped with uniquely-defined 1-form bases
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{σI}. For two such manifolds to be identified, the exterior derivatives
dσI = CI

JKσ
J ∧ σK of these basis 1-forms, and hence the CI

JK , must
agree. In the case of space-times, the Cartan structure equations (2.76)
and (2.85) show that this implies the components of the curvature on the
frame bundle must be equatable.

This condition is necessary, but not sufficient. Cartan showed that a
sufficient condition is obtained by repeatedly taking (exterior) deriva-
tives starting with dCI

JK until no new functionally independent quantity
arises; if at any step of differentiation no such quantity arises, the process
terminates because then any further derivatives depend on those already
known. The relations between the independent invariants and the depen-
dent ones must be the same in (neighbourhoods in) both manifolds for
equivalence. The number k of functionally independent quantities, called
the rank, is assumed constant in a neighbourhood whose points are then
called regular. Since k is at most the dimension m of the manifold, the
process necessarily terminates in a finite number of steps. If k < m, this
is due to the presence of symmetries. The final step, testing whether or
not the relations obtained by equating corresponding quantities on the
two manifolds have a solution, is formally undecidable (unless the func-
tions that arise lie in some simple class such as rational functions) but in
practice usually turns out to be feasible.

For space-times, (2.87) shows that the repeated differentiation is equiv-
alent to repeatedly taking covariant derivatives of the Riemann tensor,
viewed as functions on F (M). Hence a metric can be uniquely char-
acterized by the Riemann tensor and a finite number of its covariant
derivatives, regarded as functions on F (M). We use Rq to denote the
set {Rabcd, Rabcd;f , . . . , Rabcd;f1f2···fq} of the components of the Riemann
tensor and its derivatives up to the qth. If p is the last derivative at which
a new functionally independent quantity arises, called the order, we need
to calculate Rp+1 (unless p = dimF (M)). If there are k elements in a
maximal set of functionally independent invariants on F (M), let the in-
variants be denoted by Iα, α = 1, . . . , k, and their index basis, i.e. the set
of indices of the corresponding components of Rp, by A.

The first work on the equivalence problem for Riemannian manifolds
was due to Christoffel (1869), using the full (coordinate) frame bundle,
which has dimension n(n + 1). It was the context of the invention of the
Christoffel symbols (for a fuller history, see Ehlers (1981)) but dealt only
with the case of metrics without symmetry, and implied that for space-
times the twentieth derivatives of the Riemann tensor might be required.
This is computationally impractical, however.

Cartan (1946) made an important reduction by using frames with con-
stant metric components (e.g. complex null frames), in which case the



118 9 Invariants and the characterization of geometries

frame bundle has dimension n(n + 1)/2 so that the maximum order of
differentiation of the Riemann tensor for space-times is at most 10. Cartan
also showed how the method applied to metrics with isometries, the ar-
gument being completed by Sternberg (1964); for k < n(n+ 1)/2 there is
an isometry group of dimension n(n + 1)/2 − k. The result as stated in
Ehlers (1981), following Sternberg (1964), applies to frame bundles with
the generalized orthogonal group transitive on the fibres. For orthonormal
frames on space-times it gives, using the notation introduced above:

Theorem 9.1 LetM andM be space-times of differentiability class C13,
x be a regular point of M and E be a frame at x, and similarly for M.
Then there is an isometry which maps (x, E) to (x, E) if and only if Rp+1

for M is such that:
(i) A indexes quantities I

α which are functionally independent in F (M),
(ii) Iα(x, E) = I

α(x, E) for α = 1, . . . , k, and
(iii) the functions giving all other components of Rp+1 in terms of the Iα

and I
α are the same for M and M.

The differentiability class required, n(n+ 1)/2 + 3 in n dimensions, can
be reduced since, as we show below, p < n(n+1)/2−1 = 9 in space-times.
The size of the set of quantities to be compared in (iii) can be reduced
since Rp+1 can be replaced by a minimal set of its elements from which
the others follow algebraically by use of the Ricci and Bianchi identities,
e.g. the set specified by MacCallum and Åman (1986); see §9.3.2. This can
be further reduced by using canonical forms as described below, or, for
example, by giving, on a region of F (M), the Riemann tensor components
and the derivatives Iα|J as functions of the Iα (Bradley and Karlhede
1990). Data sufficient to define the Rp+1 can be given in various ways
other than just giving the metric itself; see §9.4.

The practical application of Theorem 9.1 was considered by Brans
(1965), who initially proposed a scheme using canonical forms chosen
by lexicography of bases but later (1977) considered canonical forms of
the Weyl tensor at the first step, similar to the scheme introduced by
Karlhede and implemented by Åman and others (Karlhede and Åman
1979, Karlhede 1980b, MacCallum and Skea 1994) which we now discuss.

In this method the idea is to reduce the frame bundle to the smallest
possible dimension at each step by casting the curvature and derivatives
into a canonical form and only permitting those frame changes which pre-
serve the canonical form. (Note that the horizontal and vertical dimen-
sions are not treated in the same way, since the independent functions on
the fibres are removed by restricting the choices of frame.) Because there
are many vacuum solutions and few conformally flat solutions, the method
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is usually implemented by first putting the Weyl tensor into the appro-
priate one of the forms given in Table 4.2 and then using any residual
freedom in the tetrad to put the Ricci tensor into canonical form, if possi-
ble (in the exceptional case of conformally flat space-times, the first step
is to bring the Ricci tensor to one of the forms discussed in Chapter 5,
as, e.g., in Bradley (1986)). Finding such a canonical tetrad, though for-
mally decidable in four dimensions (as it can be done by finding roots of
quartics), can be somewhat intractable in practice. The curvature com-
ponents in this tetrad are the first set of the invariants required. The next
step is to calculate the first derivatives of the curvature and use them
to further fix the tetrad if necessary, and so on. Details of the canonical
forms used in practice can be found from MacCallum and Skea (1994)
and references therein ; see also Pollney et al. (2000). It is the remaining
non-zero components that are referred to as the Cartan scalars.

The resulting procedure is as follows:

1. Set the order of differentiation q to 0.
2. Calculate the derivatives of the Riemann tensor up to the qth.
3. Find the canonical form of the Riemann tensor and its derivatives.
4. Fix the frame as far as possible by this canonical form, and note the

residual frame freedom (the group of allowed transformations is the
linear isotropy group Îq). The dimension of Îq is the dimension of
the remaining vertical part of the frame bundle.

5. Find the number tq of independent functions of space-time posi-
tion in the components of the Riemann tensor and its derivatives in
canonical form. This tells us the remaining horizontal freedom.

6. If the isotropy group and number of independent functions are the
same as at the previous step, let p + 1 = q and stop; if they differ
(or if q = 0) increment q by 1 and go to step 2.

The space-time is then characterized by the canonical form used, the
successive isotropy groups and independent function counts and the values
of the non-zero Cartan invariants. Since there are tp essential space-time
coordinates, clearly the remaining 4 − tp are ignorable, so the isotropy
group of the space-time will have dimension s = dim Îp and the isometry
group has dimension r = s + 4− tp (see e.g. Karlhede (1980b)). To com-
pare two space-times one can first compare the discrete properties such as
the sequence of isotropy groups, and only if those all match does one have
to check whether the set of equations obtained by equating corresponding
Cartan invariants has a solution. This final step is not algorithmic, and
could in principle be unsolvable, but in practice is not usually the diffi-
cult step. Note that while the discrete properties can prove inequivalence
of manifolds, they are insufficient to prove equivalence in general.
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Since the method gives the dimension of the isometry group, it can
be used to find those subcases within a class of solutions which have
(additional) isometries (e.g. Seixas (1992b)). In principle, it could be used
to identify metrics given separately one of which is a subcase of another
(as Schwarzschild is of Kerr), but this depends on inspection of the values
of invariants and is probably better tackled by taking limits of families
(see §9.5) and comparing them with other solutions.

The system CLASSI, mentioned in §9.1, uses the Newman–Penrose for-
malism (Chapter 7) in implementing this procedure, but the calculations
can be carried out in other sets of frames. Conformally flat perfect fluids
have been investigated in orthonormal frames (Seixas 1992b) and the for-
malism of Ramos and Vickers (1996b) based on a single null congruence
has also been applied (see e.g. Ramos (1998)).

Since the continuous isotropy group for non-zero Weyl and/or tracefree
Ricci tensors is at most an I3 (see §4.2 and Table 5.2), the maximum
dimension of the reduced tetrad frame bundle required in this procedure
is 7. (One should note, however, that a discrete isotropy group consisting
of frame changes that interchange principal null directions may need to
be considered.) The exceptional case where both tensors vanish has con-
stant curvature and is detected at the first step of differentiation. Thus no
more than the seventh derivatives of the curvature could be needed; for
Petrov types I–III this reduces by a similar argument to at most five
(Karlhede 1980b). More detailed consideration leads to the results in
Table 9.1 (Skea, unpublished). The cases where the two bounds given dis-
agree are those which are not yet fully understood: these include two cases
where exhaustive inspection of possible metrics gives a bound smaller than
has been proved in any other way (Petrov type D vacua and conformally
flat metrics of Segre type [(11)(1,1)]).

One can consider partial equivalences, where only Rq, q ≤ p, or parts
thereof, are equated: these give families of space-times related in some way.
Brinkmann’s theorem (Theorem 3.1) is an example: see also e.g. Collinson
and Vaz (1982), Lor and Rozoy (1991), Bueken and Vanhecke (1997).
Cartan scalars can similarly be used to characterize or subclassify families
of metrics (see e.g. Edgar (1986)).

9.3 Calculating the Cartan scalars

9.3.1 Determination of the Petrov and Segre types

The Petrov and Segre classifications both depend on the handling of quar-
tics which may have multiple roots.

For the Petrov type of (the Weyl tensor of) a gravitational field at a
given point p, we have (see Table 4.3) to determine the multiplicities of
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Table 9.1. Maximum number of derivatives required to characterize a metric
locally

The column ‘p ≥’ gives the value from examples analysed so far; if marked A
this is obtained by exhaustive analysis of all possible metrics. ‘p ≤’ gives the

upper bound from theoretical arguments.

Petrov Ricci p ≥ p ≤ References
type tensor

I All 1 5
II Vacuum 2 4 Paiva, unpublished

Others 1 5
III Vacuum 2 5

Others 1 5
D Vacuum 2 A 3 Collins et al. (1991), Åman (1984)

Others 2 6 Collins and d’Inverno (1993)
N Vacuum 3 5 Ramos and Vickers (1996a)

Others 5 5 Ramos (1998), Skea (2000)
O [(111),1] 3 A 3 Bradley (1986), Seixas (1992b)

[1(11,1)] 1 A 7
[(112)] 4 A 4 Koutras (1992c), Skea (1997

and unpublished)
[(11)(1,1)] 1 A 5 Paiva and Skea, unpublished
Others 1 5 Paiva and Skea, unpublished

the roots of the quartic algebraic equation (4.18),

Ψ0 − 4EΨ1 + 6E2Ψ2 − 4E3Ψ3 + E4Ψ4 = 0, (9.5)

where the coefficients Ψ0, . . . ,Ψ4 defined by (3.59) can be calculated with
respect to an arbitrary complex null tetrad at p. If the degree of the
algebraic equation (9.5) is (4−m), then there are (4−m) principal null
directions k, and l represents an m-fold principal null direction.

The classical algorithm for determining the multiplicities from the coef-
ficients Ψ0, . . . ,Ψ4, based on considering the discriminant of the quartic,
is displayed in Fig. 9.1 (d’Inverno and Russell-Clark 1971). Provided that
Ψ4 �= 0, the additional definitions used in the flow diagram are

K ≡ Ψ1Ψ2
4 − 3Ψ4Ψ3Ψ2 + 2Ψ 3

3
(9.6)

L ≡ Ψ2Ψ4 −Ψ 2
3 , N ≡ 12L2 −Ψ 2

4 I

(K and L are coefficients in the covariants (9.4)). If Ψ4 = 0, but Ψ0 �= 0,
one has to interchange Ψ0 with Ψ4 and Ψ1 with Ψ3 in these definitions,
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Fig. 9.1. Flow diagram for determining the Petrov type by the classical
method

and the algorithm proceeds as before. For Ψ0 = Ψ4 = 0, the multiplicities
of the roots of (9.5) are very simple to determine.

If both the invariants I and J vanish, then at least three of the principal
null directions coincide. If not, then from the diagram and the definitions
(9.6) it follows that gravitational fields with a repeated principal null
direction k (Ψ0 = Ψ1 = 0) are type D if and only if the remaining tetrad
components of the Weyl tensor satisfy the condition

3Ψ2Ψ4 = 2Ψ 2
3 . (9.7)

An equivalent method for determining the Petrov type is based on the
eigenvalue equation (4.4). One can use the invariant criteria for the matrix
Q which are listed in Table 4.1, Q being calculated with respect to an
arbitrary orthonormal basis {Ea}.

These algorithms are far from optimal computationally. The first im-
provements were those of Fitch (1971), which used ideas similar to those
later (re-)introduced and extended by others (Hon 1975, Åman et al. 1984,
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1991, Letniowski and McLenaghan 1988). The main sources of improve-
ments are as follows.

First, cases can be separated according to whether or not one or more of
the Newman–Penrose components ΨA of the Weyl tensor vanish. In many
cases this immediately gives the Petrov type. The basic idea was intro-
duced independently by Hon (1975) and Åman et al. (1984). Secondly,
and relatedly, one arranges the tests so that any calculation of the full
discriminant (a sixth degree polynomial, a sextic, in the components ΨA)
is put off until it becomes unavoidable (Hon 1975, Åman et al. 1984).
Thirdly, one can build up more complicated expressions in the compo-
nents ΨA by a series of binary operations followed by simplification. This
will in general save both time and computer memory in the calculations
of quantities of high degree (Åman et al. 1984). Finally, one must look
very closely at the tests required to determine the Petrov type in those
remaining cases where a number of types are possible. The algorithms in
successive treatments differ essentially only at this point. A deeper un-
derstanding of the origin of the special tests arises from formulating them
as consequences of the Euclidean algorithm applied to finding simulta-
neous roots of the quartic (9.5) and its derivative (Åman et al. 1991).
An alternative understanding and procedure comes from considering the
covariants (Zund 1986, Penrose and Rindler 1986, Zakhary 1994); this
may in practice involve longer calculations (Piper 1997). The ranking of
the different versions of the improved methods now depends on rather
subjective estimates of whether the expense of a test is justified by its
probability of success.

The calculation of the Segre type (Joly and MacCallum 1990, Seixas
1991, Paiva et al. 1998) makes use of the same methods for quartics as
the Petrov classification. It has two parts. The first part classifies the
Plebański spinor (the coefficient in a degree-two covariant of the Ricci
spinor)

Φ(AB
ĊḊΦCD)ĊḊ (9.8)

into types algebraically equivalent to the Petrov types, called Plebański–
Petrov types, by the same method as for Petrov classification. Unfortu-
nately, different Ricci tensor types give the same Plebański–Petrov type,
so a second stage is usually required, in which particular methods for
separating the subcases are used. These are based on considering (9.2),
by similar methods. The process aims only at separation into the differ-
ent Segre types, and does not consider refinements, e.g. those discussed
by Penrose and Rindler (1986). Further improvements to the computa-
tion have been suggested by Paiva and Skea (unpublished, 1998) and
Zakhary (1994).
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9.3.2 The remaining steps

Having thus dealt with step 2 for q = 0 of the procedure given in the
previous section, we now have to bring the Riemann tensor into canon-
ical form by Lorentz transformations. Although this is in principle algo-
rithmic (since quartics have an algorithmic solution, and the quartic for
Petrov classification has as its roots the parameters of the required null
rotations), it is in practice often the most difficult step, especially in the
Petrov type I case. In algebraically special cases, we are helped by the fact
that the method used for Petrov classification can be related to the
Euclidean algorithm for simultaneous roots of polynomials, so that when
there are equal roots they are readily found.

The fourth and fifth steps are straightforward in principle. Functional
dependence is tested by finding the rank of the Jacobians between the
possibly independent functions, and the isotropy can be found from the
canonical form.

Now we reach step 1 again for q = 1. For q ≥ 1 it is very important
in calculations to cut down the number of quantities to be computed by
taking only a minimal set of derivatives of the Riemann tensor, which can
be done because the derivatives obey the Ricci and Bianchi identities. An
explicit minimal set of derivatives was found by MacCallum and Åman
(1986), generalizing the treatment of the electrovac case in Penrose (1960).
In terms of the Newman–Penrose quantities ΨABCD,ΦABȦḂ and Λ it can
be described as follows. One has to take, in the general case, the following
components for q ≥ 0 (where the term ‘totally symmetrized’ means that
a spinor is to be symmetrized over all its free dotted indices and over all
its free undotted indices):

1. The totally symmetrized qth derivatives of Λ.
2. The totally symmetrized qth derivatives of ΨABCD.
3. The totally symmetrized qth derivatives of ΦABȦḂ.
4. For q ≥ 1, the totally symmetrized (q − 1)th derivatives of

ΞABCḊ = ∇D
ḊΨDABC which is one side of one of the Bianchi

identities.
5. For q ≥ 2, the d’Alembertian ∇AȦ∇AȦ applied to all the quantities

calculated for the derivatives of order q − 2.

Steps 2 and 3 of the procedure for q ≥ 1 are handled in existing pro-
grams in a manner which is capable of refinements that would probably
be useful in creating more precise classifications. In fact, in most cases all
that is tested is whether any invariance at the q = 0 stage persists, and if
it does not, new canonical forms are not found. Steps 4 and 5 continue to
be in principle straightforward, if more time-consuming (because of the
increasing numbers of components to be tested).
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Ref.: For a covariant approach to location of the frame in Petrov type I
see Ferrando and Sáez (1997).

9.4 Extensions and applications of the Cartan method

The procedure also supplies information from which the Lie algebraic
structure of the isometry group can be obtained (Karlhede and MacCal-
lum 1982, Araujo et al. 1992, MacCallum and Skea 1994): the applica-
tion of similar ideas to three-dimensional manifolds has been considered
by Bona and Coll (1992, 1994). An extension of the arguments about
isometries, by considering ratios of Cartan scalars, enables one to test
for the presence of homotheties (Koutras 1992b, Koutras and Skea 1998).
Note the close relation to methods based on extensions of the GHP tech-
nique (§7.4) in which invariantly-defined scalars are sought (e.g. Ludwig
and Edgar (2000)).

Although the Cartan invariants give a complete local characterization
of the space-time, the detailed relationships between these scalars and
physical properties are unknown at present.

Another particular question of some interest is whether a metric not
given in diagonal form can be expressed in coordinates in which it is diago-
nal. The solution to this question (Tod 1992) can be formulated in a man-
ner similar to but not identical with the classification by Cartan scalars.

Brans (1965) pointed out that one could find a metric from an invariant
characterization by Cartan scalars. This idea has been developed and
applied by Karlhede (1980a), Karlhede and Lindström (1983), Bradley
(1986), Bradley and Karlhede (1990), Bradley and Marklund (1996) and
Marklund (1997). One has to assume part of the structure of the frame
bundle, or a specified reduction thereof. Then one takes a manifold N
of suitable dimension, a constant matrix ηij and a set of CI

JK on N
satisfying the Cartan structure equations (2.76) and (2.85) (note that the
indexing implies some information on the fibration of N , and that the
usual index symmetries are implicitly assumed). Specifying a set of Iα

among the Riemann tensor and its derivatives which are to be independent
and will be used as coordinates, one has to find suitable Iα|L as functions
of Iβ. The quantities found either have to be from a minimal set which
defines the rest ofRp+1, using the Bianchi and Ricci identities, or (Bradley
and Karlhede 1990, Bradley and Marklund 1996) have to satisfy those
identities as integrability conditions. Note that the Ricci identities for the
curvature are Bianchi identities d2Iα = 0 for the scalars on the frame
bundle representing the components, due to (2.87).

To obtain the metric from these values if the matrix of Iα|L is invertible
(i.e. if the number of functionally independent Iα equals the dimension
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of N ), one obtains the basis 1-forms from ωK = IKβdIα, where the com-
ponents IKβ form the inverse of Iα|L, and the metric is then given by
ηijω

i ∧ ωj (Karlhede 1980a). If the matrix (Iα|L) is not invertible there
is a continuous symmetry: if the rank of (Iα|L) (the number of index
sets in A) is k, one has to give (dimN )− k 1-forms ωP , introducing ad-
ditional coordinates on N , subject to d2ωP = 0 and then one can find
ωA = IAα(dIα−Iα|PωP ) for 1 ≤ A ≤ k using the inverse of IβA (Bradley
and Karlhede 1990, Bradley and Marklund 1996). When using a reduced
frame bundle with an assumed symmetry group, one can give values in
a fixed frame together with the generators of the rotations and appropri-
ately specialize the method just outlined. This method has mainly been
applied to recovering already known solutions (Karlhede and Lindström
1983, Bradley and Karlhede 1990, Bradley 1986) but some new solutions
have been found also (see Bradley and Marklund (1996), Marklund (1997),
Marklund and Bradley (1999)).

A considerable number of papers report applications of the above
Cartan equivalence procedure (see e.g. the references in MacCallum and
Skea (1994)), some of them cited in Table 9.1. Special adaptations of the
methods can be made for classes of metrics with special properties. For
example, the spatially homogeneous Bianchi metrics can be dealt with
in terms of the automorphism group variables described in Chapter 13
(Araujo and Skea 1988a) and the subset of metrics with two commuting
Killing vectors which are computationally tractable can be widened using
the factorization method of §20.7 (Seixas 1992a), although such metrics
can be made arbitrarily complicated and intractable by repeated applica-
tion of the generating techniques (Chapter 34).

These methods can also be applied to classification of the potential
spaces arising in Hamiltonian descriptions, e.g. of those for space-times
with a G3 on S3 (Chapters 13 and 14) or H3 on T3 containing a G2I
on S2 (Uggla et al. 1995a). The potential spaces may themselves have
symmetries (see §34.1 and Uggla et al. (1995a)). The general Cartan
method has been used to classify the null bundle of space-time (Nurowski
et al. 1999), leading to a classification procedure for non-conformally-flat
Einstein spaces, and null hypersurfaces (Nurowski and Robinson 2000).

9.5 Limits of families of space-times

It is possible in principle that one could find new solutions of Einstein’s
equations as limits of known solutions. In practice, since the limits are
generally simpler than the space-times in the parent families, this rarely
happens: the limits are usually already known. The general situation for
the case where the limit is a non-singular (region of) space-time was
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investigated first by Geroch (1969) and more recently by Paiva et al.
(1993). There is also the possibility of singular limits which can be inter-
preted as shocks or impulsive waves (cp. Chapters 24 and 25), cp. §3.8.

The idea is that one has a family of metrics sufficiently smoothly de-
pendent on some parameter λ, and wishes to study the limit as λ → 0.
Geroch (1969) defined hereditary properties to be those which the lim-
iting solution must inherit from the general family. For example, if the
general family all have an isometry group Gr, the limit will have an isom-
etry group Gt where t ≥ r. From the methods of Petrov classification
described in Chapter 4 and §9.3, and the fact that invariants will be con-
tinuous functions of λ, one can see that ‘being of a Petrov type at least
as special as . . . ’ is a hereditary property. The possible limiting processes
are as implied by Fig. 4.1. The corresponding specialization diagram for
Segre type has been given by Paiva et al. (1998); essentially the same
information arises from considering perturbing the Weyl or Ricci tensor
of the limiting type, in the sense of Arnol’d (Ellis and McCarthy 1987,
Guzman S. et al. 1991).

Since the coordinate transformations giving the form of the line element
from which the limit is to be derived may themselves be λ-dependent, and
in a way that may be singular as λ→ 0, most of the examples have been
derived in an ad hoc manner. Examples of limits found in this way are
given in §§20.6 and 21.1.2, but such methods do not provide a system-
atic way of finding all possibilities. Paiva et al. (1993) pointed out that
the possibilities can be enumerated without directly seeking the coordi-
nate transformations, by using the Cartan invariants defined in §9.2. This
approach arises because the Cartan invariants give a unique local charac-
terization of the geometry, and will be continuous functions of λ which, for
regular limits, will have finite values as λ→ 0 if the limiting space-time is
non-singular. Thus one can enumerate the limits by studying the possible
limiting values of the Cartan invariants: in particular any λ-independent
equation relating Cartan invariants must be a hereditary property. Once
the limiting spaces are known one can then find appropriate coordinate
transformations.

This can lead to cases overlooked in applications of other methods.
For example, Paiva et al. (1993) rediscussed the limits of the family of
Schwarzschild metrics (15.19) as 1/m → 0 and found five possible lim-
its, rather than the two (flat space and the axisymmetric Kasner metric
(13.53) with p1 = p2 = 2/3, p3 = −1/3) found by Geroch (1969). The ex-
tra cases are one inhomogeneous and two homogeneous forms of vacuum
plane wave solutions. For m → 0 one gets only flat space. The method
has also been used to show that the Levi-Civita metric (22.7) appears as
a limit of the Zipoy–Voorhees metrics (20.11) (Herrera et al. 1999).
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As yet, this method has limitations. It does not so far give a complete
algorithm for all possible limits, due to complications like the singular
relation of canonical frames for different Petrov types and the absence of
a complete classification of the derivatives for all cases; it assumes that
the limit is a four-dimensional space-time (limits which become singular
or shock hypersurfaces, representing shells or impulsive waves that can be
boundaries of regions of other space-times, are not covered by this tech-
nique though examples have been given in the literature, e.g. Aichelburg
and Sexl (1971), Ferrari and Pendenza (1990), Hotta and Tanaka (1993),
Balasin and Nachbagauer (1996)); it does not give the coordinate trans-
formation for coordinates which are ignorable in the limiting space-time;
and it does not ensure that the limit is global.



10
Generation techniques

10.1 Introduction

Einstein’s equations are a system of non-linear partial differential equa-
tions and thus rather difficult to solve. A book on exact solutions is thus –
among other things – a catalogue of tricks invented to solve such a compli-
cated system. Many of these tricks are not special to Einstein’s equations,
but can be used on any similar system; in fact, several of them come from
outside relativity.

In this chapter we want to give a concise survey of some of these meth-
ods. We have selected those which could help in understanding the general
approach to finding solutions, or those which have been frequently used
in the search for solutions, or those which have been proved to be ex-
tremely powerful. Here, we shall make only cursory references to general
relativity; the applications are discussed in Chapter 34.

10.2 Lie symmetries of Einstein’s equations

10.2.1 Point transformations and their generators

A Lie point symmetry of a system

HA(xn, uα, uα,n, u
α
,nm, . . .) = 0 (10.1)

of partial differential equations in the independent variables xn, the de-
pendent variables uα(xn) and their derivatives is a mapping (point trans-
formation)

x̃n = x̃n(xi, uβ; ε), ũα = ũα(xi, uβ; ε) (10.2)

in the space of independent and dependent variables which maps solu-
tions into solutions. These mappings form a group. They may depend on

129
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arbitrary functions or arbitrary parameters; in the following we shall as-
sume that at least one arbitrary parameter ε exists.

It is immediately clear from the above definition that symmetries can be
used to generate solutions: if one has found a solution, then the application
of a symmetry may lead to a new solution.

To apply a symmetry to a differential equation, one has to extend (pro-
long) the mapping (10.2) to the derivatives. This is done in the obvious
way by defining

ũα,n = ũα,n =
∂ũα

∂x̃n
, ũα,nm = ũα,nm =

∂2ũα

∂x̃n∂x̃m
, etc. (10.3)

The corresponding infinitesimal transformations are

x̃n=xn + εξn(xi, uβ) + · · · , ξn = ∂x̃n/∂ε|ε=0,
ũα=uα + εηα(xi, uβ) + · · · , ηα = ∂ũα/∂ε|ε=0,
ũα,n=uα,n + εηαn(xi, uβ, uβ,i) + · · · , · · · ,

ũα,nm=uα,nm + εηαnm(xi, uβ, uβ,i, u
β
,ik) + · · · , · · · , (10.4)

where the ηαn , η
α
nm, ... are given in terms of the functions ξn and ηα by

ηαn =
Dηα

Dxn
− uα,i

Dξi

Dxn
, ηαnm =

Dηαn
Dxm

− uα,ni
Dξi

Dxn
, · · · , (10.5)

and the operator D/Dxn is defined as

D
Dxn

=
∂

∂xn
+ uα,n

∂

∂uα
+ uα,nm

∂

∂uα,m
+ · · · . (10.6)

Note that the ηαn etc. are not simply the partial derivatives of the ηα etc!
From the infinitesimal transformations (10.4) the generator X can be

read off as

X = ξn
∂

∂xn
+ ηα

∂

∂uα
+ ηαn

∂

∂uα,n
+ ηαnm

∂

∂uα,nm
+ · · · . (10.7)

By performing an appropriate point transformation in the ξi–uα-space
(taking the integral curves of X as coordinate lines) the generator can in
principle always be transformed to its normal form

X =
∂

∂s
. (10.8)

If the point transformations depend on r parameters εA, then there exist
r generators XA that form the Lie algebra of the corresponding group Gr.
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10.2.2 How to find the Lie point symmetries of a given differential
equation

If a point transformation (10.2) is a symmetry of a system HA = 0, then,
as well as uα(xi), ũα(x̃i) is also a solution of that system, i.e.

HA(x̃i, ũα, ũα,n, ũ
α
,nm, . . .) = 0 (10.9)

has to be a consequence of (10.1). Inserting the infinitesimal transforma-
tion (10.4) into this equation, one obtains the necessary condition

XHA ≡ 0 (mod HA = 0). (10.10)

Here the identity sign ≡ indicates that this condition on the coefficients of
X has to be satisfied identically in xi, uα, and all the derivatives, since it
has to be true for every solution, which means that at each point arbitrary
values can be assigned to all these variables. These conditions are also
sufficient if e.g. the differential equations are written so that they are
linear in the highest derivatives.

Written in full, the symmetry conditions are a system of linear partial
differential equations for the components ξi, ηα of the generator. It may,
or may not, have non-trivial solutions, which may depend on arbitrary
parameters or functions. For ordinary differential equations, which are
included here as a special case, the generators cannot depend on arbitrary
functions. In most cases occurring in practice, the system (10.10) can be
solved and the symmetries can thus be determined. For a review of the
available computer programs see e.g. Hereman (1996).

For Einstein’s vacuum field equations, the symmetries have the form
(Ibragimov 1985)

X = ξi(xn)∂/∂xi − (ξk,mgkn + ξk,ngmk − 2agnm)∂/∂gnm, (10.11)

where the ξi(xn) are arbitrary functions, and a is a constant.
For a perfect fluid, the four-velocity components ui and pressure p and

mass-density µ have to be added to the list of dependent functions. The
symmetries for this case are

X = ξi(xk)∂/∂xi − (ξk,igkn + ξk,ngik − 2agin)∂/∂gin

+(ξi,ku
k + aui)∂/∂ui + 2ap ∂/∂p + 2aµ ∂/∂µ. (10.12)

Equations (10.11)–(10.12) show that the finite Lie symmetries of
Einstein’s equations are (only) diffeomorphisms (x̃i = xi + εξi(xn) + · · · ,
together with the appropriate change of vectors and tensors), and scal-
ings g̃in = e2εagik. If one is dealing only with a subset of the solutions of
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Einstein’s equations, e.g. with the class of algebraically special or some
spherically-symmetric solutions, new types of Lie symmetries could in
principle arise; in practice, in most cases one only recovers the generator
given above or its subcases.

10.2.3 How to use Lie point symmetries: similarity reduction

A first way to use a symmetry is to generate new solutions from known
ones. In the case of the symmetries of Einstein’s equations this idea is less
fruitful. Although a coordinate transformation of a solution leads again
to a solution, the two are trivially related. Similarly, the constant e2εa by
which the two line elements

ds̃2 = e2εads2 (10.13)

differ can often be incorporated into the coordinates (as for flat space-
time) or leads only to new values of a parameter already existing in the
metric (as for the exterior Schwarzschild solution (15.19), where it can be
absorbed into the mass m by the transformation r̃ = eεa, t̃ = eεat, m̃ =
eεam).

A second way to use a symmetry is similarity reduction. For (systems
of) partial differential equations the existence of a symmetry shows that
it makes sense, and does not lead to immediate contradictions, to ask for
fixed points of the transformations, i.e. solutions for which the solution
surface

uα − uα(xi) = 0 (10.14)

does not change under the action of the symmetry; these solutions are
also called similarity solutions. Applying the generator X to (10.14), one
obtains

ηα − uα,kξ
k = 0, (10.15)

or, with (10.11), for Einstein’s equations,

Lξgnm = gnm,iξ
i + gniξ

i
,m + gmiξ

i
,n = 2agnm. (10.16)

The similarity solutions of Einstein’s equations are those which admit a
homothetic vector (for a �= 0) or a Killing vector (for a = 0). This con-
nection with the symmetries explains the outstanding rôle Killing vectors
and homothetic vectors play compared with other vector fields.

If one transforms the generator to its normal form (10.8) and takes s as a
coordinate, say x1, then (10.15) implies that the solutions are independent
of x1 and depend only on those coordinates yk for which Xyk = 0: a
similarity reduction (of partial differential equations) is a reduction of the
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number of independent variables. In the case of Einstein’s equations, one
usually does not achieve a completely normal form of the generator: one
often takes X = ∂/∂x1−2agnm∂/∂gnm or X = x1∂/∂x1−2agnm∂/∂gnm ,
so that (10.16) amounts to either of the two forms

gnm(x1, x2, x3, x4) = e2ax
1
ĝnm(x2, x3, x4), (10.17)

gnm(x1, x2, x3, x4) = (x1)2aĝnm(x2, x3, x4) (10.18)

(power-law behaviour). If the coordinate system is already fixed, e.g. in
time-dependent spherically-symmetric fields, then the generator may have
the typical form X = r∂/∂r + t∂/∂t; the solutions depend only on the
similarity variable z = r/t.

For an ordinary differential equation such as

y′′ = ω(x, y, y′), (10.19)

where the condition (10.10) for the components ξ, η of the generator X
reads

ω(η,y − 2ξ,x − 3y′ξ,y)− ω,y′ [η,x + y′ (η,y − ξ,x)− y′2ξ,y]− ω,xξ
(10.20)

−ω,yη + η,xx + y′ (2η,xy − ξ,xx) + y′2 (η,yy − 2ξ,xy)− y′3ξ,yy = 0,

the existence of a symmetry implies the possibility of a reduction in order :
if one takes x as the coordinate s in which X has its normal form, then
because of the symmetry condition (10.10) ω cannot depend on x: the
differential equation (10.19) is in fact a first-order equation for y′(y).

Of course, the above procedure can be applied repeatedly: for partial
differential equations this can lead to solutions depending on fewer and
fewer variables (for the Einstein equations: solutions with more than one
homothetic or Killing vector), ending up with ordinary differential equa-
tions, and for ordinary differential equations with more than one first
integral. The details depend very much on the structure of the group of
symmetries and its Lie algebra. If for an ordinary second-order differential
equation two or more symmetries exist, these symmetries can be used to
construct its general solution.

The numerous applications of the similarity reduction to Einstein’s
equations are dealt with in the relevant chapters of this book.

Ref.: For textbooks on symmetries of differential equations see e.g. Ovsian-
nikov (1982), Ibragimov (1985), Olver (1986), Bluman and Kumei (1989),
and Stephani (1989).
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10.3 Symmetries more general than Lie symmetries

10.3.1 Contact and Lie–Bäcklund symmetries

Lie symmetries can be generalized by admitting derivatives in the com-
ponents of the generator.

For contact symmetries first-order derivatives are admitted,

X = ξn(xi, uβ, uβ,k)
∂

∂xn
+ ηα(. . .)

∂

∂uα
+ ηαn(xi, uβ, uβ,k)

∂

∂uαn
+ · · · . (10.21)

Although the extension law (10.5) applies, no higher derivatives of uβ

are admitted in ηαn and its extensions. This imposes severe restrictions:
contact transformations and symmetries exist only for partial differential
equations with only one dependent variable u, or for ordinary differential
equations. In the context of Einstein’s equations they are rarely used.

For Lie–Bäcklund symmetries the components ξn and ηα depend on
derivatives of uα up to an arbitrary finite order; because of the extension
law (10.5), this order grows unboundedly when going to higher and higher
extensions of ηα. An analysis of Einstein’s vacuum equations (Torre and
Anderson 1993, Capovilla 1994, Anderson and Torre 1996) shows that
all their Lie–Bäcklund symmetries are in fact disguised Lie symmetries:
they have again the form (10.11), but the arbitrary functions ξi(xn) are
replaced by arbitrary functions ξi(xn, gpq, gpq,n, ...) which means that some
extra conditions are imposed on these functions.

10.3.2 Generalized and potential symmetries

Roughly speaking, if a class of solutions depends on arbitrary parame-
ters (or functions), a change of these parameters (or functions) always
maps solutions into solutions and is, therefore, a symmetry. It may be
difficult to find the explicit form of this symmetry, but it is obvious that
symmetries are more common than one may guess at first thought. To in-
corporate such general symmetries, one has to enlarge the set of admitted
transformations. One way to do this is the following.

Formally one can go a step further than with the Lie–Bäcklund sym-
metries and admit derivatives up to an arbitrary or even infinite order
in the components ξn and ηα of the generator. Sometimes these symme-
tries are also called Lie–Bäcklund symmetries. The main trick for avoiding
these infinitely many derivatives is to introduce new variables (potentials)
in terms of which the symmetry is again a Lie point symmetry. Since for
Lie–Bäcklund symmetries one can gauge the symmetry generator to be
of the form

X = fab ∂/∂gab + · · · , (10.22a)
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the symmetry condition XRab = 0 for the vacuum equations amounts to

fna;bn + fnb;an − fab
;n
;n − fnn;ab = 0. (10.22b)

Its solution fab has to satisfy (10.22b) for every vacuum metric gab.
For the full set of Einstein’s vacuum equations no such symmetry (ex-

cept the trivial one fab = Lξgab−2agab) is known. But if one assumes the
existence of a Killing vector ξi, then for the enlarged set

Rab = 0, Lξgab = ξa;b + ξb;a = 0 (10.23)

such non-trivial symmetries can be found.
Following Kramer and Neugebauer (1968b) and Geroch (1972), for a

non-null Killing vector (ξaξa = λ �= 0) one can introduce the functions
ω, αa and βb by

ω,a = εabcdξ
d;cξb, αb,a − αa,b = εabcdξ

d;c,
(10.24)

βb,a − βa,b = 4λξb;a + 2ωεabcdξ
d;c,

and gauge them by

ξaαa = ω, ξaβa = ω2 + λ2. (10.25)

The integrability conditions are satisfied because of (10.23). In terms of
these quantities, the generator of the symmetry is given by

Xgab = fab = −2ωgab + 2(ξaαb + ξbαa),

Xαa = 2ωαa − βa, Xβa = 2(ω2 + λ2)αa.
(10.26)

If one calculates the action of this generator on λ, ω, and the 3-metric
hab = gab − ξaξb/λ, then one obtains

Xλ = 2ωλ, Xω = ω2 − λ2, Xhab = −2ωhab. (10.27)

The components of the generator (10.26) are non-local functions of the
metric and the Killing vector’s components, but in terms of the ‘potentials’
ω, λ and hab (10.27) describes the action of a simple Lie symmetry. The
finite symmetry transformations can be found by solving the system

∂λ̃/∂ε = 2ω̃λ̃, ∂ω̃/∂ε = ω̃2 − λ̃2, ∂h̃ab/∂ε = −2ω̃h̃ab. (10.28)

The result is the equations

λ̃ = λ/
[
1− 2εω + ε2(λ2 + ω2)

]
, g̃ab = λhab/λ̃ + ξ̃aξ̃b/λ̃,

(10.29)
ω̃ = λ̃

[
ω − ε(λ2 + ω2)

]
/λ, ξ̃a = ξa + λ̃(2εαa − ε2βa).
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They show how to find the new metric g̃ab if the old metric gab (and
λ, ω, αa, and βa constructed from it) is known. This is discussed from
another point of view in §34.1.

This idea can be generalized to include some special perfect fluid cases
which we now give (see e.g. Stephani (1988)). Rab and Tab are separately
invariant under the symmetry; the transformation of the metric is again
given by (10.29). If the Killing vector ξa is parallel to the four-velocity
and the equation of state is µ + 3p = 0, then the fluid variables obey

Xµ = 2ωµ, µ̃ = µ/[1− 2εω + ε2(λ2 + ω2)], (10.30)

Xua = −ωua, ũa = ua[1− 2εω + ε2(λ2 + ω2)]1/2. (10.31)

If the Killing vector is orthogonal to the four-velocity and the equation
of state is µ = p, then (10.30) is still valid, but instead of (10.31) we have

Xua = −ωua, ũa = ua[1− 2εω + ε2(λ2 + ω2)]1/2. (10.32)

For a null Killing vector ξa, one knows that λ and the twist ω vanish;
it then follows from (10.24)–(10.25) that αa and βa are parallel to ξa. In
generalizing (10.26), one may start from

Xgab = fab = N(xi)ξaξb. (10.33)

The symmetry conditions (10.22b) then yield

N,aξ
a = 0, N ,r

;rξiξk+4NξmξrRmirk−2N ,r(ξr;kξi+ξr;iξk) = 0, (10.34)

and the finite symmetry transformation is given by

g̃ab = gab + εN(xi)ξaξb, (10.35)

where N(xi) is a solution of (10.34). This transformation can be used to
generate the vacuum pp-waves from flat space-time and all other vacuum
solutions with a null Killing vector from a special type D metric, see §24.4,
equations (24.37b) and (24.39).

Also the method of constructing a stiff perfect fluid solution from the
vacuum (Theorem 10.2) or a perfect fluid (which applies if there is an
Abelian G2) can be understood in terms of a symmetry (Stephani 1988).
In terms of the metric (17.4), the finite symmetry transformation reads

M̃ = M + Ω̃, σ̃ = σ + ετ, (10.36a)

where τ satisfies τ ,a,a = 0, and Ω̃ is to be determined from

Ω̃,a = 2W (W,bW
,b)−1[2ε (τ ,nW,nσ,a + σ,nW,nτ,a − τ ,nσ,nW,a)

+ ε2 (τ ,nW,nτ,a − τ ,nτ,nbW,a)]. (10.36b)
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Other examples of a generalized symmetry are the Kerr–Schild trans-
formations (Chapter 32) and the linear superposition of Einstein–Maxwell
fields discussed by Xanthopoulos (1986).

10.4 Prolongation

The method of prolongation structures was invented by Harrison and
Estabrook (1971), Wahlquist and Estabrook (1975) and Estabrook and
Wahlquist (1976), cp. also Estabrook (1982). It consists of a systematic
way to introduce new functions, called pseudopotentials, and use them to
derive new solutions from known ones. It uses the calculus of differential
forms, cp. §§2.4–2.8, and is particularly well adapted to equations with
two independent variables.

For the purpose of the following two subsections, a partial differential
equation of order n is a subvariety of a finite jet bundle J (n)(X,U), i.e. a
space parametrized by the independent variables and all derivatives of the
dependent variables up to order n, where X is the space of independent
variables and U the space of dependent variables in the original equation.

10.4.1 Integral manifolds of differential forms

Solutions of differential equations lie in and foliate the integral manifolds
of a certain set of differential forms (Cartan 1945). A subspace Vl of
dimension l immersed in a space Vk of dimension k can be described by
giving k− l variables as functions of l others, thus showing the distinction
between dependent and independent variables. In this section we shall
define the so-called integral manifolds of a given set of differential forms,
see e.g. Estabrook (1976, 1982). Consider, for instance, that we are given
in a k-dimensional space a set of l forms ωA together with their exterior
derivatives dωA; here, we take without loss of generality the ωA to be
1-forms and A = 1, . . . , l. We then find a set of linearly independent
vector fields Vi, i = 1, . . . , k such that they lie in a family of k-dimensional
subspaces – this requires [Va,Vb] = f cabVc – and such that they annul
any ωA, viz.

Vi�ωA = 0. (10.37)

By operating with LVj we find that also

Vi�Vj� dωA = 0. (10.38)

The subspace spanned by the Vi is called an integral manifold of the set
{ωA, dωA}. The definition given here can easily be extended to include
forms of higher rank and their exterior derivatives.
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Describing a subspace as a map Φ : Vl → Vk we have seen in Chapter 2
that forms transform under the inverse map Φ∗; they can be “pulled back”
by Φ∗ onto Vl where we denote them by ω̃A and dω̃A. Since the contraction
of ωA with any vector in Vl and dωA with any pair of vectors in Vl both
vanish, the condition determining integral submanifolds can be stated as
ω̃A = 0 and dω̃A = 0. For a general set of forms the integral manifold is
defined by requiring them to vanish when pulled back onto it.

Since the forms ωA, dωA, etc. only enter the definition of an integral
manifold through linear homogeneous equations, any algebraically equiv-
alent set can be used. Indeed it is the entire ideal – defined as in e.g.
Cartan (1945) – of forms generated by the given forms, here ωA and dωA,
which vanishes on an integral manifold. 1-forms like fAω

A, 2-forms like
ψA ∧ ωA + fAdωA (with arbitrary functions fA and 1-forms ψA) etc. ob-
viously all vanish when pulled back to the integral manifold. An ideal of
forms is called closed if it contains the exterior derivatives of all forms in
the set; we shall consider only closed ideals.

Introducing coordinates ya in the immersing space Vk and xα in the
subspace Vl we get with ωA = ωA

a dya and dωA = ωA
a,bdy

b∧dya

ω̃A = ωA
a

∂ya

∂xα
dxα, dω̃A = ωA

a,b

∂yb

∂xβ
∂ya

∂xα
dxβ ∧ dxα. (10.39)

Setting these expressions equal to zero gives a coupled set of partial dif-
ferential equations for k unknown functions ya in terms of l independent
variables xα.

How can the integral manifold of a given set of forms be constructed,
at least in principle? To this end we consider some general point p with
coordinates ya and a vector V1 such that

V1�ωA = 0 (10.40)

at p. These are homogeneous linear algebraic equations for the compo-
nents of V1 in terms of the components of ωA. Denote the rank of this
system by s0; thus l1 = k − s0 components of V1 can be chosen arbitrar-
ily. We assume the rank of (10.40) to be maximal at the point p and in
a neighbourhood thereof. We now construct a one-dimensional integral
manifold V1 = {ya | ya = fa(s)} by integrating

dfa/ds = Va
1(s). (10.41)

In doing so we have made l1 choices of functions of one variable. At each
point of V1 we now choose a vector V2 such that

V2�ωA = 0, V1�V2� dωA = 0. (10.42)
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If there were other 2-forms given apart from the dωA we would include
them in the last equation. The rank of this set of linear equations is not
less than s0; we denote it by s0+s1. Now we can choose l2 = n− (s0+s1)
components of V2 arbitrarily. N.b., V1 is a solution of the above equations
and thus is to be included in the n− (s0+ s1) arbitrary choices. If it were
the only solution, we would not be able to construct a V2; thus we assume
l2 > 1. We now construct an integral manifold V2 = {ya | ya = fa(s, t)}
by integrating

dfa/ds = Va
1(s, t), dfa/dt = Va

2(s, t), [V1,V2] = 0. (10.43)

The last equation guarantees that V1 and V2 are indeed surface-forming.
Moreover, in the process of integration we have chosen l2 arbitrary func-
tions of two variables.

The construction continues. At each point of V2 we find a vector V3

such that

V3�ωA = 0, V1�V3� dωA = 0, V2�V3� dωA = 0. (10.44)

We would include any independent 3-forms at this stage. The algebraic
rank of this system is s0 + s1 + s2 and l3 = n− (s0 + s1 + s2) components
of V3 can be chosen arbitrarily. If l3 > 2 an integral manifold V3 can
be constructed containing l3 free functions of three variables. V1 and
V2 are again constructed along the way by [V1,V2] = 0, [V1,V3] = 0,
[V2,V3] = 0.

The integers si are the so-called Cartan characters and they are numer-
ical invariants of the ideal of forms. Since li ≤ li−1 and we require li > i−1
the process must eventually terminate and there must be a maximal di-
mension for the integral manifolds. Let the largest value of i be denoted g
and called the genus. Then we have lg = n− (s0+ s1+ · · ·+ sg−1) > g− 1
and lg+1 = n− (s0 + s1 + · · ·+ sg) ≤ g. If lg > g the integration scheme
remains undetermined at the last step: the equivalent set of partial dif-
ferential equations (10.38) for n − g functions of g variables will be such
that arbitrary functions of g variables enter the solution.

The most interesting case is lg = g. In this case there is no freedom in
the last step of the construction; Vg is determined by data given at its
boundary, i.e. at Vg−1. The above inequalities require the relation

n− g = s0 + s1 + · · ·+ sg. (10.45)

This is an important criterion for a closed differential ideal to represent
a proper set of partial differential equations. If this equation holds, the
solution will not contain an arbitrary function of g variables.
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10.4.2 Isovectors, similarity solutions and conservation laws

In what follows we shall assume that we are given a closed ideal of dif-
ferential forms. A characteristic vector is defined by the property that
contracting it with any form of the ideal gives again a form in the ideal;
it corresponds to a ‘conditional symmetry’. For instance, let the set in
question consist of 1-forms ωA and 2-forms αa. A characteristic vector
satisfies

Y�ωA = 0, Y�αa = φaA ωA = 0 (mod ideal) : (10.46)

φaA are undetermined functions. If there is another characteristic vector,
Z, we find by taking the Lie derivative of (10.46) with respect to Z that
[Y,Z] is also a characteristic vector. Thus the characteristics are surface-
forming. We note that adjoining a characteristic to each point of a regular
integral manifold gives again a regular integral manifold. The maximal
integral manifold thus must contain all characteristics.

A generalization of a characteristic vector is an isovector. Now it is the
Lie derivative of any form in the ideal which has to be in the ideal. Thus,
for the example considered above, X is an isovector if

LXωA = 0 (mod ideal), LXαa = 0 (mod ideal). (10.47)

X is a solution of an overdetermined set of linear partial differential equa-
tions; any constant linear combination of isovectors is again an isovector.
Moreover, if X and Y are isovectors then [X,Y] is again an isovector.
The set of all isovectors generates the isogroup. Isovectors correspond to
Lie–Bäcklund symmetries, cp. §10.3.1.

An ideal of forms remains invariant under the infinitesimal mappings
generated by its isovectors. Thus the isovectors also map integral man-
ifolds into integral manifolds and the finite transformations, found in
analogy to (10.87), generate new solutions of the underlying differential
equations.

Given an isovector which is not a characteristic vector a number of new
forms can be found by contracting it with the forms in the ideal. Adjoin-
ing these to the original ideal one finds a larger closed ideal of forms the
integral manifold of which is a subset of the integral manifold of the origi-
nal ideal. These are the most general similarity solutions. The integration
to find similarity solutions involves at least one less independent variable
since the larger ideal has a characteristic vector.

Suppose that, in a given closed ideal of genus g, we have found an exact
k-form, k = 1, . . . , g. Denote this exact form by dϑ, where ϑ is a (k − 1)-
form determined up to the exterior derivative of a (k − 2)-form. From
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Stokes’s theorem we have ∫
V

dϑ =
∫
∂V

ϑ (10.48)

for any k-volume V with the closed boundary dV. If V lies in an integral
manifold, the pull-back dϑ̃ vanishes and we get

∫
∂V ϑ̃ = 0 over any closed

(k − 1)-manifold in an integral manifold. From the point of view of g
independent variables, this is an integral conservation law which is non-
trivial if ϑ̃ �= 0.

10.4.3 Prolongation structures

Conservation laws as discussed in the previous subsection with k = 2 al-
low a useful extension of the ideal. When such a conservation law can be
found, we add the 1-form dy− ϑ to the ideal and at the same time intro-
duce a new variable, y, called a potential. Since the exterior derivative of
this 1-form is already in the ideal, the extended ideal still has the same
genus and independent variables. To find such a conservation law one is
integrating an overdetermined set of linear partial differential equations
for auxiliary functions Θi defined as the components of ϑ in the local co-
ordinate base, i.e. ϑ = Θidxi. The Θi have to satisfy dϑ = 0 (mod ideal).
Once a potential has been found the process can be iterated and the
new potentials depend on the original variables and the previously found
potentials.

The generalization is to let Θi depend on y itself. This leads to the
concept of pseudopotentials: a set of an a priori unspecified number of
functions yα such that the exterior derivatives of the 1-forms dyα−Θα

i dxi

(where Θα
i depends on the original variables as well as all the yα) are in

the prolonged ideal, i.e. in the ideal one obtains by adjoining the above
1-forms to the original ideal. Once pseudopotentials have been found one
tries to find a Bäcklund transformation by writing a new solution of the
equations as a function of a known solution and its pseudopotentials.
The method is particularly useful if the genus of the system is 2 and
we shall discuss it in more detail below (see also Guo et al. (1983a), for
reviews see Harrison (1984) and Gaffet (1988)).

The starting point is the differential equations (10.1) but now written
as a system of first-order equations with two independent variables which
we shall, for the purpose of this section, call x and t. The equations read

HA(x, t, ua,x, u
a
,t) = 0. (10.49)

According to the methods outlined above, we now consider a manifold
U with coordinates {x, t, ua} and a set of 2-forms ωA defined on this
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manifold such that the pull-back of ωA to the submanifold labelled by
{x, t} yields (10.49). It should be noted that this process is by no means
unique; in many cases there are several spaces with corresponding ideals
which are effective in the sense that they describe the original differential
equation (Finley and McIver 1995). The resulting prolongation structure
will depend on the choice of the ideal. For the ideal – which we here take
to be generated by ωA – to be closed we require

dωA = 0 (mod ωA). (10.50)

Then we introduce the 1-forms

ϑα = dyα − Fα(x, t, ua, yα) dx−Gα(x, t, ua, yα) dt. (10.51)

The prolonged ideal is now {ωA, ϑα} and the requirement that the exterior
derivative of forms in the ideal is contained in the ideal reads

dϑα = 0 (mod ωA, ϑα) = −dFα∧dx−dGα∧dt = fαA ωA+ηαβ∧ϑβ. (10.52)

By comparing the coefficients of the various independent 2-forms in
(10.52) the following information is obtained. First, we determine the
dependence of Fα and Gα on the variables in U . Secondly, we are able to
express the previously unknown multipliers fαA and ηαβ in terms of deriva-
tives of Fα and Gα. While the continuation of the prolongation method
does not require explicit knowledge of these multipliers, it is nonetheless
quite important that the final Fα and Gα are such that fαA �= 0. After all,
they contain the information enabling the prolongation structure to ‘re-
member’ the original ideal and the equation from where it came. Thirdly,
the dx∧dt generate a commutator equation for Fα and Gα as vector fields
vertical to U . More specifically we get

−dϑα =
∂Fα

∂yβ
dyβ ∧ dx +

∂Fα

∂ua
dua ∧ dx− ∂Fα

∂t
dx ∧ dt +

∂Gα

∂yµ
dyµ ∧ dt

+
∂Gα

∂ua
dua ∧ dt +

∂Gα

∂t
dx ∧ dt

=
(
∂Gα

∂yµ
Fµ − ∂Fα

∂yµ
Gµ +

∂Gα

∂x
− ∂Fα

∂t

)
dx ∧ dt +

∂Fα

∂ua
dua ∧ dx

+
∂Gα

∂ua
dua ∧ dt +

∂Fα

∂yµ
ϑµ ∧ dx +

∂Gα

∂yµ
ϑµ ∧ dt. (10.53)

The first two terms in the last expression form the commutator of Fα

and Gα with respect to the yα; we thus define

[F + ∂x, G + ∂t]α =
∂Gα

∂yµ
Fµ − ∂Fα

∂yµ
Gµ +

∂Gα

∂x
− ∂Fα

∂t
. (10.54)
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The terms with dua∧dx and dua∧dt in (10.53) are eliminated as much
as possible using ωA and the resulting equations always have the general
forms

[F + ∂x, G + ∂t]α = Aa
∂Fα

∂ua
+ Ba

∂Gα

∂ua
, (10.55a)

0 = Ca
∂Fα

∂ua
+ Da

∂Gα

∂ua
. (10.55b)

Aa, Ba, Ca and Da are functions of {x, t, ua} the precise form of which
depends on the system under consideration. These equations are used to
determine the dependence of Fα and Gα on {x, t, ua}. N.b., this process
involves solving first-order linear partial differential equations and is thus
not algorithmic; in practical applications, however, one rarely encounters
problems here. Having integrated (10.55) with respect to {x, t, ua} we get
the solution in the form

Fα = FAXα
A, Gα = GAXα

A, (10.56)

where FA and GA are functions of {x, t, ua} and the vertical vector fields
Xα
A depend on yα only. If Fα and Gα are inserted into (10.55a) and

the resulting expression sorted with respect to functions of {x, t, ua} one
obtains relations for the Xα

A which typically look like

[XA, XB] = CM
AB XM , (10.57a)

0 = [XM , XN ] + [XU , XV ] + XW (10.57b)

(in the remainder of this section we shall omit the superscript α on XA: it
is understood that the XA are vector fields). The first of these equations
just prescribes the commutator of two vector fields whereas equations of
the type (10.57b) may be absent in a particular situation. In any case,
not all commutators will be given. For instance, the commutator of two
vectors appearing only in Fα cannot show up in (10.57).

One then constructs the free algebra generated from (10.57a) by check-
ing the Jacobi identities and introducing new vectors for as yet unknown
commutators subject to the restrictions imposed by (10.57b). This algebra
is called the prolongation algebra. In most cases the Jacobi identities will
at a certain stage determine all commutators and the algebra is finite-
dimensional. In those cases where this happens the original equation can-
not be reconstructed from the algebra, i.e. some of the multipliers fαA in
(10.52) vanish (e.g. Kramer 1988b). In general no Bäcklund transforma-
tions exist; there is, however one rather curious counterexample known
(Hoenselaers 1986).

Assume now that the process of introducing new vectors appears to be
open-ended. The main problem of the procedure then is to identify the
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algebra. In some cases it suffices to make the ansatz that a vector to be
introduced is a linear combination of the previous ones (Wahlquist and
Estabrook 1975, Hoenselaers 1985b). The choice has to be such that the
Jacobi identities determine the commutators and one is left with a finite
algebra the structure constants of which depend on at least one parameter.
Of course, the ansatz has to leave the functions fαA in (10.52) non-zero.
This process requires some familiarity with algebras and we shall not go
into the details; rather we shall briefly describe the results (for a suitable
text on algebras see e.g. Kac (1990)). In every case where the prolongation
method has been successful the resulting algebra could be recognized as,
essentially, the loop algebra of some semisimple algebra or, sometimes,
the semidirect product of such an algebra with a finite-dimensional one
(Wahlquist and Estabrook 1975).

It has been mentioned above that one uses the pseudopotentials to de-
rive Bäcklund transformations. It is thus essential to have a representation
for the algebra one has found. Even though infinite-dimensional algebras
have been found as prolongation algebras and in some cases have also been
identified – Finley (1996) has found the contragradient algebra known as
K2 for a certain subcase of the Robinson–Trautman equations – the lack
of a representation means that one cannot proceed further.

Let us thus assume that the prolongation algebra is the loop algebra
of some semisimple algebra. In this case we have a natural grading of the
algebra by introducing a spectral parameter λ (Kac 1990). For practical
purposes we use a matrix representation of the semisimple algebra and a
matrix generating function Φ(λ) for the pseudopotentials. The pull-back
of (10.51) onto a solution manifold, i.e. ϑ̄α = 0, can be rewritten as

dΦ(λ) = H(λ)Φ(λ) (10.58)

with

H(λ) = FAXAaλ
adx + GAXAaλ

adt. (10.59)

In this expression FA and GA are the coefficients from (10.56), XAa are
matrices from the representation of the semisimple algebra – they are
consequently tracefree and so is H(λ) – and the summation over a ex-
tends only from finite, possibly negative, values up to finite values. The
integrability condition for (10.58) reads

dH(λ) = H(λ) ∧H(λ). (10.60)

This equation is to hold identically in λ and yields the original equations
(10.49). It is the matrix version of (10.52) with non-vanishing multipli-
ers fαA. The linear problem (10.58) is the starting point for many solution
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generating techniques. Loosely speaking, they centre around the construc-
tion of a new Φnew(λ) from a given Φ(λ) and then reading off Hnew(λ)
from (10.58). The fields which are of interest are coded in H(λ) and the
construction has to be such that the algebraic properties of H(λ) are pre-
served. By construction, Hnew(λ) will satisfy the original equations which
are coded in (10.60). Methods for doing this will be developed below.

Often it is also useful, and indeed shorter, to try to construct a new so-
lution directly from a given solution and the pseudopotentials constructed
from it by writing in (10.49) ũ = f(u, y) with the ys being solutions of
(10.51) with dϑα = 0. The vectors F and G are given by the prolonga-
tion structure, and f(u, y) has to be determined by inserting ũ into the
original equation.

Some generalization to more than three independent variables is possi-
ble, see Morris (1976).

10.5 Solutions of the linearized equations

We assume that we have a one-parameter, ε, say, family of solutions and
we denote the derivative with respect to ε by an overdot. The idea is to
find the general solution to the linearized equations and then exponentiate
this solution. Taking a derivative of (10.58) with respect to ε yields

dΦ̇(λ) = Ḣ(λ)Φ(λ) + H(λ)Φ̇(λ). (10.61)

To find a solution of this equation we introduce an additional parameter
σ, say, and use the ansatz Φ̇(λ) =

.
Φ (λ, σ) = µ(λ, σ)P (σ)Φ(λ) with a

matrix P (σ) and a scalar function µ(λ, σ). By inserting this ansatz into
(10.61) and choosing µ(λ, σ) = λ ·(λ−σ)−1, it can be shown (Hoenselaers
1993) that P (σ) satisfies

dP (σ) = H(σ)P (σ)− P (σ)H(σ). (10.62)

Using (10.58), this equation can be integrated immediately yielding
P (σ) = Φ(σ)αΦ−1(σ) with a constant matrix α. However, the result-
ing

.
Φ would not be defined at λ = σ. This can be remedied by adding

a term proportional to Φ(λ)α, which is a solution of (10.61), to Φ̇(λ) to
obtain

Φ̇(λ) = λ(λ− σ)−1[Φ(σ)αΦ−1(σ)Φ(λ)− Φ(λ)α]. (10.63)

Here, α enters as an additional parameter. To find the finite transforma-
tion one has to integrate

∂εΦ(λ, σ, α, ε) = λ(λ− σ)−1[Φ(σ, σ, α, ε)αΦ−1(σ, σ, α, ε)Φ(λ, σ, α, ε)

−Φ(λ, σ, α, ε)α], (10.64)
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where we have listed all the arguments on which Φ depends. It is the first
argument of Φ which is relevant for (10.60) and (10.61).

We now consider the function

G (λ, µ) = (λ− µ)−1[−λ1 + µΦ−1(λ)Φ(µ)] =
∑

Nnmλnµm (10.65)

and its expansion coefficients Nnm. Under an infinitesimal transformation
(10.63) it transforms as

Ġ (λ, µ) = α(λ− σ)−1[G(λ, µ)−G (σ, µ)] (10.66)

−(µ− σ)−1[µG (λ, µ)− σG (λ, σ)]α−G (λ, σ)αG (σ, µ) .

The transformation of the coefficients Nnm depends continuously on the
parameter σ. For each power of σ there is thus an infinitesimal transfor-
mation T (αk) parametrized by a matrix αk which maps the Nnm such
that they obey

Ṅnm = αkNn+k,m −Nn,m+kαk −
k∑

s=1

NnsαkNk−s,m. (10.67)

The commutator of two such transformations is

[T (αk) , T (αl)] = T (αk+l) , αk+l = [αk, αl] . (10.68)

This is precisely the structure which Kinnersley and Chitre (1977, 1978a)
have found for the Geroch (1972) ‘group’ in general relativity. Using the
methods of Schmidt (1984) it can be shown that this algebra of infinitesi-
mal transformations yields a Banach Lie group, see also the review article
by Breitenlohner and Maison (1987).

10.6 Bäcklund transformations

We return to (10.58) and seek a new solution by the ansatz (Neugebauer
and Meinel 1984)

Φ (λ) = P (λ) Φ0 (λ) , (10.69)

where Φ0 (λ) is a solution of (10.58) for some given H0 (λ), and, here,
P (λ) is a finite polynomial in λ of degree m, i.e.

P (λ) =
m∑
k=0

Pkλ
k , det(P0) �= 0 , det (Pm) �= 0 (10.70)

(cp. Meinel et al. (1991), Chapter 4.3). The new H (λ) is given by

H (λ) = [dP (λ) + P (λ)H0 (λ)]P (λ)−1 . (10.71)
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To preserve the expansion of H(λ) as finite Taylor resp. Laurent series in
λ we want to choose P (λ) such that H (λ) has the same pole structure as
H0 (λ). First we note that at λ = 0 and at λ = ∞ the poles of H (λ) are of
the same order as the ones of H0 (λ). It remains to analyse the behaviour
of H (λ) at the zeros of det (P (λ)). We have

det (P (λ)) = det (Pm)
m·n∏
k=1

(λ− λk) , (10.72)

where n is the size of the matrix. The zeros of the determinant, which
we assume for the moment to be disjunct, are simple poles of the inverse
matrix, and with

P (λ)−1 = P̃ (λ) / det (P (λ)) (10.73)
we have

H (λ) = [detP (λ)]−1 [dP (λ) + P (λ)H0 (λ)] P̃ (λ) . (10.74)

Hence using (10.69) we require

[dP (λk) + P (λk)H0 (λk)] P̃ (λk) =
dΦ (λk) Φ̃ (λk)
det (Φ0 (λk))

= 0. (10.75)

As d det(Φ0 (λ)) = TrH (λ) = 0, we have without loss of generality
det(Φ0 (λ)) �= 0. Moreover, det (Φ (λk)) = 0 and consequently there exist
non-trivial eigenvectors p(k) such that

Φ (λk)p(k) = 0 , k = 1, . . . , n ·m. (10.76)

Here, p(k) is a column vector of length n. For constant p(k) we also have
dΦ (λk)p(k) = 0 and thus

dΦ (λk) Φ̃ (λk) = 0. (10.77)

This result follows from the fact that if two square matrices A and B have
a common non-trivial eigenvector with eigenvalue zero, i.e. Ap = Bp = 0,
then AB̃ = 0. The matrices dΦ (λk) and Φ̃ (λk) are such a pair of matrices.
The matrix P (λ) is to be constructed algebraically from the equation

P (λk) Φ0 (λk)p(k) = 0, k = 1, . . . , n ·m. (10.78)

With a normalization condition, e.g. Pm = 1, this is an inhomogeneous
algebraic system for the other expansion coefficients. Finally, H (λ) is cal-
culated via (10.71). N.b., the constants λk and the constant components
of p(k) enter as parameters into the new solution. In a concrete case the
choice of parameters may be restricted by the requirement of preserving
not only the pole structure of H (λ) but also its ‘inner structure’, i.e. the
algebraic structure of its expansion coefficients. This may necessitate that
the λk and the components of p(k) are complex.
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10.7 Riemann–Hilbert problems

We again seek a new solution of (10.58) by the ansatz (10.69), viz.

dΦ(λ) = H(λ)Φ(λ) , Φ (λ) = P (λ) Φ0 (λ) , (10.79)

and assume without loss of generality det (Φ) �= 0 and Φ (0) = 1. The
parameter λ is extended into the complex plane. The requirement that
Φ (λ) has the same analyticity properties as Φ0 (λ) implies that P (λ) has
to be a holomorphic function in a neighbourhood of λ = 0. However,
P (λ) cannot be holomorphic in the whole complex plane without being
constant. To get a non-trivial transformation one has to use different
matrices in different neighbourhoods, say of the origin and λ = ∞, and
match them on the intersection of those neighbourhoods.

Let L be a contour enclosing the origin in the complex λ-plane, L+
its interior and L− its exterior. The Riemann–Hilbert problem consists
of finding matrices P+ (λ) and P− (λ) such that P+ (λ) is holomorphic in
L+ and continuous with non-vanishing determinant in L+∪L and P− (λ)
is holomorphic in L− and continuous with non-vanishing determinant in
L− ∪ L. On the contour L we have the condition

[dP+ (λ) + P+ (λ)H0 (λ)]P+ (λ)−1

= [dP− (λ) + P− (λ)H0 (λ)]P− (λ)−1 = H (λ) ∀λ ∈ L. (10.80)

This is equivalent to

P− (λ) = P+ (λ) Φ0 (λ)u (λ) Φ0 (λ)−1 ∀λ ∈ L, (10.81)

where u (λ) is a constant matrix depending on λ only.
The solution of this problem leads to integral equations of the Cauchy

type which are discussed in e.g. Muskhelishvili (1953) and Ablowitz and
Fokas (1997), where also methods for solving them are given. For the
relations of Riemann–Hilbert problems to Kac–Moody algebras cp. Chau
and Ge (1989) and Li and Hou (1989).

10.8 Harmonic maps

Let M be a m-dimensional Riemannian space with coordinates xa and
metric γab(x) and let N be an n-dimensional space with coordinates ϕA

and metric GAB(ϕ); M is called the background space and N is the
potential space. A map M → N is called harmonic if it is such that
ϕA(xa) satisfies the Euler–Lagrange equations of a variational principle

δL/δϕA = 0 (10.82)
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with a Lagrangian of the form (Neugebauer and Kramer 1969, Neugebauer
1969)

L =
√
γGAB(ϕC)γabϕA,aϕ

B
,b , (10.83)

where γ = det(γab). Moreover, we assume det(GAB) �= 0. The field equa-
tions are

ϕA ;a;a + ΓA
BCϕB,aϕ

C,a = 0, (10.84)

where ΓA
BC are the Christoffel symbols formed with GAB. We shall see in

Chapter 34 that the equations for electrovac space-times with one non-null
Killing vector are just of this form.

The field equations are invariant under infinitesimal transformations of
the form

ϕA → ϕA + εXA(ϕ), (10.85)

if XA is an affine collineation, i.e. if it satisfies

XA;BC = RABCD XD, (10.86)

where RABCD is the Riemann tensor of GAB. The finite transformation
can be found by integrating

dϕA/d ε = XA(ϕ). (10.87)

If ϕA |ε=0 is a solution of the field equations (10.84) then a solution of
(10.87), i.e. a symmetry, yields a one-parameter family of solutions.

In the particular case where XA is a Killing vector, i.e. X(A;B) = 0, the
infinitesimal transformation (10.85) leaves the Lagrangian (10.83) invari-
ant and gives rise to a conserved quantity, viz.

(XA ϕA,a);a = 0. (10.88)

This is Noether’s theorem in the present context. Moreover, the tensor

Tab = KABϕA,aϕ
B
,b − 1

2γabKABϕA,nϕ
B,n (10.89)

is divergencefree if and only if KAB is covariantly constant, i.e.

Ta
b
;b = 0 ⇐⇒ KAB;C = 0. (10.90)

In particular, if KAB = GAB, Tab is the canonical energy-momentum
tensor.

Besides the study of the affine symmetries of the metric GAB associated
with (10.83) other geometrical investigations of the potential space
(geodesics, subspaces) are important in simplifying the field equations
(Neugebauer and Kramer 1969, Hoenselaers 1978d). Let us assume that
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the fields ϕA depend only on a single potential λ. The ansatz ϕA = ϕA(λ)
reduces the field equations (10.84) to

dϕA

dλ
λ ;a
,a +

(
d2ϕA

dλ2
+ ΓA

BC

dϕB

dλ
dϕC

dλ

)
λ,aλ

,a = 0. (10.91)

The potential λ is determined up to a transformation λ→ λ′(λ). It follows
from (10.91) that λ ;a

,a = f(λ)λ,aλ,a and thus the above transformation can
be used to achieve λ ;a

,a = 0. For λ,aλ
,a �= 0 the field equations reduce to

λ ;a
,a = 0, D2ϕA/dλ2 = 0. (10.92)

Here, ϕA are solutions of the geodesic equation in the potential space
and λ is a solution of the Laplace–Beltrami equation in the background
space. If, however, λ not only solves the Laplace–Beltrami equation but
also is such that its gradient is a null vector, i.e. λ,aλ

,a = 0 (this pre-
supposes that the background space is of indefinite signature), then it
can be seen from (10.91) that there are no restrictions on ϕA(λ); these
functions can then be chosen arbitrarily.

The case in which the background space is two-dimensional and flat is
of particular interest. In this case (see e.g. Hoenselaers (1988)) one can
show that the canonical energy-momentum tensor associated with the
Lagrangian (10.83), viz.

Tab = GABϕA,aϕ
B
,b − 1

2γabGABϕA,nϕ
B,n ≡ 0, (10.93)

actually vanishes identically. As this tensor is symmetric and tracefree,
these are two equations of first order in addition to the field equations
(10.84).

In what follows we assume in addition to the above that the potential
space admits a hypersurface-orthogonal Killing vector, viz.

X(A;B) = 0, X[A;BXC] = 0. (10.94)

One can introduce a function κ such that XA = ∂κ. The Lagrangian
(10.83) can be rewritten as

L = G
′
ABϕA,aϕ

B,a + f(ϕC)κ,aκ,a (A,B = 1, ..., N − 1), (10.95)

where neither G′
AB nor f depend on κ. Variation with respect to κ yields

(fκ,a),a = 0, (10.96)

which is the integrability condition for a function ψ defined by

ψ,a = fεabκ
,b, εab =

(
0 −1
1 0

)
. (10.97)
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The equations for the other fields are obtained by the variational deriva-
tive of the Lagrangian (10.95) with respect to the ϕA. Replacing κ by ψ
in the field equations is tantamount to the Legendre transformation

L′ = L− κ,a∂L/∂κ,a = G
′
ABϕA,aϕ

B,a − ψ,aψ
,a/f(ϕC). (10.98)

Clearly, L′ admits at least one Killing vector, ∂ψ, and the transformation
associated with it is ψ → ψ+ const which leaves κ unaffected. If, however,
L′ admits more than one Killing vector it can be used to generate new
solutions. Moreover, if this other Killing vector is hypersurface-orthogonal
one can iterate the process and at each step generate new solutions.

For a two-dimensional background space with real coordinates x and
y, say, we can introduce derivative operators ∂ = ∂x + i∂y, ∂

∗ = ∂x − i∂y,
respectively ∂ = ∂x+∂y, ∂

∗ = ∂x−∂y, depending on whether the signature
is 2 or 0. Moreover, we use an n-bein in the potential space such that

GAB = eαA eBα, Gαβ = eAα eAβ, (10.99)

where we do not require the frame metric Gαβ to be constant or diagonal.
Projecting the derivatives of the fields ϕA onto the frame vectors we define

Mα = eαA ∂ϕA, M∗α = eαA ∂∗ϕA. (10.100)

The field equations (10.84) together with the integrability conditions of
these equations become

∂∗Mα + Γα
βγM

βM∗γ = 0, ∂Mα + Γα
βγM

∗βMγ = 0, (10.101)

where Γα
βγ are the Ricci rotation coefficients, Γα

βγ = eαA eβA;B eBγ .
The advantage of this formulation of the field equations is that the non-
linearities become purely quadratic if it is possible to choose the frame
vectors such that the rotation coefficients are constant. According to The-
orem 8.18 this is possible if GAB admits a simply-transitive n-dimensional
group of affine collineations.

10.9 Variational Bäcklund transformations

In this section we assume that the equations in question are again
Euler–Lagrange equations of the form (10.82) with a general Lagrangian
L(ϕA, ϕA,a, ϕ

A
,ab, . . .) which is supposed to be polynomial in the derivatives

of the fields. The field equations to be derived from this Lagrangian con-
tain derivatives of order 2n if L is of order n. If L can be factorized,
i.e.

L = L1(ϕA, ϕA,a, ϕ
A
,ab, . . .) L2(ϕA, ϕA,a, ϕ

A
,ab, . . .) + divergence terms,

(10.102)
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where L1 and L2 are again polynomial in the derivatives of ϕA, then a
solution of the differential equations

L1(ϕA, ϕA,a, ϕ
A
,ab, . . .) = 0, L2(ϕA, ϕA,a, ϕ

A
,ab, . . .) = 0 (10.103)

is also a solution of the field equations derived from L (Rund 1976). The
term ‘variational Bäcklund transformation’ comes from the use of (10.103)
for deriving Bäcklund transformations for the sine-Gordon equation and
other non-linear partial differential equations. If one has one equation to
be derived from a Lagrangian L(ϕ,ϕ,a, . . .) for one function and wants
to derive an auto-Bäcklund transformation one uses the total Lagrangian
Ltot = L(ϕ,ϕ,a, . . .)− L(ψ,ψ,a, . . .) and tries to factorize it. If successful,
(10.103) provides relations between ϕ and ψ which are of lower order than
the field equations and constitute the well-known Bäcklund transforma-
tions for various equations.

10.10 Hirota’s method

Hirota’s direct method introduces derivative operators Dx defined by

Dn
x(a ∗ b) = (∂x − ∂x′)

n [a(x) b(x′)] |x=x′ (10.104)

(Hirota 1976). Thus Dx(a ∗ b) = b∂xa − a∂xb and D2
x(a ∗ b) = b∂2xa −

2∂xa ∂xb + a∂2xb etc. This is particularly effective if the solution to the
equation(s) in question can be written as a ratio f/g, say, and additional
equations can be introduced such that the resulting system can be written
using D operators only. It has been applied to many equations and the
standard n-soliton solutions can be found easily.

10.11 Generation methods including perfect fluids

For perfect fluids, the known generation methods are less powerful than
in the vacuum case. In this section we want to present some of the more
general ones. Those using only properties of a particular type of equation,
e.g. a linear differential equation or a Riccati equation, for which one
known solution may be used to get a second solution, will be treated in
the relevant chapters.

10.11.1 Methods using the existence of Killing vectors

If a perfect fluid solution admits a (spacelike) Killing vector ξ perpendic-
ular to the four-velocity and has an equation of state µ = p, or admits
a (timelike) Killing vector ξ parallel to the four-velocity (rigid motion),
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and has an equation of state µ + 3p = 0, then a one-parameter family
of solutions can be generated from this solution. The method relies on
the existence of a twist potential ω,a = εabcdξ

d;cξb; for details see §10.3.2
above and Stephani (1988). Since the equation of state µ+3p = 0 is rather
unphysical, only very few examples have been discussed for this case, see
e.g. Rácz and Zsigrai (1996). For stiff matter µ = p, two more generation
methods are available which we shall discuss now.

If the four-velocity is irrotational, it can be written in terms of a scalar
function σ(z, t) as

un = σ,n(−σ,aσ,a)−1/2, (10.105)

and Einstein’s field equations for a stiff fluid read

Rab = 2σ,aσ,b, κ0p = κ0µ = −σ,nσ,n (10.106)

(Tabensky and Taub 1973). If the metric admits a spacelike hypersurface-
orthogonal Killing vector ξ = ∂x, it can be written as

ds2 = e2Udx2 + e−2Uγαβdxαdxβ , α, β = 1, 2, 3. (10.107)

With respect to (10.107), the field equations read

3
Rαβ= 2U,αU,β + 2σ,ασ,b, U ;α,α = 0 (10.108)

(with ξnσ,n = 0 = ξnU,n), cp. Theorem 18.1. Four-velocity (σ,a) and the
gradient of U enter in a very symmetric way, and the following theorem
(Krori and Nandy 1984) can easily be read off:

Theorem 10.1 If ds2 = e2V dx2 + e−2V γαβdxαdxβ is a vacuum solution
withV,αV

α < 0, then (10.107) with U = (1 − λ)V , λ = const, is a stiff
fluid solution with σ = (2λ− λ2)1/2V .

Unfortunately there are not many non-static solutions with only one
Killing vector (so that in the applications (Krori and Nandy 1984, Baillie
and Madsen 1985) of this theorem some seed metrics admit even a G3).
Most of the possible seed metrics admit a G2, and then a more powerful
method is available.

If the metric admits two commuting spacelike Killing vectors ∂x and ∂y
(orthogonally transitive), the line element can be written as

ds2 = eM (dz2 − dt2) + W [e−Ψdy2 + eΨ(dx + Ady)2], W > 0, (10.109)

cp. §17.1.2. If the four-velocity is orthogonal to the group orbits, it is
necessarily irrotational, so that (10.105) is satisfied. The Bianchi identities
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then imply that σ satisfies the same equation (17.13) as ψ does for A =
0, i.e.

σ,a;a = 0 = (Wσ,z),z − (Wσ,t),t (10.110)

(Letelier 1975, Ray 1976). Taking now a vacuum solution of the form
(10.109) and adding a function Ω to M ,

M̃ = Mvac + Ω, (10.111)

one sees that the resulting Ricci tensor R̃ab is exactly of the form

R̃ab = 2σ,aσ,b, (10.112)

provided the function Ω satisfies the equation

Ω,a = 2Wσ,b(2W,bσ,a − σ,bW,a)/(W ,nW,n). (10.113)

Note that only the metric function W enters this equation (M drops out).

Theorem 10.2 If the metric (10.109) – with W ,aW,a �= 0 – satisfies the
vacuum field equations Rab = 0, then the perfect fluid field equations for
a stiff fluid R̃ab = 2σ,aσ,b are satisfied by the metric ds̃ 2 which differs
from (17.4) by the substitution M̃ = M + Ω, where σ and Ω are solutions
of (10.110) and (10.113), respectively (Letelier and Tabensky (1975) for
A = 0 = Ψ, Wainwright et al. (1979), Belinskii (1979)).

For W ,nW,n = 0, W �= const, by an obvious generalization one can gen-
erate from a vacuum solution with W = W (z + t) a pure radiation so-
lution with σ = σ(z + t) by adding an Ω = ω0(z − t)+ ω1(z + t) with
ω′
1 = W (σ′)2/2W ′.
The technique described by the above theorem can be – and has been –

applied to many solutions: the class of vacuum metrics (17.4) belongs
to those metrics with an orthogonally transitive Abelian G2 on S2 where
soliton techniques can be used to generate vacuum solutions, see above and
Chapter 34. Moreover, since the metric function W does not change under
these generation techniques, the same functions σ and Ω can be used for
all vacuum solutions obtained from the same vacuum seed. A different
way of looking at the class of solutions covered by Theorem 10.2 is to
start from a stiff fluid solution, perform a transformation to a vacuum
solution, apply a soliton-generation technique and then go back to the
stiff fluid: one then may speak of a solution describing solitons travelling
in the background of a (particular) stiff fluid of higher symmetry. Of
course, since σ and Ω need not be changed, it suffices to immediately
transform only the vacuum part of the metric.
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We cannot give in detail all solutions found by using these ideas, but
only give the references (see also §23.3). The generation techniques have
been applied to:

flat space: Belinskii and Fargion (1980a), Jantzen (1980a),
FRW-cosmologies: Belinskii (1979), Jantzen (1980a), Kitchingham

(1986), Alencar and Letelier (1986), Gleiser et al. (1988a), Griffiths
(1993b), Alekseev and Griffiths (1995);

vacuum solutions with a G3 (different Bianchi types): Wainwright
et al. (1979), Wainwright and Marshman (1979), Letelier (1979), Jantzen
(1980a), Kitchingham (1984, 1986), Alekseev and Griffiths (1995);

other vacuum metrics: Wainwright et al. (1979), Carmeli et al. (1981,
1983), Tseitlin (1985), Kitchingham (1986), Oliver and Verdaguer (1989),
Davidson (1993a, 1998), Fernandez-Jambrina (1997).

We end this subsection by mentioning two methods which work for
static metrics and use a discrete symmetry of the field equations. The
first is the Ehlers transformation described in Theorem 21.1 which relates
a rigidly rotating stationary dust solution to each static vacuum solution.
The second is the Buchdahl transformation (Buchdahl 1956). For a static
perfect fluid with metric

ds2 = e−2Uγµνdxµdxv − e2Udt2, (10.114)

the field equations are equivalent to the system

R̂ab = 2U,aU,b − 2κ0pe−2Uγab, U ,a
;a = −1

2κ0(µ + 3p)e−2U , (10.115)

cp. Theorem 18.1. If we make the substitution

Ũ = −U, p̃ = e−4Up, µ̃ = − e−4U (µ + 6p), (10.116)

we get a ‘reciprocal’ static perfect fluid solution. The resulting mass den-
sity µ̃ will be physical (positive) only in those regions of the seed solution
(choice of constants of integration!) where µ + 6p is negative (Stewart
1982).

10.11.2 Conformal transformations

While few space-times admit proper conformal motions (see §35.4), it may
still be possible to obtain new solutions from old by conformal transfor-
mation. Conformally flat solutions are discussed in full in Chapter 37, so
we restrict attention here to cases where two space-times which are not
conformally flat are conformally related. If one applies a conformal trans-
formation gab = e−2Φĝab to a vacuum metric R̂ab = 0, then the resulting
Ricci tensor

Rab = 2Φ,a;b − 2Φ,aΦ,b − gab (Φ,n
;n + 2Φ,nΦ,n) (10.117)
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may be of the perfect fluid type, in which case

2Φ,a;b − 2Φ,aΦ,b + gabΦ,nΦ,n = κ0(µ + p)uaub + 1
3κ0pgab (10.118)

holds, cp. §3.7 (the covariant derivatives are understood with respect to
gab). The integrability conditions for this system of differential equations
for Φ have been studied by Kozameh et al. (1985) and in a series of
papers by Van den Bergh. Obviously, all conformally flat perfect fluids
(see Theorem 37.17) are contained here. The general solution of (10.117)
is not known, but (for µ+p �= 0) the following results have been obtained.

(1) If the fluid and vacuum solutions share a Gr, r ≥ 2, or if the fluid has
an equation of state p = p(µ) and the conformal factor obeys Φ,au

a = 0,
the solutions are shearfree or irrotational (Van den Bergh 1988b).

(2) Shearfree solutions are conformally flat and thus covered by The-
orem 37.17, or of Petrov type D and locally rotationally symmetric and
thus known (Van den Bergh 1986b, 1986e, Ellis 1967, Stewart and Ellis
1968).

(3) Irrotational fluids are conformally flat (if Φ,a is parallel to ua), or
shearfree and non-expanding with a G3 on V2 or conformally related to
the Bianchi type V I0 vacuum solution (13.58) (if Φ,a is orthogonal to ua),
or expansionfree and admit a G3 on V2 (in the general case) (Van den
Bergh 1986d).

(4) The vacuum solutions cannot be of Petrov type N , and Φ,n cannot
be proportional to a Killing vector (Van den Bergh 1986c, 1987).

The only null Einstein–Maxwell fields obtainable in a similar manner
are pp-waves (Van den Bergh 1986a). The conformally Ricci-flat pure
radiation solutions are either pp-waves or contained in a Petrov type N
solution in Kundt’s class, (31.38) with W o = 0 and (31.39) replaced by

(ζ + ζ̄)
(

H0

ζ + ζ̄

)
,ζζ̄

= (ζ + ia)
[

Ho

(ζ + ia)(ζ̄ − ia)

]
,ζ

+ c.c. (10.119)

(Wils 1989a).
The Einstein spaces conformal to pp-waves have been given by Siklos

(1985) within a more general class including a pure radiation field; by
Theorem 3.1, the pp-waves are necessarily non-vacuum.

All these results are somewhat disappointing in that conformal transfor-
mation did not really lead to new solutions. The same is true for attempts
to use five-dimensional backgrounds for a generation method (which leads
to equations very similar to (10.117) for the scalar field connected with
g55).



Part II
Solutions with groups of motions

11
Classification of solutions with
isometries or homotheties

11.1 The possible space-times with isometries

In specifying the symmetry properties of a metric one has to state the
dimension of the maximal group of motions or homotheties, its algebraic
structure, and the nature and dimension of its orbits. For this purpose
we shall, as in §8.4, use the following notation: the symbols S, T and
N will denote, respectively, spacelike, timelike and null orbits, and will
be followed by a subscript giving the dimension. If an isometry group
is transitive on the whole manifold V4, the space-time will be said to be
homogeneous. If an isometry group is transitive on S3, T3 or N3, the space-
time will be called hypersurface-homogeneous (or, respectively, spatially-
homogeneous, time-homogeneous, or null-homogeneous).

Petrov (1966) and his colleagues were the first to give a systematic
treatment of metrics with isometries, and we therefore inevitably recover
many of Petrov’s results in the following chapters.

It turns out that if the orbits are null, the construction of the metric
and the understanding of its properties have to be achieved by a rather
different method from that used when the orbits are non-null. Accord-
ingly we give first the discussion of non-null orbits (Chapters 12–22) and
later the discussion of null orbits (Chapter 24). Within this broad divi-
sion we proceed in order of decreasing dimension of the orbits. A further

157
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subdivision occurs because the group may be multiply- or simply-
transitive on its orbits. We shall in general treat the higher-dimensional
(multiply-transitive) case first. However, it frequently happens that the
multiply-transitive group contains a subgroup simply-transitive on
the same orbits, and in this case it may be advantageous to make use of
the simply-transitive subgroup.

All these subdivisions give a rather long list of inequivalent possible
structures. As far as possible we shall try to group these together when
looking for exact solutions, and for each case we shall first discuss the
form of the metric and only subsequently insert this into the Einstein
field equations. As usual we shall restrict ourselves to vacuum, electro-
magnetic, pure radiation and perfect fluid energy-momentum tensors and
only occasionally mention combinations such as Einstein–Maxwell fields
with a cosmological constant.

Even a short search of the literature reveals that certain types of space-
time symmetry have attracted much more attention than others, either
because of their physical importance, or because they are mathematically
tractable and interesting. We have therefore devoted separate chapters to
some of these special cases, these chapters following the appropriate more
general chapters.

One particular complication is that the maximal group of motions of a
space-time may contain a considerable number of inequivalent subgroups.
The metric may therefore be rediscovered as a special case of a space-time
invariant under one of these subgroups, often in a form which makes it
difficult to recognize unless the methods of Chapter 9 are applied. We
shall try to indicate such possibilities.

Isometries necessarily leave the energy-momentum tensor unchanged.
For perfect fluids, this implies that the quantities appearing in (5.9) have
the same symmetries as the metric (Hoenselaers 1978c). For pure radia-
tion, invariance of (5.8) shows that Lξka ∝ ka, and one can scale ka so
that Lξka = 0 = LξΦ (this is possible simultaneously for all generators of
a group since ka must be invariant under any isotropy in the group). The
analogous result for Einstein–Maxwell fields is not true, however. Instead
we have

Theorem 11.1 If the metric of a sourcefree Einstein–Maxwell field ad-
mits a Killing vector field ξ, then

LξFab = ΨF̃ab, (11.1)

where Ψ is a constant for a non-null electromagnetic field, and Ψ,[akb] = 0
for a null field with repeated principal null direction k (Ray and Thompson
1975, Coll 1975). When Ψ = 0, the Maxwell field is said to inherit the
symmetry.
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Proof. In the non-null case the Rainich formulation (§5.4) is used. The
extremal field fab and the gradient α,a of the complexion are determined
by the metric. Hence Lξfab = 0 = Lξα,a, and (5.23) then yields (11.1)
with Ψ = ξaα,a. For null Maxwell fields, the form (5.17) allows us, as
with pure radiation, to take Lξka = 0 = LξΦ. Then, writing the real and
imaginary parts of (5.16) as Fab = 2k[aEb] and F̃ab = 2k[aHb], invariance
of Tab and of kaEa = 0 yields EaLξEa = kaLξEa = 0, so LξEa lies
in the ka–Ha-plane and (11.1) follows. The condition Ψ,[akb] = 0 follows
immediately from (2.64) and the Maxwell equations: it implies that either
Ψ is constant or k is hypersurface-orthogonal.

To investigate possible non-inheritance we first note (Henneaux 1984)
that whether Fab is null or not, Theorem 11.1 shows that any isometry
T ∈ Gr acts on Fab by T ∗Fab = F 0ab cosβ−F̃ 0ab sinβ, where F 0ab is the value
at some arbitrarily-chosen initial point in the orbit, in analogy with (5.23).
Thus Theorem 11.1 implies that in all cases there is a homomorphism from
Gr to a one-parameter group of duality rotations, the kernel of which
consists of inherited symmetries. Consequently the derived algebra must
be inherited, and if ΨA is the factor in (11.1) for a generator ξA then

ΨAC
A
BC = 0. (11.2)

This and the previous results restrict possible non-inheritance. For ex-
ample, in space-times admitting groups of Bianchi type IX (including
spherical symmetry; Michalski and Wainwright (1975), Wainwright and
Yaremovicz (1976b)) the Maxwell field must inherit those symmetries, and
the same is true for space-times with two hypersurface-orthogonal com-
muting non-null Killing vectors and a non-null Maxwell field (Michalski
and Wainwright 1975). Consideration of the action of an isotropy on the
invariant F ∗

abF
∗ab shows that non-inheritance of an isotropy is only possi-

ble for a null field (Henneaux 1984). Further related results are discussed
by Goenner (1984), Henneaux (1984) and Carigi and Herrera (1986).

A number of solutions are known in which the Maxwell field does not
inherit the symmetry. For non-null fields the non-inherited Killing vector
may be hypersurface-orthogonal (see §22.2), or twisting, as in (12.21).
Examples of null non-inheriting Maxwell fields, which are also pure ra-
diation solutions, are given by (13.46) and the pp-waves described in
§24.5 (Wainwright and Yaremovicz 1976b, cp. (12.37); see also Lukács
and Perjés (1976)), and in §15.4.

11.2 Isotropy and the curvature tensor

At fixed points of a group of motions, only suitable energy-momentum and
Petrov types are possible. The isometry concerned is then usually given
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the same name as the local isotropy it induces at the fixed points, so one
may have a rotation, i.e. a Killing vector field whose zeros form a fixed
axis of rotation at which the isotropy can be represented by (3.16), and
similarly a boost, with fixed points with isotropy (3.17), or a null rotation
whose fixed points have isotropy (3.14) (or (3.15)). The implications for
the curvature at the fixed points are the same whether the maximal group
is simply-transitive except on a submanifold, or is multiply-transitive,
which is the case we now discuss.

Following the remarks in §8.4 we see that if a space-time admits a group
Gr of motions transitive on orbits of dimension d(< r), each point has an
isotropy group of dimension r−d (see (8.20)), which must be (isomorphic
to) a subgroup of the Lorentz group.

Space-times with such isotropy have been particularly intensively stud-
ied. The term locally isotropic has been introduced for the cases where
every point p has a non-trivial continuous isotropy group (Cahen and De-
frise 1968); when this group consists of spatial rotations the space-time
is called locally rotationally symmetric or LRS (Ellis 1967). Some gen-
eral remarks about the possible cases are given in this section. It can be
shown that local isotropy of the Riemann tensor and a few of its deriva-
tives (in some important cases, just the first) is sufficient to ensure the
existence of a group of motions (see Chapter 9). Such a group must
clearly be continuous, since every point in some neighbourhood has an
isotropy subgroup of at least one parameter, and is at least a G3 (acting
on 2-surfaces). Weakening the assumptions to invariance of the Weyl ten-
sor and the quantities in (6.14) only adds Szekeres solutions (see §33.3.2)
to the LRS cases (Mustapha et al. 2000).

Schmidt (1968) gave a calculation of all possible Lie algebras of isometry
groups acting transitively on a V4 with local isotropy, and Defrise (1969)
determined all distinct locally isotropic metric forms. MacCallum (1980)
gave the Lie algebras and other information for locally isotropic met-
rics with non-null homogeneous hypersurfaces. Cahen and Defrise (1968)
found all locally isotropic vacuum type D metrics, while Ellis (1967) and
Stewart and Ellis (1968) studied LRS metrics with perfect fluid and elec-
tromagnetic field; the approaches used were rather similar, in that tetrads
were defined up to the isotropy by properties of the curvature tensor, and
the invariance under the isotropy was then imposed.

In §§4.2 and 5.1 (see Table 5.2) the maximal linear isotropy group was
determined for each Petrov and Segre type. We recall that only in Petrov
types D, N or O was any continuous isotropy possible. In these cases the
permitted isotropies were, respectively, the group generated by spatial
rotations (3.16) and boosts (3.17), the group of null rotations (3.15), and
the Lorentz group; subgroups of these are, of course, permitted.
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One can determine every possible subgroup of the Lorentz group; the
details are given in many texts. For our purpose, some of these possibilities
are irrelevant, because only certain isotropies are consistent with given
Weyl and Ricci tensors. To begin with we can combine the information
of §§4.2, 5.1 and 8.5 to obtain

Theorem 11.2 The only Einstein spaces (Rab = Λgab) with a group of
motions Gr, r ≥ 7, are the spaces of constant curvature (8.33) which
admit a G10.

Further we can see that there are no space-times with a Gr (r ≥ 7)
containing an electromagnetic field with C = 0 in (11.1), and that
the only possible metrics with exactly a G7 are a perfect fluid solu-
tion with an I3 of spatial rotations at each point, and a pure radia-
tion solution with an I3 generated by null rotations (3.15) and spatial
rotations (3.16). Both these spaces must be conformally flat. Both in
fact exist, being the Einstein static universe and special plane waves
(see Chapter 12). The same energy-momentum tensors would be required
for the cases where the maximal group is a G6 with the same isotropy
groups I3.

Now let us briefly list the less-highly-symmetric cases with isotropy
permitted by the algebra of the curvature tensor.

For vacuum, one might have locally isotropic homogeneous Petrov type
D or type N solutions with an I2 or I1. Actually the only case will be
shown in Chapter 12 to be the plane waves of Petrov type N , with a G6,
and an I2 of null rotations at each point. One has inhomogeneous spaces
with a multiply-transitive G3 or G4 (see Chapters 13 and 15), or with null
orbits (see Chapter 24) and a G5 (which is impossible for non-null orbits
by Theorem 8.17).

For the Λ-term, the situation is essentially the same as for vacuum,
except that there is a Petrov type D solution with a G6 and a metric of
the form (12.8).

With a non-null Einstein–Maxwell field the locally isotropic metrics
are either conformally flat or of Petrov type D , and in the latter case
the invariant planes of Rab, C∗

abcd and F ∗
ab all coincide. The only such

homogeneous space-time is found in Chapter 12 to admit a G6; it is the
Bertotti–Robinson metric, and is conformally flat. The solutions with a
G4 on V3 or G3 on V2 are discussed in Chapters 13 and 15.

For a null electromagnetic field, a locally isotropic solution must be
conformally flat or Petrov type N , the invariant planes of C∗

abcd (if non-
zero) and F ∗

ab again agree, and they define the same principal null direction
as Rab. The only homogeneous cases turn out to be special plane waves
(see Chapter 12). Cases with lesser symmetry could have a G5 or G4 on
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N3 or a G3 on N2, in principle (but see Chapter 24). The only conformally
flat cases are the special plane waves, see §37.5.

The situation for pure radiation is essentially the same as for null elec-
tromagnetic fields (disregarding remarks about F ∗

ab).
Finally we come to the case of perfect fluid solutions. The confor-

mally flat perfect fluid solutions (§37.5) admitting an isotropy are the
Friedmann–Robertson–Walker universes (§14.2) and the interior Schwarz-
schild metric (§16.1). The locally isotropic non-conformally-flat perfect
fluids admit a I1 of spatial rotations. Such solutions exist for a G5 on V4
(the Gödel solution), G4 on V3 and G3 on V2, and were discussed in detail
by Ellis (1967) and Stewart and Ellis (1968). Note that no solution with
an I2 of spatial rotations arises, essentially because, as noted in §8.6, the
rotation group has no two-dimensional subgroup.

These locally rotationally symmetric solutions were divided by Ellis
(1967) into three classes, assuming the metric has an invariantly-defined
orthonormal basis (e1, e4) in the plane orthogonal to the plane of the
rotational symmetry, which is spanned by (e2, e3). Then one can show
that ωk = 0, where D4

23 = ω, D1
23 = k in (2.6) (Ellis 1967, Stewart and

Ellis 1968). Ellis thus divided the cases into three classes. In Class I ω �= 0,
so that there is a timelike congruence with rotation, and the 2-planes in
which the isotropy acts are non-integrable; these are stationary or static
metrics admitting a G4 on T3. In Class II ω = k = 0, the 2-planes in
which the isotropy acts are integrable, and the timelike congruence is
non-rotating; the metrics admit a G3 on S2. In Class III k �= 0, so the
timelike congruence is non-rotating but the 2-planes are non-integrable;
the metrics are spatially-homogeneous, admitting a G4 on S3.

The arrangement of the subsequent chapters of Part II is given by
Table 11.1.

11.3 The possible space-times with proper
homothetic motions

Relatively few solutions have been found by assuming in advance the
existence of a proper homothetic motion. However, a great many solutions
in fact have proper homothetic motions whose existence accounts for the
comparatively simple forms of their line elements and consequently for
their discovery. A number of these appear in Chapters 13, 14 and 23, and
others are summarized in §11.4.

The relation between homothety and similarity solutions of the Einstein
equations gives rise to the alternative name ‘self-similar’ for solutions with
homothetic motions, more precisely ‘similarity of the first kind’, similarity
of the zeroth and second kinds being defined like the kinematic similarity
of (35.64) (Carter and Henriksen 1989). There are arguments for believing
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Table 11.1. Metrics with isometries listed by orbit and group action, and
where to find them

Equations (3.15) are null rotations, (3.16) spatial rotations, and (3.17) boosts.

Orbit Maximal Isotropy subgroup Relevant chapters
group and sections

V4 G7 I3 of space rotations 12.4
(3.15) and (3.16) 12.5

G6 (3.15) 12.2, 12.5
(3.16) and (3.17) 12.3, 12.5

G5 (3.15), real B 12.5
(3.16) 12.4

G4 None 12

S3 G6 I3 of space rotations 13.1, 14
G4 (3.16) 13, 14, 15.4, 15.7
G3 None 13, 14

T3 G6 3-dim. Lorentz group 13
G4 (3.16) and (3.17) 13, 15.4, 15.7, 16.1
G3 None 13, 22.2

S2 G3 (3.16) 15, 16
G2 None 17, 22, 23, 25

T2 G3 (3.17) 15
G2 None 17, 19–21

S1 G1 None 17.3, 23.4

T1 G1 None 17.3, 18

N3, N2, N1 Gr If any, 24
(1 ≤ r ≤ 6) (3.15) and/or (3.16)

that self-similar solutions will in general represent asymptotic states
of more general solutions, for example the behaviour of cosmologies
near a big-bang or at late stages of expansion (Coley 1997b, Carr and
Coley 1999), and this has been proved in, for example, some classes of
the hypersurface-homogeneous cosmologies of Chapter 14 (Wainwright
and Ellis 1997). However, self-similar solutions cannot in general be
asymptotically flat or spatially compact (Eardley et al. 1986).

At a fixed point of a proper homothety all scalar invariants polynomial
in the curvature vanish, because they would have to map to themselves
under the homothety, but this would multiply them by a non-trivial factor.
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Thence a space-time admitting a proper homothetic motion with a fixed
point p must be of Petrov type III, N or O and Segre type [(2, 11)] or
[(3, 1)] at p. Such fixed points are either isolated or form null geodesics;
in the former case, the Ricci tensor can only be non-zero if it has the
unphysical Segre type [(3 1)] at least on a three-dimensional submanifold
(or vacuum, for which in Petrov type N see da Costa and Vaz (1992)),
and in the latter case, the space-time is either flat or a generalized plane
wave (Hall 1988a). These restrictions apply to all points if the Hr and its
Gr−1 subgroup have the same orbits; this can only happen if the orbits
are either V4 or N3 (Hall and Steele 1990).

This further limits the groups of proper homothetic motions Hr for large
r, which must anyway be included among the possible spaces with a group
Gr−1 of motions listed in §11.2; for reviews of space-times with Hr for
r ≥ 3 see Hall and Steele (1990) and Carot and Sintes (1997). The possible
Segre types include some not considered in this book. Flat space has an
H11 but there are no space-times with an Hr for r = 9 or 10. The only
solutions with an H8 (and G7) are (12.37). Other homogenous plane waves
(12.12) admit an H6 and may admit an H7 on V4, while inhomogeneous
plane waves may admit an H7 on N3. The Robertson-Walker metrics,
with a G6 on S3, may have an H7 on V4. For an H6, only the generalized
plane waves, in which the orbits are N3, are possible, while an H5 must
act on a V4 in which the G4 acts on three-dimensional orbits (Hall and
Steele 1990). Solutions with an H5 must therefore be locally rotationally
symmetric or similarly locally boost or null rotation symmetric, and hence
of Petrov types D or N (or conformally flat). An H4 on V3 or V4, with
an isometry group G3 on, respectively, a three- or two-dimensional orbit,
is possible but the case of an H4 and G3 on N3 is excluded. Examples of
spaces explicitly found by these assumptions appear in Chapters 14 and
23; see also Tables 11.2–11.4. There are no multiply-transitive H3. An
Abelian orthogonally-transitive proper H2 acting on non-null orbits in a
non-flat vacuum is impossible (Kolassis and Ludwig 1996).

In a non-flat vacuum, a proper homothety must be non-null: if it has a
non-null homothetic bivector it must be shearfree and expanding but not
hypersurface-orthogonal or geodesic; if the homothetic bivector is null the
Petrov type is III or N (McIntosh 1976a).

As with isometries, homotheties may imply inheritance of symmetry by
the matter content. For a perfect fluid, homothety implies that

Lξµ = −2Φµ, Lξp = −2Φp, Lξua = Φua, (11.3)

and the symmetry is always inherited. These equations imply that if
there is a barotropic equation of state p = p(µ), it must be (5.36), i.e.
p = (γ − 1)µ for some constant γ (Cahill and Taub 1971, Collins 1977b,
Wainwright 1985), and the homothety cannot then be orthogonal to the
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fluid four-velocity u unless µ = p (McIntosh 1976a), or parallel to u unless
γ = 2/3 (Wainwright 1985).

Fluid solutions with an Hr have been studied in several works.
Robertson–Walker metrics with an H7 and solutions with an H4 on V4 or
an H5 on V4 containing a G4 on V3 are covered by Chapters 13 and 14,
solutions with an H4 on V3 (and G3 on V2) by Chapters 15 and 16, and
those with a maximal H3 by Chapter 23. See also the tables in §11.4.

The analogue of (11.1) for homothetic motions in Einstein–Maxwell
solutions reads (Wainwright and Yaremovicz 1976a, 1976b)

LξAFab = ΨAF̃ab + ΦAFab, (11.4)

and (11.2), ΨAC
A
BC = 0, again holds.

For a non-null Maxwell field, if there is a non-null proper homothety
ξ, it cannot be hypersurface-orthogonal (McIntosh 1979); if a geodesic
shearfree principal null direction of the Maxwell field coincides with one
for a non-null homothetic bivector, the solution is algebraically special;
and if both principal null directions coincide, they cannot be geodesic and
the homothety cannot be hypersurface-orthogonal (Faridi 1990). For the
null case, Ψ,[akb] = 0, where kb is the repeated principal null direction of
the Maxwell field, and Ψ is therefore constant if kb is twisting (Wainwright
and Yaremovicz 1976b). An example of a non-inherited homothety is given
by (13.76).

A homothetic motion is often apparent in a metric’s power-law form,
which indicates that a homogeneity transformation of the type x′i = knixi

for each i, with some constants k, ni, maps the metric to a multiple of
itself: in that case ξ =

∑
i nixi∂xi is a homothetic vector. For example

the proper homothety (13.56) of the Kasner metric (13.53) is of this type.
Homothety is also readily recognized if one or more of the xi is replaced by
exp(yi). The detection of homothety by coordinate independent methods
is discussed in Koutras (1992b), Koutras and Skea (1998) and Chapter 9.
It is rather common for a proper homothetic vector field to be timelike in
some regions and spacelike in others.

11.4 Summary of solutions with homotheties

Whereas solutions with Gr are treated systematically in the following
chapters, solutions among them and elsewhere which admit an Hr are
not. Hence, for reference, Tables 11.2–11.4 list all solutions given explicitly
in this book and known to admit a homothety group Hr for r ≥ 3. In
the tables the abbreviations for the energy-momentum are as follows: V
denotes vacuum, E Einstein–Maxwell, F perfect fluid, and R radiation
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solutions. Some references to solutions known to admit an Hr, r ≥ 3,
which are not given explicitly, appear in §§15.7, 16.2.2, 20.2, 21.1.5, 22.2–
22.4, 23.2, 30.7.4 and 33.1. Hsu and Wainwright (1986) and Koutras
(1992b) proved that (14.28b), (14.33) and (14.41) contain all Petrov type
I perfect fluid solutions in which the fluid flow is orthogonal to the orbits
of the G3.

For vacuum, Kerr and Debney (1970), McIntosh and Steele (1991) and
Kerr (1998) have shown that certain sets of solutions with Hr, r ≥ 3, are
exhaustive. The algebraically special cases with diverging rays and an Hr,
for 5 ≥ r ≥ 1, were studied by Halford and Kerr (1980), Halford (1980)
and Lun et al. (1988). Not all cases could be solved explicitly. Most are
previously known solutions.

Robinson–Trautman solutions admitting an Hr are reviewed in
Singleton (1990); homotheties of Petrov type N vacuum solutions in
Kundt’s class are discussed in Salazar I. et al. (1983); and reductions of the
field equations for twisting algebraically special vacua with an H2 or H1

are discussed in §§29.2 and 29.3; see also Stephani and Herlt (1985) and
McIntosh et al. (1987).

There are a number of solutions known to admit an H2, which we now
cite. There are 16 explicitly known algebraically special vacuum metrics
with a maximal H2: six are twisting solutions in the class discussed in
§29.2.5, arising from special choices of the arbitrary functions (Halford
1980, Lun et al. 1988); five are Robinson–Trautman solutions of type N
(Singleton 1990); two are Robinson–Trautman solutions of type III (Lun
et al. 1988, Singleton 1990 and §17.3); two are type N solutions in Kundt’s
class (Salazar I. et al. 1983); and the other is the Hauser solution (29.72).

Of the 17 non-degenerate Harrison solutions of Petrov type I (see
§17.3), 13 admit homotheties, i.e. an H2, at least for certain subcases
(Koutras 1992b). A further solution with an H2 is given by (18.48)
and others are mentioned in §29.2. Godfrey (1972) found solutions with
H3 and H4 in Weyl’s static axisymmetric vacuum class (§20.2), and
Kolassis (1996) has shown that these include all Petrov type I vacuum
solutions admitting an H2 which is orthogonally transitive.

The null Einstein–Maxwell solution (28.56b) with m0 = 0, ε = 1, admits
a homothety (Koutras 1992b). Pure radiation solutions with an H2 are
mentioned in §30.7.4, and some conformally flat solutions with homothety
in §37.5.1.

Perfect fluid solutions with a maximal H2 arise in §17.3. Koutras
(1992b) has shown that certain subcases of the Petrov type N perfect
fluid solutions of Oleson’s Class I, (33.48), admit an H2 or H1, and that
one subcase of Class II also has an H1.



12
Homogeneous space-times

12.1 The possible metrics

A homogeneous space-time is one which admits a transitive group of mo-
tions. It is quite easy to write down all possible metrics for the case where
the group is or contains a simply-transitive G4; see §8.6 and below. Dif-
ficulties may arise when there is a multiply-transitive group Gr, r > 4,
not containing a simply-transitive subgroup, and we shall consider such
possibilities first. In such space-times, there is an isotropy group at each
point. From the remarks in §11.2 we see that there are only a limited
number of cases to consider, and we take each possible isotropy group
in turn.

For Gr, r ≥ 8, we have only the metrics (8.33) with constant curvature
admitting an I6 and a G10.

If the space-time admits a G6 or G7, and its isotropy group contains
the two-parameter group of null rotations (3.15), but its metric is not of
constant curvature, then it is either of Petrov type N , in which case we
can find a complex null tetrad such that (4.10) holds, or it is conformally
flat, with a pure radiation energy-momentum tensor, and we can choose
a null tetrad such that (5.8) holds with Φ2 = 1. In either case the tetrad
is fixed up to null rotations (together with a spatial rotation in the latter
case). The covariant derivative of k in this tetrad must be invariant under
the null rotations, which immediately gives

κ = ρ = σ = ε + ε̄ = τ + ᾱ + β = 0. (12.1)

Since τ and σ are invariantly defined for the tetrad described, (7.21p)
yields

τ(τ + β − ᾱ) = 0, (12.2)

171
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and thus either τ = 0, in which case k is (proportional to) a covariantly
constant vector and we arrive at homogeneous plane waves (§24.5), or

τ + β = 0 = α. (12.3)

In the latter case (7.21o) yields γ = 0 and (7.21q) shows that

Λ = −6τ τ̄ �= 0, (12.4)

so we must have Petrov type N . It is convenient to alter the tetrad choice
so that Ψ4 = Λ/2; (7.32d) then shows that τ = ±τ̄ , and, correspondingly,
Φ22 = ∓5Λ/6, so for positive energy we need Λ < 0. A position-dependent
null rotation of the tetrad is still permitted, and may be used to set

π̄ = −τ, λ = µ = 0, ν = −τ. (12.5)

Since the resulting tetrad has constant spin coefficients, it generates a
transformation group whose reciprocal group must be a simply-transitive
isometry group. With the choice (12.5) the commutators enable one to
introduce coordinates so that the metric is

ds2 =
3

|Λ|y2
[
dy2 + dz2 − dv

(
du− Λdv

|Λ|y2
)]

. (12.6)

This is a pure radiation solution of Petrov type N with a cosmological
constant and a G6. It was first given by Defrise (1969).

In the case with an additional spatial rotation symmetry and a G7, the
symmetry implies that for the null tetrad fixed by Φ22 = 1, τ = 0, and
thus only a special homogeneous plane wave is possible. From §24.5, the
plane wave solutions are

ds2 = 2dζ dζ̄ − 2du dv − 2[A(u)ζ̄2 + A(u)ζ2 + B(u)ζζ̄]du2 (12.7)

with Rab = B(u)kakb, and for them to admit a G6 or G7 we require special
forms for A(u) and B(u) (see Table 24.2 and §12.5).

The other possible cases with a maximal G6 are those with an isotropy
group composed of boosts (3.17) and rotations (3.16). A short calculation
by Schmidt’s method (§8.6) reveals that the metric must be that of the
product of two 2-spaces of constant curvature, i.e.

ds2 = A2[dx2 + Σ2(x, k)dy2] + B2[dz2 − Σ2(z, k′)dt2], (12.8)

where A and B are constants. This space is symmetric, cp. (35.29).
A metric with a G7 and an isotropy group I3 consisting of rotations must

contain a preferred timelike vector field u. The isotropy of the covariant
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derivative of u shows that u is hypersurface-orthogonal and shearfree.
The hypersurfaces to which u is orthogonal have constant curvature (by
Theorem 8.14), and Theorem 8.16 and (8.36) give the metric as

ds2 = a2(t)[dr2 + Σ2(r, k)(dϑ2 + sin2 ϑ dϕ2)]− dt2, (12.9)

which is the well-known Robertson–Walker metric form (Robertson 1929,
1935, 1936, Walker 1936). For a homogeneous space-time we shall require
a(t) to be constant, since it is clearly an invariant (assuming the I3 is the
maximal isotropy group), or, in the case k = 0, invariant up to a constant
scale.

Now we have to consider the possibility of a maximal isotropy group I1.
For the case of an I1 of spatial rotations, Schmidt’s calculations (1968)
show that there is a simply-transitive subgroup G4 except in the case
where the full group of motions is a G6 and the metric is (12.8). The same
holds for the case of an I1 of Lorentz transformations (3.17). Finally we
have the case of an I1 of null rotations. Here a calculation by Schmidt’s
method again shows that there is a simply-transitive G4 subgroup in all
cases. We have now exhausted the possible multiply-transitive groups.

The existence of a simply-transitive group G4 enables one to make the
solution of the field equations into a purely algebraic problem. To do so
one simply chooses a set of reciprocal group generators which form an
orthonormal or a complex null tetrad; the connection coefficients (§3.3)
or spin coefficients (§7.1) will be constants, and the curvature is easily
calculated (cp. §8.6, (8.52)–(8.54)), in terms of the structure constants of
the simply-transitive isometry group; such computations are given by e.g.
Sengier-Diels (1974b, 1974a) and Fee (1979).

The classification of groups G4 following Theorem 8.4 (§8.2) permits
the further simplification of aligning one of the tetrad vectors with the
distinguished vector of the class (AE , PC or LB), except in the trivial case
A = L = P = 0 when the space-time is flat. The resulting Ricci tensors
have been given in detail by Hiromoto and Ozsváth (1978). (Essentially
the same results can be achieved by taking the reciprocal group generators
so that CA

BC is in canonical form and algebraically determining the gAB.)
The space-times thus found tend to have a rather large number of

different invariant characterizations, and so may be recovered in various
ways. As a consequence of Theorem 8.5 all the space-times with a simply-
transitive G4 have a G3 transitive on hypersurfaces, and so, in principle,
recur in Chapters 13, 14 and 24.

Computation of the permissible homogeneous spaces for a given energy-
momentum tensor by the systematic treatment of the various possibilities
listed above is very laborious, and more elegant proofs are available in
some cases, see §§12.2 and 12.3.
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12.2 Homogeneous vacuum and null Einstein-Maxwell
space-times

Consider a homogeneous null electromagnetic field. Taking a complex null
tetrad such that Φ2 = 1, Φ0 = Φ1 = 0, (7.22)–(7.25) yield

κ = σ = ρ− 2ε = τ − 2β = 0 (12.10)

and (6.34) then shows that ρ = 0 (since ρ must be constant, being an
invariant). From the Goldberg–Sachs theorem, Ψ0 = Ψ1 = 0. Now (7.21p)
and (7.21q) give Ψ2 = 0, τ(τ +β−ᾱ) = 0, (7.21l ) gives α−β̄ = 0 and thus
τ = 0. This leads to plane waves (§24.5), since k must be proportional to
a covariantly constant vector.

The homogeneous vacuum spaces were given by Petrov (1962) (cp.
Hiromoto and Ozsváth (1978)). Non-flat homogeneous vacua with a
multiply-transitive group must be type D or N . Taking a geodesic shear-
free k, the Bianchi identities in the type D case give

κ = σ = λ = ν = ρ = µ = τ = π = 0, (12.11)

and (7.21q) then gives Ψ2 = 0. In the type N case, τ is an invariant, and
(7.21p) and (7.21q) yield τ = 0, again giving plane waves. Thus we have

Theorem 12.1 The plane waves

ds2 = 2dζdζ̄ − 2eεudu dv − 2du2[2aRe(ζ2e−2iγu) + b2ζζ̄] (12.12)

represent all homogeneous null Einstein–Maxwell fields (with LξFab = 0),
and all non-flat vacuum homogeneous solutions with a multiply-transitive
group.

In (12.12) a, b, γ are real constants, ε = 0 or 1, the Petrov type is N if
a �= 0 or O if a = 0, and the space-time is empty if b = 0. If a = 0 = ε
one can set b = 1, and if a �= 0 = ε one can set 2a = 1. The latter case,
with γ = 1, ζ = (x + iy)/

√
2, gives an interesting special solution

ds2 = dx2+dy2−2du dv−2[(x2−y2) cos(2u)−2xy sin(2u)]du2, (12.13)

the ‘anti-Mach’ metric of Ozsváth and Schücking (1962). It is geodesically
complete and without curvature singularities.

The metrics (12.12) admit null Maxwell fields with non-zero compo-
nents given by

√
κ0Fuζ = beif(u), where f(u) is an arbitrary function;

hence the Maxwell field may but need not share all the space-time’s sym-
metries (cp. §11.1) and in general is invariant only under the subgroup G5
of the group of motions which acts in surfaces u = const (for the special
cases (12.37) this was noted by Pasqua (1975)).
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The group G6 acting on (12.12) (see §24.5) may contain a simply-
transitive G4 and subgroups G3 of Bianchi types IV , VIh or VIIh acting
on hypersurfaces (see Siklos (1976a, 1981) and §13.3.2). The isometry
group structure of the vacuum metrics was studied by Klekowska and
Osinovski (1971). The vacuum solutions admit an H7 and the conformally
flat Einstein–Maxwell fields an H8.

By the methods described in §12.1, one can show that

Theorem 12.2 The only vacuum solution admitting a simply-transitive
G4 as its maximal group of motions is given by

k2ds2 = dx2+e−2xdy2+ex[cos
√

3x(dz2−dt2)−2 sin
√

3xdz dt], (12.14)

where k is an arbitrary constant (Petrov 1962).

The Killing vectors of (12.14) are

∂t, ∂z, ∂y, ∂x + y∂y + 1
2(
√

3t− z)∂z − 1
2(t +

√
3z)∂t, (12.15)

and the group obeys (8.17) with spacelike P . There are subgroups G3
of Bianchi types I and VIIh acting in timelike hypersurfaces. The solu-
tion (12.14) is Petrov type I , and the eigenvalues of the Riemann ten-
sor are the roots of λ3 = −k3. It is, after a complex coordinate trans-
formation, a special case of (13.51) with a1 = −1 and (a2, a3, a4) =
(−1, 12(1 + i

√
3), 12(1 + i

√
3)) (cp. Debever (1965)) and thus of a cylindri-

cally symmetric vacuum metric (Bonnor 1979a; see §22.2).

12.3 Homogeneous non-null electromagnetic fields

Theorem 12.3 The only Einstein–Maxwell field that is homogeneous
and has a homogeneous non-null Maxwell field is

ds2 = k2(dϑ2 + sin2 ϑ dϕ2 + dx2 − sinh2 xdt2). (12.16)

Proof: (Kramer 1978) From the Rainich conditions (5.21), and the invari-
ance of α, we can obtain

(mcma;c −mcma;c)ka = (mcma;c −mcma;c)la = 0,

(kcla;c − lcka;c)ma = 0,
(12.17)

by inserting (5.12) in (5.31). (Note that Φ1Φ1 must be a constant for
homogeneous fields.) Equations (12.17) show that there are two families
of orthogonal 2-surfaces, and the space-time is of the form (12.8), the
2-surfaces having equal and opposite curvatures.
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The group G6 admitted by (12.16) contains no simply-transitive G4,
in agreement with Ozsváth’s conclusion (1965a) that (12.12) includes
all electromagnetic solutions with simply-transitive G4 obeying Fab �= 0,
LξFab = 0, Λ = 0. The metric (12.16) does admit subgroups transitive
on S3, N3 and T3, and has therefore been rediscovered as a spherically-
symmetric and spatially-homogeneous solution (Lovelock 1967, Dolan
1968). It was first given by Levi-Civita (1917b), but is more usually asso-
ciated with the names of Bertotti (1959), who gave the more general case
with Λ �= 0, and Robinson (1959).

Some alternative forms of the line element are

ds2 =
k2

r2
(dr2 + r2[dϑ2 + sin2 ϑ dϕ2]− dτ2), (12.18)

ds2 = (1− λy2)dx2 + (1− λy2)−1dy2 + (1 + λz2)−1dz2

−(1 + λz2)dt2, (12.19)

where λk2 = 1. In the metric form (12.19) the electromagnetic field is

√
κ0F12 =

√
2λ sinβ,

√
κ0F43 =

√
2λ cosβ, β = const. (12.20)

The solution is conformally flat; it is the only conformally flat non-
null solution of the (sourcefree) Einstein–Maxwell equations (cp. The-
orem 37.18). By taking the more general form (12.8) with unequal
curvatures for the two 2-spaces one can obtain similar homogeneous
Einstein–Maxwell solutions with a cosmological constant, see, e.g.,
Bertotti (1959), Cahen and Defrise (1968) and §35.2.

McLenaghan and Tariq (1975) and Tupper (1976) presented a homo-
geneous metric obeying the Einstein–Maxwell equations whose non-null
Maxwell field does not share the space-time symmetry, showing that the
condition that the Maxwell field shares the space-time symmetry is es-
sential in Theorem 12.3 (cp. §11.1). It can be written as

ds2 = a2x−2(dx2 + dy2) +x2dϕ2− (dt− 2y dϕ)2, a = const. (12.21)

The parameter a just gives an overall constant scale: the case a2 = 2
had been given earlier by Tariq and Tupper (1975). This metric admits
a simply-transitive group G4 with Killing vectors ∂t, ∂ϕ, 2ϕ∂t + ∂y and
ξ ≡ x∂x + y∂y − ϕ∂ϕ; there is no hypersurface orthogonal Killing vector.
It is of Petrov type I and its Maxwell and Weyl tensors have no common
null eigendirection (non-aligned case); it is characterized by the existence
of a tetrad parallelly propagated along the two geodesic non-expanding
null congruences of the non-null Maxwell field. In (12.21), the Maxwell
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field, for which LξFab �= 0, is
√
κ0Ftx =

√
κ0Fxy/2y = cos(2 log x)/x,

√
κ0Fyϕ = − sin(2 log x).

(12.22)

12.4 Homogeneous perfect fluid solutions

Pure Λ-term solutions, which could be regarded as fluids with µ + p = 0,
are treated in the next section, so we assume here that µ + p �= 0. With
this restriction, the following result was proved by Ozsváth (1965c) and
Farnsworth and Kerr (1966), by the method outlined in §12.1. Their re-
sults are stated for dust, with a cosmological constant, but as all invariants
are constants, only κ0µ + Λ and κ0p− Λ are fixed and the solutions can
be reinterpreted as perfect fluid solutions with Λ = 0 (see §5.2) or with
some given relation p = p(µ) and a cosmological constant.

Theorem 12.4 The homogeneous perfect fluid solutions are (12.24) and
(12.26)–(12.33) below. The only such solution with a maximal G5 is the
Gödel solution (12.26).

The resulting list of solutions is as follows (note that a perfect fluid
solution cannot have a transitive maximal G6, see §11.2).

(i) The only fluid solution with a G7 is (12.9) with constant a. The field
equations give

κ0µ + Λ = −3(κ0p− Λ) = 3ε/a2. (12.23)

To satisfy the dominant energy condition (5.19) we require ε = 1
(Λ ≥ 0 implies µ + 3p ≥ 0 and Λ ≥ ε/a2 gives p ≥ 0). This is
Einstein’s static universe (Einstein 1917). Some alternative metric
forms are

ds2 =

(
1 +

r2

4a2

)−2
dxαdxα − dt2, r2 = xαx

α, (12.24a)

ds2 = a2[dχ2 + sin2 χ(dϑ2 + sin2 ϑ dϕ2)− dt2], (12.24b)

ds2 =
dr2

(1− r2/a2)
+ r2(dϑ2 + sin2 ϑ dϕ2)− dt2. (12.24c)

The G7 includes a simply-transitive G4, groups G4 and G3 transitive
on both S3 and T3, and a G6 on S3 with generators

ξα =

(
1− r2

4a2

)
∂α +

1
2a2

xα(xβ∂β), ηα = εαβγxβ∂γ , (12.25a)
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in the coordinates of (12.24a) and

[η±α,η
±
β] = ∓ 2

K
εαβγη

±γ , η
±
α ≡ ξα ±

1
K
ηα, (12.25b)

as the non-vanishing commutators. The G6 is SO(4) ∼= SO(3) ×
SO(3), arising from the embedding of the S3 in R4 (see §8.5). The
seventh Killing vector is ∂t. The fluid velocity is covariantly constant.

(ii) The solutions with a G5 arise as special cases of those with a tran-
sitive G4. In fact there is only one such solution, the Gödel (1949)
solution

ds2 = a2[dx2 + dy2 + 1
2e2xdz2 − (dt + exdz)2]. (12.26)

This solution has κ0µ + Λ = κ0p − Λ = 1/2a2. Admitting an
Abelian G3 on T3, it can be interpreted as a stationary cylindrically-
symmetric solution (see Chapter 22). There are also groups of
Bianchi type III on both S3 and T3, and type V III on T3.

(iii) Solutions whose G4 has AE = 0 (see §8.2). These all obey (8.18) and
so are of case (i). If L is null we get only the Einstein static and
Gödel solutions.

If L is timelike, one obtains the Farnsworth–Kerr class I solution

ds2 = a2
[
(1− k)(ω1)2 + (1 + k)(ω2)2

+ 2(ω3)2 − (dt +
√

1− 2k2ω3)2
]
, (12.27)

where the ωA are those for type IX in Table 8.2 and 2|k| < 1.
This is a rotating solution, extensively discussed by Ozsváth and
Schücking (1969). k = 0 in (12.27) gives the Einstein static solution.
(12.27) admits a G3 of Bianchi type IX on S3.

If L is spacelike, there are two metrics, Farnsworth–Kerr classes II
and III , given by

ds2 = a2
[
(1− k)(ω1)2 + (1 + k)(ω2)2

+ (du +
√

1− 2k2ω3)2 − 2(ω3)2
]
, (12.28)

ds2 = a2[(1− s)(ω1)2 + (1 + s)(ω2)2 + du2 − 2(ω3)2], (12.29)

with the ωA of Bianchi type VIII (Table 8.2); a, k and s are con-
stants obeying 1 < 4k2 ≤ 2 and |s| < 1. In (12.29), κ0p − Λ =
κ0µ + Λ = 1/2a2 and in (12.27) and (12.28) κ0(µ + p) = 2(4k2 − 1)
(κ0p − Λ) = |4k2 − 1|/4a2(1 − k2). The metrics (12.28) and
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(12.29) were investigated in detail by Ozsváth (1970); see also
Rosquist (1980). They both admit groups G3 of Bianchi type VIII
on T3 and type III on S3. The limit |k| = 1/

√
2 of (12.28) is included

in (12.29), while the limit |k| = 1/2 is a pure radiation solution of
Petrov type I with a Λ-term. (12.29) contains the Gödel solution
(12.26) as the special case s = 0.

(iv) Solutions whose G4 has AE �= 0. Following Ozsváth (1965b) we use
a parameter s2, 12 ≤ s2 ≤ 2. If β2 ≡ 1 + 2s2(1− s2)(3− s2), then we
have

β2 > 0 : ds2 = a2[4(AeAzdt + BeBzdx)2/b2 + (eFzdy)2 + dz2

− (eAzdt + eBzdx)2], (12.30)

β2 = 0 : ds2 = a2[ezdx2 + e2Fzdy2 + dz2

− 1
4(b− 1/b)2ez(dt + z dx)2], (12.31)

β2 = −4k2 < 0 : ds2 = a2[(eFzdy)2 + dz2

+ ez((cos kz − 2k sin kz)dt + (2k cos kz + sin kz)dx)2/b2

− ez(cos kz dt + sin kz dx)2], (12.32)

where A = 1
2(1−β), B = 1

2(1+β), F = 1−s2, b =
√

2s(3−s2), and a
is constant (a correction found by Koutras (private communication)
has been incorporated in (12.31)). These metrics all have

κ0p−Λ = (2− s2)/2a2; κ0(µ+ p) = (2s2− 1)(2− s2)/a2. (12.33)

The special cases s2 = 2, s2 = 1, s2 = 1
2 give, respectively, the

Petrov vacuum solution (12.14), the Gödel solution (12.26), and the
homogeneous Petrov type N Einstein space (12.34). All these metrics
have an Abelian G3 on T3 and (12.30), (12.31), have G3 of Bianchi
type VIh on S3; (12.32) has a G3 of type VIIh on T3, (12.31) has a
group G3 of type IV on T3 and (12.30) a group of type VI on T3.

Gödel’s solution and (12.29) are of Petrov type D , but the other metrics
above are in general of Petrov type I . In Gödel’s solution the four-velocity
of the fluid is a Killing vector but not hypersurface-orthogonal; the vortic-
ity ω = ∂y is covariantly constant. Gödel’s solution has interesting global
properties and has been widely used to illustrate possible cosmological
effects of rotation (Hawking and Ellis 1973, Ryan and Shepley 1975).
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12.5 Other homogeneous solutions

All homogeneous solutions with a (non-zero) Λ-term have been found.
Plane waves cannot have a Λ-term, so the type N solutions have a maxi-
mal G5. The type D solutions are either of the form (12.8), in which case
they must be composed of two 2-spaces of equal curvature, or have at most
a G5. By the usual arguments, all these spaces have simply-transitive G4,
and G3 transitive on hypersurfaces. They were given by Kaigorodov (1962)
and have been investigated and rediscovered by several other authors (e.g.
Cahen (1964), Siklos (1981), Ozsváth (1987)).

Theorem 12.5 The homogeneous Einstein spaces with Λ �= 0 are: (8.33)
with K �= 0; (12.8) with 3Ψ2 = −Λ = k/A2 = k′/B2 �= 0 (Nariai 1950);

ds2 = 3dz2/|Λ|+ εezdx2 + e−2z(dy2 + 2du dx) (12.34)

where ε = ±1 and Λ < 0; and

ds2 = 3dz2/|Λ|+ e4zdx2 + 4ezdxdy + 2e−2z(dy2 + du dx) (12.35)

with Λ < 0.

Solutions (8.33) are conformally flat and admit a G10; (12.8) is of Petrov
type D and admits a G6 and its Einstein space specialization admits
groups G3III acting on T3 and, if Λ < 0, on S3; (12.34) is of Petrov type
N with a maximal G5 and groups G3I, II and V Ih, h = −4/9, − 49/9
and −16, on T3 and G3V I−1/9 on S3; and (12.35) is of Petrov type III
with a maximal G4 and G3I and G3V Ih, h = −1/9 or −49/9, acting on
T3 (for the groups, see MacCallum and Siklos (1992)). Thus there are no
homogeneous Einstein spaces with Λ �= 0 of Petrov types I or II .

Theorem 12.6 The only homogeneous pure radiation solutions are of
Petrov type N and are given by (12.12) with b �= 0, and

ds2 = dx2 + dy2 + 2du dv − 2e2ρxdu2, (12.36)

where ρ is a constant (Wils 1989a, Steele 1990).

The plane waves (12.12) have a G6 or G7; the cases with a G7 have
A(u) = 0, B(u) = b/u2 or B = b, where b is a constant, and can be
transformed to the form (Petrov 1966)

ds2 = C2(u)(dx2 + dy2)− 2 du dv, C̈ + 2BC = 0, (12.37)

cp. §24.5 and the metrics (15.18), (24.51). The metric (12.36) was given
by Sippel and Goenner (1986), has a maximal G5, and does not admit
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Table 12.1. Homogeneous solutions

Source Maximal group
G4 G5 G6 G7

Vacuum A Petrov (12.14) � A Plane waves �

(12.12), b = 0
E-M � � A Bertotti– �

non-null Robinson
(12.16)

E-M null � � A Plane waves �

(12.12), b �= 0
Perfect A Ozsváth A Gödel � A Einstein
fluid (12.27)–(12.32) (12.26) (12.24)

Λ-term A (12.35) A (12.34) A (12.8), �

special case
Pure � A (12.36) A Plane waves A Plane waves
radiation (12.12), b �= 0 (12.37)

a Maxwell field. Thus (12.12) are the only homogeneous geometries with
non-inheriting null Maxwell fields; in general they also have inheriting
null Maxwell fields, but (12.37) does not.

Other energy-momentum tensors have been considered. For example,
Ozsváth (1965a) found a non-null Maxwell field with Λ �= 0 and the
unique null Maxwell field with Λ �= 0. The latter can also be considered
as the member k = 2 of the family (Siklos 1985)

ds2 =
3

|Λ|y2
(
dy2 + dz2 − du dv − εy2kdv2

)
(12.38)

of pure radiation solutions of Petrov type N with Λ < 0, where ε = ±1
(and k(2k − 3)ε > 0 for positive energy) admitting a G5 and containing
(12.6) and (12.34) as the special cases k = −1 and k = 3/2; the family
(12.38) are conformal to (non-flat) pp-waves (§24.5). Homogeneous pure
radiation solutions with Λ �= 0 and a maximal Gr, r ≤ 5, and homo-
geneous solutions with non-inheriting non-null Maxwell fields, have not
been exhaustively treated.

12.6 Summary

The results in this chapter are summarized in Table 12.1. There it is as-
sumed that LξFab = 0 for electromagnetic solutions (the known solutions
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given above which do not satisfy this condition, other than the reinter-
pretation of (12.12), are the metrics (12.21) with Maxwell field (12.22),
and (12.37)). The spaces of constant curvature, with a G10, are omitted
from the table. The solutions with a maximal G7 shown are the only pos-
sible ones. The symbol A means that all solutions are known; � indicates
non-existence.



13
Hypersurface-homogeneous space-times

13.1 The possible metrics

This chapter is concerned with metrics admitting a group of mo-
tionstransitive on S3 or T3. Some solutions, such as the well-known Taub–
NUT (Newman, Unti, Tamburino) metrics (13.49), cover regions of both
types, joined across a null hypersurface which is a special group orbit
(metrics admitting a Gr whose general orbits are N3 are considered in
Chapter 24). As in the case of the homogeneous space-times (Chapter 12)
we first consider the cases with multiply-transitive groups. From Theo-
rems 8.10 and 8.17 we see that only G6 and G4 are possible.

13.1.1 Metrics with a G6 on V3

From §12.1, the space-times with a G6 on S3 have the metric (12.9); this
always admits G3 transitive on hypersurfaces t = const and the various
cases are thus included in (13.1)–(13.3) and (13.20) below. The relevant
G3 types are V and V IIh if k = −1, I and V II0 if k = 0, and IX if k = 1.

Of the energy-momentum tensors considered in this book, the space-
times with a G6 on T3 permit only vacuum and Λ-term Ricci tensors (see
Chapter 5). Thus they will give only the spaces of constant curvature,
with a complete G10, which also arise with G6 on S3 and those energy-
momentum types. Metrics with maximal G6 on S3 are non-empty and
have an energy-momentum of perfect fluid type: see §14.2.

13.1.2 Metrics with a G4 on V3

The metric forms with a G4 on S3 or T3 are easily determined by us-
ing Schmidt’s method (§8.6) to find the possible G4, followed by use of
Theorems 8.16 and 8.19 to determine the complete metric (MacCallum

183
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1980). The (one-dimensional) isotropy subgroup of the G4 may consist of
spatial rotations, boosts or null rotations, and we refer to these cases as
spatial rotation isotropy, also known as local rotational symmetry (LRS),
boost isotropy and null rotation isotropy respectively: the isotropy has
the same nature everywhere in an orbit and thus throughout a neigh-
bourhood. From §4.2 the metrics are of Petrov type D (or conformally
flat) for the LRS and boost isotropic cases, and type N or conformally
flat for null rotation isotropy, and they are all among the metrics found by
Cahen and Defrise (1968) and Defrise (1969) except for the most general
form of one of the Petrov type N metrics. We list them below: an almost
complete list was given by Petrov (1966).

Spatial rotation isotropy

We give first the LRS metrics with a G4 (Ellis 1967, Stewart and Ellis
1968). The possible cases are, with ε = ±1, k = ±1 or 0 and the Σ of
(8.37),

ds2 = ε[−dt2 + A2(t)dx2] + B2(t)[dy2 + Σ2(y, k)dz2], (13.1)

ds2 = ε[−dt2 + A2(t)(σ1)2] + B2(t)[dy2 + Σ2(y, k)dz2], (13.2)

ds2 = ε[−dt2 + A2(t)dx2] + B2(t)e2x(dy2 + dz2), (13.3)

where in (13.2) we have

σ1 = dx + cos y dz if k = 1, (13.4)

σ1 = dx + 1
2y
2dz if k = 0, (13.5)

σ1 = dx + cosh y dz if k = −1. (13.6)

The metric (13.2) with ε = −1 is in Ellis class I (as defined in §11.2);
(13.1) and (13.3) are in class II ; and (13.2) with ε = 1 is in class III.

Except for (13.1) with k = 1, these metrics can all be written as

ds2 = ε[−dt2 + A2(t)(ω1)2] + B2(t)[(ω2)2 + (ω3)2], (13.7)

where the ωα are dual to a basis of reciprocal group generators of a G3.
The possible G3 types are: for (13.1), I or V II0 if k = 0, and III if
k = −1; for (13.2), IX if k = 1, II if k = 0, and V III or III if k = −1;
and for (13.3), V or V IIh. If the ωα of Table 8.2 are substituted in
(13.7), the results in general differ from (13.1)–(13.6) only by coordinate
transformations; however, for the G3III one must, before making the
substitution, transform to a new basis ω′α, e.g. for (13.1), k = −1, one
requires

ω′2 = ω1, ω′3 = ω2 − ω3, ω′1 = ω2 + ω3. (13.8)
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The exceptional case, (13.1) with k = 1, admits no simply-transitive G3,
and, with ε = 1, gives the only spatially-homogeneous solutions with this
property (Kantowski and Sachs 1966, Kantowski 1966; cp. Collins 1977a);
with ε = −1 it gives the spherically-symmetric static metrics (for which
see Chapters 15 and 16). The metrics (13.1)–(13.3) can also be derived
by considering the extensions of Lie algebras of groups G3 on S2 or S3,
see Kantowski (1966), Shikin (1972).

The metrics (13.1) and (13.2) can jointly be written as

ds2 = Y 2(w)
2dζdζ̄

[1 + 1
2kζζ̄ ]2

+
dw2

f(w)
− f(w)

[
dt + il

ζdζ̄ − ζ̄dζ
1 + 1

2kζζ̄

]2
, (13.9)

where l �= 0 corresponds to (13.2), and f(w) may have either sign, ε ≡
−f(w)/|f(w)|. The Killing vectors of (13.9) are

ξ1 = i[1− 1
2kζ

2]∂ζ − i[1− 1
2kζ̄

2]∂ζ̄ + l(ζ + ζ̄)∂t, ξ3 = i(ζ∂ζ − ζ̄∂ζ̄),
(13.10)

ξ2 = [1 + 1
2kζ

2]∂ζ + [1 + 1
2kζ̄

2]∂ζ̄ + il(ζ − ζ̄)∂t, ξ4 = ∂t.

A fifth Killing vector, making the space-time homogeneous, cannot oc-
cur for the energy-momentum tensors we consider; for such metrics see
Ozsváth (1966). In the basis

ω1 = Y
dζ

[1 + 1
2kζζ̄ ]

, ω4 = X

[
dt + il

ζdζ̄ − ζ̄dζ
1 + 1

2kζζ̄

]
,

ω2 = ω̄1, ω3 = dw/X, f = −εX2, ε = ±1,

(13.11)

the Ricci tensor of (13.9) has, as its only non-zero tetrad components,

R12 =
k

Y 2
+

2l2f
Y 4

− f ′Y ′

Y
− fY ′2

Y 2
− fY ′′

Y
,

(13.12)

R33 = ε

(
f ′Y ′

Y
+

2fY ′′

Y
+

f ′′

2

)
, R14 = −ε

(
f ′Y ′

Y
+

2l2f
Y 4

+
f ′′

2

)
,

and is of type [(11)1, 1] or its specializations. The Ricci tensor for (13.3),
in the basis (Aω1, Bω2, Bω3, dt), has non-zero tetrad components,

R44 = −Ä

A
− 2B̈

B
, R14 =

2
A

(
Ȧ

A
− Ḃ

B

)
, R11 =

Ä

A
+

2ȦḂ

AB
− 2

A2
,

(13.13)
R22 = R33 = ε

(
B̈

B
+

Ḃ2

B2
+

ȦḂ

AB
− 2

A2

)
,
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whose Segre type is [(11)1,1] or [(11), 2], or their specializations. No G5
on V4 is possible in (13.3), but G6 on V3 occurs if R14 = 0, so for ε = 1
we then recover (12.9).

Boost isotropy

The metrics with a G4 on T3 and boost isotropy are

ds2 = dw2 + A2(w)dx2 + B2(w)[dy2 − Σ2(y, k)dt2], (13.14)

ds2 = dw2 + A2(w)(ω1)2 − 2B2(w)ω2ω3, (13.15)

where (13.15) covers four cases given by taking the ωα of Table 8.2 for
G3V or G3II, or ω′α related to those given for G3V III by

ω′1 = ω1, ω′2 = ω2 + ω3, ω′3 = ±(ω2 − ω3). (13.16)

The possible simply-transitive G3 are then: for (13.14), G3III if |k| = 1
and G3I or G3V I0 if k = 0; for (13.15) with (13.16), G3V III and
G3III; (13.15) with ωα of G3II, G3II; and (13.15) with ωα of G3V ,
G3V or G3V Ih or G3III. With the exception of the last case (which ad-
mits a normal null Killing vector, see §24.4), these metrics can be com-
bined as

ds2 = Y 2(w)
2 du dv

[1 + 1
2kuv]2

+
dw2

f(w)
+ f(w)

(
dx + l

u dv − v du
1 + 1

2kuv

)2
(13.17)

with f(w) > 0. Equation (13.17) can be derived from (13.9) with f(w) > 0
by the complex substitution

ζ → u, ζ̄ → v, t→ ix, (13.18)

which, when applied to (13.10) and (13.12), also yields the Killing vectors
and Ricci tensor; the latter must be of type [1 1(1, 1)] or its specializations.

Null rotation isotropy

The (Petrov type N ) metrics with a G4 on T3 and a null rotation
isotropy are either special cases of the metrics with a G3 on N2 including
a null Killing vector (for which see Petrov (1966), Defrise (1969), Barnes
(1979) and §24.4) or

ds2 = dw2 + A2(w)[dy2 − 2eydv(du + B(w)eydv)], (13.19)

which also has a null Killing vector, ∂u. They all have a Ricci ten-
sor of type [1 (1,2)] or a specialization thereof, so only vacuum, null
Einstein–Maxwell and pure radiation energy-momentum tensors are
possible.
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Summarizing the results on the multiply-transitive groups G4 we have:

Theorem 13.1 Apart from the cases with null (sub)orbits, all metrics
with a G4 on V3 are covered by the metrics (13.3), (13.9) and (13.17).

The metrics with null (sub)orbits are discussed in Chapter 24.

13.1.3 Metrics with a G3 on V3

Finally, there are the space-times with a maximal G3 on S3 or T3, with
metrics given by the ωα of Table 8.2 and

ds2 = −dt2 + gαβ(t)ωαωβ , det(gαβ) > 0, (13.20)

ds2 = dt2 + gαβ(t)ωαωβ, det(gαβ) < 0. (13.21)

From the detailed results above we have:

Theorem 13.2 All metrics admitting a Gr, r ≥ 3, acting on S3 or T3,
are included in (13.20), (13.21), and (13.1) with k = 1.

The spatially-homogeneous cosmologies, i.e. solutions with a perfect
fluid matter content and a group transitive on S3, are discussed in Chap-
ter 14. A number of the other metric forms just given recur elsewhere in
the book, and the solutions of their field equations are accordingly also
not discussed in full here. The metrics concerned are as follows. Metrics
(13.1) and (13.3) admit a G3 on S2, while their counterparts contained in
(13.14) and (13.15) admit G3 on T2; these metrics are therefore treated in
Chapter 15. In particular, metrics (13.1) with k = 1 or 0 and ε = −1 are
spherically and plane symmetric static metrics, and are treated in both
Chapters 15 and 16. All solutions with a group of motions transitive on
T3 are stationary or static. Metrics of the form

ds2 = dw2 + A2(w)dx2 + B2(w)dy2 − C2(w)dt2 (13.22)

with a G3I on T3 are often interpreted as cylindrically-symmetric static or
stationary metrics (assuming a combination of x and y to be an angular
coordinate) and these are treated in Chapter 22; this includes some met-
rics with plane symmetry. Metrics (13.14) with k = 0 and (13.15) with
the ωα of G3II and G3V admit groups on null orbits and are covered in
Chapter 24, as are all the metrics with a null rotation isotropy. Some of
the cases of (13.21) also admit groups on null orbits; for example, nearly
all Kellner’s metrics with a G3I on T3 contain a normal null Killing vec-
tor (Kellner 1975), see e.g. (20.32), the BIII metric of Table 18.2, and
(33.30). The tables at the end of this chapter summarize the solutions
given in this and the next chapter, and give references to occurrences of
solutions with G3 on V3 elsewhere in this book.
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It should be noted that hypersurface-homogeneous perfect fluids are
always locally barotropic, provided µ(x) and p(x) have non-zero x deriva-
tives, where x labels the homogeneous hypersurfaces.

13.2 Formulations of the field equations

The Einstein equations for hypersurface-homogeneous space-times re-
duce to a system of ordinary differential equations. At least for the
spatially-homogeneous case, they form a well-posed Cauchy problem
(Taub 1951) and, although they have not been completely integrated,
their qualitative properties have been discussed in many papers: see Wain-
wright and Ellis (1997) for an extensive survey of the results, and e.g. Ryan
and Shepley (1975), MacCallum (1973, 1979a), Bogoyavlenskii (1980),
and Rosquist and Jantzen (1988) for useful earlier reviews. Methods from
dynamical systems theory which proved fruitful in elucidating these prop-
erties have also led to ways of restricting the general case to more read-
ily solvable subcases and thence to new exact solutions (see e.g. Uggla
et al. (1995b) for a summary). Nearly all of these methods were devel-
oped initially for use in the spatially-homogeneous case (‘cosmologies’,
for brevity), and we shall therefore describe the methods in this context
although they can be adapted to the G3 on T3 and H3 on V3 cases also
(e.g. for an orthonormal tetrad method for G3 on T3 see Harness (1982)).

The number of degrees of freedom, i.e. the number of essential arbitrary
constants required in a general cosmology for each Bianchi type, has been
studied by Siklos (1976a) (cp. MacCallum (1979b), Wainwright and Ellis
(1997)). Table 13.1 summarizes the results for vacua and perfect fluids.
The fluid here may be ‘tilted’, i.e. the velocity u need not coincide with
the normal n to the hypersurfaces of homogeneity. In general such fluid
cosmologies can have four more parameters than the corresponding vacua
but Bianchi types I , where u = n, II and VI−1/9 are special cases in
which the constraints on the Cauchy problem arising from the G4α field
equations are not linearly independent. In the last case, type VI−1/9, the
effect is an extra degree of freedom in the vacuum solutions, and solutions
where this is activated are denoted type VI ∗−1/9.

The residual set of ordinary differential equations to be solved can be
formulated in various ways (see e.g. MacCallum (1973), Wainwright and
Ellis (1997)). One can use a time-independent basis as in (13.20) and
parametrize the components gαβ in some suitable way. This is called the
metric approach. One may then choose spatial coordinates and a new
time coordinate τ so that the dt of (13.20) is replaced by σ = N(τ)dτ +
Nα(τ)ωα, N being the lapse and Nα the shift. Such a change of basis
could be interpreted as introducing rotation, if σ ∧ dσ �= 0, but this
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Table 13.1. The number of essential parameters, by Bianchi type, in general
solutions for vacuum and for perfect fluids with given equation of state
The number for a non-tilted fluid, including Λ-term, is one more than for vacuum.
Type III is included in V Ih. h itself is regarded as fixed in a solution, i.e. is not
counted as a parameter. The number is reduced if there is extra symmetry or a
condition such as (13.25) is imposed.

Energy- Bianchi type
momentum I II V I0 V III V IV , V IIh V I−1/9

& V II0 & IX & V Ih=−1/9
Vacuum 1 2 3 4 1 3 4
Perfect fluid 2 5 7 8 5 7 7

has no physical meaning unless the direction σ is invariantly defined in
some way (see Jantzen (1986), who notes that one may also meaningfully
speak of rotation when eigenvectors of the shear of dt rotate relative to a
Fermi–Walker propagated frame).

In the metric approach, a first step in simplifying the equations is to
factorize gαβ as Aγ

α(t)Aφ
β(t)ĝγφ(t), where the linear transformation ω̃γ =

Aγ
αω

α is an automorphism of the Lie algebra, i.e. preserves the forms of
the commutators given in §8.2. This idea was introduced by Collins and
Hawking (1973) and developed by several authors (see e.g. Siklos (1980),
Jantzen (1984), Rosquist and Jantzen (1988)). It clarifies what the true
degrees of freedom are, and reduces the system of equations. In general the
Aγ

α are chosen to make ĝγφ(t) diagonal, where possible, and in some cases
they can be used to reduce its independent components even further. The
time-dependent variables are then the remaining diagonal components
of ĝγφ(t) and a suitable parametrization of the possible matrices Aγ

α

for the particular Bianchi type (e.g. as in Harvey (1979) or Roque and
Ellis (1985)).

To parametrize the remaining metric components this approach can be
coupled with a special case of Misner’s (1968) parametrization, which we
write in the form

S6 ≡ e6λ ≡ det(gαβ), gαγ = S2(exp 2β)αγ , (13.23)

where β is a symmetric tracefree matrix function of t. If gαβ is diagonal,
one may write

βαγ = diag
(
β1,−1

2(β1 −
√

3β2),−1
2(β1 +

√
3β2)
)
. (13.24)

One may now take λ or S to be a new time variable.
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The metric formalism is simplified if the automorphism variables can
be taken to be constants, i.e. the gαβ in (13.20) can be taken to be a
diagonal matrix. MacCallum et al. (1970) showed that if t = ∂t is a Ricci
eigenvector, then in Class G3A, except for types G3I and G3II, gαβ can
be taken to be diagonal, and in Class G3B, except for type VI ∗−1/9, the
vector aα in (8.50) is an eigenvector of tα;β and of the Ricci tensor. The
excluded cases require additional assumptions to reach these conclusions,
because of the linear dependence of the G4α mentioned above. For realistic
matter content, the G3B metrics can only be diagonal if either they are
LRS, or the nαβ of (8.50) obey

nαα = 0 (13.25)

(MacCallum 1972). The restriction imposed by (13.25) can apply only in
Bianchi types I , III , V , VI , and VIII , and it turns out to give useful
new restrictions only in types III and VI (Ellis and MacCallum 1969).
With (13.25), it can be convenient to alter the canonical form of the group
generators to read

[ξ2, ξ3] = 0, [ξ3, ξ1] = (1−A)ξ3, [ξ1, ξ2] = (1 + A)ξ2, (13.26)

where h = −A2. The ωα analogous to those of Table 8.2 are

ω1 = dx, ω2 = e(A+1)xdy, ω3 = e(A−1)xdz. (13.27)

The main alternative to the metric approach is the orthonormal tetrad
approach using a tetrad basis (3.7) chosen as in (8.49). The two are closely
related when variables are chosen as just described above (see Jantzen and
Uggla (1998)), and in both approaches a suitable choice of lapse (or, to
include the G3 on T3 case, ‘slicing gauge’), or directly of independent
variable, may decouple and simplify the equations; for details see e.g.
Jantzen (1988), Uggla et al. (1995b). A power-law lapse, i.e. a product of
powers of the dependent variables, an idea introduced in Bonanos (1971),
may be useful, as may an ‘intrinsic slicing’ (e.g. making a product of
invariantly-defined metric components the independent variable).

A Lagrangian or Hamiltonian formulation (using only functions of t)
proved to be possible only for Class G3A in general (MacCallum and Taub
1972, Sneddon 1976); it can also be achieved for the metrics with nαα =
0. Distinct physical problems can give rise to equivalent Hamiltonians
(Uggla et al. 1995a). To understand the dynamics it may be useful to
work with the Jacobi form in which the kinetic part contains all the
dependence on variables (Uggla et al. 1990). The form of the Hamiltonian
for the remaining time-dependent variables in a metric approach may
enable one to determine a good choice of lapse. This happens in particular
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when the potential space described by the Hamiltonian admits a Killing
tensor (see §35.3) or Killing vectors (see Rosquist and Uggla (1991), Uggla
et al. (1995b) and §10.8). Indeed Uggla et al. (1995b) say ‘We are not
aware of any solvable case in the literature on hypersurface-homogeneous
models which cannot be explained by the existence of rank two Killing
tensor and Killing vector symmetries’.

‘Regularizing’ the equations, which further reduces, and usually com-
pactifies, the phase space of the system and assists in understanding
the trajectories within that space, can be done in both the metric
and orthonormal tetrad formalisms by introducing normalized variables,
in which an overall time-dependent scaling factor is removed (see
e.g. Bogoyavlenskii (1980), Rosquist and Uggla (1991), Wainwright and
Ellis (1997)). The variational formalism led naturally to choices which
were bounded and compactified the phase space using a single coordinate
patch (see e.g. Rosquist and Jantzen (1988) and references therein). Then
applying methods from dynamical systems, in the simplest cases the phase
plane methods first used by Shikin (1967) and Collins (1971), provided an
approach leading to a number of new solutions. Within a phase plane,
when the equations can be written, using an overdot to denote a time
derivative, in the form

ẋ = P (x, y), ẏ = Q(x, y), (13.28)

with polynomial right-hand sides P and Q, one may seek ‘Darboux poly-
nomials’ f(x, y) obeying Df = gf , where D = P∂x + Q∂y and g(x, y)
is a polynomial (for the literature on this general method see Man and
MacCallum (1997)): f = 0 then gives a solution (Hewitt 1991a).

These methods have mainly been applied to the spatially-homogeneous
case and to perfect fluids with the γ-law equation of state, p = (γ − 1)µ,
including vacuum and Λ-term solutions as special cases, and many of the
new solutions of the last two decades have been discovered using them.
The results show that the known exact solutions of this type arise either
as fixed points in the reduced phase space or as orbits joining such points.
The former type have homothety groups Hr, r ≥ 4 and components gαβ
which are powers of t, and are listed in Wainwright and Ellis (1997). The
metrics can be expressed relative to orbits of those H3 other than the
G3 which are present (Jantzen and Rosquist 1986). The methods could
be and to some extent have been applied to solutions with G3 on T3 and
to other energy-momentum contents but most known solutions with a
Maxwell field have been obtained by other means.

An especially simple situation arises in Bianchi type I metrics, and in
those G3V metrics where ∂t is a Ricci eigenvector, if the Ricci tensor is
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of the perfect fluid type [(111), 1], because the field equations then yield

3Ṡ2 = Σ2S−4 + κ0µS
2 + ΛS2 − 3k, (13.29a)

Sµ̇ + 3Ṡ(µ + p) = 0, S3β̇αγ ≡ Σαγ , Σ̇αγ = 0, (13.29b)

using (13.23), where 2Σ2 ≡ ΣαβΣαβ and k = 0 for G3I, k = −1 for G3V .
One may now take

βαγ =
(∫ 2Σdt√

3S3

)
diag
(
cosψ, cos(ψ + 2

3π), cos(ψ + 4
3π)
)
. (13.30)

In G3V the remaining field equation implies ψ = π/2. The metrics can
then be written (cp. Heckmann and Schücking (1958)) as

ds2 = −dt2 + S(t)2
(
F 2 cosψdx2 + F 2 cos(ψ+2π/3)dy2

+F 2 cos(ψ−2π/3)dz2
)
, (13.31)

ds2 = −dt2 + S(t)2
(
dx2 + e2xdy2/F

√
3 + F

√
3e2xdz2

)
, (13.32)

for Bianchi types I and V respectively, where

F = exp
(

2Σ
∫

dt/
√

3S3
)
. (13.33)

In G3I we may take Σ =
√

3. If we can solve the first of (13.29b) for µ(S),
then, by taking S as the time variable and replacing dt2 in the metric by
dS2/Ṡ2 with Ṡ2 taken from (13.29a), we have found an exact solution up
to the quadrature (13.33). Similarly, Fiser et al. (1992) used an ‘intrinsic
time’ variable Sδ but in the general case took δ = 1. However, for physical
applications it may be important to know S as a function of t.

Another case of this type arises in the metric (13.1), ε = 1, where, for
a Ricci tensor of type [(111), 1], the field equations are

2B̈
B

+
Ḃ2

B2
+

k

B2
=

B̈

B
+

Ä

A
+

Ȧ

A

Ḃ

B
= Λ− κ0p, (13.34a)

2ȦḂ

AB
+

Ḃ2

B2
+

k

B2
= Λ + κ0µ. (13.34b)

These equations reduce to a series of quadratures if one starts with a
choice of an arbitrary function A(t) and finds successively B(t), p(t) and
µ(t); there are special cases of embedding class one which are included in
(37.50) and (34.59). The equations also give a series of quadratures if one
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imposes the γ-law equation of state (with constant γ); for k = 0, γ �= 2,
one obtains (Stewart and Ellis 1968)

t =
∫

(B3(2−γ)/2 + c)(γ−1)/(2−γ)B1/2dB,
(13.35)

A = (B3(2−γ)/2 + c)1/(2−γ)B−1/2, κ0µ = κ0p/(γ − 1) = 3/(AB2)γ ,

where c is a constant; c = 0 is the conformally flat Robertson–Walker
subcase. For cases where the integration can be done explicitly see §14.3.

A quite different approach leading to solutions of the Einstein–Maxwell
equations that are homogeneous on S3 or T3 arises from an ansatz intro-
duced by Tariq and Tupper (1975) and generalized by Barnes (1978).
The latter ansatz is that the principal null tetrad of the Maxwell bivec-
tor, (m,m, l,k), is weakly parallelly-propagated along k and l, i.e. obeys
a series of equations such as ka;bl

b = Bka, or equivalently that there is a
non-null Maxwell field obeying

F ∗
ab;cl

c = fF ∗
ab, F ∗

ab;ck
c = gF ∗

ab, (13.36)

where f and g are not both zero. Equations (13.36) imply that

κ = ν = π = τ = 0. (13.37a)

The original ansatz was that the tetrad itself was parallelly propagated
along k and l, so one would also have

ε = γ = 0. (13.37b)

This parallelly-propagated case differs from assuming f = g = 0 in (13.36):
that would lead instead to ρ = µ = 0 and thence only to the Bertotti–
Robinson solution (12.16) (Tupper, private communication).

There are dual ansätze for propagation alongm andm which give rise,
correspondingly, to the conditions

σ = λ = ρ = µ = 0, (13.38a)

α = β = 0. (13.38b)

By studying the consistency of the remaining Einstein–Maxwell equations,
it can be shown that (13.37a) implies, assuming ρ2 �= ρ̄2, µ2 �= µ̄2 and
λ �= 0, that it is possible to choose a tetrad such that

ρ = eµ, σ = eλ, ε = eγ, α = β = 0,
Ψ0 = Ψ4, Ψ1 = Ψ3 = 0,

(13.39)
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and such that, for any Newman-Penrose quantity x,

δx = δ̄x = (D + e∆)x = 0, (13.40)

where e = ±1. The excluded cases lead to doubly-aligned Petrov D so-
lutions or to metrics in Kundt’s class (see §30.6 and Chapter 31). The
similar conditions arising from (13.38a) are

τ = π, α = β, κ = eν, Ψ0 = eΨ4, ε = γ = Ψ1 = Ψ3 = 0, (13.41)

Dx = ∆x = (δ + δ̄)x = 0. (13.42)

Equations (13.40) and (13.42) show that an isometry group acts in the
hypersurfaces spanned by (m,m, l+ ek) and (k, l,m+m) respectively.
The solutions all admit a G3 on S3 or T3. In the further integration by
Barnes (1978), who gives an extensive list of solutions, it is assumed that
in the spacelike case, (13.38), the matrices A and B arising in

δ

(
k
l

)
= (A+ iB)

(
k
l

)
(13.43)

commute, and a similar assumption is made in the timelike case (13.37).
All known solutions in the class obey this extra restriction.

Equations analogous to (13.40) and (13.42) arise in the treatment
(Siklos 1981, MacCallum and Siklos 1992) of algebraically special hyper-
surface-homogeneous Einstein spaces. If the normal n to the homogeneous
hypersurfaces can be written as

√
2n = e−ηk + eηl, the homogeneity im-

plies (Siklos 1981) that

δx = δ̄x = (e−2ηD −∆)x = 0. (13.44)

Applying the commutators (7.6a)–(7.6d ) to a coordinate t constant on
the group orbits gives relations between the spin coefficients, and the as-
sumption that k is a repeated principal null direction gives κ = σ = 0.
The remaining tetrad freedom can be used to set ε = 0. Then the field
equations for each possible case can be integrated. In the other case
(MacCallum and Siklos 1992), where the homogeneous hypersurfaces
contain the repeated principal null direction, one can similarly take
n =m+m and arrive at

(δ − δ̄)x = Dx = ∆x = 0, (13.45)

with ρ = λ + µ = α + β = κ = σ = ε− ε̄ = 0.

13.3 Vacuum, Λ-term and Einstein–Maxwell solutions

13.3.1 Solutions with multiply-transitive groups

The case G6 on V3 is covered by the Robertson–Walker line element (12.9).
No Einstein–Maxwell fields exist. The vacuum and Λ-term solutions are
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the spaces of constant curvature (8.33); the case Λ > 0 appears, with
different choices of the spatial hypersurfaces, as a solution with each k,
and the Λ = 0 case occurs with k = 0 and k = −1.

According to Theorem 13.1, the metrics with a G4 on S3 or T3, apart
from those admitting a null rotation symmetry, are (13.3), (13.9) and
(13.17). In the Einstein–Maxwell case they permit only non-null electro-
magnetic fields whose principal null directions are aligned with those of
the (Petrov type D) Weyl tensor, assuming that the Maxwell field shares
the space-time symmetry. (If that assumption is false, the Maxwell field is
null and the metric is a pure radiation solution; an example using (13.3)
with ε = 1 is:

t =
∫

A dτ, A = Ce3τ/2/ sinh1/4(2τ), B = sinh1/2(2τ), (13.46)

(Ftaclas and Cohen 1978), where C is a constant. The general Maxwell
field for (13.46) is given by the components

Fxy = −Fτy =
√

3/κ0ex−τ cos(k(x− τ)),

−Fxz = Fτz =
√

3/κ0ex−τ sin(k(x− τ)),
(13.47)

where k is a constant (Henneaux 1984).)
For the metric (13.3), the condition R14 = 0, true for the cases being

considered here, gives only Robertson–Walker solutions.
For the metrics (13.9) and (13.17), the solutions with constant Y are

just the Bertotti–Robinson solution and its generalization to non-zero Λ
(cp. §§12.3 and 12.5). If Y in (13.9) is not constant, one finds that

f(w) = (w2 + l2)−1
[
k(w2 − l2)− 2mw + e2 − Λ

(
1
3w

4 + 2l2w2 − l4
)]

,

(13.48)
Y 2 = w2 + l2,

√
κ0Φ1 = e/

√
2Y 2,

is the general solution (Cahen and Defrise 1968), where Φ1 defines the
non-null Maxwell field as in (5.11), up to a constant complexion fac-
tor. The solution for (13.17) is the same with the signs of the k and e2

terms changed. These solutions contain numerous well-known and fre-
quently rediscovered particular cases, e.g. special Kasner metrics (13.51),
the Schwarzschild and Reissner–Nordström metrics (§15.4), plane sym-
metric cosmologies (§15.7), the Taub–NUT metrics, and even de Sitter
space (8.34), cp. also the metrics (15.12), (15.27), (22.13) and (31.59).

The solutions (13.48) have expanding principal null congruences of the
Weyl tensor. For l = 0 = e = Λ one obtains the ‘A-metrics’ of Table 18.2
(including Kasner metrics if m = 0 also). The l �= 0 vacuum cases are the
Taub–NUT metrics (Taub 1951, Newman et al. 1963); for k = 1, using
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ζ =
√

2 cot(ϑ/2) exp(iϕ) and r = w, one obtains the metric

ds2 = (r2 + l2)(dϑ2 + sin2 ϑ dϕ2)− f(r)(dt + 2l cosϑ dϕ)2 + f−1(r)dr2,
(13.49)

f(r) = (r2 + l2)−1(r2 − 2mr − l2), m, l constants,

which has the Killing vectors (cp. Table 8.2)

ξ1 = sinϕ∂ϑ + cosϕ
(

cotϑ∂ϕ − 2l
1

sinϑ
∂t

)
, ξ3 = ∂ϕ,

(13.50)
ξ2 = cosϕ∂ϑ − sinϕ

(
cotϑ∂ϕ − 2l

1
sinϑ

∂t

)
, ξ4 = ∂t.

The Taub–NUT metrics are stationary in the region f(w) > 0 (see
§20.3) and spatially-homogeneous in the region f(w) < 0. The two solu-
tions form part of a single manifold, being joined across a null hypersur-
face; this manifold has interesting topological properties (see Misner and
Taub (1968), Ryan and Shepley (1975), Siklos (1976b)). The ‘charged’
generalization of the Taub metric (k = 1, Λ = 0 �= el in (13.48)) was first
given by Brill (1964).

The vacuum solutions for (13.17) have non-expanding principal null
congruences of the Weyl tensor, and are the only such Petrov type D
solutions (Kinnersley 1969b, 1975); they thus belong to Kundt’s class
(Chapter 31). For l = 0, they give the ‘B-metrics’ of Table 18.2, which
again include some special Kasner metrics.

13.3.2 Vacuum spaces with a G3 on V3

A number of the vacuum solutions with Gr, r > 3, given above can be
rediscovered as solutions with a G3 on V3, namely:
(a) flat space (for G3 on an S3 with expanding normals this can happen
only with LRS S3 admitting groups G3 of Bianchi types I and V II0, III,
or V and V IIh);
(b) plane waves (§12.2) with G3IV and/or G3V Ih or G3V IIh (see
Siklos (1981), Araujo and Skea (1988a) for details): these have been fre-
quently rediscovered, e.g. Lifshitz and Khalatnikov (1963), who give the
only linearly-polarized case, Collins (1971), Doroshkevich et al. (1973),
Harvey and Tsoubelis (1977);
(c) the vacuum solutions contained in (13.48), which in the various cases
may admit G3 of types I , II , III , VIII or IX (see §13.1); and
(d) the Petrov solution (12.14) with G3I and G3V IIh on T3.
The reader should also consult the chapters referred to in §13.1.

Apart from the solutions with a null Killing vector given in Tables 24.1
and 24.2, and the vacuum Petrov type III case with a G3V I contained in
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(13.64) below, which admits an H4, the known vacuum solutions with a
G3 on V3 as their maximal isometry group are algebraically general. They
give solutions with homogeneity on S3 and T3 related by substitutions of
the form t↔ ix.

The first example of this arises in the well-known general solutions for
a diagonal vacuum metric with a G3I on S3 or T3 and an H4 on V4. These
are named after Kasner (1921), who wrote them as a metric of signature
+4, although the signs of the metric coefficients can in fact be chosen
arbitrarily, and stated he had found all similar solutions: his metric was

ds2 = (x4)2a1(dx1)2 + (x4)2a2(dx2)2 + (x4)2a3(dx3)2 + (x4)2a4(dx4)2,
(13.51)

a1 + a2 + a3 = a4 + 1, a1
2 + a2

2 + a3
2 = (a4 + 1)2.

The homothety generator is (Godfrey 1972)

X = x4∂x4 +
3∑
i=1

(a4 + 1− ai)xi∂xi . (13.52)

For the S3 case one can take g44 < 0, x4 = t, a4 = 0, aα = pα to get the
well-known form,

ds2 = t2p1dx2 + t2p2dy2 + t2p3dz2 − dt2, (13.53)
p1 + p2 + p3 = 1 = p1

2 + p2
2 + p3

2; p1, p2, p3 constants,

which can easily be found directly from (13.29), (13.30). Using (13.30),

pα = 1
3 [1 + 2 cos(ψ + 2

3(α− 1)π)], α = 1, 2, 3. (13.54)

Another form of the metric which is frequently cited is obtained by
taking t = (1 + kt′) for some constant k and was given by Narlikar and
Karmarkar (1946). It should be noted that for p1 = 1, p2 = p3 = 0, (13.53)
is flat space-time. The non-flat plane symmetric case (p2 = p3 = 2/3)
was given by Taub (1951), cp. (15.29); other rediscoveries were listed by
Harvey (1990). Special cases appear included in (15.12) and (15.17) and
elsewhere. These Kasner solutions play an important role in the discussion
of certain cosmological questions (see the reviews cited in §13.1).

The solution analogous to (13.53) but with a G3I on T3 and real pi
can be transformed to the Levi-Civita cylindrically symmetric vacuum
solution (22.7) and includes the AIII and BIII metrics of Table 18.2.
Space-times with G3I on T3 can also be obtained by taking the appropri-
ate signature in (13.51), allowing a4 = −1, and making a complex coordi-
nate transformation to find real, but not diagonal, metrics of a ‘windmill’
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character which include (12.14) as a special case (McIntosh 1992), as well
as (22.6) with imaginary n.

The G3I solutions in which the metric on the T3 cannot be diagonalized,
even in complexified variables, have null Killing vectors (see §24.4). The
possible solutions are the pp-wave with f = ln ζ in Table 24.2, and the
special case of (24.37a) which is (20.32) with Ω ∝ ln ρ.

The general vacuum solution with a G3II on S3 (Taub 1951) and its
T3 counterpart are, using the ωα of Table 8.2,

ds2 = εX−2(ω1)2 + X2[e2Aτ (ω2)2 + e2Bτ (ω3)2 − εe2(A+B)τdτ2],
(13.55)

kX2 = cosh kτ, 4AB = k2, ε = ±1, k > 0, A,B const.

This can be put into a Kasner-like form, with constants pi and b:

ds2 = εt2p1G−2(dx + 4p1bzdy)2 + G2[t2p2dy2 + t2p3dz2 − εdt2],
(13.56)

G2 = 1 + b2t4p1 , p1 + p2 + p3 = 1 = p1
2 + p2

2 + p3
2.

The solution (24.37a) with M = ay + b lnx (see Table 24.1) has a G3II
on T3 and a null Killing vector, and includes (20.32) with Ω ∝ z.

From Table 24.2, there are pp-waves with maximal G3 of types III and
V on T3.

The vacuum solution with a G3V Ih, nαα = 0, acting on T3 or S3,

ds2 = k2 sinh 2u[εWn(−du2 + dx2) + W e2(1+n)xdy2 + W−1e2(1−n)xdz2],
(13.57)

W = (sinh 2u)n(tanhu)m, m2 = 3 + n2, n2h = −1,

where ε = ±1 and k is constant, was found as the general solution of this
type, excluding V I ∗

−1/9, in which the G3 acts on S3 (Ellis and MacCallum
1969, MacCallum 1971). The cases mn > 0 and mn < 0 are inequivalent.
The n = 1 (G3III) case is LRS and included in (13.48).

Taking a limit of (13.57) by transforming to x̃ = nx, ũ = nu and letting
n→∞, one can derive the vacuum solution

ds2 = k2
{
εu−1/2eu

2
[
(ω1)2 − du2

]
+ 2u
[
(ω2)2 + (ω3)2

]}
(13.58)

with G3V I0, nαα = 0, on S3 (Ellis and MacCallum 1969) or T3, in a basis
(13.27). For n = 0, (13.57) gives the general G3V on S3 vacuum solution
(Joseph 1966) and its counterpart for T3,

ds2 = k2 sinh 2Aτ
[
ε((ω1)2 − dτ2) + (tanhAτ)

√
3(ω2)2

+(tanhAτ)−
√
3(ω3)2

]
, (13.59)
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using ω1 = dx, ω2 = eAxdy and ω3 = eAxdz. A solution with a G3V on
T3 is given by M = J0(2ax) exp(−2ay) in (24.37a), where J0 is a Bessel
function: see Table 24.1.

The solution (23.6) with F = u−2p, p = q = 13/16 is a vacuum solution
with a G3V I−4 group whose existence was pointed out by Collins (1991).

Lorenz-Petzold (1984) found vacuum solutions with G3V I0 and V II0
on S3 up to a quadrature in the form

ds2 = e2g(−du2/4u + (ω1)2) + q
√
uw(ω2)2 + q

√
u/w(ω3)2, (13.60a)

with ωα from Table 8.2: here q is a constant, g is given by

8g′ = −1/u + u(w′2/w2) + w + 1/w − 2ε, (13.60b)

where for G3V I0 we take ε = −1, and for V II0, ε = 1, and w(u) is a
Painlevé transcendental function of the third type solving

w′′ = w′2/w − [w′ + 1
2(w2 − 1)]/u. (13.60c)

Barnes (1978) found vacuum solutions with G3V I0 and V II0 on T3;
with ε as above, Σ as in (8.37) and 2Σ′(2x, ε) = dΣ(2x, ε)/dx, these are

ds2 = f4[Σ(2x, ε)(du2 − εdv2)− 2Σ′(2x, ε)du dv] + P 2dx2 + U2dz2;

P−1 =
√

2kf exp(1/2z), U = P/(z2f4), f8 = (ε(z − 4)/z). (13.61)

The only known type VII vacuum solutions other than (13.60), (13.61),
and the algebraically special ones listed earlier, are a solution due to
Lukash (1974), with G3V IIh, h = A2 = 4/11, on S3 and its timelike
counterpart, i.e., with ωα from Table 8.2 and w = Ax

ds2 = k2
[
εG2(−dξ2 + dw2) + sinh(2ξ)

(
f(cos Φω2 + sin Φω3)2

+ (− sin Φω2 + cos Φω3)2/f
)]

, (13.62)

G2 = e11ξ/4 sinh−3/8 2ξ, Φ =
√

11ξ/2, f2 tanh ξ = 1.

Apart from the spaces with higher symmetries, no vacuum solutions
with G3 of types III , IV , VIII or IX are known.

13.3.3 Einstein spaces with a G3 on V3

As in the vacuum case, a number of Einstein spaces with extra symmetry
can be rediscovered as solutions with a G3 on V3, namely: the homo-
geneous Petrov type N solution with a Λ-term (12.34), and the Petrov



200 13 Hypersurface-homogeneous space-times

type III solution (12.35), both of which belong to Kundt’s class (Chap-
ter 31) and admit a G3V Ih, h = −1/9; the Einstein spaces contained
in (13.48), which in the various cases may admit G3 of types I , II , III ,
VIII or IX (see §13.1); and the Bertotti–Robinson-like solutions (12.8),
with G3 of types VIII , VI0, VIh and III (in the non-flat cases). All these
solutions are algebraically special.

Equations (13.53) can be generalized to non-zero Λ as

ds2 = −dt2 + G(t)2/3
{

3∑
i=1

exp[2(pi − 1/3)U(t)]d(xi)2
}

, (13.63a)

U̇ = 1/G, Ġ2 + 3ΛG2 = 1 =
3∑
1

pi =
3∑
1

p2i , (13.63b)

cp. also (15.31) and (22.8). The Λ > 0 case was given by Kasner (1925)
and both cases by Saunders (1967). G and U can be given explicitly
for both signs of Λ. Except for special parameter values, this solution is
algebraically general. The algebraically special G3I solutions analogous to
the pp-wave and (24.37a) forms for vacuum were given by Kellner (1975),
who showed that the only Einstein spaces with a G3I on T3 without a null
Killing vector are a stationary cylindrically-symmetric Kasner vacuum
metric and its generalization to non-zero Λ.

Lorenz (1983b) has given an implicit form for an Einstein space with a
G3V I0 (nαα = 0) on S3.

The remaining known solutions complete the class of hypersurface-
homogeneous algebraically special Einstein spaces. By the method of
Siklos (1981) (see §13.2), one obtains four more such Einstein spaces with
repeated principal null directions not lying in the group orbits, each ad-
mitting a maximal G3V I ∗

−1/9.
The first is a Robinson–Trautman solution of Petrov type III,

ds2 = −2e−zdu dy + u2(dz2 + e4zdx2)/2 + 2ue−zdy dz

+ 2
(
6 + 1

6Λu2
)

e−2zdy2. (13.64)

This is the Λ �= 0 generalization (Theorem 28.7) of (28.16), which is itself
the only algebraically special vacuum space-time with diverging rays and
a maximal G3 (Kerr and Debney 1970), admits an H4 (see Table 11.2)
and is also associated with the names of Collinson and French (1967).

The second is a non-diverging Petrov type II solution with metric

ds2 = 1
2e2zdx2 + 1

8b
−2dz2 + 4ue−2zdy dz + 2

3b
−1e−zdy dx

−2e−2zdu dz − (8b2u2 − 1/18b2)e−4zdy2, (13.65)

where Λ = −8b2. It has no (non-trivial) vacuum limit.
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The Killing vectors for (13.64) and (13.65) are ∂x, ∂y and respectively

∂z − 2x∂x + y∂y and ∂z − x∂x + 2y∂y. (13.66)

The other two solutions are twisting solutions, one of Petrov type N
and the other of Petrov type III , which can be jointly written as

k ds2 = −2
(
xadu− dy

(a + 1)x

)[
dt + a(t dx + dy)/x

+ f(t)
(
xadu− dy

(a + 1)x

)]
+ (dx2 + dy2)(t2 + 1)/2x2.

(13.67)
Type N : a = 2, kΛ = −3, f(t) = (t2 − 1)/2.

Type III : a = 1/2, 78kΛ = −32, f(t) = (13t2 + 17)/32.

The type N solution was found by Leroy (1970), and the type III solution
by MacCallum and Siklos (1980). Both admit the Killing vectors

∂u, ∂y, x∂x + y∂y − au∂u. (13.68)

The algebraically special hypersurface-homogeneous Einstein spaces in
which the repeated principal null direction lies in the surfaces of transi-
tivity of the group belong to Kundt’s class (see Chapter 31): the rather
long list, and earlier literature, was discussed in detail by MacCallum and
Siklos (1992). Apart from solutions with a Gr, r ≥ 4, given in Chapter 12
which contain a simply-transitive G3, and the pp-wave solutions (see
§24.5), there are, for each Λ (or each Λ < 0): three-parameter families
of Petrov type II solutions with groups of Bianchi types V Ih, V IIh and
V III and two-parameter families of Petrov type II and Bianchi types III
and V I0; two-parameter families of Petrov type III and Bianchi types
V III and V Ih; Petrov type N solutions of Bianchi types V III, III, V Ih,
V I0, and with a G4 containing no simply-transitive G3. In some of these
families special cases of other Bianchi types or with extra symmetry arise.

13.3.4 Einstein–Maxwell solutions with a G3 on V3

The plane wave and Bertotti–Robinson-like Einstein–Maxwell metrics ad-
mit subgroups G3 of the full group of symmetry, like their vacuum and
Λ-term analogues (for details of the plane wave cases, see Araujo and
Skea (1988b)). The other hypersurface-homogeneous metrics which ad-
mit multiply-transitive groups are given in §13.3.1. Again we remind the
reader to consult also the chapters referred to at the end of §13.1. For
example, some cylindrically-symmetric solutions with G3I and G3II on
T3 are included in §22.2, and solutions with a null Killing vector are given
in Tables 24.1 and 24.2.
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In this section we give the Maxwell fields as values for the Φ1 of (5.11),
which is uniquely defined up to a constant duality rotation factor eip (see
§5.4): the choice of this rotation may, however, have physical significance
in interpreting the solution. If the electromagnetic field in an Einstein–
Maxwell metric admitting a maximal G3 inherits the symmetry and is
purely magnetic or purely electric, only particular non-zero components
and complexions may be possible (Hughston and Jacobs 1970).

The Einstein–Maxwell solutions admitting a G3I on S3 are

ds2 = A−2dx2 + A2[t2dz2 + t2m
2
(dy2 − dt2)], k1k2m

2 > 0, (13.69a)

A = (k1tm + k2t
−m), Φ1 =

√
(2k1k2/κ0)m/(A2t1+m

2
), (13.69b)

k1, k2 and m2 being real constants. They were given by Datta (1965) and
are related by complex transformations to (22.11)–(22.14), e.g. t↔ iρ for
(22.11); see §22.2 for discussion of these analogues with G3I on T3, which
can interpreted as cylindrically-symmetric static or stationary metrics.
The solutions (13.69) are related to the vacuum G3II solution (13.55)
(Collins 1972) and include solutions of interest as cosmologies with a
magnetic field; solutions of this type were given by Rosen (1962) and
Jacobs (1969), and can be generalized to include fluids (see §§14.3, 14.4).
The special case m = 1 admits a G4, being an LRS plane symmetric
solution included in (15.27) and (13.48).

Studying solutions with a G2I in the formalism of Chapter 19, Wils
(1989b) found the Einstein–Maxwell spaces with a G3II on T3 or S3
given by

ds2 = −εf(dv + wu dy)2 + r2dy2/f + δe2γ(dr2 + εdu2)/f, (13.70)

where δ and ε are ±1 (excluding −δ = 1 = ε), the Φ of (18.31) is qu, q and
w are constants, γ is obtained from a line integral and f obeys an ordinary
differential equation of the third Painlevé type. Here

√
2κ0Φ1 = qe−γ . For

the pairs (ε, δ) = (−1, 1) and (1, 1) the equations are analogous to the
cases discussed in §22.2 which lead to a Painlevé equation but the solutions
differ: the pair (ε, δ) = (−1, −1) gives a solution of cosmological type. The
special cases analogous to (22.12) are

ds2 = r4/3dy2 + δr−4/9 exp(98w
2r4/3)(dr2 + εdu2)− εr2/3(dv + wu dy)2,

√
κ0Φ1 = 1

4Wr−2/9 exp(− 9
16w

2r4/3). (13.71)

The remaining Einstein–Maxwell hypersurface-homogeneous solutions
known to us all arise from the ansätze (13.37) or (13.38). The case (13.37)
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leads to (12.21) when ρ + ρ̄ = 0. It also, in the case of twistfree rays
(ρ− ρ̄ = 0), leads to the solution

ds2 = 4
3 t
2dx2 + t(e−2xdy2 + e2xdz2)− dt2,

√
κ0Φ1 = 1/2t, (13.72)

with a G3V I0 (nαα = 0) on S3 (Tariq and Tupper 1975) and a homothety
X = 2t∂t + y∂y + z∂z (Koutras 1992b). The dual ansatz leads (Barnes
1977) to the solution

ds2 = dr2 + 4
3r
2(ω1)2 + r

(
(ω2)2 − (ω3)2

)
,

√
κ0Φ1 = 1/2r, (13.73)

with the ωα of G3V II0 from Table 8.2 and a homothetyX = 2r∂r+y∂y+
z∂z (Koutras 1992b). The solutions (13.72) and (13.73) form two real slices
of a complex manifold (Barnes 1977). A number of solutions satisfying
the weaker ansatz (13.37a) have been found, both twistfree and twisting
(Barnes 1978): for the twistfree case only the vacuum solution (13.58)
with G3V I0 on S3 or T3 has been found; the twisting solutions admit a
G3I or G3II on S3 or T3. Among these, the only solutions not discussed
earlier are the electromagnetic G3II solutions given in the general case by

ds2 = P 2dx2 + R2dy2 + 2εQ2(dv + 2fxdy)2 − εU2dt2, (13.74)
ε = ±1, a, b, c, f const, a > 0, a2 + b2 = c2 + 1,

where

Q2 = [2ct + b(1 + t2)]/(1 + t2),

QP = F−(a+1)/2a, QR = F−(a−1)/2a,
√

2f(1 + t2)Q3FU = 1,

F =



exp
(

2a√
1− a2

arctan
bt + c√
1− a2

)
, a < 1,

exp
( −2a
b(1 + t)

)
, if a = 1,(

bt + c−√a2 − 1
bt + c +

√
a2 − 1

)a/√a2−1
, a > 1,

(13.75)

√
κ0Φ1 = Φ

(1− t2 − 2it)
(1 + t2)

, Φ real, −εκ0Φ2 = 2bf2F 2Q4, bε < 0.

For real Q(t) for some t, we need b > 0 or a > 1. The case (13.74)–(13.75)
with ε = 1, a > 1, was given earlier by Ruban (1971), as a generalization
of a form of the solution (13.48) with k = 0. The a = 0 limit is LRS
and included in (13.48); the b = 0 limit is the vacuum solution (13.55). If
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c = 0, ε = −1, and the solution can be written as

ds2 = t−2k2
(dt2 + dy2) + t2dϕ2 − (dv + 2ky dϕ)2,

√
κ0Φ1 = 2ktk

2−1+2ik, k const.
(13.76)

It admits, in addition to the G3II on T3, a twisting homothety ξ ≡
(1−k2)v∂v+t∂t+y∂y−k2ϕ∂ϕ not inherited by the Maxwell field (McIntosh
1979). The special case k = 1 of (13.76) is (12.21), but in taking this limit
one has to introduce a parameter a for the overall scale which in (13.76)
can be absorbed by a change of variables, due to the homothety.

Similarly, the dual ansatz (13.38a), with τ + π̄ = 0, gives the vacuum
metric (13.61) with G3V I0 or G3V II0 on T3, while the case τ + π̄ �= 0
gives solutions with G3I and G3II on T3, together with (12.14). Using
the Σ of (8.37), the G3II electromagnetic solutions are

ds2 = F−1P−2Σ(B, ε)(du2 − εdv2)− 2F−1P−2Σ′(B, ε)du dv

+ P 2(dx− 2fudv)2 + U2dz2, ε = ±1,

W 2 = 2cz + b(1 + z2), F =

(
bz + c−√a2 + ε

bz + c +
√
a2 + ε

)a/√a2+ε

, (13.77)

P 2 = W 2/(1 + z2), aB = lnF, U−1 = fPFW 2,

√
κ0Φ1 =

√
−b/2fP 2F (1− z2 − 2iz)/(1 + z2),

where a, b, c, f and p are constants obeying a2 + b2 = c2 − ε.

13.4 Perfect fluid solutions homogeneous on T3

Apart from the stationary or static solutions with spherical, plane or cylin-
drical symmetry (see Chapters 15, 16 and 22) and the examples provided
by the solutions given in §12.4, few perfect fluid solutions with a G3 on
T3 are known. (The more numerous known S3-homogeneous perfect fluid
cosmologies are treated in Chapter 14. Tilted fluid solutions containing
both T3 and S3 surfaces of homogeneity are also given there, because
they usually include as a special case a non-tilted solution with S3 sur-
faces.) Most authors have concentrated on fluids obeying the γ-law or
some other pre-determined equation of state: solutions not obeying such
an assumption can be somewhat easier to find, as follows.

From (13.12), any pair of functions f and Y in (13.9) obeying

1
2f

′′ +
k

Y 2
+ f

[
(3 + ε)

l2

Y 4
− ε

Y ′′

Y
− Y ′2

Y 2

]
= 0, ε ≡ −f(w)

|f(w)| , (13.78)
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gives an LRS perfect fluid solution. Thus one can put any function Y (w)
or f(w) in (13.78) and solve for the other of Y and f to get such a solution.
Herlt (1988) provides examples. If a solution (Y, f) is already known, one
can regard using the same f or Y and solving for the most general resulting
pair (Y, f) as generating a new perfect fluid solution from a known one.
Yet another variation is to assume a relationship g(Y, f) = 0 between
Y and f . When using such methods, there is no guarantee that the new
solutions obey physical equations of state, and one also has to be careful
to check that the constants of integration introduced cannot be eliminated
by coordinate transformations. One can apply similar methods to the field
equations for other perfect fluid solutions determined by two functions,
of t say, which appear in the equation(s) for isotropy of pressure: such a
situation arises in several cases with a maximal G3 (see §14.4). Solutions
obtained by such methods will not usually be given in full below. For
brevity we refer to these methods as ‘pressure isotropy’ methods.

Of the solutions with G4 on T3 only the LRS cases need be considered,
because the four-velocity must be invariant under the isotropy; such solu-
tions are algebraically special (cp. Chapter 33) and of Ellis Class I or II .
For G4 on T3 we must take f(w) > 0 in (13.9), ε = −1, and a four-velocity
u = u∂t. The Ellis Class II perfect fluid solutions with a G4 on T3 and
G3 on S2 are included in §§15.5 and 15.7 and Chapter 16.

Perfect fluid solutions for (13.9) in which w∂w is a homothety generator
are given by

f = w, Y 2 = aw, 2ka + 2(3 + ε)l2 − a2 = 0. (13.79)

For ε = 1 these have µ = p = (a−k)/2κ0aw (cp. §11.3) and if l �= 0 (Ellis
Class I ) admit a G3 on T3 of type II, or III and V III, or IX, while if
l = 0 only k = a/2 = 1 (spherical symmetry; cp. §16.1) is possible. The
solutions (13.79) were given for k ≤ 0 by Hermann (1983), and for all k
by Daishev (1984).

The (stationary) dust solutions of Ellis’ Class I are completely known.
They have ω �= 0 = σ = Θ. Apart from the Gödel solution (12.26), they
have f = 1, ω = l/Y 2 and

Λ > 0, Y 2 = a cosβw + b sinβw + k/2Λ, Λ(a2 + b2) = l2 + k2/4Λ;(13.80)

Λ = 0, Y 2 = kw2 + 2aw + b, a2 = l2 + kb ; (13.81)

Λ < 0, Y 2 = aeβw + be−βw + k/2Λ, 4Λab = l2 + k2/4Λ, (13.82)

(Ellis 1967), where β2 = 4|Λ| when Λ �= 0, and κ0µ = 2Λ + 4l2/Y 4.
Some solutions of Ellis Class I containing Maxwell fields and (in some

cases γ-law) perfect fluids are given up to quadratures in Stewart and
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Ellis (1968). Equation (33.34) gives a solution with µ + 3p = const.
By the methods outlined in §9.4, Bradley and Marklund (1996) and
Marklund (1997) obtained a number of Ellis Class I perfect fluid solutions
not obeying the γ-law, e.g. the metric

ds2 = −1
2(4c− 1)r2(dt− 2 cosϑ dϕ)2 + dr2/f + r2(dϑ2 + sin2 ϑ dϕ2),

(13.83)
where f = c − 1

6p0r
2, which has an equation of state µ = p + p0, or can

be interpreted as a stiff fluid together with a cosmological constant.
We now survey metrics with a maximal G3 on T3.
Krasiński (1998a, 1998b) gave a comprehensive survey of the Bianchi

types, metric forms and remaining field equations for hypersurface-homo-
geneous rotating dust solutions. A number of known exact solutions were
recovered, and some new classes given, up to differential equations.

Some fluid solutions with a G3I on T3 can be found in §22.2. Studying
solutions admitting flat slices, Wolf (1986b) found (36.22) and (36.23),
which admit a G3I on T3, are of Petrov type I, and contain shearing and
rotating fluid with, in general, an equation of state not of the γ-law form.
Other examples with a G3I on T3 are provided by the following metrics:
(18.65) (Barnes 1972); (33.30), which admits an H4 and is of Petrov type
II; and (36.34).

In his study of shearfree dust, Ellis (1967) found a solution for dust
with a Λ-term and a G3II on T3,

ds2 = −(dt + 2ay dz)2 + dx2 +Y 2F−2dy2 + Y 2F 2dz2,

Y 2 = (c sin 2
√

Λx)/
√

Λ (Λ > 0),
(13.84)

Y 2 = 2cx (Λ = 0), κ0µ = 4a2/Y 4 + 2Λ,

Y 2 = c sinh 2
√|Λ|x/√|Λ| (Λ < 0),

where a, b, and c =
√
a2 + b2 are constants and F = exp

(
b
∫
Y −2dx

)
can

be integrated explicitly.
As part of a qualitative study of the dynamics of γ-law perfect fluid

solutions admitting a G3II on T3 in which the distinguished direction in
the group orbits is timelike, Nilsson and Uggla (1997b) found the solutions

ds2 = −
√

x(x + a)(dt + cy dz)2 + [x(x + a)]qdx2

+[x(x + a)]s([x/(x + a)]δ dy2 + [x/(x + a)]−δdz2),

q = (4− 3γ)/4(γ − 1), s = (3γ − 2)/8(γ − 1), (13.85)

δ2 = (11γ − 10)(3γ − 2)/64(γ − 1)2, c2 = (5γ2 − 4)/16(γ − 1)2,

κ0µ = (7γ − 6)/16(γ − 1)2(x(x + a))q+1,
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with arbitrary constant a. If a �= 0 it can be taken to be 1. The case with
a = 0, which was found by Wainwright (1985), is LRS, can be regarded
as a stationary axisymmetric metric, and admits an H5, 4x∂x + (2q +
1)(y∂y + z∂z + t∂t) being a homothety generator; its γ = 1 limit is the
case Λ = 0 = b of (13.84) and the γ = 2 solution is one case of (13.79).

Analogously to the use of (13.78), the perfect fluid equations for a
metric with a G3II on T3 and the ω1 of Table 8.2 spacelike have been
reduced to a single second-order equation by Misra and Narain (1971);
as a limit these contain the Einstein static solution. Similarly Van den
Bergh (1988c) reduced a diagonal metric with a G3V on T3 (a special
case of (23.22)) to a single second-order differential equation. The metric
(14.46) has a G3V I or V on T3 for some x and t. Another fluid solution
not obeying the γ-law is, in comoving coordinates,

ds2 = f2[b(−dt2 + dx2) + eb(t+x)−2xdy2 + e−b(t−x)−2xdz2],

κ0µ = (−2ff ′′ + f ′2 − 2bff ′ + 4ff ′ − b2f2 + 3bf2 − 3f2)/bf4, (13.86)

κ0p = 2ff ′′ − f ′2 + bff ′ − 2ff ′ − b2f2 + f2)/bf4, f = c/(1− e(2−b)x/2),

where b and c are constants and ′ denotes d/dx (Sintes et al. 1998). This
has a G3V I on T3 and a conformal Killing vector ∂t+∂x+(1−b)y∂y+z∂z;
there is a three-parameter conformal group acting on null orbits.

In a study of stationary axisymmetric fluids, González-Romero (1994)
gave solutions for G3II, G3V I0 and G3V II0 on T3 up to an ordinary
differential equation and quadratures: these generalize or complement the
known rotating solutions (see §21.2). An explicit perfect fluid solution
with an H4 on V4 and G3V II0 on T3 was found by Hermann (1983); it
can be written, using a tetrad aligned with the fluid velocity, as

ds2 = r2(1−s)
[
−(2 + s)(sin bz dϕ + cos bz dt)2 + s(cos bz dϕ− sin bz dt)2

]
+ dr2 + r2dz2, b2 = s(s + 2)(1− s)/(1 + s), (13.87)

κ0µ = (2− 2s2)/r2, κ0p = 2(1− s)2/r2,

where 0 < s < 1 is a constant, so γ = 2/(1 + s).

13.5 Summary of all metrics with Gr on V3

To help the reader in identifying any metric with a Gr on V3 which he
or she may have found, we append here three tables. Table 13.2 lists the
places where line elements with larger maximal symmetry may be found,
Table 13.3 summarizes the actual solutions with a maximal G4 on V3
for each energy-momentum type considered in this book, and Table 13.4
similarly lists the solutions with a maximal G3 on V3.
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Table 13.2. Subgroups G3 on V3 occurring in metrics with multiply-transitive
groups

The spaces (8.33) of constant curvature are omitted here.

Bianchi Maximal group
type G7 or G6 G5 or G4 G6 G4 on S3 G4 on T3,
of G3 on V4 on V4 on S3 or T3, LRS non-LRS

I (12.24) (12.14), (12.26), (14.2) (13.1), k = 0 (13.14)
(12.8) (12.30)–(12.32),

(12.34)–(12.36),
(12.38)

II (12.21), (12.34), (13.2), k = 0 (13.15)
(12.36), (12.38)

III (12.8) (12.21), (12.26), (13.1), k = −1 (13.14),
(12.28), (12.29) (13.2), k = −1 (13.15)

(12.36)
IV §12.2 (12.31)
V (14.2) (13.3) (13.15)
VI §12.2 (12.30), (12.31) (13.14),

(12.8) (12.34)–(12.36) (13.15)
(12.38)

VII §12.2 (12.14) (14.2) (13.1), k = 0
(12.8) (12.32) (13.3)

VIII (12.8) (12.26), (12.28), (13.2), k = −1 (13.15)
(12.29), (12.36)

IX (12.24) (12.27) (14.2) (13.2), k = 1

Table 13.3. Solutions given in this book with a maximal G4 on V3

Metric
Energy- (13.9) (13.3) (13.17)
momentum (13.1) (13.2)

Dust (13.80)–(13.82) (14.20) (14.22) �

(14.15)
Perfect fluid §§15.7, 16.1 (13.83), (13.79) �

(13.35), (14.14) (14.20) (14.24), (14.44)
(14.16)–(14.19) (14.21) with m = n = 0
(13.79), (33.34) (14.23), (14.25)

Vacuum and (13.48) (includes, (13.46) (13.48), e2 → −e2

Einstein–Maxwell e.g. (15.21)–(15.32), (includes (15.12),
(with Λ �= 0) A of Table 18.2) B of Table 18.2)
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14
Spatially-homogeneous perfect

fluid cosmologies

14.1 Introduction

In this chapter we give solutions containing a perfect fluid (other than the
Λ-term, treated in §13.3) and admitting an isometry group transitive on
spacelike orbits S3. By Theorem 13.2 the relevant metrics are all included
in (13.1) with ε = −1, k = 1, and (13.20).

The properties of these metrics and their implications as cosmological
models are beyond the scope of this book, and we refer the reader to
standard texts, which deal principally with the Robertson–Walker met-
rics (12.9) (e.g. Weinberg (1972), Peacock (1999), Bergstrom and Goo-
bar (1999), Liddle and Lyth (2000)), and to the reviews cited in §13.2.
Solutions containing both fluid and magnetic field are of cosmological
interest, and exact solutions have been given by many authors, e.g.
Doroshkevich (1965), Shikin (1966), Thorne (1967) and Jacobs (1969).
Details of these solutions are omitted here, but they frequently contain,
as special cases, solutions for fluid without a Maxwell field. Similarly, they
and the fluid solutions may contain as special cases the Einstein–Maxwell
and vacuum fields given in Chapter 13.

There is an especially close connection between vacuum or Einstein–
Maxwell solutions and corresponding solutions with a stiff perfect fluid
(equation of state p = µ) or equivalently a massless scalar field. If they
admit an orthogonally-transitive G2I on S2, such solutions can be gen-
erated by the procedure given by Wainwright et al. (1979) (see Theorem
10.2), and many of the known stiff fluid solutions are obtainable in this
way; spatially-homogeneous metrics with groups of Bianchi types I to
V II and LRS metrics of types V III and IX may or must admit such a
G2I on S2. Another procedure adapted to these G3 (and corresponding
H3) was given by Jantzen (1980b).

210
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Many of the known solutions assume a γ-law equation of state (5.36),
i.e. p = (γ − 1)µ, or its specializations with γ = 1, 4/3, 2; these solutions
were surveyed in Chapter 9 of Wainwright and Ellis (1997). If the four-
velocity is aligned with the ∂t of (13.1) or (13.20), then, using the Bianchi
identities (5.5) and the definition (13.23), we find

κ0µ = MS−3γ , Ṁ = 0. (14.1)

We shall also use the notation m=M/3. Note that S and hence M may
only be fixed up to a constant scale factor. In each section we treat such
solutions first and follow them by the perfect fluids not obeying the γ-
law. Perfect fluids with bulk viscosity have been investigated by a number
of authors (see e.g. Murphy (1973), Golda et al. (1983) and references
therein) because they may give solutions without singularities.

The general dynamics of the tilted solutions have been studied by King
and Ellis (1973) and Ellis and King (1974). Tilt complicates the equations,
in part because the diagonalization theorems discussed in §13.2 do not
apply; consequently, for example, Bradley (1988) has shown, using the
methods of Chapter 9, that dust power-law solutions, which exist for zero
tilt, do not exist in the tilted case. Thus rather few exact tilted solutions
are known: they are included in sections §§14.3–14.4.

Since the equations for spatially-homogeneous cosmologies are already
reduced to ordinary differential equations, it may make little sense to give
here solutions in which some such equations remain unsolved: however,
we have included such solutions where they are of sufficient interest for
physical or mathematical reasons.

14.2 Robertson–Walker cosmologies

Here the metric is (12.9), i.e.

ds2 = −dt2 + a2(t)[dr2 + Σ2(r, k)(dϑ2 + sin2 ϑ dϕ2)]. (14.2)

The field equations, which necessitate an energy-momentum tensor of
perfect fluid type, are (assuming ȧ �= 0, since a constant a(t) gives only
the Einstein static solution and flat space)

3ȧ2 = κ0µa
2 + Λa2 − 3k, (14.3)

µ̇ + 3(µ + p)ȧ/a = 0. (14.4)

If µ(a) satisfies (14.4) for suitable p, then, using (14.3), one can replace
dt2 in (14.2) by da2/[κ0µ(a)a2+Λa2−3k], giving an exact solution with a
as the time variable. This is similar to the situation arising from (13.29).
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The problem of integrating (14.3) and (14.4) has frequently been at-
tacked. Apart from the choice a(t), the most commonly used new time
variable is

Ψ =
∫

dt/a. (14.5)

The form using this coordinate has become known as the conformal form.
The general behaviour for fluids obeying (14.1), with S ≡ a, has been

investigated by Harrison (1967), who gave many references to the earlier
literature. Apart from the de Sitter metrics (3.29) and the Einstein static
universe (12.24), some of the best known solutions are the dust solutions
(γ = 1) with Λ = 0 (Friedmann 1922, 1924, Einstein and de Sitter 1932),
which are

k = 1, a = m sin2 Ψ/2, 2t = m(Ψ− sin Ψ), (14.6a)

k = 0, a = (32
√
mt)2/3, (14.6b)

k = −1, a = m sinh2 Ψ/2, 2t = m(sinh Ψ−Ψ), (14.6c)

and the Tolman (1934b) radiation (γ = 4/3) solution

Λ = k = 0, a = (2
√
mt)1/2. (14.7)

The general solutions for Λk = 0 with (14.1) are known. For k = 0,

Λ > 0, a3γ = M sinh2(12
√

3Λγt)/Λ, (14.8a)

Λ = 0, a3γ =
(
3
2γ
√
mt
)2

, (14.8b)

Λ < 0, a3γ = −M sin2(12
√−3Λγt)/Λ. (14.8c)

The metrics (14.8b) have a homothety 3γt∂t + (3γ − 2)r∂r.
For Λ = 0 �= k, if γ �= 2/3,

k = 1, a3γ−2 = m sin2 η, |3γ − 2|t = 2
∫

adη, (14.9a)

k = −1, a3γ−2 = m sinh2 η, |3γ − 2|t = 2
∫

adη. (14.9b)

These parametric solutions, which include (14.6a) and (14.6c) and a model
due to Tolman, were given by Harrison (1967). The special case γ =
2/3 has solutions a = t/b, where κ0µ = 3(1 + kb2)/t2, which admit a
homothety t∂t. Using the manifestly conformally flat form of the metric,
Tauber (1967) found an explicit elementary function form for k = −1,
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Λ = 0 and general γ; for k = 1 hypergeometric functions were needed
in general but reduced to elementary functions for γ = 1, 4/3, and 2.
These solutions were also given, with a useful compendium of other cases,
by Vajk (1969); the equations can be regarded as describing two fluids
(McIntosh 1972) and solved from that point of view.

For Λk �= 0 and γ = 1 or 4/3, general solutions can be given in terms
of elliptic functions (Lemâıtre 1933, Edwards 1972, Kharbediya 1976).
There are a number of special solutions in terms of elementary functions,
at least in implicit forms, see e.g. Lemâıtre (1927) and Harrison (1967),
though some of these are for γ < 1. For example, for k = 1, γ = 4/3,
Λ > 0, we have (Harrison 1967)

2Λ
3

a2 = 1− cosh(2
√

Λt/
√

3) +
(

Λ
Λc

)1/2
sinh(2

√
Λt/

√
3), (14.10)

where Λc = 3/4m is the value of Λ required in the Einstein static solution
(12.23) for the same m.

It is of cosmological interest to consider a perfect fluid composed of
a sum of dust and incoherent radiation with the same four-velocity. So-
lutions with such a mixture, with or without Λ, and with or without
interactions between the components, have been given by a number of au-
thors (see e.g. McIntosh (1968), Sapar (1970), May (1975), Coquereaux
and Grossmann (1982), Da̧browski and Stelmach (1986) and references
therein). If Λ = 0 and m and N are constants giving non-interacting dust
and radiation densities, one gets

κ0µ =
3m
a3

+
3N
a4

, κ0p =
N

a4
, (14.11)

t =
m

2
sin−1
(

2a−m

(m2 + 4N)1/2

)
− (ma + N − a2)1/2, k = 1, (14.12a)

t =
2(ma− 2N)(ma + N)1/2

3m2
, k = 0, (14.12b)

t = x− 1
2m ln
(
a + 1

2m + x
)
, x ≡ (ma + N + a2)1/2, k = −1. (14.12c)

Expressions (14.12) are awkward to use in applications, for which the
form with time variable a may be better, and for practical calculation
parametric forms of the relations (14.12) have been developed.

Other combinations of fluids, formed like (14.11), can be integrated
to give a(t), at least in terms of elliptic, hypergeometric or other spe-
cial functions; for details see e.g. Vajk (1969), McIntosh (1972), McIntosh
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and Foyster (1972) and Sistero (1972). Since the 1980s many solutions
for scalar fields with various potentials, whose energy-momenta do not in
general obey a γ-law, have been given, stimulated by the interest in in-
flationary cosmology: we have made no attempt to survey these. For such
models, unless the potential has strong physical motivation, it may be
simpler to postulate the desired behaviour of a(t) and use the field equa-
tions to define the behaviour required for the matter (see Ellis and Mad-
sen (1991)). One may note also that although the total energy-momentum
in (14.2) must have the perfect fluid form, this can be composed of sev-
eral physical fields which separately do not have that form (cp. remarks
in §5.2).

14.3 Cosmologies with a G4 on S3

Within this class, metrics of the form (13.1) with ε = 1, i.e.

ds2 = −dt2 + A2(t)dx2 + B2(t)
[
dy2 + Σ2(y, k)dz2

]
, (14.13)

have been extensively investigated as cosmological models. The field equa-
tions for perfect fluids are (13.34). The known exact γ-law solutions were
collected by Vajk and Eltgroth (1970): see also Lorenz (1983a).

For the case k = 0 these (LRS) solutions are special cases of the so-
lutions (14.26)–(14.28) with a G3I on S3, in which the ψ of (13.30) is 0
or π. Particular solutions were found by Doroshkevich (1965) (for γ = 1,
4/3 and 2) and Jacobs (1968). The general solutions for 1 < γ < 2 can be
given in the form (14.27) or (13.35), or as

ds2 = (coshu)4/(2−γ)(sinhu)−4/3(2−γ)dx2 + (sinhu)8/3(2−γ)(dy2 + y2 dz2)

−16(coshu sinhu)4/(2−γ)du2/3M(2− γ)2 (14.14)

or the same with cosh and sinh interchanged (Vajk and Eltgroth 1970).
For the cases k = ±1, the solutions for γ = 1, 4/3 and 2 can be given

as follows. For γ = 1 = k,

A cos Ψ = M(Ψ sin Ψ + cos Ψ) + K sin Ψ,

B = b cos2 Ψ, dt = 2BdΨ; b,K const;
(14.15a)

while for γ = 1 = −k we have three cases,

A = C/F, B = bF 2, dt = 2BdΨ,

F = sinh Ψ, C = M(Ψ cosh Ψ− sinh Ψ) + K cosh Ψ, (14.15b)

F = cosh Ψ, C = M(Ψ sinh Ψ− cosh Ψ) + K sinh Ψ, (14.15c)

F = eΨ, C = eΨ(MΨ + K), (14.15d)



14.3 Cosmologies with a G4 on S3 215

where b and K are constants. The solutions (14.15a) were found by
Kantowski (1966), Kantowski and Sachs (1966), Shikin (1966) and
Thorne (1967), (14.15b)–(14.15c) by Kantowski (1966) (cp. Kantowski
and Sachs (1966)), (14.15c) with an added magnetic field by Shikin (1966)
and Thorne (1967), and (14.15d) by Shukla and Patel (1977).

For γ = 4/3 (Kantowski 1966),

A
√
B = u3/2, B = a + mu− u3/9k, dt2 = uB du2, (14.16)

which for k = −1 is the special case n = 1
2 of (14.37). For k = 1 there

is also a special solution (Kantowski 1966) with M = 1 which can be
written

A
√
B = 1, B = u, dt2 = 3u du2/4(c− u), c const. (14.17)

For γ = 2 (Kantowski 1966),

λ2ds2 = f2g2c(−dt2 + dy2 + Σ2(y, k)dz2) + g−2cdx2,

f = sin(t), g = tan t/2, if k = 1, (14.18a)

f = sinh(t), g = tanh t/2, if k = −1, (14.18b)

c2 = 1−Mλ4, c, λ const,

which for k = −1 is the special case n = 1, b = 0, of (23.2).
Special perfect fluid solutions for (13.1) with k = −1, an H5 and a

γ-law equation of state, but with p < 0, are given by

A = tc, B = t/b, b2 = 1− c2, κ0µ = c(c + 2)/t2, κ0p = −c2/t2, (14.19)

which is a special case of (14.33). The subcase c = 1 is among the spatially-
homogeneous solutions analogous to (13.79), but these have the rather
unphysical equation of state µ + 3p = 0 (see §11.3). If a Λ-term is added
to a γ-law fluid in (13.1), elliptic functions are needed in general but
some cases have elementary function solutions (see e.g. Kantowski (1966),
Lorenz (1982b), Gron and Eriksen (1987)).

The field equations for γ-law perfect fluid solutions, γ �= 0, of the
LRS G3II metric, (13.2) with k = 0, have been reduced to a series of
quadratures and a second-order differential equation by Maartens and
Nel (1978) (but note some corrections in Lorenz (1981)). Some explicit
solutions were given by Collins and Stewart (1971) (cp. Collins (1971));
they arise from the non-LRS G3II solutions (14.29) in the next section
and can be written

λ2ds2 = −dt2 + t2p1(dx + nz dy/2γ)2 + t2p2(dy2 + dz2), (14.20)



216 14 Spatially-homogeneous perfectfluid cosmologies

with p1 = (2 − γ)/2γ, p2 = (2 + γ)/4γ, n2 = (2 − γ)(3γ − 2) and λ2 =
4γ2M/(6− γ). Solution (14.20) has a homothety of the form (13.52) with
a4 = 0, ai = pi.

The γ = 2 perfect fluid solutions for (13.2) were found, with in addition
a magnetic field, by Ruban (1971) (see also Ruban (1977, 1978)) and for
k = 1 by Batakis and Cohen (1972), with the fluid considered as a scalar
field (cp. Theorem 10.2). One has

dt = AB2dη, A2 = a/ cosh(aη), 2AB = c/F (12c(η + η0)),
(14.21)

c2 = a2 + 4M, F (u) = coshu, eu, sinhu, respectively for k = 1, 0, −1,

where a, c and η0 are constants. The k = 0 case of (14.21) is contained
in the more general G3II solution due to Ruban (1971), which is (23.1)
with b = 0.

The Ricci tensor components (13.13) for the metric (13.3) show that if
it contains a perfect fluid with 4-velocity ∂t it is Robertson–Walker. The
equations for tilted dust were reduced by Farnsworth (1967) to the form

ds2 = a2(bġ − g)2dx2 + (ge−x)2(dy2 + dz2)− dt2,

g = g(t + bx), κ0µ = 6
(
g̈ − 1

3Λg
)
/(bġ − g),

2gg̈ + ġ2 − Λg2 − 1/a2 = 0; a, b const,

(14.22)

where ġ(u) = dg(u)/du. Farnsworth also gave, as a special case, a
Tolman–Bondi solution (see §15.5).

The (tilted) γ = 2 solution for (13.3) is included, as the case m = n = 0,
in the solution (23.2) due to Wainwright et al. (1979); the case a =

√
2

was found by Maartens and Nel (1978).
The remaining known perfect fluid solutions for (13.1)–(13.3) do not

obey the γ-law (5.36). Some were found by assuming other equations
of state, e.g. the solution for the LRS G3I metric (13.1), k = 0, with
µ + 3p = const was found by Vishwakarma et al. (1999).

From (13.12) the metric (13.9), f(w) < 0, permits a perfect fluid matter
content only if the four-velocity is u = u∂w; then any pair of functions f
and Y obeying (13.78) with ε = 1 gives a perfect fluid solution. Several
authors (e.g. Gaete and Hojman (1990), Hajj-Boutros and Sfeila (1989))
have used such pressure isotropy methods, as described in §13.4, to ob-
tain new solutions, either from known solutions or ansätze on the metric
functions.

For (13.1), Hajj-Boutros generated solutions in this way (1985) from
(14.14) and (1986) from (14.18), Ram (1989d) from A = at + b, and
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Bayin and Krisch (1986) from various choices of B in the case k = −1.
Solutions with B = bt for the Kantowski–Sachs case, (13.1) with k = 1,
are included in (15.65); see also Shukla and Patel (1977). For the LRS
G3I metric (13.1), k = 0, new solutions have been obtained starting from
Robertson–Walker metrics with k = 0 (Hajj-Boutros and Sfeila 1987), and
the relevant special cases of (13.48), (14.26) and (14.28b) (Lorenz-Petzold
1987b, Ram 1989a, Singh and Ram 1995). Other starting points have
been dt = Adτ , A = sin τ (Kitamura 1995a), B =

√
t (Singh and Singh

1968, Ram 1989c), a condition arising from embedding considerations,
B = t (Singh and Abdussattar 1974) and B = T , bT ea/TdT = dt (Singh
and Abdussattar 1973). The assumption A2 ∝ B was used by Assad
and Damião Soares (1983) to obtain solutions for (13.1) with k �= 0,
Novikov (1964) found a special k = 1 solution illustrating the T-region
concept, Biech and Das (1990) studied A = eB with time variable dτ =
e−Bdt for k = 1, and Bradley and Sviestins (1984) studied a number of
special cases for f(t) = A/B in the case k = −1.

Another approach to (13.1) was given by Senovilla (1987a), who took
a generalized Kerr-Schild ansatz and showed that it led from one perfect
fluid solution to another (see §32.5, (32.101)–(32.103)).

For (13.2) perfect fluid solutions have been found by other ansätze. The
first one found, by Collins et al. (1980), was for the case k = −1 (with G3
of types III and V III) and can be written as

ds2 = c2
{

sinh10 ξ
[
−dξ2 + 1

9(dy2 + sinh2 y dz2)
]

+ 8
81 sinh8 ξ[dx + cosh y dz]2

}
, (14.23)

κ0µ = (56 sinh2 ξ + 63)/c2 sinh12 ξ, κ0p = −(16 sinh2 ξ + 9)/c2 sinh12 ξ,

where c is an arbitrary constant. It was obtained (in another form) by
complexifying the coordinates in a stationary axisymmetric solution. The
hypersurface normal n has the properties that Θ and σ (as defined in §6.1)
are proportional, and σab has a repeated eigenvalue: Collins et al. (1980)
generalized the metric form and shear eigenvector properties of (14.23) to
give ansätze which led to new solutions, at least up to quadratures of an
arbitrary function of t, in the other cases of (13.2) (LRS solutions with G3
of types II and IX, k = 0 or 1), and in Bianchi type V I0 and II metrics
without rotational symmetry. This has been studied further by Banerjee
and Santos (1984) for (13.2), k = 0. One of the Collins et al. (1980)
solutions for (13.2) with k = 0 admits an H4 (Koutras 1992b).

In examining shearfree cases, Collins and Wainwright (1983) found so-
lutions for tilted LRS G3V perfect fluids, up to an ordinary differential
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equation, which in comoving coordinates take the form

ds2 = c2[−U ′2dt2/a2 + dx2 + e−2x(dy2 + dz2)]/U2, U ′′ + U ′ + U2 = 0,
(14.24)

κ0µ = (3a2 + 2U3 + 3U2 + 6UU ′ + 3U ′2)/c2, κ0(µ + p) = 2U4/c2U ′,

where a and c are constants, U = U(t + x), and U ′ = dU(w)/dw.
Starting from hypersurfaces of the Taub solution, Lozanovski and

Aarons (1999) constructed a perfect fluid solution for (13.2) with k = 1
which has a pure magnetic Weyl tensor (in the sense of §3.5) in the frame
of the fluid,

k2ds2 = T [−dT 2/2(T + T) + (T + T)(σ1)2 + T (dy2 + sin2 xdz2)],
(14.25)

κ0µ = (27T + 15T)/4k2T 3, p = (3T− 9T )/4k2T 3,

where k and T are constants.
A number of Ellis Class III perfect fluid solutions not obeying the γ-law

were given by Marklund (1997), using the methods of Chapter 9 in the
same way as (13.83) was derived.

14.4 Cosmologies with a G3 on S3

Once again, because of the occurrence of G3 as subgroups of larger sym-
metry groups, we have to refer to §§12.4, 13.1, 14.2 and 14.3. We now
list the other known solutions, taking first those obeying p = (γ − 1)µ.
These may include as special cases LRS solutions admitting a G4 but not
explicitly given in §14.3.

Following the remark after (13.32), (14.1) can be substituted in (13.29a)
which can then be used in (13.31), i.e.

ds2 = −dt2 + S(t)2
(
F 2 cosψdx2 + F 2 cos(ψ+2π/3)dy2 + F 2 cos(ψ−2π/3)dz2

)
,

changing the time variable to S, to give the general solution for perfect
fluid in the G3I case, up to a quadrature F = exp(2

∫
Σdt/

√
3S3). How-

ever, it is often possible to perform this quadrature and/or to give the
solution S(t) explicitly in terms of the original proper time t of (13.20).

For dust, with Λ �= 0, the general solutions (Saunders 1967), using the
metric (13.31), are

Λ > 0, S3 = a sinhωt + M(coshωt− 1)/2Λ, S2F = (coshωt− 1)2/3,

Λ = 0, S3 = 3
4

(
Mt2 + 4t

)
, S2F = t4/3, (14.26)

Λ < 0, S3 = a sinωt + M(cosωt− 1)/2Λ, S2F = (1− cosωt)2/3,
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where ω2 = 3|Λ|, Λa2 = 3. There is a special solution M2 = 12Λ > 0, S3 =
a(eωt − 1), F = (1 − e−ωt)2/3 (Lorenz 1982a). With M = 0 �= Λ, (14.26)
gives (13.63). The case Λ = 0 was earlier given by Raychaudhuri (1958)
and Heckmann and Schücking (1958). The LRS cases (ψ = 0 or π in
(13.30)) have been rediscovered several times.

Choosing a time variable y ∝ (S3)̇, Jacobs (1968) was able to integrate
G3I γ-law perfect fluids with a general constant γ (1 �= γ �= 2) for F (y)
and so give an exact solution. This general family can be written, with a
different choice of new time variable τ , as (Wainwright 1984, Wainwright
and Ellis 1997)

ds2 = −G2(γ−1)dτ2 + τ2p1G2q1dx2 + τ2p2G2q2dy2 + τ2p3G2q3dz2,(14.27a)

G2−γ =
√

3Σ + 9
4mτ2−γ , qα = 2

3 − pα, (14.27b)

where pα, Σ and m, which contain two essential parameters, are as in
(13.54), (13.29) and (14.1). A closed form in terms of S can be given for
γ = 4/3 (Jacobs 1968; see also Shikin (1968)), and solutions as power
series in S for γ = 1 + n/(n + 1) and γ = 1 + (2n + 1)/(2n + 3) with
integer n (Jacobs 1968). The limits Σ = 0 and m = 0 are respectively the
Robertson–Walker and vacuum solutions. Solutions for G3I with combi-
nations of fluids with γ = 1, 4/3, 5/3 and 2 can be expressed in terms of
elliptic functions (Jacobs 1968, Ellis and MacCallum 1969).

The solutions with γ = 2, including Λ �= 0, are (Ellis and MacCallum
1969)

Λ > 0, S3 =
√

(3 + M)/Λ sinhωt, F = (tanh(ωt/2))b, (14.28a)

Λ = 0, S3 =
√

3(3 + M)t, F = tb, (14.28b)

Λ < 0, S3 =
√

(3 + M)/|Λ| sinωt, F = (tan(ωt/2))b, (14.28c)

where b ≡ 2/
√

3(3 + M) and ω2 = 3|Λ|. The case (14.28b), which was
found by Jacobs (1968) and Shikin (1968), can be expressed in the form
(13.53), the only change being that

∑3
1(pi)

2 < 1, and it has a homothety of
the form (13.52) (Koutras 1992b). Solution (14.28b) with b cosψ = −1/3
is of Petrov type D (Allnutt 1980), in addition to the LRS subcases.

The G3I solutions with electromagnetic fields, given by Jacobs (1969),
can be used to solve the G3II fluid case (Collins 1972). Collins (1971)
found a special G3II solution, which can be written as

ds2 = −G2(γ−1)dτ2 + τ2p1G2p1(dx + nzdy)2v + τ2p2G2p3dy2
(14.29)

+τ2p3G2p2dz2, G2−γ = a + 4Mτ2−γ/(6− γ)
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(Wainwright and Ellis 1997), where a is a constant appearing in the shear,
M gives µ as in (14.1), the ψ of (13.54) is given by 8 cosψ = 2− 3γ, and
(6 − γ)n2 = (3γ − 2)(2 − γ)M : here 2

3 < γ < 2. Special cases of (14.29)
were integrated in other forms by Ruban (1978).

Hewitt (1991b) gave a tilted Bianchi II γ-law solution, 107 < γ < 2:

ds2 = −dt2 + t2−4qdx2 + t6qdy2 + t2q[dz + (4Wt2q/q + 2nx)dy/γ]2,

q = (2− γ)/2γ, n2 = (2− γ)(3γ − 4)(5γ − 4)/(17γ − 18), (14.30)

w2 = (2− γ)(7γ − 10)(11γ − 10)/64(17γ − 18), κ0µ = 2(2− γ)/γ2t2.

This solution admits an H4, with a homothety t∂t+2qx∂x+(1−3q)y∂y +
(1−q)z∂z, and is the unique such solution with an orthogonally-transitive
G2. The fluid is accelerated but not rotating, and is tilted relative to the
t = const surfaces.

A family of tilted Bianchi II γ-law solutions with γ = 14/9 was found
by Hewitt et al. (2001). It has the form

ds2 = −e14t/3dt2 + [et/3(dx + nz dy) + c(etdy + be5t/3dz)]2

+(etdy + 2be5t/3dz)2 + e10t/3dz2,
(14.31)

c2 = 4(4b2 + 1)(8− 3b2)/19, n2 = 4(2b2 + 1)(17− 8b2)/57,

κ0µ = 2(1− b2)e−14t/3, v2 = 4(4b2 + 1)(2b2 + 1)/19cn, 0 < b < 1,

where, using components in the orthonormal tetrad basis implied by
expression (14.31) for the metric, v = u3/u0 gives the fluid velocity.
These solutions also admit an H4, with a homothety 3∂t + 6x∂x + 4y∂y +
2z∂z.

The general non-tilted G3II γ = 2 solution was found, with an
added magnetic field, by Ruban (1971). In the form due to Wainwright
et al. (1979) derived from the vacuum solution (13.55), it is given by
(23.1) with b = 0. The tilted G3II solution with γ = 2 has been re-
duced to an ordinary differential equation defining the third Painlevé
transcendent, followed by quadratures (Maartens and Nel 1978). The
G3V I0 and V II0 vacuum solutions (13.60) similarly give a γ = 2 so-
lution if (13.60b) is modified by adding 4M/q2u on the right hand side
(Lorenz-Petzold 1984).

For Bianchi type V , (13.29), (13.32) and (14.1) provide the general solu-
tion for non-tilted γ-law fluids up to a quadrature, using a time variable
S, as remarked in §13.2. Limits giving vacuum, Robertson–Walker and
G3I metrics exist. Fiser et al. (1992) noted that for suitable time vari-
ables Sδ and values of γ the remaining quadrature gives an elementary
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function or elliptic integrals: the γ concerned are γ = 1, 109 , 43 , 149 , 53 and
2. Formulae in terms of the t of (13.20) could be given in terms of elliptic
functions for γ = 2 or 4

3 . For γ = 4
3 one can write the solution as (Ruban

1977)

ds2 = c2S2
[
−dt2 + dx2 + e2x(F

√
3dy2 + F−√

3dz2)
]
,

(14.32)
S2 = sinh t(α cosh t + m sinh t), S2F = sinh2 t, κ0µ = 3m/c2S4.

The metric (13.59) with ω1 = dx, ω2 = eBxdy and ω3 = eBxdz, A �= B, is
a perfect fluid solution with µ+3p = 0 (Koutras, private communication).

Solutions (23.36) with c = 0 �= bT give a generalization of (14.32) with
a tilted fluid, 1 + 1/

√
10 < γ < 2 and a group of type G3V Ih with

h = −a2/4b2T2, or type V when bT = 0 .
The only other explicit solutions known to us with G3 on S3 containing

a γ-law perfect fluid, γ �= 2, are special cases of the Bianchi type V Ih
metrics with nαα = 0. They include metrics of Bianchi types III and V
and as limits metrics of types V I0 and I.

Collins (1971) found special G3V Ih solutions with nαα = 0 which are
included in (14.35) below and, using (13.27), can be put in the form

ds2 = −dt2 + 4γ2t2(ω1)2/q2 + tb+c(ω2)2 + tb−c(ω3)2,

b = (2/γ − 1), c = A (3− 2/γ) , q2 = (2− γ)(3γ − 2), (14.33)

κ0µ = ((2− γ)−A2(3γ − 2))/γ2t2,

where µ > 0 ⇔ (3γ − 2)(1− 3h) < 4. These solutions have a homothetic
motionH = t∂t+(1−(b+c)/2)y∂y +(1−(b−c)/2)z∂z. A class of perfect
fluid G3V I0 space-times with nαα = 0, also given by Collins (1971) and
admitting an H4, is obtained by specializing (14.33) to A = 0; they include
the dust solution found by Ellis and MacCallum (1969). This class and
its dust subcase have been rediscovered by other authors.

There are several solutions for G3V Ih (nαα = 0) which can be expressed
in the form

ds2 = c2
[
−F 2a4G2b4dt2 + F 2a1G2b1dx2 + F 2a2G2b2e2c2xdy2

+F 2a3G2b3e2c3xdz2
]
, (14.34)

where c, ai, bi and ci are constants and F and G are functions of t; (14.34)
can be generalized to a form including the G3I and G3II solutions (14.27)
and (14.29) (Wainwright 1984).
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A perfect fluid solution of the form (14.34) not obeying the γ-law was
given by Wainwright (1983). It has

a1 = 1, a2 = c2 = u + v, a3 = c3 = u− v, a4 = 0, b4 = b1 = u + w − 1,

b2 = w − v, b3 = w + v, κ0µ = Ma(1 + 2u) + Q(v2 + 3w2),
(14.35)

F = t, G2w = a + mt2(w−u), κ0p = Ma(1− 2w) + Q(v2 − w2),

M ≡ 2m(w − u)G2(1−u−3w)/k2t2(1−w+u), Q ≡Mm(u + w)t2(w−u)/2w2,

where a, m, u, v and w are constants obeying u = u2+v2, u < w < u+1.
This reduces to a plane wave if m = 0 and (14.33) if a = 0: in general one
can set a = 1 = k.

To describe the known γ-law perfect fluid solutions in the form (14.34)
we use

n
√

1− 3h = 1, n = − cosψ, qα = 2
3 − pα, (14.36)

where pα is given by (13.54).
For the Collins (1971) G3V Ih solution with 4n = 3γ − 2, 23 < γ < 2,

a4 = b4 = (4n− 1)/4(1− n), 4(1− n)aα = 3pα, 4(1− n)bα = 3qα,

F = t, 2(1− n)c2,3 = β(
√

1− n2 ±
√

3n), (14.37)

G = α + mt + β2(
1− n

1 + n
)t(1+n)/(1−n), κ0µ =

4m
3c2(2− γ)2(Gt)γ/(2−γ)

.

Here β = 0 gives G3I solutions, which are Robertson–Walker if α = 0,
m = 0 gives the vacuum solution, (13.57) with ε = 1, and n = 1/2 gives
the LRS G3III radiation solution, (14.16) with k = −1. Only two of α,
β, c and m are essential in general.

For 8n = 3γ + 2, 0 < γ < 2, Uggla and Rosquist (1990) found, with the
ai and bi of (14.37) in terms of n, and the ci interchanged,

G = F,t

(
α + β2

∫
F r

F 2,t
dt

)
, κ0µ =

16
3c2(2− γ)2(FG)γ/(2−γ)

, (14.38)

where r = 2n/(1−n) and the three possible forms of F are F = cosh t, et,
and sinh t. Again β = 0 gives G3I solutions, which are Robertson–Walker
in the case F = et. Otherwise we can set β = 1.

For 2n = 4−3γ, 23 < γ < 4
3 , Uggla and Rosquist (1990) found solutions

with the F , G and r of (14.38) but with

a4 = a1, 2(1− n)aα = 3qα, b4 = b1, 2(1 + n)bα = 3pα,
(14.39)

κ0µ =
4β2(F 1/3(γ−2)G1/(3γ−2))3γ−8

(2− γ)(3γ − 2)c2
, c2,3 =

√
1− n2 ∓√3n√

1− n2
,
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and for 4
3 < γ < 2 the same with n→ −n. If β = 0 we obtain the vacuum

solution, (13.57), and if γ = 1 the LRS G3III dust solution, (14.15b),
while the limit n = 0 gives the G3V radiation solution (14.32).

As the last case with (14.34), we have (Uggla 1990),with n = 4
5 , γ = 6

5 ,

4a4 = 1, 4aα = 5pα, 4b4 = 11, 4bα = 15qα, 2
√

2 c2,3 =
√

3∓ 4,
(14.40)

F = sinh t + sin(t + α), G = sinh t− sin(t + α), κ0µ =
25

8c2
√
F 3G9

.

Wainwright (1984) gave a G3V I∗−1/9 solution for γ = 10/9,

ds2 = −dt2 + t2dx2 + t2/5
[
exp(−

√
6rx/5)dy + bt4/5dx

]2
(14.41)

+ t6/5 exp(4
√

6rx/5)dz2, 4(b2 + 1) = 9r2, 2/3 < r < 1,

with a homothety H = 5t∂t + 4y∂y + 2z∂z. The density is κ0µ = 27(1−
r2)/25t2. In the limit r → 2/3 (14.41) reduces to (14.33) with γ = 10/9,
and for r → 1 to the vacuum case of (13.64).

A class of tilted γ-law perfect fluid Bianchi V I0 solutions was given by
Rosquist and Jantzen (1985), using (13.27) with A = 0, as

ds2 = −dt2 + (ktω1)2 + (t(−q+s)ω2 + mktω1)2 + (t(q+s)ω3)2,

s = (2− γ)/2γ, 4γ(36− 35γ)q2 + 4(5γ − 6)(γ − 2)q + (5γ − 6)2 = 0,
(14.42)

k2 = −(3s + 3q − 1)/(s + 3q − 1)(3s2 + (6q − 1)s− q2 − q),

m2 = −32q2s/(s− q − 1)2(3s + 3q − 1).

Writing q± = (6 − 5γ)[2 − γ ± 2
√

(9γ − 1)(γ − 1) ]/2γ(35γ − 36) for the
values of q, the fluid has corresponding density and orthonormal tetrad
velocity components given by

κ0µ =
2[∓(5γ − 6)

√
(9γ − 1)(γ − 1)− 15(γ − 2)(γ − 1)]

γ2(35γ − 36)t2
,

u1 = k(q − 3s + 1)u4, u2 = m(1 + q − s)u1/4q, (14.43)

u3 = 0, γκ0µk
2t2(q − 3s + 1)(u4)2 = −2q.

The pair (γ, q) has to give k2 ≥ 0; for q = q−, 1 < γ < 2 but for q = q+,
6/5 < γ < 1.7169 . . .. The case γ = 4/3 was given by Rosquist (1983).
These solutions admit a homothety generated by t∂t + (1 + q − s)y∂y +
(1 − q − s)z∂z. They have vorticity as well as expansion and shear and
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give the only such explicitly known solutions. In principle solutions with
other G3 or H3 on S3 were also given in Rosquist and Jantzen (1985), but
the explicit parameter values required were not found.

The matter is also rotating, shearing and expanding in the G3V II0
solution discussed by Demiański and Grishchuk (1972), who imposed the
condition that the orbits of the group are flat, but this is only known
up to a differential equation. Some other solutions with flat slices, of
Petrov type I , and with shear and rotation, similar to (36.22), are given
in Wolf (1986b).

A number of stiff fluid solutions obtained by using Theorem 10.2 are
known as special cases of solutions with maximal groups H3 and G2 (for
which see Chapter 23). The G3V Ih stiff fluid solution corresponding to
(13.57) is obtained by setting

m2 = 3 + n2 + 2(b2 − a2) (14.44)

in (23.2) (Wainwright et al. 1979). It includes LRS and non-LRS G3III
(n2 = 1) and G3V (n = 0) solutions, in particular (14.18b): the G3V
solutions can be generated from (13.59). The non-tilting case was also
found, in another form, by Collins (1971), and by Ruban (1977, 1978).

Setting nm = ab in (23.3) gives a tilted fluid with a G3V I0 (Wainwright
et al. 1979), which is a limit of (23.2) with (14.44) as (13.58) is of (13.57).
The non-tilted case is the G3V I0 (nαα = 0) solution found by Ellis and
MacCallum (1969).

Similarly for Bianchi type V IIh, one needs

m2 − 11
4 + 2(a2 − b2) = 0 (14.45)

in (23.4). The non-tilted case was found by Barrow (1978).
Putting p = q in (23.6) with F = u−2p gives a tilted stiff fluid solution

with a G3V I−4 on u/t = const (Collins 1991), and the case a = 1
2 of the

stiff fluid solution (23.8) admits a G3V I−1/9.
The Petrov type D fluid solution with a group G3V Ih on surfaces

eax/t = const given in comoving coordinates by Allnutt (1980) as

ds2 = dx2 + e−2ax(t1+ndy2 + t1−ndz2 − dt2) (14.46)

can be interpreted as a stiff fluid with density κ0µ = (1−n2)e2ax/4t2 and
a cosmological constant Λ = −3a2. For n = 0, where the group is a G3V ,
this is (15.75) with b = k = 0, a > 0, c = 1. The group orbits are S3 or
T3 depending on the sign of t2a2− e2ax. This and some analogous G3V Ih
solutions have an inheriting conformal Killing vector (Czapor and Coley
1995, Vera 1998a).
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As mentioned in §10.11.2, a G3V I0 solution for perfect fluid not obeying
the γ-law was found by Van den Bergh (1986d), as a conformal transform
of the vacuum metric (13.58): the required conformal factor multiplying
(13.58) is

∫
u1/4e(4u

2−1)/8du.
Fluid solutions not obeying the γ-law (5.36) can be obtained by the

pressure isotropy methods outlined in §13.4. Ram (1990) applied these
ideas to k = −1 Robertson–Walker metrics to obtain G3V solutions, and
for G3V I0, nαα = 0, considered A = at+b (1988). Lorenz-Petzold (1987a)
generated G3V I solutions from (14.33); for γ = 1, Ram (1989b) iterated
the process.

Fluid solutions of type G3I with equation of state µ = a
√
p + p for

constant a and a Λ-term were given by Kellner (1975). Further G3V
solutions with σ/Θ constant and G3V I0 solutions with purely magnetic
Weyl tensor were obtained by Roy and Tiwari (1982). Sklavenites (1992a)
gave some G3 solutions containing orthogonally-transitive G2I on S2 (see
Chapter 23), which include as special cases some of the γ-law solutions
above. Metric (23.26) contains some special G3V I solutions. As in the case
of the Robertson–Walker metrics, a number of authors, e.g. Aguirregabiria
et al. (1993b), have considered various scalar field models in the metric
forms of this section.
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Groups G3 on non-null orbits V2.
Spherical and plane symmetry

15.1 Metric, Killing vectors, and Ricci tensor

A Riemannian space Vq admitting a group Gr, r = q(q + 1)/2, is a space
of constant curvature (§8.5). Hence the orbits V2 of a group G3 of motions
must have constant Gaussian curvature K, and the 2-metric dσ2 of the
spacelike (S2) or timelike (T2) orbits can be written in the form (8.38):

dσ2 = Y 2[(dx1)2 ± Σ2(x1, k)(dx2)2] (15.1)

with k = KY 2, and, as in §8.5,

Σ(x1, k) = (sinx1, x1, sinhx1) for k = (1, 0, −1). (15.2)

In (15.1) and in the following formulae the upper and lower signs refer
to spacelike and timelike orbits, respectively. The function Y in (15.1) is
independent of the coordinates x1 and x2 in the orbits V2. However, Y
in general depends on coordinates x3 and x4 because the orbits V2 are
subspaces (x3 = const, x4 = const) of the space-time V4.

From Theorem 8.19 it follows that the orbits V2 admit orthogonal sur-
faces in V4. By performing a coordinate transformation in the 2-spaces
orthogonal to the orbits we can put the space-time metric into diagonal
form (Goenner and Stachel 1970)

ds2 = Y 2[(dx1)2 ± Σ2(x1, k)(dx2)2] + e2λ(dx3)2 ∓ e2ν(dx4)2,
(15.3)

Y = Y (x3, x4), λ = λ(x3, x4), ν = ν(x3, x4).

Note that for timelike orbits T2 the coordinate x2 is timelike, while x4 is
spacelike. For spacelike orbits S2, it is sometimes more convenient to use

226
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the space-time metric

ds2 = Y 2(u, v)[(dx1)2 + Σ2(x1, k)(dx2)2]− 2G(u, v)du dv (15.4)

(cp. (15.18) and (15.24) below).
In the S2 case, we have to distinguish between Y,mY ,m > 0 (R-region),

Y,mY ,m < 0 (T -region) (see McVittie and Wiltshire (1975) and references
cited therein) and Y,mY ,m = 0. The case Y,mY ,m < 0 cannot occur for
timelike orbits T2, because of the Lorentzian signature of the metric.

Coordinate transformations which preserve the form (15.3) of the met-
ric can be used to reduce the number of functions in the line element
(15.3). For instance, for Y,aY

,a �= 0 we can always set Y = x3eλ (isotropic
coordinates), and for Y,mY ,m > 0 we can choose Y = x3 (canonical
coordinates).

In the coordinate system (15.3), the Killing vectors ξA are given by

ξ1 = cosx2 ∂1 − sinx2 Σ,1Σ−1∂2, ξ2 = ∂2,

ξ3 = sinx2 ∂1 + cosx2 Σ,1Σ−1∂2
(15.5a)

for spacelike orbits and

ξ1 = coshx2 ∂1 − sinhx2 Σ,1Σ−1∂2, ξ2 = ∂2,

ξ3 = − sinhx2 ∂1 + coshx2 Σ,1Σ−1∂2
(15.5b)

for timelike orbits. The group types are: for S2, IX (k = 1), VII0 (k = 0),
VIII (k = −1), and for T2, VIII (k = 1), VI0 (k = 0), and VIII (k =
−1). These Bianchi types belong to class G3A ( §8.2). The spacelike and
timelike metrics on V2, and their corresponding groups, are related by
complex transformations.

The existence of a higher-dimensional group of motions, Gr, r > 3,
imposes further restrictions on the functions ν, λ and Y in the met-
ric (15.3). The de Sitter universe (8.34), the hypersurface-homogeneous
space-times (13.1)–(13.3) with a spatial rotation isotropy, the Friedmann
models (§14.2), the Kantowski–Sachs solutions (14.15), and the static
spherically-symmetric perfect fluid solutions (§16.1) are solutions admit-
ting a Gr, r > 3, with a subgroup G3 on V2. For certain Ricci tensor
types, a group G3 on V2 implies a G4 on V3 (§15.4).

For the metric (15.3), the non-zero components Gb
a of the Einstein ten-

sor are (prime and dot denote differentiation with respect to the coordi-
nates x3 and x4 respectively)

G44 = − k

Y 2
+

2
Y

e−2λ
(
Y ′′ − Y ′λ′ +

Y ′2

2Y

)
∓ 2

Y
e−2ν
(
Ẏ λ̇ +

Ẏ 2

2Y

)
, (15.6a)
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G33 = − k

Y 2
∓ 2

Y
e−2ν
(
Ÿ − Ẏ ν̇ +

Ẏ 2

2Y

)
+

2
Y

e−2λ
(
Y ′ν ′ +

Y ′2

2Y

)
, (15.6b)

G11 = G22 = e−2λ[ν ′′ + ν ′2 − ν ′λ′ + Y ′′/Y + Y ′ν ′/Y − Y ′λ′/Y ]
(15.6c)

∓ e−2ν [λ̈ + λ̇2 − λ̇ν̇ + Ÿ /Y + Ẏ λ̇/Y − Ẏ ν̇/Y ],

G43 = ±2e−2ν(Ẏ ′ − Ẏ ν ′ − Y ′λ̇)/Y. (15.6d)

The Bianchi identities imply the existence of a mass function

m(r, t) = 1
2Y (k − Y,aY

,a) (15.7a)

for which

m′ = 1
2Y

2(Ẏ G43 − Y ′G44), ṁ = 1
2Y

2(Y ′G34 − Ẏ G33) (15.7b)

holds (Lemâıtre 1949);this is the same m which occurs e.g. in (15.12) and
(16.5).

Ref.: For a classification of spherically-symmetric metrics, see Takeno
(1966), and of plane-symmetric metrics, Hergesell (1985).

15.2 Some implications of the existence of an isotropy
group I1

The group G3 on V2 implies an isotropy group I1 (§11.2) and this, in
turn, implies a (one-dimensional) linear isotropy subgroup of the Lorentz
group L↑

+ in the tangent space Tp. Therefore the principal tetrad (§4.2)
cannot be determined uniquely; only degenerate Petrov types (N, D, O)
are possible. As G3 acts on non-null orbits, I1 describes spatial rotations
(boosts) for spacelike (timelike) orbits. For Petrov type N , the invariance
subgroup of L↑

+ consists of null rotations (3.15). Therefore type N cannot
occur and we have proved

Theorem 15.1 Space-times admitting a group G3 of motions acting on
non-null orbits V2 are of Petrov type D or O.

Similarly, the existence of an isotropy group I1 leads to

Theorem 15.2 The Ricci tensor of a space-time admitting a group G3
on V2 has at least two equal eigenvalues.

Any invariant timelike vector field in V4 (with zero Lie derivative with
respect to the Killing vectors (15.5)) necessarily lies in the 2-spaces ortho-
gonal to the group orbits S2, because otherwise the preferred vector field
would not be invariant under the isotropies. Hence we can formulate
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Theorem 15.3 Perfect fluid (with Tik �= Λgik) and dust solutions cannot
admit a group G3 on timelike orbits T2.

In the coordinate system (15.3) (upper signs) the 4-velocity u of a per-
fect fluid has the form u = u3∂3+u4∂4 and from the invariance of u under
isometries one infers that the components u3, u4 cannot depend on x1 and
x2. Therefore u is hypersurface-orthogonal and there is a transformation
of x3 and x4 which takes u into

u = e−ν∂4 (15.8)

(comoving coordinates) and, simultaneously, preserves the form of the
metric (15.3).

15.3 Spherical and plane symmetry

The group G3 on V2 contains two special cases of particular physical
interest: spherical and plane symmetry.

In the first four decades of research on general relativity the majority
of exact solutions were obtained by solving the field equations under the
assumption of spherical symmetry. The exterior and interior Schwarz-
schild solutions and the Friedmann model of relativistic cosmology are
well-known examples.

Originally, problems with spherical and plane symmetry were treated
more or less intuitively. In the modern literature the group theoretical
approach is preferred and spherical and plane symmetry are invariantly
defined by the

Definition: A space-time V4 is said to be spherically- (plane-) symmet-
ric if it admits a group G3IX (G3V II0) of motions acting on spacelike
2-spaces S2 and if the non-metric fields inherit the same symmetry.

Each orbit S2 has constant positive (zero) Gaussian curvature, k = 1
(k = 0). The isotropy group I1 represents a spatial rotation in the tangent
space of S2. According to Theorem 15.1, spherically- and plane-symmetric
space-times are of Petrov type D or O.

In the expressions (15.6) for the components of the Einstein tensor
we have to choose the upper signs, and k = 1 or k = 0. For spherical
symmetry (k = 1), we can specialize the metric (15.3) to

ds2 = Y 2(r, t)(dϑ2 + sin2 ϑ dϕ2) + e2λ(r,t)dr2 − e2ν(r,t)dt2. (15.9)

For plane symmetry (k = 0), we often use Cartesian coordinates in the
orbits:

ds2 = Y 2(z, t)(dx2 + dy2) + e2λ(z,t)dz2 − e2ν(z,t)dt2,

ξ1 = ∂x, ξ2 = ∂y, ξ3 = x∂y − y∂x.
(15.10)
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For vacuum, Einstein–Maxwell and pure radiation fields, and for dust, the
general solutions admitting a G3 on V2 are known (§§15.4, 15.5). Perfect
fluid solutions in general are discussed in §15.6, and plane-symmetric per-
fect fluids in §15.7. Chapter 16 gives a survey of the spherically-symmetric
perfect fluids.

15.4 Vacuum, Einstein–Maxwell and pure radiation fields

For vacuum and Einstein–Maxwell fields (including the cosmological con-
stant Λ), and pure radiation fields, the algebraic types of the energy-
momentum tensor are [(111, 1)], [(11) (1,1)], and [(11, 2)], see §5.2.

The eigenvalues λα of the Einstein tensor are

λ1 = λ2 = G11 = G22,

λ3,4 = 1
2(G33 + G44)±∆1/2, ∆ ≡ 1

4(G33 −G44)
2 ∓ (G43)

2.
(15.11)

The symmetry implies that a double eigenvalue (λ1 = λ2) exists (see
Theorem 15.2). For the algebraic types under consideration, there are
two double eigenvalues (which might coincide); λ3 = λ4 implies ∆ = 0.

15.4.1 Timelike orbits

For timelike orbits T2, Table 5.2 shows immediately that the algebraic
type is [11(1, 1)]. Since the type [(11, 2)] is impossible we have

Theorem 15.4 Einstein–Maxwell fields with an electromagnetic null
field, and pure radiation fields, cannot admit a G3 on T2.

For vacuum and non-null Einstein–Maxwell fields, we have to distinguish
between Y,a �= 0 and Y,a = 0. If Y,a �= 0, one can put Y = x3 (canonical
coordinates), because of Y,aY

,a > 0, and the evaluation of G33 = G44
and G43 = 0 in the metric (15.3) (lower signs) gives λ′ + ν ′ = 0 and
λ̇ = 0. In ν an additive term dependent on x4 can be made zero by
transforming x4. Thus we have ν = −λ, λ̇ = 0. In the coordinates of
(15.3), the general solution of the Einstein–Maxwell equations (including
Λ) reads (cp. (13.48))

e2ν = k − 2m/x3 − e2/(x3)2 − Λ(x3)2/3 > 0,

λ = −ν, Y = x3, m, e = const, k = 0,±1,
(15.12)

the only non-vanishing tetrad component of the (non-null) electromag-
netic field tensor being (up to a constant duality rotation, see §5.4)

√
2κ0 F34 = 2e/(x3)2. (15.13)
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Table 15.1. The vacuum, Einstein–Maxwell and pure radiation solutions with
G3 on S2 (Y,aY

,a > 0)

Segre type 2H(u, r) Solution for k = 1

[(111,1)] k − 2m/r − 1
3Λr2 Λ = 0: Schwarzschild (1916a)

Λ �= 0: Kottler (1918)

[(11)(1,1)] k − 2m/r + e2/r2 − 1
3Λr2 Λ = 0: Reissner (1916),

Nordström (1918)

[(11,2)] k − 2m(u)/r − 1
3Λr2 Λ = 0: Vaidya (1943)

These type D Einstein–Maxwell fields belong to Kundt’s class (Chap-
ter 31).

For Y = Y0 = const, two double eigenvalues exist:

λ1 = λ2 = K⊥, λ3 = λ4 = −kY −2
0 , (15.14)

where K⊥ denotes the Gaussian curvature of the 2-spaces with

dσ2⊥ = (eλdx3)2 + (eνdx4)2 (15.15)

orthogonal to the orbits T2. There is only one Einstein–Maxwell field (for
K⊥ = kY −2

0 < 0), namely the Bertotti–Robinson solution (12.16).

15.4.2 Spacelike orbits

For spacelike orbits S2, and Y,aY
,a > 0, λ3 = λ4 implies that

∆ = 0 ↔ ∂(eν+λ)/∂r + ∂(e2λ)/∂t = 0 (15.16)

(Y = x3 = r, x4 = t) is satisfied (Plebański and Stachel 1968, Goenner
and Stachel 1970). Then, introducing a null coordinate u according to
du = eν+λdt − e2λdr, one can transform the line element (15.3) (upper
signs) into the simpler form

ds2 = r2dσ2 − 2du dr − 2H(u, r)du2, 2H = e−2λ (15.17)

(dσ2 as in (15.1)). For the Ricci tensor types under consideration, the
corresponding metrics can be completely determined. The results are
listed in Table 15.1. For vacuum solutions in double-null coordinates
ds2 = r2(u, v)dσ2 − 2f(u, v)du dv, see Curry and Lake (1991).

In the coordinate frame (15.3), the general solution of the
Einstein–Maxwell equations (including Λ) differs from its counterpart
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(15.12)–(15.13) in the case of timelike orbits only by a sign (e2 → −e2 in
the expression for e2ν), see §13.3.

The assumption Y,aY
,a > 0 enabled us to put Y = x3. For Y,aY

,a < 0,
an analogous treatment with Y = x4 leads again to this solution, but now
with x3 = r and x4 = t interchanged, and with (k−2m/t+e2/t2−Λt2/3) <
0. The cases Y,aY

,a > 0 and Y,aY
,a < 0 correspond to the R- and T -

regions of the same solutions. There is an additional timelike or spacelike
Killing vector ξ = ∂t (resp. ξ = ∂r) which is hypersurface-orthogonal and
commutes with the three generators of G3 on V2.

For plane symmetry (k = 0), 2H = −2m(u)/r can also represent a null
Einstein–Maxwell field, cp. (28.43).

The case of spacelike orbits with Y,aY
,a = 0 must be treated separately

(Foyster and McIntosh 1972). It is advisable to start with the coordinate
system (15.4). It turns out that no vacuum solutions exist. For Λ �= 0, the
metric is of the form (35.35) (Nariai 1951). The only Einstein–Maxwell
fields are the Bertotti–Robinson solution (12.16) (Y = const), and the
special pp-wave (§§24.5 and 12.5)

ds2 = Y 2(u)(dx2 + dy2)− 2du dr (15.18)

(which is flat for Y,uu = 0).

15.4.3 Generalized Birkhoff theorem

From the results obtained hitherto in this section we see that all the
Einstein–Maxwell fields (including Λ-terms) admitting a group G3 on V2
have (at least) one additional Killing vector.

Theorem 15.5 Metrics with a group G3 of motions on non-null orbits V2
and with Ricci tensors of types [(11)(1,1)] and [(111,1)] admit a group G4,
provided that Y,a �= 0 (Cahen and Debever 1965, Barnes 1973a, Goenner
1970, Bona 1988b).

Obviously, this theorem generalizes Birkhoff’s theorem (Birkhoff 1923):
the only vacuum solution with spherical symmetry is the Schwarzschild
solution (Reissner 1916, Droste 1916-17)

ds2 = r2(dϑ2 + sin2 ϑ dϕ2) + (1− 2m/r)−1dr2 − (1− 2m/r)dt2. (15.19)

Note that the additional Killing vector ξ = ∂t of the Schwarzschild so-
lution is spacelike in the T -region (r < 2m). The original formulation of
Birkhoff’s theorem (the only vacuum solution with spherical symmetry is
static) was criticized by Petrov (1963a, 1963b). Petrov’s contribution to
Birkhoff’s theorem is discussed in Bergmann et al. (1965).
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For the Ricci tensor type [(11,2)] the group G3 on V2 does not imply
the existence of a G4: the Vaidya metric (Table 15.1)

ds2 = r2(dϑ2 + sin2 ϑ dϕ2)− 2dudr − (1− 2m(u)/r)du2, (15.20)

m(u) being an arbitrary function of the null coordinate u, has G3 on V2
as the maximal group of motions (unless m = const).

15.4.4 Spherically- and plane-symmetric fields

The spherically-symmetric Einstein–Maxwell field with Λ = 0 is the
Reissner–Nordström solution

ds2 = r2(dϑ2 + sin2 ϑ dϕ2)

+(1− 2m/r + e2/r2)−1dr2 − (1− 2m/r + e2/r2)dt2,(15.21)

which describes the exterior field of a spherically-symmetric charged body
(its form in isotropic coordinates can be found e.g. in Prasanna (1968)).
For e = 0, we obtain the Schwarzschild solution (15.19). We give it here
in various other coordinate systems which are frequently used:
Isotropic coordinates:

ds2 = [1 + m/2r]4[dx2 + dy2 + dz2]− [1−m/2r]2dt2/[1 + m/2r]2,

r = r[1 + m/2r]2 (15.22)

(for isotropic coordinates covering also r < 2m, see Buchdahl 1985).
Eddington–Finkelstein coordinates (Eddington 1924, Finkelstein
1958):

ds2 = r2(dϑ2 + sin2 ϑ dϕ2)− 2du dr − (1− 2m/r)du2,

u = t− ∫ (1− 2m/r)−1dr = t + 2m ln(r − 2m).
(15.23)

Kruskal–Szekeres coordinates (Kruskal 1960, Szekeres 1960):

ds2 = r2(dϑ2 + sin2 ϑ dϕ2)− 32m3r−1e−r/2mdu dv, (15.24)

u = −(r/2m− 1)1/2er/4me−t/4m, v = (r/2m− 1)1/2er/4met/4m.

Lemaitre–Novikov coordinates:

ds2 = Y 2(dϑ2 + sin2 ϑ dϕ2) + [1− εf2(r)]−1(Y ′dr)2 − dτ2,

Ẏ 2 − 2m/Y = −εf2(r)
(15.25)

(ε = 0: Lemâıtre (1933); ε = 1, f2 = (1 + r2)−1: Novikov (1963)).
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Israel coordinates (Israel 1966):

ds2 = 4m2
(
4dx[dy + y2dx/(1 + xy)] + [1 + xy]2 (dϑ2 + sin2 ϑ dϕ2)

)
,

(15.26)
r = 2m(1 + xy), t = 2m (1 + xy + ln |y/x|) .

The plane-symmetric Einstein–Maxwell field (with Λ = 0) either has
Y,aY

,a = 0 and is then given by (12.16) or (15.18), see the discussion
above, or it has Y,aY

,a �= 0 and

ds2 = r2(dx2 + dy2)− 2du dr −
[
e2(u)/r2 − 2m(u)/r

]
du2 (15.27)

(Kar (1926), McVittie (1929), see also (28.43)–(28.44)). To include a cos-
mological constant Λ, a term −Λr2/3 has to be added in the coefficient
of du2 (Theorem 28.7).

For e �= 0, both e and m are constant, and the metric is either static
(r being a spacelike coordinate, −2m/r + e2/r2 > 0, Y,aY

,a > 0), or
spatially homogeneous (−2m/r + e2/r2 < 0, Y,aY

,a < 0), cp. (13.48). By
a transformation of the r-coordinate (15.27) can be transformed into the
form given by Patnaik (1970) and Letelier and Tabensky (1974):

ds2 = Y 2(z)(dx2 + dy2) + 1
2Y

′(z)(dz2 − dt2), (15.28a)

where Y (z) is determined implicitly by the equation

(Y −A)2 + 2A2 ln(Y + A) = −Cz, A,C const. (15.28b)

In the metric (15.28a), the (non-null) electromagnetic field is given by

F12 = C1, F34 = 1
2C2Y

′Y −2, A ≡ 1
2κ0(C

2
1 + C22 )/C. (15.28c)

For e = 0, m is an arbitrary function of u (and the Maxwell field is a
null field). Note that in this case and in (15.18) the Maxwell field does
not share the plane symmetry (Kuang et al. 1987).

The plane-symmetric vacuum solution with Y,aY
,a > 0 is the static

metric

ds2 = z−1/2(dz2 − dt2) + z(dx2 + dy2), z > 0. (15.29)

(Taub 1951), see also (13.51) and (22.7). The case Y,aY
,a < 0 leads to the

Kasner metric (13.53) with p1 = p2 = 2/3, p3 = −1/3,

ds2 = t−1/2(dz2 − dt2) + t(dx2 + dy2), t > 0. (15.30)
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The plane-symmetric vacuum solution with a Λ-term can be written in
the form (Novotný and Horský 1974)

ds2 = sin4/3(az)(dx2 + dy2) + dz2 − cos2(az) sin−2/3(az)dt2,

a ≡ √3Λ/2, Λ > 0.
(15.31)

This solution belongs to the class given by Carter (1968b).
The plane-symmetric pure radiation field

ds2 = z2(dx2 + dy2)− 2du dz + 2m(u)z−1du2 (15.32)

is the subcase e = 0 of the metric (15.27) with a different interpretation.

15.5 Dust solutions

For dust, the group orbits cannot be timelike (Theorem 15.3). We take
the comoving system of reference (15.8), and, as T ab

;b = (µuaub);a = 0
implies ν ′ = 0, we start with

ds2 = Y 2(r, t)[dϑ2 + Σ2(ϑ, k)dϕ2] + e2λ(r,t)dr2 − e2ν(t)dt2, (15.33)

Σ(ϑ, k) being defined as in (15.2). Of the components (15.6) of the Einstein
tensor (to be taken with the upper signs), only G44 = −κ0µ is non-zero.

For Y ′ �= 0, we choose ν = 0 and integrate the field equation G43 = 0 by

e2λ = Y ′2/[k − εf2(r)], ε = 0,±1, (15.34)

f(r) is an arbitrary function, and ε is to be chosen such that e2λ becomes
positive. With (15.34), we obtain a first integral of G33 = 0 by

Ẏ 2 − 2m(r)/Y = −εf2(r). (15.35)

G11 = G22 = 0 are satisfied identically, and G44 = −κ0µ yields

κ0µ(r, t) = 2m′/Y ′Y 2. (15.36)

The differential equation (15.35) can be completely integrated. The solu-
tion for ε = 0 is

t− t0(r) = ±2
3Y

3/2[2m(r)]−1/2, ε = 0, (15.37a)

and for ε �= 0

t− t0(r) = ±h(η)m(r)f−3(r), Y = h′(η)m(r)f−2(r),

h(η) = {η − sin η, sinh η − η} for ε = {+1,−1} . (15.37b)
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Theorem 15.6 The general dust solution admitting a G3 on V2 with
Y ′ �= 0 is given in a comoving system of reference by

ds2 = Y 2(r, t)[dϑ2 + Σ2(ϑ, k)dϕ2] + Y ′2dr2[k − εf2(r)]−1 − dt2, (15.38)

where Y is given by (15.37), and m, f and t0 are arbitrary functions of r
(Lemâıtre 1933, Tolman 1934a, Datt 1938, Bondi 1947).

Note that the radial coordinate is definded only up to a scale
transformation.

Originally, dust solutions were considered only for the case of spherical
symmetry (k = +1), and Y ′ �= 0 was tacitly assumed. Special solutions
contained here are: (i) the Schwarzschild solution (m = const; neither t nor
r are uniquely defined; the choice ε = 0, t0 = r leads to the Lemâıtre form
(15.25)), (ii) the Friedmann dust universes (14.6) and (iii) the solutions
with m = r, −εf2 = a = const and Y given by

t = br +
∫ Y [ x

2r − ax

]1/2
dx, b = const, (15.39)

admitting the homothetic vector ξ = t∂t + r∂r (Henriksen and Wesson
1978, Bona 1988a). There are spherically-symmetric solutions (k = 1)
which recollapse (ε = 1) but have infinite spatial sections T = const
(Bonnor 1985).

For Y ′ = 0, Ẏ �= 0, we choose Y = t (Y = const leads to µ = 0). All
these solutions have the property Y,aY

,a < 0. Now G33 = 0 is integrated
by

e−2ν = at−1 − k (15.40)
and, writing eλ = V e−ν , G11 = G22 = 0 gives the differential equation

V̈ + V̇ (t−1 − 3ν̇) = 0 (15.41)

for V (r, t), which is solved by

V (r, t) = B(r)
∫

t1/2(a− kt)−3/2dt + A(r). (15.42)

If B(r) is zero, we regain the vacuum case. Assuming B(r) �= 0, we can
transform B to unity by a scale transformation of r. Introducing x =eν

as a new variable of integration in (15.42), the final result is the

Theorem 15.7 The general dust solution admitting a G3 on a V2, with
Y ′ = 0, is given in comoving coordinates by

ds2 = t2[dϑ2 + Σ2(ϑ, k)dϕ2] + e2λ(r,t)dr2 − e2ν(t)dt2, e2ν = t/(a− kt),
(15.43)

eλ = e−ν
[∫ eν 2x2dx

1 + kx2
+ A(r)

]
, κ0µ(r, t) = 2(λ̇ + ν̇)/te2ν .
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These solutions are generalizations of the Kantowski–Sachs (k �= 0) and
Bianchi type I (k = 0) solutions given in Chapter 14 (in rescaled timelike
coordinates) and specialize to them for A = const (Ellis 1967).

Ref.: For dust solutions including a cosmological constant, see Lemâıtre
(1933). For a discussion of voids in a Tolman model, see e.g. Sato (1984)
and Bonnor and Chamorro (1990) and the references given there.

15.6 Perfect fluid solutions with plane, spherical or
pseudospherical symmetry

Most of the perfect fluid solutions with a G3 on a spacelike orbit S2 have
been found by specializing at the very beginning to spherical or plane
symmetry. Here we want to discuss some general properties and treat
those approaches which cover all three subcases at one go. The plane-
symmetric case will then be discussed in the following §15.7, and the
spherically-symmetric case in Chapter 16 .

15.6.1 Some basic properties

In dealing with perfect fluid solutions, most authors prefer a comoving
system of reference, i.e. they start from

ds2 = Y 2(r, t)
[
(dx1)2 + Σ2(x1, k)(dx2)2

]
+ e2λ(r,t)dr2 − e2ν(r,t)dt2,

(15.44)
ui = (0, 0, 0, e−ν).

For the field equations we then have to take (15.6) with the upper sign,
and G44 = −κ0µ,G

1
1 = G22 = G33 = κ0p as the only non-zero components

of Gb
a. For the integration procedure, the two equations G43 = 0, i.e.

Ẏ ′ − Ẏ ν′ − Y ′λ̇ = 0, (15.45)

and G11−G33 = 0 (isotropy of pressure) are the most important; the other
two equations may be considered as defining µ and p.

Two simple consequences of T ab
;b = 0 are the relations

p′ = −(µ + p)ν ′, µ̇ = −(µ + p)(λ̇ + 2Ẏ /Y ). (15.46)

Perfect fluid solutions can be classified according to their kinemati-
cal properties, i.e. the 4-velocity’s rotation, acceleration, expansion, and
shear, cp. §6.1. Here the symmetry implies that ωab = 0, so the veloc-
ity field must be hypersurface-orthogonal, and in the coordinate system
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(15.44) the other quantities in question are given by

u̇i = (0, 0, ν ′, 0), Θ = e−ν(λ̇ + 2Ẏ /Y ),

σ11 = σ22 = −1
2σ
3
3 = 1

3e−ν(Ẏ /Y − λ̇).
(15.47)

In particular the static and the shearfree cases have been studied in some
detail (see e.g. Barnes (1973b)), and we shall present the results in the
following subsections.

15.6.2 Static solutions

For static solutions one may regard the two field equations G44 = −κ0µ
and G22 = κ0p as the definitions of µ and p. The field equation G43 = 0 is
satisfied identically, only the condition of isotropy (of pressure), G11 = G33,
remains to be solved. In coordinates

ds2 = L−2(r)
{
R2(r)
[
(dx1)2 + Σ2(x1, k)(dx2)2

]
+ dr2 −G2(r)dt2

}
(15.48)

this condition reads

R(−2GL′R′ + 2GL′′R + LG′R′−G′′LR) = GL(RR′′ + k−R′2). (15.49)

R(r) is an arbitrary function which can be fixed conveniently by a gauge
transformation r = r(r). We do that by demanding that the right-hand
side of (15.49) vanishes, and also introduce a new independent variable
x(r) by x′′/x′ = R′/R, i.e. we take

R = r, x = r2 k = 1
R = 1, x = r for k = 0
R = cosh r, x = sinh r k = −1.

(15.50)

In these variables, the condition of isotropy reads

2GL,xx = LG,xx (15.51)

(see Kustaanheimo and Qvist (1948) for the spherically-symmetric case).
All three subclasses k = 0,±1 are governed by the same differential equa-
tion. Obviously one can prescribe one of the metric functions and then
get the second by solving a linear differential equation.

The metrics (15.50) admit a homothety H = r∂r + at∂t when L =
1, R = A2r2, G = r2−2a, a2 = 2− k/A2.

15.6.3 Solutions without shear and expansion

Because of (15.47), vanishing shear and expansion implies λ̇ = Ẏ = 0;
ν is the only metric function that may depend on t. But as ν̇ enters the
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field equations (see (15.6b) and (15.6c)) only as a coefficient of Ẏ and λ̇,
and ν̈ does not appear at all, no time derivative is contained in the field
equations, which are the same as in the static case. These equations show
that the energy density µ is a function of r alone, whereas the pressure p
may depend on t if ν ′ does.

The solutions in question are therefore either static (all static solutions
are shear- and expansion-free) or can be generated from static solutions
as follows. Take any static solution

ds2 = Y (r)2
[
(dx1)2 + Σ2(x1, k)(dx2)2

]
+ e2λ(r)dr2 − e2νdt2 (15.52)

and replace ν(r) by the general time-dependent solution ν(r, t) of the
condition of isotropy G11 = G33. Introducing N ≡ eν , this condition reads

N ′′Y 2 −N ′(Y Y ′ + Y 2λ′) + N(ke2λ − Y ′2 − Y Y ′λ′ + Y Y ′′) = 0. (15.53)

The functions λ(r) and Y (r) being taken from the static solution, this
is a linear differential equation for N ≡ eν , with coefficients independent
of t, and so its general solution can be written as

eν = N = f1(t)N1(r) + f2(t)N2(r). (15.54)

The functions f1 and f2 are disposable, and N1 and N2 are any two linearly
independent solutions of (15.53). Equations (15.52) and (15.54) give all
non-static, expansion- and shear-free solutions (see Kustaanheimo and
Qvist (1948) and Leibovitz (1971) for the spherically-symmetric case).

15.6.4 Expanding solutions without shear

For σab = 0, but Θ �= 0 it follows from (15.47) that λ̇ must be non-zero.
From λ̇ = Ẏ /Y and (15.45) we infer that

Y = R(r)eλ, eν = λ̇e−f(t), Θ = 3ef(t), (15.55)

where R(r) is an arbitrary function which can be incorporated into eλ, or
fixed conveniently, by a gauge transformation r = r(r). The condition of
isotropy G11 −G33 = 0 can then be written as

∂

∂t

[
eλ(−k −RR′′ + R′2 −R2λ′′ + RR′λ′ + R2λ′2)

]
= 0 (15.56)

and is integrated by

−k −RR′′ + R′2 −R2λ′′ + RR′λ′ + R2λ′2 = e−λϕ(r)R−2(r) (15.57)
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(Wyman 1946, Narlikar 1947, Kustaanheimo and Qvist 1948). We choose
the function R(r) and introduce a new independent variable x(r) as in
the static case in (15.50). Written in terms of the function L(x, t) = e−λ,
equation (15.57) then leads to the differential equation

L,xx = F (x)L2, F (x) = ϕ(r)(x,r)−2, (15.58)

where F (x) is an arbitrary function which is zero if space-time is con-
formally flat. All three subclasses (k = 0,±1) are governed by the same
differential equation (Krasiński 1989, Mészáros 1985) which was originally
found by Kustaanheimo and Qvist (1948) for the spherically-symmetric
case. In terms of L, the line element reads

ds2 = L−2(x, t)
{
R2(r)
[
(dx1)2 + Σ2(x1, k)(dx2)2

]
+ dr2 − L̇2e−2f(t)dt2

}
,

(15.59)

with R and x taken from (15.50). To get a solution, one has to prescribe
f(t) – which fixes the t-coordinate – and F (x), and find a solution L(x, t)
of (15.58), which in general will contain two arbitrary functions of time
which enter via the constants of integration (note that L̇ must be non-
zero). Energy density and pressure can then be computed from

κ0µ = 3e2f − e−2λ
[
2λ′′ + λ′2 + 4λ′R′/R + 3R′′/R

]
,

κ0pλ̇ = e−3λ∂t
[
eλ
(
λ′2 + 2λ′R′/R + R′′/R

)− e3λ+2f
]
.

(15.60)

The differential equation (15.58) has been widely discussed in the con-
text of the spherically-symmetric solutions, and we refer the reader to
§16.2.2 for a survey of its solutions. Only a few plane- or pseudospheri-
cally-symmetric counterparts of the many spherically-symmetric solu-
tions have been discussed in detail, e.g. McVittie’s solution (16.46) by
Hogan (1990). If an equation of state p = p(µ) is assumed, then the met-
ric is either spherically-symmetric (with F = 0, 1, cp. §16.2.2) or plane-
symmetric (with F = −x2, p = p(t + lnx), and a fourth Killing vector),
see Collins and Wainwright (1983).

15.6.5 Solutions with nonvanishing shear

Solutions with shear but without acceleration
For u̇α = 0, in the comoving system of reference (15.44) ν is a function

only of t, and so is p. The field equation (15.6d) therefore implies

Ẏ ′ = λ̇Y ′. (15.61)
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If Y = const = a, then we have κ0µ = −κ0p = k/a2, and if we choose
ν = 0, the resulting metric is

ds2 = a2
[
(dx1)2 + Σ(x1, k)(dx2)2

]
+ Σ2(t/a,−k)dr2 − dt2, (15.62)

which is a special case of (12.8) with a G6 on V4.

If Y ′ = 0 (Y �= const), then we can choose Y = t, and the remaining
field equations read

κ0µt
2 = 2λ̇te−2ν + k + e−2ν , κ0pt

2 = 2ν̇te−2ν − k − e−2ν ,(15.63a)

κ0p = −e−2ν [λ̈ + λ̇2 − λ̇ν̇ + (λ̇− ν̇)/t]. (15.63b)

These equations closely resemble the static case, cp. §16.1 and equations
(16.2). To solve the field equations, one should realise that although λ′
is in general non-zero, no derivatives with respect to r appear in this
system. So one can e.g. prescribe the function ν(t) and then determine
λ(r, t) = lnW from the condition of isotropy

Ẅ − Ẇ (ν̇ − 1/t) + W (ν̇t− 1− ke2ν)/t2 = 0 (15.64)

by taking any solution W = c1W1(t) + c2W2(t) of this ordinary linear
differential equation for W, and allowing c1 and c2 to become arbitrary
functions of r. One could also start from any solution with λ = λ(t), i.e.
any solution of the Kantowski–Sachs class (§14.3), take the function ν(t)
from this solution and generalize λ as indicated above (Herlt 1996).

An example is the solution

ds2 = t2dΩ2 +
[
A(r)tn + B(r)t−n

]2 dr2 + (1− n2)dt2, (15.65)

which generalizes the Kantowski–Sachs type solution of McVittie and
Wiltshire (1975), with eλ = tn, and includes the similarity solution found
by Ponce de León (1988) as the special case A(r) = ar−n, B(r) = brn.

If Y ′ �= 0, then we can choose ν = 0 and integrate (15.61) by

e2λ = Y ′2/[k − εf2(r)], ε = 0, ±1. (15.66)

From the field equation (16.21b) we obtain

κ0p(t)Y 2 = −2Y Ÿ − Ẏ 2 − εf2(r). (15.67)

Equation (15.6c), with G11 = κ0p, follows from (15.67) by differentiation
with respect to r, and µ can be computed from

κ0µ = −3κ0p(t)− 2Ÿ ′/Y ′ − 4Ÿ /Y. (15.68)
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In (15.67), p(t) can be prescribed, but to avoid zero shear, Ẏ ′Y = Ẏ Y ′ is
forbidden, i.e. Y ′/Y has to depend on the time t.

Substituting Y = Z2/3 into (15.67) leads to

Z̈ + 3
4κ0p(t)Z + εf2(r)Z−1/3 = 0. (15.69)

For p = const, (15.69) can easily be solved by quadratures. For non-
constant p, but ε = 0 (which because of (15.66) is possible only for k = 1,
i.e. in the spherically-symmetric case), one is led to

Z̈ + 3
4κ0p(t)Z = 0 (15.70)

(Bona et al. 1987b). By an appropriate choice of p(t), solutions to (15.70)
can be constructed (choosing the ‘constants of integration’ as arbitrary
functions of r; note that Z ′/Z has to be a function of time to avoid zero
shear). Alternatively (Leibovitz 1971), one can prescribe any function
h(t), take Z as

Z = A(r)h(t) + B(r)h(t)
∫ t

h−2dt (15.71)

and calculate the pressure from (15.70).
Except for the cases treated above, no solutions of (15.69) have been

found, see Herlt (1996) and Soh and Mahomed (1999).

Solutions with shear and acceleration
Metrics of the form

ds2 = A(r, t)
[
dr2 + B(t)

(
(dx1)2 + Σ2(x1, k)(dx2)2

)
− dt2
]

(15.72)

(in comoving coordinates (15.44)) have been considered by Herrera and
Ponce de León (1985) and Kitamura (1994) in the spherically-symmetric
case and by Bogoyavlensky and Moschetti (1982) for A = e2r in the
pseudospherically-symmetric case; also the search for perfect fluids with
a conformal Killing vector orthogonal to the four-velocity and the orbits
of the rotational group for which the fluid inherits the conformal symme-
try led to these metrics, see §35.4.4 (Coley and Tupper 1990b, Kitamura
1994, 1995a, 1995b, Coley and Czapor 1992). For (15.72), the field equa-
tion G43 = 0 gives 2Ȧ′A = 3ȦA′, which is integrated by

A(r, t) = [H(r) + F (t)]−2 . (15.73)

For A′ �= 0, the condition of isotropy G11 = G33 yields the system of
ordinary differential equations

B̈ − 4c1B + 2k = 0, H ′′ − c1H = c2,

ḂḞ − 2c1BF + 2c2B = 0,
(15.74)
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which can easily be integrated; µ and p can then be calculated from the
resulting metric. The solutions (37.57) are included here as a subcase. For
A′ = 0, the acceleration is zero, the metric (15.72) admits the additional
Killing vector ∂r and thus belongs to the Kantowski–Sachs class, see
§14.3. Here one can prescribe e.g. B(t) and then determine F (t) from
B̈F − 2ḂḞ + 2kF = 0.

In a search for solutions with a generalized similarity Collins and Lang
(1987) found a class of solutions given (in comoving coordinates) by

ds2 = r2t2
[
(dx1)2 ± Σ2(x1, k)(dx2)2

]
+

dr2

ar2 − b
− r2t2dt2

c− kt2 − bt4
,

(15.75)
κ0p = κ0µ + 6a.

The solutions (15.75) contain the spherically-symmetric metrics (16.66),
see §16.2.3 for further details, and the plane-symmetric solutions found
by Hajj-Boutros and Léauté (1985).

All solutions of embedding class one, Petrov type D, with acceleration,
given in §37.4.3, admit a G3 on S2.

For a solution in noncomoving coordinates, see (16.77).

15.7 Plane-symmetric perfect fluid solutions

15.7.1 Static solutions

Using (15.51), many static solutions could be obtained from the vast num-
ber of known static spherically-symmetric solutions given in §16.1, but so
far this method has not been exploited.

The plane-symmetric static perfect fluids with a prescribed equation of
state µ = µ(p) are given by (Taub 1956)

ds2 = z2(dx2 + dy2) + zF−1(z)dz2 − e2νdt2, (15.76a)

2zp′/[(µ(p) + p] = 1− κ0pz
3/F = −2zν′, F ′ = −κ0µ(p)z2, (15.76b)

(′ = d/dz, −F is the 2m of (15.7a)). For a given function µ = µ(p), the
differential equations (15.76b) determine F = F (z) and p = p(z) and from
p(z) then ν(z). Equations (15.76b) lead to the condition

p′

p
=

z2 + G′

G

G + z3

z3 −G
, G(z) ≡ −F (z)/κ0p(z) (15.77)

(Hojman and Santamarina 1984). So one may prescribe G(z) and then
obtain p and ν as line integrals. For an equation of state p = (γ− 1)µ the
function G has to be of the form G = Az−γ/(2γ−2) + (2 − γ)z3/(7γ − 6)
(Collins 1985).
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The solution for µ = p is contained in (15.80) as σ = z. A solution for
p = µ/3 was obtained by Teixeira et al. (1977b). In this case the functions
p and F are given by

p = p0z
2(1− z5)2, F = κ0p0(1− z5)3/5. (15.78)

The solution for µ = const was given by Taub (1956) as

ds2 = sin4/3 bw(dx2 + dy2) + dw2 − e2νdt2,
(15.79)

eν = 1− cos bw
2 sin1/3 bw

∫ bw

bw0

dv
sin2/3 v

, κ0µ = 4
3b
2, p = µ(e−ν − 1),

and by Horský (1975) in terms of hypergeometric functions; it contains
(15.31) (κ0µ = −κ0p = Λ) as a special case. Some other special solutions
have been given by Davidson (1987, 1989a). For metrics with a proper
conformal Killing vector see (35.76).

Static plane-symmetric perfect fluids occur also as subcases of the static
cylindrically-symmetric solutions, see §22.2 and the references given there.
They can be constructed by solving (22.23) with a1 = 0, (22.24) with
a0 = 0, or (22.26) with y = z. Similarly, the general solution for an
equation of state p = (γ − 1)µ is contained in (22.27) for a = 0, see also
Bronnikov and Kovalchuk (1979).

15.7.2 Non-static solutions

Besides the classes of solutions described in §15.6, several other classes
have been found by making special assumptions for the metric or the
equation of state.

For p = µ, Tabensky and Taub (1973) reduced the field equation to a
single linear differential equation

ds2 = t−1/2eΩ(dz2 − dt2) + t(dx2 + dy2), t > 0,

Ω = 2
∫
t[(σ2,t + σ2,z)dt + 2σ,tσ,zdz], σ,tt + t−1σ,t − σ,zz = 0,

κ0p = κ0µ = t1/2e−Ω(σ2,t − σ2,z), (κ0p)1/2ui =
√

2σ,i,

(15.80)

(see also Theorem 10.2). For σ = const, we regain the vacuum solution
(15.30), and – taking the negative root in

√
t so that z is the timelike

coordinate – for σ = az, Ω = a2t2 the static solutions. Tabensky and
Taub (1973) also gave the special solution σ = α ln t + β arccos(z/t),
Ω = 2(α2 + β2) ln t + 2β2 ln(1− z2/t2) + 4αβ arccos(z/t). Contained here
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are the solutions (Collins and Lang 1987)

ds2 = r2t2(dx2 + dy2) +
t2Dr4−2D

ar4 + b
dr2 − t2D+2r2−2D

at4 + c
dt2,

b(2D − 3) = 0, a, b, c,D = const
(15.81)

(the special case a = 0 is due to Goode (1980); this case and b = 0 admit
a homothety), the special case of (15.86) mentioned below, and the metric

ds2 = e2bz[U(dz2 − dt2) + sinh(2bt)(dx2 + dy2)],

U = c[sinh(2bt)]m
2/b2 [tanh(bt)]m

√
m2+b2/b2 , c, b,m = const

(15.82)

(Lorenz 1983c).
Collins and Lang (1987) also found the perfect fluids (in comoving

coordinates)

ds2 = r2t2(dx2 + dy2) +
t2Dr2Ddr2

ar4D + brN
− t2D+2r2−2D

c + t4
dt2,

N = 4(D2 −D − 1)/(D − 2), a, b, c,D = const.
(15.83)

They have an equation of state – which then is of the form p = (D −
2)µ/(D + 2) – only if c = 0 (and there is a homothety) or if D = −1/2.

Solutions with an equation of state p = (γ − 1)µ were found by Goode
(1980). In comoving coordinates, they can be written as

ds2 = M(z)4(γ−1)/(2−γ)(t2dz2 − dt2)

+ t(2−γ)/γM(z)−4(γ−1)/3γ−2)(dx2 + dy2), (15.84)

M(z) = A cosh az + B sinh az, a = (2− γ)(3γ − 2)/4γ(γ − 1), A2 �= B2.

They admit a homothetic vector H = x∂x +y∂y +2tγ/(3γ−2)∂t, see also
Carot and Sintes (1997).

Non-barotropic solutions (in comoving coordinates), admitting a homo-
thety, have been found by Carot and Sintes (1997) as

ds2 = exp[b e−2(t−z)]e2z(a2dz2 − dt2) + e2(t+z)(dx2 + dy2), a, b = const.
(15.85)

All solutions of the form

ds2 = dz2 + N2(z)
[
B(t)(dx2 + dy2)− dt2

]
,

NN ′′ −N ′2 = −ka2, B̈ = 4ka2B, (15.86)

κ0(p− µ) = 6N ′′/N, κ0(p + µ) = (B2,t − 4ka2B2)/(2N2B2),
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(comoving coordinates) admit a conformal vector ζ = N(z)∂z, which is
homothetic for N = z. Contained here as k = 0, N = z, B = sinh 2t, is a
metric due to Bray (1983) (with an equation of state µ = p), and as k =
1, N = sinh az, B = sinh 2at, a solution due to Tariq and Tupper (1992).

The metrics

ds2 = dz2 − dt2 + P (z)Q(t)[dx2 + dy2],

κ0(p− µ) = P ′′/P − Q̈/Q, κ0(p + µ) = (Q̇2/Q2 − P ′2/P 2)/2,

with P ′′ = ka2P, Q̈ = −ka2Q, k = 0, ±1, (15.87)

or P (z) = exp(bz2 + c1z), Q(t) = exp(−bt2 + c2t).

are also perfect fluids (in non-comoving coordinates). Contained here as
P (z) = exp z, Q(t) = cos t is a metric found by Bray (1983).

Incompressible fluids (µ = const) have been investigated in Taub
(1956). Davidson (1988) found the special solution (in comoving coor-
dinates)

ds2 = tzm(m−1) [dx2 + dy2
]
− 2dz dt− t−1(z + zmt1/(m−1))dt2. (15.88)

Götz (1988) considered metrics of the form

ds2 = U(z)V (t)
[
dx2 + dy2

]
+ V (t)1−αdz2 − U(z)αdt2 (15.89)

with an equation of state p = (γ−1)µ; the equations for U and V decouple
and can be solved by quadratures.

Following Taub (1972), Shikin (1979) determined implicitly all solutions
of the form

ds2 = Y 2(z/t)[dx2 + dy2] + X2(z/t)dz2 − T 2(z/t)dt2 (15.90)

(in comoving coordinates, and with an equation of state p = (γ − 1)µ)
in terms of quadratures; they admit an additional homothetic vector ξ =
xn∂n.

Plane-symmetric solutions (in non-comoving coordinates) are contained
in the metrics (36.20a) possessing flat slices. Plane-symmetric solutions of
embedding class one have been constructed by Gupta and Sharma (1996a,
1996b). Metrics of plane symmetry also occur as subcases of perfect fluid
solutions admitting a G2 on S2 treated in Chapter 23.



16
Spherically-symmetric perfect

fluid solutions

Contrary to what may be the common belief, only a minority of spherical-
ly-symmetric solutions is known. Most of the known solutions are static
or shearfree, and only very few of them satisfy fundamental physical de-
mands such as a plausible equation of state or the absence of singularities.

16.1 Static solutions

16.1.1 Field equations and first integrals

Static spherically symmetric perfect fluid solutions are hypersurface-
homogeneous space-times, cp. Chapter 13. They have been widely dis-
cussed as models of stars in mechanical and thermodynamical equilibrium.
One often takes Schwarzschild (or canonical) coordinates defined by

ds2 = r2dΩ2 + e2λ(r)dr2 − e2ν(r)dt2, dΩ2 ≡ dϑ2 + sin2 ϑ dϕ2, (16.1)

and the field equations then read

κ0µr
2 = −G44r

2 = [r(1− e−2λ)]′, (16.2a)

κ0pr
2 = G33r

2 = −1 + e−2λ(1 + 2rν ′), (16.2b)

κ0p = G11 = G22 = e−2λ[ν ′′ + ν ′2 − ν ′λ′ + (ν ′ − λ′)/r]. (16.2c)

These field equations should be supplemented by an equation of state

f(µ, p) = 0. (16.3)

From the four equations (16.2)–(16.3), the four unknown functions µ, p, λ
and ν can be determined. Physically, and to get a realistic stellar model,
one should start with a reasonable equation of state and impose some

247
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regularity conditions, see e.g. Glass and Goldman (1978). In practice, to
get analytic expressions for the solutions, the field equations are often
solved by making an ad hoc assumption for one of the metric functions
or for the energy density, the equation of state being computed from the
resulting line element.

The field equations can be cast into various mathematical forms, each
of them admitting different tricks for finding solutions; e.g. one may try
to transform one of the field equations into a linear differential equation,
so that by choosing its coefficients in a suitable way solutions can be
obtained. Often the starting point for constructing exact solutions is the
condition of isotropy (of pressure) G11 = G33, which in full reads

ν ′′ + ν ′2 − ν ′λ′ − (ν ′ + λ′)/r + (e2λ − 1)/r2 = 0. (16.4)

Once a solution (ν, λ) of this equation has been found, one can compute
µ and p from (16.2).

An obvious first integral of (16.2a) is

e−2λ = 1− 2m(r)/r, 2m(r) ≡ κ0

∫ r

µ(r)r2dr, (16.5)

cp. (15.7). Inserting this into (16.2c) one obtains

2r(r − 2m)ν ′ = κ0r
3p + 2m. (16.6)

Eliminating ν ′ by means of (µ + p)ν′ = −p′, which immediately follows
from T ab

;a = 0, one gets

2r(r −m)p′ = −(µ + p)(κ0r3p + 2m). (16.7)

Equations (16.5)–(16.7) can be useful if λ(r) or µ(r) or an equation of
state is prescribed.

Buchdahl (1959) introduced new variables

x = r2, ζ = eν , w = mr−3 ↔ e−2λ = 1− 2xw. (16.8)

Equations (16.4)−(16.7) then yield

κ0µ = 6w + 4xw,x, κ0p = −2w + (4− 8xw)ζ,x/ζ, (16.9)

and the condition of isotropy reads

(2− 4xw)ζ,xx − (2w + 2xw,x)ζ,x − w,xζ = 0. (16.10)

The last equation is a differential equation linear in both ζ and w, and an
analytic expression for one of them may be found if the other is prescribed
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suitably. Moreover, if (by some other method) a solution (ζ, w) is known,
possibly new solutions (ζ̂, ŵ) can be generated by

ζ̂ = ζ, ŵ = w + C(ζ + 2xζ,x)−2 exp
[
4
∫

ζ,x(ζ + 2xζ,x)−1dx
]

(16.11)

(Heintzmann 1969), or by

ŵ = w, ζ̂ = Cζ

∫
ζ−2(2− 4wx)−1/2 dx. (16.12)

Once a solution (ζ, w) of (16.10) is known, λ, µ and p can be computed
from (16.9).

Introducing a new function α by e2λ = (1 + rν ′)2/α, Fodor (2000)
transformed the condition of isotropy (16.4) into a linear equation for α,

r(1 + rν ′)α′ + 2[(1− rν ′)2 − 2]α + 2(1 + rν ′)2 = 0 (16.13)

(see also Burlankov (1993)), which for given ν can be solved by quadra-
tures (or, for prescribed α, gives a quadratic equation for rν ′).

Sometimes isotropic coordinates

ds2 = e2λ(r2dΩ2 + dr2)− e2νdt2 (16.14)

prove useful. In these coordinates, the condition of isotropy of pressure
reads

λ′′ + ν ′′ + ν ′2 − λ′2 − 2λ′ν ′ − (λ′ + ν ′)/r = 0, (16.15)

which is a Riccati equation in either λ′ or ν ′. It can also be written as

LG,xx = 2GL,xx , L ≡ e−λ, G ≡ Leν , x ≡ r2 (16.16)

(Kustaanheimo and Qvist 1948), cp. §15.6.2. This equation is linear in
both L and G, and solutions can be easily found by prescribing one of
these two functions appropriately.

The condition of isotropy (16.15) is invariant under the substitution

ν̂ = −ν, λ̂ = λ + 2ν (16.17)

(Buchdahl (1956), cp. §10.11). This substitution can be used to generate
static perfect fluid solutions from known ones.

Also the general form (15.9) of the line element (Buchdahl 1967, Simon
1994, Roy and Rao 1972) or coordinates with ν(r) = r (Roy and Rao
1972) may make the analytic expression for the solution simple and/or
lead to physically interesting solutions.
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16.1.2 Solutions

The best known of the spherically-symmetric static perfect fluid solutions
is the interior Schwarzschild solution (Schwarzschild 1916b)

κ0µ = 3R−2 = const, κ0p =
3b
√

1− r2/R2 − a

R2(a− b
√

1− r2/R2)
,

(16.18)

ds2 = r2dΩ2 + dr2/(1− r2/R2)−
(
a− b
√

1− r2/R2
)2

dt2.

Solutions with µ = const, but possessing a singularity at r = 0
(exp[−2λ] = 1− c1r

2 + c2/r), have been discussed by Volkoff (1939) and
Wyman (1949). Solutions with a simple equation of state have been found
in various cases, e.g. for µ + 3p = const (Whittaker 1968), for p = µ+
const (Buchdahl and Land 1968), for µ = 3p (Hajj-Boutros 1989), and
for µ = (1 + a)

√
p − ap (Buchdahl 1967). Most of these equations of

state are not very realistic. But if one takes e.g. polytropic fluid spheres
p = aµ1+1/n (Klein 1953, Tooper 1964, Buchdahl 1964) or a mixture of
an ideal gas and radiation (Suhonen 1968), one soon has to use numerical
methods.

Many classes of explicit static solutions are known, most of them being
unphysical. Solutions which have a singularity at r = 0 may nevertheless
be used for outer layers of composite spheres. Tables 16.1 and 16.2 give
the key assumptions (and references for further details) of many of the
known solutions; we have selected those for which µ or the metric functions
are particularly simple. Solutions where exp(−λ + ν) is simple have been
discussed by Whitman (1983). For reviews of known classes of solutions
and a discussion of their properties see Finch (1987), Finch and Skea
(1989) and Delgaty and Lake (1998), where more complicated metrics
can also be found.

Using a Hamiltonian formulation of the field equations, Rosquist (1994)
found the solution

ds2 = Z−1dR2 + W 2dΩ2 − Zdt2, Z = V/W, W = A + B, V = A−B,

A = cosh c sin[ω−(R−R−)]/ω−, B = sinh c sin[(R−R+)]/ω+, (16.19)

p = a(Z2 − 2δZ + 1), µ = a(−5Z2 + 6δZ − 1), ω± =
√

2aκ0(δ ± 1).

Solutions admitting a homothetic vector αt∂t + r∂r (Henriksen and
Wesson 1978) are contained in the case µ = ar−2 of Table 16.2.
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Table 16.1. Key assumptions of some static spherically-symmetric perfect
fluid solutions in isotropic coordinates

ds2 = e2λ(dr2 + r2dΩ2)−e2νdt2; a, b, c, α, β = const.

e−2λ arb Narlikar et al. (1943)
(a + br2)α Nariai (1950), Tolman (1939)(
ar1+α + br1−α

)2 Narlikar et al. (1943)
Nariai (1950)

cr2(1 + arb)4/(1− arb)4 Kuchowicz (1972b)
ra+2/(bra + c)2 Kuchowicz (1972b)

a

(
r2 + b−√3/2
r2 + b +

√
3/2

)√3
Burlankov (1993)

r2(a + b ln r)2 Nariai (1950)
r2(ln br)4/(1 + c ln br)4 Kuchowicz (1972b)
a exp(br2) Kuchowicz (1972a)
a cos(b + cr2) Nariai (1950)

e2ν arb Kuchowicz (1971a, 1972a)
(a + br2)α Nariai (1950), Tolman (1939)

Kuchowicz (1972a, 1973)
Bayin (1978)

c(1 + ar2)2(1− br2)−2 Stewart (1982)
(r2 + a)c(r2 + b)−c Glass and Goldman (1978)

with restr. on a, b, c Goldman (1978)

a

(
1− bδ

1 + bδ

)2
, δ =

(
1 + αr2

1 + βr2

) 1
2

Pant and Sah (1985)

β = 0 : Buchdahl (1964)
aebr Kuchowicz (1972a)
a exp(brα) Kuchowicz (1972a), Bayin (1978)
cosh(a + br2)− 1
cosh(a + br2) + 1

Goldman (1978)

16.2 Non-static solutions

16.2.1 The basic equations

As in § 15.1, we take a comoving frame of reference

ds2 = Y 2(r, t)dΩ2 + e2λ(r,t)dr2 − e2ν(r,t)dt2, ui = (0, 0, 0, e−ν). (16.20)
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Table 16.2. Key assumptions of some static spherically-symmetric perfect
fluid solutions in canonical coordinates

ds2 = r2dΩ2+e2λ(r)dr2−e2ν(r)dt2; a, b,m, α = const, possibly complex.

µ arb Wyman (1949), Kuchowicz (1966)
a− br2 Tolman (1939)

e2ν arb Tolman (1939), Kuchowicz (1968c)
1 + a/r Kuchowicz (1968a)
a + br2 Tolman (1939), Kuchowicz (1968b)
a(r + b)2 Kuchowicz (1967, 1968c)
(a + brn)2, n = 3,±1,−2 Heintzmann (1969)
a(1 + br2)n Heintzmann (1969), Korkina (1981)

Durgapal (1982)
Durgapal et al. (1984)

(1 + br2n)m Paklin (1994)
(ar1−α − br1+α)2 Tolman (1939), Wyman (1949)

Kuchowicz (1968b)(
c1r

2(a+b) + c2r
2(a−b)
)α

, Kuchowicz (1970), Leibovitz (1969)
with restr. on a, b, α Pant and Sah (1982), Pant (1994)(

a + (3k2 + 2k − 1)r2

a + (3k2 − 2k − 1)r2

)k
Orlyanski (1997)

a(5 + br2)2(2− br2) Heintzmann (1969)
r2(a + b ln r)2 Kuchowicz (1968b)
aebr

2
Kuchowicz (1968b), Leibovitz (1969)

e−2λ a Tolman (1939), Kuchowicz (1968b)
ar2 Patwardhan and Vaidya (1943)
arb Kuchowicz (1968b, 1971b)
a + br Kuchowicz (1968c)
a + br2 Kuchowicz (1968b)

Buchdahl and Land (1968)
a− 2r−2 Bayin (1978)
a + brα Tolman (1939), Wyman (1949)

with restr. on a, b, α Kuchowicz (1968a, 1968b)
1 + ar2 + br4 Tolman (1939), Mehra (1966)

Patwardhan and Vaidya (1943)
(1 + ar2)/(1 + cr2) Buchdahl (1959, 1984)

1− 8ar2(3 + ar2)
7(1 + ar2)

Durgapal and Fuloria (1985)

a− 2 ln r Kuchowicz (1968b)
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In this coordinate system, the field equations read (cf. (15.6))

κ0µ =
1
Y 2

− 2
Y

e−2λ
(
Y ′′− Y ′λ′ +

Y ′2

2Y

)
+

2
Y

e−2ν
(
Ẏ λ̇ +

Ẏ 2

2Y

)
, (16.21a)

κ0p = − 1
Y 2

+
2
Y

e−2λ
(
Y ′ν ′ +

Y ′2

2Y

)
− 2

Y
e−2ν
(
Ÿ − Ẏ ν̇ +

Ẏ 2

2Y

)
, (16.21b)

κopY = e−2λ
[(

ν ′′ + ν ′2 − ν ′λ′)Y + Y ′′ + Y ′(ν ′ − λ′)
]

(16.21c)
−e−2ν

[(
λ̈ + λ̇2 − λ̇ν̇

)
Y + Ÿ + Ẏ (λ̇− ν̇)

]
,

0 = Ẏ ′ − Ẏ ν′ − Y ′λ̇. (16.21d)

Many of the known solutions have vanishing shear. In this case, (15.47)
implies the relation Ẏ /Y = λ̇, whose integral is Y = eλg(r). Thus, by a
coordinate transformation r̂ = r̂(r), we can transform (16.20) into

ds2 = e2λ(r,t)(r2dΩ2 + dr2)− e2ν(r,t)dt2, (16.22)

i.e. we can introduce a coordinate system which is simultaneously comov-
ing and isotropic. In (16.22), the r-coordinate is defined up to a transfor-
mation (inversion)

r̂ = 1/r, e2λ̂ = e2λr4. (16.23)

If the shear does not vanish, isotropic coordinates (16.22) can again be
introduced, but they cannot be comoving (and (16.21) no longer hold).

16.2.2 Expanding solutions without shear

Some basic properties
Solutions without shear and expansion are either static or can easily be

generated from static solutions, see §15.6.3.
For expanding solutions without shear it was shown in §15.6.4 that one

can introduce coordinates

ds2 = e2λ(r,t)(r2dΩ2 + dr2)− λ̇2e−2f(t)dt2 (16.24)

and reduce the field equations to the ordinary differential equation

eλ(λ′′ − λ′2 − λ′/r) = −ϕ(r), (16.25)

where ϕ(r) is an arbitrary function. Introducing the variables

L ≡ e−λ, x ≡ r2, (16.26)
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one can write this equation as

L,xx = F (x)L2, F (x) ≡ ϕ(r)/4r2. (16.27)

Because of Ψ2 = 4xL3F/3, the function F (x) characterizes the only non-
vanishing Weyl-tensor component Ψ2 (Barnes 1973b).

As explained in §15.6.4, one has to prescribe the functions f(t) and
F (r2) and to find a solution L(r2, t) of (16.27), which in general will
contain two arbitrary functions of time which enter via the constants of
integration (remember that λ̇ = −L̇/L must be non-zero). Energy density
and pressure can then be computed from

κ0µ = 3e2f − e−2λ(2λ′′ + λ′2 + 4λ′/r), (16.28a)

κ0pλ̇ = e−3λ∂t[eλ(λ′2 + 2λ′/r)− e3λ+2f ] , (16.28b)

the expansion being given by Θ(t) = 3ef(t).

Known classes of solutions of L,xx = F (x)L2

The history of the spherically-symmetric and shearfree solutions is
long, and rich in rediscoveries. To the authors’ knowledge, all known so-
lutions can be found in McVittie (1933), Kustaanheimo and Qvist (1948)
and Wyman (1976), where in the later papers the results of the foregoing
ones are always contained as special cases.

Three different approaches to finding solutions to the field equations
can be distinguished.

The first approach was to make an ad hoc ansatz for the metric func-
tions or for the function F (x). Many solutions have been found this way,
but since the authors did not characterize them invariantly, the same solu-
tions were discovered again and again. We want to mention here McVittie
(1933, 1984), but for the rest refer the reader to the papers by Srivastava
(1987, 1992) and Sussman (1987, 1988a), where many of these solutions
are given and their interrelation is discussed. The properties of some of
these solutions have been discussed by Knutsen, see e.g. Knutsen (1986).

The second approach was to ask for which functions F (x) the equation
admits one (or two) Lie point symmetries or Noether symmetries, and to
use these symmetries for the integration procedure. This approach was
successfully initiated by Kustaanheimo and Qvist (1948), but pursued
further only much later, see e.g. Stephani (1983b), Stephani and Wolf
(1996) and Soh and Mahomed (1999).

The third approach was Wyman’s (1976) search for solutions of L,xx =
F (x)L2 which have the Painlevé property. All known solutions belong to
this class.
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We shall now characterize the known solutions and classify them by
classifying F (x). Following Wyman (1976), we first observe that solutions
of L,xx = F (x)L2 can be obtained from solutions of

d2L̃/d x̃2 = F̃ (x̃) L̃ 2 + px̃ + q (16.29)

via a mapping

dx

d x̃
= ψ̃( x̃ )−2 , L(x) = ψ̃( x̃ )−1 [ L̃ ( x̃ )− H̃(x̃ )], F (x) = ψ̃5(x̃ ) F̃ (x̃),

(16.30)
if the functions ψ̃ and H̃ satisfy

d2H̃
d x̃ 2

= F̃ (x̃ ) H̃2(x̃ ) + px̃ + q ,
d2ψ̃( x̃ )

d x̃ 2
= 2 H̃ (x̃ ) F̃ (x̃) ψ̃( x̃ ) (16.31)

(the group-theoretical background of this transformation has been dis-
cussed by Herlt and Stephani (1992)).

For p = 0 = q, these mappings leave the form of the differential
equation invariant, as d2L/dx2 = F (x)L2 is transformed (mapped) into
d2L̃/dx̃2 = F̃ (x̃) L̃ 2. We may therefore refer to these transformations as
gauge transformations of the function F , as opposed to symmetry trans-
formations which leave the function F fixed.

The general solution of the differential equation (16.29) is known in the
following three cases: for

d2L̃/d x̃2 = L̃ 2 + px̃ + q, p, q = const, (16.32)

where it defines a Painlevé transcendent (and admits no Lie point sym-
metry if p �= 0), and for its subcases

d2L̃/d x̃2 = L̃2 + q (16.33)

(with exactly one Lie point symmetry if q �= 0) and

d2L̃/d x̃2 = L̃2 (16.34)

(with two Lie point symmetries), in which case it leads to elliptic integrals.
Because of the existence of the gauge transformations (16.30)–(16.31), the
solutions are also known if d2L/dx2 = F (x)L2 can be mapped onto one of
these three cases. All known solutions can be obtained by applying these
transformations to the solutions of (16.32)–(16.34).

To decide whether for a given F (x) such a mapping to (16.32), (16.33)
or (16.34) exists, one has to check whether F (x) satisfies

F−2/5
(

2F−2/5 {F−2/5[F−3/5(F−1/5)′′ ] ′
}′

+ F−6/5[(F−1/5)′′ ]2
)′

= −4p,

(16.35)
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2F−2/5 {F−2/5[F−3/5(F−1/5)′′ ] ′
}′

+ F−6/5[(F−1/5)′′ ]2 = −4q (16.36)

or

2F−2/5 {F−2/5[F−3/5(F−1/5)′′ ] ′
}′

+ F−6/5[(F−1/5)′′ ]2 = 0. (16.37)

To find all functions F (x) which belong to one of these three classes,
one can either apply the transformation (16.30)−(16.31), with F̃ = 1, to
each of these three cases (Wyman 1976), or one can solve the relevant
conditions for the existence of one (or two) Lie point symmetries in the
cases where symmetries exist (Stephani and Wolf 1996). Except for the
case (16.35) of the Painlevé transcendent, there is an algorithmic proce-
dure for constructing F (x). The general solution of d2L/dx2 = F (x)L2

for these cases is either also supplied by the transformation procedure, or
by the standard methods of the symmetry approach (§ 10.2).

To summarize: The general solution of d2L/dx2 = F (x)L2 is known
for all functions F (x) that satisfy (16.35) and therefore do not admit
a symmetry, or that satisfy (16.36) and therefore admit one (special)
symmetry, or that satisfy (16.37) or equivalently admit two symmetries.
In each of the last two cases, all functions F (x) can be constructed.

Examples of solvable classes F (x)

The cases most studied in the literature are those which can be gener-
ated from (16.33) or (16.34); they all lead to solutions L(x) which can be
expressed in terms of elliptic functions or their subcases. Examples are:

F (x) = (ax2 + 2bx + c)−5/2 Kustaanheimo and Qvist (1948)

F (x) = a(x− b)−15/7 Wyman (1976) (16.38)

F (x) = a(x− b)−15/7(x− c)−20/7 Srivastava (1987)

The Kustaanheimo–Qvist class of solutions

A rather large class of solutions of (16.27) was found by Kustaanheimo
and Qvist (1948); many of the physically most interesting solutions fall
into this class. They chose

F (x) = ± (ax2 + 2bx + c)−5/2. (16.39)

This F (x) satisfies (16.36) and admits one symmetry. The perhaps sur-
prising power −5/2 can be understood by observing that this form
of F (x) is invariant under the reflection (16.23) and its consequence
F̂ (x) = x−5F (x−1).
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Table 16.3. Some subclasses of the class F = (ax2+2bx + c)−5/2 of solutions

F A,B

McVittie solution (1933)
[
x(x + 4R2)

]−5/2
A = 0

µ = µ(t) (2bx)−5/2, b �= 0 6A = b(3e2f − κ0µ)

Kustaanheimo (1947) 0 12AB = 3e2f − κ0µ

Equation of µ = µ(t) 0 B = εA, ε = 0,±1
state p = p(µ) (Friedmann
Wyman (1946) 1922)

µ = µ(r, t) 1 A = const, B = t
e−2f = −4At

With (16.39), d2L/dx2 = F (x)L2 for F �= 0 leads to

(ax2+2bx+c)2u,xx +2(ax+b)(ax2+2bx+c)u,x +(ac−b2)u = u2, (16.40)

u ≡ ± (ax2 + 2bx + c)−1/2L, (16.41)

which is integrated by∫ du√
2
3u
3 + (b2 − ac)u2 + A(t)

=
∫ dx

ax2 + 2bx + c
+ B(t). (16.42)

The function u = u(x) = u(r2) − which may be expressed in terms of
elliptic functions − gives e-λ = L via (16.41), and choosing f(t), we can
compute the full metric (16.24). For F = 0, (16.27) gives

e−λ = L = A(t)r2 + B(t). (16.43)

Table 16.3 lists some subcases which correspond to special choices of
the functions A(t), B(t) and/or of the real constants a, b, and c. We shall
discuss these subcases in the following paragraphs.

The subclass A(t) = 0
For A(t) = 0, a �= 0, ac− b2 �= 0, and with the notation

ax2 + 2bx + c = a(x− x1)(x− x2), B(t) = 2 lnC(t)/a(x1 − x2), (16.44)

we obtain from (16.42) the solution

e−λ(r,t) = 3
2a
5/2(x1 − x2)2C(t)(r2 − x1)

1−
√

r2 − x1
r2 − x2

C(t)

−2 (16.45)
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(Kustaanheimo and Qvist 1948). It contains, for x1 = 0, x2 = −4R2, the
metric of McVittie (1933)

ds2 = (1 + f)4e g(t) [1 + r2/4R2 ]−2(r2dΩ2 + dr2)− (1− f)dt2/(1 + f),
(16.46)2f = me−g(t)/2 [1 + r2/4R2 ]1/2/r, R = const,

which has been interpreted as a mass in a Robertson–Walker universe
(for a (global) interpretation of the shearfree perfect fluids see Sussman
(1988b)).

For A(t) = 0 and a = 0, one obtains the solution

ds2 = S2(t)(1 + h)4(r2dΩ2 + dr2)− (1− h)2(1 + h2)−2dt2,
(16.47)

h ≡ S−1(t)(αr2 + β)−1/2.

Solutions with a homogeneous distribution of matter µ = µ(t)
If we assume a homogeneous distribution of matter, µ = µ(t), then we

can differentiate the field equation (16.28a) with respect to r and eliminate
λ′′ and λ′′′ by means of (16.25). We obtain 3ϕ + rϕ′ = 0, i.e. because of
(16.27)

F (x) = (2bx)−5/2. (16.48)

To satisfy (16.28a), which requires that e−2λ(2λ′′ + λ′2 + 4λ′/r) depends
only on t, we have to make an appropriate choice of A(t) and B(t) in
the general formula (16.42). The final result is: all shearfree, spherically-
symmetric, expanding perfect fluid solutions with the energy density µ
depending only on t are given by

ds2 = e2λ(r,t)(r2dΩ2 + dr2)− λ̇2e−2f(t)dt2 (16.49)

with

e−λ = A(t) + B(t)r2, 12AB = 3e2f − κ0µ (b = 0) (16.50)

or

e−λ =
√

2bur, b = const �= 0,
(16.51)∫ [

2u3/3 + b2u2 + b(3e2f − κ0µ)/6
]−1/2

du = (ln r)/b + B(t)

(Kustaanheimo 1947). In general, the pressure p will depend on both t
and r; the subcase p = p(t) is contained in the solutions considered in the
following paragraphs.
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Solutions with an equation of state p = p(µ)
Solutions which obey an equation of state have been discussed by

Wyman (1946), and special cases by Taub (1968). Because of (15.46),
(15.47) and ν = ln λ̇− f(t), vanishing shear implies

p′ = −(µ + p)λ̇′/λ̇, µ̇ = −3(µ + p)λ̇. (16.52)

If µ + p vanishes, then µ and p are constant, and the solution in question
is the static vacuum solution of Kottler, see Theorem 15.5 and Table 15.1.
If µ + p is different from zero, but µ′ vanishes (µ = µ(t), p = p(t)), then
we have µ′ = p′ = ν ′ = λ̇′ = 0. We choose the time coordinate t so that ν
is zero, and infer from (16.24) that

λ = λ1(r) + λ2(t), λ̇ = λ̇2 = ef (16.53)

holds. This special time dependence of λ is compatible with (16.24) only
if ϕ = 0 = F. So the solutions with µ = µ(t), p = p(t) are the subcase

e−λ = A(t)[1 + εr2/4], ε = 0,±1, eν = 1 (16.54)

of (16.50). These are exactly the Friedmann-like universes (§14.2).
If neither µ + p nor µ′ vanishes, then λ̇′ is not zero and can be eliminated

from (16.52), which leads to µ̇µ′ = (µ + p)µ̇′. This is integrated by

ln µ̇ = lnM(µ) + ln α̇(t), lnM(µ) ≡
∫

[µ + p(µ)]−1dµ, (16.55)

and in a further step by

H(µ) = α(t) + β(t), H(µ) ≡
∫

M−1(µ)dµ. (16.56)

Choosing the time coordinate so that α = t (α̇ = 0 is prohibited by
µ + p �= 0, λ̇ �= 0 ⇒ µ̇ �= 0, cp. (16.52)), we see that because of (16.56)
and (16.52) the functions µ and λ must have the special t dependence

µ(r, t) = µ(v), λ(r, t) = λ1(v) + λ2(r2), v ≡ t + G(r2). (16.57)

To determine the functions λ1, λ2, G and the function F occurring in the
first integral (16.27), we insert (16.57) into (16.27). Writing

e−λ = L = u(v)l(x), x = r2, (16.58)

we obtain
u̇(G,xxl + 2G,xl,x ) + ul,xx + ülG2,x = u2l2F. (16.59)
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In this equation, only u and its derivatives depend on t. Since by assump-
tion, u̇, l and G,x are non-zero, either u, u̇2 and ü are proportional to each
other (which is impossible), or at least one of the coefficients of these
functions vanishes. From this reasoning, we conclude that

G,xxl + 2G,xl,x = 0, l,xx = 0, ü = const · u2 = l2Fu2G−2
,x (16.60)

holds. One can show that the two cases l = ax+b and l = b are equivalent
(i.e. connected by a transformation (16.23)), and that F = 0 gives µ =
µ(t). So we need only consider the case F = 1, l = const. For this case we
now have to choose the arbitrary functions of integration so that µ and λ
have the functional form (16.57). This is done by specializing (16.42) to

ds2 = e2λ(dr2 + r2dΩ2)− λ̇2(a0 − 4At)−1dt2,∫
(2u3/3 + A)−1/2 du = t + r2, A = const, e−λ = u(t + r2)

(16.61)

(Wyman 1946). One can easily check by computing µ and p from (16.28)
that µ = µ(t + r2) and p = p(t + r2) hold.

Solutions with a homothetic vector or a conformal Killing vector
If a shearfree spherically-symmetric perfect fluid admits a homothetic

vector ξ =r∂r + t∂t = 2x∂x + t∂t, then it can be shown (see Dyer et al.
(1987)) that the function F has to be of the form F = cxn (note that a
rescaling of the x-coordinate by a transformation x̂ = xα is not possible
since the line element (16.24) is not invariant under this transformation).
Since for this case the differential equation (16.22)

L,xx = cxnL2 (16.62)

admits the Lie point symmetry X = 2x∂x−(n+2)L∂L, there always exist
solutions of the form L̂ = t−2(n+2)L(x/t2) which together with ef = t2n+5

lead to metrics admitting a homothetic vector (i.e. the constants of inte-
gration entering into the solution of (16.62) can be chosen as functions of
time appropriately). For the cases n = −5,−5/2,−15/7, in which (16.62)
can be solved in terms of elliptic functions, the explicit metrics were con-
structed by Havas (1992).

Conformal Killing vectors have been found so far only in the (trivial)
case of the conformally flat metrics F = 0 (Sussman 1989).

16.2.3 Solutions with non-vanishing shear

As shown in the preceding subsection, solutions without shear are fairly
well known. In contrast, only a few classes of solutions with shear have
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been found and discussed so far. For a physical approach to the basic
quantities and equations, see Misner and Sharp (1964).

A negative result concerning solutions with shear is due to Thompson
and Whitrow (1967) and Misra and Srivastava (1973): if in the comoving
frame of reference (16.20) the mass density µ is a function only of t, and if
the metric is regular at r = 0 (i.e. Y = 0, Y ′ = eλ), then the four-velocity
is necessarily shearfree.

For solutions with shear but without acceleration, see §15.6.5.

Solutions with shear but without expansion
Because of (15.47), solutions with zero expansion but non-zero shear

have to obey λ̇ = −2Ẏ /Y, Ẏ �= 0. Together with the field equation
(16.21d ), this leads to

ds2 = Y 2dΩ2 + Y −4dr2 − Y 4Ẏ 2f2(t)dt2. (16.63)

Equation (15.46) shows that the mass density µ is a function only of r,
so that the field equations (16.21a)−(16.21b) read

2Y 5Y ′′ + 5Y 4Y ′2 + 3Y −4f−2 + κ0µ(r)Y 2 − 1 = 0, (16.64a)

κ0p = −Y −2 + 5Y ′2Y 2 + 2Ẏ ′Y ′Ẏ −1Y 3 + 3Y −6f−2 + 2ḟf−3Ẏ −1Y −5.
(16.64b)

The condition of isotropy is satisfied if (16.64) are. In (16.64a), µ(r) and
f(t) can be prescribed, and p can be computed from (16.64b) once Y is
known. For constant µ, (16.64a) is integrated by

Y ′2Y 5 − Y −3f−2(t) + κ0µY
3/3− Y = A(t), (16.65)

which can be solved by quadratures (Skripkin 1960).

Solutions with shear, acceleration and expansion
A large variety of spherically-symmetric perfect fluid solutions is to be

expected in this most general class, but only a few special cases have been
treated so far. Some of them have already been given above, see §15.6.5.

Solutions of the form

ds2 = r2[ε/2 + h(t)]dΩ2 + (ε + cr2)−1dr2 − r2dt2/4,

h(t) =


A sin t + B cos t
−t2/4 + 2At + B
A exp(t) + B exp(−t)

for ε =


−1

0
+1

(16.66)

were found by Leibovitz (1971), Lake (1983) and Van den Bergh and Wils
(1985a), and further discussed by Collins and Lang (1987) and Maharaj
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et al. (1993). They have an equation of state κ0p = κ0µ + 6c; the case
c = 0 is also contained in (37.57). They admit a hypersurface-orthogonal
conformal Killing vector (Koutras, private communication).

Marklund and Bradley (1999) gave the solutions

ds2 =
t

r2
dΩ2 +

dr2

a− br2
− r2dt2

4t2(ct2 − t + a)2
, κ0p = κ0µ + 6b. (16.67)

Some authors pursued the idea that a metric may be simple when
written in non-comoving coordinates

ds2 = e2λ(r,t)[f2(r)dΩ2 + dr2]− e2ν(r,t)dt2, un = (0, 0, u3, u4). (16.68)

The field equations then have the form

G11 = G22 = κ0p, G33 = κ0(µ + p)u3u3 + κ0p,

G34 = κ0(µ + p)u3u4, G44 = κ0(µ + p)u4u4 + κ0p.
(16.69)

When solutions to the condition of isotropy

e2λ(G34)
2 + e2ν(G33 −G11)(G

4
4 −G11) = 0 (16.70)

have been found, then µ, p and the components u3 and u4 of the four-
velocity can be computed from (16.69). Narlikar and Moghe (1935) gave
some classes of solutions (in isotropic coordinates, (16.68) with f = r, and
with G34 �= 0), which – when corrected – read

ν = λ + ln(r/t)− ln a, λ(r/t) = g(x), x = r/t,
(16.71)

(a2 + 1)g′′ − (a2 − 1)(g′2 + g′/x)− a2/2x2 = 0,

ν = −λ, λ = 1/hr + lnh + c1 + (c2 − a2t)/ah, h = at + b, (16.72)

eν = a(ln r + t + b), λ = t, (16.73)

ν = 0, eλ = aec1t/r2 + bec2t. (16.74)

McVittie and Wiltshire (1977) found the following classes of solutions:

ds2 = A(dr2 + r2dΩ2)−A2dt2, A = (ar2 + bt)2/3, (16.75)

ds2 = exp [2α(r) + 2ψ(t)] (dr2 + dΩ2 − dt2), (16.76)
α,rr − (a + 1)α2,r + 1/2 = 0, ψ,tt − (a + 1)ψ2,t/a− 1/2 = 0,

ds2 = e2btS2(1 + aS)
[
dr2 + Σ2(r, k)dΩ2

]
− (1 + aS)4/3dt2,

(16.77)
S = Σ−2(r/2, k)te−2bt,
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(with Σ(r, k) as in (15.3)), see also Bonnor and Knutsen (1993) and Knut-
sen (1995).

Vaidya (1968) studied (non-comoving) metrics of the form

ds2 = r2dΩ2 + dr2/[1− κ0µ(r, t)r2/3]− e2νdt2, (16.78)

but no new explicit solutions were found.
Spherically-symmetric solutions are also contained in the solutions

(36.20) possessing flat slices.



17
Groups G2 and G1 on non-null orbits

17.1 Groups G2 on non-null orbits

17.1.1 Subdivisions of the groups G2

The groups G2 can be divided into several subclasses depending on the
properties of the (appropriately chosen) two Killing vectors which (a) do
commute or not, (b) are orthogonally transitive or not, (c) are hypersur-
face-orthogonal or not. We shall discuss these alternatives now in turn.

(a) The normal forms of the space-time metrics in the commuting (G2I)
and in the non-commuting case (G2II) (§8.2) are given by (Petrov 1966,
p. 150)

G2I : gij = gij(x3, x4), ξ = ∂1, η = ∂2, (17.1)

G2II : gij =


e−2x2

a11 e−x2
a12 e−x2

a13 0
e−x2

a12 a22 a23 0
e−x2

a13 a23 a33 0
0 0 0 e4

 , (17.2)

aij = aij(x3, x4), e4 = ±1, ξ = ∂1, η = x1∂1 + ∂2.

The 2-surfaces of transitivity (group orbits) spanned by the two Killing
vectors ξ and η are spacelike or timelike respectively when the square of
the simple bivector ξ[aηb] is positive or negative.

The general field equations, both for G2I and G2II, for space-times
admitting a group G2 of motions are very complicated to solve and no
exact solutions have been obtained for either of the metrics (17.1), (17.2)
without additional simplifications. The further restrictions imposed may
be degeneracy of the Weyl tensor, or special properties of the Killing vec-
tor fields (see below), or an additional homothetic vector. The symmetry

264



17.1 Groups G2 on non-null orbits 265

groups of the known algebraically special solutions have only partially
been investigated, and we cannot completely answer the question of which
of the algebraically special solutions (Part III) admit a G2 or G1 on non-
null orbits. Some remarks concerning the link between groups of motions
and Petrov types are contained in Chapter 38.

(b) A restriction which is often imposed is the existence of 2-surfaces
orthogonal to the group orbits (orthogonally transitive group). The Killing
vectors then obey the relations

ξ[a;bξcηd] = 0 = η[a;bηcξd] (17.3)

(see (6.13) and §19.2). An invertible Riemann–Maxwell structure in gen-
eral implies the existence of an Abelian G2 which is orthogonally transi-
tive (Debever et al. 1979; see also Duggal 1978). Solutions which are not
orthogonally transitive are rarely considered; they occur, however, when
three Killing vectors are present and a second pair satisfies (17.3), see
§§22.2 and 23.3.3 for examples.

(c) Hypersurface-orthogonal Killing vectors satisfy the more stringent
condition ξ[a;bξc] = 0 = η[a;bηc] which, of course, implies (17.3). They
usually occur as subcases of the general case. Note that for two non-
null orthogonally transitive Killing vectors none or both are hypersurface-
orthogonal (cp. (17.4)).

17.1.2 Groups G2I on non-null orbits

There are several physically interesting classes of solutions admitting an
Abelian group G2 on non-null orbits; because of their importance and
the large amount of relevant material, they will be divided into sepa-
rate chapters. The stationary axisymmetric fields (Chapters 19–21 and
34) have timelike group orbits T2. The classes with spacelike group or-
bits S2 (time-dependent cylindrically-symmetric fields and their station-
ary subclasses, colliding plane waves with their typical dependence on the
retarded/advanced time, and inhomogeneous perfect fluid solutions) will
be treated in Chapters 22, 23, 25and 34. In the boost-rotation-symmetric
space-times (§17.2), the group orbits have different characters (timelike
or spacelike) in different regions. In this chapter we restrict ourselves to
some general facts and to the boost-rotation-symmetric space-times.

If an orthogonally transitive group G2I acts on non-null orbits V2, the
space-time metric can be written in the form

ds2 = eM (dz2 + εdt2) + W [e−Ψdy2 − εeΨ(dx + Ady)2], W > 0, (17.4)

where all functions are independent of x and y. The orbits are spacelike
for ε = −1, and timelike for ε = +1. The function W is invariantly defined
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by W 2 := −2εξ[aηb]ξaηb. An equivalent form of the metric is

ds2 = eM (dz2 + εdt2) + l(z, t)dy2 + 2m(z, t)dydx− εn(z, t)dx2. (17.5)

In general, the x–y part of the metric is described by three independent
functions l, m, n. If, however, these three functions obey a linear relation

al + 2bm− cεn = 0 (17.6)

(with constant coefficients a, b, c), then the metric can be simplified by
means of a linear transformation

x = αx̃ + βỹ, y = γx̃ + δỹ, αδ − βγ �= 0, (17.7)

leading to

m̃ = γδl + (αδ + γβ)m− αβεn, −εñ = γ2l + 2αγm− α2εn,
(17.8)

l̃ − εñ = (δ2 + γ2)l + 2(αγ + βδ)m− (α2 + β2)εn.

Comparing (17.6) and (17.8), one sees that three cases occur, depending
on the relation of ∆ = ac − b2 to the corresponding discriminants for
the three equations of (17.8), see MacCallum (1998) and the references
given there. If ∆ < 0, then m̃ (or, equivalently, A in (17.4)) can be made
zero: the metric admits two hypersurface-orthogonal Killing vectors. If
∆ = 0, then εñ can be transformed to zero (and to have the correct
signature of space-time, ε is −1): the metric admits a null Killing vector.
If ∆ > 0, then l̃ − εñ can be made zero; this case corresponds to a pair
of complex conjugate hypersurface-orthogonal Killing vectors, and the
metric can be written as

ds2 = eM (dz2+dt2)+W
[
(cos Ψdy + sin Ψdx)2 − (cos Ψdx− sin Ψdy)2

]
.

(17.9)
For A = 0 = Ψ one regains from (17.4) the plane-symmetric line element
(15.10).

For the Ricci tensor of the metric (17.4), see e.g. Wainwright et al.
(1979). For later use we only give the relation

R1
1 + R2

2 = −e−MW−1(W,33 + εW,44) = −κ0(T33 + T4
4), (17.10)

where the coordinates are labelled as xa = (x, y, z, t).
In some cases (vacuum fields, Einstein–Maxwell fields with F ∗

abξ
aηb = 0,

perfect fluids with p = µ for ε = −1), the energy-momentum tensor obeys
the condition

T3
3 + T4

4 = 0. (17.11)
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Then (17.10) shows that for ε = −1 we obtain the general solution

W = f(u) + g(v),
√

2u = t− z,
√

2v = t + z, (17.12)

with arbitrary functions f(u) and g(v), and for ε = +1 W is analytic.
In the vacuum case with A = 0 in (17.4) (diagonal form of the metric),

the function Ψ obeys the linear differential equation

(WΨ,3),3 + ε(WΨ,4),4 = 0 (17.13)

(see also §25.2), and the rest of the field equations determine M in terms
of a line integral.

In most applications (e.g. for stationary axisymmetric gravitational
fields or colliding plane waves) the condition (17.3) for orthogonal tran-
sitivity follows from other physical assumptions. The more general case
when the metric with two commuting Killing vectors is not reducible to
block-diagonal form has been investigated by Gaffet (1990). In that paper
the field equations and a corresponding Lagrangian were derived, reduc-
tions gave rise to several cases of integrability, either by quadratures, or
by elliptic functions, and a non-orthogonally transitive generalization of
Weyl’s static metrics (§20.2) was obtained.

Non-orthogonally transitive metrics with a preferred null direction
(e.g. a pure radiation source) have been discussed by Kolassis and
Santos (1987).

17.1.3 G2II on non-null orbits

The case of the non-Abelian group G2II has been considered in the liter-
ature only occasionally. A reason for that may be that the Lorentz group
does not possess a G2II as a subgroup so that a G2II will not occur
within asymptotically flat solutions, in agreement with the result derived
by Carter (1970).

Kolassis (1989) formulated the necessary and sufficient conditions for a
space-time to admit a G2I or a G2II in the context of the modified spin
coefficient formalism of Geroch et al. (1973) (§7.4).

Aliev and Leznov (1992a, 1992b) have rewritten Einstein’s vacuum
equations in the form of a covariant gauge theory in two dimensions.
A special solution of the field equations is the metric AII in Table 18.2
(all metrics with pseudospherical symmetry admit a G2II, cp. §8.6.2); a
second ansatz reduces the problem to an ordinary differential equation,
and a third ansatz leads to a solution with an additional timelike Killing
vector.

An example of an algebraically special vacuum solution is provided by
(38.6). Perfect fluid solutions with a G2II are considered in Chapter 23.
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Phan (1993) found a Petrov type I vacuum solution admitting a G2II
with Killing vectors ∂x and x∂x − ∂y and a homothetic vector ∂y − ∂t. It
reads

ds2 = 2e2ydx2 +
8z
3

e−2tdy2 +
e−2t

z

[(
dz

2zA
+

dy
B

)2
− (dt−Hdy)2

]
,

A(z) =
√

[(2z − 1)2 + 2] /8z, B(z) =
√

3/4z, (17.14)

H(z) = 1 + 2A(z)/B(z).

Orthogonal transitivity and spacelike orbits of the group G2II reduce
the metric (17.2) to the simpler form

ds2 = eM (dz2 − dt2) + W [eΨ(e−ydx + Ady)2 + e−Ψdy2], (17.15)

where the metric functions M,Ψ, A and W (W > 0) depend only on z
and t. The line element (17.15) differs from (17.4) only by the factor e−y.
Bugalho (1987) has shown that the vacuum field equations imply that Ψ
and A in (17.2) are necessarily constants and that the resulting solutions
are pseudospherically-symmetric, i.e. they admit at least one additional
Killing vector. The same is true for perfect fluids for which µ+p > 0 with
the four-velocity orthogonal to the group orbit.

17.2 Boost-rotation-symmetric space-times

In Minkowski space-time, the generators of rotations around the z-axis
and of boosts along the z-axis commute; hence these two symmetries
form an Abelian group G2I of motions. Accordingly, curved space-times
are called boost-rotation-symmetric if they admit, in addition to the
hypersurface-orthogonal Killing vector describing axial symmetry, a
second Killing vector which becomes a boost in the flat-space limit. The
corresponding symmetries are compatible with gravitational radiation
and asymptotic flatness. In axially-symmetric space-times, the only
allowable second symmetry that does not exclude radiation is boost
symmetry. The proof (Bičák and Schmidt (1984), for corrections see
Bičák and Pravdová (1998)) uses the asymptotic form of the Killing
equations near future null infinity I+ in Bondi coordinates.

Asymptotically flat radiative space-times with boost-rotation symme-
try were systematically investigated by Bičák and Schmidt (1989) (this
review article and the papers by Schmidt (1996) and Bičák (1997) may
also be consulted for global aspects of the boost-rotation symmetry). In
accordance with the metric (17.4) and the field equation W,uv = 0, see
(17.10), the canonical form of the metric considered by these authors in
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the context of boost-rotation-symmetric space-times is given by

ds2 = −eλdu dv + 1
4(v − u)2e−µdϕ2 + 1

4(v + u)2eµdχ2. (17.16)

The metric functions µ = µ(u, v) and λ = λ(u, v), which are defined for
0 < v0 ≤ v < ∞ and u0 ≤ u ≤ u1, u < v, u �= −v, have to satisfy the
conditions (for fixed u)

lim
v→∞λ(u, v) = λ0(u), lim

v→∞µ(u, v) = κ = const. (17.17)

The vacuum field equations reduce to a flat-space wave equation for µ,[
∂u∂v + (v2 − u2)−2(v∂u − u∂v)

]
µ = 0. (17.18)

Once µ is given, λ can be determined, by a line integral, from

∂vλ =
(v2 − u2)

4v
(∂vµ)2 − u

v
∂vµ, ∂uλ = −(v2 − u2)

4u
(∂uµ)2 − v

u
∂uµ.

(17.19)

The wave equation (17.18) is just the integrability condition of (17.19). By
means of suitable solutions of the wave equation (17.18) one can construct
a large class of solutions with boost-rotation symmetry, the C-metric be-
ing a member of this class.

The solution given by Bonnor and Swaminarayan (1965) is another fa-
mous example of a boost-rotation-symmetric space-time. It describes the
gravitational field of two independent pairs of particles that are uniformly
accelerated along the axis of symmetry in opposite directions and that are
symmetrically located with respect to the plane z = 0.

The Bonnor−Swaminarayan solution is given by the metric

ds2 = e2λ
dρ2 + dz2

2r
+ e−2Ũ

ρ2

r + z
dϕ2 − e2Ũ (r + z)dt2, r2 = ρ2 + z2,

Ũ = −m1/r1 −m2/r2 + const, rA
2 = ρ2 + (z − bA)2, A = 1, 2,

(17.20)
2λ = −m1

2ρ2

r14
− m2

2ρ2

r24
+ 4m1m2

ρ2 + (z − b1)(z − b2)
r1r2(b1 − b2)2

+ 2m1r/b1r1 + 2m2r/b2r2 + const, bA,mA = const(real).

By means of the inverse of the transformation

Z =
√
r + z cosh t, R =

√
r − z, T =

√
r + z sinh t, Φ = ϕ, (17.21)

the metric (17.20) may be transformed into

ds2 = e2λdR2 + R2e−2ŨdΦ2 (17.22)

+(Z2 − T 2)−1[e2λ(ZdZ − TdT )2 − e2Ũ (ZdT − TdZ)2],
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Z

T

Fig. 17.1. Accelerated particles. The world lines of particles are dashed

with Ũ and λ from (17.20). The Killing vectors ξ = T∂Z + Z∂T and
η = ∂Φ generate an Abelian group G2; ξ is timelike for Z2 > T 2, but
spacelike for Z2 < T 2.

For λ = 0 = Ũ , the metric (17.22) reduces to flat space-time,

ds2 = dR2 + R2dΦ2 + dZ2 − dT 2. (17.23)

The part of Minkowski space for which Z2 > T 2, Z > 0 (the hatched
region in Fig. 17.1) can be transformed with the aid of (17.21) into Weyl’s
canonical coordinates ((19.21) with A = 0)

ds2 = e−2U [e2k(dρ2 + dz2) + ρ2dϕ2]− e2Udt2. (17.24)

The metric coefficients U and k in (17.24) given by

e2U = e2U0 = r + z, e2k = (r + z)/2r, r = (ρ2 + z2)1/2. (17.25)

lead to flat space-time. The metric (17.20) belongs to the Weyl class and
the function U in (17.24), which for vacuum fields satisfies the linear
flat-space potential equation ∆U = 0, is the linear superposition of the
potential U0 = 1

2 ln(r + z) for flat space-time and the potential Ũ given
in (17.20) for the field of two point particles.

In the region Z2 > T 2, Z < 0, two additional (mirror) particles appear.
The additive constants in U and λ may be chosen so that two particles
of positive mass are moving freely, whereas the other two particles are
either connected by stress singularities on the axis or the singularities
extend from these two particles to infinity. By appending an appropriate
mass at infinity (Ernst 1976) these singularities can be removed. This has
been done by Bičák et al. (1983a, 1983b) for the solution (17.20) and for
a general freely falling pair of particles.

The world lines of the point particles are Z = ±(T 2 + 2bA)1/2, R = 0.
The point sources moving with uniform acceleration do not remain in
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a finite region of space for all times. Consequently, the solution (17.20)
cannot serve as a model describing the emission of gravitational waves
from an isolated source. Nevertheless, the Bonnor−Swaminarayan solution
is radiative.

Similarly, the C-metric (§18.6) can be interpreted as the field of two
black holes uniformly accelerated in opposite directions (Kinnersley and
Walker 1970). Bonnor (1983) transformed the line element given for the
C-metric in Table 18.2 into Weyl’s form (17.24), extended the manifold
and arrived at the interpretation of the gravitational field of two parti-
cles uniformly accelerated by a spring between them. Cornish and Utt-
ley (1995) presented a simplified version of Bonnor’s approach. There is
a close analogy of the C-metric with the Born solution for accelerated
charges in electrodynamics.

Ernst (1978b) applied his procedure summarized by (20.21), (20.22) to
derive the generalized C-metric

ds2 = r2
[
eλ(F+G)exp(−λ2r4AB)(dx2/A + dy2/B) + eλ(G−F )Adz2

− eλ(F−G)Bdt2
]
, F = Ar2 + mx, G = Br2 + my, (17.26)

A = 1− x2 −mx3, B = y2 −my3 − 1, r = (x + y)−1, λ,m = const.

In this boost-rotation-symmetric solution the nodal singularity of the orig-
inal C-metric can be eliminated by an appropriate choice of the additional
parameter λ which is related to the external gravitational field that causes
the acceleration of the particles (Dray and Walker 1980).

It can be shown (Valiente Kroon 2000) that all the solutions in §29.2.6
are boost-rotation-symmetric as the asymptotic form of at least two of
their Killing vectors is the same as those of the C-metric.

Bičák and Pravda (1999) investigated some properties of the twisting
generalization of the C-metric which can be interpreted as a radiative
space-time with accelerating and rotating black holes.

17.3 Group G1 on non-null orbits

Stationary gravitational fields (Chapter 18) admit a timelike Killing vec-
tor. The reduction formulae for the Ricci tensor derived in §18.2 for a
timelike Killing vector also hold in the case of a spacelike Killing vector.

For vacuum and some restricted classes of perfect fluids, the generation
procedure outlined in §10.3.2 can be used to obtain a one-parameter fam-
ily of solutions from any seed solution admitting a G1, see e.g. Garfinkle
et al. (1997) for applications.
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In contrast to the case of a null Killing vector (§24.4), it is very difficult
to solve Einstein’s field equations without any further assumptions. In
this section we consider special assumptions which lead to solutions ad-
mitting a group G1 (on non-null orbits). Such solutions will also appear
in Chapters 26–33, e.g. as subcases of algebraically special metrics.

Harrison (1959) started with the metrical ansatz (‘linked pairs’ form)

gij = eiδijA
2
i (x

1, x4)B2i (x3, x4) (no summation),
(17.27)

e1 = e3 = 1, e2 = ±1, e2e4 = −1,

and obtained a series of exact vacuum solutions admitting a group G1.
The spacelike (or timelike) Killing vector ξ = ∂2 (or ξ = ∂4) is hypersur-
face-orthogonal. The separation of variables in the particular form (17.27)
either leads to solutions in closed form or reduces the problem to an
ordinary differential equation. We give one example from each of these
cases for illustration.
Solution in closed form:

ds2 =
4∑
i=1

eia
2
i [(x

4)2 + x1]ni(x3)2ki(dxi)2, (17.28)

i 1 2 3 4

ni 1 +
√

2 −√2 2 +
√

2 1 +
√

2
ki (1 + 2

√
2)/7 (2− 3

√
2)/7 0 1

ai c = const 1 (3−√2)/7 1

Solution in non-closed form:

ds2 =
4∑
i=1

ei

[
x1√

3
− (x4)2

12

]ni [
exp
∫

vdz
z

]ki
(−z)li

(
v2 − 1
z − 1

)mi

(dxi)2,

dv
dz

=
v2 − 1

4z

(
2v

z − 1
+

4√
3

)
, z = x3, (17.29)

i 1 2 3 4

ni 1 +
√

3 −√3 3 +
√

3 2 +
√

3
ki 1 + 2/

√
3 −1 1 + 2/

√
3 1 + 2/

√
3

li −(1 + 1/
√

3) 1/
√

3 −(2 + 1/
√

3) −1/
√

3
mi 0 0 0 1
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The complex transformation x2 → ix4, x4 → ix2 takes (17.28) and
(17.29) into static solutions. However, not every Harrison solution with a
spacelike Killing vector has a (real) static counterpart.

Because of their analytical complexity, the metrics given by Harrison
have been checked by computer (d’Inverno and Russell-Clark 1971). Al-
together there are 17 vacuum solutions – including (17.28), (17.29) –
which are of non-degenerate Petrov type I and do not admit a Gr, r > 1
(Collinson 1964). The ansatz (17.27) also leads to solutions, mostly of
type D, which belong to the Weyl class of static fields (§20.2) or to the
class of Einstein−Rosen waves (§22.3).

By means of a separation ansatz which is similar to (but not identical
with) ansatz (17.27), Harris and Zund (1978) obtained a class of (type I)
vacuum solutions admitting (at least) a G1. These solutions have been
investigated by MacCallum (1990).

Vandyck (1985) considered time-dependent generalizations of Weyl’s
class (§20.2) in the sense that the metric functions in

ds2 = e2K
[
(dx1)2 + (dx2)2

]
+ W 2e−2Udϕ2 − e2Udt2 (17.30)

are allowed to depend on the three variables x1, x2 and t, and correspond-
ing generalizations of the Einstein–Rosen class (§22.3), and proved that
all vacuum solutions of that kind necessarily admit an Abelian G2.

Fackerell and Kerr (1991) reformulated the vacuum equations with
one spacelike Killing vector. The vacuum field equations imply that
there is a Ricci collineation (§35.4) in the 3-space Σ3 of Killing tra-
jectories (§18.1) and the metric of Σ3 can be represented in terms of
potentials. In particular, the case where the Ricci collineation vector
generates a proper homothetic motion in Σ3 leads to Petrov type III
solutions of Robinson–Trautman type, cp. (28.15). Solutions admit-
ting a homothetic vector are also considered by Lun et al. (1988) and
Singleton (1990).

If a vacuum space-time admits a Killing vector ξ with a null bivector
ξa;b, then space-time is algebraically special and of Kundt’s class (Chap-
ter 31), Petrov type III being excluded and type N leading to pp-waves;
if a vacuum space-time admits a geodesic Killing vector ξ, then ξ is the
null eigenvector of an algebraically special metric (Debney 1971).

Hoenselaers (1978a) found a class of vacuum solutions with a non-null
Killing vector which are algebraically special, see also Hoenselaers and
Skea (1989); the corrected form of the line element can be found in Hoense-
laers (1992). Taking the norm F and the twist potential ω of the Killing
vector (see Chapter 18) as coordinates and assuming ω,nω

,n = 0 = F,nω
,n,
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the resulting metrics are

ds2 = F

(
dx + Pdω + ω

dF
F

)2
+

1
F

[
2dω(dr −Mdω −NQ

dF
F

) +
dF 2

Q2

]

M = 1
2ABQr2 − Cr + M0, Q = (A

√
F + B/

√
F )2, (17.31a)

N = −rFQ,F , P = lnF +
1 + 2AF/B

ABF 2 + B2F
− 2A

B3
log (A + B/F ) .

A(ω) and B(ω) are arbitrary functions, and C(F, ω) and M0(F, ω) can be
obtained by performing the quadratures

Q∂FC = 1
2∂F (Q,ω)−Q,ωQ,F /Q, F∂F (QM0) = h,

(17.31b)
FQ∂Fh = −∂ω(Q,ω/Q) + (Q,ω/Q)2 − CQ,ω/Q + F−2/2,

ω being a null coordinate, and the metrics (17.31) belong to Kundt’s class
(Chapter 31).

It should be remarked that the Hauser type N twisting vacuum solution
given in §29.3 also admits only one Killing vector (and one homothetic
Killing vector).

For perfect fluid solutions with a maximal G1 see §23.4.
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Stationary gravitational fields

Stationary gravitational fields are characterized by the existence of a time-
like Killing vector, i.e. one can choose coordinates so that the metric is
independent of a timelike coordinate. A stationary space-time is said to
be static if the Killing vector is hypersurface-orthogonal.

In §§18.1–18.3 we derive the field equations from a projection formal-
ism using differential geometric concepts. Some methods outlined for sta-
tionary fields, e.g. the projection formalism (§18.1) or geodesic eigenrays
(§18.5) also apply, with slight changes, to the case with a spacelike Killing
vector.

Only in a few cases are exact stationary solutions without an additional
symmetry known. They are given in §§18.5, 18.7 and 17.3. The stationary
fields admitting a second Killing vector describing axial symmetry will be
treated in the subsequent chapters.

18.1 The projection formalism

A stationary space-time invariantly determines a differentiable 3-manifold
Σ3 defined by the smooth map (§2.2) Ψ : M→ Σ3 (Geroch 1971), where
M is the space-time V4 and Ψ = Ψ(p) denotes the trajectory of the
timelike Killing vector ξ passing through the point p of V4. The elements
of Σ3 are the orbits of the one-dimensional group of motions generated
by ξ. The 3-space Σ3 is called the quotient space V4/G1.

Only in the case of static gravitational fields is there a natural way
of introducing subspaces V3 (orthogonal to the Killing trajectories). The
quotient space Σ3 provides a generalization applicable to stationary, as
well as static, space-times; it must be regarded as the image of a map
rather than a hypersurface in V4.

275
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Geroch (1971) has shown in detail that there is a one-to-one correspon-
dence between tensor fields on Σ3 and tensor fields T ...b

a... on V4 satisfying

ξaT ...b
a... = 0, ξbT

...b
a... = 0, LξT ...b

a... = 0. (18.1)

Tensors on V4 subject to these conditions are called tensors on Σ3; the
algebra of the space-time tensors satisfying (18.1) is completely and
uniquely mapped to the tensor algebra on Σ3. Examples of tensors on
Σ3 are the projection tensor hab (the metric tensor on Σ3) and the Levi–
Civita tensor εabc on Σ3, where

hab = gab − ξaξb/F, εabc = εdabcξ
d/
√−F , F ≡ ξaξ

a. (18.2)

The derivative on Σ3 defined by

T ...b
a...||e ≡ hca . . . h

b
dh

f
eT

...d
c...;f (18.3)

satisfies all the axioms for the covariant derivative associated with the
metric hab. In particular, it is symmetric (torsionfree) and the metric
tensor hab is covariantly constant, hab||c = 0.

The Riemann curvature tensor on Σ3 can be calculated from the iden-
tity (cp. (2.78))

va||bc − va||cb = vdR
3

dabc, (18.4)

v being an arbitrary vector field on Σ3. The curvature tensors on Σ3 and
V4 are related by the equation

R
3

abcd = hp[ah
q
b]h

r
[ch

s
d] {Rpqrs + 2(ξq;pξs;r + ξr;pξs;q)/F} (18.5)

(Lichnerowicz 1955, Jordan et al. 1960). In order to simplify our expres-
sions we define the twist vector ω:

ωa = εabcdξbξc;d, ωaξa = 0, Lξω = 0. (18.6)

Applying (3.38) for complex self-dual bivectors to ξ∗a;b = ξa;b + i ξ∼a;b, we
obtain the simple relation

2ξa;b = F−1(εabcdξcωd + 2ξ[aF,b]) (18.7)

for the covariant derivative of the Killing vector with respect to the space-
time metric gab, so that such terms can be eliminated from (18.5).

For practical calculations, it is convenient to take a coordinate system
adapted to the congruence ξ = ∂t:

ds2 = hµνdxµdxν + F (dt + Aµdxµ)2,

gµν = hµν + F−1ξµξν , gµ4 = ξµ = FAµ, g44 = ξ4 = F.
(18.8)
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18.2 The Ricci tensor on Σ3
First we introduce a complex vector Γ on Σ3,

Γa = −2ξcξ∗c;a = −F,a + iωa, Γaξa = 0, LξΓ = 0. (18.9)

With the aid of (8.22) and the symmetry relations (2.80) of the curva-
ture tensor it can easily be verified that the equations

ξ∗a;b
;b = −Radξ

d, ξ∗a;b = −F−1(ξ[aΓb])
∗ (18.10)

hold. Taking the divergence of the complex vector Γ gives

Γa
;a = Γa||a + 1

2F
−1FaΓa = −F−1ΓaΓa + 2ξaξbRab. (18.11)

The real and imaginary parts of this equation are

F ,a||a = 1
2F

−1F,aF ,a − F−1ωaωa − 2ξaξbRab, (18.12)

ωa||a = 3
2F

−1F,aωa. (18.13)

Equation (18.12) expresses the component ξaξbRab of the Ricci tensor in
V4 in terms of tensors and their covariant derivatives on Σ3. In order to
derive an analogous formula for the components hacξ

bRab, we calculate the
curl of ω:

ω[b||a] = εsmnr(ξmξn;r);chc[ah
s
b] = 2ξmξdR∼

dcmsh
c
[ah

s
b]

(18.14)
= −2ξdR∼

d[ab]mξm = εabmnξ
mRn

dξ
d.

The result of this short calculation is the formula

(−F )−1/2εabcωc||b = 2habR
b
cξ
c. (18.15)

From this equation we conclude that the vanishing of the components
habR

b
cξ
c implies that, at least locally, the twist vector ω is a gradient,

ωa = ω,a (see Theorem 2.1).
Finally, we can derive the formula

R
3

ab = 1
2F

−1F,a||b − 1
4F

−2F,aF,b + 1
2F

−2(ωaωb − habωcω
c) + hma hnbRmn

(18.16)

by a straightforward calculation in which we insert (18.7) into (18.5),
contract (18.5) for the curvature tensor with the projection tensor and
apply some of the previous relations of the present section.

Equations (18.12), (18.15) and (18.16) express the Ricci tensor of a
stationary space-time in terms of tensors and their derivatives on the 3-
space Σ3. All the equations are written in a four-dimensionally covariant
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manner and refer to a general basis {ea} of V4. Nevertheless, they are in
fact three-dimensional relations. If we take a basis such that

{ea} = {eα, ξ}, eα · ξ = 0, (18.17)

ξ being the Killing vector, then (18.15) and (18.16) give just the tetrad
components with respect to the 3-basis {eα} in Σ3.

For a specified Ricci tensor, Rab = κ0(Tab − Tgab/2), the Einstein field
equations are equivalent to the system of differential equations (18.12),
(18.13), (18.15), (18.16).

Given a four-dimensional manifold M, a vector field ξ on M (with
prescribed contravariant components), and a solution (hab, F, ωa) of these
field equations, we can find the corresponding stationary metric

gab = hab + F−1ξaξb, (18.18)

for which ξ is the timelike Killing vector field.
That the quantities ξa (covariant components!) can be calculated from

(hab, F, ωa) is proved as follows. The 1-form F−1ξadxa can be determined
up to a gradient,

F−1ξa → F−1ξa + χ,a, χ,aξ
a = 0, (18.19)

from (18.7),
2(F−1ξ[a);b] = F−2εabcdξcωd, (18.20)

if the exterior derivative of the bivector (F−1ξ[a);b] vanishes, i.e. if

ξd(ωa
;a − 2F−1F,aωa) + ωaξd;a − ξaωd

;a = 0. (18.21)

Since Lξω is zero, (18.21) gives, as the integrability condition for (18.20),
precisely (18.13).

If (18.13) is satisfied, the quantities ξµ (covariant components of ξ) in
the line element (18.8) can be obtained from (18.20), which, in this special
coordinate system, takes the form

2A[µ;ν] = (−F )−3/2εµνρωρ (18.22)

(metric hµν). The remaining freedom in the choice of the gauge function
in (18.19) is irrelevant; it corresponds simply to a transformation of the
time coordinate, t→ t + χ(xµ).

18.3 Conformal transformation of Σ3 and the field equations

Equation (18.16) containing second derivatives of F can be simplified
considerably by applying a conformal transformation of Σ3:

Σ3 → Σ̂3 : γab ≡ ĥab = −Fhab. (18.23)
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According to (3.87), the Ricci tensor R
3

ab of Σ3 is connected with the Ricci
tensor R̂ab of Σ̂3 by the formula

R̂ab = R
3

ab− 1
2F,a||b/F+ 3

4F,aF,b/F
2− 1

2hab(F,c
||c− 1

2F
−1F,cF ,c)/F. (18.24)

We insert this equation into (18.16) and denote covariant derivatives with
respect to γab by a colon in front of the index. Then we arrive at

Theorem 18.1 The complete set of Einstein equations for stationary
fields takes the form

R̂ab= 1
2F

−2(F,aF,b+ωaωb)+κ0(hcah
d
b −F−2γabξcξd)(Tcd− 1

2Tgcd), (18.25)

F,a
:a = F−1γab(F,aF,b − ωaωb) + 2κ0F−1ξaξb(Tab − 1

2Tgab), (18.26)

ωa
:a = 2F−1γabF,aωb, (18.27)

ε̂abcωc,b = −2F−1κ0habT
b
c ξ

c. (18.28)

Rácz (1997) gave these equations also for the case of a spacelike Killing
vector and studied their interrelations.

18.4 Vacuum and Einstein–Maxwell equations
for stationary fields

For stationary vacuum fields, (18.28) implies the existence of a twist po-
tential ω with ωa = ω,a (Papapetrou 1963). The real functions F and ω
can be combined to form a complex scalar potential (cp. (18.9))

Γ = −F + iω. (18.29)

Scalar potentials play an important role in a procedure for generating
solutions. This question is discussed in Chapters 10 and 34. In terms of
Γ, (18.25)–(18.27) reduce to

R̂ab = 1
2F

−2Γ,(aΓ,b), Γ,a
:a + F−1γabΓ,aΓ,b = 0. (18.30)

Theorems on the existence and uniqueness of asymptotically flat station-
ary vacuum solutions are proven in Reula (1989).

For stationary Einstein–Maxwell fields, one can introduce a complex
potential Φ by

1
2

√
2κ0 ξaF ∗

ab = Φ,b, Φ,aξ
a = 0, F ∗ab

;b = 0, (18.31)
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provided that the Lie derivative of the Maxwell tensor vanishes. With the
energy-momentum tensor (5.7),

Tab = 1
2F

∗c
a F ∗

bc,
√

2κ0 F ∗
ab = 4F−1(ξ[aΦ,b])

∗, (18.32)

the right-hand side of the field equation (18.28) takes the form

κ0h
a
bξ

cF ∗bd F ∗
cd =

√
2κ0 habF

∗bdΦ,d
(18.33)

= 2iF−1εadbcξbΦ,cΦ,d = 2iF ε̂abc(ΦΦ,c),b.

Thus we conclude from (18.28) that the combination ωc + 2iΦΦ,c is a
gradient (Harrison 1968). It is convenient to introduce a complex scalar
potential, the Ernst potential E , by the equation (Ernst 1968b)

E,a ≡ −F,a + iωa − 2ΦΦ,a, Re E = −F − ΦΦ. (18.34)

The existence of the potential E is guaranteed, in a similar manner to
that of the potential Φ in (18.31), by the equations

ξaK∗
ab = E,b, E,aξa = 0, K∗ab

;b = 0, K∗
ab = −2ξ∗a;b −

√
2κ0 ΦF ∗

ab. (18.35)

Now we insert the expressions

hcah
d
bRcd = 2F−1 [Φ,(aΦ,b) − 1

2γabΦ
,cΦ,c

]
, ξaξbRab = Φ,cΦ

,c
, (18.36)

into the field equations and substitute for ωa with the aid of (18.34).

Theorem 18.2 (Harrison 1968, Neugebauer and Kramer 1969) The field
equations for stationary Einstein–Maxwell fields outside the sources reduce
to the following system of equations, referred to the metric γab:

R̂ab = 1
2F

−2(E,(a + 2ΦΦ,(a)(E ,b) + 2ΦΦ,b)) + 2F−1Φ,(aΦ,b), (18.37)

E,a:a + F−1γabE,a(E,b + 2ΦΦ,b) = 0, (18.38)

Φ,a
:a + F−1γabΦ,a(E,b + 2ΦΦ,b) = 0. (18.39)

The sourcefree Maxwell equations are equivalent to (18.39), the field equa-
tions (18.25)–(18.27) have been written in terms of the complex potential
E in the form (18.37)–(18.38), and the field equation (18.28) is automat-
ically satisfied by introducing the complex potential E .

By specialization of the potentials E and Φ we can describe the different
physical situations given in Table 18.1.

The potentials E and Φ can also be introduced when electromag-
netic and material currents, which are everywhere parallel to the Killing
vector,

j[aξb] = 0 = u[aξb], (18.40)
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Table 18.1. The complex potentials E and Φ for some physical problems

Physical problem E Φ

Stationary Einstein–Maxwell fields Complex Complex
Electrostatic Einstein–Maxwell fields Real Real
Magnetostatic Einstein–Maxwell fields Real Imaginary
Stationary vacuum fields Complex 0
Static vacuum fields Real 0
Conformastationary 0 ComplexEinstein–Maxwell fields (§18.7)

are present. In this case, the (generalized Poisson) equations for E and Φ
read

E,a:a + F−1E,aΓa = ξaT
a, Φ,a

:a + F−1Φ,aΓa = 1
2

√
2κ0ξaja,

(18.41)
ja = σua, T a = −κ0ξ

a[3p + µ +
√

2(−κ0F )−1/2σΦ ].

Theorem 18.3 Stationary asymptotically flat and asymptotically source-
free Einstein–Maxwell fields are static provided that the currents satisfy
the condition (18.40) everywhere.

The proof uses (18.41) and Stokes’s theorem, see Carter (1972).

18.5 Geodesic eigenrays

Assuming the existence of a timelike Killing vector, the Einstein field
equations have been written as equations in a three-dimensional space.
It is also possible to develop a (three-dimensional) triad formalism and
a corresponding spinor technique (Perjés 1970) in the three-dimensional
Riemannian space Σ3 of the Killing trajectories.

In a stationary space-time, a null congruence k normalized by kaξ
a = 1

determines a spacelike unit vector n by

na = ka − F−1ξa, nana = 1, naξa = 0, Lξn = 0. (18.42)

One can introduce a triad {eα} = (n,m,m) orthogonal to ξ. Applying
the conformal transformation (18.23), we rewrite the geodesic condition
on k in the form of an equation for n over Σ̂3 (metric γab),

kbka;b = 0 ⇔ Fnbna:b + F,a − nan
bF,b + ε̂abcω

bnc = 0. (18.43)

An eigenray n is defined by the equation

F,a − nan
bF,b + ε̂abcω

bnc = 0. (18.44)
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In the case of static gravitational fields (§18.6), there are two different
eigenrays given by

na = ±(F,bF ,b)−1/2F,a. (18.45)

From (18.43) we infer that an eigenray n is geodesic in Σ̂3 if and only if
the null congruence k is geodesic in V4,

kbka;b = 0 ⇔ nbna:b = 0 ⇔ κ = na:bm
anb = 0. (18.46)

The shear σ of an eigenray is defined by

σ = na:bm
amb, nam

a = 0, mam
a = 1. (18.47)

One can show that the existence of geodesic and shearfree eigenrays (κ =
σ = 0) implies that space-time admits a geodesic and shearfree null con-
gruence. All stationary vacuum solutions with geodesic shearfree eigenrays
are given in Horváth et al. (1997). The stationary vacuum solutions ad-
mitting geodesic (but not necessarily shearfree) eigenrays are completely
known (Kóta and Perjés 1972). The geodesic eigenray conditions (18.44),
(18.46) allow the integration of the field equations in a three-dimensional
version of the Newman–Penrose formalism. The three resulting vacuum
metrics with geodesic shearing eigenrays (Kóta–Perjés solutions) are:

ds2 = f−1
[
f0(r1−adx2 + r1+ady2)+ dr2

]
− f
[
dt +

√
2Qxdy +f−1dr

]2
,

f = f0(ra + Q2r−a)−1, f0 = P (x + Qy), a = 1/
√

2, (18.48)

ds2 = f−1
[
f0(r1−adx2 + r1+ady2)+ dr2

]
− f
[
dt− ax2y dy +f−1dr

]2
,

f = f0(y2ra + x2r−a)−1, f0 = P (x + Qy), a = 1/
√

2, (18.49)

ds2 =
r2p + B2

2rp
(
2λ−1dr2 + r1−qdx2 + r1+qdy2

)
− λrp(dt− pBx dy)2

r2p + B2
,

(18.50)

where P, Q, B, λ, p and q are real constants with p2 + q2 = 1. The last
solution (18.50) admits two Killing vectors, ∂t and ∂y, and belongs to
Papapetrou’s class (§20.3). For Q = 0, the metric (18.48) admits the
homothetic vectorH = r∂r+ 1

3(a+1)(x∂x+2t∂t)+ 1
3(1−2a)y∂y. The given

vacuum solutions with shearing geodesic eigenrays arise also as solutions
of the vacuum Kerr–Schild problem, cp. §32.2.

All vacuum solutions with κσ = 0 are known and it was proved by
Horváth and Lukács (1992) that stationary vacuum solutions with κ = c1,
σ = c2 do not exist unless both constants c1 and c2 are zero.
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Lukács (1973, 1983) gave all vacuum metrics with a spacelike Killing
vector and shearing geodesic eigenrays. These metrics are very similar
to (18.48) and (18.49). The stationary Einstein–Maxwell fields for which
the shearing geodesic eigenrays of the Maxwell and gravitational fields
coincide are given by Lukács and Perjés (1973). In this case the potentials
E and Φ can be gauged so that E = qΦ, q = const (Lukács 1985). For
dust solutions, see Lukács (1973).

18.6 Static fields

18.6.1 Definitions

A stationary solution is called static if the timelike Killing vector is
hypersurface-orthogonal,

ξ(a;b) = 0, ξ[aξb;c] = 0, ξaξa < 0. (18.51)

We mention an equivalent characterization: in a static space-time there
is a vector field u with the properties (Ehlers and Kundt 1962)

ua;b = −u̇aub, ü[aub] = 0, uaua = −1 (18.52)

(a dot means∇u). Locally static space-times in the sense of this definition
can be globally stationary (Stachel 1982). From (6.25), (6.26) we obtain
the equation

u̇au̇c + u̇a;c + üauc = ubudRdabc, (18.53)

the antisymmetric part of which tells us that u̇ is a gradient, u̇a = U,a.
Therefore, ξ = eUu is a hypersurface-orthogonal Killing vector field.

In §6.2 we have shown that the Weyl tensor of a static space-time is of
Petrov type I, D or O. The vector u satisfying (18.52) is a principal vector
of the Weyl tensor and an eigenvector of the Ricci tensor. The tensor Qac

defined in (3.62) is purely real, and the traceless symmetric matrix Q can
be transformed to a diagonal form with real eigenvalues with the aid of
orthogonal tetrad transformations preserving the principal vector u.

Equations (18.25)–(18.27) reduce to

R̂ab = 2U,aU,b + hcah
d
bRcd − e−4UγabξcξdRcd,

U,a
:a = e−4UξaξbRab, F = − e2U .

(18.54)

In particular, the vacuum field equations have the remarkably simple form

R̂ab = 2U,aU,b. (18.55)

The potential equation U,a
:a = 0 follows from (18.55) in virtue of the

contracted Bianchi identities for R̂ab. It can easily be verified that R̂ = 0
implies Rabcd = 0.
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The spacelike hypersurfaces (space sections) orthogonal to the Killing
vector are totally geodesic, i.e. geodesics in the space sections are simul-
taneously geodesics of the space-time. In general, in a static space-time
there exists only one Killing vector satisfying (18.51); the space sections
are uniquely determined by the metric.

In a coordinate frame with ξ = ∂t the line element has the structure

ds2 = dσ2 − e2Udt2, dσ2 = hµνdxµdxν = e−2Uγµνdxµdxν , (18.56)

the metric functions being independent of the time coordinate t. The
preferred coordinate system (18.56) is unique up to purely spatial trans-
formations, xν

′
= xν

′
(xµ), and linear transformations of t with constant

coefficients, t′ = at + b.

18.6.2 Vacuum solutions

All degenerate (type D) static vacuum fields are known. They are given
in Table 18.2, together with the simple eigenvalue λ of the Weyl tensor.
All these metrics admit at least an Abelian G2 and belong to the class of
solutions investigated by Weyl (§20.2).

The degenerate static vacuum solutions were originally found by
Levi-Civita (1917a). The invariant classification into the subclasses of
Table 18.2 is given in Ehlers and Kundt (1962). Classes A and B are
connected by the complex substitution t → iϕ, ϕ → it. The fields of
classes A and B admit an isometry group G4 and an isotropy group I1.
The ‘C-metric’ admits an Abelian group G2 of motions. The spacelike
(class A) or timelike (class B) surfaces determined by the eigenbivectors
of the curvature tensor (§4.2) have constant Gaussian curvature. AI is the
Schwarzschild solution (15.19). Classes A and B are included in (13.48)
and its timelike counterpart.

The Harrison metrics (§17.3) include some static non-degenerate
(type I ) vacuum solutions.

18.6.3 Electrostatic and magnetostatic Einstein–Maxwell fields

Restriction to electrostatic fields,

Φ = χ, E = e2U − χ2 (18.57)

(χ is the electrostatic potential), or magnetostatic fields,

Φ = iψ, E = e2U − ψ2 (18.58)

(ψ is the magnetostatic potential), simplifies the differential equations
(18.37)–(18.39) for stationary Einstein–Maxwell fields outside the sources.
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Table 18.2. The degenerate static vacuum solutions

Class Metric Eigenvalue λ

A
AI ds2 = r2(dθ2 + sin2 θdϕ2) + (1− b/r)−1dr2 −br−3

−(1− b/r)dt2

AII ds2 = z2(dr2 + sinh2 rdϕ2) + (b/z − 1)−1dz2 bz−3
−(b/z − 1)dt2

AIII ds2 = z2(dr2 + r2dϕ2) + zdz2 − z−1dt2 z−3

B
BI ds2 = (1− b/r)−1dr2 + (1− b/r)dϕ2 −bz−3

+r2(dθ2 − sin2 θdt2)
BII ds2 = (b/z − 1)−1dz2 + (b/z − 1)dϕ2 br−3

+z2(dr2 − sinh2 rdt2)
BIII ds2 = zdz2 + z−1dϕ2 + z2(dr2 − r2dt2) z−3

C ds2 = (x + y)−2[dx2/f(x)− dy2/f(−y)
(‘C- +f(x)dϕ2 + f(−y)dt2] ±(x + y)3

metric’) f(x) = ±(x3 + ax + b) > 0

In the electrostatic case, the equations read

R̂ab = 2(U,aU,b − e−2Uχ,aχ,b), (18.59a)

U,a
:a = e−2Uγabχ,aχ,b, χ,a

:a = 2γabU,aχ,b. (18.59b)

The equations governing magnetostatic fields follow from (18.59) by the
substitution χ→ ψ.

The simplest way to find solutions to these differential equations is the
assumption of a relationship U = U(χ) between the potentials U and χ.
This ansatz and (18.59b) imply

e2U = 1− 2cχ + χ2, c = const, (18.60)

or, in parametric representation:

c2 > 1 : χ = −(c2 − 1)1/2 cothY + c, e2U = (c2 − 1) sinh−2 Y,
c2 < 1 : χ = −(1− c2)1/2 cotY + c, e2U = (1− c2) sin−2 Y,
c2 = 1 : χ = −Y −1 + 1, e2U = Y −2.

(18.61)

From (18.61) it follows that the field equations (18.59) reduce to R̂ab =
±Y,aY,b for c2 �= 1, and to R̂ab = 0, Y,a

:a = 0 for c2 = 1. The class
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c2 = 1 of static fields (without spatial symmetry) is a special case of the
conformastationary Einstein–Maxwell fields given in §18.7.

Das (1979) considered the field equations when both electro- and mag-
netostatic fields are present and proved that in a static space-time the
electric and magnetic field vectors must be parallel to each other. Elec-
trovac solutions which admit a vector field u satisfying the condition

hcah
d
b u̇c;d = 0 (18.62)

are treated in Srinivasa Rao and Gopala Rao (1980). Inserting (18.60)
into the field equations with charged perfect fluid sources (see (18.41))
one obtains (Gautreau and Hoffman 1973)

cσ = 1
2

√
2κ0 ε; (18.63)

the charge density σ divided by the active gravitational mass density
ε = (3p + µ)eU + σχ is a constant.

We end this section with

Theorem 18.4 There are no static Einstein–Maxwell fields with an elec-
tromagnetic null field (Banerjee 1970).

18.6.4 Perfect fluid solutions

Barnes (1972) determined all static degenerate (type D or O) perfect
fluid solutions by a method closely analogous to that for vacuum fields.
The metrics admitting an isotropy group I1 are already contained in
Chapters 13, 15 and 16. The metrics without an isotropy group are

ds2 =
1

(x + y)2

{
dx2

f(x)
+

dy2

h(y)
+f(x)dϕ2−h(y)

[
A

∫
h−3/2dy +B

]2
dt2
}

,

(18.64)
f(x) = ±x3 + ax + b, h(x) = −f(−x)− κ0µ/3, µ = const;

ds2 = (n + mx)−2
{
F−1(x)dx2 + F (x)dϕ2 + dz2 − x2dt2

}
,

(18.65)
F (x) = a(n2 lnx + 2mnx + m2x2/2) + b, m = ±1, 0, x > 0;

ds2 = N−2(z)
{
G−1(x)dx2 + G(x)dϕ2 + dz2 − x2dt2

}
,

(18.66)
G(x) = ax2 + b lnx + c, x > 0, N(z)′′ = −aN(z);

(a, b, c,m, n,A,B real constants). Metrics (18.64) and (18.66) admit an
Abelian group G2; metric (18.65) admits a G3. For vanishing pressure and
energy density, (18.64) goes over into the ‘C-metric’ of Table 18.2.
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The class of conformastat (in the sense of (18.67) below) perfect fluid
solutions was studied by Melnick and Tabensky (1975) and later recon-
sidered by Basu et al. (1990). The conformastat form (18.67) requires no
assumption about symmetry. However, further investigation reveals that
all conformastat perfect fluid solutions admit a G4 and are spherically-
symmetric solutions equivalent to metrics discussed in §16.2 or are their
plane- or pseudospherically-symmetric counterparts (Bonnor and Mac-
Callum 1982, Karlhede and MacCallum 1982).

The conjecture that all static stellar models must be spherically-
ymmetric was proved only for perfect fluids with uniform mass density µ
(Lindblom(1980, 1981)).

Internal symmetries of the field equations can be used to generate per-
fect fluid solutions with the equation of state p = µ or µ+3p = 0 according
to (10.29)–(10.32).

18.7 The conformastationary solutions

Conformastat metrics (see Synge 1960, p. 339) form the subclass of static
fields which admits conformally flat 3-spaces orthogonal to the Killing
vector ξ = ∂t. The conformastat line element can be written in the form

ds2 = Ψ4(x, y, z)(dx2 + dy2 + dz2)− e2U(x,y,z)dt2. (18.67)

The curvature scalar of the conformally flat spaces t = const is

R
3

= −8Ψ−5∆Ψ. (18.68)

Generalizing the notion of conformastat metrics (18.67) one can consider
stationary space-times with a conformally flat 3-space Σ3 introduced in
§18.1; in the coordinate system (18.8) the 3-metric is assumed to be con-
formally flat, hµν = Ψ4δµν (cp. (18.67)). We call space-times with this
property conformastationary.

18.7.1 Conformastationary vacuum solutions

With the aid of the complex-triad method (§18.5) Lukács et al. (1983)
attacked the problem of finding the conformastationary vacuum solutions
and determined the metrics in the special case when the real and imagi-
nary parts of the Ernst potential E depend on each other,

E,[aE ,b] = 0 ⇔ E = E(E). (18.69)

The solutions obtained are the NUT-solution (20.28) and two closely re-
lated metrics; the static limits of these solutions are the class A metrics
in Table 18.2. In the generic case one has



288 18 Stationary gravitational fields

Theorem 18.5 All conformastationary vacuum solutions which do not
satisfy (18.69) have axial symmetry (Perjés 1986a).

For stationary axisymmetric metrics, Perjés (1986b) solved the condition
for conformal flatness of the 3-spaces Σ3 (the Cotton–York tensor Cαβ as
defined in (3.89) has to vanish). The calculations are facilitated by using
the Ernst potential E and its complex conjugate (provided that they are
independent) as two of the local space coordinates (Ernst coordinates)
(Perjés (1986c, 1988)). The final result can be formulated as

Theorem 18.6 Conformastationary vacuum space-times are always
characterized by the relation (18.69) (Perjés 1986b).

Hence the famous Kerr solution is not conformastationary; instead it is
characterized by the property that the Simon tensor defined by

Sβ
α = f−2εµνβ

(
E,α;µE,ν − hαµh

ρσE,ρ;[σE,ν]
)
, f = Re E (18.70)

(Simon 1984) is zero, Sβ
α = 0. (In the definition of the Simon tensor Sβ

α,

the metric operations refer to the metric γµν of Σ̂3, cp. (18.8).)
Starting with this condition, Perjés (1985b) integrated (in Ernst co-

ordinates) the stationary vacuum equations and found that, apart from
some exceptional cases, the Kerr–NUT solution is the only zero Simon
tensor solution. The Simon tensor Sβ

α is a complex generalization of the
conformal tensor Cαβ defined in (3.89). For static fields (E real), the con-
ditions Sβ

α = 0 and Cαβ = 0 are equivalent; for proper stationary fields
they differ. Krisch (1988) classified the vacuum solutions with zero Simon
tensor in terms of a Frenet tetrad.

18.7.2 Conformastationary Einstein–Maxwell fields

An interesting class of stationary Einstein–Maxwell fields without spatial
symmetry is characterized by the 3-space Σ̂3 being flat,

ds2 = e−2U (dx2 + dy2 + dz2)− e2U (dt + Aµdxµ)2. (18.71)

This conformastationary metric results from (18.8) with hµν = e−2Uδµν .
The field equations (18.37)–(18.39) show that the particular choice

R̂ab = 0, E = 0, Φ−1
,a
:a = 0 (18.72)

is possible. In the class characterized by (18.72) the functions U and Aµ

in the line element (18.71) can be determined from a solution V = Φ−1
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of the potential equation ∆V = 0 in the flat 3-space Σ̂3 via the relations
(18.34) and (18.22), i.e. in three-dimensional vector notation,

e2U = (V V )−1, curlA = i(V gradV − V gradV ), ∆V = 0. (18.73)

This class of solutions was discovered by Neugebauer (1969), Perjés
(1971), and Israel and Wilson (1972). The fields are static if curlA = 0. In
particular, purely electric fields (Φ = Φ) are static. Papapetrou (1947) and
Majumdar (1947) have given this special class of static Einstein–Maxwell
fields without spatial symmetry.

The asymptotic form of the electromagnetic potentials and the space-
time metric shows that the source of the class under consideration satisfies
|Q| =

√
κ0/2M , µ = ±√κ0/2J (M = mass, Q = charge, µ = magnetic

moment, J = angular momentum). The conformastationary solutions are
the exterior fields of charged spinning sources in equilibrium under their
mutual electromagnetic and gravitational forces.

The linearity of the differential equation for V allows a superposition
of solutions. An example of an exterior field of N isolated sources will be
given in (21.29).

If the geometry is regular outside the sources, the condition∫
S

(V gradV − V gradV )df = 0 (18.74)

is satisfied for every exterior closed 2-surface S. From this regularity condi-
tion one can derive restrictions on the source parameters which guarantee
that no stresses between the spinning sources occur (Israel and Spanos
1973). For a discussion of the regularity conditions in stationary fields,
and further references, see Ward (1976).

Linet (1987) considered in the metric

ds2 = e−2U
(
dz2 + dρ2 + B2ρ2dϕ2

)
− e2Udt2, 0 < B ≤ 1, (18.75)

the superposition of a charged black hole and a cosmic string.

18.8 Multipole moments

Stationary, asymptotically flat gravitational fields should admit a multi-
pole expansion which provides an invariant tool for classifying and inter-
preting them. In this section we shall define the multipole moments for
stationary, asymptotically flat vacuum fields. These space-times can be
described by the line element

ds2 = −F−1γαβdxαdxβ + F (dt + Aαdxα)2, (18.76)
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cp. (18.8), (18.23). The 3-metric γαβ refers to the 3-space Σ̂3 of the Killing
trajectories. It has been shown in §18.4 that the stationary vacuum space-
times are characterized by γαβ and two real scalars QA, A = 1, 2, which
can be considered as appropriate combinations of the real and imaginary
parts of the Ernst potential.

A stationary vacuum field (Σ̂3, γαβ , QA) is said to be asymptotically
flat if there is a manifold Σ̃3 = Σ̂3∪Λ consisting of Σ̂3 plus one additional
point Λ such that

γ̃αβ = Ω2γαβ , Q̃A = Ω− 1
2QA (18.77)

are the conformally related metric and potentials in Σ̃3 and the conformal
factor satisfies the conditions

Ω|Λ = 0 = D̃αΩ|Λ, D̃αD̃βΩ |Λ = 2γ̃αβ |Λ (18.78)

at Λ. The covariant derivative D̃α refers to γ̃αβ .
The transformation (18.77), (18.78) effects a conformal compactifica-

tion mapping spatial ‘infinity’ to the single point Λ which can be taken as
the origin. Roughly speaking, the conformal factor Ω behaves as r̃ 2 ∼ r−2,
where r means the radial coordinate in the space Σ̂3 at large distance from
the sources and r̃ is the distance from Λ in the space Σ̃3. The potentials
QA are assumed to decrease with r−1 and thus Q̃A |Λ exists. Possible
candidates are the potentials (F + 1) and ω defined in (18.9).

Using the construction of conformal compactification in flat space, one
notices that a change of origin in the physical space leads to a change of
Ω; i.e. Ω → Ω f with f |Λ = 1. In flat space one defines the multipole
moments as the symmetric tracefree part of the partial derivatives (of
arbitrary order) of Q̃A evaluated at Λ. An infinitesimal shift of origin by
a vector εα gives Ω → Ω(1 + xαεα + · · ·) and the multipole moments
mAα1...αn transform as

mAα1...αn → C (mAα1...αn−1εαn) + mAα1...αn , (18.79)

where the symbol C denotes the operation of taking the symmetric and
tracefree part of the subsequent expression with respect to the tensor
indices α1...αn. To emulate this behaviour in the case when Σ̃3 is not flat
one wants

mAα1...αn → C (mAα1...αn−1D̃αnf |Λ ) + mAα1...αn (18.80)

under infinitesimal conformal transformations. It is now clear that the
covariant derivatives of Q̃A will not have the desired behaviour. How-
ever, it can be shown (Geroch 1970a, 1970b, Hansen 1974) that the fields
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P
(n+1)
Aα1...αn+1

recursively determined by

P
(0)
A = Q̃A, P

(1)
Aα = D̃αQ̃A, (18.81)

P
(n+1)
Aα1...αn+1

= C
[
D̃αn+1P

(n)
Aα1...αn

− 1
2n(2n− 1)R̃α1α2P

(n−1)
Aα3...αn+1

]
define two sets of (Geroch–Hansen) multipole moments m

(n)
Aα1...αn

accord-
ing to

m
(n)
Aα1...αn

= P
(n)
Aα1...αn

|Λ, A = 1, 2. (18.82)

These covariantly defined multipole moments behave as required under
infinitesimal conformal transformations Ω → Ω(1 + xαεα).

Continuing the Kundu (1981) approach, Beig and Simon (1980, 1981)
have verified a conjecture by Geroch and proved

Theorem 18.7 A given asymptotically flat stationary (vacuum) space-
time is uniquely characterized by its multipole moments.

The main step in the proof is the result that for any solution (γαβ , QA)
there exists a chart defined in some neighbourhood of Λ in Σ̃3 such that
γ̃αβ , Q̃A are analytic.

The formalism summarized in this section has been applied to station-
ary axisymmetric vacuum solutions by Fodor et al. (1989). In that paper
the quantities QA are identified with the real resp. imaginary parts of
the complex potential ξ = (1 − Γ)/(1 + Γ), Γ = −F + iω, which corre-
spond to the mass resp. angular momentum multipoles. The construction
can be extended to electrovac fields by considering, in addition to E , the
electromagnetic potential Φ.

Other references for studies on multipole moments are e.g. Chaudhuri
and Das (1996), Gürsel (1983), Suen (1986).
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Stationary axisymmetric fields: basic

concepts and field equations

19.1 The Killing vectors

We now consider physical systems which, in addition to being station-
ary (with Killing vector ξ) possess a further symmetry: axial symmetry
(Killing vector η).

Independent of the field equations and of the presence of a timelike
Killing vector, axial symmetry is defined as an isometric SO(2) mapping
of space-time such that the set of fixed points forms a (regular) two-
dimensional surface W2 which is usually called the axis of rotation. Mars
and Senovilla (1993a) collected some properties of axisymmetric gravita-
tional fields. In particular, it turns out that W2 is timelike and that the
Killing vector field η describing axial symmetry must be spacelike in a
neighbourhood of the axis and zero only at points q on the axis. Outside
W2 the Killing trajectories are closed (compact) curves. The Killing vector
η = x1∂/∂2 − x2∂/∂1 = ∂ϕ vanishes on the rotation axis (x1 = 0 = x2).
The tensor field

Hab = (∇aη
c)(∇bηc) (19.1)

is at any point of W2 the projection tensor to the space orthogonal to W2.
To ensure Lorentzian geometry (‘elementary flatness’) in the vicinity

of the rotation axis, the length of an orbit which passes through a point
p in some neighborhood of q ∈ W2 should be, at first relevant order, 2π
times the distance from p to the axis. This can be achieved (by scaling
the group parameter ϕ along the trajectories of η to have the standard
periodicity 2π) if the norm X of the Killing vector η is proportional to
the square of that distance. In this case (for points q ∈ W2 and p with

292
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coordinates qm and xm respectively), the expansions

ηm = (xn − qn)∇nη
m |q +O(2),

X ≡ ηmηm = (xm − qm)(xn − qn)Hmn |q +O(3)
(19.2)

hold and therefore the regularity condition

X,aX
,a/4X → 1 (19.3)

in the limit at the rotation axis is satisfied. Otherwise, if (19.3) is violated,
there are conical singularities (rods or struts) on the axis.

The behaviour of the metric near the axis was carefully studied by
Carlson and Safko (1980) using pseudo-Cartesian coordinates and their
transformation to polar coordinates perpendicular to the symmetry axis.
Carot (2000) generalized these results and proved some other implications
of axial symmetry. Remarkably, a group of motions G2 containing an axial
symmetry must be Abelian. The ‘extended’ regularity conditions (Van
den Bergh and Wils 1985b) do not necessarily hold even when (19.3) is
satisfied. A cyclic Killing vector has closed orbits but – contrary to the
axisymmetric case – fixed points and a regular axis are not assumed to
exist, cp. Szabados (1987). The possible Bianchi types of a G3 containing
a cyclic symmetry are determined in Barnes (2000).

In this chapter we demand that there are two commuting Killing vectors
ξ and η,

ξa;bη
b − ηa;bξ

b = 0, ξaξa < 0, ηaηa > 0, (19.4)

i.e. they generate an Abelian group G2I, see §17.1. Carter (1970) has
shown that the cases of the greatest physical importance, asymptoti-
cally flat stationary axisymmetric gravitational fields, necessarily admit
an Abelian group G2, so that for them (19.4) does not impose an addi-
tional restriction. If the cyclic Killing vector η has a non-null orbit, than
any G2 containing η is Abelian (Ernotte 1980).

The Killing vectors ξ and η are uniquely determined if we demand that
(i) η has compact trajectories (in general other subgroups G1 will have
non-compact trajectories), (ii) η is normalized by (19.3) and (iii) space-
time is asymptotically flat and ξ is normalized so that F = ξaξa → −1
holds in the asymptotic region.

19.2 Orthogonal surfaces

The Killing trajectories form two-dimensional orbits T2; the simple
bivector

vab = 2ξ[aηb], vabv
ab < 0, (19.5)
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is surface-forming (see (19.4) and (6.12)). The surface element orthogonal
to the group orbits is spanned by the dual bivector

ṽab = 1
2εabcdv

cd = 2m[amb], maξ
a = 0 = maη

a. (19.6)

The simple bivector ṽab is surface-forming and the metric is said to be
orthogonally transitive if and only if the condition

vabṽ
bc
;c = 2ξ[aηb](m

cmb
;c −mcmb

;c) = 0
(19.7)

⇔ εabcdη
aξbξc;d = 0 = εabcdξ

aηbηc;d

is satisfied (cp. (6.12)). In general, the Killing vectors of an arbitrary
stationary axisymmetric space-time do not obey (19.7), but only solutions
obeying (19.7) are explicitly known.

The condition (19.7) can be formulated as a restriction on the algebraic
form of the Ricci tensor:

Theorem 19.1 Stationary axisymmetric fields admit 2-spaces orthogonal
to the group orbits if and only if the conditions

ξdRd[aξbηc] = 0 = ηdRd[aξbηc] (19.8)

are satisfied (Kundt and Trümper 1966).

Proof (see e.g. also Carter 1972): For a Killing vector ξ the identity (8.22),

ξa;bc = Rabcdξ
d, (19.9)

holds. From (19.9) (and an analogous relation for η) we get

(ξ[a;bξc])
;c = 2

3ξ
dRd[aξb], (η[a;bηc])

;c = 2
3η

dRd[aηb]. (19.10)

With the aid of these equations, together with the cyclic symmetry rela-
tion of the curvature tensor and the commutativity of ξ and η, we obtain

(ξ[a;bξcηd])
;d = −1

2ξ
dRd[aξbηc], (η[a;bηcξd])

;d = −1
2η

dRd[aηbξc]. (19.11)

Using the fact that a completely antisymmetric tensor is proportional to
the ε-tensor, we convert (19.11) into the equivalent dual equations

(εabcdξa;bξcηd);e = −2εabceξdRdaξbηc,

(εabcdηa;bηcξd);e = −2εabceηdRdaηbξc.
(19.12)

From these equations we conclude that the conditions (19.8) are a neces-
sary consequence of the original criterion (19.7). Conversely, if the condi-
tions (19.8) are satisfied, the twist scalars εabcdη

aξbξc;d and εabcdξ
aηbηc;d
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are constants. Both twist scalars vanish on the rotation axis (η = 0).
Hence they vanish in a connected domain which intersects the rotation
axis if the conditions (19.8) hold in that domain. Then the geometry ad-
mits 2-spaces orthogonal to the orbits of the Abelian group of motions G2.

For vacuum fields (Rab = 0), the existence of orthogonal 2-spaces was
first demonstrated by Papapetrou (1966) in his pioneering work on this
subject.

Conditions (19.8) hold for a wide class of energy-momentum tensors.
For example, decomposition of the metric into orthogonal 2-spaces is pos-
sible for perfect fluid solutions, and for Einstein–Maxwell fields, provided
that the four-velocity of the fluid, and the electromagnetic 4-current den-
sity vector, respectively, satisfy the so-called circularity condition

u[aξbηc] = 0 = j[aξbηc], (19.13)

i.e. the trajectories of u and j lie in the surfaces of transitivity of the group
G2. In this terminology, conditions (19.8) mean that Ra

b ξ
b and Ra

bη
b are

circular vector fields. The circularity condition (19.13) is a natural gener-
alization of the condition (18.40) (four-velocity and current parallel to the
Killing vector) to the case of stationary axisymmetric fields. Obviously,
for perfect fluids the condition u[aξbηc] = 0 implies (19.8).

Now we show that j[aξbηc] = 0 for Einstein–Maxwell fields also implies
(19.8). The Maxwell equations

F ∗ab
;b = ja, (19.14)

and the assumption that the Lie derivatives of F ∗
ab with respect to both

the commuting Killing vectors ξ and η vanish, lead to

(F ∗
abξ

aηb);d = iεabcdξaηbjc = 0. (19.15)

F ∗
abξ

aηb is constant, and it is zero on the axis of rotation. Hence,

F ∗
abξ

aηb = 0 = ξ[aηbF
∗
cd]. (19.16)

(In flat space-time electrodynamics this relation says that the azimuthal
components of the electric and magnetic field vectors are zero.) Relation
(19.16) in turn implies (19.8).

If in an Einstein–Maxwell geometry, outside the sources, two Killing
vectors ξ, η satisfy the conditions (19.4), (19.5), (19.7), then the Maxwell
field shares the space-time symmetry: LξFab = 0 = LηFab (Michalski and
Wainwright 1975).

Gourgoulhon and Bonazzola (1993) considered the more general case
when the conditions (19.8) do not hold, e.g. for toroidal magnetic fields.
The field equations can be written in an entirely two-dimensional covari-
ant form.
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19.3 The metric and the projection formalism

Theorem 19.1 is of fundamental importance in the construction of exact
solutions of the Einstein equations. If we adapt the coordinate system to
the Killing vectors, the line element of a stationary axisymmetric field
admitting 2-spaces orthogonal to the Killing vectors ξ = ∂t and η = ∂ϕ
can be written in the form (Lewis 1932, Papapetrou 1966)

ds2 = e−2U (γMNdxMdxN + W 2dϕ2)− e2U (dt + Adϕ)2, (19.17)

where the metric functions U , γMN , W , A depend only on the coordinates
xM = (x1, x2) which label the points on the 2-surfaces S2 orthogonal to
the orbits. The form (19.17) is preserved under the transformations

xM
′

= xM
′
(xN ), t′ = at + bϕ, ϕ′ = cϕ + dt, (19.18)

(a, . . . , d constants). The functions W , U , A behave like scalars under
xM

′
= xM

′
(xN ). The metric (19.17) has block-diagonal form and exhibits

the reflection symmetry (t, ϕ) → (−t,−ϕ).
Equation (19.17) is the specialization of (18.8) (including the conformal

transformation (18.23)) to the stationary axisymmetric fields obeying the
conditions (19.7). In the coordinate system (19.17), the scalar products
of the Killing vectors are

ξaξa = −e2U , ηaηa = e−2UW 2 − e2UA2,

ξaηa = −e2UA, 2ξ[aηb]ξaηb = W 2.
(19.19)

If a linear combination of the two Killing vectors leads to the relation
A = ±W e−2U , the space-time admits a null Killing vector. This special
case will be considered in Chapter 24. Vacuum solutions with this property
belong to the class S = S(A) (§20.4), provided that W is not constant.

In general, ξ and η are not hypersurface-orthogonal. However, it can
easily be verified (Bardeen 1970) that the timelike vector ζ = ξ −
ξaηa(ηbηb)−1η is orthogonal to the hypersurfaces t = const. In general, it
is not a Killing vector.

Without loss of generality we can introduce isotropic coordinates in V2,

γMN = e2kδMN . (19.20)

Moreover, if W is a non-constant potential function, it can be transformed
to W = x1 with the aid of a coordinate transformation ζ ′ = f(ζ),

√
2ζ =

x1 + ix2, preserving the isotropic coordinate condition. The case W =
const is not of interest here because it is not compatible with the regularity
condition (19.3); vacuum metrics of this type are plane waves (24.35) with
F = 0, f = f(ζ).
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The isotropic coordinates with W = x1 = ρ are called Weyl’s canonical
coordinates (x1 = ρ, x2 = z;

√
2ζ = ρ + iz). In these coordinates, the

space-time metric (19.17) is given by

ds2 = e−2U [e2k(dρ2 + dz2) + ρ2dϕ2]− e2U (dt + Adϕ)2. (19.21)

For stationary axisymmetric fields, one can develop a projection for-
malism (Geroch 1972) similar to that for stationary fields given in §18.1.
We introduce the notation

λAB ≡ ξA
aξBa, A,B = 1, 2, (19.22)

for the scalar products of the Killing vectors ξ1 = ξ, ξ2 = η, and identify
the projection tensor

Hab ≡ gab + W−2λABξAaξBb, W 2 ≡ −1
2λ

ABλAB, (19.23)

with the metric tensor on a differentiable manifold Σ2. Capital Latin
indices are raised and lowered with the aid of the alternating sym-
bols (3.66), as in (3.67). Covariant derivatives (denoted by Da) and the
Riemann curvature tensor on Σ2 are defined in analogy to (18.3) and
(18.5) (hab → Hab).

If 2-spaces V2 orthogonal to the group orbits exist, Σ2 can be identified
with these 2-spaces and the two scalars CA = εMNεabcdξMaξNbξAc;d van-
ish. Then the Ricci tensor Rab in V4 can be written in terms of tensors
and metric operations on V2 as follows,

2
Rab = (2W )−2λAB,aλAB,b + W−1DaW,b + Hc

aH
d
bRcd, (19.24)

Da(W−1λAB,a) = 1
2W

−3λABHabλCD,aλCD,b − 2W−1Rabξ
a
A
ξb
B
, (19.25)

Hc
aξ

d
A
Rcd = 0. (19.26)

The contracted Bianchi identities (2.82) in the projection formalism are
given by Whelan and Romano (1999) and read (for CA = 0)

Da(WξbAH
acGbc) = 0, Db(WHc

aH
bdGcd) = 1

2WξcAξ
d
BGcd(W−2λAB),a,

(19.27)
where Gab is the Einstein tensor.

Kitamura (1978) gave an invariant characterization of the stationary
axisymmetric metric (19.17) in terms of a tetrad and its first covariant
derivatives. This characterization is independent of the field equations.
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19.4 The field equations for stationary axisymmetric
Einstein–Maxwell fields

We now reduce the field equations (18.37)–(18.39) for stationary Einstein–
Maxwell fields outside the sources to the axisymmetric case. Assuming
that the electromagnetic field satisfies the condition (19.16), F ∗

abξ
aηb = 0,

we can start with the line element (19.17) (see Theorem 19.1), and the
potentials E and Φ depend only on the spatial coordinates in the 2-spaces
orthogonal to the group orbits. Exceptional cases (e.g. the field of an axial
current) where condition (19.16) is violated are given in §22.2.

All field equations can be written covariantly with respect to the 2-
metric γMN in (19.17). After the substitution −F = Re E + ΦΦ (see
(18.34)), the field equations (18.38) and (18.39) read (a semicolon denotes
covariant derivative with respect to γMN )

(Re E + ΦΦ)W−1(WE,M );M = E,M (E ,M + 2ΦΦ,M ), (19.28)

(Re E + ΦΦ)W−1(WΦ,M );M = Φ,M (E ,M + 2ΦΦ,M ). (19.29)

The field equations (18.37) reduce to

W,M
;M = 0, (19.30)

KγMN −
W,M ;N

W
=

(E,(M + 2ΦΦ,(M )(E ,N) + 2ΦΦ,N))
2(ReE + ΦΦ)2

− 2
Φ,(MΦ,N)

ReE + ΦΦ
,

(19.31)

where K = −2e−2kk,ζζ̄ denotes the Gaussian curvature of the 2-space V̂2
with metric γMN . According to (18.22) and (18.34), the metric coefficients
A and F = −e2U in the line element (19.17) can be determined from the
complex potentials E and Φ via

A,M = W e−4UεMNωN , ωN = Im E,N − i(ΦΦ,N − ΦΦ,N ), (19.32)

e2U = Re E + ΦΦ, (19.33)

where εMN is the Levi-Civita tensor in V̂2.
Because of (19.30) we can introduce Weyl’s canonical coordinates, ρ

(= W ) and z. Then the functions U , k and A in the metric (19.21) are
determined by (19.33) and

k,ζ =
√

2ρ

[
(E,ζ + 2ΦΦ,ζ)(E ,ζ + 2ΦΦ,ζ)

4(Re E + ΦΦ)2
− ΦζΦζ

Re E + ΦΦ

]
, (19.34)

A,ζ = ρ
i(Im E),ζ + ΦΦ,ζ − ΦΦ,ζ

(Re E + ΦΦ)2
,

√
2∂ζ = ∂ρ − i∂z. (19.35)
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Because of the field equations (19.28), (19.29), the integrability conditions
of (19.34) and (19.35) are satisfied identically, and k and A can be calcu-
lated simply by line integration. Two of the three equations (19.31) are
just equations (19.34) for determining k. The remaining field equation of
(19.31) has, in Weyl’s canonical coordinates, the form

k,MM +
(E,M + 2ΦΦ,M )(E ,M + 2ΦΦ,M )

4(Re E + ΦΦ)2
− Φ,MΦ,M

Re E + ΦΦ
= 0. (19.36)

It is identically satisfied because of the other field equations.

Theorem 19.2 The Einstein–Maxwell equations for stationary axisym-
metric fields can be completely reduced to the simultaneous system (19.28),
(19.29) (with W = ρ) of elliptic differential equations of the second order
for the two complex potentials E and Φ. Every solution of these equations
determines a metric (19.21) via (19.33)–(19.35).

For exterior electrostatic fields (Φ = Φ = χ), the field equations
(19.28)–(19.29) read

W−1(WU,M );M = e−2Uχ,Mχ,M , (W e−2Uχ,M );M = 0. (19.37)

In Weyl’s canonical coordinates, (19.37) can be replaced by the equations

∆U = ρ−1(ρU,A),A = U,AU,A + k,AA,

(∆U)2 = (2U,1U,2 − k,2/ρ)2 + (U,1
2 − U,2

2 − k,1/ρ)2
(19.38)

for the metric functions U and k. Two special classes of solutions are those
with ∆U = 0 (Weyl’s vacuum solutions, §20.2), and k = 0 (Papapetrou–
Majumdar solutions (§18.7) with axial symmetry).

19.5 Various forms of the field equations for stationary
axisymmetric vacuum fields

All stationary axisymmetric vacuum fields (Φ = 0, E = Γ) are covered by
the metric (19.17). The field equation (19.28), specialized to the vacuum
case, is the Ernst equation (Ernst 1968a)

(Γ + Γ)W−1(WΓ,M );M = 2Γ,MΓ,M . (19.39)

Splitting Γ into its real and imaginary parts, we have to solve a simulta-
neous system of two elliptic differential equations of the second order,

W−1(WU,M );M = −1
2e−4Uω,Mω,M , (W e−4Uω,M );M = 0. (19.40)
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These equations are covariant with respect to transformations in the 2-
space V̂2 with the metric γMN . In Weyl’s canonical coordinates (ρ, z),
(19.39) reads

(Γ + Γ)(Γ,ρρ + ρ−1Γ,ρ + Γ,zz) = 2(Γ,ρ
2 + Γ,z

2). (19.41)

Once a solution Γ = e2U + iω of this differential equation is given, we find
the full metric (19.21) with the aid of line integrals for k and A,

k,ζ =
√

2 ρ
Γ,ζΓ,ζ

(Γ + Γ)2
, A,ζ = 2ρ

(Γ− Γ),ζ
(Γ + Γ)2

,
√

2∂ζ = ∂ρ − i∂z, (19.42)

the integrability conditions being automatically satisfied. Thus the prob-
lem has been reduced essentially to (19.41) for the complex potential Γ
(see Theorem 19.2). At first glance, the simple structure of this non-linear
differential equation is encouraging, but actually only some special solu-
tions and restricted classes of solutions had been found before the arrival
of the generation methods treated in Chapter 34. At that time reformu-
lations of the field equations were of some help for finding solutions and
for preparing the way for the powerful generation techniques. Therefore
we list here some of these formulations.

(i) Introducing a new function S ≡ −U+ 1
2 lnW , we obtain from (19.40)

the system of differential equations

W−1(WS,M );M = 1
2e−4SA,MA,M , (W e−4SA,M );M = 0 (19.43)

for the unknown functions S and A. Up to a sign (19.43) and (19.40) have
exactly the same form.

(ii) We retain Weyl’s canonical coordinates (
√

2ζ = ρ+ iz), but go over
to new variables M and N defined by

M = 2(ζ+ζ̄)(Γ+Γ)−1(Γ+Γ),ζ , N = 2(ζ+ζ̄)(Γ+Γ)−1(Γ−Γ),ζ . (19.44)

Inserting these expressions into the field equation (19.41), and taking
into account the integrability condition, we obtain a simultaneous system
of partial differential equations of the first order for the two complex
functions M and N ,

2(ζ + ζ̄)M,ζ̄ = M −M −NN, 2(ζ + ζ̄)N,ζ̄ = N + N −NM. (19.45)

Once a solution of these equations is known, we get the potential Γ by a
line integral.

(iii) The Ernst equation (19.39) can be reformulated by introducing the
new potential ξ by

ξ ≡ (1− E)/(1 + E). (19.46)
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ξ satisfies the differential equation

(ξξ̄ − 1)W−1(Wξ,M );M = 2ξ̄ξ,Mξ,M . (19.47)

This last version of the field equations has proved to be especially useful
in constructing new solutions (see §20.5).

(iv) The function k in the metric (19.21) satisfies a differential equation
of the fourth order, which can be derived from the fact that the right-hand
side of (19.31) (with Φ = 0) multiplied by (−2)dxMdxN is the metric of
a space of constant negative curvature. From the left-hand side of (19.31)
we infer that the line element ρ−1(ρk,A),A(dρ2 + dz2) − 2k,AdxAdρ/ρ is
associated with this space of constant curvature so that we obtain a dif-
ferential equation for k alone:

2D(A,zz + C,ρρ − 2B,ρz)−D,zA,z −D,ρC,ρ −BA,ρC,z + BA,zC,ρ

+2CA,ρB,z + 2AC,zB,ρ − 4BB,ρB,z = 4D2, (19.48)

A ≡ k,ρ/ρ− 2k,AA, C ≡ −k,ρ/ρ− 2k,AA, B ≡ 2k,z/ρ, D ≡ AC −B2.

From a given (non-constant) solution k of (19.48), the potential ξ can
be constructed up to a phase factor, ξ → eiαξ (ignoring pure coordi-
nate transformations). Independently, Cosgrove (1978a), Herlt (1978a)
and Cox and Kinnersley (1979) have also reduced the field equations
to a fourth-order differential equation for a real superpotential, see also
Tomimatsu (1981) and Lorencz and Sebestyén (1986).

(v) Perjés (1985a), see also Theorems 18.5 and 18.6, introduced the
Ernst potential and its complex conjugate as new space coordinates. Other
forms of the field equations are given, e.g., in Chandrasekhar (1978) and
Kramer and Neugebauer (1968b).

Comparison of (19.40) with (19.43), and with the very similar equations
(19.37) for electrostatic fields, leads to

Theorem 19.3 Given a stationary axisymmetric vacuum solution
(U, ω), the substitution

S′ = −U ′ + 1
2 lnW = U, A′ = iω, (19.49)

yields another vacuum solution (U ′, A′) (Kramer and Neugebauer 1968b),
and the substitution

U ′ = 2U, χ = iω, k′ = 4k (19.50)

generates from a stationary vacuum solution (U, ω, k) a static solution
(U ′, χ, k′) of the Einstein–Maxwell equations (Bonnor 1961).
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The new solutions will be real if one can analytically continue the pa-
rameters in the solutions to compensate for the imaginary unit in the
substitutions of this theorem.

Kordas (1995) and Meinel and Neugebauer (1995) have shown that
an asymptotically flat solution of the stationary axisymmetric vacuum
equations is reflection-symmetric with respect to the equatorial plane z =
0 if and only if the Ernst potential Γ+ on the upper part of the symmetry
axis (ρ = 0, z > 0) satisfies the relation

Γ(z)Γ̄(−z) = 1. (19.51)

Applying the Newman-Penrose formalism (Chapter 7) to stationary
axisymmetric vacuum solutions, and choosing the real null directions k
and l as linear combinations of the Killing vectors ξ and η, we obtain the
result: solutions of Petrov type III cannot occur. Type II solutions are
members of the class A2 = W 2e−4U (§20.4) (Collinson and Dodd 1969).
The Petrov classification of the vacuum space-times with orthogonally
transitive Killing vectors has also been studied by Morisetti et al. (1980).

19.6 Field equations for rotating fluids

Two different approaches using non-holonomic frames have been devel-
oped for stationarily rotating perfect fluids with axial symmetry.

Chinea and González-Romero (1992) wrote the perfect fluid equations
as a set of differential-form equations. The 1-forms θ0 ≡ u and θ1 lie in
the group orbits, whereas the remaining 1-forms θ2 and θ3 span the 2-
space orthogonal to the orbits. The authors introduced the Hodge dual
operation (denoted by ∗) in the subspace generated by θ2 and θ3, and the
tilde operation θ̃2 = θ2, θ̃3 = −θ3. From the zero torsion conditions, their
integrability condition Ra

[bcd] = 0, and the Einstein equations one gets
the following total set of field equations for the 1-forms u = θ0, θ1, b =
e−Q θ2 (or ∗b = e −Q θ3), the 1-forms a,w, s which are linear combinations
of θ2 and θ3, and the functions Q, p (pressure) and µ (mass density) which
are independent of t and ϕ.

du = a ∧ u + w ∧ θ1, d ∗ (w − s) + 2a ∧ ∗w + 2(a− b) ∧ ∗s = 0,

da = w ∧ s, dw = −(b− 2a) ∧ w, ds = (b− 2a) ∧ s, db = 0,

dθ1 = (b− a) ∧ θ1 + s ∧ u, d ∗ b + b ∧ ∗b = 2κ0p e2Q b ∧ ∗b,
(19.52)

2d ∗ a + 2b ∧ ∗a + w ∧ ∗w − s ∧ ∗s = κ0(µ + 3p) e 2Q b ∧ ∗b,
dQ ∧ b + b ∧ ã− a ∧ ã + 1

4(s− w) ∧ (s̃− w̃) = 0, dp + (µ + p)a = 0,

dQ ∧ ∗b + 1
2d ∗ b− 1

2b ∧ ∗b + b ∧ ∗ã− a ∧ ∗ã + 1
4(s− w) ∧ ∗(s̃− w̃) = 0.
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The kinematical quantities a, s and w are related to the fluid’s accelera-
tion, shear and rotation, respectively. The advantage of this approach is
the possibility of investigating particular cases by imposing simplifying
ansätze. In particular, w = 0, b ∧ s = 0 leads to the irrotational solu-
tion given by Chinea and González-Romero (1992). The differential-form
approach summarized here can also be applied to construct stationary
axisymmetric solutions of the Einstein–Maxwell equations (Fernandez-
Jambrina and Chinea 1994), see §21.1.

Marklund and Perjés (1997) used a complex non-holonomic triad in the
3-space of the timelike Killing trajectories and introduced a complex ten-
sor which is symmetric and tracefree both in vacuum and in the presence
of matter. This tensor was constructed from the Simon tensor (18.70) by
adding an appropriate matter term. In the limit of a static space-time this
tensor becomes real and in vacuo it equals the Simon tensor. The triad
formulation of the field equations for stationary axisymmetric perfect flu-
ids simplifies considerably when the generalized Simon tensor vanishes.
The method covers the general case of differential rotation.

Using a tetrad approach Fodor et al. (1999) proved that all rigidly rotat-
ing stationary axisymmetric perfect fluid solutions with a purely magnetic
Weyl tensor (Emn = 0) and with circular motion are locally rotationally
symmetric.



20
Stationary axisymmetric vacuum

solutions

20.1 Introduction

In this chapter we survey some simple axisymmetric vacuum solutions.
In general these solutions had been already derived before the powerful
generation methods outlined in Chapter 10 were known. Stationary ax-
isymmetric vacuum solutions obtained by these methods will be given
in Chapter 34. The stationary cylindrically-symmetric vacuum field is
treated in §22.2.

For review articles devoted to the solutions in the following sections
we refer the reader to Quevedo (1990) and Islam (1985). For a review
of interpretations which have been given to some of these solutions, see
Bonnor (1992).

20.2 Static axisymmetric vacuum solutions (Weyl’s class)

If we assume that one of the Killing vectors in the metric

ds2 = e−2U (γMNdxMdxN + W 2dϕ2)− e2U (dt + Adϕ)2, (20.1)

say ξ = ∂t, is hypersurface-orthogonal, then A can be put equal to zero
and the second Killing vector is also hypersurface-orthogonal. The static
axisymmetric vacuum solutions (Weyl 1917) are invariantly characterized
by the existence of two commuting hypersurface-orthogonal Killing vec-
tors ξ, η satisfying

ξ(a;b) = 0, ξ[a;bξc] = 0, ξaξa < 0,
η(a;b) = 0, η[a;bηc] = 0, ηaηa > 0,

ξcηa;c − ηcξa;c = 0. (20.2)

Because in this case the twist potential ω vanishes, Γ = − e2U is real, and
the Ernst equation (19.41) is simply the potential equation ∆U = 0 for

304
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a real function U independent of the azimuthal coordinate ϕ. In Weyl’s
canonical coordinates (19.21), the metric and the field equations for static
axisymmetric vacuum solutions read

ds2 = e−2U [e2k(dρ2 + dz2) + ρ2dϕ2]− e2U (dt + Adϕ)2,
(20.3)

∆U = ρ−1(ρU,M ),M = 0, k,ρ = ρ(U 2
,ρ + U 2

,z), k,z = 2ρU,ρU,z.

The function k can be calculated by means of a line integral. Although
∆U = 0 is a linear differential equation, the equations for k manifest
the non-linearity of the Einstein field equations. For static axisymmetric
vacuum solutions the regularity condition (19.3) on the axis of symmetry
means k = 0 in the limit ρ→ 0.

Two solutions of Weyl’s class are completely equivalent if the functions
U and k of one solution differ only by additive constants from those of
the other solution.

The potential equation ∆U = 0 may be solved using various coordinates
in the Euclidean 3-space. In spherical coordinates (r,ϑ), the asymptoti-
cally flat solutions are

U =
∞∑
n=0

anr
−(n+1)Pn(cosϑ),

k = −
∞∑

l,m=0

alam(l + 1)(m + 1)
(l + m + 2)rl+m+2

(PlPm − Pl+1Pm+1),
(20.4)

Pn = Pn(cosϑ) being the Legendre polynomials. The simplest case is the
solution

U = −m/r, 2k = −m2 sin2 ϑ/r2 (20.5)

(Chazy 1924, Curzon 1924). Though the potential U is spherically-
symmetric, the solution (20.5) is not.

Prolate spheroidal coordinates (x, y) are connected with Weyl’s canon-
ical coordinates (ρ, z) by the relations (Zipoy 1966)

ρ = σ(x2 − 1)1/2(1− y2)1/2, z = σxy, σ = const,
(20.6)

2σx = r+ + r−, 2σy = r+ − r−, r2± = ρ2 + (z ± σ)2,

dρ2 + dz2 = σ2(x2 − y2)
[
(x2 − 1)−1dx2 + (1− y2)−1dy2

]
. (20.7)

The surfaces x = const and y = const are orthogonal families of, respec-
tively, ellipsoids and hyperboloids. The general form of the asymptotically
flat solutions of Weyl’s class which are, outside the sources, regular at the
symmetry axis can be derived from the potential

U =
∞∑
n=0

qnQn(x)Pn(y) (20.8)
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(Quevedo 1989), Qn(x) being the Legendre functions of the second kind.
In particular, the Erez and Rosen (1959) metric is obtained in the case in
which the constants qn vanish except q0 = 1 and q2,

2U = ln
(
x− 1
x + 1

)
+ q2(3y2 − 1)

[
1
4(3x2 − 1) ln

(
x− 1
x + 1

)
+ 3
2x

]
. (20.9)

For the solution due to Gutsunaev and Manko (1985), the potential U
expressed in terms of prolate spheroidal coordinates has the form

U =
1
2

ln
(
x− 1
x + 1

)
+

∞∑
n=0

an+1

[
P+n

(x + y)n+1
− P−

n

(x− y)n+1

]
, (20.10)

where an are arbitrary real parameters, and P±
n are the Legendre poly-

nomials of the arguments (xy±1)/(x±y). The metric function k is given
in Denisova et al. (1994).

The special case of the Weyl solution with

e2U = (x− 1)δ(x + 1)−δ (20.11)

has been investigated by Zipoy (1966) and Voorhees (1970). For δ = 1,
(20.11) represents the Schwarzschild solution; it is expressed in terms of
Weyl’s canonical coordinates (ρ, z) by

U =
1
2

ln
(
r+ + r− − 2m
r+ + r− + 2m

)
, k =

1
2

ln

(
(r+ + r−)2 − 4m2

4r+r−

)
,

(20.12)
r2± = ρ2 + (z ±m)2

(put σ = m in (20.6)). For δ = 2, (20.11) represents the Darmois (1927)
solution with the potential

U = ln
(
r1 + r2 −m

r1 + r2 + m

)
, r21,2 = ρ2 + (z ±m/2)2 (20.13)

(put σ = m/2 in (20.6)), m being again the mass parameter. For a dis-
cussion of this solution, see Fernandez-Jambrina (1994).

The linear superposition of N collinear particles with masses mA and
positions bA on the z-axis yields the value (Israel and Khan 1964, for two
particles see Bach and Weyl 1922)

lim
ρ→0

k =
1
4

N∑
A,B=1

ln
[

(rA+rB− + lA+lB−)(rA−rB+ + lA−lB+)
(rA−rB− + lA−lB−)(rA+rB+ + lA+lB+)

]
,

(20.14)
lA± = z − bA ±mA, rA± = |lA±|
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for k on the axis ρ = 0. The regularity condition limρ→0 k = 0 cannot
be satisfied everywhere on the axis outside the sources; the stringlike
singularities (or struts) prevent the masses moving towards each other
by their mutual gravitational attraction. In Einstein’s theory, a two-body
system in static equilibrium is impossible without such singularities – a
very satisfactory feature of this nonlinear theory.

We notice that a Weyl solution is flat if the potential U is (up to an
additive constant) equal to 0, ln ρ or 1

2 ln (
√

ρ2 + z2 + z). In the last case
the Killing vectors are adapted to a boost and a rotation, cf. §17.2.

Waylen (1982) gives the general closed-form solution to ∆U = 0, which
includes all Weyl fields with finite values of U on the axis ρ = 0, by the
integral

U(ρ, z) =
1
π

∫ π

0
f(u)dΘ , u = z + iρ cos Θ , (20.15)

where ρ and z denote Weyl coordinates and f is an arbitrary function of
its argument.

A class of vacuum space-times with two commuting Killing vectors
(∂σ, ∂τ ) was given by Plebański (1980), see also Plebański and Garćıa D.
(1982). The metric has the diagonal form

ds2 = A(q + p)1−(b+c)
2
(q − p)1−(b−c)

2

(
dq2

q2 − 1
+

dp2

1− p2

)
+ Bdσ2 − Cdτ2,

A = m2(q + 1)α
2−1/4(q − 1)β

2−1/4(1 + p)γ
2−1/4(1− p)δ

2−1/4,

B = m2(q + 1)1/2+α(q − 1)1/2+β(1 + p)1/2+γ(1− p)1/2+δ, (20.16)

C = m2(q + 1)1/2−α(q − 1)1/2−β(1 + p)1/2−γ(1− p)1/2−δ,

α = a + b, β = a− b, γ = a + c, δ = a− c,

where a, b, c and m are real constants, and the coordinates (p, q) are
restricted to the range −1 < p < 1 < q < ∞. This class is in general of
non-degenerate Petrov type I and contains as special cases well-known
solutions such as the Kasner solution (13.51).

The degenerate static vacuum solutions of classes A and B in Table 18.2
can be transformed to Weyl coordinates and are interpreted by Martins
(1996). The C-metric can also be expressed as a Weyl metric and is given
by Bonnor (1990) in Bondi coordinates. For the physical interpretation of
the C-metric and its generalization, see §17.2. Bonnor and Martins (1991)
interpret a particular degenerate Weyl metric as the gravitational field of
a (semi-)infinite line mass. The solution for which U is the Newtonian
potential of a ring is due to Bach and Weyl (1922).
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Because of the linear equation for U one can superpose Weyl solutions.
This superposition has been explicitly done e.g. for a particle and a ring
or for a gravitational monopole endowed with a quadrupole term simi-
lar to (20.9); see Letelier and Oliveira (1988), Gleiser and Pullin (1989),
Chakrabarti (1988) and Hernandez P. and Mart́ın (1994). In particular,
Szekeres (1968) considered superpositions of monopole–quadrupole parti-
cles and could remove the conical singularity between the particles. The
required quadrupole moments, however, cannot be constructed from a
distribution of positive masses.

The exact superposition of a central static black hole with a surrounding
finite thin disk of counterrotating particles has been studied by Lemos and
Letelier (1994). Morgan and Morgan (1969) found a disk metric which in
terms of oblate ellipsoidal coordinates (ξ, η) connected to (ρ, z) by

ρ2 = a2(1 + ξ2)(1− η2) , z = aξη , |η| ≤ 1, 0 ≤ ξ <∞ (20.17)

(a = const) reads

U = −M
(
arccot ξ + 1

4 [(3ξ2 + 1)arccot ξ − 3ξ](3η2 − 1)
)
/a,

(20.18)
k = 9

4M
2ρ2a−4

[
(ρ/a)2B2(ξ)− (1 + η2)A2(ξ)− 2ξ(1− η2)A(ξ)B(ξ)

]
,

with the notation

A(ξ) = ξ arccot ξ − 1, B(ξ) = [ξ/(1 + ξ)− arccot ξ]/2. (20.19)

The disk (ξ = 0, |η| ≤ 1) has an outer edge and is characterized by its
total mass M and radius a.

Letelier and Oliveira (1998b) found a much simpler form of the Morgan–
Morgan solution in terms of Weyl coordinates by the complex substitution
m → iβ, β real, of the parameter m in (20.12) so that the disk metric is
essentially given by

U = Cln
∣∣∣∣ReR− iβ
ReR + iβ

∣∣∣∣ , k = −2C2ln

∣∣∣∣∣(ReR)2 + β2

|R|2
∣∣∣∣∣ , R2 = ρ2 + (z − iβ)2.

(20.20)
Properties of counterrotating relativistic disks have been studied by Bičák
et al. (1993).

According to a procedure due to Ernst (1978b), from a given Weyl
metric (U0, k0) one can generate another Weyl metric (U, k) as follows:

2U = 2U0 + c(F + G) , 2k = 2k0 + 2cF − c2ρ2 , (20.21)

where c is a constant and the real functions F and G are determined from
the original metric by the relations

∇F = 2i∇U0, ∇G = 2i∇(−U0 + ln ρ), ∇ = ∂ρ + i∂z . (20.22)
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This procedure has been applied to studying a black hole in an external
gravitational field. The corresponding metric (in Schwarzschild coordi-
nates) is given by (Kerns and Wild 1982a)

ds2 = exp
[
2c(r − 3m) cos θ − c2(r2 − 2mr) sin2 θ

][ dr2

r2 − 2mr
+ r2dθ2

]
+ r2 sin2 θ exp[−2c(m− r) cos θ]dϕ2 (20.23)

− (1− 2m/r) exp[2c(m− r) cos θ]dt2 .

For the application of Ernst’s method to the C-metric, see §17.2. The
Weyl solution for a ring immersed in a homogeneous field contains a
discontinuity extending from the ring to its center (Hoenselaers 1995).
The solution resulting from the Zipoy–Voorhees class of metrics (20.11)
as seed has been derived by Kerns and Wild (1982b). Solutions admitting
an additional homothetic vector have been discussed by McIntosh (1992).

Finally we remark that some authors, e.g. Peters (1979), Xanthopou-
los (1983a), Stewart et al. (1987), have dealt with special Weyl metrics
describing black holes with toroidal topology. In contrast to the isolated
black holes, the (asymptotically flat) gravitational field cannot satisfy the
vacuum equations everywhere outside the horizon. The vacuum region
around the black hole does not extend to infinity; there is necessarily
matter or some other field surrounding the local toroidal black hole.

20.3 The class of solutions U = U(ω) (Papapetrou’s class)

The assumption U = U(ω) considerably simplifies the problem of finding
stationary axisymmetric vacuum solutions. From (19.50) one learns that

e4U = −ω2 + C1ω + C2, (20.24)

and that there is a function V = V (ω) satisfying the potential equation
in flat 3-space,

V =
∫

e−4Udω =
∫ dω
−ω2 + C1ω + C2

, ∆V = 0. (20.25)

The right-hand side of (20.24) can assume positive values only if s2 =
C2 + C 2

1 /4 > 0. Given a solution V of ∆V = 0, one obtains the associated
complex potential Γ = e2U + i ω from

Γ = s [sech(sV ) + i tanh(sV )] . (20.26)

The class U = U(ω) was discovered by Papapetrou (1953) and given
originally in the equivalent form

e−2U = α cosh Ω,z + β sinh Ω,z, A = (α2 − β2)1/2ρΩ,ρ, ∆Ω = 0 (20.27)
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(α, β constants), in which the metric function A can be obtained from
the potential function Ω by pure differentiation. In general, this class
of solutions is Petrov type I. The solutions (20.27) are asymptotically
well behaved only if a mass term ∼ r−1 does not occur in e2U . This is
an obvious defect of these solutions; whereas the isolated sources have
angular momentum, they are without mass.

One well-known member of the Papapetrou class U = U(ω) is the
NUT solution (13.49). In terms of Weyl’s canonical coordinates the NUT
solution is given by

e2U =
(r+ + r−)2 − 4(m2 + l2)
(r+ + r− + 2m)2 + 4l2

, A =
l√

m2 + l2
(r+ − r−),

(20.28)

e2k =
(r+ + r−)2 − 4(m2 + l2)

4r+r−
, r2± = ρ2 +

(
z ±
√

m2 + l2
)2

(Gautreau and Hoffman 1972). For l = 0, these metric functions go over
into the corresponding expressions (20.12) of the Schwarzschild solution.
Thus the NUT solution can be considered as an exterior field of a rotating
source.

Halilsoy (1992) constructed rotating generalizations (A �= 0 in (20.1))
from the static Chazy–Curzon and Zipoy–Voorhees solutions (20.5) and
(20.11), respectively. In particular, the metric functions of the rotating
Chazy–Curzon solution read (in Weyl’s canonical coordinates with r2 =
ρ2 + z2 and p2 + q2 = 1)

e−2U = cosh (2m/r)− p sinh(2m/r) , 2k = −m2ρ2/r4, A = 2qmz/r
(20.29)

and have been discussed in Halilsoy and Gürtuĝ (1994).

20.4 The class of solutions S = S(A)

The substitution (19.49) generates from the Papapetrou class U = U(ω)
another class of stationary vacuum solutions characterized by the func-
tional relationship

e4S = ρ2e−4U = A2 + C1A + C2. (20.30)

The function Ψ =
∫

e−4SdA satisfies the potential equation ∆Ψ = 0. One
has to consider three distinct cases:

ρ2e−4U =


A2 − 1, h < 0,
A2 + 1, h > 0, h ≡ 4C2 − C21 ,
A2, h = 0

(20.31)
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(this classification is related to that given after (17.8)). The subclass h < 0
is just Weyl’s class: with the aid of a real linear transformation t′ = at+b,
ϕ′ = cϕ+dt, the function A can be made equal to zero. The subclass h > 0
was discovered by Lewis (1932) and can be transformed to static solutions
(A = 0) by complex linear transformations of the coordinates ϕ and t
(Hoffman 1969a). The last subclass h = 0, due to van Stockum (1937),
has a line element of the simple form

ds2 = ρ−1/2(dρ2 + dz2)− 2ρdϕdt + ρΩdt2, ∆Ω = 0. (20.32)

These solutions are of Petrov type II. They admit at most a group G3,
and ∂ϕ is a null Killing vector (§24.4).

The cylindrically-symmetric stationary vacuum solutions form a sub-
case of the class S = S(A) and are given in §22.2.

20.5 The Kerr solution and the Tomimatsu–Sato class

The Kerr and Tomimatsu–Sato solutions possibly describe exterior gravi-
tational fields of stationary rotating axisymmetric isolated sources. How-
ever, no satisfactory interior solutions are known. We refer the reader to
the review article by Sato (1982) on the Kerr–Tomimatsu–Sato class of
vacuum solutions.

The Kerr solution was found by a systematic study of algebraically
special vacuum solutions. From its original form (32.47) (Kerr 1963a) the
metric can be transformed to Boyer–Lindquist coordinates (r, ϑ) which are
related to Weyl’s canonical coordinates (ρ, z) and to prolate spheroidal
coordinates (x, y) by

ρ =
√

r2 − 2mr + a2 sinϑ, z = (r −m) cosϑ, (20.33a)

σx = r −m, y = cosϑ, σ = const (20.33b)

(Boyer and Lindquist 1967). In these coordinates, the Kerr solution reads

ds2 =
(

1− 2mr

r2 + a2 cos2 ϑ

)−1 [
(r2 − 2mr + a2) sin2 ϑdϕ2

+
(
r2 − 2mr + a2 cos2 ϑ

)(
dϑ2 +

dr2

r2 − 2mr + a2

)]
(20.34)

−
(

1− 2mr

r2 + a2 cos2 ϑ

)(
dt +

2mar sin2 ϑdϕ
r2 − 2mr + a2 cos2 ϑ

)2
.

Special cases are: a = 0 (Schwarzschild solution) and a = m (‘extreme’
Kerr solution). The form (20.34) exhibits the existence of 2-surfaces ortho-
gonal to the trajectories of the two Killing vectors ∂t and ∂ϕ. The Kerr
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solution is of Petrov type D and admits a non-trivial Killing tensor (35.3).
Starting from (20.34) Ruiz (1986) obtained harmonic coordinates for the
Kerr solution. The Kerr solution is characterized by the vanishing of the
Simon tensor (18.70) (Simon 1984).

Carter (1968b) generalized the Kerr solution (20.34) to include the Λ-
term. Demiański and Newman (1966) constructed a solution which con-
tains the Kerr and NUT metrics as special cases. For further references
see Table 21.1.

For the Kerr solution, the complex potential ξ defined in (19.46) takes
the very simple form (Ernst 1968a)

ξ−1 = px− iqy, p2 + q2 = 1, (20.35)

if one uses prolate spheroidal coordinates. The full metric can be obtained
from ξ as

e2U =
p2x2 + q2y2 − 1
(px + 1)2 + q2y2

, e2k =
p2x2 + q2y2 − 1

p2(x2 − y2)
,

(20.36)

A =
2mq

p2x2 + q2y2 − 1
(1− y2)(px + 1)

(mq = a, mp = σ). The potential ξ in (20.35) is a special solution of the
differential equation (19.47),(
ξξ − 1

){[
(x2 − 1)ξ,x

]
,x +
[
(1− y2)ξ,y

]
,y

}
= 2ξ
[
(x2 − 1)ξ2,x + (1− y2)ξ2,y

]
.

(20.37)

Exploiting the very symmetric form of this equation in the variables x and
y, Tomimatsu and Sato (1972, 1973) succeeded in constructing a series of
new solutions (TS solutions) containing an integer distortion parameter
δ. The potential ξ of these solutions is a quotient ξ = β/α, α and β being
polynomials in the coordinates x and y. For δ = 1, 2, 3, these polynomials
are (p2 + q2 = 1)

δ = 1 : α = px− iqy, β = 1 (Kerr solution).

δ = 2 : α = p2(x4 − 1)− 2ipqxy(x2 − y2) + q2(y4 − 1),

β = 2px(x2 − 1)− 2iqy(1− y2).

δ = 3 : α = p(x2 − 1)3(x3 + 3x) + iq(1− y2)3(y3 + 3y) (20.38)

−pq2(x2 − y2)3(x3 + 3xy2)− ip2q(x2 − y2)3(y3 + 3x2y),

β = p2(x2 − 1)3(3x2 + 1)− q2(1− y2)3(3y2 + 1)

−12ipqxy(x2 − y2)(x2 − 1)(1− y2).
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The constant σ in the relation (20.6) between the coordinates (ρ, z) and
(x, y), the angular momentum J and the quadrupole moment Q are
given by

σ = mp/δ, J = m2q, Q = m2[q2 + (δ2 − 1)p2/3δ2], (20.39)

m being the mass parameter of the TS family. The TS solutions are
asymptotically flat. They stimulated further investigation of the inter-
nal symmetries of the field equations which later led to the generation
methods (Chapters 10 and 34). The corresponding Weyl solutions (q = 0)
are the solutions (20.11) for integer parameter δ.

Hori (1996a, 1996b) derived generalized TS solutions which are defined
for any real value of the parameter δ and coincide with the TS class for
any integral value of δ. Manko and Moreno (1997) considered the complex
continuation p→ip , σ →iσ of the parameters in the TS metrics.

A class closely related to the TS solutions was given by Chan-
drasekhar (1978) and investigated by Xu (1987). A common property,
which characterises the Kerr–Tomimatsu–Sato metrics (written in pro-
late spheroidal coordinates x and y), is the validity of the relation

Γ, x Γ̄, y + Γ̄, xΓ, y = 0 (20.40)

for the complex Ernst potential Γ.
Some properties of the Kerr–Tomimatsu–Sato family of spinning mass

solutions are studied and a closed form of the TS metrics (with an
arbitrary positive integer parameter δ) is given by Yamazaki (1982).
The calculation of the Weyl tensor invariants for the TS δ = 3 in
Hoenselaers (1979b) showed that curvature singularities occur on rings
in the equatorial plane. Hoenselaers and Ernst (1983) wrote the TS met-
rics in a modified form and investigated their behaviour near the poles
(x = 1, y = ±1).

The TS solution with integer δ (δ = N ) can be obtained via a limiting
process from the non-linear superposition of N Kerr–NUT solutions with
common symmetry axis (Tomimatsu and Sato 1981).

20.6 Other solutions

Kinnersley and Chitre (1978b) generated an extended δ = 2 Tomimatsu–
Sato solution. The complex potential ξ = β/α is a rational function of
the prolate spheroidal coordinates (x, y) and is explicitly given by

α = p2(x4 − 1)− 2ipqxy(x2 − y2) + q2(y4 − 1)− 2iλ(x2 + y2 − 2x2y2)

+(λ2 − µ2)(x2 − y2)2 − 2iµxy(x2 + y2 − 2), p2 + q2 = 1, (20.41)

β = 2px(x2 − 1)− 2iqy(1− y2)− 2i(x2 − y2)[x(pλ + iqµ)− y(pµ + iqλ)].
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This solution contains the two additional real parameters λ and µ . The
full metric for the Kinnersley–Chitre solution has been given by Yamazaki
(1980c). In general it is not invariant under reflection at the equatorial
plane. Hoenselaers (1982a) considered a limit of the Kinnersley–Chitre
solution and Yamazaki (1980b, 1980a) generalized the Kinnersley–Chitre
solution to include an arbitrary positive distortion parameter δ.

The function k in the Kerr metric (20.36) depends only on the coordi-
nate η = (x2−1)/(1−y2). The fact that k = k(η) is a property of the whole
class of TS solutions leads to a generalization of this class to arbitrary
continuous real parameter δ. Cosgrove (1978a, 1978b) studied the ansatz

(1− ν2)k,ν = 2h, 2η(1 + η)k,η = l(η),

η = (x2 − 1)/(1− y2), ν = y/x, h = const
(20.42)

for the function k obeying the fourth-order differential equation (19.48)
and obtained the ordinary differential equation (see also Dale (1978))

η2(1 + η)2l′′ 2 = 4[ηl′2 − ll′ − h2][−(1 + η)l′ + l − δ2] (20.43)

(δ constant). For h = 0, and with the boundary condition l(η) = δ2p−2 +
O(η−1) as η → ∞, equation (20.43) defines asymptotically flat solutions
which are regular on the axis outside a finite region. This class contains
three parameters, σ = mp/δ, q and δ (p2 + q2 = 1), related to mass m,
angular momentum J and quadrupole moment Q according to (20.39),
and goes over into the TS class for integer values of δ.

For h �= 0, Cosgrove (1978b) obtained special solutions in closed form.
Using the parametrization δ2 = n2 + 2bn + 2b2, h = b(n + b), one finds
e.g. for n = 1 that

e2k = C2(x2 − 1)b
2
(1− y2)b

2
(x− y)−(2b+1)

2
(x + y)−1

×[p2(x2 − 1)2b+1 − q2(1− y2)2b+1],

Γ =

[
(x− 1)(1 + y)
(x + 1)(1− y)

]b
(20.44)

×p2(x2 − 1)2b+1 − q2(1− y2)2b+1 − 2ipq(x− 1)2b(1 + y)2b(x + y)
p2(x2 − 1)2b(x + 1)2 + q2(1− y2)2b(1− y)2

This solution is a h �= 0 generalization of the Kerr solution and is, in
general, not asymptotically flat.

Limiting procedures give rise to new solutions. There are several ways of
performing the limit q → 1 in the TS solutions. Assuming that the product
px remains finite, one always obtains the extreme Kerr metric (m = a)
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regardless of which value of δ one starts with. Kinnersley and Kelley
(1974) took the limit such that px2S−1 remains finite and introduced this
quantity as a new coordinate. In this way they obtained a new class of
solutions,

ξ =
(Θ+Θ−)S−1[Θ+

S −Θ−S ] + i(r/2m)2S−1[Θ+
S−1 + Θ S−1

− ]
(r/2m)2S−1[Θ+

S−1 −Θ−S−1]− i(Θ+Θ−)S−1[Θ+
S + Θ−S ]

(20.45)

(Θ± = 1± cosϑ, and r, ϑ are spherical coordinates), for all real values of
the parameter S. These solutions are not asymptotically flat, except for
S = 1.

Other limiting procedures lead to the closed-form solution determined
by the complex potential (Cosgrove 1978b)

Γ = r2+2c
ηc[p2η2c+3 − q2 + ipq(2c + 3)(1 + η)ηc+1]

(1 + η)2c+2[p2η2c+1 − q2 − ipq(2c + 1)(1 + η)ηc]
(20.46)

with η = Θ+/Θ−, and to a rotating version of the Chazy–Curzon solution
(20.5) (Cosgrove 1977).

The Ernst equation (19.39) may be separated in some coordinate sys-
tems. The ansatz (Ernst 1977)

Γ = rkYk(cosϑ) (20.47)

(no summation) leads to the ordinary differential equation

1
2(Yk + Y k)[sinϑ)−1(sinϑYk,ϑ),ϑ + k(k + 1)Yk] = k2Y 2

k + (Yk,ϑ)2 (20.48)

for the complex function Yk = Yk(cosϑ). For k = 2, the solution is the
special case c = 0 of (20.46). Tseitlin (1985) integrated the Ernst equation
with an ansatz of the form

W,ζΓ,ζ + W,ζΓ,ζ = 0. (20.49)

Marek (1968) found stationary axisymmetric vacuum solutions under the
assumption

a,ζ = ρe−2Uh(ρ),
√

2∂ζ = ∂ρ − i∂z, (20.50)

which corresponds to a separation of the Ernst equation (19.39) in Weyl’s
canonical coordinates,

Γ = emzRm(ρ). (20.51)

This product ansatz leads to an ordinary differential equation defining
Painlevé transcendents. Dodd and Morris (1983) derived the general solu-
tion by solving an associated Riemann–Hilbert problem. Particular cases
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are considered in Léauté and Marcilhacy (1979). For a special range of
the parameters the problem reduces to the differential equation

H,ρρ +
1
ρ
H,ρ −

[
C2

ρ2(1 + coshH)2
+ m2

]
sinhH = 0 (20.52)

for the real function H from which the Ernst potential Γ can be obtained.
Non-trivial solutions of the types (20.47) and (20.51) do not have the
desired asymptotic behaviour Γ → 1 for r → ∞. Halilsoy and El-Said
(1993) and Léauté and Marcilhacy (1982) discussed the separation of the
potential ξ = (1−Γ)/(1 + Γ) in the coordinates ρ and z. It turns out that
the metric function k in (19.21) is independent of z.

Persides and Xanthopoulos (1988) systematically investigated the sepa-
ration of the field equations and derived from Painlevé transcendents
two families of solutions which, away from the symmetry axis, become
asymptotically flat. The relation of the Ernst equation with various
types of Painlevé equations has also been studied by Calvert and Wood-
house (1996).

Explicit solutions of the Ernst equation can be obtained by exploiting
the Lie point symmetries (§10.2), see Fischer (1980) and Pryse (1993).

The procedure developed by Herlt (1978b, 1979) for constructing static
axisymmetric Einstein–Maxwell fields (see §21.1) was used by Das (1983)
to generate real stationary axisymmetric vacuum fields from complex
solutions Ω of the (modified) Laplace equation (21.5a). The example given
by Das is equivalent to the extreme Kerr solution (a = m) (Bonanos and
Kyriakopoulos 1987).

20.7 Solutions with factor structure

The metric functions in the Kerr and Tomimatsu–Sato solutions are ratio-
nal functions of the prolate spheroidal coordinates x and y. It is advanta-
geous to introduce coordinates such that x = coshu, y = cos v. It can then
be seen that the numerator of e2U for the Kerr metric, (20.36), factorizes
into p sinhu ± q sin v, and the other metric functions can also be fac-
torized. Similar properties hold for the Tomimatsu–Sato and Kinnersley–
Chitre solutions. Therefore we summarize in this section some facts on
solutions of the Ernst equation with a factor structure (for more informa-
tion see Hoenselaers (1997)).

We use coordinates u and v related to Weyl’s canonical coordinates by
any pair of the relations

ρ = sin v

 sinhu
expu
coshu

 , z = cos v

 coshu
expu
sinhu

 . (20.53)
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The coordinates (u, v) correspond to prolate spheroidal, spherical or
oblate spheroidal coordinates. We write the metric as

ds2 = Be2k(du2 + dv2)/A + (G dϕ2 + 2C dϕ dt−A dt2)/B, (20.54)

where A, B, C and G are assumed to be polynomials in sin v, cos v and
in sinhu, coshu, expu. In what follows we shall use prolate spheroidal
coordinates; it can easily be seen that everything remains valid in the
other cases.

In this case A, B, C and G are polynomials in cos v and coshu only
because due to the field equations (19.31) being elliptic the solution must
be analytic and, if it exists on the axis ρ = 0, can depend only on z and
ρ2. The condition on the determinant of the ϕ − t-part, the last of the
equations (19.19), reads

AG + C2 = ρ2B2. (20.55)

This can be rewritten as

AG = (ρB + C)(ρB − C). (20.56)

As neither A nor G contains a factor (ρB+C) it follows (Kerr and Wilson
1989) that A and G factorize as well as (ρB + C) and (ρB − C). This
finally implies that the metric can be written as

ds2 = Be2k(dx2 + dy2)/A + [λ 2
2 (µdϕ + ν dt)2 − λ 2

1 (σ dϕ + τ dt)2]/B,

(20.57)
B = µτ − νσ, A = λ 2

1 τ2 − λ 2
2 ν2, ρ = λ1 λ2.

We have either λ1 = sinhu, λ2 = sin v or λ1 = 1, λ2 = sinhu sin v. The
quantities µ, ν, σ and τ are polynomials in sinhu, coshu, sin v and cos v.

Assuming Ernst’s ξ potential (19.46),

ξ = β/α, Γ = (α− β)/(α + β) , (20.58)

to be rational in the trigonometric resp. hyperbolic functions we get the
relations

A = αᾱ− ββ̄ = (λ1τ + λ2ν)(λ1τ − λ2ν) = A+A−,
(20.59)

B = (α + β)(ᾱ + β̄), C = λ 2
2 µν − λ 2

1 στ, ρB ± C = A±N∓.

Introducing the differential operator

∂± = ∂u ± i∂v (20.60)
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one can show (Hoenselaers and Perjés 1990) that there are polynomials
K+, K− and L+, L− such that

α∂±β − β∂±α = K±A± , ᾱ∂±α− β̄∂±β = L±A± . (20.61)

Moreover, it can be shown that

∂±A∓ = L± . (20.62)

From (20.61) we get for the derivatives of α and β

A∓∂±α = β̄K± + αL±, A∓∂±β = ᾱK± + βL±. (20.63)

Using the polynomials K±, L± and A± the field equation (19.47) reads

A±∂∓K± + 1
2(A+K+∂−ρ + A−K−∂+ρ)/ρ− L∓K± = 0. (20.64)

This equation comprises the Ernst equation and part of the integrability
conditions of (20.61). The remaining integrability conditions are writ-
ten as

A±∂+∂−A± − ∂+A±∂−A± + K∓K̄∓ = 0. (20.65)
It can be shown that the conformal factor e2k in (20.57) is given by

e2k = c A(∂+ρ ∂−ρ)−(n/2−1), (20.66)

where n is the degree of A in sinhu – it is necessarily even – and c is a
constant. From (19.42) one derives the existence of polynomials P± which
satisfy

A∓(α + β)∂±ρ + 2ρ(ᾱ + β̄)K± = P±A±
(20.67)

A∓∂±N∓ −N∓∂±A∓ = (ᾱ + β̄)P±.

As an example we give the polynomials A± and K± for the Kinnersley–
Chitre solution (20.41),

A± = (p2 + l2 −m2) sinh4 u + (q2 + l2 −m2) sin4 v

∓ 2pq sinhu sin v (sinh2 u + sin2 v) + 2(l2 −m2) sinh2 u sin2 v

± 4l coshu sinhu cos v sin v ∓ 2m sinhu sin v (cosh2 u + cos2 v),
(20.68)

K± = −2p sinh3 u± 2q sin3 v

+ 2
[
cosh2 u + cos2 v

]
[(ipl + qm) sinhu± (pm + iql) sin v]

+ 4 coshu cos v [(ql − ipm) sinhu∓ (pl + iqm) sin v]

(p, q,m, l = const, p2 + q2 = 1).
It should be noted that the TS solutions are characterized by K± =

real.
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Non-empty stationary axisymmetric

solutions

In this chapter we continue the survey of stationary axisymmetric solu-
tions. In §21.1 we give primarily those Einstein–Maxwell fields which were
already known before the arrival of the powerful solution-generating tech-
niques treated in Chapters 10 and 34. References to Einstein–Maxwell
fields generated by these methods can be found in Chapter 34. Known
perfect fluid solutions are listed in §21.2. The stationary cylindrically-
symmetric fields are contained in §22.2.

21.1 Einstein–Maxwell fields

21.1.1 Electrostatic and magnetostatic solutions

The metric can be cast into the form (19.21), with A = 0,

ds2 = e−2U [e2k(dρ2 + dz2) + ρ2dϕ2]− e2Udt2, (21.1)

and the Einstein–Maxwell equations reduce to (19.37). Substituting the
magnetostatic potential ψ for the potential χ of an electrostatic solution
one obtains its magnetostatic counterpart (Bonnor 1954). Thus we need
not consider the electro- and the magnetostatic solutions separately.

Assuming the functional dependence e2U = 1 − 2cχ + χ2 (cp. (18.60))
of the potentials U and χ plus axial symmetry, Weyl (1917) has given a
class of solutions (Weyl’s electrovac class). (The sources of these solutions
have a constant specific charge density, see §18.6.3). For axisymmetric
electrostatic Einstein–Maxwell fields the formula (19.34) yields

k,ζ = (ζ + ζ̄)(U 2
,ζ − e−2Uχ 2

,ζ ), (21.2)

so that for the Weyl solutions the function k can easily be constructed
from a solution Y of the potential equation ∆Y = 0, according to

k,ζ = ±(ζ + ζ̄)Y 2,ζ (c2 �= 1); k,ζ = 0 (c2 = 1). (21.3)

319
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The Weyl solutions with c2 = 1 are just the Papapetrou–Majumdar solu-
tions (see §18.7) with axial symmetry. In the sense of (19.50), Weyl’s
electrovac class corresponds to Papapetrou’s class (§20.3). The
spherically-symmetric solution in Weyl’s electrovac class is the well-known
Reissner–Nordström solution (15.21). In Weyl’s canonical coordinates, it
is given by

ds2 =
(R + m)2

r+r−
(dρ2 + dz2) +

(R + m)2

R2 − d2
ρ2dϕ2 − R2 − d2

(R + m)2
dt2,

(21.4)

χ =
e

R + m
, R ≡ 1

2(r+ + r−), r±2 ≡ ρ2 + (z ± d)2, d ≡ (m2 − e2)1/2

(see e.g. Gautreau et al. 1972). The two independent parameters in (21.4)
denote the mass (m) and the charge (e) (in geometrical units). Because of
the linear equation ∆Y = 0 one can superpose, say, two charged Curzon
solutions. In this two-body configuration the mass attraction and the
repulsion of charges balance to form an equilibrium state without conical
singularities on the axis outside the particles provided that the masses
m1 and m2 and the charges e1 and e2 of the two constituents satisfy the
Newtonian relation m1m2 = e1e2 (Cooperstock and de la Cruz 1979). The
superposition of N Reissner–Nordström solutions on the symmetry axis
is discussed in Azuma and Koikawa (1994).

Herlt (1978b) found a new class of solutions which differs from Weyl’s
class and contains a subclass of asymptotically flat solutions. From every
real solution Ω of the linear differential equation

Ω,ρρ − ρ−1Ω,ρ + Ω,zz = 0 (21.5a)

the gravitational and electrostatic potentials are calculated according to
the relations

e2U = (Ω−1 + G)2, χ = Ω−1 −G,

G = Ω,ρ

[
ρ(Ω2,ρ + Ω2,z)− ΩΩ,ρ

]−1
.

(21.5b)

The metric function k can be obtained from (21.2). The solutions of Herlt’s
class (21.5) are in general of non-degenerate Petrov type I. This class was
constructed by an application of generation techniques (Chapter 34) to
the complex van Stockum class (20.32). Some special solutions of the class
(21.5) are considered by Carminati (1981). To obtain the Bonnor (1966)
solution for a mass endowed with a magnetic dipole, the function Ω has
to be chosen as

Ω = A(eαr1 + e−αr2 + 2m) (21.6)

(r1, r2 as in (20.13); A, α = real constants). A generalization of this
solution to the exterior field of a rotating charged source was given by
Neugebauer and Kramer (1969). The asymptotically flat vacuum solution
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in the class (21.5) is the Darmois solution (20.13). Herlt (1979) generalized
his class to include asymptotically flat electrovac solutions which go over
to the Schwarzschild solution for vanishing electrostatic field. Within the
Herlt framework the superposition of two separated Reissner–Nordström
sources leads to an equilibrium condition (existence and regularity of the
axis) which depends on their distance (Carminati and Cooperstock 1992).

An asymptotically flat three-parameter static electrovac solution with
mass, electric charge and dipole moment was given by Bonnor (1979b).
In terms of prolate spheroidal coordinates (x, y) this metric reads

ds2 =
A4B4G2

(x2 − y2)3

(
dx2

x2 − 1
+

dy2

1− y2

)
+

(x2 − 1)(1− y2)dϕ2

G2
−G2dt2,

(21.7)
where

A = cy−x+b, B = cy+x+a, c2 = 1+ab, G = 1−a/B−b/A (21.8)

and the electrostatic potential χ is given by

χ = a/B − b/A . (21.9)

The three independent parameters are a, b and the constant σ hidden in
the definition (20.6). The gravitational and electrostatic potentials are
functionally non-related. This is also true for the solutions generated by
Das (1980a). Kóta et al. (1982) considered the electrovac class of station-
ary solutions with non-geodesic shearfree eigenrays. Following Bonnor’s
theorem, see (19.50), Das (1980b) and Lukács (1992) constructed the
static electrovac counterparts of the stationary Kinnersley–Chitre vacuum
solution (20.41) and the Tomimatsu–Sato solutions (20.38), respectively.

Carminati and Cooperstock (1983) attacked the static axisymmetric
electrovac problem by adapting the (orthogonal) independent coordinates
to the electrostatic equipotential surfaces.

The static gravitational field of a mass endowed with a magnetic dipole
moment can be given by the metric (21.1) written in terms of prolate
spheroidal coordinates (x, y) as defined in (20.6). In the asymptotically
flat solution due to Gutsunaev and Manko (1987), the metric functions
and the magnetostatic potential read

e2U =
x− 1
x + 1

(
[x2 − y2 + α2(x2 − 1)]2 + 4α2x2(1− y2)
[x2 − y2 + α2(x2 − 1)]2 − 4α2y2(x2 − 1)

)
,

e2k =
x2 − 1
x2 − y2

{
[x2 − y2 + α2(x2 − 1)]2 + 4α2x2(1− y2)

}4
(1 + α2)8(x2 − y2)8

, (21.10)

ψ =
4σα3(1− y2)[2(1 + α2)x3 + (1− 3α2)x2 + y2 + α2]
(1 + α2) {[x2 − y2 + α2(x2 − 1)]2 + 4α2x2(1− y2)} .
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For α = 0 one gets the Schwarzschild solution. This solution was ob-
tained by means of the ‘method of variation of constants’ (Gutsunaev and
Manko 1988). For generalizations and other examples of this method, see
e.g. Castejon-Amenedo and Manko (1990a), Manko (1990), Manko and
Khakimov (1991), Krori and Goswami (1992), Manko and Novikov (1992),
Gutsunaev and Elsgolts (1993) and the references given there.

The Schwarzschild black hole can be immersed in the Bertotti–Robinson
space-time (12.16) describing a spatially homogeneous magnetic (or elec-
tric) background field; Alekseev and Garćıa D. (1996) give a discussion
of the corresponding static electrovac solution and explain how it was
constructed by means of the methods treated in Chapter 34.

21.1.2 Type D solutions: A general metric and its limits

The general Einstein–Maxwell type D solution (with a non-null dou-
ble aligned electromagnetic field, cp. §§26.1–26.2, and including the cos-
mological constant Λ) is known (Debever et al. 1982, 1984, Garćıa D.
1984). It admits (at least) a group G2 with commuting Killing vec-
tors which acts on null or non-null orbits (Debever and McLenaghan
1981). Its various subcases have been widely discussed in the litera-
ture; they can all be derived by limiting procedures from the line el-
ement (Plebański and Demiański (1976), see also Debever (1971) and
Garćıa D. and Macias (1998))

ds2 = (1− pq)−2
[
(p2 + q2)dp2/X + X(dτ + q2dσ)2/(p2 + q2)

+ (p2 + q2)dq2/Y − Y (dτ − p2dσ)2/(p2 + q2)
]
,

(21.11)
X = X(p) = (−g2 + γ − Λ/6) + 2lp− εp2 + 2mp3 − (e2 + γ + Λ/6)p4,

Y = Y (q) = (e2 + γ − Λ/6)− 2mq + εq2 − 2lq3 + (g2 − γ − Λ/6)q4.

To get a Lorentzian signature, X must be positive. The orbits of the
Killing vectors ∂τ and ∂σ are spacelike for Y < 0 and timelike for Y >
0. In the latter case, the vector ∂τ is timelike in certain ranges of the
coordinates, and σ may be interpreted as an azimuthal coordinate: the
solutions are stationary and axisymmetric or belong to the class of boost-
rotation-symmetric space-times (§17.2). Y = 0 corresponds to null orbits;
in that case, one should first perform a coordinate transformation du =
dτ + q2dq/Y, dσ = − dv −dq/Y and then let Y go to zero, thus arriving
at the metrics (24.21)–(24.22).

Besides the cosmological constant Λ, (21.11) contains six real parame-
ters: m and l are the mass and the NUT parameter (see (20.28)); γ and
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ε are related to the angular momentum per unit mass, a, and the accel-
eration b; e and g are the electric and magnetic charges. With respect to
a complex null tetrad associated with the preferred null directions

Y −1(q2∂τ − ∂σ)± ∂q, (21.12)

the only non-vanishing tetrad component of the Weyl tensor is

Ψ2 = −(m + i l)
(

1− pq

q + ip

)3
+ (e2 + g2)

(
1− pq

q + i p

)3 1 + pq

q − ip
. (21.13)

The space-time is flat if m = l = 0, e = g = 0, Λ = 0. The complex
potential Φ (formed with respect to the Killing vector ∂τ ) and the complex
invariant of the non-null electromagnetic field are given by

Φ =
e + ig
q + ip

, κ0F
∗
abF

∗ab =
8
F

Φ,aΦ,a = −8(e + ig)2
(

1− pq

q + ip

)4
. (21.14)

Some well-known classes of solutions can be obtained from the gen-
eral metric (21.11) by appropriate limiting procedures (§9.5). We give two
examples of such ‘contractions’ consisting of both a coordinate transfor-
mation and a simultaneous redefinition of constants.
Case I: We consider the scale transformation

p→ n−1p, q → n−1q, σ → n3σ, τ → nτ,

m + il → n−3(m + il), e + ig → n−2(e + ig), ε→ n−2ε,

γ − Λ/6 → n−4γ, Λ → Λ,

(21.15)

perform the limit n→∞ and obtain from (21.11) the metric

ds2 = (p2 + q2)dp2/X + X(dτ + q2dσ)2/(p2 + q2)

+(p2 + q2)dq2/Y − Y (dτ − p2dσ)2/(p2 + q2), (21.16)

X = γ − g2 + 2lp− εp2 − Λp4/3, Y = γ + e2 − 2mq + εq2 − Λq4/3.

This metric has been studied in detail by Plebański (1975). It includes
the family of Einstein–Maxwell fields found by Carter (1968a, 1968b), who
investigated space-times with an Abelian group of motions G2 in which
the Hamilton–Jacobi equation is separable. In addition to (21.16) (with
g = 0), Carter gives other families which are also limiting cases of the
general form (21.11). We remark that, for instance, the Bertotti–Robinson
solution (12.16) can be obtained from (21.11) by a contraction procedure
(Plebański 1975). Another solution which appears as a limiting case of the
general metric (21.11) is the Reissner–Nordström black hole embedded
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in a uniform external electric field which asymptotically approaches the
Bertotti–Robinson solution (Halilsoy and Al-Badawi 1998).

Besides Λ, the metric (21.16) contains five real parameters (ε can be
reduced to ε = 0,±1 by a scale transformation (21.15) with finite n). For
Λ = 0, ε = 1 we obtain from (21.16) the metric

ds2 = (p2 + q2)(dθ2 + dq2/Y ) + a2 sin2 θ(dτ + q2dσ)2/(p2 + q2)

−Y (dτ − p2dσ)2/(p2 + q2), (21.17)

p = l − a cos θ, a2 = γ − g2 + l2, Y = a2 + e2 + g2 − l2 − 2mq + q2,

which in turn contains as an important special case (l = g = 0) the
well-known Kerr–Newman solution, which will be dealt with separately
in §21.1.3. The coordinate transformation

q = r, p = −a cos θ, σ = −ϕ/a, τ = t + aϕ (21.18)

brings the metric (21.17) into the form (21.24) and the multiple principal
null directions (21.12) take the form given in (21.23) (up to normaliza-
tion).
Case II: We make the substitution

p→ n−1p, q → −nq−1, σ → n−1σ, τ → n−1τ,

l → nl, ε→ n2ε, m→ n3m, e + ig → n2(e + ig),

γ → γ + n4g2, Λ → Λ,

(21.19)

in the metric (21.11). Taking the limit n→∞, we obtain the line element

ds2 = (p + q)−2[dp2/X + dq2/Y + Xdσ2 − Y dτ2],

X = (γ − Λ/6) + 2lp− εp2 + 2mp3 − (e2 + g2)p4, (21.20)

Y = −(γ + Λ/6) + 2lq + εq2 + 2mq3 + (e2 + g2)q4.

These space-times are generalizations of the degenerate static vacuum
field denoted the C-metric in Table 18.2. We now consider the subcase
Λ = 0, ε = 1, g = 0. The parameter l can be put equal to zero by a simple
coordinate transformation. Then the transformation (γ = b2)

q = r−1 + bx, p = −bx, σ = z/b, τ = u−
∫

Q−1dq, (21.21)

turns the metric (21.20) into the form

ds2 = r2(G−1dx2 + Gdz2)− 2du dr − 2br2du dx− 2Hdu2,

G = 1− x2 − 2mbx3 − e2b2x4, (21.22)

2H = 1− 2m/r + e2/r2 − b2r2G + brG′ + 6mbx + 6e2b2x2 − 4be2x/r.
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Table 21.1. Stationary axisymmetric Einstein–Maxwell fields

Only the parameters marked by a cross (×) are different from zero in the
corresponding solution.

m l a b e g Λ References
× × × × × × × Debever (1971), Plebański and Demiański

(1976)
× × × × × × Kinnersley (1969b)
× × × × × × Plebański (1975)
× × × × × Demiański and Newman (1966)
× × × × ×
× × × × ×

 Carter (1968a, 1968b)

× × × ×
× × × Brill (1964)
× × × Newman et al. (1965)

× × Bertotti (1959), Robinson (1959)
× × Reissner (1916), Nordström (1918)

This is the gravitational field generated by two uniformly accelerated
charged mass points, the parameter b being the acceleration parameter
(Kinnersley and Walker 1970, Walker and Kinnersley 1972, Plebański and
Demiański 1976). Note that b may be put equal to zero in (21.22) but
not in (21.20), because the transformation (21.21) involves b explicitly.
Putting b = 0 in (21.22) we get the Reissner–Nordström solution in terms
of the retarded time coordinate u (cp. (15.17) and Table 15.1). The singu-
larity between the sources is removed in a more general metric (Ernst
1976), which contains an additional parameter describing an electric field
which causes the uniform acceleration of the charges.

A particular limit of the general metric (21.11) can be considered as
a superposition of the Schwarzschild and Bertotti–Robinson solutions
(Halilsoy 1993a).

In Table 21.1, taken from Plebański and Demiański (1976), special cases
of the metric (21.11) which had been given earlier in the literature are
listed.

21.1.3 The Kerr–Newman solution

The Kerr–Newman solution is a special case of the type D solutions dis-
cussed in §21.1.2. Newman et al. (1965) found it by applying a complex
substitution (see §21.1.4) to the preferred complex null tetrad of the Kerr
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solution. They obtained the new complex null tetrad

ki = (1, 0, a/∆, (r2 + a2)/∆), li = 1
2(r2 + a2 cos2 θ)−1(−∆, 0, a, r2 + a2),

(21.23)
mi = 2−1/2(0, 1, i/ sin θ, ia sin θ)/(r + ia cos θ), ∆ ≡ r2 + a2 + e2 − 2mr

(x1 = r, x2 = θ, x3 = ϕ, x4 = t), which represents a solution of the
Einstein–Maxwell equations. The corresponding metric is given by

ds2 = (r2 + a2 cos2 θ)
(

dr2

∆
+ dθ2
)
−
(

1− 2mr − e2

r2 + a2 cos2 θ

)
dt2

+ sin2 θ
[
r2 + a2 +

a2 sin2 θ
r2 + a2 cos2 θ

(2mr − e2)
]
dϕ2 (21.24)

− 2a sin2 θ
r2 + a2 cos2 θ

(2mr − e2)dϕdt.

For e = 0, it goes over into the Kerr metric (20.34). The Kerr–Newman
solution (21.24) may describe the exterior gravitational field of a rotating
charged source and contains three real parameters: m (mass), e (charge)
and a (angular momentum per unit mass).

The only non-vanishing components of the Weyl and Maxwell tensors,
with respect to the null tetrad (21.23), are

Ψ2 = − m(r + ia cos θ)− e2

(r − ia cos θ)3(r + ia cos θ)
,

√
κ0
2

Φ1 =
e

2(r − ia cos θ)2
. (21.25)

In the metric (21.24) the complex scalar potentials Φ and E , with respect
to the Killing vector ξ = ∂t, are given by

Φ =
e

r − ia cos θ
, E = 1− 2m

r − ia cos θ
. (21.26)

E is a linear function of Φ. As can be seen from Φ, the magnetic dipole
moment vanishes if the source is either non-rotating (a = 0, Reissner–
Nordström solution) or uncharged (e = 0, Kerr solution).

Ernst and Wild (1976) applied the Harrison transformation (34.12)

E ′ = Λ−1E , Φ′ = Λ−1(Φ−BE), Λ = 1− 2BΦ + B2E (21.27)

(B being a real parameter) to obtain the solution for a Kerr–Newman
black hole immersed in a homogeneous magnetic field. Note that the
Ernst potentials in (21.27) are formed with respect to the Killing vec-
tor η = ∂ϕ. For a discussion of the Ernst–Wild solution and further
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references, see Aliev and Gal’tsov (1989a) and the review article Aliev
and Gal’tsov (1989b). Another generalization of the Kerr–Newman solu-
tion (with quadrupole deformation of the mass) was derived by Denisova
et al. (1991).

The Kerr–Newman solution with |e| = m is conformastationary (see
§18.7) and can be derived from the solution

V =
(

1− m

r − ia cos θ

)−1
= 1 +

m

R
, R2 = ρ2 + (z − ia)2,

(21.28)
ρ = sin θ

√
(r −m)2 + a2, z = (r −m) cos θ,

of the potential equation ∆V = 0, see (18.73). The superposition of N
collinear Kerr–Newman sources for which the gravitational attraction and
the electrostatic repulsion are balanced (|eA| = mA, A = 1, . . . , N) and
for which the spins are parallel or antiparallel along the axis of symmetry
leads to the expression

V = 1 +
N∑

A=1

mA

RA
, RA

2 ≡ ρ2 + (z − lA)2. (21.29)

The real and imaginary parts of lA give respectively the position of the
source A on the z-axis and the angular momentum per unit mass. The
explicit metric for N = 2 has been obtained by Parker et al. (1973)
and Kobiske and Parker (1974). The regularity condition (18.74) implies
Im [m1+m1m2(l1− l̄2)−1] = 0 = Im (m1+m2). For two equal sources with
oppositely directed spins (m1 = m2 real, l1 = −l2), no singularities along
the axis between the particles occur. In general, this superposition (21.29)
of Kerr–Newman solutions with |e| = m gives rise to naked singularities
(Hartle and Hawking 1972); black hole metrics necessarily belong to the
static subclass (lA real) discovered by Papapetrou (1947) and Majumdar
(1947), see §18.7.2. This subclass can be generalized to include in addition
the cosmological constant Λ (Kastor and Traschen 1993).

The solution given by Bonnor (2000) adapts to cosmology the Papape-
trou–Majumdar metric. The line element of Bonnor’s solution reads

ds2 = X−1R(t)2[dr2 + Σ2(dϑ2 + sin2 ϑdϕ2]−Xdt2,

X = (1 + U/R(t))−2, U = U(r, ϑ, ϕ), (21.30)

where Σ = sin r, r or sinh r for positive, zero or negative spatial cur-
vature of the background FRW cosmology. It is a generalization of the
solution derived in Kastor and Traschen (1993). Assuming that charge is
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convected with matter, one obtains outside the charges the linear field
equation ∆U = 0, where ∆ denotes the Laplacian with respect to the 3-
metric dr2 +Σ2dΩ2 in (21.30). Bonnor (2000) discusses the non-radiative
character of this Einstein–Maxwell field (with charged matter).

Examples of axisymmetric conformastationary (§18.7.2) Einstein–Max-
well fields are given by Chatterjee and Banerji (1979). Electrovac gener-
alizations of the Tomimatsu–Sato solutions are derived in Ernst (1973),
see also Panov (1979d).

21.1.4 Complexification and the Newman–Janis ‘complex trick’

A few new metrics were discovered by a formal procedure which can
roughly be described as follows: a given metric is first complexified and
then a complex coordinate transformation is performed in such a way that
the result is a new real metric.

Such a ‘complex trick’ was introduced by Newman and Janis (1965).
It was subsequently justified by Talbot (1969) for algebraically special
vacuum metrics (27.27) for which P,u = L,u = Σ,u = 0 and m + iM =
cu + a + ib for constants a, b and c; thus it applies to some Robinson–
Trautman metrics and to the metrics discussed in §29.2.1. This can be
extended to electrovacuum (see also Quevedo (1992)) and to perfect fluids.

Newman and Janis (1965) used the method to obtain the Kerr solution
from the Schwarzschild solution. Newman et al. (1965) derived a new
solution of the Einstein–Maxwell equations from the Reissner–Nordström
metric

ds2 = r2(dϑ2 + sin2 ϑ dϕ2)− 2du dr − (1− 2m/r + e2/r2)du2. (21.31)

The radial coordinate x1 = r and the retarded time x4 = u are allowed
to take complex values and the null tetrad is formally replaced by the
expressions

k = ∂r, l = ∂u − 1
2M ∂r, m = (∂ϑ + i cosecϑ∂ϕ)/

√
2r̄,

(21.32)
M = M(r, r̄) = 1−m/r −m/r̄ + e2/rr̄.

For real values of the coordinate r, (21.32) is a null tetrad for the metric
(21.31). After the complex coordinate transformation

r′ = r + ia cosϑ, u′ = u− ia cosϑ, (21.33)

one obtains from (21.32) the new tetrad components

k′ = ∂r, l
′ = ∂u − 1

2

(
1− 2mr′ − e2

r′2 + a2 cos2 ϑ

)
∂r,

(21.34)
m′ = [∂ϑ + i cosecϑ∂ϕ + ia sinϑ(∂u − ∂r)]/

√
2(r′ + ia cosϑ).
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For real values of the coordinates r′, u′, the associated metric is the Kerr–
Newman metric (21.24).

Demiański (1972) found the most general vacuum solution which re-
sults from the complexified null tetrad (21.32), M = M̄ = M(r, r̄)
still being unspecified, when the complex coordinate transformation r′ =
r + iF (ϑ, ϕ), u′ = u + iG(ϑ, ϕ), ϑ′ = ϑ, ϕ′ = ϕ (F and G being real
functions of their real arguments ϑ and ϕ) is performed and the new
coordinates r′, U ′, are restricted to being real. The resulting solution is
given by (29.62): in general it is of Petrov type II .

Twisting type D vacuum metrics (§29.5) may be obtained from cor-
responding non-twisting metrics by the Newman–Janis method (Basey
1975).

The original generation of the Kerr solution from Schwarzschild (New-
man and Janis 1965) is obtained by putting e = 0 in (21.31) and (21.32).
The Kerr solution can, however, be considered to be a complexification
of the Schwarzschild solution in quite another sense. Some Kerr–Schild
vacuum metrics (§32.2) can be computed from a (complex) generating
potential γ which simultaneously satisfies the two equations ∆γ = 0,
(∇γ)2 = γ4 in flat 3-space. The solution γ = 1/r = 1/

√
x2 + y2 + z2 of

these equations yields the Schwarzschild solution; the Kerr solution re-
sults from γ = 1/r by an imaginary translation of the origin, z → z − ia
(Schiffer et al. 1973). For a corresponding treatment of Einstein–Maxwell
fields, see Finkelstein (1975), Collins (1976).

21.1.5 Other solutions

Solutions of the Ernst equations (19.28)–(19.29) when the complex po-
tentials E and Φ depend only on the similarity variable z/ρ (in Weyl
coordinates) are given in Kaliappan and Lakshmanan (1981). The solu-
tions which have been found by the method of separation of variables
depend on the fifth Painlevé transcendent (Léauté and Marcilhacy 1984,
Halilsoy 1985).

Starting with the Kerr–Newman solution as seed metric, Hiscock (1981)
and Aliev et al. (1980) constructed the Einstein–Maxwell field of a ro-
tating charged black hole in a strong magnetic field. For the generation
method used in these papers, and for other applications of these methods
in General Relativity, we refer the reader to Chapters 10 and 34.

With the aid of their differential form approach for stationary axisym-
metric Einstein–Maxwell fields, Fernandez-Jambrina and Chinea (1994)
derived a solution with the metric

ds2 = ρ−2/3
[
ρ2dϕ2 + e2k(dρ2 + dz2)

]
− ρ2/3(dt−Adϕ)2, (21.35)
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where A satisfies the linear equation

A,ρρ + (1/3ρ)A,ρ + A,zz = 0 (21.36)

and k is determined by a line integral from A.
Perjés (1993) found a class of Einstein–Maxwell fields without a func-

tional relationship Φ = Φ(E) between the complex Ernst potentials. The
field equations lead to the key equation

µ(u)
[
(1 + σ2)α + (1 + u2)α−1]

,σσ
+ λ(σ)α,uu = 0 (21.37)

for α = α(u, σ), where the functions µ = µ(u) and λ = λ(σ) are arbitrary.
In terms of the real space-time coordinates u and σ the Ernst potentials
are given by

E =
1− (1 + iσ)α
1 + (1 + iσ)α

, Φ =
u

1 + (1 + iσ)α
. (21.38)

For one branch of solutions one is led to an ordinary third-order differen-
tial equation. The metric and the electromagnetic field corresponding to
the particular solution

α = a

√
1 + u2

1 + σ2
, λ =

1 + 1/a2

1 + σ2
, µ = −(1 + u2)−2, a = const (21.39)

of (21.37) are calculated in Perjés and Kramer (1996).
Das and Chaudhuri (1993) generated stationary axisymmetric

Einstein–Maxwell fields from solutions of the Laplace equation as seed.
All Einstein–Maxwell fields considered in this chapter have a non-

null electromagnetic field. In the null case, and for pure radiation fields,
the stationary axisymmetric solutions admit a null Killing vector (§24.4)
(Gürses 1977).

21.2 Perfect fluid solutions

21.2.1 Line element and general properties

In most rotating perfect fluid solutions the four-velocity of the fluid obeys
the circularity condition (19.13) so that the four-velocity is a linear com-
bination of the two Killing vectors:

u[aξbAξ
c]
B = 0, ua = (−H)−1/2(ξa + Ωηa) = (−H)−1/2SAξaA,

H ≡ λABSASB, λAB ≡ ξaAξBa, SA ≡ (1,Ω).
(21.40)
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Then there exist 2-surfaces orthogonal to the group orbits (§19.2) and the
metric can be written as

ds2 = e−2U
[
e2k(dρ2 + dz2) + W 2dϕ2

]
− e2U (dt + Adϕ)2,

H = W 2Ω2e−2U − (1 + AΩ)2e2U .
(21.41)

The velocity field is necessarily expansionfree, ua;a = 0. If the angular
velocity Ω of the system (with respect to infinity) is a constant, then
the system rotates rigidly, i.e. the fluid is in shearfree and expansionfree
motion,

σ = 0 = Θ ↔ u(a;b) + u(au̇b) = 0. (21.42)

The general case (Ω,a �= 0) is that of differential rotation. The fluid’s
rotation ωa = εabcdub;cud vanishes if Ω = A/(W 2e−4U −A2) (up to linear
ϕ–t-transformations, or a redefinition t ↔ ϕ which leads to Ω = −1/A
and a negative e2U ). For static axisymmetric solutions see also §18.6.4.

In the metric (21.41), the regularity condition (19.3) takes the form

lim
ρ→0 [ρ−1eU−k(e−2UW 2 − e2UA2)1/2] = 1. (21.43)

A perfect fluid solution not satisfying the circularity condition is pro-
vided by (33.13). Mars and Senovilla (1998) investigated in detail the
problem of matching a given interior perfect fluid solution and an exte-
rior vacuum solution which turns out to be unique.

For a review of perfect fluid solutions see also Senovilla (1993).

21.2.2 The general dust solution

All stationary axisymmetric (rotating) dust metrics satisfying condition
(21.40) are known up to quadratures.

For differentially rotating dust (Ω,a �= 0), we proceed as follows
(Winicour 1975). We substitute Rab = κ0µ(uaub + 1

2gab) into (19.25),

Da(W−1λAB,a) = κ0µW
−1(λAB + 2W 2H−1SASB)

(21.44)
+ 1
2W

−3λABλCD,aλCD,a, 2W 2 ≡ −λABλAB,

and take into account the relation

T ab
;b = 0 → SASBλAB,a = 0. (21.45)

The last equation, if rewritten in the form

H,a = 2ηΩ,a, η ≡ λ12 + Ωλ22, (21.46)
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shows that for differential rotation both η and Ω are functions of H. The
arbitrary function η = η(H) determines an auxiliary function β = β(H)
defined by

β,a ≡ H,a/(Hη). (21.47)

From the field equations (21.44) we obtain the relations

W−1[(βW 2),a + (H/η)(η2/H),a] = εabγ
,b → ∆γ = 0, (21.48)

DaW,a = 0, (21.49)

and an expression for the mass density µ. Because of the two-dimensional
Laplace equation (21.49) for W we can choose W = ρ in the metric
(21.41). The choice W = 1 is also possible, but does not allow us to
interpret ϕ as an azimuthal coordinate. The remaining field equations
obtained from (19.24)–(19.26) either determine the conformal factor e2k

in the line element (21.41) or are satisfied in consequence of (21.44)–
(21.45).

In order to construct dust metrics, we have to choose (i) a function η =
η(H) and (ii) an axisymmetric solution γ of the potential equation ∆γ = 0
in flat 3-space. Once γ = γ(ρ, z) and η = η(H) are given, one obtains β =
β(H) from (21.47), the function βW 2+2η−∫ ηH−1dH and consequently
H = H(ρ, z) from (21.48), and finally the angular velocity Ω from (21.46).
Hence, the scalar products of the Killing vectors are completely known:

λ11 = ξaξa = g44 = H−1[(H − ηΩ)2 − Ω2ρ2] = −e2U ,

λ12 = ξaηa = g34 = H−1Ω(ρ2 − η2) + η = −Ae2U , (21.50)

λ22 = ηaηa = g33 = −H−1(ρ2 − η2) = e−2Uρ2 −A2e2U .

The conformal factor e2k can be determined by means of a line integral
and the mass density is given by the formula

4κ0µ = η−2[H2ρ−2(η2/H),a(η2/H),a − ρ2H−2H,aH
,a]. (21.51)

The general class of dust solutions described above contains the
cylindrically-symmetric dust solutions (§22.2).

For rigidly rotating dust (Ω = Ω0 = const), one can either start from
the special case H = −(1 + p2η2), Ω = Ω0 − p2η of the above class and
then take the limit p→ 0 (Vishveshwara and Winicour 1977), or directly
attack the field equations (21.54). With

√
2ζ = ρ+ i z, W = ρ, U = 0,

they read (Lanczos 1924, van Stockum 1937)

∆A = 0 = 2(ζ + ζ̄)A,ζζ̄ −A,ζ −A,ζ̄ , (21.52)
2k,ζ = −(ζ + ζ̄)−1(A,ζ)2, κ0µ = 2ρ−2A,ζA,ζ̄e

−2k = 2u[a;b]u
a;b.
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The mass density is positive definite. A special member of this class was
analysed by Bonnor (1977) with the surprising result that, contrary to
Newtonian mechanics, a density gradient in the z-direction (axis of rota-
tion) occurs. (For r → ∞, the mass density tends very rapidly to zero.)
A closed form solution of (21.52) has been discussed by Islam (1983a).

All stationary rigidly rotating dust metrics with geodesic and/or shear-
free eigenrays (§18.5) are given in Lukács (1974). They are axially-symme-
tric and belong to the Lanczos–van Stockum class (21.52). For a solution
whose source can be interpreted as a rigidly rotating disk of dust (Neuge-
bauer and Meinel 1995) see Chapter 34.

Comparing (21.52) with (20.3) for Weyl’s vacuum solutions, we con-
clude that there exists a one-to-one correspondence between static ax-
isymmetric vacuum solutions and stationary axisymmetric dust solutions.
This statement is a special case of the more general

Theorem 21.1 To every static vacuum solution (metric gij, Killing vec-
tor ξk) a (rigidly rotating) stationary dust solution (ĝij , ui, µ) can be as-
signed by

ĝij = −ξmξmgij + ξiξj − uiuj , uiξ
i = −1, e2U = −ξiξi,

(21.53)
u[i;j] = εijklU

,kξl, u(i;j) = 0, κ0µ = 4U,iU
,i.

(Ehlers 1962).

21.2.3 Rigidly rotating perfect fluid solutions

For rigid rotation (Ω = const in (21.40)), there exists a (timelike) Killing
vector (linear combination of ξ and η with constant coefficients) parallel
to the four-velocity of the fluid. We can identify this Killing vector with
ξ = ∂t (comoving system, with Ω = 0).

In a comoving coordinate system (21.41), the field equations (18.25)–
(18.28) for the energy-momentum tensor of a rigidly rotating perfect fluid
read (with

√
2ζ = ρ+i z)

W,ζζ̄ = κ0pW e2k−2U , (21.54a)

U,ζζ̄ + (2W )−1(U,ζW,ζ̄ + U,ζ̄W,ζ) + 1
2W

−2e4UA,ζA,ζ̄
(21.54b)

= κ0(µ + 3p)e2k−2U/4,

A,ζζ̄ − (2W )−1(A,ζW,ζ̄ + A,ζ̄W,ζ) + 2(A,ζU,ζ̄ + A,ζ̄U,ζ) = 0, (21.54c)

2W,ζk,ζ = W,ζζ + 2W (U,ζ)2 − (2W )−1e4U (A,ζ)2, (21.54d)

k,ζζ̄ + U,ζU,ζ̄ + (2W )−2e4UA,ζA,ζ̄ = κ0pe2k−2U/2. (21.54e)
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The conservation law

T ab
;a = 0 → p,ζ + (µ + p)U,ζ = 0 (21.55)

is a consequence of the field equations (21.54). Conversely, (21.54e) follows
from (21.55) (Trümper 1967). For a different form of the field equations
see Bonanos and Sklavenites (1985).

Many of the known rigidly rotating solutions have an equation of state
(Senovilla 1993)

µ + 3p = const = µ0, (21.56)

and most of them are subcases of the Wahlquist (1968, 1992) solution.
This solution is given in terms of generalized oblate-spheroidal coordinates
(ξ, η, ϕ) by

ds2 = r20(ξ
2 + η2)

[
dξ2

(1− k2ξ2)h1
+

dη2

(1 + k2η2)h2
+

c2h1h2
h1 − h2

dϕ2
]

− e2U (dt + Adϕ)2,

e2U =
h1 − h2
ξ2 + η2

, A = cr0

(
ξ2h2 + η2h1

h1 − h2
− η20

)
,

h1 = h1(ξ) = 1 + ξ2 − 2mr−10 ξ(1− k2ξ2)1/2 (21.57)

+ ξb−2[ξ − k−1(1− k2ξ2)1/2 arcsin(kξ)],

h2 = h2(η) = 1− η2 − 2ar−10 η(1 + k2η2)1/2

− ηb−2[η − k−1(1 + k2η2)1/2 arcsinh(kη)],

h2(η0) = 0, c−1 = 1
2(1 + k2η20)

1/2dh2/dη|η=η0 ,
p = 1

2µ0(1− b2e2U ), µ = 1
2µ0(3b

2e2U − 1), κ0µ0 = 2k2(br0)−2.

The real constants r0, k, b, m, a are arbitrary and the constants η0,
c are adjusted so that the solution behaves properly on the axis, i.e.
so that the metric satisfies the regularity condition (21.43). For m =
a = 0, the solution (21.57) is a singularityfree interior solution for a
rigidly rotating fluid body bounded by a finite surface of zero pressure.
For m = a = 0, ξ = r/r0, η = cos θ and in the limit r0 → 0 we obtain from
(21.57) a spherically-symmetric solution (§16.1.2) with µ + 3p = const.
For different forms of the Wahlquist solution, see Senovilla (1993) and
Rácz and Zsigrai (1996).

Wahlquist’s solution (21.57) is of Petrov type D, the four-velocity
not being spanned by the two null eigenvectors. Conversely it can be



21.2 Perfect fluid solutions 335

shown (Senovilla 1987c, 1993) that the general Petrov type D solution
with an equation of state µ + 3p = const is the Wahlquist solution or
one of its limits. Solutions known to be among these limits are: (i) the
solution

ds2 = M2[(1− a2 sin2 α/R2)−1dα2 + sin2 α dβ2]

−2(du + a sin2 α dβ)dτ + (1 + 2m̂N)(du + a sin2 α dβ)2,
(21.58)

M2 = (R2 − a2) sin2(r/R) + a2 cos2 α,

N = R sin(r/R) cos(r/R)/M2, u = τ − r, m̂, a,R const,

(with µ+ 3p = 0) given by Vaidya (1977), cp. Herlt and Hermann (1980);
(ii) the metrics (33.34) and (33.35) due to Kramer (1984c); (iii) the solu-
tions with a vanishing Simon tensor discussed by Kramer (1985, 1986a)
and Papacostas (1988); (iv) the Carter metrics studied by Garćıa D. and
Hauser (1988); (v) metrics with µ + 3p = 0 found in the search for solu-
tions with conformal motions by Mars and Senovilla (1994), see also Rácz
and Zsigrai (1996); (vi) the generalized Kerr–Schild solution (32.104) by
Patel and Vaidya (1983) and (vii) the cylindrically-symmetric rigidly ro-
tating perfect fluid solution given by Davidson (2000). Not all of these
cases are different!

Solutions with the equation of state µ + 3p = 0 but Petrov type I have
been found by Bonanos and Kyriakopoulos (1994) as

ds2 = 1
2x(1− α)2e−y

{
dx2/(ax2 − b2) + dy2[y + α(e−y − 1)]

}
+x [y + α(e−y − 1)] dϕ2/a− x−1(dt− bydϕ/a)2,

(21.59)

and by Kyriakopoulos (1992) as

ds2 = e−2ax
[
dx2 + dy2 + F 2(dϕ− be2axdt)2

]− e2axdt2,

F =
√

1 + c

b

6℘(y; g2, g3) + 2a2 − 3a2c
6℘(y; g2, g3) + 2a2 + 3a2c

,
(21.60)

where ℘ is a Weierstrass elliptic function with invariants g2 = a2(a2/3−b2)
and g3 = −a4(b2 + a2/9)/3.

Solutions which are of Petrov type D, with the four-velocity spanned by
the two multiple eigenvectors, divide into three classes (Senovilla 1987b):
(i) the metric is LRS and admits a G4; (ii) the metric is static and admits
an Abelian G2; (iii) the metric is not static, admits an Abelian G2, is
shearfree, the magnetic part of the Weyl tensor vanishes, the equation of



336 21 Non-empty stationary axisymmetric solutions

state is µ = p+ const and the line element is given by

ds2 = N−2(z)
[
dz2 + G−1(x)dx2 + G(x)dϕ2 − x2(dt + nx−2dϕ)2

]
,

G(x) = εx2 + b lnx + c + n2/x2, N ′′(z) = εN(z), (21.61)

κ0(p− µ) = 6(N
′2 − εN2), κ0(µ + p) = bN2(z)/x2, ε = 1, 0, −1.

This last metric generalizes the static solution (18.66) to which it reduces
for n = 0. The solutions with µ = p have flat three-dimensional slices (see
(4.9) of Wolf (1986b)) and admit the homothetic vector H = ∂z (see also
Hermann (1983)).

Static solutions admitting an additional homothetic vector have been
found by Kolassis and Griffiths (1996).

Using the field equations as given by Bonanos and Sklavenites (1985),
a solution of Petrov type I, with a vanishing magnetic part of the
Weyl tensor, and an equation of state µ = p+ const has been found by
Sklavenites (1985) and Kyriakopoulos (1999).

Starting with special assumptions for the metric functions, rigidly rotat-
ing solutions have been found by Kyriakopoulos (1987, 1988) and Sklaven-
ites (1992b). The solutions (36.34)–(36.35) are also rigidly rotating.

Besides the two Killing vectors, a rigidly rotating perfect fluid may
admit an additional proper conformal vector (Kramer 1990, Kramer and
Carot 1991). For the only known non-static solution with this property
the three symmetries commute, and the metric is given by (21.61).

Known rigidly rotating axisymmetric perfect fluid solutions with more
than two Killing vectors belong to the locally rotationally-symmetric
space-times (§§13.4, 14.3) or to the homogeneous space-times (§12.4) or
they are cylindrically-symmetric (§22.2). For instance, if in generalizing
Papapetrou’s class of vacuum solutions (§20.3) one assumes ω = ω(U),
ω,ζ = −iW−1e4UA,ζ and µ + 3p �= 0 (Herlt 1972), then one arrives at a
locally rotationally-symmetric metric (13.2).

The solutions due to Wahlquist and Herlt, and the interior Schwarz-
schild solution (16.18) are the only perfect fluid solutions (with rigid rota-
tion) for which the Hamilton–Jacobi equation for null geodesics is separa-
ble (Bonanos 1976). The only stationary, axisymmetric and conformally
flat perfect fluid solution is the interior Schwarzschild solution (16.18)
(Collinson 1976b).

Jackson (1970) applied the ‘complex trick’ (§21.1.4) to spherically-
symmetric perfect fluids, in particular to the interior Schwarzschild so-
lution, and obtained an interior NUT metric. Herrera and Jimenez (1982)
and Drake and Szekeres (1998) discussed also a generalization which ap-
plies the method to spherically-symmetric metrics, including fluid cases,
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but no new solutions of the types in this book have been obtained. For
those types the only cases we know of where such a trick applies are those
covered by Talbot (1969) and Quevedo (1992).

21.2.4 Perfect fluid solutions with differential rotation

For differential rotation (Ω,a �= 0), the field equations for the metric
(21.41), with

√
2ζ = ρ+i z, take the form

W,ζζ = κ0pe2k−2UW, (21.62a)

U,ζζ + 1
2W

−1[U,ζW,ζ + U,ζW,ζ ] + 1
2W

−2e4UAζA,ζ (21.62b)

= 1
2e2k−2U

[
p− 1

2(µ + p)H−1e2U
{

(1 + ΩA)2 + W 2Ω2e−4U
}]

,

A,ζζ − 1
2W

−1(A,ζW,ζ + A,ζW,ζ) + 2(U,ζA,ζ + U,ζA,ζ)
(21.62c)

= κ0W
2e2k−4U (µ + p)Ω(1 + AΩ)H−1,

v,ζζ + U,ζU,ζ + 1
4W

−2e−4UA,ζA,ζ
(21.62d)

= −κ0H
−1e2k
[
µΩW e−4U + p(1 + ΩA)2

]
,

2W,ζkζ = W,ζζ + 2W (Uζ)2 − 1
2W

−1e4U (A,ζ)2, (21.62e)

with v defined by
e−2v = 2e2kW,ζζ . (21.63)

Equation (21.62e) determines k via a line integral from U, A and W.
An immediate consequence of the integrability condition T ab

;a = 0 and

u̇n =
H,n

2H
− 1

2H
∂H

∂Ω
Ω,n, H ≡W 2Ω2e−2U − (1 + AΩ)2e2U (21.64)

is the equation

dp = −(µ + p)undun = −µ + p

2H

(
dH − ∂H

∂Ω
dΩ
)
. (21.65)

It shows that the pressure p (which trivially is a function of only two
variables) is a function of H and Ω even if these two functions are func-
tionally dependent or constant. If this function p(H,Ω) is known, one can
compute the mass density from

µ + p = −2H∂p/∂H. (21.66)

Equation (21.65) also shows that if we think of H as a function of
U, W, A, Ω, then p does not depend on Ω, and if µ + p is non-zero, then
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p has to satisfy
∂p

∂Ω
+

∂p

∂H

∂H

∂Ω
= 0. (21.67)

The function p(H,Ω) can be prescribed arbitrarily as long as it satisfies
this condition.

As a consequence of (21.65) one has

∂p

∂U
= −2

∂p

∂H

[
(1 + AΩ)2e2U + W 2Ω2e−2U

]
,

∂p

∂A
= −2

∂p

∂H
e2UΩ(1 + AΩ),

∂p

∂W
= 2

∂p

∂H
WΩ2e−2U ,

(21.68)

where ∂p/∂H can be replaced by −(µ + p)/2H.
The field equations (21.62) can be derived from the Lagrangian

L = 4WU,ζU,ζ − e4UW−1A,ζA,ζ − 2(W,ζv,ζ + W,ζv,ζ)

−4κ0p(H,Ω)W e2v−2UW,ζWζ ,
(21.69)

where v can formally be treated as an independent variable (Neugebauer
and Herlt 1984, Kramer 1988c). Variation with respect to W, U, A and
v yields (21.62a), (21.62b), (21.62c) and (21.62d), respectively. That is
to say, the field equations are just the equations of minimal surfaces in a
potential space with coordinates (U, A, W, v) and line element

dS2 = 4WdU2 − e4UW−1dA2 − 4dWdv − 4κ0p(H,Ω)W e2v−2UdW 2,
(21.70)

cp. Chapter 10. The symmetries of this potential space and its relation to
space-time symmetries have been studied by Stephani and Grosso (1989)
and Grosso and Stephani (1990).

Compared with the case of rigid rotation, the additional degree of free-
dom inherent in the rotation Ω(ζ, ζ) should lead to a plenitude of so-
lutions. But surprisingly few differentially rotating solutions have been
found so far, and for most of them some ordinary differential equations
remained unsolved.

A (Petrov type I) solution with vanishing vorticity ωn and an equation
of state µ = p was found by Chinea and González-Romero (1990, 1992).
Using the pressure p as one of the coordinates, it reads

ds2 =
bTT,r
rp

[
k

2
− r4p2

4

]−1 [(
1
r2

+
k

2T 2
− r4p2

4T 2

)
dr2 +

dr dp
rp

+
dp2

4p2

]

+ r2p (dϕ− Ωdt)2 − a2p−1dt2, Ω(r) = a

∫
rdr
T (r)

, (21.71a)
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where a, b and k are arbitrary constants, and T (r) is a solution of

T,rr +
(

1
r

+
kr

T 2

)
T,r = 0. (21.71b)

A solution admitting a homothetic vector H has been found by
Hermann (1983) as

ds2 = e2z
(
dr2 + r2dz2/s2

+ r2(1+σ)/σe2σz
{

[12 − 2λ2(ln r)2]dϕ2 − 4λ2 ln rdϕdt− 2λ2dt2
})

,

H = ∂z − σ(ϕ∂ϕ + t∂t), s2 = (1 + 2σ − 2σ2)/(σ − 2)σ3, (21.72)

ua =
√−σe−(1+σ)zr−(1+σ)/σ (0, 0, 1, σ(σ − 2)/2(1− σ)− ln r) ,

κ0p = 2
(1− σ)(1 + σ)3

(σ − 2)σ3
e−2zr−2 =

1 + σ

1− σ
κ0µ, λ2 =

(σ − 1)2(1 + σ)2

(σ − 2)σ3
.

A solution with non-vanishing shear and vorticity, and with µ = 2p,
has been given by Chinea (1993) using an adapted tetrad formalism as

ds2 = (ω1)2 + (ω2)2 + (ω3)2 − (ω4)2,

ω1 =
1√

2aκ0p0
e3v/4−σ

2/2
[
−f(σ)dv +

σdσ
f(σ)

]
, ω2 =

1√
2κ0p0

e3v/4

σ
dv,

ω3 = −lev/2 sin(S − λ)dt/
√

7− nev/2 cos(S − ν)dϕ/
√

7,

ω4 = uadxa = lev/2 cos(S − λ)dt + nev/2 cos(S − ν)dϕ, (21.73)

S(σ) =
√

7
4
√

2

∫ dσ
f(σ)

, f(σ) =
√

1− aσ−2eσ2,

p = p0e−3v/2, Ω = −l sin(S − λ)/n sin(S − ν),

u =
e−v/2

sin(ν − λ)

[
1
l

sin(S − ν)∂t − 1
n

sin(S − λ)∂ϕ
]
,

where a, λ, ν, l, n are arbitrary constants.
Solutions with an equation of state p = p(µ) have been studied by

González-Romero (1994).
The general type D solutions with zero magnetic Weyl tensor and a

four-velocity spanned by the two Weyl eigenvectors have been found (up to
ordinary differential equations) by Senovilla (1992) and further discussed
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by Mars and Senovilla (1996). The line element has the form

ds2 = N−2(z)

[
dz2 +

dx2

hm + s2
+

hm + s2

m
dϕ2 −m

(
dt +

s

m
dϕ
)2]

,

N ′′ = εN, ε = 0, ±1, Ω = −m′′/s′′, (21.74a)

κ0µ = κ0p− 6(N
′2 − εN2), κ0(µ + p) = N2(z)(h′m′ + s′2 + 4ε)/2,

where the three functions h(x), m(x) and s(x) have to satisfy the two
differential equations

h′′m′′ + s′′2 = 0, (hm + s2)′′ + 4ε = h′m′ + s′2. (21.74b)

This class admits a conformal Killing vector ζ = ∂z, cp. Mars and Sen-
ovilla (1994), and contains the rigidly rotating solutions (21.61) as the
special case s′′ = 0 = m′′. Only very special explicit solutions of (21.74)
are known, where h, m and s are either powers of x (Garćıa D. 1994) or
a product of powers of x with (x

√
1/10 + αx−

√
1/10) (Senovilla 1992).
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Groups G2I on spacelike orbits:

cylindrical symmetry

22.1 General remarks

The metrics to be considered admit two spacelike commuting Killing vec-
tors (η = ∂ϕ and ζ = ∂z) which generate an Abelian group G2. Unless
there is a third Killing vector (see §22.2), we assume the existence of 2-
surfaces orthogonal to the group orbits; this orthogonal transitivity may
be a consequence of the field equations, cp. §19.2. We start with the line
element

ds2 = e−2U
(
γMNdxMdxN + W 2dϕ2

)
+ e2U (dz + Adϕ)2 , (22.1)

which is independent of ϕ and z, cp. §17.1 (if the field admits the reflec-
tion symmetry ϕ → −ϕ, z → −z, one can put A = 0 in (22.1) and the
two commuting Killing vectors are hypersurface-orthogonal). This line
element can formally be obtained from the corresponding stationary ax-
isymmetric line element (19.17) by the complex substitution

t→ i z, z → i t, A→ iA. (22.2)

Solutions may be mapped this way if the new field functions can be made
real by e.g. analytic continuation of the parameters. The indefinite 2-
metric γMN in (22.1) can always be chosen as

γMNdxMdxN = e2k(dρ2 − dt2) (22.3)

(Kompaneets 1958, Jordan et al. 1960).
Metrics of this kind are often called ‘cylindrically-symmetric’. Although

we have adapted the notation to this custom, and shall occasionally use
it, we will not be bound by its consequences. To admit an interpreta-
tion in terms of cylindrical symmetry, there should be an axis where

341
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ηaη
a = e−2UW 2 + A2e2U vanishes, and the metric should be regular at

this axis. For many of the known solutions there is no axis, or the met-
ric is not regular on it; nevertheless the metric may be appropriate to
describe the outer (vacuum) region of e.g. a rotating cylindrical source.
Furthermore, the identification (e.g. ϕ + 2π → ϕ ) which is necessary to
get the correct topology on the orbit will restrict the possible linear trans-
formations (17.7) so that the normal forms discussed in §17.1 cannot be
obtained globally (see MacCallum (1998) for references and further dis-
cussion). An extended discussion of the definition of axial (and cylindrical)
symmetry can be found in Carot et al. (1999).

In the following we shall neglect these global considerations and clas-
sify the solutions only with respect to their local properties. We start in
the following section with the subclass which admits an Abelian G3 on
T3, treat then the vacuum solutions in §22.3, the Einstein–Maxwell and
pure radiation fields in §22.4, the perfect fluid and dust solutions in Chap-
ter 23, and finally the colliding waves in Chapter 25. Of course, generation
techniques can be and have been applied also to the case of cylindrical
symmetry, cp. Chapter 34.

Note that plane symmetry (§§15.4, 15.5) can be treated as a special case
of (22.1): put A = 0 and W 2 = e4U and replace (eU , ϕ, z) by (Y, x, y) in
(22.1) to obtain the metric (15.10).

22.2 Stationary cylindrically-symmetric fields

Metrics which admit an Abelian group G3I acting on timelike orbits T3
are called stationary cylindrically-symmetric. The three Killing vectors
are ξ = ∂t, η = ∂ϕ, ζ = ∂z, and the metrics are special hypersurface-
homogeneous space-times (cp. Chapter 13 and the methods described in
§13.2). They can be obtained either as special cases of stationary axisym-
metric fields (with Killing vectors ξ,η) or of cylindrically-symmetric fields
(with Killing vectors η, ζ) by demanding a third symmetry (and assum-
ing orthogonal transitivity for the first two). Because of the assumption
of orthogonal transitivity of two of the Killing vectors, at least one of
the three Killing vectors is hypersurface-orthogonal. Accordingly, one can
start from either of the forms

ds2 = f−1 [e2k (dρ2 + dz2
)

+ W 2dϕ2
]
− f (dt + Adϕ)2 , (22.4a)

ds2 = f−1 [e2k (dρ2 − dt2
)

+ W 2dϕ2
]

+ f (dz + Adϕ)2 , (22.4b)

with all metric functions depending only on ρ. The two metrics (22.4) are
not equivalent, but related by the complex substitution (22.2): they over-
lap when all three Killing vectors are (locally) hypersurface-orthogonal.
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Neglecting topological considerations, the labels of the coordinates ϕ and
z may be interchanged in metric (22.4a).

Vacuum solutions
For vacuum, and with the metric (22.4a), we get from (17.10) the equa-

tion W,ρρ = 0. For the solutions with W = const the Killing vector ∂t is
null; they are special pp-waves

ds2 = eaρ
[
dρ2 + dz2

]
+ ρ dϕ2 + 2dϕ dt. (22.5)

The general stationary cylindrically-symmetric vacuum solution with
W = ρ is given by

ds2 = f−1
[
e2k
(
dρ2 + dz2

)
+ ρ2dϕ2

]
− f (dt + Adϕ)2 ,

f = ρ (a1ρn + a2ρ
−n) , n2a1a2 = −C2,

A =
C

na2

ρn

a1ρn + a2ρ−n
+ B, f−1e2k = ρ(n

2−1)/2
(22.6)

and its counterpart for the metric (22.4b). The constant n is real or imagi-
nary; the other constants have to be chosen such that the metric becomes
real. The metric coefficients satisfy a linear relation (17.6) and can thus
be simplified as discussed in §17.1.2. For imaginary n the solutions belong
to the Lewis class (§20.4). The regularity condition (19.3) on the axis of
symmetry allows only flat space-time (Davies and Caplan 1971). For real
n they are locally static (Frehland 1971), belong to the Weyl class (§20.2),
and can be written as

ds2 = ρ−2m
[
ρ2m

2
(
dρ2 + dz2

)
+ ρ2dϕ2

]
− ρ2mdt2 (22.7)

(Levi-Civita 1917a). These Kasner solutions (cp. (13.51)) are flat for m =
0, 1, of Petrov type D for m = 1/2, 2, −1, and contain as a special case
the Petrov solution (12.14) (Bonnor 1979a).

Λ-term solutions
The solutions of Rik = Λgik are very similar to the vacuum solutions.

The metric coefficients again satisfy a linear relation, and the solutions
can be given in a form closely related to the Kasner solutions as

ds2 = dr2 + G(r)2/3
{∑

j

εj exp
[
2(pj − 1

3)U(r)
]

(dxj)2
}
, ε = ±1,

G′′ = −3ΛG, G′2 + 3ΛG2 = η = 0, ±1, (22.8)

U ′ = G−1,
∑
j

pj = 1,
∑
j

p2j = (2η + 1)/3,
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see Krasiński (1975a) and the discussion given in MacCallum and Santos
(1998). The solutions can be used as an exterior for the Gödel metric
(12.26) (Bonnor et al. 1998). For Λ = 0 we regain the vacuum case (22.6),
in rescaled radial coordinates, as G = r = eU .

Einstein–Maxwell fields
It is usually assumed that the metric can be written in one of the forms

(22.4), that the electromagnetic field shares the symmetry of the metric
and that the electric and magnetic fields are orthogonal to the orbits of
the two-dimensional orthogonally transitive group, i.e. that the vector
potentials have the forms

Aidxi = P (ρ)dt + Q(ρ)dϕ, (22.9a)

Aidxi = P (ρ)dz + Q(ρ)dϕ, (22.9b)

respectively. Condition (17.11) is satisfied, and we have W,ρρ = 0.
For the static metrics (22.4b), with W = ρ, one obtains the differential

equations

(ρf ′/f)′ = c2ρ/f2 − 2p2f/ρ, (22.10a)

A′ = ρcf−2, P ′ = −fp/ρ, Q′ = −AP ′, (22.10b)

k′ = (Q′ + AP ′)2f/ρ + ρP ′2/f + A′2f2/4ρ + ρf ′2/4f2 (22.10c)

(Chitre et al. 1975, MacCallum 1983). Equation (22.10a) for f is the third
of the Painlevé equations. Non-transcendental solutions arise for special
values of the constants. For p = 0 one gets a vacuum solution. For c = 0,
the metric and 4-potential are given by

ds2 = ρ2m
2
G2(dρ2 − dt2) + ρ2G2dϕ2 + G−2dz2,

(22.11)
G = a1ρ

m + a2ρ
−m, Aidxi = (ρG′/bG)dz, b2 = 4a1a2m2 > 0,

(Bonnor 1953), where the constants b, m2 (real) and a1, a2 have to be
chosen so that metric and potential are real; the case m = 1/2 had al-
ready been given by Mukherji (1938). This solution can be interpreted
as containing a magnetic field along the z-direction or, with z and ϕ ex-
changed, along the ϕ-direction. For a vanishing right-hand side of (22.10c)
the result is the solution

ds2 = ρ−4/9 exp(a2ρ2/3)(dρ2 − dt2) + ρ4/3dϕ2

+ ρ2/3(dz + aρ2/3dϕ)2,

Aidxi = aρ2/3dz/
√

2 + a2ρ4/3dϕ/
√

8, a = const,

(22.12)

due to Chitre et al. (1975).
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The Melvin solution (Bonnor (1954), rediscovered by Melvin (1964))

ds2 = (1 + B20ρ
2/4)2(dρ2 + dz2 − dt2) + (1 + B2

0ρ
2/4)−2ρ2dϕ2 (22.13)

is the special case m = 1 of (22.11) and of (31.58). The gravitational field
(22.13) originates in a ‘uniform’ magnetic field B0 along the z-axis.

For the metric (22.4a), two classes of solutions arise which lead to a
Painlevé equation similar to (22.10a), see Van den Bergh and Wils (1983)
and MacCallum (1983) for details. Again several non-transcendental cases
exist. The analogue of (22.11) is

ds2 = ρ2m
2
G2(dρ2 + dz2) + ρ2G2dϕ2 −G−2dt2,

(22.14)
G = a1ρ

m + a2ρ
−m, Aidxi = (ρG′/bG)dt, b2 = −4a1a2m2 > 0,

(Raychaudhuri 1960). This solution contains a radial electric field which
depends only on ρ (so that the Maxwell field admits the additional sym-
metry of a rotation in the ϕ –z -plane not shared by the metric, see e.g.
Li and Liang (1989)). The Mukherji (1938) solution describing the gravi-
tational field of a charged line-mass is contained in (22.14) for m = 1/2.
The metric

ds2 = ρ−4/9 exp(−a2ρ2/3)(dρ2 + dz2) + ρ4/3dϕ2

− ρ2/3(dt + aρ2/3dϕ)2,

Aidxi = aρ2/3dt/
√

2 + a2ρ4/3dϕ/
√

8, a = const,

(22.15)

(Islam 1983b, Van den Bergh and Wils 1983) corresponds to (22.12).
There is one more static solution

ds2 = a2(ln cρ)2
[
dt2 − dρ2 − ρ2dϕ2

]− a−2(ln cρ)−2dz2,

Aidxi = adt/ ln cρ
(22.16)

(Raychaudhuri 1960). A Petrov type II solution with a null electromag-
netic field,

ds2 =
(
dρ2 + dz2

)
/
√
ρ + f−1ρ2dϕ2 − f(dt− ρ dϕ/f)2,

Aidxi = −bρ dt, f = 4b2ρ2 + cρ ln ρ, b, c = const,
(22.17)

has been found by Datta and Raychaudhuri (1968). Here the Killing vector
η = ∂ϕ is null and non-twisting, and the vacuum counterpart is a van
Stockum solution (20.32).

Einstein–Maxwell fields which do not share the symmetry of the met-
ric can occur in either of the two cases (22.4). Instead of (22.9), the
4-potential now has the form

Aidxi = P (ρ) cos kz dt + (AP − ρf−1P ′/k) cos kz dϕ (22.18)
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for (22.4a), or an analogous form with t and z interchanged for (22.4b).
Some explicit solutions have been found, see McIntosh (1978b), Wils and
Van den Bergh (1985) and MacCallum and Van den Bergh (1985).

Dust solutions
The stationary cylindrically-symmetric dust solutions are contained in

the general stationary axisymmetric dust solution (the Winicour solu-
tion) discussed in §21.2. The specialization to cylindrical symmetry can
be found in Vishveshwara and Winicour (1977), and the solutions have
been discussed also by King (1974). Maitra (1966) gave a special solution
for non-rigidly rotating dust (with Θ = 0, but σ �= 0). For rigid rotation,
specializing the van Stockum class (21.52) to cylindrical symmetry we get
the metric

ds2 = e−a2ρ2
(dρ2 + dz2) + ρ2dϕ2 − (dt + aρ2dϕ)2,

κ0µ = 4a2e−a2ρ2
, u = ∂t.

(22.19)

(Lanczos 1924). The solution can be matched to the vacuum solution
(22.6); depending on a and the radius R of the cylinder, the external field
may be locally static (for aR < 1/2), though the dust rotates (Tipler
1974, Bonnor 1980).

Static perfect fluid solutions
Assuming that all three Killing vectors are hypersurface-orthogonal,

several simple forms of the field equations have been given which can be
the starting point in the search for solutions.

Taking the form

ds2 = e2λ(ρ)dρ2 + e2β(ρ)dϕ2 + e2χ(ρ)dz2 − e2δ(ρ)dt2 (22.20)

of the line element with λ = 0 and β �= χ, and introducing the new
functions τ(ρ) = β + χ + δ, and w(ρ) = exp(3δ), Evans (1977) reduced
the problem to a second-order linear differential equation for w,

w′′ − τ ′w′ + 3(τ ′′ + e−2τ )w = 0. (22.21)

The function τ(ρ) can be prescribed, and the metric, and p and µ, can be
determined from (22.21) and from

λ = 1, 4κ0p = (τ + 3δ)′(τ − δ)′ − e−2τ ,

(β − χ)′ = e−τ , κ0(5p− µ) = 2(eτ )′′e−τ .
(22.22)

Bronnikov (1979) used λ = β + χ + δ as a coordinate condition. With
α = β + δ, the field equations then lead to

χ = β + aρ + a1, κ0p = α′′e−2λ/2, κ0µ = κ0p− 2β′′e−2λ (22.23a)
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and the two equivalent equations

α′′ − (2a + 4β′)α′ + 2β′2 = 0, (22.23b)

α′′ − 2aα′ − 2α′2 + 4χ′2 = 0. (22.23c)

Both can be solved by quadratures: one can prescribe β(ρ) and solve a
linear first-order differential equation (22.23b) for α′, or prescribe α(ρ)
and solve (22.23b) for β′ or (22.23c) for χ′. Plane symmetry corresponds
to a = 0.

Philbin (1996) chose coordinates with λ = χ and arrived at

β′2 + 2α′ − a0α
′e−α + (α′′ + α′2)/2 = 0, α = β + δ, (22.24)

which again can be solved by a quadrature if α(ρ) is prescribed.
Kramer (1988a) proposed taking the metric (22.4a) and using x ≡ 1

2 ln f
as a new independent variable. Introducing

F (x) =
µ + 3p

2p
, y =

dk
dx

= k̇, z =
1
W

dW
dx

=
Ẇ

W
, (22.25)

the field equations read

ẏ = (1− yz)(Fy − 2), ż = (1− yz)(Fz − 2). (22.26)

Using one or other of the above equations, several exact solutions
have been constructed, e.g. for (22.21) and τ ′′ = −e−2τ (Evans 1977),
for (22.24) and eα+δ = ρ + c1ρ

3 + c2ρ
5 (Philbin 1996), for (22.26) and

y = (az − b)/(dz − c) (Haggag and Desokey 1996), for (22.26) and
z = (dy2 + cy + b)/(y − a) (Haggag 1999). By making other ad hoc
assumptions, solutions have also been found by Davidson (1989b, 1990a,
1990b), and Narain (1988).

For an equation of state p = (γ − 1)µ, special cases have been given
by Evans (1977) (5p = µ) and by Teixeira et al. (1977a) (3p = µ). The
general solution was found by Bronnikov (1979) as

ds2 = e2[β+χ+δ]dρ2 + e2βdϕ2 + e2χdz2 − e2δdt2,
(22.27a)

β =
γ − 2

4(γ − 1)
α(ρ) + bρ, χ = β + aρ, δ =

3γ − 2
4(γ − 1)

α(ρ)− bρ,

(some integration constants have been set zero by choice of coordinates),
where α(ρ) satisfies the differential equation

α′′ + Aα′2 −Bα′ + 2b2 = 0, A =
7γ2 + 20γ − 12

8(γ − 1)2
, B = 2a + b

3γ − 2
γ − 1

,

(22.27b)
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which can easily be solved in terms of elementary functions. The solutions
with a = 0, β = χ and α linear in ρ admit an additional homothetic vector
(Debever and Kamran 1982). In the notation of Kramer (1988a), see also
Haggag (1989), the solutions regular at the axis ρ = 0 are given by

ds2 = Fmdρ2 + Fn(Fdz2 + ρ2dϕ2)− F sdt2,

κ0p =
16(γ − 1)2β

(2− γ)(7γ − 6)
F−m−1, F = 1− βρ2,

n = −3γ − 2
7γ − 6

, m = −1− 2nγ
γ − 2

, s = −4n
γ − 1
γ − 2

.

(22.28)

If the four-velocity u = w−1(ρ)∂t is hypersurface-orthogonal, but the
two spacelike Killing vectors are not, one can start from a metric of the
form (22.4b), i.e. from

ds2 =
(dy + ρdϕ)2

h2(ρ)
+

E(ρ)
h2(ρ)

dϕ2 +
e−b(ρ)dρ2

h2(ρ)E(ρ)
− w2(ρ)dt2. (22.29)

The field equations then give (Stephani 1998)

E(ρ) = −ρ2 + aρ + c, w2(ρ) = e−b(ρ)h2(ρ), (22.30)

where h(ρ) and b(ρ) have to obey

h2b′′ + 4hh′b′ − 4h′2 = 0. (22.31)

The solutions of this differential equation can be given in either of the
two forms

b =
∫

b′dρ, b′ = 4h−4
∫

h2h′2dρ, or lnh = 1
2b± 1

2

∫ √
b′′ + b′2dρ.

(22.32)
So one can prescribe h(ρ) or b(ρ), and determine the second function from
(22.32). Pressure p and energy density µ are given by

κ0p = −1
4ebh2
[
1 + (b′E)′

]
, κ0µ = ebh2

[
2(Eh′/h)′ − 1

4

(
Eb′
)′ + 3

4

]
.

(22.33)
The special case h = ρ1/3, b = ln ρ4/3 admits a Killing tensor (Papacostas
1988). For the metrics (22.29)–(22.30) there is a linear relation between
the metric coefficients of the y–ϕ-part, cp. §17.1.2; for c + a2/4 > 0 there
are two hypersurface-orthogonal Killing vectors and the solutions can be
transformed into the form (22.20).

The metrics (36.22) and (36.23) also admit an Abelian G3 on T3.
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Stationary perfect fluids
Perfect fluids with a metric of the form (22.4a), where all functions

depend only on ρ, and a four-velocity proportional to ∂/∂t, are rigidly
rotating, cp. §21.2.3. The general metric for this case can be written as

ds2 =
dρ2

EBh
+

Edϕ2

h2
+

1
B

h3dz2 − (dt + ρdϕ)2

h2
,

(22.34)

B(ρ) = h5(ρ)E−1(x) exp
(∫

(ρ + c)E−1(ρ)dρ
)
, u = h∂/∂t,

where the functions E(ρ) and f = h3(ρ) have to satisfy the (linear) dif-
ferential equation

E2f ′′ +
[
(ρ + c)E − EE′] f ′ − 3

4

[
EE′′ − E′2 + (ρ + c)E′ − E

]
f = 0
(22.35)

(Krasiński 1974, 1975b, 1978). By a coordinate transformation, c can be
made zero, but a non-zero c may facilitate the recognition of solutions.
The pressure and mass density can be calculated from

κ0p =
∫
Bh′(1− E′′/2)dρ + p0

= Bh−5E−1
[
1
4f
2
{
E − E′(ρ + c) + E′2}

+1
3Ef ′ {f(ρ + c) + Ef ′ − 2E′f}

]
,

κ0(µ + p) = Bh(1− E′′/2).

(22.36)

Introducing a new function g(ρ) by

g(ρ) =
[
E′(ρ)− ρ− c

]
E−1(ρ), (22.37)

the differential equation (22.35) can be written as

f ′′ − gf ′ − 3
4g

′f = 0 (22.38)

and solved by a series of quadratures

g = 4
3f

−4/3
∫

f ′′f1/3dρ, E = exp
(∫

gdρ
)∫ (ρ + c)dρ

exp (
∫
gdρ)

. (22.39)

So one can either prescribe the four-velocity (the function f) and use
(22.39) to obtain the metric function E, or prescribe E and solve (22.35)
for f .

For E(ρ) = c1ρ
2+ 2c2ρ+ c3, (22.35) gives f in terms of hypergeometric

functions. For f = ρn, the choice g ∼ ρ−1 leads to simple expressions for
E; included here is the self-similar solution given by Nilsson and Uggla
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(1997a). The solution with E = ρ2/2+2cρ+c3, h = ρ1/3 admits a Killing
tensor (Papacostas 1988). The choice E = ρ(ρ + c ln ρ), h2 = c1ρ gives
the subcase ε = 0, N = 1 of (21.61). Solutions with an equation of state
p = (γ−1)µ have been discussed by Davidson (1996, 1997, 1999); they are
contained as E = aρ2+ cρ, f = (1 +aρ/c)b/2, with a(b2−6b+ b) = 3−2b
and γ = 1 + ab/(5ab + 6 − 12a). A special solution with an equation of
state µ + p = const has been found by Kramer (1985); it corresponds
to f = ρ1/2, E = ρ2 + aρe−1/ρ, c = 1. Of the two solutions found by
Sklavenites (1999), the first corresponds to f = ρn. Davidson (2000) gave
a metric with an equation of state µ + 3p = const (a special case of the
Wahlquist solution (21.57)); it has f ∼ (ρ− a)3/2.

Equations (22.34)–(22.39) can easily be rewritten if a new coordinate
ρ̃ = ρ̃(ρ) is introduced. This was used by Garćıa D. and Kramer (1997)
to find a rigidly rotating solution.

For differential rotation, only a few special solutions are known. Under
a restriction, which in coordinates (22.4a) amounts to W 2+ e2k = f2A2,
Garćıa D. and Kramer (1997) found several explicit classes of solutions
in terms of confluent hypergeometric functions. Davidson (1994) took
the form (17.5) of the metric (with ε = 1) and assumed that all metric
functions are powers of the ‘radial’ coordinate z. The solutions admitting
an additional homothetic vector have been given by Debever and Kamran
(1982).

22.3 Vacuum fields

To get the vacuum field equations for the metric (22.1), we take it in the
form

ds2 = e−2U
[
e2k(dρ2 − dt2) + W 2dϕ2

]
+ e2U (dz + Adϕ)2 . (22.40)

Using the corresponding equations (19.43) for the stationary axisymmet-
ric vacuum solutions and making the complex substitution (22.2), i.e.
t→iz, z →it, A→iA, we obtain

2W (WU,M );M = e4UA,MA,M ,
(
W−1e4UA,M

);M
= 0, (22.41)

and k is to be determined (for W,MW ,M �= 0) from

k,ρ =
[
W 2

,ρ −W 2
,t

]−1 [
1
4e4U
(
W,ρ(A2,ρ + A2,t)− 2W,tA,tA,ρ

)
/W

+W
(
W,ρ(U 2

,ρ + U 2
,t )− 2W,tU,ρU,t

)]
+ 1
2 [ln(W 2

,ρ −W 2
,t)],ρ,

(22.42)
k,t =
[
W 2

,ρ −W 2
,t

]−1 [
1
4e4U
(
2W,ρA,ρA,t −W,t(A2,ρ + A2,t)

)
/W

+W
(
2W,ρU,tU,ρ −W,t(U2,ρ + U2,t)

)]
+ 1
2 [ln(W 2

,ρ −W 2
,t)],t.
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Because of (17.10), W has to satisfy the wave equation

W,ρρ −W,tt = 0. (22.43)

For its general solution W = f(t−ρ) + g(t+ρ), the gradient of W can be
spacelike, timelike, or null. For non-constant W , one can (locally) adjust
the coordinates by

W =


ρ
t
u = t− ρ

for W 2
,ρ −W 2

,t


> 0
< 0
= 0

. (22.44)

For diagonal metrics (A = 0), in each of the three cases the field equations
(22.41) reduce to a linear equation for U which can be solved e.g. by
separation or by an integral representation (cp. Carmeli et al. (1981)).

If we choose W = ρ, the field equations read

U,ρρ + ρ−1U,ρ − U,tt = 1
2ρ

−2e4U
(
A 2
,ρ −A 2

,t

)
,

A,ρρ − ρ−1A,ρ −A,tt = 4 (A,tU,t −A,ρU,ρ) ,
(22.45)

where k is determined by

k,ρ = ρ
(
U 2
,ρ + U 2

,t

)
+ 1
4ρ

−1e4U
(
A 2
,t + A 2

,ρ

)
,

k,t = 2ρU,ρU,t + 1
2ρ

−1e4UA,ρA,t.
(22.46)

The integrability conditions for (22.46) are satisfied by virtue of (22.45).
The substitution (22.2) takes (real) stationary axisymmetric solutions into
(in general complex) cylindrically-symmetric solutions. In some cases one
can obtain real counterparts by analytic continuation of the parameters.
No systematic investigation of this problem has yet been made. Examples
are the counterpart of the Kerr solution (Piran et al. 1986) and of the
Tomimatsu-Sato solutions (Papadopoulos and Xanthopoulos 1990).

Similar results can be obtained for W = t. The case W = const gives
flat space-time, as can be easily seen from (25.41). W = u implies the
existence of a covariantly constant null Killing vector; these metrics are
special plane waves. For many applications, in particular for colliding
plane waves, null coordinates with W = f(u) + g(v) are appropriate.
Because of the many papers concerned with these colliding plane waves,
a chapter (Chapter 25) has been devoted to them.

Also if for a solution the sign of W 2
,ρ −W 2

,t varies, a choice of W different
from the normal forms (22.44) can be appropriate. So W = sin ρ sin t,
A = 0 (Gowdy 1971, 1975) gives the Gowdy universes in the form

ds2 = e−2U
[
e2k(dρ2 − dt2) + sin2 ρ sin2 t dϕ2

]
+ e2Udz2,

sin t(U,ρ sin ρ),ρ − sin ρ(U,t sin t),t = 0,
(22.47)
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and a line integral for k. Standard separation of the equation for U
gives U =

∑
cnhn(cos ρ)hn(cos t), where the hn are the Legendre func-

tions (first and second kind). This form of the solution suggests con-
sidering ρ as a periodic coordinate also; in the case of spherical topol-
ogy of the space sections, ρ, z and ϕ are interpreted as generalized
Euler angle coordinates. The resulting space-time metrics satisfy the reg-
ularity conditions at ρ = 0 = π and the matching conditions across
W,ρ

2 − W 2
,t = cos2 ρ − cos2 t = 0 by an appropriate choice of the cn

and have initial and final collapse singularities at t = 0 and t = π.
Another possible topology is that of a 3-handle S1 ⊗ S2, see e.g.
Hanquin and Demaret (1983). The analogous cases (and topologies) be-
longing to W = f(ρ)h(t), with (f, h) = (sinh, cosh, exp), are discussed
in Hanquin (1984) and in Hewitt (1991a). For a discussion of (other)
spatially compact space-times admitting two spatial Killing vectors see
Tanimoto (1998).

As in the stationary axisymmetric case, powerful generation methods
are available for the construction of solutions, see Chapter 10 for details
and solutions. Here we shall only give some examples.

The best-known subcases are the Einstein–Rosen waves (so that some-
times the whole class treated in this section is called generalized Einstein–
Rosen waves). They are the counterpart of the static axisymmetric solu-
tions (Weyl’s class, §20.2) and are characterized by the existence of two
hypersurface-orthogonal spacelike Killing vectors (so that one can put
A = 0) and a spacelike gradient of W (W = ρ). All solutions of this class
can be obtained from the cylindrical wave equation and a line integral,

ρ−1(ρU,ρ)ρ−U,tt = 0, k =
∫ [

ρ
(
U 2
,ρ + U 2

,t

)
dρ + 2ρU,ρU,tdt

]
. (22.48)

The complex substitution t→ iz, z → it leading from (20.3) (Weyl’s class)
to (22.48) was first mentioned by Beck (1925). The interpretation of the
solutions of (22.48) as cylindrical gravitational waves is due to Einstein
and Rosen (1937). Because of the cylindrical symmetry, the Einstein–
Rosen waves do not describe the exterior fields of bounded radiating
sources. The solutions of the class (22.48) are of Petrov type I or II
(Petrov 1966, p. 447). Superposing a cylindrical wave and flat space-time,
Marder (1969) constructed a spherical-fronted pulse wave. For an analo-
gous method for static Weyl solutions, see §17.2. Chandrasekhar (1986)
and Chandrasekhar and Ferrari (1987) gave different forms of the field
equations, discussed their relation to the Ernst equation (19.39) and con-
structed some special wave packet solutions.

Solutions with W = t, or with a t-dependent W , occur naturally as
subcases of the vacuum Bianchi type solutions (§13.3) if their symmetry
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group has an Abelian subgroup G2. The relations of the Einstein–Rosen
waves to the vacuum Bianchi models are discussed in Jantzen (1980a),
Carmeli and Charach (1980) and Hanquin and Demaret (1984); the last
paper also contains some Einstein–Rosen waves with an additional homo-
thetic vector, see also Van den Bergh (1988a).

A special solution with W = t has been given by Cox and Kinnersley
(1979) as

ds2 = t−1/2
[
e2k(dρ2 − dt2) + t2dϕ2

]
+
√
t(dz + Adϕ)2,

k = 1
16 ln t− 1

2

∫
[A′(u)]2 du, u ≡ ρ− t,

(22.49)

where A(ρ− t) is an arbitrary function.
A special standing wave solution was discussed by Halilsoy (1988b); it

is given by (22.68) with

e−2U = cosh2 α e−2CJ0(ρ) cos t + sinh2 α e2CJ0(ρ) cos t,

A = −2C sinh(2α)ρJ1(ρ) sin t,

k = 1
2C

2
[
ρ2(J0(ρ)2 + J1(ρ)2)− 2ρJ0(ρ)J1(ρ) cos2 t

]
,

(22.50)

where the Ji(ρ) are Bessel functions.
A real solution of (22.41) which seems not to have a real stationary ax-

isymmetric counterpart was given by Papapetrou (1966). It can be written
in terms of a null coordinate u as

γMNdxMdxN = e2k
[
G(u)v du2 − du dv

]
, A2 = v−1,

G(u) = Ḟ (u)/F (u), W = (u− v−1)F (u); e4U = WF (u).
(22.51)

This vacuum solution contains an arbitrary function F (u). The conformal
factor e2k was calculated by Reuss (1968).

A one-soliton solution (Belinskii and Zakharov 1978, Tomimatsu 1989)
is given by

e2U =
w(a2 + 1)
(a2 + w2)

, A =
aρ(1− w2)
w(a2 + 1)

, e2k =
b
√
ρ√

t2 − ρ2
,

w =
[
t−√t2 − ρ2

]
/ρ, a, b = const.

(22.52)

Solutions where the metric functions are products of functions depend-
ing only on ρ or t (and with A = 0) have been found by Harris and
Zund (1976) and Stein-Schabes (1986). Fischer (1980) found similarity
solutions of (22.45) for which A and e2U/ρ are functions only of ρ/t (cor-
responding to a homothetic vector H = ρ∂ρ + t∂t) or of ρ2 − t2.
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Algebraically general solutions with real ρ and σ and Ψ0 = −3σ2/r
admit two spacelike commuting Killing vectors, and the solutions can be
constructed (up to an ordinary differential equation) using the Newman–
Penrose formalism (Bilge 1990).

22.4 Einstein–Maxwell and pure radiation fields

As in the vacuum case, most of the known Einstein–Maxwell solutions
have been found by using generation methods. So we refer the reader to
Chapters 10 and 34 for methods and solutions, and to Chapter 25 for
solutions representing colliding waves.

In the following we shall discuss the counterpart of the Einstein–Rosen
waves, i.e. metrics of the form

ds2 = e−2U
[
e2k(dρ2 − dt2) + W 2dϕ2

]
+ e2Udz2, (22.53)

where all metric functions depend only on ρ and t, and one can choose
W = ρ (assuming W 2

,ρ −W 2
,t > 0); they are related by a complex sub-

stitution to the static subcase of the stationary axisymmetric solutions
considered in §19.4. For the electromagnetic counterpart of the Gowdy
universes (§22.3) see Charach (1979).

The existence of the Killing vector ζ = ∂z enables us to introduce (real)
scalar potentials Θ and η (cp. §18.4),√

κ0/2ζaF ∗
ab = Θ,b − iη,b. (22.54)

If Θ and η are functions of ρ and t, then the non-zero components of the
field tensor Fmn with respect to the metric (22.53) are√

κ0/2Fzρ = Θ,ρ,
√

κ0/2Fzt = Θ,t,√
κ0/2Fϕρ = W e−2Uη,t,

√
κ0/2Fϕt = W e−2Uη,ρ.

(22.55)

It follows from (22.55) that T ρ
ρ + T t

t = 0, so that (22.43) is satisfied and
we can choose W = ρ. By means of the substitution t→ iz, z → it we get
from the field equations (19.28)–(19.35)

U,ρρ + ρ−1U,ρ − U,tt = −e−2U
(
Θ 2
,ρ −Θ 2

,t + η2,ρ − η 2,t

)
, (22.56a)

Θ,ρρ + ρ−1Θ,ρ −Θ,tt = 2 (U,ρΘ,ρ − U,tΘ,t) , (22.56b)

η,ρρ + ρ−1η,ρ − η,tt = 2 (U,ρη,ρ − U,tη,t) , (22.56c)



22.4 Einstein–Maxwell and pure radiation fields 355

k,ρ = ρ
(
U 2
,ρ + U 2

,t

)
+ ρe−2U

(
Θ 2
,ρ + Θ 2

,t + η 2,ρ + η 2,t

)
, (22.56d)

k,t = 2ρU,ρU,t + 2ρe−2U (Θ,ρΘ,t + η,ρη,t) , (22.56e)

η,tΘ,ρ = η,ρΘ,t. (22.56f)

From the last equation we conclude that either one of the potentials Θ or
η is a constant (and can be made zero by a gauge transformation) or the
potentials are mutually dependent, η = η(Θ). The first case is contained
as a special case in (22.59) and (22.60) below. For η = η(Θ), equations
(22.56b) and (22.56c) are consistent only if(

Θ2
,ρ −Θ2

,t

)
d2η/dΘ2 = 0. (22.57)

For electromagnetic null fields, the first factor in (22.57) vanishes,

FabF
∗ab = 0 ⇒ Θ2

,ρ −Θ2
,t = 0. (22.58)

In this case, the potentials Θ and η are arbitrary functions of u = (t −
ρ)/
√

2 or v = (t+ρ)
√

2. The general solutions of the field equations (Misra
and Radhakrishna 1962) are

ds2 = ρ−1/2 exp
[
−23/2

∫ (
Θ̇2 + η̇2

)
du
] (

dρ2 − dt2
)

+ ρ
(
dϕ2 + dz2

)
(22.59)

for Θ = Θ(u), η = η(u); and a similar solution for Θ = Θ(v), η = η(v).
For electromagnetic non-null fields, (22.57) demands that η is a linear

function of Θ,

Θ = Ψ cosα, η = Ψ sinα, α = const. (22.60)

In terms of the potential Ψ introduced in (22.60), the field equations
(22.56a)–(22.56c) read

U,ρρ + ρ−1U,ρ − U,tt = e−2U
(
Ψ2
,t −Ψ2

,ρ

)
,

Ψ,ρρ + ρ−1Ψ,ρ −Ψ,tt = 2 (U,ρΨ,ρ − U,tΨ,t) .
(22.61)

Up to the complex replacement t → iz, z → it, these equations have ex-
actly the same structure as the equations (19.40) for stationary axisym-
metric vacuum fields.

Theorem 22.1 From a stationary axisymmetric vacuum solution (U, ω)
(in Weyl’s coordinates) one obtains a corresponding cylindrically-symme-
tric Einstein–Maxwell field (U, Ψ) by the substitution

t→ iz, z → it, 2U → U, ω → Ψ. (22.62)
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For instance, the solution (Radhakrishna 1963)

W = ρ, Ψ = at, eU = ab−1ρ cosh(b ln ρ) (22.63)

belongs to the class related to the Lewis class (§20.4) by (22.62).
Liang (1995) used the Newman–Penrose formalism and studied the case

Φ1 = 0, cp. §7.2. The resulting Petrov type II metric and the potential
are given by

ds2 =
[
g(v)− κ0a

2u2
]−1/2 du dv

+
[
g(v)− κ0a

2u2
] (

e−χ(v)dz2 + eχ(v)dϕ2
)
,

Ψ = au
√
κ0e−χ(v)/2,

(22.64a)

where the functions g(v) and χ(v) have to satisfy

2g′′ + χ′2g = 0. (22.64b)

The generation methods outlined in Chapter 34 apply also when two
spacelike Killing vectors exist. Harrison (1965), Misra (1962, 1966) and
Singatullin (1973) generated cylindrically-symmetric wave solutions of the
Einstein–Maxwell equations from vacuum solutions.

The ansatz (Harrison 1965)

U = U(η), Ψ = ln ρ−
∫

Q(η)dη, cosh η = t/ρ (22.65)

reduces (22.61) to a system of two ordinary first-order differential
equations

Q′ = 2U ′ (Q + cosh η) , Q2 + e2U
(
U ′2 + C

)
= 1, C = const. (22.66)

Harrison (1965) discussed the special solution C = 0, U = 0, Q = −1.
Einstein–Maxwell fields with detFnm = 0 (and W �= ρ) have been

constructed by Roy and Tripathi (1972). Solutions for the general metrics
(22.3) involving Painlevé transcendents have been found by Wils (1989c),
and special solutions with a purely radial electric field and A �= 0 by Roy
and Prakash (1977). A solution due to Singh et al. (1965) is

ds2 = t2ρ−2/3(dρ2 − dt2) + ρ2/3t1±
√
5dϕ2 + ρ2/3t1∓

√
5dz2,

(22.67)√
κ0F14 = 1

3 t
√

2ρ−4/3.

Starting with non-isotropic coordinates, Demaret and Henneaux (1983)
found a solution admitting a homothetic vector.
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Pure radiation fields with null vector (1, 1, 0, 0) obey, in the metric
(22.53) with W = ρ, the equations (Krishna Rao 1964)

U,ρρ + ρ−1U,ρ − U,tt = 0, k,ρ + k,t = ρ(U,ρ + U,t)2. (22.68)

All other field equations are then satisfied. Hence for every Einstein–Rosen
wave (U, k0) one can generate a pure radiation field (U, k) by

k = k0 + f(t− ρ). (22.69)

This result can be generalized to the metric (22.1) with A �= 0
(Krishna Rao 1970). Some other pure radiation solutions have been found
by Krori and Barua (1976).

The pure radiation field

ds2 = ek(t−ρ)
(
dρ2 − dt2

)
+ ρ2dϕ2 + dz2 (22.70)

generated from flat space-time (U = 0 = k0) has a Weyl tensor of type N
(Krishna Rao 1963).

Looking at the general Einstein–Maxwell null field (22.59) we see that
a pure radiation field generated by (22.69) satisfies the Maxwell equations
only if e2U = ρ.



23
Inhomogeneous perfect fluid solutions

with symmetry

In this chapter we cover those solutions containing a perfect fluid, and
admitting at least an H1 and at most an H3, which are not discussed
elsewhere. Most of the known solutions admit a G2I acting on spacelike
orbits, and can be considered to be cosmologies. Vacuum and Einstein–
Maxwell solutions with a G2 on S2 in which the gradient of the W of
(17.4) is timelike may also ipso facto be called cosmological. In this
book, they and vacua with a G1 are covered by Chapters 17–22, 25
and 34.

Solutions with a Gr, r ≥ 3, are discussed in Chapters 13–16: see the
tables in §13.5. Relations between them, in vacuum, Einstein–Maxwell
and stiff fluid cases, arise from applying generating techniques when the
G3 contains a G2I (see §10.11, Chapter 34 and, e.g., Kitchingham (1986)).
Stationary axisymmetric fluid solutions appear in Chapter 21.

Theorem 10.2 enables one to generate an infinity of solutions with a
G2I on S2 and equation of state p = µ from vacuum solutions. Vacua and
stiff fluids with a G2I on S2 obtainable using the methods of Chapters 10
and 34 have been surveyed by e.g. Carmeli et al. (1981), Krasiński (1997)
and Belinski and Verdaguer (2001). Any stiff fluid solution with a G2I
on S2 should be examined to see if it arises from a vacuum using The-
orem 10.2 (in which case it is in a sense trivial); in general, we give
only references to the cases obtained by that method (in §10.11) and
to other solutions that could have been so obtained (in §23.3), but a few
of special interest are given explicitly below. Some other special equations
of state also allow techniques for generating perfect fluid solutions (see
§10.11).

In the case of an irrotational fluid, an extensive classification scheme
was given and applied by Wainwright (1979, 1981) but has not been widely
used since many of the classes do not contain any known solutions.

358
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A number of the solutions below admit homotheties, and some were
explicitly found from this property. Proper homothety generators for them
are given in the tables in §11.4 rather than here.

23.1 Solutions with a maximal H3 on S3

Qualitative studies, and classifications, of possible solutions with an H3

on S3 or T3 have been given, including treatment by some of the methods
described in §13.2 for solutions with a G3 (see e.g. Wu (1981), Hewitt
et al. (1988), Hewitt and Wainwright (1990), Hewitt et al. (1991), Ug-
gla (1992), Koutras (1992b), Carot et al. (1994), Carot and Sintes (1997),
Kerr (1998)). Since all such solutions admit a G2, they may be subcases
of known solutions with a maximal G2. In the qualitative study of
solutions some vacuum solutions and solutions with an H4 on a V3 (and
a G3 on S2; see Chapter 15) arise as critical points of the dynamical
systems. These and some further perfect fluid solutions with maximal
H3 are given elsewhere in this book: see the tables in §11.4. In particular
(23.36) and the special cases of (23.14), (23.32) and (23.38) appear in
§23.3 rather than here because they are special cases or subfamilies of
separable G2 solutions.

Wainwright et al. (1979) used Theorem 10.2 to generate stiff fluid so-
lutions from generalizations of vacua with a G3. McIntosh (1978a) noted
that most of the solutions so obtained, and the initial vacua, admit an
H3 on S3; we give them now. (For other known vacua with an H3, see
§11.4 and the tables therein and §§21.1.5 and 22.4; other stiff fluid so-
lutions with an H3 appear in Wainwright and Marshman (1979), Carot
et al. (1994) and Carot and Sintes (1997).)

Starting by generalizing the Bianchi II vacuum solution (13.55),
Wainwright et al. (1979) obtained

ds2 = A2(−dt2 + dx2) + t[B(dy + 2ncxdz)2 + B−1dz2],
(23.1)

A2 = ta
2+ 1

2
n2−n(1 + c2t2n)e

1
2
b2t2−2abx, B = tn−1(1 + c2t2n)−1,

with constants a, b, c and n, in which κ0µ = (a2 − b2t2)/2t2A2; in the
obvious tetrad, the four-velocity u obeys u1/u4 = bt/a, so the flow is
tilted relative to the orbits of the H3.

The tilted inhomogeneous γ = 2 fluid generalization of the G3V Ih
vacuum solution (13.57) is (Wainwright et al. 1979)

ds2 = guu(−du2 + dx2) + e2x sinh 2u[W e2nxdy2 + dz2/W e2nx], (23.2a)

guu = c2(sinh 2u)
1
2
(m2+n2−1)+a2+b2(tanhu)2ab+mne−[m

2−n2−3+2(a2−b2)]x,
(23.2b)

W = (sinh 2u)n(tanhu)m, κ0µ = 2(a2 + b2 + 2ab cosh 2u)/guu sinh2 2u,
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where a, b, c, m and n are constants. Here the four-velocity obeys u1 =
−bu4 sinh 2u/(a+b cosh 2u), so this solution is tilted if b �= 0. The case n =
b = 0, m2 + 2a2 = 1 is a Petrov type D solution found by Allnutt (1980),
while n = m = 0 gives (15.82). Baillie and Madsen (1985) obtained the
special case m =

√
3/F , n = 1/F − 1, a2 = 3b2 = 3(F 2 − 1)/F 2, by

applying Theorem 10.1 to (13.59).
Similarly, generalizing the G3V I0 solution (13.58), which is a limit of

(13.57), led to the stiff fluid solution (Wainwright et al. 1979)

ds2 = A2(−dt2 + dx2) + t(B dy2 + B−1dz2), κ0µ = (a2 − b2t2)/2A2t2,
(23.3)

A2 = ta
2+ 1

2
(m2−1) exp

[(
n2 + 1

2b
2
)
t2 + 2(nm− ab)x

]
, B = tme2nx,

where a, b, m and n are constants, which is a corresponding limit of (23.2).
It is tilted if b �= 0 (in the obvious tetrad, the velocity obeys u1 = btu4/a).

There is also a p = µ solution found from the Bianchi type V IIh vacuum
solution (13.62), which is given by replacing G2(ξ) in (13.62), ε = 1, with

G2 = (sinh 2ξ)a
2+b2−3/8(tanh ξ)2abem

2ξ−(m2+2a2−2b2−11/4)w, (23.4)

and Φ by mξ where mA = 1 so h = 1/m2 (Wainwright et al. 1979). The
energy density and the velocity in the obvious tetrad are given by

κ0µ = 2(a2 + b2 + 2ab cosh 2ξ)/k2G2(sinh 2ξ)2 (23.5)

and u1 = −bu4 sinh 2ξ/(a + b cosh 2ξ). If b �= 0, this solution is tilted.
Finally, among the p = µ solutions given by Wainwright et al. (1979),

there are two with an H3 contained in a family of comoving solutions
which in general have only a G2; they were pointed out by McIntosh
(1978a) and Collins (1991). The relevant metrics take the form

ds2 = t2(q−1)F (u)(−dt2 + dx2) +
√
t[dy + W (u) dz]2 + t3/2dz2, (23.6)

where u = t − x and q is constant. One has F = e−u and W = u.
The other has F = u−2p and W = 2

√
2pu, where p is constant and

pu > 0; the homothety is an isometry if p = q. For both solutions, κ0µ =
(q − 13/16)/t2gxx.

Among the comoving separable solutions with a G2 in Wainwright class
A(ii) (see §23.3) studied by Wils (1991) are three stiff fluid solutions with
an H3 on S3. The first two can be given as follows:

ds2 = sinh t
[
e−6xdy2 + e4x(dz +

√
10e−x cosh t dx)2

+ e2x sinh2 t(−dt2 + 6 dx2)
]
, κ0µ = 7

4e−2x/ sinh5 t ; (23.7)
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ds2 = G2(−dt2 + 24 dx2) + H2
[
f dy2 + (dz + be−2(1+a)x cosh t dx)2/f

]
,

b2 = 8(5− 2a− a2), H2 = e−2(1+a)x sinh t, f = e2(a−5)x(sinh t)a,(23.8)

G2 = e4(1−2a)x(sinh t)3−a, κ0µ = 1
4(7− 2a− a2)e(8a−4)x(sinh t)a−5,

where a is a constant such that b2 > 0. If a = 1
2 , (23.8) is spatially

homogeneous with a group of Bianchi type V I−1/9, while if a = 1 it is
the member a2 = ε = 1, b = c = m = 0 of the class (33.5) and has Petrov
type II . The third, in which the H3 is timelike or spacelike depending on
position, is the special case δ = 0 of (23.51).

23.2 Solutions with a maximal H3 on T3

The metric (23.14) with T = eat, ε = 1, which admits an H3 on T3 and has
a γ-law fluid flowing tangent to the orbits, gives the line-element consid-
ered by Hewitt et al. (1988, 1991). By studying symmetries of the dynam-
ical system formed by the field equations for this metric, using methods
and parametrizations closely analogous to those for the solutions (14.37)–
(14.39), Uggla (1992) independently found the relevant specializations of
the families given in §23.3.1 which allow ε = 1. For the 2m = 1 + n and
n = 0 cases, these are just (23.20) and (23.21) with T = eat and ε = 1: the
solution given by Hewitt et al. (1991) is a further specialization of (23.20),
and (15.84), which has an H4, is a special case P = 1 of the family with
n = 0 whose general solution is (23.21).

The remaining cases, n2 = (3m − 2)2/(2m − 1) and n2 = 1/(5 − 4m),
were given only up to integrations. The coordinates in (23.14) were chosen
so that H = cG/WV , Gq = W 1/k1V 1/k2 and P = W−(n+q)/k1qV (q−n)/k2q,
where c is a constant, n2− 4m+ 3 = q2, and W and V are functions of x.
For the family with n = −(3m − 2)/

√
2m− 1, one finds k1 = k2 = 1/q,

c = 2m, α = −2n/(q + n) and

W = Aex + Be−x, V = |W ′|
(
C +
∫

[Wα/W ′|W ′|]dx
)
. (23.9)

The case B = 0 (or A = 0) gives (23.17). For the family with n =
−1/

√
5− 4m, k1 = (n − q)/2(m − 1), k2 = 2/q, α + 1 = 2/k1q, c2 =

m2(5− 4m)/(4m− 3) and

W = sinx, V = cosx
(
C −
∫

[sinα x/ cos2 x]dx
)
. (23.10)

These solutions do not overlap with (23.18) unless µ < 0.
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Studying perfect fluid solutions with an H3, Carot and Sintes (1997)
found, in addition to stiff fluids and solutions with an H4 or greater sym-
metry, two solutions with fluid flow tilted with respect to the H3 orbit.
One was a special case of the subcase of (23.14)–(23.15) with P = 1,
T = t, G = xc. The other is given by

ds2 = enu(−A dt2 + B dx2 + e−u/2[e−u/2+λvdy2 + eu/2−λvdz2]),(23.11a)

lnA = nv + a exp(12 − n)v + b, (1 + 2λ)A = (1− 2λ)B, (23.11b)

κ0(µ − p)(1− 2λ)gxx = λ(2n− 1)2, (23.11c)

κ0(µ + p)(1− 2λ)gxxA = 2λ(2n− 1)A,v, (23.11d)

where u = t + x, v = t − x, and λ, n, a and b are constants with
n2 + λ2 = 1

2 and 0 < λ < 1
2 .

Bogoyavlensky and Moschetti (1982) found as a stiff fluid solution with
a maximal H3 on T3 and G2 on T2 the case a = −1, N = ez of (18.66). A
class of such solutions is considered in Kolassis and Griffiths (1996). The
solutions (23.46), given below since they are a special family of separable
G2 solutions, admit an H3V I on a T3 to which the fluid four-velocity
is tangent. Other perfect fluid solutions with an H3 on T3 are given by
(21.61) with µ = p, (21.72), and (35.77).

23.3 Solutions with a G2 on S2

In almost all known fluid solutions with a G2 on S2 the fluid flow is
orthogonal to the group orbits: metric (33.14) is an exception. When
the flow is also irrotational (which follows necessarily if the group’s ac-
tion is orthogonally transitive) Wainwright (1981) and Sintes (1996) have
given classifications. For the Abelian case G2I one may have (Wainwright
1981):

Class A: G not orthogonally transitive;
Class A(i): no hypersurface-orthogonal Killing vector;
Class A(ii): one hypersurface-orthogonal Killing vector;

Class B: G orthogonally transitive;
Class B(i): no hypersurface-orthogonal Killing vector;
Class B(ii): two perpendicular hypersurface-orthogonal Killing vectors.

The G2II possibilities can be similarly split (Sintes 1996), but for
perfect fluid matter content all the orthogonally transitive metrics ad-
mit at least a G3 on V2 (Bugalho 1987, Van den Bergh 1988d), so
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these cases are covered by Chapters 15 and 16. Van den Bergh (1988d)
shows the existence of metrics (with an H3) where G is not orthogonally
transitive.

A metric form covering all cases can be given as (Vera 1998b)

ds2 = −F 20 dt2 + F 21 dx2 + F2[F 23 (e−azdy + W1dz + W2dx)2

+ (dz + W3dx)2/F 23 ], (23.12)

where the Fi and Wi are functions of t and x, a = 0 for a G2I, and a = 1
for a G2II; ξ = ∂z and η = ∂y are the Killing vectors.

As mentioned at the start of this chapter, for the special equation of
state µ = p, and a four-velocity orthogonal to the orbit of an orthogo-
nally transitive group G2I (Class B), an infinity of solutions can be con-
structed by using generation methods, see §10.11 for details and examples.
Solutions which were found by other methods, but could have been gen-
erated from appropriate vacuum solutions, are given in Patel (1973a),
Bronnikov (1980), Roy and Narain (1981), Argüeso and Sanz (1985),
Van den Bergh (1988c), Davidson (1992, 1993b) cp. (23.15), Agnew and
Goode (1994), Carot et al. (1994), Mars (1995), Carot and Sintes (1997),
Fernandez-Jambrina (1997), Mars and Senovilla (1997) and Lozanovski
and McIntosh (1999). Solutions which cannot be so generated since – in
the notation of Theorem 10.2 – W,nW

,n vanishes, can be found in Charach
and Malin (1979), Roy and Narain (1981), Agnew and Goode (1994) and
Carot et al. (1994). (Some of the solutions which can be generated contain
special subcases or subspaces where W,nW

,n = 0.) The solution discussed
in Lozanovski and McIntosh (1999) is unusual in having, for suitable ob-
servers, a purely magnetic Weyl tensor, while one of the solutions in Mars
and Senovilla (1997) provides an example of a non-diagonal separable
singularityfree cosmology.

A number of authors have found other fluid solutions, usually not with
a γ-law equation of state, by ansätze of separability, with or without
the assumption that the fluid is comoving in the coordinates of (23.12);
see the following subsections. An example elsewhere in this book is
(36.36).

23.3.1 Diagonal metrics

The simplest cases, which we treat first, are the diagonal metrics with
a G2I, Class B(ii), where W1 = W2 = W3 = 0 and F3 is not constant
in (23.12). Mars and Wolf (1997) noted that the exchange x ↔ t, with
appropriate choices of region, relates solutions, and used this to reduce the
number of cases they needed to consider; cp. Senovilla and Vera (1998).
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Separable comoving solutions For a Class B(ii) comoving perfect fluid
solution, assuming the functions Fi are (multiplicatively) separable gives
three cases (Hewitt and Wainwright 1990, Vera 1998b), in two of which
there can be a γ-law equation of state with γ �= 2. (All the p = µ solutions
separable in comoving coordinates have been determined by Agnew and
Goode (1994), and include solutions found in Wainwright et al. (1979),
Goode (1980) and Davidson (1992, 1993b); see also below and in §10.11.)

The first case is where the F3 of (23.12) is independent of x, so the
three-surfaces t = const are conformally flat. These metrics are

ds2 = S2mC2m−2(−dt2 + dx2) + SCα(Tndy2 + dz2/Tn) (23.13a)

where S = sinh 2qt, C = cosh(2qx/α), T = tanh qt, q, m and n are
constant, and α = (2m − 2)/(1 − 2m) (Wainwright and Goode 1980).
One can also replace sinh by cosh and vice versa, or replace hyperbolic
functions by trigonometric functions, though the corresponding solutions
generally violate the energy conditions. For (23.13a) the energy density
and pressure are given by

1
2(1−m)κ0(µ− p) =

(3− 4m)q2

(SC)2m
=

[
q2(1 + 4m− n2)
C2(m−1)S2(1+m)

− κ0p

]
. (23.13b)

If n2 = 4m + 1 in (23.13) we have a γ-law equation of state with γ =
2m/(m + 1), while if m = 3/4 and n2 < 4 we have p = µ > 0.

The subcase m = 0 is a Petrov type D solution found by Allnutt (1980)
with p = µ − 6q2/κ0. It has another characterization, arising from the
study (Czapor and Coley 1995) of solutions of Class B(ii) admitting in
addition an inheriting conformal Killing vector (see §35.4.4). The rele-
vant metric forms in general have a linearly separable conformal factor
r(t) + s(x) multiplying a separable metric and do not admit a barotropic
equation of state; only (23.13a) with m = 0 has a maximal G2 and ad-
mits a barotropic equation of state (Vera 1998a). The limit where m = 0,
C = eqx is the subcase n = b = 0, m2 + 2a2 = 1 of (23.3).

The second case depends on one function T of t and takes the form

ds2 = T 2mG1−2mPn(−dt2+H2dx2)+TG(TnPdy2+dz2/TnP ), (23.14a)

where m and n are constants, and G, P and H are functions of x (Ruiz
and Senovilla 1992). If m = 1 the field equations lead to p = µ solutions,
so let m �= 1. Then there are three subcases labelled by ε = −1, 0 and 1:

T =


A cosh at + B sinh at, ε = 1,
At + B, ε = 0,
A cos at + B sin at, ε = −1,

(23.14b)
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where a, A and B are constants. The energy density and pressure obey

κ0p− ρ = κ0µ− m + 1
m− 1

ρ =
4m + 1− n2

4T 2mF 2

[
Ṫ 2

T 2
− εa2
]
,

(23.14c)

H2T 2mF 2ρ ≡ nG′P ′

2GP
− P ′2

4P 2
+

(3− 4m)G′2

4G2
+

(4m− 3− n2)εa2H2

4
,

where F 2 = G1−2mPn. There are two differential equations linking G,
H and P , so in general one function, corresponding to a choice of the
coordinate x, can be chosen freely. Four families were examined in detail
by Ruiz and Senovilla (1992) and are given below. Each contains solutions
with an H3 mentioned in §23.2. The fluid has a γ-law equation of state
with γ = 2m/(m + 1) if n2 = 4m + 1 (these cases were considered by
Van den Bergh and Skea (1992)) or if T = eat, ε = 1, which implies a
homothety. The latter case contains the solutions found by Uggla (1992),
see §23.2, and also the special solutions without restrictions on n and
m found by Kamani and Mansouri (1996) by taking H2G1−2mPn = 1,
P = eqx, G = esx for constants q and s.

The first family is given by ε = 0. For general m and n,

P k+N = C(3−4m)/(1−2m) + r, G = P kC2(1−m)/(2m−1),
(23.15)

k + T = −
√
n2 + 3− 4m

1−m
, k =

n +
√
n2 + 3− 4m
4m− 3

, H = sC ′/P N,

where r and s are arbitrary constants, and C(x) is an arbitrary function.
The A = 0 limit gives the static cylindrically-symmetric solutions (22.27).
The case C = (1 + x2)q, k = T = −N = 1, m = (3q + 2)/2(2q + 1),
n = (q+1)/(2q+1) was found by Davidson (1992) and includes a γ = 4/3
solution (Davidson 1991) for q = −2/5. The case P = 1, T = t, G = xc,
for some constant c, admits an H3 which may act on T3 or S3 and with
respect to which the fluid is tilted. The formulae above have zero or infinite
exponents for three choices of m, which thus must be treated separately:
they are

m = (n2 + 3)/4, P = exp(ax2n
2/(1+n2)),

(23.16a)
G = P 1/n(ax)(1−n

2)/(1+n2), H = P 1/n;

m = 3
4 , P 4n = ax + r, G = e−axP 1/2n, H = e−axP 1/2n−4n; (23.16b)

m = 1
2 , P k+N = C + r, G = P k/C, H = sC ′/CP N, (23.16c)
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where C, k, T, r and s are as in (23.15). The special case P = 1, T = t,
G = x was given by Roy and Narain (1983) and m = 3/4, n = 0, H = 1,
G = x, which has p = µ, was given by Patel (1973a).

The second family is for ε = 1, n2 = (3m− 2)2/(2m− 1), m > 1
2 . The

general solutions involve hypergeometric functions, cp. (23.9). A special
case with elementary functions is given by H = 1 with

P = f
√
2m−1 exp

[
m− 1

2
√

2m− 1
ax

]
, G = f exp

[
− m− 1

2(2m− 1)
ax

]
,

(23.17)
f = A1 exp

[
5m− 3

2(2m− 1)
ax

]
−A2 exp

[
− 5m− 3

2(2m− 1)
ax

]
,

where A1 and A2 are arbitrary constants.
The third family has ε = ±1, n2 = 1/(5− 4m) > 0; cp. (23.10). Partic-

ular solutions are given by H = 1 and

P = f
√
5−4m, G = ff ′2(1−m)/(2m−1), f ′′ =

2m− 1
5− 4m

εa2f, (23.18)

where f(x) can easily be found explicitly once the parameters have been
chosen. There is a special case for m = 1

2 : with constants A1 and A2,

H = 1, P = C
√
3, G = Ceεa

2C2/6A2
1 , C ≡ A1x + A2. (23.19)

Finally, Ruiz and Senovilla (1992) gave the fourth family 2m = 1 + n,
n �= 1

2 , which can be written with H = 1 and

G = CC ′, P = GC2n−2, C ′2 = εqC2 + r − sC2−4n, (23.20)

where C = C(x) and q, r, and s are constants. The case n = 3 gives
radiation solutions (Ruiz and Senovilla 1992, Van den Bergh and Skea
1992), including those of Feinstein and Senovilla (1989b) and Senovilla
(1990), the latter providing an important example of a cosmology without
a singularity, and cases with a G4 on S3 (see §14.3).

A further family with n = 0 can be given, generalizing the work of
Uggla (1992) for the case with T = eat, in the form

G = xr/b, P = es, s =
∫ dx

bx
√
F

, r2 = 1/(4m− 3), H = cG/z
√
F ,

(23.21)
F = −1 + 2kx2r/b − x1/r(m−1)b, b2c2 = 2kr2m2,

where t, y and z have been scaled so that am = 1 if ε is nonzero. s can be
given explicitly in terms of elliptic functions if (0, 2r, 1/r(m−1)) are affine
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to a subset of (0, 1, 2, 3, 4). The special case with m = 0, ε = 1 = P ,
which can be written using G = H−2 = sinh2(ax/2), was given by Tariq
and Tupper (1992); (15.84), with a maximal H4, is another special case.

The third case (Vera 1998b) is characterized by the form

ds2 = T 2mF 2(−dt2 + dx2) + G(TnPdy2 + dz2/TnP ), (23.22)

where T = T (t) and F , G and P are functions of x, as before. It then turns
out that lnT is in general quadratic in t, and the remaining functions can
be determined from quadratures once the separation constants are known.
The stiff fluid example

P = G = x, F = eax
2
, T = ebt, m = n = 1, (23.23)

where a and b are constants and κ0µ = (a − b2/4)/eax
2+bt, was found

by Krori and Nandy (1984) using Theorem 10.1, has an H3 on T3 and is
included in the diagonal separable solutions of Agnew and Goode (1994),
as d2 = 1

2 in Case M12.

Partially separable comoving solutions Mars (1995) considered comoving
fluid solutions in which P = P (x) in

ds2 = F (x, t)

[
− dt2

M(t)
+

dx2

N(x)

]
+ G(x, t)

(
P dy2 +

dz2

P

)
. (23.24)

This class is invariantly defined by constancy of ξ · ξ/η · η along the
fluid flow, where ξ and η are the Killing vectors as in (23.12). After
extensive calculation five families were found, of which one is contained
in (23.14), one is a p = µ family obtainable via Theorem 10.2, and two
of the remainder disobey the dominant energy condition, leaving only the
case

F = exp(at + 3
2au + c2e2au), u = t + x, G = ea(t−x), M = 1 + e−2at,

N = 1− e−6ax, P = exp
(∫

2aceaxdx/
√
N

)
, a, c const, (23.25)

µ = p + 4a2e−6ax/κ0F, κ0p = a2(2c2e2at−4ax + e−6ax + 3e−2at)/2F.

Roy and Prasad (1989, 1991) found a number of comoving perfect fluid
solutions from an ansatz with partial separation

ds2 = eα(x,t)(dx2 − dt2) + eβ(t)+γ(t)+2xdy2 + eβ(t)−γ(t)+2qxdz2, (23.26a)

where q is constant, which includes homogeneous metrics of types G3V I0
and G3V Ih for αx = 0. The perfect fluid conditions give three equations
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between α, β and γ. Their solutions have matter content given by

κ0µ = κ0p + (β̈ + (β̇)2 − (1 + q)2)/eα

= (2(1 + q)α,x + 2α̇β̇ + β̇2 − γ̇2 − (1 + q + q2))/2eα. (23.26b)

In the general case, the solutions obey

α = β + (1− q)γ/(1 + q) + ξ, ξ = n exp(m(1 + q)x− β) + l, (23.27a)

where β is given by one of

β = (1 + q)t, or e(1−m)β =
{

k sinh((1 + q)(1−m)t)/(1 + q)
k cosh((1 + q)(1−m)t)/(1 + q) , (23.27b)

and γ is obtained from

γ = (1− h2)
∫ (

e−β
∫

eβdt
)

dt + s

∫
e−βdt, (23.27c)

k, l, m, n and s being constants. There are a number of special subcases.
If m = 0, ξ = n[(1 + q)x − β] + l while if m = 1, β = wt for some
constant w and then γ can be given explicitly; this has a limiting case in
which w = 0. If 1 + q = 0, we have the cases

β = (w ln t)/(w + 1), γ = wnt1/(w+1),
(23.28)

α = β +
2(w + 1)
2w + 1

t2 + r + (2nx + s)t1/(w+1)

β = wt, γ = −ne−wt, α = r + (w2 + 4)t/w + (2nx + sk)e−wt, (23.29)

where w, n, r, and s are constants. If 1 + q = 0 = β̇, µ = p < 0.
Another simple partially separable comoving solution was found by

Senin (1982) as a metric on a torus:

ds2 = a2(−dt2 + dx2 + sin2 xdy2) + (a cosx + b)dz2, (23.30)

where a = c sin t, b = t, for some constant c.

Solutions separable in non-comoving coordinates Solutions which are sep-
arable in non-comoving coordinates, but not in the comoving diago-
nal coordinates which always exist in Class B(ii), were investigated by
Senovilla and Vera (1998). Having chosen coordinates so that F0 = F1,
the Fi of (23.12) were written as Fi = exp[Ti(t) + Xi(x)], and the quan-
tities Mi were defined as the quadratic products of the Ṫi together with
the functions of t arising in R00+R22 and R11−R22 (similar functions of
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x were named Nj). The possible cases are then distinguished initially by
the numbers (m, n) of linearly independent Ti and Ṁi respectively (the
number q of linearly independent N ′

i obeys q ≤ 8 − n). Only the cases
m = 1 (Senovilla and Vera 1998) and m = n = 2 (Vera 1998b) have been
analysed in any detail, although not exhaustively; (23.41) gives an addi-
tional solution with m = 1, for example, or, by t ↔ x, with m = n = 2.
In these metrics

F 21 κ0(µ − p) = T̈2 + Ṫ2
2 −X ′′

2 −X ′2
2 ,

(23.31)
4F 21 κ0p = [2(2X1 + X2)′′ + X ′2

2 + 4X ′2
3 ]− [2(2T1 + T2)̈ + Ṫ2

2
+ 4Ṫ3

2
].

From m = 1, neglecting solutions with p = µ or with extra symmetry
but using x↔ t if necessary to meet the dominant energy condition, five
families were found. One was (35.77) and its counterpart with x ↔ t.
Another, with T1 = aT (t), X1 = rx, T2 = bT (t), X2 = 0 = T3, X3 = qx,
is known only up to a differential equation for T . In the following forms
for the remaining three families, a, b, c, r, q and s are constants. The first
family has T1 = (a + b/2)t, X1 = sX2, T2 = bt, T3 = εbrq2t, X3 = rX2,
where ε = 1, 0 or −1 and

2a
b(1 + 2s)

= εq2 =
4s2 − 4s− 1 + r2

(2s + 1)2 − r2
, G′2 = b2q2(1 + εG2), (23.32)

G ≡ expX2, and the tetrad components of the four-velocity can be found
from 4G2gxxκ0(u1)2 = b2q2(1 + 4s− r2)(1 + εG2), the sign of u1u4 being
given by R14. When ε = 0 there is a homothety. The second family have
T1 = at, X1 = −(b2 + a2)X2/2b2, T2 = 0 = X3, T3 = bt and

expX2 = (cos qx)r
2
, r2 =

b2 − a2

b2 + a2
, q2 =

8b2(a2 + b2)
(b2 − a2)(a2 + 3b2)

. (23.33)

The last family is given by F2 = cos qx cosh qt, T1 = X1 = 0, X3 = bX2,
T3 = −bT2, and a corresponding solution with cosh replaced by sinh.

In the case m = n = 2, the systems of equations for the many possibili-
ties were given but only the following three families of metrics were given
completely. The first family have T2 = rst/c, X2 = sx, T3 = ct, X3 = rx,
X1 = qx, T1 = at + b exp(mt), where

c2m2 = s2(r2 − c2), sca = −(mc− rs)q, 4sq = 4c2 + s2. (23.34)

The second family are dust solutions which can be written

ds2 = −2du dv + F 2dy2 + H2dz2, H = (ku)1−b + s(kv)−q+1/2,
(23.35)

F = r(ku)q+1/2 + (kv)b, κ0µ =
2b(b− 1)k(rsuq+bv − vq+b

√
uv)

ub+1/2vq+3/2FH
,
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where r = ±1, s = 0 or ±1, b and k are constants and 4q2 = 1 + 4b− 4b2.
Here the velocity 1-form is −(v du + u dv)/

√
2uv.

Finally there is a third family with a γ-law equation of state (Senovilla
and Vera 2001), γ = (2k + 1)/(k + 1),

ds2 = F 2(−dt2 + dx2) + ea(t+x)G(Pdy2 + dz2/P ), F = emt+cxGk,

G = 1− e−(a+b)t, P = (eb(t+x)G)2N, 4T2 = 4k + 1,
(23.36)

0 = (ak + c−m− 1
2b)

2 − 1
4b
2(2k + 1)2 + c(a + b− 2c + 2m),

a2 + 4b2T2 = 2a(c + m), κ0p = k(a2 − b2)/F 2(e(a+b)t − 1).

The constants a, b and k obey a2 > b2, a + b > 0 and k ≥ −1
4 . If k = −1

4 ,
there is a G3 on S2. In general, (23.36) admits an H3 if c �= 0, while if
c = 0 it admits a G3 and includes special LRS solutions and subcases of
(14.32) and (14.39), as well as the Kasner solution and pp-wave limits.
The γ = 4/3 case can be interpreted as waves superposed on (14.32).

The solutions (23.35) suggested ansätze leading to further dust solu-
tions (Senovilla and Vera 1997, Vera 1998b). As well as special Szekeres
solutions (see §33.3.2), the following two cases were obtained.

ds2 = −dt2 + dx2 + (sin au + e−av)dy2 + e2audz2, (23.37)

with comoving dust with density κ0µ = −4a2e−av/(sin au + e−av); here
and in the next case u = t− x, v = t + x.

ds2 = −dt2 + dx2 + [
√
auF (u) + (av)b]2dy2 + (au)2(1−b)dz2,

F =


c1(au)q + c2/(au)q if (i) b ∈ (b−, b+),
c1 − c2 ln au if (ii) b = b±,
c1 cos(q ln au + c2) if (iii) b /∈ [b−, b+],

(23.38)

κ0µ = −4b(b− 1)(au)b/uv(
√
auF (u) + (av)b),

where the ci are constants, b± = 1
2(1±√2) and 4q2 = |1 + 4b− 4b2|. Here

the fluid velocity 1-form is (−t dt + xdx)/
√
uv. The special case F = 0

is included in (14.33). There is an H3 if c2 = 0 in cases (i) or (ii) (or,
equivalently by q → −q, c1 = 0 in case (i)). The two solutions (23.37)–
(23.38) provide examples with Hab

;b = 0 �= Hab, cp. Lesame et al. (1996).
An assumption of partial separability for metrics with µ = p + const

in non-comoving coordinates was studied by Xanthopoulos (1987).

Solutions with a conformal motion Carot et al. (1996) and Mars and
Wolf (1997) studied solutions of Class B(ii) with an additional confor-
mal motion (cp. §35.4), the orbits being non-null; Mars and Wolf (1997)
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assumed that the G2I was an invariant subgroup in the three-parameter
conformal group. Carot et al. (1996) gave some families only up to dif-
ferential equations or systems, and found the following explicit solutions.
First, in comoving coordinates,

ds2 = S−2[−dt2 + dx2 + (coshx)2m(e−2tdy2 + sinh2 xdz2)], (23.39a)

S = b cosh ku(e−u/2 coshx)m+1, u ≡ t + ln coshx, 4k2 = 1 + m2,

(23.39b)
κ0µ =

3Q2 −m

S2 cosh2 x
, κ0p =

−Q(2m + 3Q)
S2 cosh2 x

, Q ≡ (lnS),u + 1; b, m, const.

Mars and Wolf (1997) found the analogous solution with coshx and sinhx
exchanged, and one with sinh ku and cosh ku also exchanged.

Secondly, using the comoving coordinates of Mars and Wolf (1997),

ds2 = S−2(−dt2 + dx2/x2 + xb(b+1) cosh1−b t dy2 + xb(b−1) coshb+1 t dz2),

S = xk + s0| sinh t|k, 2k = 1 + b2, b, s0 const,
(23.40)

κ0µ = A + B, A ≡ 1
4(b2 − 1)S2/(cosh t)2, B ≡ 3

4(b2 + 1)2(sinh t)b
2−1,

κ0p = A + C, 3(b2 + 1)C ≡ B[2(b2 − 1)(x/ sinh t)k − b2 − 5],

together with the similar metric with cosh t and sinh t interchanged. If
b = 1 this is conformally flat and if b = 0 it is Petrov type D. If s0 → 0,
this is a member of the class (23.26).

The further solutions given by Carot et al. (1996) are: the subcase
m = 0 of (23.13a), due to Allnutt (1980); a tilted fluid solution separable
in non-comoving coordinates which, with constants a, b and c and in the
notation of (23.31), is given by 2T1 = T2 = a− (ln | sinh(2bct)|)/c, T3 = 0,

eX1 = (cosh bx)(1−2c), eX2 = sinh 2bx, e2X3 = tanh bx, (23.41)

(here the sinh in T2 can be replaced by cosh or exp); a counterpart of
(23.41) with t ↔ x; and a solution conformal to a decomposable space-
time (35.29) with E = 0, which therefore is of Petrov type D and has a
six-parameter conformal group,

ds2 =
a2

F 2

[
−dt2/(1− t2) + dx2/(1 + x2) + (1− t2)dy2 + (1 + x2)dz2

]
,

κ0µ = 3q0(F − 1)− p0, κ0p = (3− 5F )q0 + p0, F = 1 + b
√
tx, (23.42)

p0 ≡ (3− 2F )F/a2, q0 ≡ (F − 1)(x2 − t2)/4a2x2t2, a, b const.
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Mars and Wolf (1997) gave an additional solution analogous to (23.42):

ds2 = S(v)−2e−(1+a)x(−dt2 + adx2/q + e−2tdy2 + e2axq dz2), (23.43a)

w,v =
w(a + w)
(w + 1)

, S(w) =
b|w − 1||w + a|(1−a)/2a

|w|(1+a)/2a ,
a, b const,
q = 2e−ax cosh(ax),

(23.43b)

µ =
3(a + 1)(1 + w)(µ + p)

2(a− 1)(w − 1)
+

e(a+1)xS2(aw + 2a + 2w + 1)
κ0(w − 1)

,

where v = t + x and 2κ0(µ + p)a(1− w2)gtt = (a− qw2)(a2 − 1).
In the case where the conformal group acts on null surfaces v =const

and is maximal the only solution known explicitly (Sintes et al. 1998) is

ds2 = f2(−2e(a+1)vdu dv + e−u+avdy2 + e−au+vdz2), x ≡ u− v,

f = cxa/(a
2+1)e(a+1)x/4/

√
x, κ0(µ− p) = 4(a2 − a + 1)Q, (23.44)

κ0(µ + p) =
{

[(a2 + 1)x/2]2 − (a + 1)2
}
Q, a, c const,

where Q ≡ −(a− 1)2/e(a+1)vx2f2(a2 + 1)2. If a = −1 this admits a G3.

23.3.2 Non-diagonal solutions with orthogonal transitivity

For the non-diagonal Class B(i) (a = W2 = W3 = 0 and W1 not constant
in (23.12)) many of the known solutions have p = µ and are included in
the references listed above. Mars and Wolf (1997) showed there are no
solutions in Class B(i) obeying their assumptions (just described above).

Mars and Senovilla (1997) defined separability for Class B(i) as sepa-
rability of the expressions for ξ ·η, ξ ·ξ and

√
(ξ · ξ)(η · η)− (ξ · η)2. The

general separable metric has the form

ds2 = T 2f F
2(−dt2+dx2)+TgG[(dy+TwWdz)2/TpP +TpPdz2], (23.45)

where the Ti are functions of t only and F , G, P and W are functions of x
only. A detailed study of possible comoving fluids leads to several metric
forms which are not diagonalizable and have a maximal G2. Of these some
turn out to be vacuum or stiff fluid and we omit those here. The stiff fluids
with µ > 0 found can all be obtained from vacua using Theorem 10.2.
The first of the remaining cases is

Tf = T q
p , Tg = T b

p , Tp = Tw = eat, (23.46)

which gives a γ-law fluid with γ = 2q/(q + b). The functions F , G, P
and W are only known up to a system of differential equations implying
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κ0µ = (a2b2 − Gxx/G)/γP 2T 2g . This class generalizes the subclass of
(23.14) in which T = eat, and has as a limit (14.33). It admits a ho-
mothety. The dust solutions within this class are the most general with
these properties.

A second class can be written with W = 1 and, using X = G2,

Tf = T N
g , Tg = Tp = Ṫw/b, Ṫ 2g −mT 2g = T0, P =

√
X(X/Q,X)N−1,

(23.47)
dx2 =

dX2

4X(mX + Q)
, F 2 = a2Q1−N,X , κ0µgtt = (

TT0
T 2g

− 1
2(T− 1)Q,X),

where κ0(µ−p)gtt = Q,X and a, b, T, T0 and m are constants; Q(X) obeys
a non-linear second-order differential equation. This can be regarded as
a generalization of (23.14) with n = 1. The equations for Tg and Tw are
trivial to integrate once the sign of m is chosen. An explicit example is

Q = cXp, p = (4T− 3)/2(T− 1), b2 = −m(cp)2−2N, (23.48)

so that m = −k2 < 0, Tg = sin kt, Tw = cos kt. Its T = 0 limit is the de
Sitter space-time. The last of these classes is given by Tw = 1 = Tg and

T 2f = Tp = exp(b2 sinmτ − a2), G = P = cosmx = Wx/km,

dt2 =
b2 cos2 2mτ(1− e−2b2)dτ2

2− 2e−2b2 sinmτ − 2(1− e−2b2) sin2mτ
, a2 =

b2

1− e−2b2
, (23.49)

µ = p + m2/T 2f F
2κ0, κ0p = m2(lnQ−Q)/T 2f F

2, F = ec sinmx,

where b, c, k =
√

2ae−a2
and m are constants. This satisfies the dominant

energy condition but not the strong energy condition. The similar solution
with hyperbolic functions of x has µ < 0 in some regions.

23.3.3 Solutions without orthogonal transitivity

Studying separable Class A(ii) metrics (W1 = W2 = 0 �= W3,t in (23.12)),
Wils (1991) found some stiff fluid solutions. Two, (23.7)–(23.8), always
have an H3. A third, which is of Petrov type D, is

ds2 = F 4(−dt2 + dx2)/C6 +F [dy2/F +F (dz− 2 cos t dx/C5)2], (23.50)

where F = SC, S = sin t, C3 = sin 3x, and κ0µ = 2C2/S6. The last is

ds2 = t4+5c/6f2+c(−dt2 + dx2)/x2/3 + t2+5c/6x2/3f2+c(dz + 1
3 t
2dx/x5/3)2

+t−5c/6f−cdy2, κ0µ = 23
24x

2/3/f3+ct6+5c/6, (23.51)

where c2 = 6 and f = δx2/3 + 1 for an arbitrary constant δ.
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Only two stiff fluid solutions, not obtainable via Theorem 10.2, were
found explicitly in the study of separable solutions of Class A(i) by Van
den Bergh et al. (1991). First, we have (23.12) with ε = −1, a = 0, and

F0 = F1 = eK+k, F2 = e2s, F3 = e−(K+s), W2 = 0, (23.52a)

where k and s are functions of x and

s′′ = − 2s′2 − c2e2(k−4s), k′′ = 2s′k′ + 4c2e2(k−4s),
(23.52b)

e2K =
a

2b
cosh 2bt, W1 = a

∫
e2sdx, W3 = 2c(t− t0)e2(k−3s),

a, b, c and t0 being constants; these solutions have κ0µ = (2s′k′ +
c2e2(k−4s) − b2)e−2(k+K). The other solution given was

ds2 = cosh(
√

6x)[sinh4 t(−dt2 + dx2) + 2 sinh2 t(dz + cosh t dx)2]

+ 12(dy + cosh t dz + 1
2 cosh2 t dx)2/ cosh(

√
6x), (23.53)

with κ0µ = 2/ cosh(
√

6x) sinh6 t.

23.4 Solutions with a G1 or a H2

Solutions with a maximal G1 are rare. Most of them have been found
as a by-product in the search for other classes of solutions (like the gen-
eralized Kerr–Schild metrics (32.99), the algebraically special solutions
(33.12) and the metrics (35.78) admitting a group of conformal motions),
or they are subcases of solutions which in general do not admit any sym-
metry (like the algebraically special solutions (33.11), (33.40) and (33.44),
the metrics (36.30) with conformally flat slices, and the conformally flat
solutions (37.39) and (37.45)). Another was found by Papadopoulos and
Sanz (1985) but has p < 0.

Kolassis and Griffiths (1996) made a thorough search for perfect fluids
admitting an orthogonally transitive H2 when the four-velocity lies either
in the orbit of the group or orthogonal to it. If the orbits are timelike
(and the four-velocity lies in the orbit), it turns out that the symmetry
group is at least an H3; if the surfaces orthogonal to the orbits are spaces
of constant curvature, the group is an H5. If the orbits are spacelike (and
the four-velocity orthogonal to the orbit), the fluid is necessarily stiff
(µ = p) and the metric is diagonal, but a third-order partial differential
equation remains to be solved; the known solutions admit an H3.



24
Groups on null orbits. Plane waves

24.1 Introduction

In classifying space-times according to the group orbits in Chapters 11–
22, we postponed the case of null orbits; they will be the subject
of this chapter. All space-times considered here satisfy the condition
Rabk

akb = 0.
A null surface Nm is geometrically characterized by the existence of

a unique null direction k tangent to Nm at any point of Nm. The null
congruence k is restricted by the existence of a group of motions acting
transitively in Nm.

The groups Gr, r ≥ 4, on N3 have at least one subgroup G3 (Theorems
8.5, 8.6 and Petrov (1966), p.179), which may act on N3, N2 or S2. (A G4
on N3 cannot contain G3 on T2 since the N3 contains no T2.) For G3 on
S2, one obtains special cases of the metric (15.4) admitting either a group
G3 on N3 or a null Killing vector (see Barnes (1973a)). For G3 on N2,
the metric also admits a null Killing vector (Petrov 1966, p.154, Barnes
1979).

Thus we need only consider here the groups G3 on N3 (§24.2), G2 on
N2 (§24.3), and G1 on N1 (§24.4). As we study the case of null Killing
vectors (G1 on N1) separately, we can also restrict ourselves to groups
G3 on N3 and G2 on N2 generated by non-null Killing vectors. It will be
shown that in these cases, independent of the group structure, there is
always a non-expanding, non-twisting and shearfree null congruence k.

None of the space-times with a G4 on N3 is compatible with the types
of energy-momentum tensors considered in this book (see §5.2) (Lauten
and Ray 1977), and all space-times admitting a G3 on N3 or a G2 on
N2 (generated by non-null Killing vectors) are algebraically special and
belong to Kundt’s class (Chapter 31).

375
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24.2 Groups G3 on N3

In this section we study space-times V4 for which the orbits of a group G3
are null hypersurfaces N3 parametrized by u (u being constant in each
N3). The null vector ka = −u,a is orthogonal to all vectors tangent to N3,
and therefore it is orthogonal to the three independent Killing vectors ξA
(A = 1, . . . , 3),

ξaAka = 0 = kak
a, ξA(a;b) = 0, ka = −u,a, ka = cA(x)ξaA. (24.1)

From these relations it follows immediately that the null congruence k
and tensors obtained from it by covariant differentiation have zero Lie
derivatives with respect to ξA, e.g.

ka;b ξ
b
A − kb ξaA;b = 0, kc;caξ

a
A = 0. (24.2)

Now we use (6.33),

Rabk
akb = kb;abk

a = −ka;bk
a;b = −2(σσ̄ + Θ2) ≤ 0, (24.3)

where σ and Θ denote the shear and the expansion, respectively. By con-
tinuity, the energy conditions (5.18)

Tabu
aub ≥ 0, TabT

a
cu

buc ≤ 0, uaua < 0 (24.4)

must still be true if we replace the timelike vector u by a null vector k:

Rabk
akb ≥ 0, TabT

a
ck

bkc ≤ 0, kaka = 0. (24.5)

Comparison of (24.3) with (24.5) leads to σ = 0 = Θ, i.e.

ka;b = 2k(apb), pak
a = 0, Rabk

akb = 0. (24.6)

With (24.6), the second energy condition (24.4) reads

RabR
a
ck

bkc = kb;abk
c:a
;c ≤ 0, (24.7)

whereas (24.6) leads to

kb;abk
c;a
;c = 2
∣∣∣Rabm

akb
∣∣∣2 ≥ 0. (24.8)

Comparison of the two inequalities gives

Rabk
akb = 0 = Rabm

akb ⇔ k[cRa]bk
b = 0. (24.9)

Theorem 24.1 If the energy-momentum tensor of a space-time with a
G3 on N3 satisfies the energy conditions (24.5), then the non-twisting
(and geodesic) null congruence k is non-expanding and shearfree and an
eigendirection of the Ricci tensor (Kramer 1980).
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Of the types of energy-momentum tensor considered in this book, only
vacuum fields and Einstein–Maxwell and pure radiation fields are compa-
tible with a group of motions acting on N3; perfect fluids (with µ+p �= 0)
are excluded by the condition Rabk

akb = 0. For the compatible space-
times Rabm

amb = 0 follows from (24.9), so that according to Theorem 7.1
they are algebraically special, k being the repeated principal null direction
of the Weyl tensor.

Using the Newman–Penrose formalism (Chapter 7), we now inspect the
Einstein–Maxwell equations. For the spin coefficients and tetrad compo-
nents we have

ρ = σ = κ = 0, ε + ε̄ = 0, τ = ᾱ + β,

Φ00 = Φ01 = Φ02 = 0, Ψ0 = Ψ1 = 0, R = 0
(24.10)

(k is a gradient!). We choose the null tetrad so that its Lie derivatives
with respect to ξA vanish (invariant basis in N3). The tetrad vectors
k, m, m are linear combinations (with non-constant coefficients) of the
Killing vectors ξA. Therefore, the intrinsic derivatives D, δ, δ̄ applied
to spin coefficients and tetrad components of the field tensors give zero.
With these simplifications and (24.10), the Newman–Penrose equations
(7.21c), (7.21p), and the Maxwell equation (7.24) read

τε = 0, τβ = 0, τΦ1 = 0. (24.11)

If we assume τ �= 0, it follows that ε = β = Φ1 = 0, and (7.21l) and
(7.21q),

Ψ2 = αᾱ + ββ̄ − 2αβ + Φ11 = τ τ̄ , Ψ2 = τ(β̄ − α− τ̄) = −2τ τ̄ (24.12)

give contradictory results. Hence τ = 0 must hold;

τ ≡ −ka;bm
alb = pam

a = 0, ka;b = A(u)kakb (24.13)

(note Lξka;b = 0), i.e. there exists a covariantly constant null vector par-
allel to k (§6.1). For pure radiation fields (Φ11 = 0), the same conclusion
can be drawn.

Theorem 24.2 Vacuum, Einstein–Maxwell and pure radiation fields ad-
mitting a group of motions acting transitively on N3 are plane waves (see
§24.5).

24.3 Groups G2 on N2

Space-times admitting a null Killing vector will be treated separately
in the next section, so we suppose that the group G2 acting on two-
dimensional null surfaces N2 does not contain a null Killing vector. By
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supposition, the two spacelike Killing vectors ξ and η span a null surface
N2, i.e.

ξ[aηb]ξ
aηb = 0. (24.14)

At any point of N2 we have a unique null direction tangent to N2:

k = ξ − Ωη, Ω ≡ (ηcηc)−1ξbηb (24.15)

(cp. the similar expression after (19.19) in the case of stationary axisym-
metric fields). The null vector field k is orthogonal to the two Killing
vectors,

kaξa = 0 = kaηa, (24.16)
and has the properties

ka;abk
b = 0, ka;bk

b = 0, ω = i k[a;b]mamb = 0,
√

2ma = (ηcηc)−1/2ηa + i qa, qaηa = 0 = qaka, qaqa = 1,
(24.17)

which can be verified with the aid of the Killing equations, the commuta-
tor relation for ξ and η, and the formula (24.14). Equations (24.17) hold
for both the group structures G2I and G2II (§8.2).

We insert the information (24.17) on k into (6.33) and conclude, again
from (24.3) together with (24.5), that the null vector field (24.15) is non-
expanding and shearfree, Θ = σ = 0. (The function Ω in (24.15) obeys
the relations Ω,ak

a = 0 = Ω,am
a.) From conditions (24.5) it follows that

k is a Ricci eigenvector. So we can conclude again from Theorem 7.1 that
if a vacuum, Einstein–Maxwell or pure radiation field admits a group of
motions G2 on N2, then it is algebraically special.

Theorem 24.3 In vacuum, Einstein–Maxwell or pure radiation fields
admitting a group G2 on N2 there is a non-expanding, non-twisting, and
shearfree null congruence and the metric can be transformed into (cp.
§31.2)

ds2 = 2P−2dζdζ̄ − 2du(dv + Wdζ + Wdζ̄ + Hdu),

P,H real, W complex, P,v = 0, W,vv = 0.
(24.18)

The gauge transformation

u′ = h(u), v′ = v/h,u + g(ζ, ζ̄, u), ζ ′ = ζ ′(ζ, u) (24.19)

preserving the form of the line element (24.18) can be used to bring the
Killing vectors ξ and η satisfying (24.14) into the simple form

η = ∂x, ξ = u∂x + S(u, y)∂v,
√

2ζ = x + iy. (24.20)
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These Killing vectors necessarily commute. The metric (24.18) is inde-
pendent of x, and the rest of the Killing equations imply W,v �= 0. The
type D vacuum solution (31.41) is also contained here

The general Einstein–Maxwell type D solutions with a G2 on null orbits,
where both eigenvectors of the Weyl and Maxwell tensor are aligned and
geodesic and shearfree, divide into two classes. They have either one null
eigenvector with non-zero expansion and twist and are then given by

ds2 =
(x2 + y2)dx2

2nx− (e2 + g2)
+

2nx− (e2 + g2)
x2 + y2

[du− y2dv]2,

+ 2dy[du + x2dv],

Φ11 = −(e2 + g2)/2(x2 + y2)2,

(24.21)

or both null eigenvectors are expansion- and twist-free and the solutions
are given by

ds2 =
K(x)
x2 + l2

[dv + 2lydu]2 +
x2 + l2

K(x)
dx2 + 2(x2 + l2)dydu,

K(x) = 2nx− (e2 + g2)− Λ
(
2l2x2 + x4/3− l4

)
, (24.22)

Φ11 = −(e2 + g2)/2(x2 + l2)

(Garćıa D. and Salazar I. 1983). If admissible, the cosmological constant Λ
has been included. Solution (24.21) is a special case of the solutions given
by Leroy (1978) and Debever (1971). Solution (24.22) contains the vacuum
solutions found by Bampi and Cianci (1979), see also Joly et al. (1992).
Both classes can be obtained by limiting procedures (contractions) from
the type D solutions with a G2 on non-null orbits (Garćıa D. and Salazar
I. 1983, Garćıa D. and Plebański 1982b), cp. §21.1.2.

24.4 Null Killing vectors (G1 on N1)

The important relation (6.33),

Θ,ak
a − ω2 + Θ2 + σσ̄ = −1

2Rabk
akb, (24.23)

applied to a null Killing vector k yields

Rabk
akb = 2ω2. (24.24)

Obviously, for vacuum solutions, and for Einstein–Maxwell and pure ra-
diation fields for which k is an eigenvector of Rab, the null Killing vector
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is always twistfree (ω = 0) (Debney 1972). Perfect fluid solutions cannot
admit a non-twisting null Killing vector, except if µ + p = 0. The alge-
braically special perfect fluid solutions with (twisting) null Killing vectors
are treated in §33.2; they admit an Abelian group G2. The Gödel universe
(12.26) admits the two twisting null Killing vectors ∂y ± ∂t.

If there is a Killing vector with a fixed point as well as the null Killing
vector, then the two commute or space-time admits a third Killing vector
(Szabados 1987).

24.4.1 Non-twisting null Killing vector

For the case of a non-twisting null Killing vector, the field equations can
be completely solved, i.e. reduced to a system of two-dimensional Poisson
equations (Kramer (1977); for the vacuum case see Dautcourt (1964)).
Starting from

k(a;b) = 0, kak
a = 0, k[akb;c] = 0 (24.25)

we obtain the relations

ka = −wu,a, ka;b = w,[au,b], w,ak
a = 0. (24.26)

We introduce coordinates xi = (x, y, v, u), similar to those of (24.18), such
that the components of the null Killing vectors are given by

ki = δi3, ki = −wδi
4, (24.27)

and that the coordinates x and y label the points of the spacelike 2-
surfaces V2 orthogonal to k (Kundt 1961). Because of its independence of
v, the metric can be transformed into

ds2 = P−2(dx2 + dy2)− 2du(w dv −m dx + Hdu), gij,v = 0 (24.28)

(see §31.2).
One can show that conditions (24.25) are incompatible with the field

equations for Einstein–Maxwell non-null fields. Hence we can restrict our-
selves to electromagnetic null fields

Fab = 2A[b,a] = 2r[akb], rak
a = 0, (24.29)

and to vacuum fields. The null Killing vector k is a Ricci eigenvector with
zero eigenvalue,

Ra
bk

b = kb;a;b = (w[bu,a]);b = 0. (24.30)

Calculation of the divergence in (24.30) with respect to the metric (24.28)
shows that the function w satisfies the potential equation V2,

w,xx + w,yy = 0. (24.31)
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From (24.29) it follows that only F14 and F24 are non-zero. Maxwell
equations then guarantee the integrability of the system A4,1 = F14,
A4,2 = F24, so that the vector potential Aa can always be gauged to
have the form Aa = Ψ(x, y, u)u,a. (24.32)

The metric and Maxwell field are independent of v, so the Lie derivative
of the field tensor Fab = 2Ψ,[au,b] with respect to k vanishes. In virtue of
the Maxwell equations, the real scalar potential defined in (24.32) satisfies
the potential equation in V2,

Ψ,xx + Ψ,yy = 0. (24.33)

For the complex self-dual field tensor F ∗
ab we obtain

F ∗
ab = 2F,[au,b], F = F (ζ, u). (24.34)

By a conformal transformation in the ζ–ζ-space, the solution of the po-
tential equation (24.31) can be made (I) w = 1 or (II) w = x. For the
energy-momentum tensors we are interested in, the two cases (I) and (II)
include all space-times admitting a non-twisting null Killing vector.
Case (I): (w = 1) In this case, k is a constant vector field, ka;b = 0,
which is an invariant characterization of the pp-waves (§24.5). In the final
form of the metric

ds2 = 2dζdζ̄ − 2du dv − 2H(ζ, ζ, u)du2,

H = κ0FF + f + f, f = f(ζ, u), F = F (ζ, u),
(24.35)

the functions f and F are analytic in ζ and depend arbitrarily on u.
Case (II): (w = x) The Einstein equations and the coordinate transfor-
mations preserving the form of the metric (24.28) lead to

P 2 = x1/2, m = 0. (24.36)

With M = x−1H the metric then reads

ds2 = x−1/2(dx2 + dy2)− 2xdu [dv + M(x, y, u)du] (24.37a)

and the remaining Einstein–Maxwell equations are

Ψ,xx + Ψ,yy = 0, (xM,x),x + xM,yy = κ0(Ψ,x
2 + Ψ,y

2). (24.37b)

For a given potential function Ψ, one has to solve an inhomogeneous lin-
ear differential equation for M (which has the form of Poisson’s equation
in cylindrical polar coordinates for axisymmetric solutions). For pure ra-
diation fields not necessarily obeying the Maxwell equations, M is an
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Table 24.1. Metrics ds2 = x−1/2(dx2 + dy2)− 2xdu [dv + M(x, y, u)du] with
more than one symmetry

No M(x, y, u) Group Orbit Killing vectors ξA
1 P (x, u) G2I N2 ∂v, ∂y
2 P (x, ay −mu) G2I T2 ∂v, m∂y + a∂u
3 P (x, u)− yB′(u) G2I T2 ∂v, ∂y + B(u)∂v
4 P (x, y −m lnu)/u2 G2II T2 ∂v, m∂y + u∂u − v∂v
5 f(x) exp(−2ay) G3V T3 ∂v, ∂u, ∂y + a(u∂u − v∂v)
6 f(x) + ay G3II T3 ∂v, ∂u, ∂y − au∂v,
7 f(x) G3I T3 ∂v, ∂u, ∂y,
8 0 G4 T3 ∂v, ∂u, ∂y, u∂u − v∂v

arbitrary function satisfying (xM,x),x + xM,yy > 0. The metrics (24.37a)
are of Petrov type II or D . Contained here are: the van Stockum so-
lutions (20.32) for Ψ = 0 = M,u; the (type D) static B III metric of
Table 18.2 for M = 0; the vacuum solution given by Kundu (1979), cp.
also Islam (1979); and the metric (22.17).

Any additional Killing vector of the metric (24.37a) has to be of the
form ξn = m∂y +(a1u+a2)∂u+[−a1v+B(u)]∂v, and metric and Maxwell
field have to satisfy (a1u + a2)M,u + 2a1M + mM,y + B′(u) = 0 and
mΨ,y +(a1u+a2)Ψ,u+a1Ψ = F (u). For the possible symmetry types, see
Table 24.1; note the gauge transformations (v,M) → (v+h(u),M−h′(u)).
In cases 1, 3 and 5 – 8 of Table 24.1, the general solution of the Einstein–
Maxwell equations can easily be given.

24.4.2 Twisting null Killing vector

As already mentioned above, in the case of a twisting null Killing vector k
there has to be a non-vanishing Einstein–Maxwell or pure radiation field.
The only known solution of this type is algebraically special (a special
charged vacuum metric in the sense of Theorem 30.1) which admits k = ∂u
as a null Killing vector; note that this Killing vector is not the repeated
principal null direction ∂v (also named k in Chapters 29–30) of the metrics
we are now dealing with.

As Theorem 30.1 shows, ∂u is a null vector only if H = 0, and the
addition of a charge (of a term κ0Φ01Φ

0
1) can make H vanish only for

P = P0 = const, m = 0, K = 0; the field equations (30.19) then imply
M = M0 = const. So we are dealing with the special case K = 0 of
the twisting vacuum solutions considered in §29.2.5. If we now insert the
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appropriate charge Φ01(ζ), the final result (found by Lukács et al. (1981)
in a different way) is the metric

ds2 = 2(r2 + Σ2)dζdζ − 2
[
du + Ldζ + Ldζ

] [
dr + Wdζ + Wdζ

]
,

(24.38a)
L = i 12M0ζζ

2
, Σ = M0ζζ, W = iM0ζ,

where the Maxwell field is given by

√
κ0Φ1 =

M0ζ

(r + i Σ)2
,

√
κ0Φ2 =

M0(r − i Σ)
(r + i Σ)3

. (24.38b)

M0 can be gauged to be 0 or 1. The solution is axially symmetric; it is
flat for M0 = 0.

24.5 The plane-fronted gravitational waves with parallel rays
(pp-waves)

In this section we want to investigate space-times admitting a (covari-
antly) constant null vector field k,

ka;b = 0. (24.39)

Such space-times are called plane-fronted gravitational waves with par-
allel rays (pp-waves). They were discovered by Brinkmann (1925) and
subsequently rediscovered by several authors. Reviews of gravitational
waves were given by Ehlers and Kundt (1962), Jordan et al. (1960),
Takeno (1961), Zakharov (1972), and Schimming (1974).

The pp-waves belong to the wider class of solutions admitting a non-
expanding, shear- and twist-free null congruence (Kundt’s class, see Chap-
ter 31). Obviously, the pp-waves always admit a null Killing vector and
thus form a subclass of the fields treated in the previous section.

Condition (24.39) implies (see §24.4 and (35.2)) that electromagnetic
non-null fields, perfect fluids and Λ-term solutions cannot occur and that
the metric of vacuum, Einstein–Maxwell null and pure radiation fields can
be written in the form

ds2 = 2dζdζ̄ − 2dudv − 2Hdu2, H = H(ζ, ζ̄, u), (24.40)

which is preserved under coordinate transformations

ζ ′ = eiα(ζ + h(u)), v′ = a(v + ḣ(u)ζ̄ + ˙̄h(u)ζ + g(u)),
(24.41)

u′ = (u + u0)/a, H ′ = a2(H − ḧ(u)ζ̄ − ¨̄h(u)ζ + ˙̄h(u)h̄(u)− ġ(u))
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(α, a, u0 real constants; g(u) real, h(u) complex). The metric (24.40) is
of Kerr-Schild type (see §32.1). We use the complex null tetrad

m = ∂ζ , m = ∂ζ̄ , l = ∂u −H∂v, k = ∂v, (24.42)

and compute the Ricci and Weyl tensors:

Rab = 2H,ζζ̄kakb,
1
2C

∗
abcd = Ψ4VabVcd, Vab = 2k[amb], Ψ4 = H,ζ̄ζ̄ .

(24.43)

Space-times satisfying (24.39) are either Petrov type N (with the multiple
principal null direction k) or conformally flat (if H,ζ̄ζ̄ = 0). The null
bivector Vab = 2k[amb] is constant, Vab;c = 0, so the pp-waves are complex
recurrent, C∗

abcd;e = C∗
abcd(ln Ψ4),e (see §35.2). Vab is determined by the

metric up to a complex constant coefficient.
If the metric (24.40) is a solution of the Einstein–Maxwell equations, the

function H and the electromagnetic (null) field are given by (see (24.34),
(24.35))

H = f(ζ, u) + f̄(ζ̄, u) + κ0F (ζ, u)F (ζ̄, u), Fab = 2k[aF,b]. (24.44)

The functions f and F are analytic in ζ and depend arbitrarily on the
retarded time coordinate u. For pure radiation fields, H is restricted only
by H,ζζ̄ > 0.

In general, the group G1 on N1 generated by the Killing vector k = ∂v is
the maximal group of motions, but larger groups exist for various special
choices of H. For non-flat space-times (24.40), the Killing equations imply

ξ = [i bζ + β(u)] ∂ζ +
[−i bζ̄ + β̄(u)

]
∂ζ̄ + (cu + d)∂u

+
[
−cv + ˙̄β(u)ζ + β̇(u)ζ̄ + a(u)

]
∂v,

(ξH) + 2cH + β̄(u)ζ + β̈(u)ζ̄ + ȧ(u) = 0

(24.45)

(b, c, d real constants; a(u) real, β(u) complex). Ehlers and Kundt (1962)
investigated the vacuum pp-waves and found all possible forms of H =
f(ζ, u) + f̄(ζ̄, u) and ξ that are compatible with (24.45). Table 24.2 sum-
marizes the results. Note that, in each case H and ξA are determined up
to the transformations (24.41). The pp-waves with f = f(ζ) and F = F (ζ)
independent of u admit an Abelian group G2 (Killing vectors ∂v, ∂u) on T2
(see Table 24.2). These solutions correspond to the excluded case W = 1 in
the metric (19.17) of stationary axisymmetric fields: the Einstein–Maxwell
equations (19.28)–(19.32) are solved by W = 1, E = E(ζ), Φ = Φ(ζ).
Hoffman (1969b) considered this case for vacuum fields.

The possible group structures for a general line element of the form
(24.40) of a pp-wave (vacuum or not) have been determined by Sippel
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Table 24.2. Symmetry classes of vacuum pp-waves

ds2 = 2dζdζ̄ − 2du dv− 2[f(ζ, u) + f̄(ζ̄, u)]du2 (κ, α, a real constants; A(u) and

A(ζuiκ) complex).

f(ζ, u) Group Orbits Killing vectors ξA

f(ζ, u) G1 N1 ∂v

u−2A(ζuiκ) G2 T2 ∂v, u∂u − v∂v − iκ(ζ∂ζ − ζ̄∂ζ̄)

f(ζeiκu) G2 T2 ∂v, ∂u − iκ(ζ∂ζ − ζ̄∂ζ̄)

A(u) ln(ζ) G2 N2 ∂v, i(ζ∂ζ − ζ̄∂ζ̄) + 2
∫

ImA(u)du ∂v

au−2 ln ζ G3 T3 ∂v, i(ζ∂ζ − ζ̄∂ζ̄), u∂u − v∂v

ln ζ G3 T3 ∂v, i(ζ∂ζ − ζ̄∂ζ̄), ∂u

e2κζ G3 T3 ∂v, ∂u, ∂ζ + ∂ζ̄ − κ(u∂u − v∂v)

eiαζ2iκ G3 T3 ∂v, ∂u, i(ζ∂ζ − ζ̄∂ζ̄) + κ(u∂u − v∂v)

A(u)ζ2 G5 N3 ∂v, β∂ζ + β̄∂ζ̄ + ζ ˙̄β∂v + ζ̄β̇∂v,

β̈ + 2A(u)β̄ = 0

au2iκ−2ζ2 G6 V4 add u∂u − v∂v − iκ(ζ∂ζ − ζ̄∂ζ̄)

e2iκuζ2 G6 V4 add ∂u − iκ(ζ∂ζ − ζ̄∂ζ̄)

and Goenner (1986). Since the Ricci tensor components (24.43) are linear
in H, waves with a distributional profile may occur, e.g. when boosting
a Schwarzschild metric to its singular limit; in that case, additional sym-
metry groups are possible (Aichelburg and Balasin 1997). For conformal
symmetries of pp-waves see Maartens and Maharaj (1991).

Comparing the formulae C∗
abcd = 2Ψ4VabVcd and F ∗

ab = 2Φ2Vab we
expect that the Weyl tensor component Ψ4 of a vacuum pp-wave and the
field tensor component Φ2 of an electromagnetic wave permit analogous
physical interpretations. Writing Ψ4 = AeiΘ, A > 0, one calls A the
amplitude and associates Θ with the plane of polarization at each space-
time point (Ehlers and Kundt 1962). Vacuum pp-waves for which Θ is
constant are called linearly polarized.

In Einstein–Maxwell theory, plane waves, first considered by Baldwin
and Jeffery (1926), are defined to be pp-waves in which Ψ4,ζ̄ = 0 = Φ2,ζ̄ .
The metric is then given by

ds2 = 2dζdζ̄ − 2du dv − 2
[
A(u)ζ2 + A(u)ζ̄2 + B(u)ζζ̄

]
du2 (24.46)
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(A(u) complex, B(u) real); a linear function of ζ and ζ̄ in H can be
removed by (24.41). Plane waves admit a group G5 with an Abelian sub-
group G3 on null hypersurfaces N3. The electromagnetic term B(u)ζζ̄
in (24.46) does not alter the form of the Killing vectors as given in
Table 24.2 for f(ζ, u) = A(u)ζ2, but the equation for β(u) is now
β̈ + 2A(u)β̄ + B(u)β = 0. The four integration constants in the solution
of this differential equation give rise to four independent Killing vectors.
Plane waves admit a G6 on V4 if either A(u) = A0e2iκu, B(u) = B0 or
A(u) = A0u

2iκ−2, B(u) = B0u
−2 (A0, B0 real constants), see also §12.2.

A pure radiation solution which is not an Einstein–Maxwell null field
is given by

ds2 = dx2+dy2+2du dv+k exp [2 (ax− by)] du2, a, b = const (24.47)

(Sippel and Goenner (1986), see also Steele (1990)).
The metric (24.40) can be cast in the form

ds2 = gMN (u)dxMdxN − 2du dv′, M,N = 1, 2, (24.48)

with the aid of the coordinate transformation

ζ = αMxM , v = v′ + 1
4 ġMNxMxN , gMN (u) = 2ᾱ(MαN),

u′ = u, Re
[
ᾱ(M α̈N) + 2A(u)αMαN + B(u)ᾱMαN

]
= 0 (24.49)

(αM = αM (u) complex). The calculation of the Ricci tensor in the coor-
dinate system (24.48) yields

Rab = −
(
1
2g

MN g̈MN + 1
4 ġ

MN ġMN

)
kakb. (24.50)

Linearly polarized plane gravitational waves have A(u) = const·A(u)
in the metric (24.46), and g12(u) = 0 in (24.48). The plane wave solution
(Brdička 1951),

ds2 = (1− sinωu)dx2 + (1 + sinωu)dy2 − 2du dv′, (24.51)

ω being a real constant, is a conformally flat Einstein–Maxwell field with
constant electromagnetic null field, cp. (37.105).

Plane waves can be interpreted as gravitational fields at great distances
from finite radiating bodies. Peres (1960) and Bonnor (1969) considered
parallel light beams as the sources of plane waves.
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Collision of plane waves

25.1 General features of the collision problem

Colliding plane waves are a particular case of the gravitational fields ad-
mitting two commuting spacelike Killing vectors. Solutions with this prop-
erty are also treated in Chapter 22 (vacuum, Einstein–Maxwell and pure
radiation fields) and in Chapter 23 (perfect fluid solutions). Here we con-
fine ourselves to the subclass of the gravitational fields with G2 on S2 that
allow a physical interpretation as colliding plane waves. In this chapter
we can give only a short review on the topic of colliding plane waves and
refer the reader to the monograph by Griffiths (1991) for a more detailed
presentation of this subject.

The typical scenario is illustrated in Fig. 25.1. Two plane gravitational
waves as treated in Chapter 24 move in opposite directions, and col-
lide (head-on collision). The incoming waves (in regions II and III) de-
termine, at least for smooth wavefronts, the data on the null surfaces
u = 0, v > 0 and v = 0, u > 0, and therefore, via a characteristic initial
value problem, the field in the interaction region IV in Fig. 25.1. Region
I represents the situation before the collision; the corresponding back-
ground field is often assumed to be flat space-time.

To treat the problem analytically, a crucial simplifying assumption is
made: there exists an orthogonally transitive Abelian group G2 acting on
spacelike 2-surfaces, even in the interaction region. Then one can cover
the global situation in all four regions of Fig. 25.1 by the space-time metric
(17.4) with ε = −1.

Usually one does not solve the characteristic Cauchy problem on the
null surfaces u = 0, v > 0 and v = 0, u > 0. Instead one treats the collision
process backwards, starting with an exact solution in region IV and then
matching to plane wave solutions at these null surfaces, if possible. When

387
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0
u = 0v =

 

I

flat

III II

IV

Fig. 25.1. Colliding plane waves

doing this, the so-called colliding wave condition has to be satisfied. This
condition plays a similar role in collision processes to that which the
asymptotic flatness condition does in stationary axisymmetric space-times
(where the G2 acts on timelike orbits).

In the given solution which is a candidate for a colliding wave solution
in IV , one has to replace u → uΘ(u) and v → vΘ(v), where Θ denotes
the Heaviside step function

Θ(u) =
{

1 u ≥ 0
0 u < 0 . (25.1)

Suppose one finds that for this substitution (Khan and Penrose 1971) the
solution goes over at the boundary into plane wave solutions. Then this
property guarantees that the metric is at least C0 at the null surfaces
u = 0, v > 0 and v = 0, u > 0, and the solution in IV we start with can
be interpreted as a colliding wave solution.

Calculating the curvature invariants at the boundary surfaces between
regions II and IV , and III and IV , these quantities can be smooth or
have either a leading singularity term of the type of a δ-function (for
impulsive waves) or of a step function (for shock waves).

Some known exact solutions also have a curvature singularity due to the
mutual focusing of the colliding waves. Solutions with an event horizon
across which the metric can be analytically extended have also been found.
The amplitudes of the incoming waves affect the time from the instant of
collision (u = 0 = v) to the creation of the singularity (Ferrari 1988). The
asymptotics near the singularity has been discussed by Yurtsever (1989)
with the result that a generalization of the Kasner solution (13.53), with
space-dependent coefficients p1, p2, p3, is approached.

Although the situation depicted in Fig. 25.1 is rather special, the study
of that simple model provides us with valuable insight into the non-linear
phenomenon of the collision of waves. The assumption of plane waves
implies constant magnitude and infinite extent in all directions in the
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planes. These unrealistic properties of the collision models may account
for the occurrence of singularities caused by mutual focusing.

In a series of papers Hauser and Ernst (1989a, 1989b, 1990, 1991) con-
sidered the initial value problem for colliding plane waves and introduced
a corresponding homogeneous Hilbert problem.

25.2 The vacuum field equations

For space-times with an orthogonally transitive Abelian G2 on S2, Chan-
drasekhar and Ferrari (1984) reduced the vacuum field equations to a
single differential equation for a complex potential and its complex con-
jugate. It turns out that this equation has exactly the same form as the
Ernst equation (19.39) for stationary axisymmetric vacuum fields. To de-
rive the Ernst equation for colliding wave solutions we start with the form
of the line element due to Szekeres (1972)

ds2 = −2eMdudv + e−U [coshw(eV dx2 + e−V dy2)− 2 sinhw dxdy],
(25.2)

where the metric functions M, U, V and w depend on the null coordinates
u and v only. The colliding waves are said to have collinear polarization
when the function w in (25.2) can be gauged to be zero so that the
metric (25.2) is diagonal. This special case has its counterpart in the
static axisymmetric solutions.

In the metric (25.2), Einstein’s field equations read (subscripts denote
partial derivatives)

Uuv = UuUv, (25.3a)

2Uvv = U2v + w2v + V 2v cosh2w + 2UvMv, (25.3b)

2Uuu = U2u + w2u + V 2u cosh2w + 2UuMu, (25.3c)

2Vuv = UuVv + UvVu + 2 (Vuwv + Vvwu) tanhw, (25.3d)

2wuv = Uuwv + Uvwu + 2VuVv sinhw coshw, (25.3e)

2Muv = UuUv − wvwu − VuVv cosh2w. (25.3f)

The substitution

eV = (χ2 + ω2)−1/2, sinhw = ω/χ (25.4)

takes the Szekeres line element (25.2) into the form

ds2 = −2eMdudv + e−U
[
χdy2 + χ−1 (dx− ωdy)2

]
, (25.5)
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which is obviously equivalent to (17.4), the null coordinates u and v in
(25.5) being related to z and t in (17.4) according to u = (z− t)/

√
2, v =

(z + t)/
√

2.
The integration of (25.3a) gives (17.12),

W = e−U = f(u) + g(v). (25.6)

(Note that U in Chapter 17 has a different meaning.)
Chandrasekhar and Ferrari (1984) introduced the complex function

Z = χ + iω, (25.7)

which satisfies, because of the field equations (25.3d)–(25.3e), the equation

(Z + Z)eU [(Zue−U )v + (Zve−U )u] = 4ZuZv, (25.8)

which has exactly the form of the Ernst equation (19.39). It should be
mentioned that we are not led to a pair of real equations for χ +ω and χ
-ω as one could expect from the stationary axisymmetric case. Contrary
to the original Ernst potential E = Γ, the complex potential Z is here
formed by the metric function, not by the dual quantities as in (18.34).
However, the combination (25.20) below also satisfies the Ernst equation.
Therefore the reduction of the field equations to the Ernst equations (25.8)
and (25.21) enables one to apply the generation techniques to the colliding
wave problem in two different ways.

From the potential Z one gets V and w by

e2V = (ZZ)−1, sinhw = −i (Z − Z)/(Z + Z). (25.9)

For any solution (V, w), the remaining function M can be determined
from (25.3b)–(25.3c) by a line integral, and the last field equation (25.3f)
is automatically satisfied.

In the 2-spaces orthogonal to the group orbits one can introduce coor-
dinates η and µ according to

η = u
√

1− v2 + v
√

1− u2, µ = u
√

1− v2 − v
√

1− u2, (25.10)

which leads to the inverse transformation formulae

W = 1− u2 − v2 =
√

(1− η2)(1− µ2), u2 − v2 = ηµ. (25.11)

In terms of the new coordinates, and with the choice f = 1
2−u2, g = 1

2−v2,
in (25.6), the metric (25.5) takes the form

ds2 = eN(η,µ)
[
dη2/(1− η2)− dµ2/(1− µ2)

]
+(1− η2)1/2(1− µ2)1/2

[
χdy2 + χ−1 (dx− ωdy)2

]
.

(25.12)
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It is sometimes useful to generalize the transformations (25.10) between
(u, v) and (η, µ) to

f(u) = 1
2 cos(Θ + λ), g(v) = 1

2 cos(Θ− λ), η = sin Θ, µ = sinλ.
(25.13)

This transformation implies

f + g =
√

1− η2
√

1− µ2, f − g = −ηµ, (25.14)

and η and µ can be expressed in terms of f and g by the relations

η =
√
1
2 − f
√
1
2 + g +

√
1
2 − g
√
1
2 + f,

µ =
√
1
2 − f
√
1
2 + g −

√
1
2 − g
√
1
2 + f.

(25.15)

For f = 1
2 − u2, g = 1

2 − v2, one regains (25.10).
The junction conditions (see §3.8) imply that the functions V,M and

w in the Szekeres metric (25.3) are continuous and U has to be smooth
across the null boundaries (see Griffiths (1991)). Hence the functions f(u)
and g(v) must be at least C1. In the various regions of Fig. 25.1 one can
assume

I : e−U = 1

II : e−U = 1
2 + f(u), f = 1

2 − un1Θ(u), n1 ≥ 2,

III : e−U = 1
2 + g(v), g = 1

2 − vn2Θ(u), n2 ≥ 2,

IV : e−U = f(u) + g(v).

(25.16)

f and g are monotonically decreasing functions in II and III, respec-
tively. Then the junction conditions for V and w do not impose additional
conditions and the continuity of M eventually implies (for vacuum fields)

lim
u→0 (V 2u cosh2w + w2u)u2−n1 = 2n1(n1 − 1),

lim
v→0 (V 2v cosh2w + w2v)v2−n2 = 2n2(n2 − 1).

(25.17)

Ernst et al. (1987) introduced the parameters

k = |Zv(0, 0)/2 ReZ(0, 0)| , l = |Zu(0, 0)/2 ReZ(0, 0)| (25.18)

and proved that, when W = 1− u2 − v2, the metric can be joined across
the u = 0 and v = 0 null hypersurfaces to incident plane wave solutions
if and only if k = l = 1.

With the scalar potentials Ψ and φ defined by

Ψ =
√

(1− η2 )(1− µ2)χ−1,

φµ = (1− η2)χ−2ωη, φη = (1− µ2)χ−2ωµ,
(25.19)
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one can form another Ernst potential,

Z̃ = Ψ + iφ. (25.20)

It also obeys the Ernst equation which, in the metric (25.12), reads

Re Z̃
{[

(1− µ2)Z̃µ

]
µ −
[
(1− η2)Z̃η

]
η

}
= (1− µ2)Z̃2µ − (1− η2)Z̃2η .

(25.21)
The two complex potentials Z and Z̃ satisfy the same Ernst equation,
al- though they are defined in different ways. Therefore, taking a given Z
associated with a seed space-time and identifying Z̃ with Z one obtains
in general another (non-diagonal) metric. In the case of two commuting
spacelike Killing vectors this solution-generating discrete mapping pre-
serves the reality of the metrics. The operation can be combined with
other generation methods mentioned in Chapter 34. For details and ap-
plications, see Griffiths and Alekseev (1998).

25.3 Vacuum solutions with collinear polarization

For collinear polarization, the function w in (25.3) or, equivalently, ω in
(25.5) and (25.12), can be put equal to zero; the metric has diagonal
form. The solutions given in §25.4 contain also solutions with collinear
polarization as particular cases. Not all of them are listed here.

The studies of colliding waves were initiated by the pioneering work
by Khan and Penrose (1971). Their solution can be written, in terms of
double null coordinates, as

ds2 = −2
(
1− |Γ|2

) [
(1− u2 − v2)(1− u2)(1− v2)

]− 1
2 dudv

(25.22)
+ (1− u2 − v2)(1− |Γ|2)−1 |(1− Γ)dx + i (1 + Γ)dy|2 ,

Γ = u
√

1− v2 + v
√

1− u2. (25.23)

Expressed in terms of the coordinates η and µ, the Khan–Penrose solution
has the form

ds2 =
1− η2√

W

(
dµ2

1− µ2
− dη2

1− η2

)
+W

(
1− η

1 + η
dx2 +

1 + η

1− η
dy2
)
. (25.24)

This solution describes the gravitational field of two colliding impulsive
waves. There is a spacelike curvature singularity at the hypersurface W =
0 (u2 + v2 = 1) as indicated in Fig. 25.1.

The function Γ is related to the Ernst potential Z by

Z = (1 + Γ)/(1− Γ), (25.25)
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and relation (25.23) shows that Γ = η with η given in (25.10). That means
that the Khan–Penrose solution is just the counterpart of the Schwarz-
schild solution because the Ernst potentials Z and E of these two solutions
coincide.

A three-parameter vacuum solution was given by Tsoubelis and Wang
(1989). The metric can be written in the form

ds2 = −2eMdudv + W (eV dx2 + e−V dy2), f = 1
2 − u2n, g = 1

2 − v2m,

W = f + g = 1− u2n − v2m = (1− η2)
1
2 (1− µ2)

1
2 ,

(25.26)
V = a ln(1− η2)(1− µ2) + δ1 ln

1− η

1 + η
+ δ2 ln

1− µ

1 + µ
,

eM =
[
(
1− u2n

) 1
2
(
1− v2m

) 1
2 − umvn](1− η)ρ+(1− µ)σ+

(1− u2n)1−
1

2m (1− v2m)1−
1
2n (1 + η)ρ−(1 + µ)σ−

,

where η and µ are defined in (25.15) and the constants are related by

ρ± = ± (a± δ1)
2 ∓ 1

4 , n = 1/
[
1− (δ1 + δ2)

2
]
,

σ± = ± (a± δ2)
2 ∓ 1

4 , m = 1/
[
1− (δ1 − δ2)

2
]
.

(25.27)

The choice of the free parameters determines the nature of the wavefronts
(smooth, shock or impulsive). The parameters δ1, δ2 and a can be arbi-
trarily chosen. For (a + δ1)2 = 1

4 , no curvature singularity develops for
W → 0, and the solution is of Petrov type D in this limit and can be ana-
lytically extended across W = 0. The solution (25.26)–(25.27) contains as
special cases the Szekeres (1970, 1972) solution (a = 0) and the solution
given by Ferrari and Ibañez (1987a) (δ1 = 1, δ2 = 0).

A focusing effect is also absent in the solution due to Feinstein and
Ibañez (1989). This solution is characterized by

f(u) = 1
2 − (αu)n, g(v) = 1

2 − (βv)m,

V = d1arccosh(z + 1)/t + d2arccosh(1− z)/t, (25.28)

t = f + g, z = f − g, d21 = 2− 2/m, d22 = 2− 2/n,

V being a solution to the linear equation

Vtt + Vt/t− Vzz = 0. (25.29)

The analogy of the colliding wave solutions with collinear polarizations
on one hand and Weyl’s class (§20.2) on the other was used by Ferrari
and Ibañez (1987a) and Griffiths (1987) to study the counterpart of the
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Erez–Rosen solution (with a gravitational quadrupole moment q). The
Ernst potential Z = eV is given by

V = a ln
(

1 + η

1− η

)
+ q(3µ2 − 1)

[
1
4(3η2 − 1) ln

(
1− η

1 + η

)
− 1
2η

]
(25.30)

and determines the metric in the form (25.2) with ω = 0. The case q =
−2 gives continuous tetrad components Ψ0, . . . ,Ψ4 of the Weyl tensor at
u = 0 (Ferrari and Ibañez 1986).

Centrella and Matzner (1982) considered colliding waves in expanding
cosmologies and found that only the big-bang singularity arises.

Alekseev and Griffiths (1996) discussed diagonal metrics with non-
planar wavefronts. The waves are generated by strange sources in finite
regions of space-time whereas the sources of plane waves are at infinity.

Halilsoy (1990a) treated an arbitrary number of successive impulsive
waves. Ferrari and Ibañez (1987b) used the inverse scattering method to
obtain a solution in the interactive region of colliding plane waves. The
metric was given by

ds2 = W (n2−1)/2(1− η)1+n(1 + η)1−n[dµ2/(1− µ2)− dη2/(1− η2)]

+ W 1+n(1− η)dy2/(1 + η) + W 1−n(1 + η)dx2/(1− η), (25.31)

Further examples of solutions with collinear polarization (diagonal met-
rics) were discussed by Chandrasekhar (1988) and Griffiths et al. (1993).
Colliding axisymmetric vacuum pp-waves with M = 0 and ω = 0 in the
metric (25.5) were treated by Ivanov (1998).

25.4 Vacuum solutions with non-collinear polarization

We begin this survey with the generalization of the Khan–Penrose solution
(25.22)–(25.23). If Γ is taken as

Γ = ei αu
√

1− v2 + e−i αv
√

1− u2 (25.32)

or, equivalently, as

Γ = pη + i qµ, p2 + q2 = 1, (25.33)

one obtains the Nutku–Halil solution (Nutku and Halil 1977) which de-
scribes colliding impulsive gravitational waves with non-collinear polar-
ization. This solution corresponds to the Kerr solution in space-times with
one timelike and one spacelike Killing vector. For a detailed discussion of
the Nutku–Halil solution, see Chandrasekhar and Ferrari (1984).
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Chandrasekhar and Xanthopoulos (1986a) constructed a solution start-
ing with the fact that Z̃ as defined in (25.20) satisfies the Ernst equation
(25.21). Therefore

Z̃ = (1 + Γ̃)/(1− Γ̃), Γ̃ = pη + i qµ, p2 + q2 = 1, (25.34)

is again a solution which can be considered as another analogue of the
Kerr solution. The metric is explicitly given by

ds2 = X

(
dµ2

1− µ2
− dη2

1− η2

)
+ (1− η2)(1− µ2)

X

Y
dy2 +

Y

X
(dx− ωdy)2,

X = (1− pη)2 + q2µ2, Y = 1− p2η2 − q2µ2, (25.35)

ω = −2q(1− µ2)(1− pη)/pY + const, p2 + q2 = 1.

This solution is locally isometric to the Kerr solution (in the interior
of the ergosphere). The spacelike curvature singularity at W = 0 which
occurred in all other colliding wave solutions known at that time is here
replaced by a null surface which acts as an event horizon and the solution
can be extended beyond this horizon; a timelike curvature singularity
arises. The solution (25.35) represents the collision of impulsive waves
accompanied by shock waves. Chandrasekhar and Xanthopoulos (1986a)
gave a thorough study of the metric (25.35).

Hoenselaers and Ernst (1990) used the Kerr metric in another range of
coordinates and obtained a solution which is closely related to (25.35) but
is completely free of curvature singularities, and the analytic extension
reveals the asymptotically flat branch of the exterior Kerr metric. The
counterparts of the Schwarzschild solution and the NUT solution (20.28)
are extended across the horizon in Ferrari and Ibañez (1988).

The ansatz (Halilsoy 1988c)

Z = (1− Γ)/(1 + Γ), Γ = Ω(ψ)eiβ(ψ), W = 1− un1 − vn2 , (25.36)

where Ψ is a solution of the Euler–Darboux equation

[(1− µ2)ψµ]µ − [(1− η2)ψη]η = 0, (25.37)

leads to a three-parameter family of exact solutions describing the collision
of shock waves for n1 > 2, n2 > 2. The separation of the scalar wave
equation, in one solution of this class, was investigated in Halilsoy (1990c).

Ferrari et al. (1987b) used soliton methods (Chapter 10) and con-
structed a non-diagonal two-soliton solution which describes the collision
of shock waves, each supporting an impulsive wave with the same wave
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front. For special values of the parameters, the solution reduces to the
Nutku–Halil solution (25.22) with (25.32). In some cases a horizon can be
created.

Ernst et al. (1987, 1988) and Ferrari et al. (1987a) took the diagonal
Ferrari and Ibañez (1987b) solution (25.31) – which contains the Khan–
Penrose solution (25.24) for n = 0 and the Chandrasekhar–Xanthopoulos
solution (25.35) (with q = 0) for n = 1 – as the seed metric for a genera-
tion procedure. They derived a slight generalization of the solution of the
Ferrari–Ibáñez–Bruni class (Ferrari et al. 1987a, 1987b) mentioned above.

By means of the powerful techniques which are described in the papers
by Hauser and Ernst cited at the end of §25.1, Li et al. (1991a) derived a
further generalization of the Ferrari–Ibáñez–Bruni class. This generaliza-
tion follows from an arbitrary diagonal seed metric. For certain values of
the parameters, the curvature singularities at W = 0 are avoidable. These
cases are studied in Li et al. (1991b).

Li et al. (1991d) used the metric (25.26)–(25.27) as the seed for gener-
ating non-impulsive waves with non-collinear polarization and found that
for discrete values of the parameters a horizon is formed.

Starting from the separable solution

ψ =
∞∑
n=0

{anPn(η)Pn(µ) + qnPn(µ)Qn(η) + pnPn(η)Qn(µ)}

+ c ln
[
(1− η2)(1− µ2)

]
, c, an, pn, qn = const,

(25.38)

of the Euler–Darboux equation (25.37), where Pn and Qn are the Legendre
functions of the first and second kind, Breton B. et al. (1992) generated
and discussed a class of solutions with the Ernst potential

Z = e2ψ
η(1−AB) + iµ(A + B)− (1 + iA)(1− iB)
η(1−AB) + iµ(A + B) + (1 + iA)(1− iB)

. (25.39)

The functions A = A(µ, η) and B = B(µ, η) in this expression can be
determined by straightforward integration from the equations

(lnA)η = 2
[
(ηµ− 1)ψη + (1− µ2)ψµ

]
/(η − µ),

(lnA)µ = 2
[
(1− η2)ψη + (ηµ− 1)ψµ

]
/(η − µ),

(lnB)η = −2
[
(ηµ + 1)ψη + (1− µ2)ψµ

]
/(η + µ),

(lnB)µ = −2
[
(1− η2)ψη + (1 + ηµ)ψµ

]
/(η + µ),

(25.40)

the integrability conditions being satisfied because ψ is a solution to
(25.37). The boundary conditions (25.18) were also analysed there. The
particular case with ψ = V as in (25.26) has been investigated by Hassan
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et al. (1990); the gravitational waves can have different wavefronts and
variable polarization, see also Li (1989b).

Panov (1979c) applied the Geroch transformation (10.30) to the
Szekeres metric, i.e. to (25.27) with a = 0, to obtain a solution with
non-collinear polarization.

The application of the inverse scattering method (Chapter 10) to the
class of solutions (25.27) has been treated by Tsoubelis and Wang (1992);
special members of this new class are studied.

Wang (1991) generated, using the soliton technique of Belinskii and
Zakharov (Chapter 34), a five-parameter class of colliding plane grav-
itational waves which includes many of the known solutions, e.g. the
Tsoubelis and Wang (1989) metrics (25.26)–(25.27), the Nutku and
Halil (1977) solutions (25.22), (25.33) (with NUT parameter), the Chan-
drasekhar and Xanthopoulos (1986a) metric (25.35) (with NUT pa-
rameter) and the solutions given by Szekeres (1970, 1972), Ferrari and
Ibañez (1987a) and Ernst et al. (1987).

The colliding plane wave solutions given so far have metrics (25.12),
where the 2-metrics of the spaces orthogonal to the group orbits have, up
to a conformal factor, the form dη2/P (η)−dµ2/Q(µ), and the polynomials
P (η) and Q(µ) are at most of the second degree in their respective vari-
ables. Breton et al. (1998) considered the more general case when P (η)
and Q(µ) are fourth degree polynomials. The resulting colliding plane
wave solutions can be expressed in terms of Jacobi functions. The limits
to lower degree polynomials are studied and an explicit solution of the
Einstein–Maxwell equations is given in this paper.

25.5 Einstein–Maxwell fields

In this section we summarize the work done on the collision of electro-
magnetic and gravitational waves. To treat this nonlinear collision prob-
lem all authors have looked for solutions of the Einstein–Maxwell equa-
tions admitting an orthogonally transitive Abelian group G2 acting on
spacelike 2-surfaces S2. The general remarks in §25.1 also apply when
electromagnetic waves are included. One can again start with the line
element (25.2) or (25.5). The Einstein–Maxwell equations consist of (i)
the set of the Einstein equations (25.3) supplemented by the source terms
Φαβ = κ0ΦαΦβ, α, β = 0, 1, 2, cp. (7.29),

Uuv = UuUv, (25.41a)

2Uvv = U2v + w2v + V 2v cosh2w + 2UvMv + 2κ0Φ0Φ̄0, (25.41b)

2Uuu = U2u + w2u + V 2u cosh2w + 2UuMu + 2κ0Φ2Φ̄2, (25.41c)
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2Vuv = UuVv + UvVu + 2 (Vuwv + Vvwu) tanhw
(25.41d)

+κ0
(
Φ0Φ̄2 + Φ2Φ̄0

)
sechw,

2wuv = Uuwv + Uvwu + 2VuVv sinhw coshw
(25.41e)

+iκ0
(
Φ0Φ̄2 − Φ2Φ̄0

)
,

2Muv = UuUv − wvwu − VuVv cosh2w, (25.41f)

and (ii) the Maxwell equations

Φ0,u = 1
2(Uu − iVu sinhw)Φ0 + 1

2(iwv − Vv coshw)Φ2, (25.42a)

Φ2,v = 1
2(Uv + iVv sinhw)Φ2 − 1

2(iwu + Vu coshw)Φ0, (25.42b)

Φ1 = 0. (25.42c)

Griffiths (1983) derived a Petrov type II solution to these Einstein–
Maxwell equations assuming V = V (u), w = w(u). With e−U = f(u)+
g(v) this solution is given by

Φ0 = 1
2gv(f + g)−1/2(12 − g)−1/2eiΘ, Θu = −1

2Vu sinhw, (25.43a)

Φ2 = 1
2(Vu coshw + iwu)(f + g)−1/2(12 − g)1/2eiΘ, (25.43b)

eM = gv(f + g)−1/2(12 + f)1/2(12 − g)−1/2. (25.43c)

The three arbitrary functions f(u), V (u), w(u) determine the incoming
gravitational wave, and g(v) determines the incoming electromagnetic
wave which is scattered in the interaction region, where both Φ0 and
Φ2 are non-zero.

Assuming the existence of a shearfree geodesic null congruence ortho-
gonal to the group orbits, Kuang et al. (1999), with the aid of the
Newman–Penrose formalism, reduced the field equations (25.41) and
(25.42) for non-null Maxwell fields to one relation between the functions
f = f(u), V = V (u), w = w(u). For prescribed V and w, this relation
has the form of a linear second-order ordinary differential equation of
Sturm–Liouville type for f ; it reads

fuu = 1
2(cosh2wV 2u + w2u)f. (25.44)

Kuang et al. (1999) discussed particular solutions which describe the scat-
tering between gravitational and electromagnetic waves.

The first example of an Einstein–Maxwell field describing a wave colli-
sion was given by Bell and Szekeres (1974). The metric in the interaction
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region can be written in the remarkably simple form

ds2 = −2du dv + cos2(au− bv)dx2 + cos2(au + bv)dy2 (25.45)

which is just the Bertotti–Robinson solution (12.16) in a slightly changed
coordinate system. The Bell–Szekeres solution, together with its extension
with the Khan–Penrose substitution (§25.1), describes the collision of two
electromagnetic shock waves whose polarization vectors are aligned. This
collision process generates impulsive gravitational waves; the non-zero
curvature tetrad components are

Φ2 = aΘ(u), Ψ4 = −a tan(bv)δ(u)Θ(v), (25.46)

Φ0 = bΘ(u), Ψ0 = −b tan(au)δ(v)Θ(u). (25.47)

Gürses and Halilsoy (1982) and Al-Badawi and Halilsoy (1999) generalized
the Bell–Szekeres solution to the case where a finite number of incoming
electromagnetic shock waves collide; Griffiths (1985) and Halilsoy (1988a)
found generalizations of the Szekeres solution to include non-aligned
polarization.

The crucial point for the progress in constructing new exact colliding
wave solutions of the Einstein–Maxwell equations was the fact that the
field equations reduce to the same Ernst equations for two complex poten-
tials Z and H as they do in the case of stationary axisymmetric Einstein–
Maxwell fields (Chapter 19) for the potentials E and Φ. This relationship
was discovered and applied by Chandrasekhar and Xanthopoulos (1985a).
One can introduce the real functions Ψ as in (25.19) and φ according to

φµ = (1− η2)χ−2ωη + i(HH̄µ − H̄Hµ), (25.48)

φη = (1− µ2)χ−2ωµ + i(HH̄η − H̄Hη), (25.49)

where the coordinates µ and η (partial derivatives are again denoted by
subscripts) and the functions χ and ω refer to the metric (25.12). The
potential H is related to the electromagnetic field tensor,

∂bH = Hb =
√

κ0/2ξaF ∗
ab, ξ = ξa∂a = ∂x. (25.50)

The Maxwell equations imply that Hb is a gradient such that the complex
potential H exists. The complex potential Z defined by

Z = Ψ + iφ + |H|2 (25.51)

generalizes the potential Z̃ defined for vacuum fields in (25.20). In terms
of Z and H, the reduced field equations read

(ReZ − |H|2)∆Z = (∇Z)2 − 2H(∇Z)(∇H),

(ReZ − |H|2)∆H = (∇Z)(∇H)− 2H(∇H)2.
(25.52)
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The differential operators ∇ and ∆ refer to a flat 3-space which, in terms
of the coordinates η and µ, has the metric

dσ2 = dµ2/(1− µ2)− dη2/(1− η2) + (1− µ2)(1− η2)dϕ2. (25.53)

The field equations (25.52) have exactly the same form as the Ernst
equations (19.28)–(19.29). Therefore there is a one-to-one correspondence
between stationary axisymmetric fields and colliding plane wave solu-
tions in the Einstein–Maxwell theory. This circumstance has been widely
used by several authors to construct new colliding plane wave solutions
from known solutions for stationary axisymmetric fields, which in some
space-time regions admit two spacelike Killing vectors (within the er-
gosphere). All generation techniques developed originally for stationary
axisymmetric solutions can be applied in the case of colliding plane
waves, too.

Chandrasekhar and Xanthopoulos (1987a) considered the ansatz

Z = (1 + G)/(1− G), G = pη + iqµ, p2 + q2 = 1, H = Q(Z + 1),
(25.54)

where Q is a real constant. This choice corresponds to the Kerr–Newman
solution (21.24) and generalizes ansatz (25.34). The resulting metric can
be obtained from (25.35) simply by replacing the functions X and ω
according to

X → XE = α−2[(1− αpη)2 + α2q2µ2],

ω → ωE = −q(1− µ2)(1 + α2 − 2αpη)/α2pY + const ,
(25.55)

where α =
√

1− 4Q2. For α = 1 one regains (25.35). The derived so-
lution is locally isometric to the Kerr–Newman solution (in the space-
time regions where the Abelian group G2 acts on spacelike orbits). The
extension of the metric beyond the horizon and the interpretation of
the extended space-time as a colliding plane wave solution were given
in detail by Chandrasekhar and Xanthopoulos (1987a). Independently,
Halilsoy (1989) considered this solution.

Starting with the Bell–Szekeres solution (25.46) as the seed metric
and applying an Ehlers transformation (Chapter 10), Chandrasekhar and
Xanthopoulos (1987b) derived another Petrov type D solution which can
again be written in the form (25.35), but with the substitutions

X → Π = (1− βqµ)2 + β2(1 + pη)2,

ω → ω + 2Y −1 [βµp(1− η2) + β2q(1 + pη)(1− µ2)/p
]
.

(25.56)
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The conformally flat Bell–Szekeres solution is contained as the limit β = 0,
p = 1. A second solution given in that paper provides a generalization of
the Bell–Szekeres solution in the same way as the axisymmetric distorted
static black-hole solutions are a generalization of the Schwarzschild solu-
tion. The discussion of these Einstein–Maxwell fields shows that horizons
form and timelike singularities develop.

Another approach uses the generalization of the complex vacuum poten-
tial Z = χ + iω defined in (25.7), which also satisfies the Ernst equation,
to the Einstein–Maxwell case. This gives rise to another correspondence
between stationary axisymmetric and colliding plane wave solutions. As
mentioned at the beginning of §25.4, the Kerr solution can be consid-
ered as the counterpart of the Nutku–Halil solution. The Kerr–Newman
solution is then the analogue of a solution given by Chandrasekhar and
Xanthopoulos (1985a). In this paper the same procedure which leads from
Kerr to Kerr–Newman was applied to the Nutku–Halil solution. For the
metric functions in the line element (25.12) one gets

eN = Ω2∆(1− η2)−1/4(1− µ2)−1/4, χ = Ω2∆Σ−1,
(25.57)

ω = 1
2qµ{(1+α)2 + (1−α)2p−2[q2(1−µ2)2 + (3−µ2)Σ]}/α2Σ + const,

where p2 + q2 = 1, α is a real parameter restricted to the range 0 ≤ α ≤ 1,
and the abbreviations

∆ = 1− p2η2 − q2µ2, Σ = (1− pη)2 + q2µ2,

Ω2 = α−2[(1− α)
√

1− µ2
√

1− η2 Σ/∆ + 1 + α
]2

(25.58)

+α−2p−2∆−2[(1− α)2q(1− µ2)(1− pη)]2

are used. For α = 1, this metric reduces to the Nutku–Halil solution
(25.22) with (25.33). The solution that is obtained describes the colli-
sion between two plane impulsive gravitational waves, each supporting an
electromagnetic shock wave.

The method presented in Chandrasekhar and Xanthopoulos (1985a)
has been applied to particular seed metrics by Halilsoy (1990b, 1993b).

Papacostas and Xanthopoulos (1989) investigated the Petrov type D
Einstein–Maxwell field

ds2 = (t2 + z2)−1
[
E2(dy − z2 dx)2 + H2(dy + t2dx)2

]
+ (t2 + z2)(dz2/H2 − dt2/E2), (25.59)

E2 = −1
2at

2 + bt + c, H2 = −1
2az

2 + mz + n
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(a, b, c,m, n parameters) which corresponds to the special case (21.16) of
the solution due to Plebański and Demiański (1976). By means of the
transformation

at− b = βη, az −m = αµ (25.60)

one can introduce the coordinates µ and η and then with (25.10) go over
to double null coordinates u and v. The solution describes the interaction
of (impulsive or shock) gravitational and (shock) electromagnetic waves
and the formation of a horizon. It turns out that for a particular range
of the free parameters no curvature singularities occur in the extended
space-time. The extension of the Khan–Penrose substitution u→ uΘ(u),
v → vΘ(v) (§25.1) to the Einstein–Maxwell case can be applied to cal-
culate the 4-potentials of the incident waves from the metrics (25.59) in
the interaction region (Dagotto et al. 1991). Another example of a solu-
tion describing the collision between a purely gravitational wave and an
electromagnetic wave has been presented by Hogan et al. (1998).

The application of the Harrison transformation (34.12) to the Papa-
costas–Xanthopoulos solution (25.59) leads to a more general Einstein–
Maxwell field which is of Petrov type I (Yanez et al. 1995).

With the aid of a Harrison transformation other Einstein–Maxwell fields
have also been derived: Garćıa D. (1989) generalized the vacuum Ferrari–
Ibáñez solution (25.31) to include electromagnetic waves, and Garćıa D.
(1988) generated an electromagnetic generalization of the vacuum Nutku–
Halil solution (25.22) with (25.33). The Ernst potential used is formed by
taking a linear combination of the two Killing vectors ∂x and ∂y of the
Nutku–Halil seed metric.

Li and Ernst (1989) applied Ehlers and Harrison transformations to
the vacuum seed solutions in Ernst et al. (1987, 1988), see also Li et al.
(1991c).

The solution given by Gürtug (1995) is an electromagnetic generaliza-
tion of the diagonal vacuum metric (25.26) with δ2 = 0 and with an
additional quadrupole term (as in (25.30)) in the metric function V . The
resulting class of solutions contains the Khan–Penrose (q = 0, δ1 = 1) as
well as the Bell–Szekeres solutions as special cases and partly overlaps
with the class presented by Garćıa D. (1989, 1990).

The Bonnor transformation as given in Theorem 34.4 clearly has its
counterpart in the context of wave collision. Diagonal metrics (correspond-
ing to collinear polarization) with electromagnetic potential A = Ax(z, t),

ds2 = e2(γ−ψ)(dz2 − dt2) + t(t−1e2ψdx2 + te−2ψdy2), (25.61)

can be mapped into non-diagonal vacuum metrics

ds2 = eα(dz2 − dt2) + t[χdy2 + χ−1(dx− ωdy)2] (25.62)
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and vice versa, by means of the real substitution

χ←→ eψ, ω ←→ A, eα ←→ eγt−1/2 (25.63)

(Breton B. 1995). The original Bonnor transformation, for stationary ax-
isymmetric fields, is complex.

The construction of Panov (1979a) is in fact an application of a mapping
which corresponds to the transition from Weyl’s vacuum class (§20.2) to
Weyl’s electrovac case (§21.1) and leads from the Szekeres solution to an
electrostatic generalization.

25.6 Stiff perfect fluids and pure radiation

25.6.1 Stiff perfect fluids

The key point for including perfect fluids when collision phenomena are
treated is the result that the field equations for perfect fluids with the
equation of state µ = p (stiff matter) and with irrotational four-velocity
reduce to

Rab = 2σ,aσ,b, ua = (−σ,bσ
,b)−1/2σ,a, κ0p = κ0µ = −σ,cσ

,c (25.64)

(Tabensky and Taub (1973), see also §10.11). There exists a scalar poten-
tial σ sharing the space-time isometries (σ,aξ,a = 0 = σ,aη

,a). These field
equations are equivalent to the Einstein equations for a real scalar field.
Moreover, solutions to (25.64) can be generated from vacuum solutions
by means of Theorem 10.2 due to Wainwright et al. (1979). According to
this theorem, in order to construct a solution with non-zero gradient σ,a
one has to modify the vacuum solution as given, say, in the Szekeres form
(25.5) only by the substitution

M →M + Ω, Ω,a = 2W (W,bW
,b)−1σ,c(2W ,cσ,a − σ,cW,a), (25.65)

where W = e−U . The Bianchi identities imply σ,a;a = 0, i.e. σ satisfies,
in double null coordinates, the linear equation

2σuv + W−1(Wuσv + Wvσu) = 0. (25.66)

Investigating the collision problem in the presence of a stiff perfect fluid,
Chandrasekhar and Xanthopoulos (1985b) introduced another potential
θ = θ(u, v) which is related to σ = σ(u, v) according to θu = −Wσu,
θv = Wσv, and satisfies the linear equation

2θuv −W−1(Wuθv + Wvθu) = 0. (25.67)
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Assuming a diagonal form of the line element,

ds2 = −2eMdu dv + W (eV dx2 + e−V dy2), (25.68)

the metric function V satisfies the same linear equation as σ,

2Vuv + W−1(WuVv + WvVu) = 0. (25.69)

Bičák and Griffiths (1994) fixed W = f(u)+g(v) = 1+u+v and calculated
σ for a Friedman–Robertson–Walker (FRW) open (ε = −1) model (§14.2)
with a stiff equation of state (p = µ),

σ =
√

3
2

ln

(√
c + 1 + v −√c− u√
c + 1 + v +

√
c− u

)
, (25.70)

identified plane surfaces in this background (the group G3 of Bianchi
type V II contains an Abelian subgroup G2) and determined the metric
function V from (25.69) and appropriate boundary conditions at the wave
fronts u = 0 and v = 0. The solutions V to this characteristic initial value
problem can be expressed in terms of hypergeometric functions. In the
interaction region of the colliding plane gravitational waves in the FRW
background, the function V is the sum of two terms, V = V1 + V2, where

V1 = cn1u
n1(v + 1)−1/2F (12 ,

1
2 + n1; 1 + n1;−u/[v + 1]), n1 ≥ 1 (25.71)

(Griffiths 1993a) and V2 is obtained from V1 by replacing u ←→ v and
n1 → n2, cn1 → cn2 . In the interaction region the space-time is alge-
braically general (Petrov type I); the gravitational waves are scattered
in the background. The remaining metric function M can be determined
from a line integral,

M = M0 + Ω, Ωu = 1
2(1 + u + v)Vu2, Ωv = 1

2(1 + u + v)Vv2, (25.72)

where M0 refers to the background metric and is given by

eM0 = (1 + u + v)[(c− u)(c + 1 + v)]−3/2 + const. (25.73)

The gravitational waves in this expanding background slow down the rate
of expansion, but, contrary to the case with Minkowski background, future
spacelike singularities do not arise after the collision; only the big-bang
singularity (u + v + 1 = 0) occurs. The same is true in a spatially flat
(ε = 0) FRW background (Griffiths 1993a). However, in a closed (ε = 1)
FRW background with p = µ the collision of gravitational waves leads
to future spacelike curvature singularities (Feinstein and Griffiths 1994).
Gravitational waves propagating into FRW universes were investigated
also in Bičák and Griffiths (1996) and Alekseev and Griffiths (1995).
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Chandrasekhar and Xanthopoulos (1985b) investigated the collision of
impulsive gravitational waves coupled with stiff fluid motions. The va-
cuum seed metric for the transition (25.65) was taken to be the Nutku–
Halil metric (25.22) with (25.33) and particular solutions to (25.67) for
the potential θ were obtained by separation in the variables r = u2 − v2

and s = 1 − u2 − v2. The result of Theorem 10.2 mentioned above was
rediscovered and applied in this paper. Generalizations of the particu-
lar solutions given by Chandrasekhar and Xanthopoulos (1985b) can be
found in Griffiths and Ashby (1993). For solutions with stiff matter, see
also Chandrasekhar and Xanthopoulos (1985c).

25.6.2 Pure radiation (null dust)

Chandrasekhar and Xanthopoulos (1986b) considered colliding impulsive
gravitational waves when the space-time region after the instant of colli-
sion is filled with a mixture of pure radiation fields (null dusts) moving
in different directions. Such a solution can be associated with any solu-
tion of the vacuum equations simply by multiplying the metric coefficient
guv = −eM in (25.5) by the factor exp[F1(u)+F2(v)], with arbitrary (real)
functions F1(u) and F2(v). This possibility of generating pure radiation
fields from vacuum solutions corresponds to the substitution (25.65) for
stiff matter. Pure radiation fields have been generated from the Nutku–
Halil solution which was also taken as the seed solution in Chandrasekhar
and Xanthopoulos (1985b). The solutions for a perfect fluid with the equa-
tion of state p = µ (stiff matter) and the superposition of two beams of
pure radiation turned out to be different in the interaction region. How-
ever, the extension to the regions before the instant of collision by means
of the Khan–Penrose substitution (§25.1) surprisingly led to the same so-
lution in both cases. A similar situation arises even if the Riemann tensor
is free of any kind of discontinuity (Tsoubelis and Wang 1991).

The problem of plane wave collision with incident pure radiation has
been studied by several authors, and similar ambiguities were found. The
difficulty is that the characteristic initial value problem for the gravita-
tional field does not fix the matter field equations to be used in the inter-
action region. Without them, the gravitational Cauchy data fixed by the
incident beams, and any shock or impulsive wave which is added, may be
consistent with several matter-filled interaction regions. In a series of pa-
pers Taub (1988, 1990, 1991) treated impulsive plane gravitational waves
accompanied by null dust and classified the different types of energy-
momentum tensor (interacting null dusts, stiff matter, anisotropic perfect
fluid, scalar fields) which can occur in the interaction region. For special
values of the parameters in the Szekeres family (25.26) (a = 0) one gets
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solutions which describe shells of null dust and impulsive or shock gravi-
tational waves (Tsoubelis 1989). They contain the particular solution due
to Babala (1987), in which the interaction region is locally flat.

The conclusion of Chandrasekhar and Xanthopoulos (1987a) was that
null dust can be converted into stiff matter. Feinstein et al. (1989) ar-
gued that admissible field equations for the underlying physics of the
matter should lead to appropriate boundary conditions at the null sur-
faces bounding the interaction region, and thus to an unambiguous an-
swer for the combined gravitational and matter system: this is related to
uniqueness for the characteristic initial value problem. It is true for e.g.
Maxwell fields and scalar fields of the usual type, although one can con-
struct macroscopic models whose governing equations do not have this
property (Hayward 1990).

Models of colliding shells accompanied by gravitational waves of null
dust can be derived from the vacuum solution (25.26) (Tsoubelis and
Wang 1990). Cosmological aspects of the interaction of null fluids are
discussed by Letelier and Wang (1993). With the aid of the inverse
scattering method and the Kaluza–Klein dimension reduction, Cruzate
et al. (1988) were able to find solutions describing the collision of solitons
in a FRW background with the equation of state p = (γ−1)µ. Ferrari and
Ibañez (1989) used the same techniques and obtained, in the interaction
region of null fields, a solution with the source term of an anisotropic
fluid.

Feinstein and Senovilla (1989a) found an exact solution for the colli-
sion of a variably polarized wave with (across the null boundaries) an
arbitrarily smooth wave front and a shell of null dust followed by a plane
gravitational wave with constant polarization. In the Szekeres form (25.5)
of the metric, the solution is given by

ds2 = −2fugvW
−3/8eR(v)dudv + W 1/2[Wdy2 + (dx− ω(v)dy)2],

(25.74)
W = f(u) + g(v), ωv

2 = 2Rvgv,

where f(u) and two of the three functions g(v), R(v), ω(v) can be freely
chosen.



Part III
Algebraically special solutions

26
The various classes of algebraically
special solutions. Some algebraically

general solutions

26.1 Solutions of Petrov type II, D, III or N

Many of the known solutions of Einstein’s equations are algebraically
special, i.e. of Petrov type II, D, III, N or O. One common technique
for finding such metrics (except those of type O) explicitly is to start
by considering a null congruence defined by a repeated principal null
direction (cp. §§4.3, 7.6). The present section, in particular Table 26.1,
gives a brief survey of the different subcases which naturally arise in this
approach. As well as being algebraically special,

Ψ0 = 0 = Ψ1, (26.1)

most of the known solutions of types II, D, III and N have in common
that the multiple null eigenvector k of the Weyl tensor is geodesic and
shearfree, κ = 0 = σ, (26.2)
and the Ricci tensor satisfies

Rabk
akb = Rabk

amb = Rabm
amb = 0 (26.3)

(for the definition of the complex null vector m see §3.2). Note that
because of the Goldberg–Sachs Theorem and its generalizations (§7.6),
and Theorem 7.4 and its corollary, these three sets of assumptions are not

407
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Table 26.1. Subcases of the algebraically special (not conformally flat) solutions

Given are the corresponding chapter numbers for solutions obeying (26.1)–(26.3).

ω = 0 ω �= 0 Kerr–Schild
Θ �= 0 Θ = 0 (both ω = 0

(Robinson– (Kundt) and
Trautman) ω �= 0)

Vacuum 27, 28 31 27, 29 32
Einstein–Maxwell 27, 28 31 27, 30 32
and pure radiation

independent of each other. In particular, all algebraically special vacuum
solutions and all Einstein–Maxwell null fields obey (26.1)–(26.3).

The bulk of the material presented in the chapters on algebraically
special solutions is concerned with solutions which satisfy the assumptions
(26.1)–(26.3). The further subdivision of these solutions depends on the
complex divergence ρ of the vector field k,

ρ = −(Θ + iω), (26.4)

see Table 26.1.
Let us now have a look at those algebraically special solutions which

are not covered by the assumptions (26.2)–(26.3), i.e. at solutions which
are of Petrov type II, D, III or N , but violate (26.2) or (26.3) or
both.

For Einstein–Maxwell-fields with a non-null electromagne-
tic field, we have to distinguish between two cases: either the two
null eigenvectors of the Maxwell field are both distinct from the mul-
tiple null eigenvector(s) of the Weyl tensor (non-aligned case), or at
least one of them is parallel to a repeated Weyl null eigenvector (aligned
case).

In the non-aligned case, (26.3) are not satisfied. The general solution
of this kind is not known. Griffiths (1986) found a class of solutions with
κ = σ = ω = Φ1 = 0, k = ∂r,Φ0 = a = const ( �= 0). It reads

ds2 = − 2Pdudr − 2[PP,ζζ − am(u)P−1 cot ar]du2
(26.5a)

+ 2
∣∣∣(B,ζ sin ar + P,ζ cos ar)du− sin ar dζ/a

∣∣∣2 ,
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where the real functions P (ζ, ζ, u) and B(ζ, ζ, u) have to satisfy

P 2∂ζ∂ζP
2∂ζ∂ζ lnP − 3m(lnP ),u −m,u − 2a2m2P−2

+ 3amP−1[P,ζB,ζ + P,ζB,ζ ]− P 2B,ζζB,ζ ζ = 0, (26.5b)

P 2B,ζζ = am.

In the general case, it is of type II (and one can put a = 1 and m =
1). For m = 0 it contains the type III metrics studied by Cahen and
Spelkens (1967); here B is an arbitrary harmonic function. For B = 0
(⇒ m = 0) it contains the general non-aligned type N metrics found by
Cahen and Leroy (1965, 1966) and Szekeres (1966b). As given by Szekeres,
it reads

ds2 = 1
2 cos2 ar(dx2 + dy2)− 2b(2r + a−1 sin 2ar)du dx

−4du dr + 4a−2(2b2 sin2 ar − 2e2u − raa,u)du2, (26.6)

a(x, u) = g(u) cosech [eux + f(u)] , b(x, u) = −eu coth [eux + f(u)] ,

with kn = u,n. The limit a = 0 of (26.5) leads to the Robinson–Trautman
metrics (Chapter 28).

In the aligned case, (26.3) is satisfied by definition. As shown in §7.6,
the Bianchi identities yield

σ(3Ψ2 + 2κ0Φ1Φ1) = 0 = κ(3Ψ2 − 2κ0Φ1Φ1), (26.7)

so equation (26.2) can be violated only for Petrov type II (or D) solutions
with a special constant ratio between Ψ2 and Φ1Φ1, and κ or σ must be
non-zero (note that because of (6.33) κ = ρ = 0 would induce σ = 0).
The case κ = 0, σ �= 0, has been excluded by Kozarzewski (1965), so
only κ �= 0, σ = 0, remains to be studied. If the two null eigenvectors
of a type D solution are aligned with the eigenvectors of the Maxwell
tensor, then they must both be geodesic and shearfree; this is not true if a
cosmological constant Λ is admitted (see Garćıa D. and Plebański (1982a)
and Plebański and Hacyan (1979), where also some solutions are given).

For pure radiation fields, one again has to distinguish between the
aligned and the non-aligned cases. So far, only the aligned case has been
treated (the general type N and type III metrics are necessarily aligned:
Plebański (1972), Urbantke (1975), Wils (1989a)). Due to the theorems
given in §7.6, all aligned type II, D or III solutions have a geodesic and
shearfree k. The only algebraically special, aligned, pure radiation fields
not covered by (26.1)–(26.2) are therefore of type N . Among the Weyl and
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Ricci tensor components only Ψ4 and R33 = κ0Φ2 = 2Φ22, respectively,
are different from zero for these type N fields. The Bianchi identities
(7.32f), (7.32i) and (7.32j) then give κ = 0 and

ρΦ22 = σΨ4, (26.8)

and (3.25) and the field equations yield

dΓ 41 + Γ 41 ∧ (Γ 21 + Γ 43) = 0,

d(Γ 21 + Γ 43) + 2(Γ 32 ∧ Γ 41) = 0,

dΓ 32 − Γ 32 ∧ (Γ 21 + Γ 43) = ω3 ∧ (Φ22ω1 + Ψ4ω
2).

(26.9)

(From (26.8) we see that solutions with σ = 0 belong to Kundt’s class,
see Chapter 31.)

A special example of a type N field with σ �= 0 is given by (37.12). An
investigation of the type N field equations (26.9) with σ �= 0 has been
carried out by Plebański (1972). In detail, his results are as follows. After
a suitable choice of the null tetrad (m, m, k, l), k being unchanged,
(26.9) gives

Γ 21 = 0, Γ 34 = 0, dΓ 41 = 0, Γ 32 ∧ dΓ 32 = 0 (26.10)

(this is true also for σ = 0). Further integration depends on whether Γ 41 is
zero, real (and non-zero) or complex. For Γ 41 = 0 (⇒ ρ = σ = τ = 0), we
regain the pp-waves of §24.5. For Γ 41 real (and non-zero), the solutions
with non-zero shear σ are (in real coordinates y, u, r, v)

ds2 = 2ω1ω2 − 2ω3ω4,

ω1 = dF + (v + f) dr = ω 2, ω3 = du + (F + F ) dr,
(26.11a)

ω4 = dv + (g + Ff,u + F f ,u)dr,

F ≡ (−g,u + iy) /2f,uu, f,uu �= 0.

They contain two disposable functions f(u, r) (complex) and g(u, r) (real).
The corresponding radiation field is characterized by

Γ 41 = −dr, σ = ρ = −Af,uu, Φ22 = −Af,uuf ,uu,

A−1 = 2 Re
{
f,uu
[
−(F + F )F,u + F,r + v + f

]}
.

(26.11b)

For Γ 41 complex and

| ρ |=| σ |, | Φ22 |=| Ψ4 |, (26.12)
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the solutions are (in coordinates ζ, ζ, r, v)

ds2 = 2ω1ω2 − 2ω3ω4,

ω1 = dF + vdζ + hdζ = ω2, ω3 = Fdζ + Fdζ,

ω4 = dv − (Ff + h,ζ)dζ − (F f + h,ζ)dζ,

F = −f−1
,ζ (r + h,ζ ζ − fh), f,ζ �= 0.

(26.13a)

They contain two arbitrary complex functions f(ζ, ζ) and h(ζ, ζ). The
corresponding radiation field is characterized by (26.12) and

Γ 41 = −dζ, ρ = −AF f ,ζ , φ22 = −Af,ζf ,ζ ,

σ = AFf,ζ , A−1 = 2Re
[
F (f,ζv + F,ζ)− f ,ζ(h− F ,ζ)

]
.

(26.13b)

For complex Γ 41 not satisfying (26.12), Plebaǹski succeeded in reducing
the field equations to the differential equation

Im
[
hX − h,ζ ζ − PX2

,ζ
/X,u

]
= 0, X,u �= 0,

X ≡ −(hu + P,ζζ)P−1.
(26.14a)

If a solution P (ζ, ζ, u), h(ζ, ζ, u) of (26.14a) is known (P can be gauged
to 1), then the metric can be obtained from

ds2 = 2ω1ω2 − 2ω3ω4,

ω1 = d(PL)− P,ζdu + rdζ + hdζ = ω2,

ω3 = P (du + Ldζ + Ldζ), L = X,ζ/X,u ⇔ ∂X = 0,

ω4 = dr + P,ζζdu− (h,ζ + PLX)dζ − (h,ζ + PLX)dζ,

(26.14b)

with

ρ = −A
[
r + ∂(PL) + LP,ζ

]
, σ = A [h + (P∂L) + LP,ζ ] ,

(26.14c)
∂ = ∂ζ − L∂u, Φ22 = −σX ,u/P, Ψ4 = ρX ,u/P, A = ρ2 − σ2

(Φ22 > 0 has to be guaranteed). The twisting type N solutions are in-
cluded (for σ = 0) in (26.14a)–(26.14c).

The general solution of (26.14a) in the case of real h,u (which implies
real ∂L and hence real ρ) has been given by Plebaǹski as

h(u, ζ, ζ) = (F − sF,s) + (G− sG,s)− P,ζζ ,
√

2ζ = x + iy,

F = F (x, s), G = G(y, s), P = P (x, y),

u = F,s + G,s + P ⇒ s = s(u, x, y), u,s �= 0,

(26.15)
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with real functions F, G and P . This solution includes the special solution
found by Köhler and Walker (1975), which, in our notation, is given by
h = u2(1 + ζζ)−1.

A special class of solutions of (26.14a) can be constructed from the
ansatz
X = (a + ib) (ζ + ζ)−2(u + i)−1, h = (ζ + ζ)n [(u + i)G(u) + K(u)] ,

(26.16)

(Stephani 1980). For a = 0, the real function K(u) is to be calculated
from G(u) according to

Kbu2 = 4(1 + u2)2G,u − (1 + u2) [b− n(n− 1)]G, (26.17a)

and G(t), t ≡ u2, has to satisfy
16t(1 + t)G′′ + [(20− 8n)t− 8]G′ + [b + n(n− 1)(t− 1)] (1 + t)−1G = 0.

(26.17b)

For b = 2n(n−1), the last equation is a hypergeometric differential equa-
tion; Hauser’s vacuum solution (29.72) is obtained by putting b = n = 3/2.
For b = 0, (26.16) leads to

aK = (1 + u2)n(n− 1)G, (1 + u2)(2 + 4n)G,u − [a + 2n(n− 1)u]G = 0.
(26.18)

For real ρ, the remaining field equation (26.14a) was also given by
Köhler and Walker (1975).

Perfect fluid (or dust) solutions necessarily violate Rabk
akb = 0 (if

µ+ p �= 0). The cases where the rest of the assumptions (26.1)–(26.3) are
satisfied are treated in §§33.1 and 33.2.

26.2 Petrov type D solutions

Petrov type D solutions have been intensively studied. Although we have
met them in the preceding chapters, or will meet them in the following
ones, we want to summarize a few of the known results here.

All vacuum solutions, and all Einstein–Maxwell solutions with a non-
null double aligned electromagnetic field (both null eigenvectors are
aligned and geodesic and shearfree) and a cosmological constant (which
may be set zero), are known. They all admit at least an Abelian G2 of
motions which is orthogonally transitive (Debever and McLenaghan 1981,
Czapor and McLenaghan 1982). They can be written in a single expres-
sion for the metric, irrespective whether the twist ω and/or the complex
divergence ρ of the null vector k is zero or not and whether the group
orbit is non-null or not, see Debever et al. (1982, 1984), Garćıa D. (1984),
and the references given there. The metrics with a non-null orbit are given
in §21.1.2, and those with a null orbit in §24.3.
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An example of an Einstein–Maxwell type D solution where only one
null eigenvector is aligned is the metric (30.36).

For perfect fluids (or dust), only special type D solutions are known.
Among them are the spherically-symmetric solutions of Chapters 15 and
16, and the solutions discussed in §33.3.

26.3 Conformally flat solutions

By definition, the metric of a conformally flat space-time can be written as

ds2 = e2U(x,y,z,t)(dx2 + dy2 + dz2 − dt2). (26.19)

An equivalent coordinate-independent definition makes use of the fact
that the Weyl tensor Cabcd (3.50) vanishes if and only if space-time is
conformally flat: a metric is conformally flat exactly if

Rabcd = 1
2 (gacRbd + gbdRac − gadRbc − gbcRad)− 1

6R (gacgbd − gadgbc) .
(26.20)

Being zero, the Weyl tensor does not define any null vector that can be
used in constructing metrics and solutions, so other techniques have to
be applied.

Equation (26.20) shows that conformally flat vacuum solutions (Rab =
0 = R) are flat. All conformally flat solutions with a perfect fluid, an
electromagnetic field or a pure radiation field are known. As most of them
have been found by applying the techniques of embedding, we shall give
a more detailed treatment of this subject in Chapter 37. Here we shall
summarize only the main results.

Conformally flat perfect fluid solutions are either generalized inte-
rior Schwarzschild solutions (37.39) or generalized Friedmann solutions
(37.45), the only dust solutions being the Friedmann models and the
only stationary solution the static interior Schwarzschild solution (16.18).
Conformally flat Einstein–Maxwell fields are either the Bertotti–Robinson
metric (37.98)–(37.99) (with a non-null electromagnetic field), or they are
special plane waves (37.104)–(37.105) (with a null electromagnetic field).
Conformally flat pure radiation fields are either contained in the null elec-
tromagnetic fields (37.104) or are given by (37.106).

26.4 Algebraically general vacuum solutions with geodesic
and non-twisting rays

The multiple principal null congruence of an algebraically special vacuum
solution is geodesic and shearfree (cp. §26.1). Although vacuum solutions
with a geodesic but shearing (κ = 0, σ �= 0) null congruence are in general
non-degenerate Petrov type I, we shall list some of them here, because
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the method of constructing the (non-twisting) solutions with this prop-
erty is very similar to that for the Robinson–Trautman class outlined in
Chapter 27 (but, in virtue of σ �= 0, the calculations using the Newman–
Penrose formalism are more lengthy).

All vacuum metrics where the null congruence with κ = 0, ω = 0, σ �=
0, Θ �= 0 is a principal null congruence (Ψ0 = 0) were obtained by
Newman and Tamburino (1962); for details see also Carmeli (1977),
p. 244. Metrics with σ �= 0, ρ = 0, are forbidden by the vacuum field equa-
tions, and solutions with σ �= 0, ω �= 0, are possible only if ρρ = σσ (Unti
and Torrence 1966). The twisting case has not been completely solved.

There are two classes of Newman–Tamburino solutions:

ρ2 �= σσ �= 0 (spherical class, x1+ix2 = x+iy = ζ
√

2, x3 = r, x4 = u)

g11 =
2(2ζζ)3/2

(r + a)2
, g22 =

2(2ζζ)3/2

(r − a)2
, g34 = −1,

g12 = g14 = g24 = g44 = 0, R2 = r2 − a2, A = bu + c,

g13 = 4A2(2ζζ)3/2x
(
r − a

R4
+

r − 2a
2a2R2

− L

2a3

)
, L =

1
2

ln
r + a

r − a
, (26.21)

g23 = 4A2(2ζζ)3/2y
(
r + a

R4
+

r + 2a
2a2R2

− L

2a3

)
, a = A(2ζζ)1/2,

g33 =
4A2r2(2ζζ)3/2

R4
− 4Ar3(ζ2 + ζ

2)
R4

+
2r2(2ζζ)1/2

R2
− 2rL

A
;

ρ2 = σσ (cylindrical class)

ds2 = 2ω1ω2 − 2ω3ω4, ω2 = ω1, ω3 = du,

ω4 = dr −
[
2b2cn2(bx) +

c + b2 ln[r2cn(bx)]
2cn2(bx)

]
du,

(26.22)

ω1 = r dx/2 + 4Y du + icn(bx) (dy + 8buY dx + 2b ln r du) /
√

2,

Y = ±b
(
1− cn4(bx)

)1/4
2
√

2cn(bx)
,

where b and c are real constants and cn(bx) is an elliptic function of
modulus k = 1/

√
2. The metric

ds2 = r2dx2+x2dy2− 4r
x

du dx−2du dr+x−2 [c + ln(r2x4)
]

du2 (26.23)

can be obtained from (26.22) by a limiting procedure.
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The Newman–Tamburino solutions do not contain arbitrary functions
of time; the Robinson–Trautman solutions are not included. The metric
(26.21) admits at most one Killing vector (ξ = ∂u if b = 0); there is only
one Killing vector (ξ = ∂y) for the metric (26.22), whereas (26.23) admits
an Abelian G2, the ignorable coordinates being y and u (Collinson and
French 1967).

Vacuum metrics where the null congruence with κ = 0, ω = 0, σ �=
0, Θ �= 0 is not a principal null congruence (Ψ0 �= 0) have been considered
by Bilge (1989) under the assumption D(σ/ρ) = 0. It turns out that

a = σ/ρ = const (real), Ψ0 = a(σ2 − ρ2). (26.24)

For a �= 0, ±1, ±2, ±1/2, the Newman–Penrose equations could be
solved. In coordinates x1 = x, x2 = y, x3 = r, x4 = u, the solutions
are of the form

g34 = −1, gnm = (ξnξ m + ξ nξm), n,m = 1, 2,

g33 = −2U, g3i = −Xi, i = 1, 2,
(26.25a)

with

ξ1 = r−a+
, ξ2 = ir−a− , X1 = a+xψ′(u),

X2 = a−yψ′, U = −rψ′ + (1 + a2)r1−cµ0,

a± = (1± a)/(1 + a2), c = 2/(1 + a2),

µ0 =


1 for ψ′ = 0, a− �= 1/2,

exp [−(c + 1)ψ] for ψ′ �= 0, a− �= 1/2,

y for ψ′ = 0, a− = 1/2 (special sol. only),


(26.25b)

(for µ0 = 1 we have a Kasner-type metric with three Killing vectors and
one homothetic vector).

Among the solutions of the type (26.25) are the Kóta et al. (1982) solu-
tions (for ψ′ = 0, a− = 1/2 ) and type N solutions (for ψ′ = 0, a− = 0).
A study of the case D(σ/σ) = 0 can be found in Bilge (1991). Alge-
braically general solutions with real ρ and σ and Ψ0 = −3σ2/r admit
two spacelike commuting Killing vectors, see Bilge (1990).
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The line element for metrics with

κ = σ = 0 = R11 = R14 = R44, Θ + iω �= 0

27.1 The line element in the case with twisting rays (ω �= 0)

27.1.1 The choice of the null tetrad

In this chapter we shall deal with space-times which admit a geodesic
non-shearing but diverging null congruence k,

κ = σ = 0, ρ = −(Θ + iω) �= 0. (27.1)

In addition, the Ricci tensor components picked out by the null congruence
k and the (complex) tetrad vector m are assumed to satisfy

R11 = R14 = R44 = 0. (27.2)

Throughout this and the following sections, the null tetrad (m,m, l,k)
and the Newman–Penrose formalism will be used without further warning
(see Chapters 3 and 7). All numerical indices are tetrad indices, e.g. R14 =
Rabm

akb; derivatives with respect to coordinates will be abbreviated by
explicit use of the coordinate, e.g. H,r ≡ ∂H/∂r ≡ ∂rH.

Due to the Goldberg–Sachs theorem (Theorem 7.1), all solutions sat-
isfying (27.1) and (27.2) are algebraically special. Note that, because of
(6.34), Θ = 0 = σ would imply ω = 0, so that all metrics being discussed
here necessarily have an expanding (Θ �= 0) null congruence k.

Following Debney et al. (1969), we shall now evaluate (27.1)–(27.2) in
order to find a preferred tetrad as well as an appropriate coordinate frame.
We start with a tetrad (m′,m′, l′,k′) in which only the direction of k′

is fixed. Conditions (27.1) and (27.2) remain unchanged under the set of
tetrad transformations (3.15)–(3.17), i.e. under

k′ = k, m′ =m+ Bk, l′ = l+ Bm+ Bm+ BBk, (27.3)

416
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k′ = k, m′ = eiCm, l′ = l, (27.4)

k′ = Ak, m′ =m, l′ = A−1l, (27.5)

so we may use these transformations to simplify the connection forms.
Under (27.3), the spin coefficient τ = −Γ143 = −ka;bm

alb transforms to
τ ′ = τ + Bρ. Because ρ �= 0, τ can always be made zero, and from now
on we have

κ = τ = σ = 0 = Γ144 = Γ143 = Γ141, (27.6)

i.e. the connection form Γ 14 is simply

Γ 14 = −ρω2 = −Γ 41, Γ142 = −ρ. (27.7)

The tetrad components of the Ricci tensor Rab = Rcadb(mcm d +
m cmd − kcld − kdlc) which are zero because of (27.2), can be written
in terms of the curvature tensor as

R44 = 2R1424 = 0, R41 = R1421 + R1434 = 0, R11 = 2R1431 = 0. (27.8)

As already stated, the space-times under consideration are algebraically
special, i.e. Ψ0 and Ψ1 vanish:

Ψ0 = R1441 = 0, 2Ψ1 = 2R1434 −R14 = R1434 −R1421 = 0. (27.9)

Equations (27.8) and (27.9) show that of the tetrad components R14cd of
the curvature tensor only R1432 survives. Thus the relation (3.25) between
connection and curvature here reads

dΓ 41 + Γ 41 ∧ (Γ 21 + Γ 43) = R4123ω
2 ∧ ω3. (27.10)

From (27.7) and (27.10) we get

Γ 41 ∧ dΓ 41 = 0, (27.11)

which is the integrability condition for the existence of a complex function
ζ such that PΓ 41 = −dζ, see (2.44). A rotation (27.4) with ρ = ρ′,
Γ ′
41 = eiCΓ 41 can be used to make the function P real, and by a suitable

transformation (27.5), Γ ′
41 = AΓ 41, we shall get P,ik

i = P|4 = 0. (By
means of (27.5) we could arrive at P = 1, but at the moment we shall not
use this special gauge.) Equation (27.7) then reads

ω2 = ω1 = −dζ/Pρ = Γ 41/ρ, P = P , P|4 = 0. (27.12)

Using (2.74) and (27.12), we can compute dω2 as

dω2 = Γ2bcωb ∧ ωc = −(lnPρ)|bωb ∧ ω2 (27.13)
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and evaluate (27.10), (27.12) and (27.13) and their complex conjugates.
The results are

Γ131 = Γ134 = Γ124 = Γ434 = 0 = λ = π = ε, (27.14)

Γ431 = (ln ρ)|1, Γ121 = (lnPρ)|1, Γ123 − Γ132 = (lnPρ)|3, (27.15)

ρ|4 = ρ2, (27.16)

R4123 = ρ(lnP )|3 + ρ(Γ213 + Γ433). (27.17)

Equations (27.6) and (27.14) give Γab4 = 0, i.e. we have chosen the
tetrad (m,m, l,k) to be parallelly propagated along the rays.

27.1.2 The coordinate frame

We shall now choose the coordinate frame as follows. Because of (27.12),
the function ζ and its complex conjugate ζ will serve as two (spacelike)
coordinates. The third, real, coordinate is the affine parameter r along
the rays,

ki = ∂xi/∂r = (0, 0, 1, 0). (27.18)

Because of (2.17) and (3.11) this implies

dr = WP ρω1 + WPρω2 −Hω3 + ω4, (27.19)

where W is complex and H real. (The coefficients of ω1 and ω2 are chosen
so that (27.22) will take a simple form.) The fourth, real, coordinate u is
introduced by

u|3 = u,nl
n = 1, u|4 = u,nk

n = 0. (27.20)

Equations (27.6) and (27.14) imply that the system (27.20) is integrable:
from (7.6a) we get (∆D−D∆)u = (γ+γ)Du = 0. Equation (27.20) gives

du = ρPLω1 + ρPLω2 + ω3. (27.21)

We have thus introduced all four coordinates, the result being

ω1 = −dζ/Pρ = mndxn, ω2 = −dζ/Pρ = mndxn,

ω3 = du + Ldζ + Ldζ = −kndxn, (27.22)

ω4 = dr + Wdζ + Wdζ + Hω3 = −lndxn.

The complex functions ρ, L, W and the real functions P , H are not in-
dependent of each other and cannot be chosen arbitrarily, since the metric
has to satisfy the field equations (27.10) and the conditions (27.6). We



27.1 The line element for ω �= 0 419

get the restrictions in question by comparing the previous results (27.6)
and (27.14)–(27.16) for the Γ4bc (obtained from the field equations (27.10)
and from (27.6)) with those from the calculation of dω3 = −Γ4bcωb ∧ωc.
The result is

ρ|4 = ρ2, P|4 = 0, L|4 = 0, (27.23)

ρPL|1 − ρPL|2 = ρ− ρ, ρPL|3 = (ln ρ)|1. (27.24)

The evaluation of dω4 = −Γ3bcωb∧ωc gives an expression for Γ314−Γ341,
which, because of (27.14), (27.15) and (27.24), yields the condition

ρPW|4 = −(ln ρ)|1. (27.25)

(Evaluation of the remaining terms, which we shall postpone, would give
those Γ3bc not yet determined.)

Equations (27.24)–(27.25) are easy to integrate. The result is

ρ−1 = −(r + r0 + iΣ), 2iΣ = P 2(∂L− ∂L),

W = ρ−1L,u + ∂(r0 + iΣ), ∂ ≡ ∂ζ − L∂u.
(27.26)

Equations (27.26) show that all metric functions can be given in terms of
the coordinate r, the real functions r0(ζ, ζ, u), P (ζ, ζ, u) and H(ζ, ζ, r, u),
and the complex function L(ζ, ζ, u). We can now summarize the main
result in the following theorem:

Theorem 27.1 A space-time admits a geodesic, shearfree and diverging
(ρ �= 0) null congruence k and satisfies R11 = R14 = R44 = 0 if and only
if the metric can be written in the form

ds2 = 2ω1ω2 − 2ω3ω4

=
2dζdζ
P 2ρρ

− 2[du + Ldζ + Ldζ]

×
[
dr + Wdζ + Wdζ + H

{
du + Ldζ + Ldζ

}]
,

mi = (−Pρ, 0, PWρ, PρL), m i = (0,−Pρ, PρW,PρL),

li = (0, 0,−H, 1), ki = (0, 0, 1, 0),

(27.27)

where the complex functions ρ, W , L and the real function P are subject to
(27.26) (Robinson and Trautman 1962, Debney et al. 1969, Talbot 1969,
Robinson et al. 1969a, Lind 1974).

In (27.27), r is the affine parameter along the rays, u is a retarded time,
and ζ and ζ are (spacelike) coordinates on the 2-surfaces, r, u = constant.
In spherical coordinates, one would have ζ =

√
2 exp(iϕ) cotϑ/2.
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27.1.3 Admissible tetrad and coordinate transformations

The vectors l and k are fixed up to a Lorentz transformation (27.5), which
will preserve (27.18) and (27.20) only in combination with a coordinate
transformation. The metric (27.27) is, therefore, invariant under

k′ = kF,u, l = l′F,u, u′ = F (u, ζ, ζ), r = r′F,u, F,u > 0. (27.28)

This transformation will induce a transformation of the metric functions,

ρ′ = ρF,u, P = P ′F,u. (27.29)

The vectors m (and m) are fixed up to a rotation (27.4), which keeps the
metric invariant and P real if combined with a coordinate transformation
ζ ′ = ζ ′(ζ) (ζ ′ analytic in ζ):

m′ = eiCm, ζ ′ = ζ ′(ζ), eiC =

(
dζ ′/dζ
dζ ′/dζ

)1/2
, P ′ = P

∣∣∣∣dζ ′dζ

∣∣∣∣ . (27.30)

The possible transformations involving only the coordinates and not
the tetrad are (i) changes of the origin of the affine parameter r

r′ = r + f(u, ζ, ζ), (27.31)

f being constant along the rays, and (ii) the transformations

u′ = u + g(ζ, ζ). (27.32)

These two types of transformations are just the degrees of freedom inher-
ent in the respective definitions (27.18) and (27.20) of the coordinates r
and u.

27.2 The line element in the case with non-twisting rays
(ω = 0)

If ω vanishes,
ρ = ρ = −Θ ⇔ ω = 0, (27.33)

then the line element (27.27) can be further simplified. For ω = 0, the
vector field k is normal, i.e. proportional to a gradient, and thus a trans-
formation k′ = Ak will lead to

ω3 = −kidxi = du. (27.34)

(The same result, L = 0, could be achieved by starting from (27.22).
Because of (27.26) and (27.33), ω3 ∧ dω3 is zero, and a transformation
(27.28) gives L = 0.)
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With L = 0 = Σ, (27.36) gives ρ−1 = r + r0(u, ζ, ζ); but by a change
(27.31) of the affine parameter origin we can always make r0 vanish. Equa-
tions (27.26) then read

r = −ρ−1 = Θ−1, L = W = Σ = r0 = 0, (27.35)

and instead of (27.22) we get

ω1 = rP−1dζ, ω2 = rP−1dζ, ω3 = du, ω4 = dr + Hdu. (27.36)

Theorem 27.2 A space-time admits a geodesic, shearfree, twistfree and
diverging (ρ = ρ = −r−1) null congruence k, and satisfies R11 = R14 =
R44 = 0, exactly if the metric can be written in the form

ds2 = 2ω1ω2 − 2ω3ω4

= 2r2P−2dζdζ − 2du dr − 2Hdu2, P,r = 0,
(27.37)

mi = (P/r, 0, 0, 0), m i = (0, P/r, 0, 0),

li = (0, 0,−H, 1), ki = (0, 0, 1, 0).

This line element is preserved under the transformations

ζ ′ = f(ζ), u′ = F (u), r = r′F,u,

m′ =
(
f
′
/f ′
)1/2

m, k′ = kF,u, l = l′F,u,

H ′ = (H + r′F,uu)/F 2,u, P ′ = F−1
,u |f ′|P.

(27.38)

Solutions which satisfy the conditions of the above theorem are called
Robinson–Trautman solutions (Robinson and Trautman 1962).
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Robinson–Trautman solutions

28.1 Robinson–Trautman vacuum solutions

28.1.1 The field equations and their solutions

By definition, Robinson–Trautman solutions are solutions meeting the
requirements of Theorem 27.2, i.e. they are algebraically special solutions
satisfying κ = σ = ω = 0, R44 = R41 = R11 = 0. These assumptions have
the advantage that the remaining field equations R12 = R13 = R33 =
R34 = 0 can be partially solved and reduced to a single fourth order
differential equation.

To perform this integration, we start from the metric (27.37) and cal-
culate the connection forms of the 1-forms (27.36):

Γ 14 = −ω2/r, Γ 32 = ω1 [(lnP ),u + H/r]− ω3PH,ζ/r,

Γ 21 + Γ 43 = −ω1P,ζ/r + ω2P,ζ/r + ω3H,r.
(28.1)

The surviving tetrad components of the Ricci tensor are

R12 = R1212 − 2R1423 =
2P 2

r2
(lnP ),ζζ −

4
r

P,u
P
− (2Hr),r

r2
, (28.2)

R13 = R2113 + R4313 = P [H,rζ + (lnP ),uζ ] /r, (28.3)

1
2R33 = R3132 =

H,u

r
+

P 2

r2
H,ζζ +

P,u
P

H,r + P

(
P,u
P 2

)
,u
− 2H

rP
P,u, (28.4)

R34 = R3434 + 2R1423 = (r2H,r),r/r2 + 2(lnP ),u/r. (28.5)

We can now evaluate the vacuum field equations. R12 = 0 immediately
gives

2H = ∆ lnP − 2r(lnP ),u − 2m/r, ∆ ≡ 2P 2∂ζ∂ζ , (28.6)

422
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where m is an arbitrary function of integration (independent of r). R34 = 0
is then satisfied identically. R13 = 0 = R23 tells us that m is a function of
u alone. The last equation R33 = 0 leads to

∆∆ lnP + 12m(lnP ),u − 4m,u = 0. (28.7)

Theorem 28.1 The general vacuum solution admitting a geodesic,
shearfree, twistfree but diverging null congruence is the Robinson–
Trautman metric (Robinson and Trautman 1962)

ds2 =
2r2

P 2(u, ζ, ζ)
dζdζ − 2du dr −

[
∆ lnP − 2r(lnP ),u − 2m(u)

r

]
du2,

∆∆(lnP ) + 12m(lnP ),u − 4m,u = 0, ∆ ≡ 2P 2∂ζ∂ζ . (28.8)

This line element is invariant with respect to the transformations (27.38),
i.e. to

u′ = F (u), r = r′F,u, ζ ′ = f(ζ), P ′ = P |f,ζ |F−1
,u , m′ = mF−3

,u .
(28.9)

They can be used e.g. to give a non-zero m the values ±1.

In the Robinson–Trautman line element (28.8), r is the affine parameter
along the rays of the repeated null eigenvector (r,i is not necessarily space-
like!), and u is a retarded time. The surfaces r, u = const may be thought
of as distorted spheres (if they are closed); the solutions (28.8) are there-
fore often referred to as describing spherical gravitational radiation. Of
course, no exact spherical gravitational waves exist, since spherical sym-
metry would imply ∆ lnP = K(u), and, in the gauge m = 1, (28.8) shows
that the metric is then static (for m = 0, see below under type N). In
some special cases, e.g. in the static Schwarzschild metric contained here
(see below under type D), the parameter m has the physical meaning
of the system’s mass. Using a Lyapunov-functional argument, it can be
shown (see Lukács et al. (1984), and e.g. Chruściel (1991) for results and
further references) that for rather general initial values on u = const and
ζ– ζ- surfaces diffeomorphic to a sphere, the Robinson–Trautman solutions
radiate and then settle down to the static Schwarzschild solution. For ax-
isymmetric Robinson–Trautman solutions, Hoenselaers and Perjés (1993)
found that, for almost all initial conditions, the final state of the solution
is the C-metric.

For the Robinson–Trautman metric (28.8), the surviving components
of the Weyl (curvature) tensor are

Ψ2 = −mr−3, 2Ψ3 = −r−2P (∆ lnP ),ζ ,

Ψ4 = r−2
[
P 2
{
1
2∆ lnP − r(lnP ),u

}
,ζ

]
,ζ .

(28.10)
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Table 28.1. The Petrov types of the Robinson–Trautman vacuum solutions

6m(P 2H,ζ),ζ + rP 2 [(∆ lnP ),ζ ]
2

�= 0 = 0

m �= 0 II D

m = 0 III N,O

The conditions for the different Petrov types have been collected in
Table 28.1 (with 2H = ∆ lnP − 2r(lnP ),u − 2m/r).

28.1.2 Special cases and explicit solutions

Type N solutions, Ψ2 = Ψ3 = 0
Type N solutions are characterized by m = 0 and

∆ lnP = K(u). (28.11)

By a transformation u′ = F (u), the Gaussian curvature K of the 2-
surface 2dζdζ/P 2 could be normalized to K = 0,±1. A special solution
of (28.11) is

P = α(u)ζζ + β(u)ζ + β(u)ζ + δ(u), K = 2(αδ − ββ), (28.12)

which gives flat space-time, as Ψ4 vanishes.
For constant u, (28.12) is the general solution of (28.11). For vary-

ing u, the respective ζ– ζ- surfaces of constant curvature may be thought
of as mapped onto each other, the mapping having an arbitrary u-
dependence. Thus the general solution can be generated by the substi-
tution ζ → ζ ′(u, ζ), dζ → dζ ′, P → P |dζ ′/dζ| in (28.12) and the line
element (28.8), where ζ ′ is an arbitrary function (analytic in ζ). In gen-
eral, this substitution does not correspond to a coordinate transforma-
tion (28.9). For constant u, it represents a mapping of the ζ–ζ-plane
into itself. The only one-to-one mapping of this kind is the substitution
ζ ′ = (aζ + b)/(cζ +d), which leaves (28.12) form-invariant and thus again
gives a flat four-dimensional space-time. To get a non-flat type N solu-
tion, one has to make a more general substitution, but this necessarily
gives rise to at least one singular point ζ and thus to a singular line in
three-dimensional (r, ζ, ζ )-space.

The appearance of singular lines (pipes) is a common feature of
many of the known Robinson–Trautman solutions, which makes them
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inadequate for realistically describing the radiation field outside an iso-
lated source.

For a type N shock wave, see Nutku (1991).

Type III solutions, Ψ2 = 0
Type III solutions are characterized by m = 0 and

∆∆ lnP = 0, (∆ lnP ),ζ �= 0. (28.13)

These conditions immediately give

∆ lnP = K = −3
[
f(ζ, u) + f(ζ, u)

]
, f,ζ �= 0. (28.14)

If f is independent of u, then by a coordinate transformation (28.9),
f(ζ) → ζ, which leaves K invariant, we arrive at

∆ lnP = K = −3(ζ + ζ). (28.15)

The only known solution of this differential equation is

P = (ζ + ζ)3/2 (28.16)

(Robinson and Trautman 1962). This solution is a Bianchi type V I metric,
see §13.3 and (13.64).

If f depends on ζ and u, then for the purpose of solving the differential
equation, we may take u as a parameter in (28.14) and make the substi-
tution f(ζ, u) → ζ which again leads to (28.15). As in the type N case,
this substitution is not an allowed coordinate transformation.

Theorem 28.2 To get the most general type III diverging non-twisting
vacuum solution one has to (a) solve (28.15) for P and (b) then make
the substitution ζ → f(ζ, u), P → P |df/dζ| (Foster and Newman 1967,
Robinson 1975).

A simple example of a metric obtained by this method is

P = (ζ + ζ + u)3/2. (28.17)

For all type III solutions, because of (28.13), the Gaussian curvature
K of the ζ–ζ-surfaces is a non-constant analytic function and must have
singular points.

Type D solutions, 3Ψ2Ψ4 = 2Ψ2
3, Ψ2 �= 0

The vector l used so far is not necessarily an eigenvector of the Weyl
tensor. Thus a type D solution need not have Ψ3 = Ψ4 = 0; but a null
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rotation (27.3) which makes Ψ′
3 = 0 must always exist. This is guaranteed

exactly if 3Ψ2Ψ4 = 2Ψ2
3, see §9.3.1, and the terms with different powers

in r entering this condition eventually split it into the two equations

P 2 [(∆ lnP ),ζ ]
2 = 6m

[
P 2(lnP ),uζ

]
,ζ , (28.18)[

P 2(∆ lnP ),ζ
]
,ζ = 0, (28.19)

which have to be satisfied in addition to the field equations (28.8). Equa-
tions (28.19), (28.18) and the field equations are then (in a gauge with
m = const) equivalent to

P 2(∆ lnP ),ζ = h(u, ζ), 3m∂uP
−2 = ∂ζ(hP−2), (28.20)

h being analytic in ζ. The integrability condition for this system turns
out (via the Bianchi identities (7.32d)) to be h,u = 0 (McIntosh, private
communication 1985).

If h is zero, then K = ∆ lnP is a constant and P is independent of u.
The corresponding metrics are, with K = 0, ±1,

ds2 = 2r2dζ dζ
(
1 + 1

2Kζζ
)−2 − 2du dr − (K − 2m/r) du2. (28.21)

For K = 1, this is the Schwarzschild metric (15.23). The case K = 0 is a
special Kasner metric (13.51).

If h is non-zero, then one can perform a coordinate transformation
(28.9), with hf ′ = const, to achieve h = 3

√
2. In the gauge m = 1, (28.20)

then shows that P is a function of u + (ζ + ζ)/
√

2 = u + x only and has
to satisfy

P 2 ∂x(P 2∂x∂x lnP ) = 6, P = P (x + u), ζ + ζ = x
√

2. (28.22)

This differential equation can be solved by introducing a new variable
η via dη/ds = P−2, s ≡ x + u. (28.23)

The solution and the corresponding line element, best written in coordi-
nates η, y, r, u, are

ds2 = r2
[
P 2(η)dη2 +

dy2

P 2(η)
− 2dη du +

du2

P 2(η − r−1)

]
− 2du dr,

(28.24)
P−2(η) = −2η3 + bη + c.

This is the static C-metric (given in Table 18.2 in different coordinates).
The special case b = 0 = c of it is (in a different gauge) the metric

P = (ζ + ζ + u)3/4, m = 1/4 (28.25)
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(Collinson and French 1967).

Type II solutions
In the general case, the field equations (28.8) show that, for a fixed u = u0,
the real function P (ζ, ζ, u0) can be prescribed arbitrarily. Explicit type II
solutions can be obtained from any type III solution (28.15) by allowing
m = const �= 0. An example is (Robinson and Trautman 1962)

ds2 = 2r2(ζ + ζ)−3dζdζ − 2du dr +
[
3(ζ + ζ) + 2m/r

]
du2. (28.26)

28.2 Robinson–Trautman Einstein–Maxwell fields

28.2.1 Line element and field equations

In this section, we will consider Einstein–Maxwell fields which are alge-
braically special, the repeated null eigenvector of the Weyl tensor being
normal, geodesic and shearfree, and an eigenvector of the Maxwell tensor
(aligned case). The conditions of Theorem (27.2) are satisfied, and we can
start with the Robinson–Trautman line element (27.37), i.e. with

ds2 = 2r2P−2dζ dζ − 2du dr − 2Hdu2, P,r = 0. (28.27)

By assumption, k is an eigenvector of the Maxwell tensor, and thus the
components (7.26)–(7.28) vanish except for

Φ1 = 1
2Fab(k

alb + mamb), Φ2 = Fabm
alb (28.28)

(note that Φ2 could be made zero by performing a null rotation, see (3.15)
and (3.42b)). The Maxwell equations (7.22)–(7.25) here read

r∂rΦ1 = −2Φ1, ∂ζΦ1 = 0, (28.29)

r∂rΦ2 = −Φ2 + P∂ζΦ1, (28.30)

P∂ζΦ2 + r(H∂r − ∂u)Φ1 = −2(H + r∂u lnP )Φ1 + P,ζΦ2. (28.31)

Equations (28.29) and (28.30) – in that order – are integrated by

Φ1 = Q(u, ζ)/2r2, Φ2 = −PQ,ζ/2r2 + Ph(u, ζ, ζ)/r. (28.32)

Q(ζ, u) and h(ζ, ζ, u) are complex functions of their respective arguments
and because of (28.31) are restricted by

h,ζ = ∂u(Q/2P 2). (28.33)
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We can now attack the remaining field equations

R12 = R34 = 2κ0Φ1Φ1, (28.34)

R13 = 2κ0Φ1Φ2, R33 = 2κ0Φ2Φ2, (28.35)

cp. (7.10)–(7.15) and (7.29). The expressions for R12, R13, R33 and R34
in terms of the metric function can be taken from (28.2)–(28.5).

Equation (28.34) gives the r-dependence of the function H as

2H = ∆ lnP − 2r(lnP ),u − 2m(ζ, ζ, u)/r + κ0QQ/2r2, (28.36)

with ∆ ≡ 2P 2∂ζ∂ ζ , and (28.35) yields the differential equations given
below in (28.37d)–(28.37e).

Theorem 28.3 If an Einstein–Maxwell field admits a geodesic, shearfree,
diverging but normal null vector field k which is an eigenvector of the
Maxwell and Weyl tensors, then the metric is algebraically special and
can be written in the form

ds2 = 2r2P−2(ζ, ζ, u)dζ dζ − 2du dr (28.37a)

−
[
∆ lnP − 2r(lnP ),u − 2

r
m(ζ, ζ, u) +

κ0
2r2

Q(ζ, u)Q(ζ, u)
]

du2,

and the electromagnetic field is given by

Φ1 = Q/2r2, Φ2 = −PQ,ζ/2r2 + Ph(ζ, ζ, u)/r. (28.37b)

P and m are real functions, h is complex and Q analytic in ζ. The four
functions have to obey

∆∆ lnP + 12m(lnP ),u − 4m,u = 4κ0P 2hh, (28.37c)

QQ,u −QQ,u = 2P 2(hQ,ζ − hQ,ζ), (28.37d)

h,ζ = (Q/2P 2),u, m,ζ = κ0hQ. (28.37e)

(Equation (28.37d) is in fact a consequence of (28.37e) and the reality of
m.) Like all metrics of the Robinson–Trautman class (27.37), the line ele-
ment is preserved under the transformations (28.9) with the appropriate
change Q′ = F−2

,u Q, h′ = F−1
,u f

′−1
h. In addition to that, the Einstein and

Maxwell field equations are invariant with respect to Q′ = eiaQ, h′ =
e−iah, a = const.

To have a rough idea of the physical meaning of the quantities ap-
pearing in (28.37a)–(28.37b) one may think of m and Q as representing,
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respectively, mass and (electric plus magnetic) charge and of h as an elec-
tromagnetic pure radiation field. For Q = 0, the Maxwell field is a null
field.

The surviving components of the Weyl tensor of the Robinson–Traut-
man solutions (28.37a)–(28.37e) are given by

Ψ2 = −m

r3
+

κ0QQ

2r4
, Ψ3 = − P

2r2
(∆ lnP ),ζ +

3P
2r3

m,ζ −
κ0P

2r4
QQ,ζ ,

(28.38)
Ψ4 =

1
r2

[
P 2
(

1
2

∆ lnP − r
P,u
P
− m

r
+

κ0QQ

4r2

)
,ζ

]
,ζ .

28.2.2 Solutions of type III, N and O

Ψ2 = 0 implies m = Q = 0; the Maxwell field is necessarily a null field.
For type III, because of (28.37e), h is analytic in ζ and therefore obeys

∆ ln(hh) = 0, (28.39)

which restricts the solutions of the only remaining field equation

∂ζ∂ ζ∆ lnP = 2κ0hh, hh �= 0. (28.40)

Special type III solutions are

P = l(u)k(ζ)k(ζ)(1 + 1
2ζζ),

√
κ0h =

√
2 l(u)k(ζ)k′(ζ), (28.41)

(Bartrum 1967) and

P = a cosh[l(ζ + ζ) + n)eb(ζ+ζ)+ c/lb,
√
κ0h = 2aebζ+ c, (28.42)

(Ivanov 1977), where a, b, c, l, n are arbitrary functions of u.
To get type N or O solutions, we have to require, in addition to Ψ2 = 0,

the property Ψ3 = 0 = (∆ lnP ),ζ . Together with the field equations
(28.40) this yields h = 0.

Theorem 28.4 There are no non-vacuum Einstein–Maxwell fields of
the Robinson–Trautman class which belong to Petrov type N or O.

28.2.3 Solutions of type D

All Robinson–Trautman Einstein–Maxwell fields of type D are known
(Cahen and Sengier 1967, Debever 1971, Leroy 1976). Following Leroy,
we shall give an exhaustive list of them, without presenting the proofs
(for a single expression for the metric of all type D Einstein–Maxwell
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fields see §21.1; cp. also §26.2). The starting point is the field equations
(28.37c)–(28.37e) together with the type D condition 3Ψ2Ψ4 = 2Ψ2

3. This
last is split into five equations by equating to zero the coefficients of the
various powers of r. Several cases have to be distinguished.

If Q = 0, then Φ1 vanishes and the electromagnetic field is a null field.
The field equation (28.37e) gives m = m(u), and it turns out that the
metric of the type D spaces with Q = 0 is (Robinson and Trautman
1962)

ds2 = r2(dx2 + dy2)− 2du dr + 2m(u)du2/r,

m(u) = −κ0
∫
h(u)h(u)du, Φ1 = 0, Φ2 = h(u)/r.

(28.43)

If Q �= 0, Q,ζ = 0, then because of (28.37d) Q can be transformed to a
complex constant. For h = 0, the corresponding type D solutions are

ds2 =
2r2dζdζ

(1 + Kζζ/2)2
− 2du dr −

(
K − 2m

r
+

κ0QQ

2r2

)
du2,

(28.44)
Φ1 = Q/2r2, Φ2 = 0, K = 0,±1.

Q (complex) and m (real) are arbitrary constants. For K = 1, these are
the Reissner–Weyl solutions (15.21). Obviously, (28.44) is the charged
counterpart of the vacuum metric (28.21).

For non-zero h, we can set κ0QQ = 1 by a suitable transformation of
u. Then m becomes a function of s = x + u alone. Taking m as a new
variable, the corresponding type D solution can be written as

ds2 = r2
[
P 2(m)dm + P−2(m)dy2 − 2 dm du

]
+ r2P−2(m− r−1)du2 − 2 dr du,

P−2(m) = −m4/2 + am2 + bm + c,

√
κ0 Φ1 = ei q/2r2,

√
κ0 Φ2 = ei q/ [rP (m)] .

(28.45)

This is the charged C-metric, cp. (28.24) and (21.22); here a, b, c and q
are real constants.

It can be shown (Leroy 1976) that the solutions (28.44) and (28.45) are
exactly those for which both double eigenvectors of the Weyl tensor are
also eigenvectors of the Maxwell field.
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If Q,ζ �= 0, then the type D solutions turn out to be

ds2 = r2e−x(dx2 + dy2)− 2du dr

−κ0
[
e3x(au + b)2/2r2 + e2xa(au + b)/r

]
du2,

Φ1 = e3(x−i y)/2(au + b)/2r2,

Φ2 = −e2x−3i y/2 [3(au + b)/2r + ae−x] /r
√

2,

(28.46)

a and b being real constants.

28.2.4 Type II solutions

Only some special cases of Petrov type II non-twisting Einstein–Maxwell
fields have been treated in detail. They refer to special properties of the
Maxwell field or to simple functional structures of the metric functions. In
particular, the cases h = 0, Q = 0 and ∆ lnP = const have been studied
(but the complete solution was not always found).

If h vanishes, then the field equations (28.37c)–(28.37e) give (with real
q and P0)

m = m(u), Q = q2(u)f(ζ), (28.47)

∆∆ lnP0 + 12m(ln q),u − 4m,u = 0, P = q(u)P0(ζ, ζ). (28.48)

Comparing these equations with the vacuum Robinson–Trautman field
equations (28.8), we see that the following theorem holds:

Theorem 28.5 If

ds20 = 2r2dζ dζ/P 2− 2du dr− [∆ lnP − 2rP,u/P − 2m(u)/r]du2 (28.49)

is a vacuum solution (flat or non-flat) such that P satisfies (28.48), then

ds2 = ds20 − κ0q
4(u)f(ζ)f(ζ)du2/2r2,

Φ1 = q2(u)f(ζ)/2r2, Φ2 = q3(u)f ,ζ/2r2
(28.50)

is an Einstein–Maxwell field (a charged vacuum solution). q(u) is real,
f(ζ) analytic, and by a coordinate transformation q = 1 can be achieved.
With this choice of coordinates, the field equations (28.48) give

∆∆ lnP0 = k = const, 4m = ku. (28.51)
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Examples of vacuum solutions satisfying (28.48) are (28.16), (28.21) and
(28.25).

If the Maxwell field is null (Q = 0), the field equations (28.37c)–(28.37e)
give m = m(u), h = h(ζ, u) and

∆∆ lnP + 12m(lnP ),u − 4m,u = 4κ0P 2hh. (28.52)

Besides the type III solution (28.41), and the type D solution (28.43), a
known solution of this equation is (Bartrum 1967)

P = f(ζ)f(ζ) (1 + ζζ/2), m = const,

h =
√

2/κ0 f(ζ)f ′(ζ)eiϕ(u), ϕ real.
(28.53)

All type II solutions which (after a suitable choice of the coordinate ζ)
obey

∆ lnP = 0, Q = q(u)eζ/
√
2, q real, (28.54)

are explicitly known. Because of the field equations (28.37c)–(28.37e) and
the assumption (28.54), m is a function of u and x alone. It turns out that
two cases can occur. If 3mq,u − 2qm,u is zero, then the solution (after a
transformation ζ → 4ζ) reads

ds2 = Aue−xr2(dx2 + dy2)− 2du dr −
[
r

u
+

2κ0A
3r

e3x +
κ0
2r2

e4x
]

du2,

(28.55)

Φ1 =
e2(x−i y)

2r2
, Φ2 = −

√
2Au

r2
e(5x−4i y)/2 −

√
2Au

2r
e(3x−4i y)/2.

If 3mq,u − 2qm,u is non-zero, then the metric and Maxwell field have the
forms (Leroy 1976)

ds2 =
r2

P 2
(dx2 + dy2)− 2du dr −

(
κ0q

2

2r2
ex − 2m

r

)
du2,

(28.56a)

Φ1 =
q

2r2
e(x−i y)/2, Φ2 = −Pqe(x−i y)/2

2r2
√

2
+

Pm,x

κ0rq
√

2
e−(x+i y)/2,

where P, m and q are given by

P = 1, m = m0 + 2εκ0u−1q20e
x, q = q0, ε = 0, 1, (28.56b)

or P = ex/2, m = m0 − 1
2κ0ax− 1

8κ0a ln
∣∣∣q2∣∣∣ , q2 = au + b, (28.56c)

or P = e−x/2, m = m0 − a2u

2κ0q20
− aex, q = q0, (28.56d)
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or P = e−x/2, q = q0u
1/3,

(28.56e)

m = m0 +

(
3
2

a2

κ0q4
− aex

q0
+

κ0
6
q20e

2x

)
u−1/3,

or P = efx, m = m0 +
2κ0aex(1−2f)

(1− 2f)(1− 10f)
(au + b)

1−2f
10f−1 ,

(28.56f)
q = (au + b)4f/(10f−1), f(2f − 1)(2f + 1)(10f − 1) �= 0.

q0, m0, a, b, f are real constants. In all these solutions, P = 1 or q = 1
could be achieved by coordinate transformations (28.9). They all admit
at least one Killing vector ξ = ∂y. For special values of the constants,
the solutions may be more degenerate than type II, e.g. (28.56f) with
m0 = 0, f = 1/6 gives the type D metric (28.46) in somewhat changed
coordinates.

All type II solutions which obey

∆ lnP = 0, P,u = 0 (28.57)

have been found by Bajer and Kowalczyński (1985). Those which are not
contained in (28.54) are

ds2 = 2r2dζdζ − 2dr du + {[2m0 + 2κ0A(ζ, ζ, u)]/r − κ0QQ/2r2}du2,
(28.58a)

Φ1 = Q/2r2, Φ2 = −Q,ζ/2r2 + A,ζ/Qr,

with

A = 1
12Q0Q0(ζ + ζ)2u−1/3 − 2i b

√
Q0Q0(ζ − ζ)− 3b2u1/3,

(28.58b)
Q = Q0u

1/3,

or A = a
√

Q0Q0(ζ + ζ)− a2u, Q = Q0, (28.58c)

or A = −ab(ζ−2 + ζ −2)− a2u(ζζ)−2, Q = 2auζ−3 + 2bζ−1, (28.58d)

with constants a, b (real) and Q0 (complex).

All metrics of the form ∆ lnP = ε = ±1, P,u = 0, i.e.

ds2 =
2r2dζdζ(

1 + 1
2εζζ
)2 −2du dr+

(
2m0 + 2κ0A

r
− ε− κ0QQ

2r2

)
du2 (28.59)
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have been found by Kowalczyński (1978, 1985). Some are covered by The-
orem 28.5. The remaining solutions are

Q = Q0ζ
√
u, A = Q0Q0

[
ln(1 + εζζ/2)− (lnu)/4

]
,

h = h = εQ0/
[
(2 + εζζ)

√
u
]
, ε = ±1,

(28.60)

and

2A = Q0Q0{ln[1− ζζ/2]− ln[(1 + ζ/
√

2)(1 + ζ/
√

2)]− (lnu)/4},
(28.61)

Q = Q0
√
u, h =

Q0√
2u

1 + ζ/
√

2
(2− ζζ)(1 + ζ/

√
2)

, ε = −1.

Like most of the solutions with a ζ–ζ -space of constant negative curva-
ture, the solution (28.61) can be interpreted in terms of a tachyon’s world
line.

If P,u = Q,u = h,u = 0, then the field equations (28.37a)–(28.37e) can
partially be integrated and give (with real constants a0, b0 and m0 and
the complex constant ψ0)

Q = b0β(ζ) + ψ0, h = −β
′(ζ),

m = a0u− 2κ0b0ββ − 4κ0Re (ψ0β) + m0,
(28.62)

the only surviving equation being

P 2∂ζ∂ζP
2∂ζ∂ζ lnP = a0 + κ0P

2β′(ζ)β′(ζ) (28.63)

(Herlt and Stephani 1984). For a0 �= 0, the only known solution is

P = 1, β = β0ζ, a0 = −κ0β0β0. (28.64)

For a0 = 0, (28.63) can be integrated twice and yields

P 2∂ζ∂ζ lnP = κ0β(ζ)β(ζ) + ϕ(ζ) + ϕ(ζ). (28.65)

Some Einstein–Maxwell fields belonging to this class are

P = (ζ + ζ − 2
3κ0ββ)3/2, β = β0ζ, (28.66)

P = (2/3κ0c0)1/2 (κ0ζζ + c0)3/2, β = ζ, (28.67)

P = (2κ0ζζ)1/2 [δ′(ζ)δ′(ζ)]−1/2 [1 + δ(ζ)δ(ζ)/2], β = ζ. (28.68)

The solutions (28.66) and (28.68) generalize (28.16) and (28.53), respec-
tively.
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28.3 Robinson–Trautman pure radiation fields

Pure radiation fields
Tmn = Φ2knkm (28.69)

are very similar to electromagnetic null fields. In both cases, the condition
Tmn

;n = 0 together with km;nk
n = 0 and kn;n = 2/r gives the structure

Φ2 = n2(ζ, ζ, u)/r2, (28.70)

but in the Maxwell case n2 = 2hhP 2 is subject to the restriction h,ζ = 0.
Starting from (27.37), the calculations run in close analogy with those

for the Einstein–Maxwell fields and lead to

Theorem 28.6 All algebraically special solutions with pure radiation
fields, the common null eigenvector k of the radiation field and the
Weyl tensor being geodesic, shearfree, normal but diverging, are given by
(28.69)–(28.70) and

ds2 =
2r2dζdζ

P 2(u, ζ, ζ)
− 2du dr − [∆ lnP − 2r(lnP ),u − 2m(u)/r]du2,

(28.71a)
ki = (0, 0, 1, 0), ∆ ≡ 2P 2∂ζ∂ζ ,

∆∆ lnP + 12m(lnP ),u − 4m,u = 2κ0n2(ζ, ζ, u). (28.71b)

Equation (28.71b) shows that the functions P and m can be prescribed
almost arbitrarily, the limitation being that the left-hand side must be
positive; so the construction of solutions is very easy.

The components of the Weyl tensor are the same functions of P and
m as given in the vacuum case by (28.10). One sees that there are no
type N or O (Ψ2 = Ψ3 = 0) non-vacuum solutions. Type III solutions
are characterized by m = 0, (∆ lnP ),ζ �= 0, ∆∆ lnP > 0. Examples of
type III solutions are

P = xa = [(ζ + ζ)
√

2]a, 1 < a < 1.5 . (28.72)

All type D solutions are known (Frolov and Khlebnikov 1975). They
are generalizations either of the vacuum solutions (28.21) or of the static
C-metric (28.24).

In the first case, K = ∆ lnP is a function only of u, and thus P is given
by

P = α(u)ζζ + β(u)ζ + β(u)ζ + δ(u), K = 2(αδ − ββ), (28.73)

m(u) is arbitrary, and n(ζ, ζ, u) can be calculated from (28.71b). For pos-
itive K, (28.73) gives the Kinnersley rocket (cp. (32.20)), i.e. a particle
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which accelerates by emitting pure radiation. If α, β and δ are constant
and K is positive, we get the Vaidya solution (15.20). In general, the func-
tions α, β, δ may be interpreted in terms of the acceleration of a ‘particle’
moving along a spacelike, timelike or null world line (Newman and Unti
1963, Frolov and Khlebnikov 1975, Taub 1976, Frolov 1977).

In the second case, the metric is given by

ds2 = r2P 2(η)dη2 + r2P−2(η)dy2 − 2r2m−1(u)du dη − 2du dr

+ r2m−2(u)P−2(η −m/r)du2, (28.74)

P−2(η) = −2η3 + bη + d

(in the coefficient of du2, the argument of P is η−m/r). Here b and d are
constants, and m(u) is an arbitrary function, from which the radiation
field can be calculated by means of (28.71b) as

−2m,u = κ0n
2. (28.75)

Robinson–Trautman pure radiation solutions have been discussed in
the context of gravitational radiation, see e.g. Bonnor (1996). Radiation
solutions with n = n(u) approach the Vaidya solution for infinite retarded
time u (Bičák and Perjés 1987).

28.4 Robinson–Trautman solutions with a cosmological
constant Λ

If we assume an energy-momentum tensor of the form

κ0Tmn = −Λgmn, Λ = const, (28.76)

or add this term to the energy-momentum tensor of the Maxwell field or
that of pure radiation, then the field equations can be solved in a way
similar to the case Λ = 0. The final result of the simple calculations can
be stated as

Theorem 28.7 If

ds2 = 2r2P−2dζdζ − 2du dr − 2Hdu2 (28.77)

is a vacuum, Einstein–Maxwell or pure radiation solution without the
cosmological constant Λ, then

ds2 = 2r2P−2dζdζ − 2du dr − (2H − Λr2/3)du2 (28.78)

is the corresponding solution including the cosmological constant.

Type N solutions with Λ have been studied by Garćıa D. and Plebański
(1981), by Bičák and Podolsky (1999), and by Podolsky and Griffiths
(1999).
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Twisting vacuum solutions

In the preceding chapter, we treated the non-twisting solutions (of the
Robinson–Trautman class) in some detail, giving or indicating nearly all
proofs, and showing how the variety of known special solutions fits into
the framework of the canonical form of the metric and field equations.

It is impossible to present the solutions with twisting degenerate eigen-
rays in this detailed manner, because it would nearly fill an extra volume.
We share this problem with most of the authors writing on the subject.
The necessity of presenting the complicated calculations in a compressed
form makes some of the papers almost unreadable, and it is sometimes a
formidable task merely to check the calculations. What we will do here
and in the following chapters is to show why, how and how far the integra-
tion procedure of the field equations works, and what classes of solutions
are known.

29.1 Twisting vacuum solutions – the field equations

29.1.1 The structure of the field equations

To get a better understanding of the structure of the vacuum field equa-
tions, we follow Sachs (1962) in dividing them into three sets:

six main equations: R11 = R12 = R14 = R44 = 0 (29.1)

one trivial equation: R34 = 0 (29.2)

three supplementary conditions: R13 = R33 = 0 (29.3)

(the indices refer to the tetrad (3.8)). The reason for this splitting is the
following property (which can be proved by application of the Bianchi
identities): if k is a geodesic and diverging (ka ;a �= 0) null congruence,
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then (a) the trivial equation is satisfied identically and (b) the supple-
mentary conditions hold for all values of the affine parameter r of the null
congruence if they hold for a fixed r.

In the context of algebraically special solutions, the most remarkable
property of the main equations is that they can be integrated completely,
giving the r-dependence of all metric functions in terms of simple rational
functions of r. The supplementary conditions then turn out to be differen-
tial equations for those constitutive parts of the metric which depend on
the three remaining coordinates ζ, ζ and u. In general, these differential
equations cannot be solved; they play the role of (and are often called)
the field equations for algebraically special vacuum solutions.

29.1.2 The integration of the main equations

We have shown in Theorem 27.1 that a space-time admits a geodesic,
shearfree and diverging null congruence k (twisting or not) and satisfies
R44 = R41 = R11 = 0 exactly if the metric can be written in the form

ds2 = 2ω1ω2 − 2ω3ω4, ω1 = mndxn = −dζ/Pρ = ω2,

ω3 = −kndxn = du + Ldζ + Ldζ,

ω4 = −lndxn = dr + Wdζ + Wdζ + Hω3,

(29.4)

with
mi = ei1 = (−Pρ, 0, PWρ, PLρ), m i = ei2,

(29.5)
li = ei3 = (0, 0,−H, 1), ki = ei4 = (0, 0, 1, 0),

ρ−1 = −(r + r0 + iΣ), W = ρ−1L,u + ∂(r0 + iΣ),
(29.6)

2iΣ = P 2(∂L− ∂L), ∂ ≡ ∂ζ − L∂u, ∂ ≡ ∂ζ − L∂u.

P, r0 (both real) and L (complex) are arbitrary functions of ζ, ζ and u, and
H (real) is a function of all four coordinates.

Of the main equations (29.1) only R12 = 0 remains to be integrated. We
shall do that now, thus obtaining the r-dependence of the function H.

To get the components R12 and R34 of the Ricci tensor, we start from
the connection forms Γ ab = −Γ ba = Γabcω

c of the metric (29.4) and
evaluate (3.25c), using the expression (27.17) for R4123. We obtain

R34 = ρ2
[
ρ−2(Γ213 + Γ433)

]
|4 − 2ρ(lnP )|3, (29.7)

R12 = (ρ + ρ)(Γ213 + Γ433) + 2ρ
[
Γ321 + (lnP )|3

]
+ (lnP )|12

(29.8)
−(lnP )|1(lnPρ)|2 + (lnPρ2)|21 − (lnPρ2)|2(lnPρ)|1,
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with

Γ213 = i Im[PρW |1 + Hρ + (ln ρ)|3], Γ433 = H|4, (29.9)

Γ321 = −i Im[PρW |1 + Hρ] + Re [(lnPρ)|3]. (29.10)

We start with R34 = 0 (which is in fact a consequence of the main
equations, including R12 = 0) and integrate it by

Γ213 + Γ433 = −(lnP ),u + (m + iM)ρ2, (m + iM)|4 = 0, (29.11)

m and M being real functions of integration. The real part of (29.11)
yields

H = −(r+r0)(lnP ),u+Re [(m + iM)ρ]+r0,u+K/2, K|4 = 0. (29.12)

Inserting both results into R12 = 0 and making repeated use of (27.24) and
(29.6), we obtain K in terms of P and L. The result can be summarized
as follows:

Theorem 29.1 A space-time admits a geodesic, shearfree and diverging
null congruence k and satisfies R44 = R14 = R11 = R12 = R34 = 0 exactly
if the metric can be written as

ds2 = 2ω1ω2 − 2ω3ω4, ω1 = −dζ/Pρ = ω2,
(29.13a)

ω3 = du + Ldζ + Ldζ, ω4 = dr + Wdζ + Wdζ + Hω3,

the metric functions satisfying

ρ−1 = −(r + r0 + iΣ), 2iΣ = P 2(∂L− ∂L), (29.13b)

W = L,u/ρ + ∂(r0 + iΣ), ∂ ≡ ∂ζ − L∂u, (29.13c)

H = 1
2K − (r + r0)(lnP ),u − m(r + r0) + MΣ

(r + r0)2 + Σ2
+ r0,u, (29.13d)

K = 2P 2Re
[
∂(∂ lnP − L,u)

]
, (29.13e)

M = ΣK + P 2Re
[
∂∂Σ− 2L,u∂Σ− Σ∂u∂L

]
(29.13f)

(Kerr 1963a, Debney et al. 1969, Robinson et al. 1969a, Trim and Wain-
wright 1974).

The line element (29.13) shows a remarkably simple r-dependence. Fur-
thermore, all remaining functions of ζ, ζ and u are given in terms of the
complex function L and the real functions r0, P and m. As r0 and P can
be removed by coordinate transformations (see §29.1.4), L (complex) and
m (real) can be considered to represent the metric.



440 29 Twisting vacuum solutions

29.1.3 The remaining field equations

We will now see what conditions the remaining field equations, i.e. the
supplementary conditions R13 = R33 = 0, impose on the functions L, m
and r0. The metric being given by (29.13a), it is a matter of straightfor-
ward calculation to compute the curvature tensor and to formulate the
field equations R13 = R33 = 0 in terms of the above mentioned functions.

For R13 we obtain the expression

R13 = ρ−1[ρ(Γ213 + Γ433)]|1 + (lnP )|13 − (lnP )|1(lnP )|3, (29.14)

and because of (29.11) and (27.24) R13 = 0 immediately yields

∂(m + iM) = 3(m + iM)L,u. (29.15)

The calculation of R33 = 0 is rather lengthy, and we therefore will not
give any details. The final consequence proves to be (Kerr 1963a, Debney
et al. 1969, Robinson et al. 1969a, Trim and Wainwright 1974)

[P−3(m + iM)],u = P [∂ + 2(∂ lnP − L,u)]∂I,

I ≡ ∂(∂ lnP − L,u) + (∂ lnP − L,u)2.
(29.16)

As M is already given in terms of P and L by (29.13f), the four real
equations (29.15)–(29.16) form a system of partial differential equations
for P, m and L. Note that because of the definition ∂ = ∂ζ − L∂u, the
function L appears in the differential operator too!

By use of the commutator relations

∂∂ − ∂∂ = (∂L− ∂L)∂u, ∂∂u − ∂u∂ = L,u∂u, (29.17)

the field equations, as well as the definitions (29.13c)–(29.13f) of the met-
ric functions M,W and H, can be put into rather different forms. A formal
simplification can be achieved by the introduction of a real ‘potential’ V
for the function P by means of

V,u = P (29.18)

(Robinson and Robinson 1969). From (29.18) it follows that

I = ∂(∂ lnP − L,u) + (∂ lnP − L,u)2 = P−1(∂ ∂V ),u, (29.19)

and the system of equations (29.13f), (29.15) and (29.16) reads

[P−3(m + iM)− ∂∂∂ ∂V ],u = −P−1(∂∂V ),u(∂ ∂V ),u, (29.20a)

∂(m + iM) = 3(m + iM)L,u, (29.20b)

P−3M = Im ∂∂∂ ∂V. (29.20c)
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In the special gauge P = 1, V = u⇒ ∂V = −L, these equations take the
form given by Kerr (1963a), i.e.

[(m + iM) + ∂∂∂ L ],u = −(∂L),u(∂ L),u, (29.21a)

∂(m + iM) = 3(m + iM)L,u, (29.21b)

M = Im ∂ ∂∂L. (29.21c)

We have given the field equations in three different forms, as (29.21), as
(29.20), and as (29.13f), (29.15) and (29.16), which we will use as alter-
natives. As usual, we have listed the definition (29.13f) or (29.21c) or
(29.20c) of M in terms of L and P among the field equations. It makes
the structure of the equations more transparent, and in the process of
integration one sometimes tries to solve the other two equations first and
impose the definition of M as an additional constraint; as can be seen
by comparing e.g. (29.20a) and (29.20c), this definition is in fact a first
integral since the right-hand side of (29.20a) is automatically real. If a
solution m,L, P of the field equations is known, the metric can be deter-
mined from (29.13).

If L = 0, M and Σ and W vanish also (in the gauge r0 = 0); because of
(29.20b) and its complex conjugate, m is a function only of u, and (29.16)
turns into the field equation (28.7) of the Robinson–Trautman vacuum
metrics.

The surviving components of the Weyl tensor have the form (Trim and
Wainwright 1974, Weir and Kerr 1977 )

Ψ2 = (m + iM)ρ3, Ψ3 = −P 3ρ2∂I + O(ρ3),

Ψ4 = P 2ρ∂uI + O(ρ2),

I ≡ ∂(∂ lnP − L,u) + (∂ lnP − L,u)2 = P−1(∂ ∂V ),u.

(29.22)

The terms of higher order in ρ occurring in Ψ3 or Ψ4 vanish identically if
Ψ2 = 0 or Ψ2 = Ψ3 = 0, respectively. It can be inferred from (29.22) that
a solution is flat exactly if m+iM = 0 = ∂I = ∂uI.

For the case of a non-zero cosmological constant Λ, the field equations
(in Newman–Penrose form) have been given by Timofeev (1996), and
some simple solutions can be found in Kaigorodov and Timofeev (1996).

29.1.4 Coordinate freedom and transformation properties

We shall now have a look at the possible coordinate transformations and
the transformation properties of the metric functions and the field equa-
tions. As shown in §27.1.3, there are essentially three types of coordinate
transformations.
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The first is the freedom (27.31) in the choice of the affine parameter
origin r0(ζ, ζ, u). As r0 does not enter into those functions L,P,M and m
which appear in the field equations (29.13b)–(29.13f), the choice of r0 is
more a matter of convenience than of practical value for the integration
procedure. Most authors take

r0(ζ, ζ, u) = 0, (29.23)

and we shall stick to that gauge from now on.
The remaining degrees of freedom

ζ ′ = f(ζ), u′ = F (ζ, ζ, u), r′ = rF−1
,u (29.24)

are more important; they change L, m+iM and P and will often be used
in the integration procedure for the field equations. Together with the
appropriate changes (27.28), (27.30) of the tetrad, they give the transfor-
mation laws

ω1
′

= (f ′f ′−1)1/2ω1, ω3
′

= F,uω
3, ω4

′
= F−1

,u ω
4, (29.25)

which imply

ρ′ = F,uρ, Σ = F,uΣ′, (m + iM)′ = F−3
,u (m + iM),

L′ = f ′−1(LF,u − F,ζ), ∂′ = f ′−1∂, P ′ = F−1
,u |f ′|P,

(∂ lnP − L,u)′ = f ′−1(∂ lnP − L,u + f ′′/2f ′),

I ′ = f
′−2(I + f

′′′
/2f ′ − 3f ′′2

/4f ′2), V ′ = |f ′|V.

(29.26)

As is to be expected, the field equations are either explicitly invariant
or can easily be written in an invariant way. A list of (other) invariants
can be found in Robinson et al. (1969a); among them are rΣ−1, ρ2K, and
(m+iM)ρ3.

If we examine the definition V,u = P of the function V in the light of the
transformation laws, we recognize that V is exactly that transformation F
(f ′ = 1) which transforms an arbitrary P into P ′ = 1. So the simplification
of the field equations by introducing V is on an equal footing with the
simplification by P = 1 and the Kerr form (29.21).

If L can be written as L = F,ζ/F,u , with a real function F , then L′ can
be made zero: this characterizes the Robinson–Trautman class, see above.

29.2 Some general classes of solutions

29.2.1 Characterization of the known classes of solutions

The field equations of the algebraically special vacuum solutions become
less complicated if a special dependence of the metric functions on the
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Table 29.1. The possible types of two-variable twisting vacuum metrics

Type L P m + iM I

KV L(x, u) P (x, u) µ(x, u) I(x, u)

KV L(ζ, ζ) P (ζ, ζ) µ(ζ, ζ) I(ζ, ζ)

HV L(x, u) Π(x, u)ey µ(x, u)e4y I(x, u)

HV L(ζ, ζ) Π(ζ, ζ)eu µ(ζ, ζ)e4u I(ζ, ζ)

coordinates is assumed. So far, this has been done in three different (but
overlapping) ways, leading to all known solutions.

The first obvious way is to start from the Lie symmetries (cp. §10.2)

X = A(ζ)∂ζ +
[
au + G(ζ, ζ, u)

]
∂u + P

[
(A′ + A ′)/2−G,u

]
∂P

+
[
L(G,u + a−A′)−G,ζ

]
∂L + (m + iM)(a− 3G,u)∂m+iM (29.27)

+ complex conjugate

(A complex, G and a real, ζ = x + iy) of the field equations and to
consider solutions which admit either a Killing vector (KV, a = 0), or
a homothetic vector (HV, a �= 0). The metric functions then depend on
at most two coordinates. This leads to four different cases (Halford 1980,
Stephani 1984), see Table 29.1.

From these cases, only that of line 2 (X = ∂u is a Killing vector) can
be treated in some generality, see §§29.2.3 and 29.2.5. In the other three
cases, an additional symmetry (Killing or homothetic vector) has to be
assumed, see §§29.2.6 and 29.3; cp. also Chapter 38.

A second way, more specific to the algebraically special solutions, is
to assume a rather special dependence on u of some combinations of the
metric functions appearing in the field equations. To make this depen-
dence explicit, we have to restrict the possible transformations (29.24) of
u, which we will do by

P,u = 0 ⇔ u′ = uk(ζ, ζ) + h(ζ, ζ). (29.28)

The main assumptions are now (Robinson and Robinson 1969) that L,u −
∂ lnP and m+ iM are independent of u. In view of the field equations
(29.16) and the gauge P,u = 0, these assumptions are equivalent to

L,u − (lnP ),ζ = G(ζ, ζ), (29.29)

(∂ζ − 2G)∂ζI = 0, I ≡ −∂ζG + G
2
. (29.30)
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Table 29.2. Twisting algebraically special vacuum solutions

P,m+ iM and L,u − (lnP ),ζ = G are assumed to be independent of u.

∂ζI �= 0 ∂ζI = 0 = I

L,u �= 0 Equations only: Flat background. All
(29.34)–(29.37) solutions are known

and given by (29.53),
(29.54), (29.58)

L,u = 0 Equations: (29.41)–(29.44) All solutions are
Background: non-twisting type known and given by
III. Solutions (not exhaustive): (29.60)–(29.61)
(29.45)–(29.50), (38.6)

The main idea then runs as follows. Assume we are able to solve the
differential equation (29.30), which is in fact one of the field equations,
and have found a solution G. It then turns out that the second field
equation (29.20b) can be solved in the sense that m+ iM is given in terms
of G,P and arbitrary functions or constants of integration. The third (and
last) field equation (29.20c) can now be reduced to a linear homogeneous
differential equation for a real function, or can be solved explicitly. G is
sometimes called the ‘background’, because m+ iM = 0 and L = [G +
(lnP ),ζ ]u also give algebraically special solutions. Explicit solutions have
been found for several cases, see Table 29.2 and the following subsections.
It is possible to reduce and simplify the field equations in a similar way
even if m+ iM depends on u (so that (29.30) is no longer true). But no
solution is known so far which satisfies (29.29) but not (29.30).

A third way of characterizing the known solutions starts from the ob-
servation that the field equation (29.20b), i.e. ∂(m+ iM) = 3(m+ iM)L,u

can be integrated by introducing a complex function Φ via

m + iM = Φ3,u (29.31)

(Stephani 1983a). In terms of Φ, the field equation (29.20b) then reads
∂(Φ,u) = L,uΦ,u, and because of the commutator relation (29.17) it can
be written as

∂u∂Φ = 0. (29.32)

This equation is integrated by ∂Φ = ϕ(ζ, ζ), and since (29.31) defines Φ
only up to an additive function of ζ and ζ, ϕ can be set zero, and ∂Φ = 0
can then be read as giving L in terms of Φ:

L = Φ,ζ/Φ,u. (29.33)
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For three particular forms of Φ, the field equations have been simplified
or solved:

(i) Φ = Φ
[
V A(ζ, ζ) + B(ζ, ζ)

]
, see §29.2.2. No solution of this class is

known which does not belong to (ii).
(ii) Φ = V A(ζ, ζ)+B(ζ, ζ), see §§29.2.3 and 29.2.4. This class contains

all known solutions with m+ iM �= 0 and a Killing vector ξ = ∂u.
(iii) Φ = A(V ) + ζ, see §29.2.6.

29.2.2 The case ∂ζI = ∂ζ(G
2 − ∂ζG) �= 0

The condition (29.30) is a differential equation for the complex function
G(ζ, ζ), which in full reads

(∂ζ − 2G)∂ζ(G
2 − ∂ζG) = 0. (29.34)

If this condition is satisfied, then, due to the field equations (29.16), the
‘mass aspect’ m+ iM is independent of u; we shall write it as m+ iM =
2P 3A(ζ, ζ) [∂ζI]3/2 . Substituting this expression into (29.20b) and elimi-
nating L,u by means of (29.29), one sees that A is a function only of ζ:

m + iM = 2P 3A(ζ)
[
∂ζ(G

2 − ∂ζG)
]3/2

. (29.35)

Now only the third and last field equation (29.20c) remains to be solved.
If we make the ansatz

L = (G + ∂ζ lnP )u−A(ζ)P−1
[
∂ζ(G

2 − ∂ζG)
]1/2

+P−1(G + ∂ζ) [Φ + iΨ]
(29.36)

for L, then this field equation shows that Φ(ζ,ζ) is an arbitrary (real)
function and that the real function Ψ(ζ, ζ) has to obey

Ψ,ζ ζ ζ ζ −
[
(G2 −G,ζ)Ψ

]
,ζζ
− [(G2 −G,ζ)Ψ

]
,ζ ζ

+(G2 −G,ζ)(G
2 −G,ζ)Ψ = 0.

(29.37)

The four equations (29.34)–(29.37) show how to construct an explicit
solution: one has to solve (29.34) for G(ζ, ζ) and then (29.37) for Ψ(ζ, ζ).
The functions P (ζ, ζ) and Φ(ζ, ζ) (both real) and A(ζ) are disposable;
these functions being chosen, L and m+ iM can be determined from
(29.36) and (29.35), respectively. The full metric is then obtainable from
(29.13); in general, it admits no Killing vector.

Unfortunately, no explicit solution is known in the general case. All
known solutions belong to subcases, with either L,u = 0 or ∂ζ(G

2 −
∂ζG) = 0.
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29.2.3 The case ∂ζI = ∂ζ(G
2 − ∂ζG) �= 0, L,u = 0

If the function G(ζ, ζ) in (29.29) can be written as the derivative with
respect to ζ of a real function, then we can choose the coordinate u (i.e.
the function P ) so that L,u = 0 holds. We then have

G(ζ, ζ) = −(lnP ),ζ . (29.38)

The coordinate u is now fixed up to a change of its origin (k = 1 in
(29.28)). All metric functions are independent of u; ξ = ∂u is a Killing
vector.

The ‘background equation’ (29.34) now reads

∆∆ lnP ≡ 4P 2∂ζ∂ζP
2∂ζ∂ζ lnP = 0, (29.39)

and the restriction ∂ζI �= 0 can be written as

2P 2∂ζI = (∆ lnP ),ζ �= 0. (29.40)

Surprisingly, equation (29.39) is exactly the field equation for non-twisting
diverging vacuum solutions of type III and N , and (29.40) ensures that
the solution is of type III, cp. (28.13). So the background for all solutions
with ∂ζI �= 0, L,u = 0 = P,u is an arbitrary type III Robinson–Trautman
vacuum solution in which the real function P obeys

∆ lnP (ζ, ζ) = −3(ζ + ζ), (29.41)

cp. (28.15). The corresponding twisting solutions can be generated as
follows (Robinson 1975).

We start with an arbitrary solution P of (29.41). Because of (29.35)–
(29.36) and (29.40)–(29.41), m+ iM does not depend on ζ,

m + iM = −3iA(ζ)
√

3/2, (29.42)

and L can be written as

L = (m + iM)/3P 2 + ∂ζ [(Φ + iΨ)/P ] , (29.43)

where Ψ obeys

Ψ,ζζζ ζ − (ΨP,ζ ζ/P ),ζζ − (ΨP,ζζ/P ),ζ ζ + ΨP,ζζP,ζ ζ/P
2 = 0. (29.44)

Equation (29.44) has to be solved, and then P, m+ iM and L represent
the metric. Φ(ζ, ζ) and A(ζ) are disposable functions, but Φ can be elim-
inated by a coordinate transformation u′ = u + h(ζ, ζ).



29.2 Some general classes of solutions 447

A simple solution of this kind is

L = (m + iM)/3P 2 + a/P 2, a = const (real). (29.45)

A large class of solutions can be constructed from the only known solution
P = (ζ + ζ)3/2 = (x

√
2)3/2 (29.46)

of the background equation (29.41). If we choose the function Φ in (29.43)
so that (Φ/P ),y = (Ψ/P ),x is satisfied, then L takes the form

L = (m + iM)/3P 2 + l(x, y), (29.47)

in which the real function l is defined by

l,y ≡ w = 2−3/2(Ψ/P ),ζζ. (29.48)

Instead of (29.44), we then have to solve

w,xx + w,yy + 6w,x/x + 3w/x2 = 0. (29.49)

The solution of this linear differential equation can be found by standard
separation: the most general solution is a superposition of

w0 = x(±
√
13−5)/2(a0 + b0y),

ws = x−5/2J±√
13/2(xs) [asesy + bse−sy] , s �= 0,

(29.50)

Jn(sx) being a Bessel function. Equations (29.13), (29.42), (29.46)–(29.48)
and (29.50) exhibit the class of solutions. Special cases have been pub-
lished earlier (Robinson and Robinson 1969, Held 1974b); see. also (38.6).

The field equations (29.13f) and (29.15)–(29.16) show that for any solu-
tion with L,u = 0 (and, of course, P,u = 0) a real constant can be added to
m. This property can be used to generate type II solutions from type III
solutions ((29.46)–(29.50) with m+ iM = 0). This idea has been discussed
in the context of the generalized Kerr–Schild transformations §32.5.2 by
Fels and Held (1989).

29.2.4 The case I = 0

In the previous two sections we dealt with the case ∂ζI �= 0. For ∂ζI = 0,
i.e. for I = I(ζ), the transformation law (29.26) implies that the coordi-
nate ζ can be chosen so that I vanishes. We shall now take that gauge
and discuss solutions that obey

P,u = 0, L,u − ∂ζ lnP = G(ζ, ζ), I = G
2 − ∂ζG = 0. (29.51)
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The coordinate transformations that preserve (29.51) are

ζ ′ = (p1ζ + q1)/(p2ζ + q2), u′ = uk(ζ, ζ) + h(ζ, ζ). (29.52)

Because of the form (29.22) of the Weyl tensor components, m+ iM = 0,
together with I = 0, would give flat space-time. So we have to assume
m+ iM �= 0; that excludes Petrov types III,N and O.

The integration procedure of the field equations runs as follows. As
the function G = ∂ζ lnP − L,u has an inhomogeneous transformation
law because of (29.26), G can always be made non-zero. The differential
equations (29.51) are then integrated by

G(ζ, ζ) = −[ζ + g(ζ)]−1, L(ζ, ζ, u) = (G + ∂ζ lnP )u + P−1Gl(ζ, ζ).
(29.53)

Having thus evaluated the conditions (29.51), we can now attack the three
field equations.

The first field equation (29.16) shows that m+ iM does not depend on
u, and can therefore be written as m+ iM = 2P 3G3A(ζ, ζ). The second
field equation (29.20b) then yields A = A(ζ), i.e.

m + iM = 2P 3G3A(ζ). (29.54)

With these results, the last field equation (29.20c) can be written in the
form

Im
[
∂ζ∂ζ(AG− ∂ ∂V )

]
= 0 = (AG− ∂ ∂V ),ζζ − (AG− ∂∂V ),ζ ζ . (29.55)

This is exactly the condition for the existence of a real function B(ζ, ζ)
such that

AG− ∂ ∂V = B,ζ ζ . (29.56)

Because of V,u = P and P,u = 0, V has the structure V = Pu + v(ζ, ζ),
with an arbitrary real function v. Inserting this result into (29.56), and
using (29.54), we obtain

AG + G l,ζ = B,ζ ζ + v,ζ ζ . (29.57)

If we choose v = −B, then (29.57) is solved by

l(ζ, ζ) = −
∫

A(ζ)G(ζ, ζ)G−1(ζ, ζ)dζ + l1(ζ). (29.58)

To get the explicit form of the metric, one has to prescribe the functions
P (ζ, ζ), A(ζ), g(ζ) and l1(ζ). The formulae (29.53), (29.54) and (29.58)
will give the functions L and m+ iM , which together with P give all the
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information needed to construct the full metric according to (29.13). As P
can be made equal to 1 by a coordinate transformation (29.52), the above
vacuum solutions contain three disposable analytic functions. In general
they will not admit any Killing vector. Physically the class of algebraically
special diverging vacuum solutions that satisfy the conditions (29.51) can
be characterized (Trim and Wainwright 1974) as the only solutions which
are non-radiative in the sense that the Weyl tensor asymptotically (for
large r) behaves as

Cabcd = IIabcd/r
3 + O(r4). (29.59)

29.2.5 The case I = 0 = L,u

If we add L,u = 0 to the conditions (29.51), then the metric becomes
independent of u; ξ = ∂u is a Killing vector. It can be shown (Trim
and Wainwright 1974) that instead of L,u = 0 the equivalent condition
Σ,u = 0 may be imposed. Like I = 0, the condition L,u = 0 is not invariant
(strictly speaking, the condition is that L,u can be made zero). So the
coordinate transformations are now restricted to (29.52) with constant k.

Because of (29.51), L,u = 0 yields G = −(lnP ),ζ , which is compatible
with I = G2 −G,ζ = 0 only if P,ζζ = 0, i.e. with real P only if

P = αζζ + βζ + β ζ + δ. (29.60)

Equation (29.60) shows that the 2-space 2dζdζ/P 2 has constant curvature
K = 2(αδ − ββ).

Instead of (29.53), (29.54) and (29.58) the constitutive parts of the
metric are now given by (29.60) and

m + iM = Z(ζ), L = − 1
2P 2

∫
Z(ζ) dζ

(αζ + β)2
+

l1(ζ)
P 2

, (29.61)

with Z = −A/(αζ + β)3 (note that we have chosen a gauge with G =
−(αζ + β)/P �= 0, so that in the case K = 0 we have to stick to a P
with α or β �= 0). The solutions contain the disposable functions Z(ζ)
and l1(ζ). The value of K can be transformed to 0,±1, and L may be
simplified by a transformation u′ = u + h(ζ, ζ), L′ = L− h,ζ , e.g. so that
L does not contain terms in m.

A subcase of these solutions is the class m+ iM = const. It contains
some of the well-known type D solutions such as Kerr and NUT (see
below in §29.5) as well as the Kerr and Debney (1970)/Demiański (1972)
four-parameter (m,M, a, c) solution, which corresponds to

L = −P−2[2iM/ζ + iζ(M + a) + 1
4 icζ ln(ζ/

√
2)]. (29.62)
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For m = const, M = 0 the solutions (29.60)–(29.61) specialize to the
Kerr–Schild class of vacuum solutions (see §32.2), which can be charac-
terized by ∂∂V = 0, or, in the gauge P = 1, by ∂L = 0. For a more direct
approach to the field equations in the case I = 0 = L,u see §30.7.4.

29.2.6 Solutions independent of ζ and ζ

Following Weir and Kerr (1977), we choose coordinates such that P = 1
and assume that in this system the metric functions do not depend on ζ
and ζ. The field equation (29.21b) then reads

−L∂u(m + iM) = 3(m + iM)L,u (29.63)

(because ∂ = −L∂u) and is integrated by

m + iM = µ0L
−3(u), (29.64)

µ0 being a complex constant. The second field equation (29.16) can be
written as

∂u(L2∂I) = 3µ0L−3L,u, ∂I ≡ −L∂u∂uLL,u, (29.65)

and yields
−2∂I = 2L∂u∂uLL,u = 3µ0L−4 + ν0L

−2, (29.66)

ν0 being another complex constant.
This last equation and the third field equation M = Im ∂ ∂∂L give a

system of three real differential equations for the complex function L(u).
This system can be simplified if we introduce a new real variable w by

L = g−1/2(u)e−iϕ(u), dw = g3/2du, ∂u = g3/2∂w. (29.67)

In terms of g and ϕ, the remaining field equations then read

ϕ′g′′ − ϕ′′g′ + (2ϕ′3 − ϕ′′′)g = −Imµ0e3iϕ, (29.68a)

(2ϕ′3 + ϕ′′′)g2 = −Im ν0eiϕ, (29.68b)

g′′′ + 6g′ϕ′2 + 12gϕ′ϕ′′ = −Re (3µ0e3iϕ + ν0g
−1eiϕ), (29.69)

where g′,ϕ′, etc. denote the derivatives with respect to w.
The solutions g = const (⇒ ϕ = const and µ0 = 0 = ν0) give m+ iM =

0 = ∂I = ∂uI and are therefore flat space-times, cp. (29.22).
Solutions with ϕ′ = 0 (⇒ ϕ = 0 by a ζ–ζ-rotation) have zero twist (Σ =

0), belong to the Robinson–Trautman class and can easily be transformed
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to a coordinate system with L = 0 = W, P = P (ζ, ζ, u). Examples of non-
twisting solutions of this kind are the C-metric (28.24) (⇔ ν0 = 0), and
the type III metric (28.17) (⇔ µ0 = 0).

If ϕ′ �= 0, the third differential equation (29.69) is a consequence of the
first two and need not be considered. The only known solution of this kind
(twisting and independent of ζ and ζ) is the general solution in the case
ν0 = 0. With ν0 = 0, the differential equation (29.68b) is integrated by
e−2iϕ(ϕ′2−iϕ′′) = 1/2, and the complete solution of the system (29.68a)–
(29.68b) is (Kinnersley 1969b)

eiϕ = dn(w) + i sn (w)/
√

2,
√

2ϕ′ = cnw =
√

cos 2ϕ,

g(w) = Reα0e2iϕ − 4 Im µ0ϕ
′e−iϕ,

(29.70)

where the functions dn, sn and cn are the Jacobian elliptic functions of
modulus 1/

√
2, and α0 and µ0 are complex constants. This solution is the

twisting generalization of the C-metric (28.24).
It can be shown (Valiente Kroon 2000) that the two Killing vectors of

the solutions have the structure of a boost-rotation symmetry (assuming
the existence of a local I ), cp. §17.2.

29.3 Solutions of type N (Ψ2 = 0 = Ψ3)

Due to the structure (29.22) of the components of the Weyl tensor, solu-
tions of Petrov type N are characterized by m+ iM = 0, ∂I = 0, ∂uI �=
0. It turns out that the type N conditions together with the field equations
(29.20c) yield

∂I = ∂[P−1(∂ ∂V ),u] = 0, ∂uI �= 0, Im ∂∂∂ ∂V = 0, (29.71)

the remaining field equations (29.20a)–(29.20b) being automatically satis-
fied. Note that no solution of the classes studied in the preceding sections
can be of type N , because all such solutions violate ∂uI �= 0 if satisfying
the rest of (29.71).

So far only one (one-parameter) class of solutions of type N has been
found, the Hauser solution (Hauser 1974, 1978). It reads in our notation

P = (ζ + ζ)3/2f(w), w ≡ u/(ζ + ζ)2,

L = 2i(ζ + ζ), I = 3/[(ζ + ζ)2 − iu],
(29.72a)

where f(w) is a solution of the hypergeometric differential equation

16(1 + w2)f ′′ + 3f = 0. (29.72b)
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The Hauser solution obviously admits a Killing vector ξ = i∂(ζ−ζ);
McIntosh found that it also admits a (special) homothetic vector (Halford
1979). It is not asymptotically flat and does not describe the radiation
field of an isolated source. It contains one essential parameter, which can
be chosen to be the ratio of two appropriately chosen solutions of the
hypergeometric differential equation (29.72b).

Much effort has been invested in seeking other explicit type N solutions,
but so far without any success except an understanding of the difficulties
of the problem. Even if one assumes the existence of a Killing vector and
a second (general) homothetic or Killing vector, only the Hauser case
can be solved, although it could be shown (Herlt 1986) that with these
assumptions (due to the existence of two Lie point symmetries) the type
N field equations can be reduced to a third-order ordinary differential
equation for a real function.

Held (1999) argued that the GHP-formalism can in principle be used
to construct an explicit type N solution with one Killing vector.

29.4 Solutions of type III (Ψ2 = 0,Ψ3 �= 0)

Solutions of type III are characterized by

m + iM = 0, ∂I �= 0, (29.73)

cp. (29.22). All twisting solutions known so far are subcases of the general
class treated in §29.2.3, i.e. in addition to (29.73) they all satisfy P,u =
0 = ∆∆ lnP, L,u = 0, and can therefore be generated from non-twisting
type III solutions. These known solutions (Robinson and Robinson 1969,
Held 1974b, Robinson 1975) are given by (29.46)–(29.50), with, of course,
m+ iM = 0; they are twisting exactly if L,ζ �= L,ζ .

29.5 Solutions of type D (3Ψ2Ψ4 = 2Ψ2
3, Ψ2 �= 0)

All vacuum solutions of Petrov type D are known (Kinnersley 1969b).
They were found by applying the Newman–Penrose formalism, the main
difference from the method so far outlined in this chapter being that both
vectors k and l were chosen to be eigenvectors of the Weyl tensor. A
systematic approach on the basis of the canonical tetrad and coordinate
system used in this chapter can be found in Weir and Kerr (1977).

From our point of view, the diverging type D solutions divide into two
classes, the first covering all solutions of Kinnersley’s Classes I and II
and the second Kinnersley’s Class III (twisting C-metric).
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In detail, the first class is contained in the subcase m+ iM = const
of the solutions with I = 0 = L,u discussed in §29.2.5. These type D
solutions are given by (29.60)–(29.61) with l′′′1 = 0, i.e. they satisfy

P = αζζ + βζ + β ζ + δ, K = 2(αδ − ββ) = 0,±1, m + iM = const,
(29.74)

L = −m− iM
2P 2

∫ dζ
(αζ + β)2

− 1
P 2

(λ0 + λ1ζ + λ2ζ
2).

Among the constants α, δ, m, M (all real) and β, λ0, λ1, λ2 (all complex)
only three real numbers (including m and M) are essential, i.e. cannot be
removed by a coordinate transformation.

For non-zero curvature, K = ±1, the metric can be written as

ds2 = 2(r2 + Σ2)P−2dζdζ − 2(du + Ldζ + Ldζ)

×
[
dr + Wdζ + Wdζ + H(du + Ldζ + Ldζ)

]
,

P = 1 + Kζζ/2, L = −P−2[2iM/ζ + iζ(M + a)], K = ±1, (29.75)

H =
K

2
− mr + MΣ

r2 + Σ2
, W =

Kaζ

P 2
, Σ = KM − a

1−Kζζ/2
1 + Kζζ/2

,

(λ1 ≡ i(a+M); in L the m-term has been transformed to zero). The Kerr
solution (Kerr 1963a) with M = 0, K = 1, the Schwarzschild solution
M = 0 = a and the NUT solutions (Newman et al. 1963) a = 0 are
special cases. The parameters m, M and a are called the mass, the NUT
parameter and the Kerr parameter, respectively.

The second class of type D diverging vacuum solutions are those for
which the metric does not depend on ζ and ζ, cp. §29.2.6. It turns out
(Weir and Kerr 1977) that the type D condition exactly reduces to ν0 = 0.
The metric is therefore (29.13) with P = 1 and m+ iM and L given by
(29.64), (29.67) and (29.70).

Obviously, the coordinate frame best adapted to type D metrics is one
which gives a single expression for the metric of all diverging vacuum
type D metrics. This frame is provided by the metric (21.11), where the
vacuum solutions are contained as the case e = g = Λ = 0. Note that the
m of (21.11) is related to, but not always equal to, the mass parameter m
used elsewhere in this chapter; in the case of the twisting C-metric, the
m of (21.11) corresponds to Re µ0 in (29.64). A detailed discussion of the
type D metric, its various subcases, and its generalization to Einstein–
Maxwell fields is given in §21.1.

The comparatively simple form (21.11) of the general diverging type
D metric indicates that the canonical frame (29.13), which in principle
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covers all diverging algebraically special vacuum metrics, is not the best
frame for type D. It is an open question whether different coordinates
could also facilitate the integration of the field equations in the other
Petrov cases.

29.6 Solutions of type II

The type II solutions explicitly known belong to the classes treated in
§§29.2.3–29.2.5 and its subclasses (e.g. Kerr–Schild). They contain at most
three arbitrary analytic functions.



30
Twisting Einstein–Maxwell and pure

radiation fields

30.1 The structure of the Einstein–Maxwell field equations

In the subsequent sections of this chapter, we are looking for exact solu-
tions of the coupled system

2Rab = κ0F
∗c
a F ∗

bc, (30.1)

F ∗ab
;b = (F ab + iF̃ ab);b = 0, (30.2)

of Einstein–Maxwell equations in the case when the Weyl tensor possesses
a (multiple) null eigenvector k which is twisting, geodesic and shearfree,
and is also an eigenvector of the Maxwell tensor Fab (aligned case). The
latter condition implies that (a) of the tetrad components (7.26)–(7.28)
of the Maxwell tensor only

Φ1 = 1
2Fab(k

alb + m amb), Φ2 = Fabm
alb, (30.3)

can be non-zero (Φ0 must vanish), and (b) therefore

R11 = R14 = R44 = 0 (30.4)

holds.
The conditions of Theorem 27.1 being satisfied, we can integrate (30.4)

by (27.26)–(27.27), i.e. by

ds2 = 2ω1ω2 − 2ω3ω4,

ω1 = −dζ/Pρ = ω2, ω3 = du + Ldζ + Ldζ,

ω4 = dr + Wdζ + Wdζ + Hω3,

(30.5)

with (in the gauge r0 = 0)

ρ−1 = −(r + iΣ), 2i Σ = P 2(∂L− ∂L),

W = ρ−1L,u + i ∂Σ, ∂ ≡ ∂ζ − L∂u.
(30.6)

455
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All metric functions are given in terms of r, P (ζ, ζ, u), L(ζ, ζ, u) and
H(ζ, ζ, r, u) (for more details see Chapter 27).

The metric (30.5)–(30.6) is of course subject to the rest of Einstein’s
equations (30.1),

R12 = R34 = 2κ0Φ1Φ1, (30.7)

R13 = 2κ0Φ1Φ2, R33 = 2κ0Φ2Φ2, (30.8)

and Maxwell’s equations (30.2) have to be solved too. In close analogy
with the vacuum case (§29.1), the calculations naturally divide into two
steps. In the first step, the radial dependence of the metric (i.e. in ad-
dition to (30.6) that of the function H) and of the Maxwell field will be
completely determined. In the second step, the remaining field equations
(both Einstein and Maxwell) will be reduced to a system of partial dif-
ferential equations for the as yet undetermined functions of ζ, ζ, u which
enter into the metric and the electromagnetic field.

30.2 Determination of the radial dependence of the metric
and the Maxwell field

In the metric (30.5), the spin coefficients τ, λ, π, κ, ε and σ vanish (cp.
§27.1.1) and Φ0 is zero by assumption. So the first part (7.22)–(7.23) of
the Maxwell equations reads

∂rΦ1 = 2ρΦ1, ∂rΦ2 = ρΦ2 − Pρ∂Φ1 + PρW∂rΦ1. (30.9)

Using (30.6), these equations can be integrated and yield

Φ1 = ρ2Φ01(ζ, ζ, u), (30.10a)

Φ2 = ρΦ02(ζ, ζ, u) +ρ2P (2L,uΦ01 − ∂Φ01) + 2iρ3P (ΣL,u− ∂Σ)Φ01. (30.10b)

As in the non-twisting case, one may think of Φ01 and Φ02 as representing
the field of charges and a pure radiation field, respectively.

We can now evaluate the field equations (30.7). Substituting the ex-
pressions (29.7) and (30.10a) for R34 and Φ1, we obtain

ρ2
[
ρ−2(Γ213 + Γ433)

]
|4 = 2ρ(lnP ),u + 2κ0ρ2ρ2Φ01Φ

0
1. (30.11)

This equation yields

Γ213 + Γ433 = −(lnP ),u + 2κ0ρρ2Φ01Φ
0
1 + (m + iM)ρ2 (30.12)
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(because ρ|4 = ρ2), and, as Γ213 is purely imaginary and Γ433 equals H|4,
we can determine H,

H = K/2− r(lnP ),u − (mr + MΣ− κ0Φ01Φ
0
1)/(r2 + Σ2), (30.13)

the real functions m, M and K being independent of r. After some cal-
culations it then turns out that the term proportional to Φ01Φ

0
1 does not

enter into those equations which as a consequence of the field equations
(30.7) give M and K in terms of P and L. So we can take M and K from
(29.13); they are the same functionals as in the vacuum case.

Theorem 30.1 An (algebraically special) Einstein–Maxwell field admits
a diverging, geodesic and shearfree null congruence k and satisfies R11 =
R14 = R44 = 0 (aligned case), R12 = R34 = 2κ0Φ1Φ1 and the radial
part (7.22)–(7.23) of Maxwell’s equations exactly if the metric and the
electromagnetic field can be given by

ds2 = 2dζdζ/(P 2ρρ)− 2(du + Ldζ + Ldζ)
[
dr + Wdζ + Wdζ

+ H(du + Ldζ + Ldζ)
]
,

H = K/2− r(lnP ),u − (mr + MΣ− κ0Φ01Φ
0
1)/(r2 + Σ2),

(30.14)
ρ−1 = −(r + i Σ), 2i Σ = P 2(∂L− ∂L),

W = ρ−1L,u + i∂Σ, K = 2P 2 Re
[
∂(∂ lnP − L,u)

]
,

M = ΣK + P 2 Re
[
∂∂Σ− 2L,u∂Σ− Σ∂u∂L

]
,

and

Φ1 = ρ2Φ01,

Φ2 = ρΦ02 + ρ2P (2L,u − ∂)Φ01 + 2iρ3P (ΣL,u − ∂Σ)Φ01
(30.15)

(Robinson et al. 1969b, Trim and Wainwright 1974).

Equations (30.14)–(30.15) show that all field functions can be con-
structed from the real functions P and m and the complex functions
L,Φ01, Φ12, which are all independent of r. These (so far arbitrary) func-
tions of ζ, ζ and u are of course subject to the remaining field equations,
both Einstein and Maxwell, which we shall now formulate. Concerning
the coordinate freedom and the transformation properties of the various
functions we refer the reader to §29.1.4. The transformation properties
given there are completed by

Φ0′1 = F−2
,u Φ01, Φ0′2 = (f ′/f ′)1/2F−2

,u Φ02. (30.16)
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30.3 The remaining field equations

The second part (7.24)–(7.25) of Maxwell’s equations, which has to be
satisfied in addition to (30.9), reads

δΦ1 = 0, δΦ2 −∆Φ1 − 2µΦ1 + 2βΦ2 = 0. (30.17)

Taking µ = −Γ321 from (29.10), and substituting 2β = −(lnP )|1 and ex-
pressions (30.14)–(30.15) for the metric and the Maxwell field, a straight-
forward calculation yields the simple equations

(∂ − 2L,u)Φ01 = 0,

(∂ − L,u)(P−1Φ02) + (P−2Φ01),u = 0.
(30.18)

The two Einstein equations (30.8) not yet taken into account can be
simplified in a way analogous to that in the vacuum case. The final result
(Robinson et al. 1969b, Lind 1974, Trim and Wainwright 1974) reads

P (3L,u − ∂)(m + iM) = 2κ0Φ01Φ
0
2, (30.19a)

P 4(∂ − 2L,u + 2∂ lnP )∂
[
∂(∂ lnP − L,u) + (∂ lnP − L,u)2

]
−P 3
[
P−3(m + iM)

]
,u = κ0Φ02Φ

0
2,

(30.19b)

P−3M = Im (∂∂∂ ∂V ), V,u ≡ P. (30.19c)

The five equations (30.18)–(30.19c) form a system of partial differential
equations for the functions P,m (real) and L, Φ01, Φ02 (complex). If a so-
lution has been found, then the full metric and the Maxwell field can
be obtained from (30.3), (30.14) and (30.15). Different forms of the field
equations may easily be derived from (29.20) and (29.21).

Equations (30.18)–(30.19) generalize the vacuum equations (29.15)–
(29.16) as well as the Einstein–Maxwell equations (28.37) of the non-
twisting case. To achieve conformity with the notation in the non-twisting
case, we have to put

Φ01 = Q/2, Φ02 = −Ph. (30.20)

The detailed expressions for the non-zero components of the Weyl ten-
sor can be found in Trim and Wainwright (1974). Here we mention only
that they have the structure

Ψ2 = (m + iM)ρ3 + κ0QQρ3ρ/2,

Ψ3 = −P 3ρ2∂I + O(ρ3), Ψ4 = P 2ρ ∂uI + O(ρ2),

I ≡ ∂(∂ lnP − L,u) + (∂ lnP − L,u)2 = P−1(∂ ∂V ),u,

(30.21)
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where the terms of higher order in ρ occurring in Ψ3 or Ψ4 vanish identi-
cally if Ψ2 or Ψ2 and Ψ3, respectively, vanish.

30.4 Charged vacuum metrics

By inspecting the field equations (30.19a)–(30.19c) one immediately sees
that they reduce to the vacuum case if no free radiation field is present,
i.e. if

Φ02 = 0, Φ01 = Q(ζ, ζ, u)/2 (30.22)

holds. In that case, Maxwell’s equations (30.18) yield

Q = q(ζ, ζ)P 2, (30.23)

and (in the gauge P,u = 0)

[∂ζ − 2(L,u − ∂ζ lnP )] q = 0. (30.24)

As q and P do not depend on u, the same is true for L,u − ∂ζ lnP , i.e. as
a consequence of Maxwell’s equations we obtain

L,u − ∂ lnP = G(ζ, ζ), P,u = 0. (30.25)

These conditions coincides with the assumption (29.29) we made in the
vacuum case to get special classes of solutions, see §29.2.1. We thus
have proved the following generalization of Theorem 28.5 (on Robinson–
Trautman Einstein–Maxwell fields):

Theorem 30.2 All Einstein–Maxwell fields (aligned case) admitting a
diverging, geodesic and shearfree null congruence with a non-radiative
(Φ02 = 0) Maxwell field are given by

ds2 = ds20 − 1
2κ0QQρρ(du + Ldζ + Ldζ)2,

Q = α(ζ)P 2 exp
(
2
∫
G(ζ, ζ)dζ

)
, Φ1 = Qρ2/2,

Φ2 = 1
2Pρ2(2L,u − ∂ζ)Q + iPρ3Q(ΣL,u − ∂Σ),

(30.26)

where ds20 is an algebraically special vacuum metric subject to (30.25), and
α(ζ) is a disposable function (Robinson et al. 1969b, Trim and Wainwright
1974).

In §29.2 we gave a survey of all explicitly known vacuum solutions
which satisfy the above conditions (and, moreover, (m+ iM),u = 0). For
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the subcases treated there, the complex (electric plus magnetic) charge Q
is given (as a solution of (30.24)) as

Q(ζ) = α(ζ) for L,u = 0, (30.27)

Q(ζ, ζ) = α(ζ)P 2G2 for I = 0. (30.28)

Special cases included here are the Reissner–Weyl solution (15.21), the
charged NUT and Kerr–Schild solutions etc. Note that the charged C-
metric (21.22) and its twisting generalization are not covered by Theorem
30.2 as in both cases the Maxwell field is radiative (Φ02 �= 0).

The Einstein–Maxwell fields covered by (30.28) together with (30.26)
are exactly those fields which are non-radiative in the sense that the Weyl
tensor and the Maxwell tensor do not contain terms with r−n, where
n < 3 and n < 2, respectively (Trim and Wainwright 1974). Solutions
which furthermore are regular and stationary must be type D (Lind 1975a,
1975b, Held 1976a).

30.5 A class of radiative Einstein–Maxwell fields (Φ02 �= 0)

Radiative Einstein–Maxwell fields have been found in the restricted case

P,u = L,u = Φ01,u = Φ02,u = 0 (30.29)

(Herlt and Stephani 1984). If we perform a coordinate transformation
u′ = u + h(ζ, ζ) to achieve

L = iB(ζ, ζ),ζ (30.30)

with a real function B(ζ, ζ), then (30.18)–(30.19a) and parts of the re-
maining Einstein equations yield

Φ01 = ψ(ζ), Φ02 = P (ζ, ζ)β ′(ζ), β′ �= 0,

m + iM = a
[
u + iB(ζ, ζ)

]
− 2κ0ψ(ζ)β(ζ) + α(ζ),

(30.31)

with a = const (real). The functions α, β, ψ,B and P are subject to
the remaining two field equations (30.19b)–(30.19c). The first of these
equations reads

P 2∂ζ∂ζP
2∂ζ∂ζ lnP = a + κ0P

2β′(ζ)β ′(ζ). (30.32)

Following Robinson and Robinson (1969) in their treatment of the vacuum
case α = 0 = β′, we call this equation the ‘background equation’; it
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generalizes (29.39). Any solution P, β of this equation together with

L = 0 = M, Φ01 = b0β + ψ0, Φ02 = Pβ ′,

m = au− 2κ0b0ββ − 4κ0Re (ψ0β) + m0,
(30.33)

gives a non-twisting Einstein–Maxwell field, in which one can hope to
insert twist (L �= 0,M �= 0) and an independent additional charge Φ01 by
solving the last surviving equation (30.19c), with L and m+ iM given
by (30.30)–(30.31). The additional charge ψ0 can always be switched on
or off.

In §28.2, we have listed the known classes of solution of the background
equation (30.32). In each case twisting Einstein–Maxwell fields can be
found, which generalize known twisting vacuum solutions, e.g. (29.46)–
(29.50). In general, they are of Petrov type II or III. We refer the reader
to the original paper (Herlt and Stephani 1984), but want to mention one
special case given by

P = 1, Φ01 = ψ(ζ), Φ02 = b, bL = ζψ′ − ψ + iB̂(ζ, ζ),ζ ,

m + iM = −κ0b
2[u + iB̂]− 2κ0bRe (ζψ),

(30.34)

where B̂(ζ, ζ) is a real function satisfying

B̂,ζζζζ = −b2B̂ (30.35)

(whose general solution can be constructed, cp. the discussion of (30.66)).
The existence of a constant electromagnetic pure radiation field implies
in m a term linear in u, i.e. a constant rate of loss of the mass m of the
system.

The field equations can also be simplified under the assumptions P,u =
(m+ iM),u = Φ01,u = Φ02,u = 0, L linear in u (Nurowski and Tafel 1992),
but no solutions have been found for L,u �= 0.

30.6 Remarks concerning solutions of the different Petrov
types

All type D Einstein–Maxwell fields for which both null eigenvectors of
the Maxwell field are multiple eigenvectors of the Weyl tensor are known.
They depend on at most six arbitrary parameters; for a detailed discus-
sion, see §21.1.2. The charged Kerr–NUT metrics covered by Theorem
30.2 and the charged and twisting C-metric are included here. Besides
these solutions, one more type D solution can be generated by means of
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Theorem 30.2, namely (Leroy 1978)

ds2 = 2dζdζ/ρρ− 2(du + Ldζ + Ldζ)

×
[
dr + 1

4κ0QQρρ(du + Ldζ + Ldζ)
]
,

L = iΣζ, Q = ζ −3 eib, b,Σ = const.

(30.36)

This metric is the twisting generalization of the Einstein–Maxwell field
(28.46) in the subcase m = 0; the corresponding vacuum solution is flat.
For (30.36), only one eigenvector of the Maxwell field coincides with an
eigenvector of the Weyl tensor.

Comparing the list of known twisting (and diverging) type D Einstein–
Maxwell fields with the exhaustive list of type D twisting vacuum or non-
twisting Einstein–Maxwell solutions, one sees that for each non-twisting
or vacuum solution a charged and twisting counterpart exists. Any as
yet unknown type D Einstein–Maxwell field cannot be generated from
vacuum solutions by simply adding a charge in the sense of Theorem
30.2; i.e. they must be radiative. As shown by Debever et al. (1989),
purely radiative Einstein–Maxwell fields (Φ0 = 0 = Φ1) of type D have
zero twist.

Concerning type N (or O) Einstein–Maxwell fields, an inspection of
the structure (30.21) of the Weyl tensor shows that Ψ2 = Ψ3 = 0 implies
Φ01 = 0 = m+ iM and ∂I = 0. But under these assumptions, the field
equation (30.19b) yields Φ02 = 0; there is no Maxwell field at all. As all
aligned type N (or O) Einstein–Maxwell fields must have κ = σ = 0, see
§7.6, we thus obtain

Theorem 30.3 There are no non-vacuum diverging Einstein–Maxwell
fields (aligned case) of Petrov type N or O.

As a consequence of this theorem, type N Einstein–Maxwell fields are
either non-aligned (i.e. the repeated null eigenvector of the Weyl tensor
is not an eigenvector of the Maxwell field), see §26.1 and (26.6), or they
are aligned and non-diverging, see Chapter 31.

A special type II solution can be obtained by charging a vacuum solu-
tion. It is given (in a gauge with r0 �= 0, cp. §29.1.4) by

ds2 = 2dζdζ/ρρ− 2(du + Ldζ + Ldζ)[dr

+κ0Φ01Φ
0
1ρρ(du + Ldζ + Ldζ)],

L = iaζ + αeζ , ρ−1 = −(r + L,ζ), Φ01 = eζ/2.

(30.37)

It is the only type II solution which is double aligned, i.e. both null
eigenvectors of the Maxwell tensor are eigenvectors of the Weyl tensor,
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only k being a repeated null eigenvector (Leroy 1979). The corresponding
vacuum solution is flat.

It can be shown that no regular diverging (aligned) type III Einstein–
Maxwell field exists, the only regular diverging, geodesic and shearfree
non-radiating fields being the Kerr–Newman solutions (Lind 1975a).

30.7 Pure radiation fields

30.7.1 The field equations

Pure radiation fields
Tmn = Φ2knkm, (30.38)

k being a geodesic and shearfree multiple eigenvector of the Weyl tensor,
are similar to electromagnetic null fields (Φ0 = 0 = Φ1) insofar as (because
of Tmn

;n = 0, km;nkn = 0, kn ;n = −(ρ + ρ)) the factor Φ2 has the same
ρ-dependence

Φ2 = n2(ζ, ζ, u)ρρ (30.39)

as the corresponding expression 2Φ2Φ2 in the electromagnetic case. The
difference is that there n2 = 2P 2hh is subject to the additional restriction
(∂ − L,u)h = 0. Note that in the Maxwell case a null field is necessarily
geodesic and shearfree and the metric must be algebraically special (§7.6),
whereas here we have to assume these properties.

As a consequence of this similarity, the metric of a pure radiation field
has exactly the form (30.14) of an Einstein–Maxwell field, with, of course,
Φ01 = 0 (so that n2 does not explicitly appear in the metric), and the field
equations read

(3L,u − ∂)(m + iM) = 0, (30.40)

M = P 3Im ∂∂∂ ∂V = ΣK + P 2Re
[
∂∂Σ− 2L,u∂Σ− Σ∂u∂L

]
(30.41)

and

P 4(∂ − 2L,u + 2∂ lnP )∂I − P 3
[
P−3(m + iM)

]
,u

= κ0n
2(ζ, ζ, u)/2,

(30.42)
I ≡ ∂(∂ lnP − L,u) + (∂ lnP − L,u)2.

As n2(ζ, ζ, u) is an arbitrary (positive) function, (30.42) is in fact only
the definition of n2, and not an equation which needs to be integrated.
The actual field equations are (30.40)–(30.41), which are the same as
in the vacuum case. Accordingly, one can try to generate radiation field
solutions from vacuum metrics (possibly flat) by simply changing one or
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more metric functions in such a way that (30.40)–(30.41) remain satis-
fied, but (30.42) gives a non-zero n2. Of course, the direct approach to
solving the field equations is also possible. We shall discuss the different
approaches now in turn; in most of them a special dependence of the
metric functions on u is assumed. For the pure radiation fields of the
Kerr–Schild class see §32.4.

Concerning the Petrov types of aligned pure radiation fields, only
types II and III are admitted: for type N , m+ iM and ∂I must vanish,
but then n2 vanishes too, and type D is also not permitted (Wils 1990).

30.7.2 Generating pure radiation fields from vacuum by changing P

In dealing with the coupled system (30.40)–(30.41) of the field equations it
simplifies the task if we confine ourselves to metrics which satisfy (30.40)
identically by L,u = 0 = M, m = const. If we start from such a vacuum
(or pure radiation) metric (L0, P 0,m0,M0 = 0) and change only the func-
tion P by making the ansatz P = P 0A(ζ, ζ, u), then the remaining field
equation (30.41), i.e. M = 0, reduces to a single linear partial differential
equation for A (Stephani 1979):

Theorem 30.4 If (L0, m0 = const, M0 = 0, P 0) is an algebraically
special vacuum solution satisfying L0,u = 0, then (L0, m0 = const, M0 =
0, P = P 0A(ζ, ζ, u)) represents a pure radiation field exactly if the real
function A obeys

∂(Σ0∂A) + ∂(Σ0∂A) = 0,

2i Σ0 ≡ (P 0)2(∂L0 − ∂L
0), ∂ ≡ ∂ζ − L0∂u.

(30.43)

This new solution is twisting if the original one is, and it is non-vacuum
if

(∂ + 2∂ lnP )∂
[
∂ ∂ lnP + (∂ lnP )2

]
+ 3mP,uP

−4 > 0. (30.44)

For P,u �= 0, m can always be chosen so that the inequality (30.44) holds
at least for some region of space-time.

If we look for vacuum solutions satisfying the above conditions, we fall
back on the two classes discussed in §§29.2.3 and 29.2.5. In both cases not
only L0 but also P 0 and Σ0 are independent of u.

In the first case (L,u = 0, ∂ζI �= 0) the vacuum solutions to start from
are included in (29.46)–(29.50). So far no non-vacuum solutions with pos-
itive n2 have been found.
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In the second case (L,u = 0 = I), the starting point is the Kerr–Schild
class

L0 = l1(ζ)(P 0)−2, P 0 = αζζ + βζ + β ζ + δ, m0 = const, M0 = 0,
(30.45)

of vacuum solutions. Explicit solutions of the resulting differential equa-
tion for A have been found in several subcases.

If A is a function only of u, then we find

A(u) = a1u, L0 = −ia0ζ/(P 0)2, a0 real,

P 0 = 1 + Kζζ/2, K = 0,±1,
(30.46)

and

A(u) = a1u, L0 = (b1ζ
2 + b2ζ + b3)1/2, P 0 = 1, b1 real, (30.47)

as radiating solutions. In both cases, the intensity of the radiation field is
given by

κ0n
2 = 6m0/u. (30.48)

In particular, (30.46) with K = +1 is a radiating Kerr metric (asymp-
totically flat) first given by Kramer (1972); it belongs to the class of
Kerr–Schild metrics. If for this solution we make a coordinate transfor-
mation u′ = F (u) = a1u

2/2, which transforms P back into P 0, then
(30.46) transforms into

L = −i a0(2a1u)1/2ζ/(P 0)2, m = m0(2a1u)−3/2,

P 0 = 1 + ζζ/2, K = 1,
(30.49)

which differs from the Kerr metric exactly by a (special) time- (u-)depen-
dence of the parameters m and a = a0(2a1u)1/2.

If we assume axial symmetry (Σ0 and A dependent only on ζζ and u),
then we have

(Σ0ζζA′)′ + Σ0a2ζζ(P 0)−4Ä = 0, A = A(ζζ, u),

L0 = −i aζ/(P 0)2, P 0 = 1 + Kζζ/2.
(30.50)

For K = 0, the general solution is a superposition (with different α) of

A(ζζ, u) = (a1eαu + a2e−αu)J0(aαζζ) α �= 0,

A(ζζ, u) = (a1u + a2)(a3 ln ζζ + a4) α = 0,
(30.51)
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J0 being a Bessel function; a particular integral is given by A = (ζ2ζ2 +
u2)−1/2(Ivanov 1999). For K = ±1, (30.50) can be separated (see e.g.
Kramer and Hähner (1995)), but except for (30.46) only the solution

A(ζζ) = a1
[
ln ζζ − 2 ln(1−Kζζ/2)

]
+ a2 (30.52)

has been found.

30.7.3 Generating pure radiation fields from vacuum by changing m

If we let P, L and M stay fixed and change only m,

m = m0 + B(ζ, ζ, u), B real, (30.53)

then (30.41) remains valid and the field equations reduce to

(3L,u − ∂)B = 0 = (3L,u − ∂)B (30.54)

(Hughston 1971). The new solutions would be non-vacuum exactly if
(P−3B),u were non-zero.

For twisting solutions (∂L− ∂L �= 0), the integrability condition of the
system (30.54) imposes severe restrictions on the vacuum metric. From
(30.54) and the commutator relations (29.17) one gets

(∂∂ − ∂∂)B = 3B∂u(∂L− ∂L) = (∂L− ∂L)∂uB, (30.55)

i.e. the real function B has the form

B(ζ, ζ, u) = b(ζ, ζ)(∂L− ∂L)−3, (30.56)

and because of (30.54) the function b(ζ, ζ) has to satisfy

(ln b),ζ = 3L,u + 3∂ ln(∂L− ∂L), (30.57)

the main implication being that the right-hand side must be independent
of u.

Radiation fields have been generated from two of the known classes of
vacuum solutions. For L,u = 0 (and non-zero twist), because of (30.55)
and (30.54) B is independent of u and therefore constant; but to get non-
zero radiation P must depend on u. The only vacuum solution we gave
in this gauge is the Hauser solution (29.72). The corresponding radiation
solution is (Stephani 1980)

m = const, P (ζ + ζ) = f
[
u/(ζ + ζ)2

]
, L = 2i(ζ + ζ). (30.58)
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For L,u �= 0, the solutions of §29.2.4 have also been used for the generation
procedure. Here P is independent of u, and L and Σ are linear in u. If we
choose the origin of u so that Σ is proportional to u, then (30.57) implies
that L is also proportional to u. It turns out that the only class of pure
radiation solutions we can generate is

L =
(
∂ζ lnP − [ζ + g(ζ)]−1

)
u, P,u = 0, M = 0,

m = B = bu−3, κ0n
2 = −6bu−4,

(30.59)

where g(ζ) is a disposable function and b is a negative constant.

30.7.4 Some special classes of pure radiation fields

Pure radiation fields have also been found in some other restricted cases.
The first case is that P and L are independent of u and (therefore) m

is linear in u:

P,u = 0 = L,u, m0 = m0(ζ, ζ) + au, a = const. (30.60)

For L,u = 0, we can use a gauge with

L = iB(ζ, ζ), B real, (30.61)

where B is defined only up to a gauge B̂ = B + v, v,ζζ = 0. The field
equation (30.40) then reads (m+ iM),ζ = aB,ζ and is integrated by

m = m0 + au, M = aB, m0, a const (real) (30.62)

(a constant of integration being incorporated in B), and the last field
equation (30.41) reads (with Σ = P 2B,ζζ)

P 2
(
P 2B,ζζ

)
,ζζ

+ 2P 4B,ζζ(lnP ),ζζ = aB, a �= 0. (30.63)

This is a single partial differential equation for the two unknown functions
P and B. To find solutions, we can choose one of them appropriately so
that we can solve the differential equation then arising for the second func-
tion. For example, we can take P from one of the corresponding vacuum
solutions of §§29.2.3, 29.2.5, thus trying to generalize these solutions to
the pure radiation case; the vacuum solutions (with M = 0) are then con-
tained for a = 0. We shall do that now for the three forms of P occurring.

If we take P from the vacuum solutions

P = 1 + Kζζ/2, K = ±1, m0 + iM0 = 2Kζ g,ζ

iB0 =
h(ζ)
P

− h(ζ)
P

−
∫

g(ζ)
P 2

dζ +
∫

g(ζ)
P 2

dζ,
(30.64)
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(i.e. from (29.60)–(29.61) given in a different gauge), or from the vacuum
metrics

P = 1, m0 + iM0 = 2g(ζ),ζ ζ ,

iB0 = ζh(ζ)− ζh(ζ) + 1
2ζ
2g(ζ)− 1

2ζ
2
g(ζ),

(30.65)

then the field equation (30.63) gives

P 2
(
P 2B,ζζ

)
,ζζ

+ KP 2B,ζζ = aB, a < 0 (30.66)

(for P = 1, this is exactly (30.35)). Introducing the functions

S± = aB + λ±Σ, Σ = P 2B,ζζ , λ± = −1
2K ±

√
a + K2/4, (30.67)

this fourth-order differential equation can be split into

P 2S±
,ζζ

= λ±S±. (30.68)

Since the operator P 2∂ζ∂ζ is the Laplacian on the corresponding space of
constant curvature, the general solution to (30.68) is known and can be
constructed by standard separation techniques leading to spherical har-
monics etc. The solutions of this class have been given in the axisymmetric
case by Patel (1978) and Akabari et al. (1980) (note that the au of their
solutions can be set to zero), and the solutions admitting at least a H2

by Grundland and Tafel (1993). These solutions generalize some type D
vacuum metrics.

If we take P from the vacuum solutions (29.46)–(29.50) as

P = (ζ + ζ)3/2, (30.69)

then we have to solve

(ζ + ζ)3
[
(ζ + ζ)3B,ζζ

]
,ζζ
− 3(ζ + ζ)4B,ζζ = aB. (30.70)

No solution of this equation has been found so far.
The second case is that L is independent of u, and m+ iM is constant,

L = iB(ζ, ζ),ζ , m + iM = const, P = P (ζ, ζ, u). (30.71)

The only field equation to be solved then reads, with ∂ = ∂ζ − iB,ζ∂u,

P 2Re
[
∂∂(P 2B,ζζ)

]
+ 2P 4Re

[
∂∂ lnP

]
= M = const. (30.72)

As in the first case, this is a single differential equation for the two real
functions P and B, and one can get solutions by suitably prescribing one
of them. So one may take e.g.

B = (ζ + ζ)σ. (30.73)
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For M = 0, and with the ansatz P = P (u,B), one gets (Stephani 1980)

4σ2B2(P,BB + P,uu) + 4σ(2σ − 3)BP,B + (σ − 2)(σ − 3)P = 0. (30.74)

Solutions can be found by standard separation methods or by taking
P = Bνf(s), s = u/B, which leads to the hypergeometric equation

4σ2(s2 + 1)f ′′ + 4σ(3− 2σν)sf ′

+ [4σν(σν + σ − 3) + (σ − 2)(σ − 3)] f = 0.
(30.75)

This solution generalizes the Hauser solution (29.72), which is contained
for m = 0, σ = 2, ν = 3/4. A large class of solutions to (30.74) has been
given by Tafel et al. (1991), and solutions with M = 0 admitting a Killing
vector i(∂ζ − ∂ζ) by Lewandowski et al. (1991).

The third case is that all metric functions are independent of u. They
have to satisfy m+ iM = const, L = iB(ζ, ζ),ζ and

P 2
(
P 2B,ζζ

)
,ζζ

+ 2P 4B,ζζ(lnP ),ζζ = M. (30.76)

Solutions which admit at least an H3 of homothetic motions or have
M = 0 were found by Lewandowski and Nurowski (1990) and Grundland
and Tafel (1993) (note that solutions 3.15 and 3.17 of Grundland and
Tafel (1993) contain mistakes).



31
Non-diverging solutions (Kundt’s class)

31.1 Introduction

In Chapters 27–30 we dealt with those algebraically special solutions for
which k, the multiple principal null direction of the Weyl tensor, is di-
verging (ρ �= 0) and shearfree. Here we treat the non-diverging case, i.e.
we assume ρ = −(Θ + iω) = 0 throughout this chapter. Since physically
reasonable energy-momentum tensors have to satisfy the energy condition
Tabk

akb ≥ 0 (§5.3), one sees from (6.33), i.e. from Θ,ak
a−ω2+Θ2+σσ =

−Rabk
akb/2 ≤ 0, that (Θ + iω) = 0 implies

σ = 0 = Rabk
akb. (31.1)

Thus the non-twisting (and therefore geodesic) and non-expanding null
congruence must be shearfree, and Rabk

akb = 0 implies that the relations

Rabk
akb = Rabk

amb = Rabm
amb = 0 (31.2)

are satisfied for vacuum, Einstein–Maxwell and pure radiation fields.
Hence, by Theorem 7.1, these space-times are algebraically special.
Einstein-Maxwell and pure radiation fields are aligned, i.e. they have a
common eigendirection k of the Weyl and Ricci tensor. Perfect fluid so-
lutions violate Rabk

akb = 0 unless p + µ = 0.

31.2 The line element for metrics with Θ + iω = 0

The non-twisting null vector field may be chosen to be a gradient field,
and coordinates u and v are then naturally introduced by

e4 = ki∂i = ∂v, ω3 = −kidxi = du. (31.3)

470
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As coordinates in the null hypersurfaces u = const we use the affine
parameter v and two spacelike coordinates x1, x2. With this choice, the
line element has the form

ds2 = gABdxAdxB − 2du(dv + mAdxA + Hdu), A,B = 1, 2 (31.4)

(Kundt (1961); for a detailed study of these metrics see also Kundt and
Trümper (1962)). The spin coefficients ρ and σ are then

ρ = −ka;bm
amb = −1

2gab,vm
amb = −1

2gAB,vm
AmB/2,

(31.5)
σ = −ka;bm

amb = −1
2gab,vm

amb = −1
2gAB,vm

AmB.

Hence ρ = σ = 0 leads to gAB,v = 0. Performing a coordinate transfor-
mation xA

′
=xA

′
(xB, u), and with complex coordinates

√
2 ζ =
(
x1+ ix2

)
and

√
2 ζ =
(
x1 − ix2

)
, one can write the line element in the form

ds2 = 2P−2dζdζ − 2du
(
dv + Wdζ + Wdζ + Hdu

)
, P,v = 0, (31.6)

or equivalently as

ds2 = 2ω1ω2 − 2ω3ω4, (31.7)
ω1 = dζ/P = ω2, ω3 = du, ω4 = dv + Wdζ + Wdζ + Hdu,

with real P and H and complex W . This choice of 1-forms is very similar
to the choice (27.22), with L = 0, in the case of diverging algebraically
special metrics.

In order to calculate the Riemann tensor we found it helpful to first
perform a null rotation (27.3) and instead of (31.7) to use the basis of
1-forms

ω1 = ω2 = dζ/P − PWdu, ω3 = du, ω4 = dv + (H + P 2WW )du,
(31.8)

and corresponding tetrad vectors

e1 = e2 = P∂ζ , e3 = ∂u +P 2(W∂ζ +W∂ζ)− (H +P 2WW )∂v, e4 = ∂v.

(31.9)
The coordinate transformations preserving the form (31.6) of the metric

and the associated transformations of the metric functions P, H and W
are

(i) ζ ′ = f(ζ, u), P ′2 = P 2f,ζf ,ζ , W ′ = W/f,ζ + f ,u/(P 2f,ζf ,ζ),

(31.10a)
H ′ = H − (f,uf ,u/P

2 + Wf,uf ,ζ + W f ,uf,ζ)/(f,ζf ,ζ),



472 31 Non-diverging solutions (Kundt’s class)

(ii) v′ = v + g(ζ, ζ, u), P ′ = P, W ′ = W − g,ζ , H ′ = H − g,u,

(31.10b)

(iii) u′ = h(u), v′ = v/h,u,
(31.10c)

P ′ = P, W ′ = W/h,u, H ′ = (H + vh,uu/h,u)/(h,u)2.

In order to maintain the form (31.9) of the null tetrad, the effect of
(31.10) must be compensated by the following tetrad rotations (e2 = e1)

(i) e′1 = (f ,ζ/f,ζ)
1/2e1, e′3 = e3, e′4 = e4, (31.11a)

(ii) e′1 = e1 − Pg,ζ e4, e′4 = e4,
(31.11b)

e′3 = e3 − Pg,ζ e1 − Pg,ζ e2 + P 2g,ζg,ζ e4,

(iii) e′1 = e1, e′3 = e3/h,u, e′4 = h,u e4. (31.11c)

If (lnP ),ζζ = 0, then one can always transform P to P = 1 by means
of (31.10a). The condition W,v = 0 is invariant under the transformations
(31.10), and so characterizes a special subclass of metrics.

The 2-surfaces u, v = const with metric 2dζdζ/P 2 are called wave sur-
faces. The vector fields e1 = P∂ζ and e2 = P∂ ζ are surface-forming,
i.e. their commutator is a linear combination of themselves (see (6.12)).
They are tangent to the wave surfaces, whereas the vector fields e1 =
P (∂ζ − W∂v) and e2 = P (∂ ζ − W∂v) associated with the basis (31.7)
are not.

The existence of (spacelike) 2-surfaces orthogonal to k implies ω = 0,
since

0 = ka(mbm a
;b −m bma

;b) = 2ka;bm[am b] = 2iω (31.12)

(Kundt 1961). Conversely we have seen that ω = 0 implies that 2-surfaces
(wave surfaces) orthogonal to k exist.

The space-time geometry uniquely determines the null congruence k
and the wave surfaces. Therefore the Gaussian curvature

K = 2P 2(lnP ),ζζ = ∆(lnP ) (31.13)

of the wave surfaces is a space-time invariant.

31.3 The Ricci tensor components

In this section we list the tetrad components of the Ricci tensor with
respect to the basis (31.8). As in Chapters 27–30, we shall use the con-
ventions that numerical indices are tetrad indices, and partial derivatives
are denoted by a comma.
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In the basis (31.8), the independent connection forms are

Γ 14 = 1
2PW,vω

3,

Γ 21 + Γ 43 =
[
(H + P 2WW ),v − 1

2(P 2W ),ζ + 1
2(P 2W ),ζ

]
ω3

−(P,ζ − 1
2PW,v)ω1 + (P,ζ + 1

2PW ,v)ω2, (31.14)

Γ 32 =
[
−1
2P

2(W ,ζ + W,ζ) + (lnP ),u
]
ω1 − (P 2W ),ζ ω

2

−P (H + P 2WW ),ζω
3 − 1

2PW ,vω
4.

Inserting (31.14) into the second Cartan equations (3.25) we obtain the
following expressions for the tetrad components of the Ricci tensor:

R44 = 0, R41 = −1
2PW,vv, R11 = (P 2W,v),ζ − 1

2P
2(W,v)2, (31.15a)

R12 = ∆ lnP + 1
2P

2(W ,vζ + W,vζ −W,vW ,v), ∆ = 2P 2∂ζ∂ζ , (31.15b)

R34 = H,vv − 1
2P

2(W ,vζ + W,vζ − 2W,vW ,v) + P 2(W,vvW + WW ,vv),
(31.15c)

R31 = P (P 2W ),ζζ − 2P,ζ(P
2W ),ζ + PH,vζ + P,uW,v

−1
2PW,uv + 1

2P
[
(P 2W,v),ζW + (P 2W ,v),ζW

]
(31.15d)

+1
2P

3
[
(WW ,v),ζ − (WW,v),ζ

]
+ 1
2SPW,vv − µ,ζP,

R33 = 2P 2S,ζζ + P 2W ,vS,ζ + P 2W,vS,ζ − 2(P 2W ),ζ (P 2W ),ζ
(31.15e)

−2
[
µ,ζP

2W + µ,ζP
2W + µ,u − µ,vS + µS,v + µ2

]
,

with µ ≡ 1
2P

2(W ,ζ + W,ζ)− (lnP ),u, S ≡ H + P 2WW.

31.4 The structure of the vacuum and Einstein–Maxwell
equation

In this section we shall consider the Einstein–Maxwell equations including,
of course, the vacuum field equations as a special case.

As mentioned in the introduction, the existence of a non-expanding and
non-twisting null congruence k implies that k is also an eigendirection of
the Maxwell tensor, i.e. that the tetrad components Φ0 = F41 must be
zero. With Φ0 = 0, the Einstein equations are

R11 = R14 = R44 = 0, (31.16a)

R12 = R34 = 2κ0Φ1Φ1, (31.16b)

R31 = 2κ0Φ1Φ2, R33 = 2κ0Φ2Φ2, (31.16c)
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and the (sourcefree) Maxwell equations (7.22)–(7.25) read

Φ1,v = 0, Φ1,ζ = W,vΦ1, (31.17a)

Φ2,v = P (Φ1,ζ + W ,vΦ1), (31.17b)

PΦ2,ζ = Φ1,u + P 2
[
(WΦ1),ζ+ (WΦ1),ζ

]
− 2(lnP ),uΦ1 + P,ζΦ2. (31.17c)

Using R11 = 0, (31.17a) can be integrated, giving

Φ1 = Φ01 = P 4 (W,v)
2 F (ζ, u) for W,v �= 0,

Φ1 = Φ01 = F (ζ, u) for W,v = 0.
(31.18)

For a null field (Φ0 = 0 = Φ1) the general solution of the Maxwell
equations (31.17) is

Φ2 = Φ02 = Pg(ζ, u). (31.19)

We now study the structure of the Einstein–Maxwell equations (31.16)–
(31.17). From R14 = 0 one infers that W is a function linear in v,

W = W,v(ζ, ζ, u)v + W 0(ζ, ζ, u). (31.20)

The equations

R11 = (P 2W,v),ζ − 1
2P

2 (W,v)
2 = 0, Φ1,ζ = W,vΦ1,

(31.21)
R12 = ∆ lnP + 1

2P
2(W ,vζ + W,vζ −W,vW ,v) = 2κ0Φ1Φ1,

form a system of simultaneous differential equations for the v-independent
functions P, W,v and Φ1. No general solution is known, even for the va-
cuum case.

Because P, W,v and Φ1 do not depend on v, the equation R34 =
2κ0Φ1Φ1 tells us that H is a quadratic function of v,

H = 1
2H,vv(ζ, ζ, u)v2 + G0(ζ, ζ, u)v + H0(ζ, ζ, u),

H,vv = 1
2P

2(W ,vζ + W,vζ − 2W,vW ,v) + 2κ0Φ1Φ1,
(31.22)

and from the Maxwell equation (31.17b) it follows that Φ2 is linear in v,

Φ2 = P
(
Φ1,ζ + W ,vΦ1

)
v + Φ02(ζ, ζ, u). (31.23)

The (complex) field equation R31 = 2κ0Φ1Φ2 and the Maxwell equa-
tion (31.17c) contain parts linear in v and parts independent of v. If the
Einstein equations (31.16a)–(31.16b) and the Maxwell equations (31.17a)–
(31.17b) are satisfied, then it follows from the Bianchi identity (7.32j) that
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the v-dependent parts of the equation R31 = 2κ0Φ1Φ2 and the Maxwell
equation (31.17c) are identically satisfied. The v-independent parts of
these equations, namely

R031 = P (P 2W 0),ζζ + P
[
(lnP ),u − 1

2P
2W

0
,ζ − 1

2P
2W 0

,ζ

]
,ζ

+1
2P
[
(P 2W,v),ζW

0 + (P 2W ,v),ζW 0
]
− 2P,ζ(P

2W 0),ζ

+PG0,ζ + 1
2P

3
[
(W 0W ,v),ζ − (W 0W,v),ζ

]
+ P,uW,v − 1

2PW,vu

= 2κ0Φ1Φ 0
2, (31.24a)

PΦ02,ζ = Φ1,u + P 2
[
(W 0Φ1),ζ + (W 0Φ1),ζ

]
− 2(lnP ),uΦ1 + P,ζΦ02,

(31.24b)

determine the functions W 0, G0, Φ02 once P, W,v and Φ1 are known. Equa-
tions (31.24) are linear in W 0, G0, Φ02 and their derivatives.

The last Einstein equation, R33 = 2κ0Φ2Φ2, contains terms up to sec-
ond order in v. Provided that the other Einstein–Maxwell equations are al-
ready satisfied, the Bianchi identity (7.32k) gives (R33 − 2κ0Φ2Φ2),v = 0,
i.e. the v-dependent part of the last field equation is identically satisfied.
Finally, the v-independent part

R033 = 2P 2H0
,ζζ

+ P 2(W ,vH
0),ζ + P 2(W,vH

0),ζ + (known function)

= 2κ0Φ02 Φ 0
2 (31.25)

is a linear partial differential equation of the second order for the re-
maining function H0 (the ‘known function’ being obtainable from the
expression (31.15e) for R33 in terms of functions already determined by
the other field equations).

The metric and Maxwell field thus have the form

ds2 = 2P−2dζdζ − 2du
{

dv +
[
vW,v + W 0

]
dζ +
[
vW ,v + W 0

]
dζ

+
[
1
2v
2P 2(W,vζ + W ,vζ − 2W,vW ,v + 2κ0Φ01Φ

0
1) + vG0 + H0

]
du
}
,

Φ1 = Φ01, Φ2 = vP (Φ0
1,ζ

+ W ,vΦ01) + Φ02, (31.26)

and the Einstein–Maxwell equations split into the set (31.21) determining
P, W,v and Φ01, the set (31.24) determining W 0, G0 and Φ02 and (31.25)
determining H0. It should be emphasized that the functions W 0, G0, Φ02
and H0 do not occur in the field equations (31.21). This remarkable fact
gives us the possibility of constructing new solutions:
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Theorem 31.1 From a known solution (‘background metric’ ) one can
generate other solutions with the same P, W,v and Φ1, by choosing new
functions W 0, G0, Φ02 satisfying the linear equations (31.24) and by then
choosing a new function H0 satisfying the linear equation (31.25).

To conclude this section we give the tetrad components Ψ2 and Ψ3 of
the Weyl tensor for Einstein–Maxwell (and pure radiation) fields:

Ψ2 = 1
2P

2(W ,vζ − 1
2W,vW ,v),

Ψ3 = P
(
∂ ζ + 1

2W ,v

) [
1
2P

2
(
W ,ζ + W,ζ

)
− (lnP ),u

]
(31.27)

−P (P 2W ),ζζ + 2P,ζ(P 2W ),ζ − 1
2PW,v(P 2W ),ζ + 1

2R32.

For W = 0, the last expression reduces to

Ψ3 = 1
2P [H,v − (lnP ),u],ζ. (31.28)

31.5 Vacuum solutions

31.5.1 Solutions of types III and N

The vacuum solutions of types III and N in Kundt’s class are completely
known (Kundt 1961; for the subcase W,v = 0 see also Pandya and Vaidya
1961). The field equation R12 = 0 and the type III condition Ψ2 = 0 give
(lnP ),ζζ = 0, so that one can use a coordinate transformation (31.10a) to
make P = 1. The field equation R34 = 0 determines H,vv as

H,vv = −1
2W,vW ,v. (31.29)

The field equation R11 = 0 and the condition Ψ2 = 0 lead to

W,v = −2n,ζ , n = n, (en),ζζ = 0 = (en),ζζ. (31.30)

Two cases can occur: either W,v vanishes, or it can be transformed to
W,v = −2/(ζ + ζ) by the transformations (31.10a) and (31.10c).

In the case W,v = 0, and with P = 1, R31 = 0 gives

R31 =
(
H,v + 1

2W,ζ − 1
2W ,ζ

)
,ζ

= 0. (31.31)

This equation implies H,v + 1
2(W,ζ −W ,ζ) = f(ζ, u). Because H,v is real,

it follows that
W,ζ −W ,ζ = f(ζ, u)− f(ζ, u), (31.32)
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which implies

W =
∫

f(ζ, u)dζ − g,ζ , g = g(ζ, ζ, u) real, (31.33)

and so finally, using the admissible coordinate transformation (31.10b),
one obtains W = W (ζ, u). Thus the type III and N solutions with W,v =
0 are given by

ds2 = 2dζ dζ − 2du(dv + Wdζ + Wdζ + Hdu),

W = W (ζ, u), H = 1
2

(
W,ζ + W ,ζ

)
v + H0,

H0
,ζζ
− Re
[
W 2

,ζ
+ WW,ζ ζ + W,ζu

]
= 0,

(31.34)

where W (ζ, u) is a disposable function. In general, these solutions are of
Petrov type III. They are of type N if Ψ3 = 0 = W,ζ ζ (see (31.27)), but
if W is a linear function of ζ , we can use the remaining freedom in the
coordinate transformation (31.10) to make W zero. The solutions (31.34)
with W = 0 are the plane-fronted waves studied in detail in §24.5.

The case W,v = −2/(ζ + ζ) can be solved in a similar way. With P = 1
and W = −2v/(ζ + ζ) + W 0 the equation R031 = 0 reads[
1
2

(
W 0

,ζ
−W 0

,ζ

)
+ G0 − W 0 + W

0

ζ + ζ

]
,ζ = − 1

ζ + ζ

(
W 0

,ζ
+ W 0

,ζ

)
. (31.35)

By means of a coordinate transformation (31.10b) which induces

W 0′ = W 0 − g,ζ + 2g/(ζ + ζ) (31.36)

one can arrange that the right-hand side of (31.35) vanishes. Then (W 0
,ζ
−

W 0
,ζ) is the imaginary part of an analytic function. One obtains

W 0 =
∫

f(ζ, u)d ζ − ζf(ζ, u) + h(ζ, u), (31.37)

and the remaining freedom in the transformation (31.10b) can be used to
put W 0 = W 0(ζ, u). Thus the class III and N solutions with W,v �= 0
are given by

ds2 = 2dζd ζ − 2du(dv + Wdζ + Wdζ + Hdu),

W = W 0(ζ, u)− 2v
ζ + ζ

, H = H0 + v
W 0 + W

0

ζ + ζ
− v2

(ζ + ζ)2
, (31.38)

(ζ + ζ)
[
(H0 + W 0W

0)/(ζ + ζ)
]
,ζζ

= W 0
,ζW

0
,ζ
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(Cahen and Spelkens 1967), where the function W 0(ζ, u) is disposable.
In general, these solutions are of Petrov type III; they are of type N if
Ψ3 = 0 = W 0

,ζ . In this case, W 0 can be transformed to zero.

Theorem 31.2 The classes (31.34) and (31.38) exhaust all type III and
N vacuum solutions with ρ = 0. They are characterized by ∆ lnP = 0,
i.e. by plane wave surfaces.

These two classes were originally given by Kundt (1961), who chose
W 0 to be real. For the class (31.38), W 0 is then given by

W 0 = W
0 = ϕ(ζ + ζ)−1, ϕ,ζζ = 0. (31.39)

The type III solution,

ds2 = x(v − ex)du2 − 2dudv + ex(dx2 + e−2udz2), (31.40)

given by Petrov (1962), and its generalizations (Harris and Zund 1975,
Kaigorodov 1967) are particular members of the class (31.34) written
in other coordinate systems. The metric (31.40) admits a non-Abelian
group G2. Solutions that admit one non-null Killing vector were found by
Hoenselaers (1978a), see also McIntosh and Arianrhod (1990b).

31.5.2 Solutions of types D and II

The type D vacuum solutions are completely known (Kinnersley 1969b,
Carter 1968b). The non-diverging (ρ = 0) solutions admit a group of
motions G4 on T3 and are given in §§13.3.1 and 18.6.2. In our present
notation this class can be written as

ds2 = 2dζdζ/P 2 − 2du(dv + Wdζ + Wdζ + Hdu),

√
2ζ = x + i y, P 2dz = dx, P 2 =

z2 + l2

k(z2 − l2) + 2mz
,

W = −
√

2v
P 2(z − i l)

, H = −
[

k

2(z2 + l2)
+

2l2

P 2(z2 + l2)2

]
v2,

(31.41)

with constant m, l and k = 0,±1. Note that the solutions can only be
given implicitly (P 2dz = dx) if one sticks to an isotropic form of the wave
surface metric, and that only the terms with the highest possible powers
of v occur in the metric functions W and H.

The type II solutions are only partially known; some unrecognized ones
may be among solutions found by other methods. If a vacuum field admits
a null Killing vector ξ = e−σk, then the space-time clearly belongs to
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Kundt’s class (see Chapter 24). In virtue of the Killing equations for the
metric (31.6) the real function σ has to obey the relations

σ,ζ = W,v, σ,u = H,v, σ,v = 0. (31.42)

The corresponding integrability conditions restrict the metric functions
in such a way that one can construct the general solution of Einstein’s
field equations. We have treated these space-times in §24.4.

If there is a non-null Killing vector ∂ϕ, then (in adapted coordinates,
with v = ṽe−2U and r and ϕ related to the real and imaginary part of ζ)
the metric can be written as

ds2 = 2e2U (dϕ + w2du)2 − e−2Ududṽ

+2e−2U
[
(dr + w1ṽdu)2 + (m1ṽ

2 + m2ṽ + m3)du2
]
,

(31.43)

where all metric functions are functions of u and r and obey

w1,rr + 6w1,rw1 + 4w31 = 0,
(31.44a)

U2,r = −w21 − w1,r, w2,rr + 4U,rw2,r = 0,

m1 = (w1,r − 2w21)/4, m2,r = w1,u − 2U,rU,u,
(31.44b)

(m3,r − 2m3w1),r = −4U2,u − e−4Uw22,r.

Equations (31.44a) can be solved and give

2U = ln |(r − h1 − h2)/(r − h1 + h2)|+ h3,

w1 = (r − h1)/
[−h22 + (r − h1)2

]
,

w2 = h4 [r + 4h2 ln |r − h1 − h2|] + 4h22/(h1 + h2 − r),

(31.45)

where the hi are arbitrary functions of u, and (31.44b) then gives the
mi (Hoenselaers 1978a, McIntosh and Arianrhod 1990b). The subcases
w1 = 1/(r − h1) and w1 = 0 are of Petrov types III and N (pp-waves),
respectively.

If an algebraically special vacuum field admits a hypersurface-normal
spacelike Killing vector orthogonal to k, then k necessarily has zero twist.
When, in addition, the expansion of k vanishes, the solutions are of
Kundt’s class (in general, type II); they are the subcase w2 = 0 of (31.45)
(Kramer and Neugebauer 1968a).

Using Theorem 31.1, one can generate type II solutions from the type
D solution (31.41). If one changes only the metric function H, to H +H0

say, then H0 has to satisfy the equation

2H0
,ζζ

+ (W ,vH
0),ζ + (W,vH

0),ζ = 0 (31.46)
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(W,v as in (31.41)). Starting from (31.41) with parameters k = 0 = l, m =
1, i.e. from (24.37a), the vacuum solutions with a null Killing vector,
satisfying (24.37b) with Ψ = 0 and H0 = Mx, can be generated this
way. They contain the van Stockum class (20.32) and the solution with
an additional spacelike Killing vector given by Bampi and Cianci (1979),
see also Joly et al. (1992). A different example is a solution with two
spacelike Killing vectors also due to Bampi and Cianci (1979). It is likely
that Theorem 31.1 also leads to other solutions not contained in previously
known classes.

The vacuum metrics (17.30) admitting one Killing vector also belong
here.

31.6 Einstein–Maxwell null fields and pure radiation fields

For Einstein–Maxwell null fields (aligned case, Φ0 = 0 = Φ1) and for pure
radiation fields the field equations have the same form as in the vacuum
case, except that R033 = 0 has to be replaced by

R033 = κ0Φ2(ζ, ζ, u), (31.47)

cp. (31.25). Φ2 is positive for pure radiation, and for Einstein–Maxwell
fields it has the structure

Φ2 = 2Φ2Φ2 = 2P 2g(ζ, u)g(ζ, u), (31.48)

see (31.19). (With the aid of a coordinate transformation (31.10a) one
can set Φ2 = P 2.) The function H0, which occurs in (31.47) but in no
other field equation, is essentially disposable for pure radiation solutions
so long as Φ2 > 0. For Einstein–Maxwell fields, H0 must be chosen so that
(31.48) holds. Some examples of Einstein–Maxwell null fields are given in
Wyman and Trollope (1965).

Pure radiation solutions with one non-null Killing vector can be ob-
tained from the vacuum solutions (31.44)–(31.45) by adding a function
g(r, u) to m3; to obtain Einstein–Maxwell null fields, conditions (Maxwell
equations) have to be imposed on g (Hoenselaers and Skea 1989, McIntosh
and Arianrhod 1990b).

No Einstein–Maxwell null fields of type D exist (Van den Bergh 1989).
A type D pure radiation field can be generated from the type D vacuum
solution (31.41) by adding a suitable H0 in the sense of Theorem 31.1
(Wils and Van den Bergh 1990): one has to take (31.41) with l = 0 and
H0(ζ, ζ, u) = A(u)z + B(u)z2, which leads to κ0Φ2 = 2mAz−2.

All pure radiation fields of Petrov type III or more special can be
obtained from the vacuum solutions (31.34) and (31.38) by omitting
the differential equation for H0. The pp-waves (§24.5) are well-known
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examples. The conformally flat Einstein–Maxwell and pure radiation so-
lutions are given in §37.5.3.

The Einstein–Maxwell fields of Kundt’s class which are also Kerr–Schild
metrics (§32.3) are of Petrov type N , and the electromagnetic field is null
(Debney 1973, 1974).

31.7 Einstein–Maxwell non-null fields

The non-diverging (ρ = 0) type N (and type O) Einstein–Maxwell non-
null fields (aligned case) are completely known (Cahen and Leroy 1965,
1966, Szekeres 1966b). This class of solutions is given by setting

2P 2(lnP ),ζζ = K = const ( �= 0), H = 1
2Kv2 + G0(u)v + H0,

W = −F (ζ, ζ, u),ζ , F,ζζ + KFP−2 = 0, K(F + F ) = 2(lnP ),u, (31.49)

Φ0 = 0 = Φ2,
√

2κ0 Φ1 =
√
K, H0

,ζζ
+ K2P−2FF = KWW,

in the metric (31.6). The only conformally flat solution (the Bertotti–
Robinson solution, cp. (12.16) and (35.35)),

ds2 = 2dζdζ(1 + Kζζ/2)−2 − 2dudv −Kv2du2 (31.50)

is contained in (31.49) as the special case F = G0 = H0 = 0.
For type III and W,v �= 0, by substituting P 2 from the field equation

R11 = 0 into the type III condition Ψ2 = 0, one obtains

[ln(W,vP
2/W ,v)],ζ = 0. (31.51)

This equation implies

P 2W,v = W ,vf(ζ, u) = W,vf(ζ, u)f(ζ, u)P−2 ⇒ (lnP ),ζζ = 0.
(31.52)

Then the field equation R12 = 2κ0Φ1Φ1 would lead to the contradiction
Φ1 = 0:

Theorem 31.3 In the non-null case (Φ1 �= 0), there are no type III
Einstein–Maxwell fields with W,v �= 0.

For type III and W,v = 0, one gets (from R12 = 2κ0Φ1Φ1 and Φ1 =
F (ζ, u)) the differential equation (Liouville equation)

P 2(lnP ),ζζ = κ0 |F (ζ, u)|2 , (31.53)
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which has the general solution

P 2 = κ0 |F |2 (1 + ff)2(f,ζf ,ζ)
−1, f = f(ζ, u), (31.54)

containing an arbitrary function f(ζ, u).
Hacyan and Plebański (1975) investigated the subcase W = 0. The

functions Φ02, G
0, H0, in

Φ1 = F (ζ, u), Φ2 = PF ,ζ v + Φ02, H = κ0FFv2 + G0v + H0, (31.55)

with P given by (31.54), are then subject to the rest of the Einstein–
Maxwell equations, i.e. to(

Φ02/P
)
,ζ =
(
FP−2
)
,u

,
[
G0 + (lnP ),u

]
,ζ = 2κ0F Φ02/P,

P 2H0
,ζζ

+ G0(lnP ),u + (lnP ),uu − (lnP ) 2,u = κ0Φ02 Φ 0
2.

(31.56)

An obvious particular solution is given by

ds2 = 2dζdζ(1 + ff)−2 − 2du[dv + (f ′f ′
v2 + H0)du], f = f(ζ),

(31.57)√
κ0 Φ1 = f

′ =
√
κ0 F ,

√
κ0 Φ2 = (1 + ff)f ′′

v, H0
,ζζ

= 0.

From (31.28), this metric is of Petrov type III if f ′′ �= 0. The electro-
magnetic field is determined up to a constant duality rotation. Other
particular solutions of (31.56) are given in Hacyan and Plebański (1975).

Solutions with W �= 0, P,u = 0 = G0 = Φ2 and constant κ0Φ1Φ1 (and
cosmological constant Λ) have been constructed by Khlebnikov (1986).

It is a general feature of the type III solutions (aligned case) that the
second eigendirection of the electromagnetic non-null field is not parallel
to the single principal null direction of the Weyl tensor.

A class of type D Einstein–Maxwell fields can be obtained from the
general type D vacuum class (31.41) by simply modifying the function
P 2 to

P 2 = (z2 + l2)[k(z2 − l2) + 2mz − e2]−1, (31.58)

the rest of the metric remaining unchanged. The tetrad components of
the electromagnetic field tensor are then

Φ0 = 0,
√

2κ0 Φ1 =
e

(z − i l)2
,

√
κ0 Φ2 =

−2ezv
P (z − i l)2(z2 + l2)

.

(31.59)

The two null eigendirections of the Maxwell field coincide with the eigendi-
rections of the type D Weyl tensor. Like their uncharged counterparts
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(31.41), these solutions admit a group of motions G4 on T3 (cp. (13.48)).
Unlike the vacuum case this class does not exhaust all type D solutions: it
does not, for instance, contain an Einstein–Maxwell field given by Kowal-
czyński and Plebański (1977) in the form

ds2 = 2x−2[(dx/A)2 + A2dy2 + (dz/B)2 −B2dt2],

A2 = ax2 + cx3 − 2e2x4, B2 = b− az2, a, b, c, e = const.
(31.60)

The Einstein–Maxwell type D solutions (double aligned) of Kundt’s
class have been determined by Plebański (1979). They are given by

ds2 =
x2 + l2

K(x)
dx2 +

K(x)
x2 + l2

[
dσ +

vdu− udv
1− εuv

]
+ 2

(x2 + l2)
(1− εuv)2

dudv,

K(x) = 2nx− (e2 + g2)− 2ε(x2 − l2), (31.61)

Φ11 = (e2 + g2)/2(x2 + l2)2, e, g, l, ε, n = const,

and contain the solutions (24.21)–(24.22) – with Λ = 0 – with a group G2
on null orbits.

As in the vacuum case, Theorem 31.1 can be used to generate new
solutions from known ones.

31.8 Solutions including a cosmological constant Λ

If we want to include (add) an energy-momentum tensor −Λgik, cp. (5.4),
then we have to replace the field equations (31.16b) by

R12 = 2κ0Φ1Φ1 + Λ, R34 = 2κ0Φ1Φ1 − Λ, (31.62)

the rest of the field equations remaining unchanged. No general theorem
saying how to incorporate Λ into a vacuum or Einstein–Maxwell field is
available, but solutions have been found in a number of subcases.

Starting from type III and N vacuum solutions, one has ∆ lnP = Λ,
i.e. P = 1 + Λζζ/2 instead of P = 1, and H,vv = −1

2P
2W,vW ,v − Λ

instead of (31.29). The type N solutions falling into this class have been
given by Ozsváth et al. (1985) (see also Garćıa D. and Plebański (1981)
and Bičák and Podolsky (1999)), and the solutions with W,v = 0 by
Lewandowski (1992).

Metrics for which the multiple null eigenvector k is recurrent, ka;b =
kapb, have been studied by Leroy and McLenaghan (1973).

Some special type II solutions with constant Φ1Φ1 have been con-
structed by Garćıa D. and Alvarez C. (1984) and Khlebnikov (1986).
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The hypersurface-homogeneous Einstein spaces of Kundt’s class have
been found by MacCallum and Siklos (1992).

Type D Einstein–Maxwell fields (double aligned) with Λ can be ob-
tained from (31.61) by simply adding the term −Λ(x4/3 + 2l2x2 − l4) in
the expression for K(x) (Plebański 1979).



32
Kerr–Schild metrics

32.1 General properties of Kerr–Schild metrics

32.1.1 The origin of the Kerr–Schild–Trautman ansatz

In general relativity, the field equations are often simplified by considering
null vector fields. One important example is the Kerr–Schild metrical
ansatz (Kerr and Schild 1965a, 1965b), which is given by

gab = ηab − 2Skakb, (32.1)

where ηab is the Minkowski metric, S is a scalar function and ka is a null
vector with respect to both metrics gab and ηab, so that we have

gabk
akb = ηabk

akb = 0, gab = ηab + 2Skakb. (32.2)

The ansatz (32.1)–(32.2) was first studied by Trautman (1962). His
idea was that a gravitational wave should have the ability to propagate
information, and that this can be achieved if both the covariant and the
contravariant components of the metric tensor depend linearly on the
same function S of the coordinates.

32.1.2 The Ricci tensor, Riemann tensor and Petrov type

Kerr–Schild metrics have been studied by several authors, using either
the Newman–Penrose formalism or coordinate methods. The calculations
are greatly simplified by the fact the 4-vector k is null.

First we note that the Christoffel symbols and the determinant of the
metric tensor (32.1)–(32.2) satisfy the conditions

Γc
efk

ekf = 0, Γc
efkck

f = 0, (−g)1/2 = 1. (32.3)

485
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These relations imply that k has the following properties:

ka;ck
c = ka,ck

c, ka;ck
c = ka,ck

c, (32.4)

Γc
abkc = (Skakb);ckc; Γc

abk
a = −(Skckb);aka. (32.5)

(A semicolon denotes the covariant derivative with respect to gab.) k is
geodesic with respect to gab if and only if it is geodesic with respect to
the flat metric ηab, and it has the same expansion with respect to both
metrics,

2Θ = kc;c = kc,c. (32.6)

The definition of the Ricci tensor together with (32.3)–(32.5) lead to the
equation

Rbdk
bkd = 2Sgbd(kd;aka)(kb;ckc) = κ0Tbdk

bkd. (32.7)

This gives rise to

Theorem 32.1 The null vector of a Kerr–Schild metric is geodesic if
and only if the energy-momentum tensor obeys the condition

Tabk
bkd = 0. (32.8)

We proceed further with energy-momentum tensors of the type (32.8).
The geodesic null vector k, ka;bkb = 0, has the same twist and shear with
respect to both metrics,

2ω2 = k[a;b]k
a;b = k[a,b]k

a,b; 2Θ2 + 2σσ̄ = k(a;b)k
a;b = k(a,b)k

a,b. (32.9)

The Ricci tensor has the simple structure (D ≡ ki∂i)

Rbd = (Skbkd);a;a − (Skakd);ab − (Skakb);ad + 2S(D2S)kbkd. (32.10)

It obeys the eigenvalue equation

Rcdk
d = −[4ω2S + (kaS,bkb);a]kc. (32.11)

By means of the field equations we are led to

Theorem 32.2 The geodesic null vector k of a Kerr–Schild metric is an
eigenvector of the energy-momentum tensor.

Further we get, from the definition of the Riemann tensor,

kckaRabcd = (D2S)kbkd. (32.12)

A straightforward calculation leads to the main result of this section:

Theorem 32.3 The geodesic null vector k of a Kerr–Schild space-time
obeying (32.8) is a multiple principal null direction of the Weyl tensor;
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thus the space-time is algebraically special,

Tabk
akb = 0 ⇐⇒ ka;bk

b = 0 ⇐⇒ kckaCabcd = Hkbkd, (32.13)

with H = D2S −R/6 (Gürses and Gürsey 1975).

32.1.3 Field equations and the energy-momentum tensor

The field equations of a Kerr–Schild space-time possessing a geodesic null
vector k take the ‘linear’ form (Gürses and Gürsey 1975)

κ0T
d
b = 1

2ηcb(η
aegcd − ηcagde − ηdagce + ηcdgae),ae. (32.14)

This result follows from (32.4), (32.10). Every Kerr–Schild solution is
a solution of the linear field equations (32.14). The reverse is not true,
because the Kerr–Schild conditions (32.1)–(32.2) have to be fulfilled.

In terms of a complex null tetrad {ea} = (m,m, l,k) the tetrad compo-
nents S44 and S41 of the traceless part of the Ricci tensor vanish because
of Theorem 32.2. Usually one considers Kerr–Schild space-times satisfying
the additional restriction

Sabm
amb = S11 = 0. (32.15)

With this assumption, among the energy-momentum tensor types consid-
ered in this book only

κ0Tab = −1
4Rgab + λ1kakb + λ2(mamb + mamb + kalb + kbla) (32.16)

survives. The form (32.16) includes electromagnetic non-null fields (λ1 =
R = 0) and electromagnetic null fields and pure radiation fields (λ2 =
R = 0). Perfect fluid distributions cannot occur.

32.1.4 A geometrical interpretation of the Kerr–Schild ansatz

Newman and Unti (1963) introduced a coordinate system {xa} attached
to an arbitrary particle world line ya(u) in flat space-time. Kinnersley and
Walker (1970), and Bonnor and Vaidya (1972) have used this coordinate
system to find accelerated particle solutions in general relativity. Here we
confine the investigation to Kerr–Schild metrics with a geodesic, shearfree
and twistfree null congruence, following closely the paper of Bonnor and
Vaidya (1972).

Let ya(u) be a particle world line in Minkowski space and λa ≡ dya/du
be its unit tangent vector; u is the proper time of the particle. We can
extend the definition of u off the world line by drawing the forward null
cone at Q(ya),

ηab(xa − ya)(xb − yb) = 0, (32.17)
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Fig. 32.1. A geodesic and shearfree null vector k and an arbitrary particle
world line in flat space-time

and assigning the corresponding value of u to all points P (xa) on this
null cone, see Fig. 32.1. Similarly, we can extend the definition of λa by
λa(P ) = λa(Q). We identify the null vector

ka = r−1(xa − ya) (32.18)

with the null vector in the Kerr–Schild ansatz (32.1)–(32.2) and get

gab = ηab + 2Sr−2(xa − ya)(xb − yb). (32.19)

Here we have introduced the retarded distance r ≡ λa(xa − ya). The
null congruence given by (32.18) is shearfree, geodesic and twistfree with
respect to both the Minkowski metric ηab and the Kerr–Schild metric gab.
In order to find the energy momentum tensor of the Kerr–Schild metric
(32.19), we need the identities ka,b = r−1[ηab−kaλb−kbλa−kakb(1+rkcλ̇

c)]
and r,b = kb(1 + rkcλ̇c) + λb. (The dot denotes d/du and kcλ̇

c may be
interpreted as the acceleration of the particle at Q in the direction na, see
Fig. 32.1.)

The particular scalar function S = m(u)r−1 − e2(u)r−2/2 leads by
means of (32.14)–(32.19) to the energy-momentum tensor

κ0Tb
d = −e2

r4
gdb +

2e2

r4
(kdλb + kbλ

d) + Φ2kdkb,
(32.20)

Φ2 ≡ 2e2

r4
+

4
r

(
m

r
− e2

2r2

)
λ̇ck

c − 2
r

(
m,u

r
− ee,u

r2

)
.
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The Kerr–Schild solutions corresponding to (32.20) contain: (i) the
Schwarzschild solution (15.19) e = 0, m = const, λ̇ckc = 0, (ii) Vaidya’s
shining star solution (15.20) e = 0, m = m(u), λ̇ckc = 0, (iii) the Reissner–
Nordström solution (15.21) e = const, m = const, λ̇ckc = 0, (iv) Kinner-
sley’s photon rocket (28.73) e = 0, m = m(u), λ̇ckc �= 0 (Kinnersley
1969a), and (v) the general case e = e(u), m = m(u), λ̇ckc �= 0.

32.1.5 The Newman–Penrose formalism for shearfree and geodesic
Kerr–Schild metrics

In solving the field equations, the Newman–Penrose formalism is more
convenient than the direct procedure outlined in §32.1.2. Throughout this
section the vector k in the null tetrad (m,m, l,k) is the null vector of the
Kerr–Schild metric (32.1)–(32.2); all numerical indices are tetrad indices.

Following Debever (1974), we deal only with those Kerr–Schild space-
times which admit a geodesic, diverging and shearfree null congruence
with tangent vector k,

κ = σ = 0; Γ142 = −ρ = Θ + iω �= 0, (32.21)

and have a Ricci tensor satisfying the relations

R44 = R41 = R11 = 0. (32.22)

(Ricci tensors of this type are general enough for most of the applications
of the Kerr–Schild ansatz.)

As in §27.1, we can infer from (32.21)–(32.22) and Ψ0 = Ψ1 = 0 (The-
orem 32.3) that

Γ 41 = ρω2 + τω3 (32.23)
can be written as

Γ 41 = dY . (32.24)
The difference from §27.1 is that τ may be non-zero, and P is transformed
to unity. Comparing (32.23) and (32.24) we see that

DY = 0, δY = 0, δ̄Y = ρ �= 0, ∆Y = τ (32.25)

holds. Using the commutation relations and the Newman–Penrose equa-
tions, we find that ε and β vanish. A null rotation k′ = k, m′ =m+Bk,
l′ = l+Bm+Bm+BBk, preserves the relations κ = σ = ε = β = 0 and
can be used to make α vanish, which because of α′ = α + Bρ and ρ �= 0
is always possible. As a consequence of the Newman–Penrose equations,
the coefficient π vanishes too. Thus we have

κ = σ = ε = β = α = π = 0. (32.26)

At this stage, Debever (1974) proves



490 32 Kerr–Schild metrics

Theorem 32.4 A space-time is a special Kerr–Schild space-time (de-
fined by the properties (32.1)–(32.2) and (32.21)–(32.22)) if and only if
its Newman–Penrose coefficients can be transformed to κ τ σ ρ

π ν µ λ
ε γ β α

 =

 0 ∆Y 0 δ̄Y
0 ν µ 0
0 γ 0 0

 , S =
µ

ρ
=

µ̄

ρ̄
(32.27)

with respect to a suitably chosen null tetrad.

The details of the proof are given by Debever (1974). To show that (32.27)
is sufficient, one first determines the remaining Newman–Penrose coeffi-
cients by means of the Newman–Penrose equations and the commutation
relations, see §§7.1, 7.3. The result reads

γ = 2−1(DS + S(ρ− ρ̄)), ν = δ̄S − S∆Y, µ = Sρ. (32.28)

Then, solving the first Cartan equations (2.76)

dω1 = Y,aω
a ∧ (ω4 − Sω3) = dω2,

dω3 = Y ,aω
a ∧ ω1 + Y,aω

a ∧ ω2, (32.29)

dω4 = SY,aω
a ∧ ω2 + SY ,aω

a ∧ ω1 + S,aω
a ∧ ω3,

one obtains the dual basis

ω1 = dζ + Y dv, ω2 = dζ̄ + Y dv,
(32.30)

ω3 = Y dζ + Y dζ̄ + Y Y dv + du, ω4 = Sω3 + dv.

The associated metric

ds2 = 2(dζ dζ̄ − du dv)− 2S(Y dζ + Y dζ̄ + Y Y dv + du)2 (32.31)

is clearly of the Kerr–Schild type.
If we start with a line element (32.31), then the null congruence

ω3 = −kadxa = Y dζ + Y dζ + Y Y dv + du (32.32)

will be geodesic and shearfree only if Y obeys (32.25). Because of

D = −(Y ∂ζ + Y ∂ζ̄ − ∂v − Y Y ∂u), δ = ∂ζ − Y ∂u,
(32.33)

∆ = S(Y ∂ζ + Y ∂ζ̄ − ∂v − Y Y ∂u) + ∂u,

these conditions read

Y,ζ − Y Y,u = 0, Y,v − Y Y,ζ = 0. (32.34)



32.1 General properties of Kerr–Schild metrics 491

They show that Y satisfies an equation

F (Y, ζ̄Y + u, vY + ζ) = 0, (32.35)

where F is an arbitrary function analytic in the three complex variables
Y , ζ̄Y + u and vY + ζ :

Theorem 32.5 (Kerr’s theorem) Any analytic, geodesic and shearfree
null congruence in Minkowski space is given by ω3 = dv or by

ω3 = Y dζ + Y dζ̄ + Y Y dv + du, (32.36)

where Y (u, v, ζ, ζ̄) is defined implicitly by (32.35) with arbitrary F (Cox
and Flaherty 1976).

The null congruence (32.32) will be geodesic but not necessarily shear-
free if

(Y,ζ − Y Y,u)Y − (Y,v − Y Y,ζ)Y = 0 (32.37)

is satisfied (Cox and Flaherty 1976). The property κ = 0 (or κ = 0 = σ)
holds in both Minkowski space and Kerr–Schild space-time, see above.

To get explicitly all Kerr–Schild metrics one has to solve the Newman–
Penrose equations. Using the basis (32.30) we find that the following
Newman–Penrose equations are already fulfilled:

Dρ = ρ2; Dτ = τρ; δτ = τ2; δρ = (ρ− ρ̄)τ ; δ̄τ −∆ρ = τ τ̄ + Sρ2.
(32.38)

The Newman–Penrose equations one really has to solve read

D2S = 2(ρ + ρ̄)DS − 2Sρρ̄− 1
2R,

(32.39)
(ρ + ρ̄)DS − S(ρ2 + ρ̄2) = 1

4R + 2Φ11,

δγ = τ(µ + γ) + Φ12, δν −∆µ− µ2 − (γ + γ̄)µ− τν = Φ22. (32.40)

The remaining Newman–Penrose equations determine the non-vanishing
components of the Weyl tensor, namely

Ψ2 = µρ + γ(ρ− ρ̄) + 1
24R + Φ11, Ψ3 = δ̄γ + ρν − τ̄ γ, Ψ4 = δ̄ν − τ̄ ν.

(32.41)
The Newman–Penrose equations (32.39) can be solved immediately in the
case of vanishing Ricci scalar (R = 0). The solution reads

S = 1
2M̃(ρ + ρ̄) + B̃ρρ̄, Φ11 = B̃ρ2ρ̄2, DM̃ = DB̃ = 0, (32.42)

M̃ and B̃ being real functions. So for R = 0, only (32.40) remains to be
solved.



492 32 Kerr–Schild metrics

Table 32.1. Kerr–Schild space-times

Vacuum Einstein–Maxwell Pure radiation Perf. fluid
ρ �= 0 A (32.43) S (32.59) S (32.78) ∃/

(32.80)
ρ = 0 A Th. 32.6 A (32.71) A (32.71) ∃/

In the following sections we shall consider the different types of the
energy-momentum tensor which may occur. The main results are collected
in Table 32.1.

32.2 Kerr–Schild vacuum fields

32.2.1 The case ρ = −(Θ + iω) �= 0

The general Kerr–Schild solution of Einstein’s vacuum field equations was
found by Kerr and Schild (1965a, 1965b). The remaining field equations
(32.40) require an intricate calculation to get the final result. For details
see Debney et al. (1969) and §32.3.1. The solutions are

ds2 = 2(dζ dζ̄ − du dv) + m̃P−3(ρ + ρ̄)[du + Y dζ + Y dζ̄ + Y Y dv]2,
(32.43)

P = pY Y + qY + q̄Y + c, M̃ = m̃P−3,

where m̃, p, c (real) and q (complex) are constants. The function Y is
given by the implicit relation

Φ(Y ) + (qY + c)(ζ + Y v)− (pY + q̄)(u + Y ζ̄) = 0, (32.44)

where Φ(Y ) is an arbitrary analytic function of the complex variable Y .
The complex expansion of the null vector k is given by

ρ̄ = −P [{Φ + (qY + c)(ζ + Y v)− (pY + q̄)(u + Y ζ̄)},Y ]−1. (32.45)

The solutions have the following properties:
(i) They are all algebraically special, k being a multiple principal null
direction of the Weyl tensor. Thus k is shearfree and geodesic.
(ii) They are of Petrov types II or D; types III and N cannot occur.
For Φ = 0 (↔ ρ = ρ) and Φ = i aY they are of type D (McIntosh and
Hickman 1988).
(iii) They all admit at least a one-parameter group of motions with Killing
vector

ξ = c∂u + q∂ζ̄ + q̄∂ζ + p∂v, (32.46)



32.3 Kerr–Schild Einstein–Maxwell fields 493

which is simultaneously a Killing vector of flat space-time. The solutions
can be simplified by performing a Lorentz transformation. One can thus
assume that if ηabξaξb < 0, P

√
2 = 1+Y Y ; if ηabξaξb > 0, P

√
2 = 1−Y Y ;

and if ηabξ
aξb = 0, P = 1.

(iv) The points (Pρ−1) = 0 are singularities of the Riemannian space.
In general Y is a multivalued function with these singularities as branch
points. The only solution whose singularities are confined to a bounded
region is the Kerr metric (Kerr and Wilson 1979).
(v) For a timelike Killing vector ξ, the particular case Φ = −iaY leads
to the Kerr solution (20.34). Its Kerr–Schild form reads (with r given by
(x2 + y2)(r2 + a2)−1 + z2r−2 = 1)

ds2 = dx2 + dy2 + dz2 − dt2 +
2mr3

r4 + a2z2

[
dt +

z

r
dz

(32.47)

+
r

r2 + a2
(xdx + y dy)− a

r2 + a2
(xdy − y dx)

]2
,

the double Debever–Penrose null vector being

ω3 = 21/2
r

r + z

[
dt +

z

r
dz +

r(xdx + y dy )
r2 + a2

− a(xdy − y dx)
r2 + a2

]
= −kidxi.

(32.48)

For a different characterization of the Kerr–Schild vacuum solutions see
§§29.2.5 and 32.4.1.

32.2.2 The case ρ = −(Θ + iω) = 0

The non-expanding and non-twisting solutions have been treated in Chap-
ter 31. The corresponding Kerr–Schild metrics have been considered by
Trautman (1962), Urbantke (1972), Debney (1973) and McIntosh (private
communication). The result is

Theorem 32.6 The Kerr–Schild vacuum fields with a non-expanding
and non-twisting null congruence k are necessarily of Petrov type N . They
are the subcases W 0 = 0 of (31.34) and (31.38).

32.3 Kerr–Schild Einstein–Maxwell fields

32.3.1 The case ρ = −(Θ + iω) �= 0

Electromagnetic solutions of the Kerr–Schild type were studied by Debney
et al. (1969), again assuming the null vector k to be geodesic. By Theorem
32.1, the energy-momentum tensor of the electromagnetic field fulfils the
conditions

ka;bk
b = 0 ↔ Tabk

akb = 0 ↔ Fabk
a = λkb. (32.49)
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Hence k is a principal null direction of Fab if and only if it is geodesic.
The space-time is algebraically special with k as the multiple principal null
direction. The energy-momentum tensor obeys (32.22), and the Bianchi
identities imply that the null vector k is shearfree. So all results of §32.1.5
are true for the electromagnetic case too. See also Chapter 30!

The result (32.49) implies

Φ1 = 2−1Fab(kalb + mamb), Φ2 = Fabm
alb, Φ0 = 0, (32.50)

for the tetrad components of the Maxwell tensor. The field equations
therefore read

R12 = R34 = 2κ0Φ1Φ1, R13 = 2κ0Φ1Φ2, R33 = 2κ0Φ2Φ2, (32.51)

and Maxwell’s equations (7.22)–(7.25) are

DΦ1 − 2ρΦ1 = 0, δΦ1 − 2τΦ1 = 0, (32.52)

δ̄Φ1 −DΦ2 + ρΦ2 = 0, −δΦ2 + ∆Φ1 + 2SρΦ1 + τΦ2 = 0. (32.53)

Using (32.38) and the commutation relations (7.6a)–(7.6d), the field
equations (32.51)–(32.53) can be partially integrated. The result is

Φ1 = ρ2Φ01, Φ2 = ρΦ02 + δ̄(ρΦ01), DΦ01 = DΦ02 = 0, (32.54)

S = 1
2M̃(ρ + ρ̄) + κ0Φ01Φ

0
1ρρ̄, DM̃ = 0. (32.55)

In terms of the four unknown functions Y , M̃ , Φ01 and Φ02, the remaining
Maxwell equations and Einstein equations are found to be

DΦ01 = DΦ02 = 0, δΦ01 − 2ρ̄ρ−1τΦ01 = 0,
(32.56)

∆Φ01 − τρ−1δ̄Φ01 − τ̄ ρ̄−1δΦ01 + τρ−1Φ02 − ρ̄−1δΦ02 = 0

and
DM̃ = DY = δ̄Y = 0, δM̃ − 3M̃ρ̄ρ−1τ = 2κ0ρ̄Φ01 Φ 0

2,

(32.57)
∆M̃ − τ̄ ρ̄−1δM̃ − τρ−1δ̄M̃ = −κ0Φ02 Φ 0

2.

No general solution of this system is yet known. Debney et al. (1969) have
completely solved the case in which the electromagnetic field is further
restricted by the condition

Φ02 = 0, (32.58)
i.e. these Kerr–Schild metrics are a subcase of the charged vacuum solu-
tions, cp. §30.4. The solutions then are

ds2 = 2(dζ dζ̄ − du dv) + P−3 [m̃(ρ + ρ̄)− 1
2κ0ΨΨP−1ρρ̄

]
(32.59)

× [Y dζ + Y dζ̄ + Y Y dv + du]2.
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As in the vacuum case, Y , ρ and P are given by (32.43)–(32.45), and Φ
and Ψ are arbitrary (analytic) functions of Y . The solutions admit the
Killing vector (32.46). Ψ = 0 gives the vacuum solution (32.43).

The particular choice

P = 2−1/2(1 + Y Y ), Φ = −iaY, Ψ = e, (32.60)

leads to the field of a rotating charged body first obtained by Newman
et al. (1965) (cp. §21.1.3). Using the special null coordinates

√
2ζ = x+iy,√

2ζ̄ = x− iy,
√

2u = t− z,
√

2v = t + z the solution and the electromag-
netic field are found to be

ds2 = dx2 + dy2 + dz2 − dt2 +
2m̃r3 − e2r2

r4 + a2z2

[
dt +

z

r
dz

+
r

r2 + a2
(xdx + y dy)− a

r2 + a2
(xdy − y dx)

]2
, (32.61)

(Fxt − iFyz, Fyt − iFzx, Fzt − iFxy) = er3(r2 + iaz)−3(x, y, z + ia),

where the function r is defined by the implicit relation

(x2 + y2)(r2 + a2)−1 + z2r−2 = 1. (32.62)

Taking e = 0 in (32.61), we recover the Kerr solution (32.47).

32.3.2 The case ρ = −(Θ + iω) = 0

The non-diverging solutions were considered in detail in Chapter 31
(Kundt’s class). In §31.1 it was shown that ρ = 0 implies that k is both
a multiple principal null direction of the Weyl tensor and the electromag-
netic field tensor and that k is shearfree.

Expansionfree electromagnetic solutions of the Kerr–Schild class were
treated first by Biallas (1963), and later by Debney (1974), again assuming
k to be a geodesic null congruence.

Choosing the basis (32.30), the only non-zero connection coefficients
are given by

Γ233 = δ̄S − S∆Y, Γ143 = −∆Y , Γ433 = DS, (32.63)

and the vector fields (e1,e2,e3, e4) obey the commutation relations
[e1,e2] = [e1,e4] = [e2, e4] = 0. The non-zero Newman–Penrose coef-
ficients and the non-vanishing components of the Weyl and Ricci tensors
read

2γ = DS, ν = δ̄S − S∆Y, τ = ∆Y ,
(32.64)

R33 = 2κ0Φ2Φ2, Ψ4 = δ̄δ̄S − 2δ̄S∆Y.
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The only non-zero component of the electromagnetic field tensor is Φ2.

Theorem 32.7 All sourcefree Einstein–Maxwell fields of the Kerr–Schild
class with an expansionfree (geodesic) null congruence k are of Petrov
type N (or O). k is both a shearfree quadruple principal null direction of
the Weyl tensor and a principal null direction of the Maxwell field. The
electromagnetic field is null (Debney 1974).

These results reduce the Einstein–Maxwell equations for expansionfree
Kerr–Schild fields to the equations

D2S = 0, Dδ̄S −∆Y DS = 0, δδ̄S − δS∆Y − δ̄S∆Y = κ0Φ2Φ2,
(32.65)

DΦ2 = 0, δ̄Φ2 −∆Y Φ2 = 0, δY = δ̄Y = DY = 0.

In solving the field equations new coordinates z, z, u′, v′ introduced by

z = ζ + Y v, z̄ = ζ̄ + Y v, u′ = u + Y ζ + Y ζ̄ + Y Y v, v′ = v (32.66)

are more convenient than the old set ζ, ζ̄, u, v. In terms of the new coor-
dinates the dual basis (32.30) and tetrad basis read

ω1 = ω2 = dz − r−1vτ̄du′, ω3 = r−1du′, ω4 = r−1Sdu′ + dv,
(32.67)

r = [1− Ẏ z − Ẏ z̄]−1, rdY /du′ = rẎ = τ ;

e1 = ∂z, e2 = ∂z̄, e3 = v[τ̄ ∂z + τ∂z̄] + r∂u′ − S∂v, e4 = ∂v. (32.68)

The field equations then are, with Y = Y (u′),

S,vv = 0, Φ2,v = 0, S,z̄v − τ̄S,v = S,zv − S,vτ = 0, (32.69a)

Φ2,z̄ − τΦ2 = 0, S,zz̄ − S,z τ̄ − S,z̄τ = κ0Φ2Φ2. (32.69b)

From (32.69a) we get

Φ2 = Φ2(z, z̄, u′), S = vra(u′) + g(z, z̄, u′), (32.70)

where a(u′) and g(z, z̄, u′) are real functions. By a coordinate transfor-
mation one can set a(u′) = 0 (Debney 1974). Then the electromagnetic
Kerr–Schild solutions admitting a geodesic, shearfree and expansionfree
null congruence become

ds2 = 2(dz − vẎ du′)(dz̄ − vẎ du′)− 2r−1(gr−1du′ + dv)du′. (32.71)

The remaining field equations (32.69b) restrict the electromagnetic field
and the real function g(z, z̄, u′) by the equations

(r−1Φ2),z̄ = 0; (r−1g),zz̄ = κ0r
−1Φ2Φ2. (32.72)
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The vector k is a null Killing vector (see §24.4) if and only if the rotation
coefficient τ = rẎ vanishes. In this case the null vector is covariantly
constant; all solutions of this type are plane-fronted gravitational waves
(see §24.5). To get all solutions in the general case τ �= 0 means solving
the two-dimensional Poisson equation (32.72).

32.4 Kerr–Schild pure radiation fields

For Kerr–Schild metrics with the energy-momentum tensor of pure radi-
ation, Tmn = Φ2kmkn, the geodesic null vector k need not be shearfree.
Three cases can be distinguished, depending on whether ρ and σ are zero
or not.

32.4.1 The case ρ �= 0, σ = 0

For σ = 0, k is a multiple eigenvector of the Weyl tensor and the Kerr–
Schild metrics belong to the class of twisting algebraically special metrics
considered in Chapters 29 and 30. To see the connection between the
metric used there (see e.g. (29.13) or (30.14)) and the Kerr–Schild form
(32.1), one can start from (32.27) with (32.32) being satisfied. Taking
coordinates (Y, Y , v, w) with

w = u + ζY + ζY + Y Y v (32.73)

and introducing a new basis with

ω1
′

= −(ω1 + Bω3) = −ρ−1dY, ω2
′

= ω1,

ω4
′

= Bω1 + Bω2 + BBω3 + ω4, ω3
′

= ω3,

B = L,w, L ≡ −(ζ + vY ),

(32.74)

one arrives at the form (29.13) of the line element, by identifying
(Y, Y,v, w) here with (ζ, ζ, r, u) there and by setting P = 1.

In the new variables, (32.35), i.e. F (Y, ζY + u, vY + ζ) = 0, reads

F (Y,w + LY ,−L) = 0. (32.75)

It is equivalent to the statement that the function L(Y, Y , w) obeys ∂L ≡
L,Y − LL,w = 0. Leaving now the gauge P = 1 we can state:

Theorem 32.8 There exist coordinates in which Kerr–Schild vacuum
and pure radiation metrics with a geodesic, shearfree but diverging null
vector k are the subcase ∂∂V = 0 (∂L = 0 in the gauge P = 1) of the
algebraically special metrics (29.13) (Debney et al. 1969).

Because of ∂∂V = 0, M is necessarily zero, and since m = 0 would lead to
flat space-time, we can gauge m to m = 1 which induces L,u = 0 (we are
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sticking now to the coordinates (ζ, ζ, r, u) used throughout Chapter 30).
To integrate ∂∂V = 0, we introduce as in (29.33) a function Φ by L =
Φ,ζ/Φ,u so that we have

M = 0, m = 1, Φ = u + ih(ζ, ζ), L = ih,ζ , h(ζ, ζ) real.
(32.76)

Since because of this definition of Φ we have ∂u/∂ζ |Φ,ζ= const =
−Φ,ζ/Φ,u, we can write the operator ∂ as

∂ = ∂ζ − L∂u = ∂ζ |Φ,ζ= const. (32.77)

The Kerr–Schild condition ∂∂V = 0 is then integrated by V = F1(Φ, ζ) +
ζF2(Φ, ζ) with arbitrary functions Fi, i.e. we have (Stephani 1983a)

V = F1
[
u + ih(ζ, ζ), ζ

]
+ ζF2

[
u + ih(ζ, ζ), ζ

]
,

m = 1, M = 0, L = ih,ζ , P = V,u, V, h real,
(32.78)

and the last remaining field equation (30.42) reads

6P,u/P = κ0n
2(ζ, ζ, u). (32.79)

The closed form (32.78) looks rather promising, but one quickly realizes
that it is not easy to find functions h, Fi that make V real. Except in
the non-twisting case h = 0, the dependence on u (i.e. the radiation rate)
will be rather restricted. In the vacuum case (n2 = 0 in (32.79)) V and
therefore also the Fi must be linear in u, and the reality condition then
uniquely defines h.

In the pure radiation case (32.79) is just the definition of n2. Only a few
solutions are known; most of them have been found not by using (32.78)
but by directly attacking the condition ∂∂V = 0. In the axisymmetric
case, the complete solution was first found by Herlt (1980), using a for-
malism developed by Vaidya (1973, 1974). In the present notation, it is
given by

V = 1
2u
2g1 + g3, h = −g2/g1, gi = ai + biζζ,

V = (g1g2)1/2 cos au, h = (ln g1/g2) /2a,

V = (b1eau + b2e−au) (g0g0)1/2, h = i (ln g0/g0) /2a,

(32.80)

with constants ai, bi that are real except a0, b0. Included here is the radiat-
ing Kerr metric given by Vaidya and Patel (1973). None of these solutions
admits an interpretation as an Einstein–Maxwell null field.

An example of a non-axisymmetric solution can be obtained if in the
last of the above examples one inserts g0 = A(ζ) + ζB(ζ) with arbitrary
functions A and B (Stephani 1983a). Another example is the photon
rocket (28.73), cp. also (32.20).
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32.4.2 The case σ �= 0

In the aligned case (32.8), space-time is algebraically special because of
Theorem 32.3, and the theorems given in §7.6 show that it must be of
type N. So the Kerr–Schild solutions in question are contained in the
solutions discussed in §26.1. To extract them from the classes considered
there, we have to incorporate the Kerr–Schild condition (32.1), i.e. we
have to demand that the type N solution has non-zero shear and can be
written as

ds2 = 2ω1ω2 − 2ω3ω4,

ω1 = dζ + Y dv = ω2, ω4 = Sω3 + dv, (32.81)

ω3 = −kadxa = Y dζ + Y dζ̄ + Y Y dv + du.

Starting with (32.81), and using Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0 and the field
equations Rab = κ0δ

3
aδ
3
bΦ2, the Newman–Penrose equations show that the

null congruence k must be geodesic and twistfree,

κ = ρ− ρ̄ = 0, ρ2 = σσ̄, (32.82)

and the spin coefficients ρ, σ and τ have to satisfy

δ(ρτσ−1 + τ) = δ̄(ρτ̄σ−1 + τ) (32.83)

(Urbantke 1975). All type N pure radiation fields satisfying (32.82) and
σ �= 0 are known and contained in (26.11) and (26.13), but only spe-
cial (Kerr–Schild) metrics have been determined which obey in addition
(32.83), cp. Urbantke (1975). A special example is the cylindrically sym-
metric solution (22.70), cp. Patel (1973b).

32.4.3 The case ρ = σ = 0

Kerr–Schild pure radiation solutions possessing a geodesic, expansionfree
and shearfree null congruence belong to Petrov type N , the vector k being
the quadruple principal null direction. All solutions of this class are given
by (32.71) with arbitrary functions Y (u′) and (real) g(z, z̄, u′).

32.5 Generalizations of the Kerr–Schild ansatz

32.5.1 General properties and results

The original Kerr–Schild ansatz relates a flat space-time to a non-flat one
via (32.1). In generalizing this idea one considers two spaces Ṽ4 and V4
with metrics related by

g̃ab = gab − 2Skakb, g̃ab = gab + 2Skakb, (−g̃)1/2 = (−g)1/2, (32.84)
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where both gab and g̃ab are non-flat, and k is a null vector with respect to
both metrics. Using the abbreviation

Da
bc = Γ̃ a

bc − Γa
bc (32.85)

= 2Skakn(Skbkc);n − gan [(Sknkb);c + (Sknkc);b − (Skbkc);n] ,

one obtains for the Ricci tensors

R̃ma = Rma + Ds
ma;s −Ds

naD
n
ms, (32.86)

where the covariant derivative is taken with respect to gab.
The null tetrads of the two metrics being related by

m̃a = ma, l̃a = la − Ska, k̃a = ka, (32.87)

one can easily derive the transformation properties of the Newman–
Penrose coefficients. They read

κ̃ = κ, σ̃ = σ, ρ̃ = ρ, ε̃ = ε, τ̃ = τ, π̃ = π,

λ̃ = λ + σS, µ̃ = µ + ρS, β̃ = β + 1
2κS, α̃ = α + 1

2κS, (32.88)

γ̃ = γ + 1
2(2ε + ρ− ρ + D)S, ν̃ = ν + (2α + 2β − π − τ + δ)S + κS2,

see e.g. Dozmorov (1971a), Thompson (1966), Xanthopoulos (1983c) and
Bilge and Gürses (1983). For the Weyl and Ricci tensor components one
obtains

Φ̃00 = Φ00 + 2κκS, Ψ̃0 = Ψ0 + 2κ2S,

Ψ̃1 = Ψ1 + 1
2κDS − 1

2κσS + 1
2(ε + 3ε + 3ρ− 2ρ + D)κS

(32.89)

and other lengthy expressions given e.g. in Bilge and Gürses (1983) (be-
ware of misprints!).

The following properties of the generalized Kerr–Schild transformation
can easily be read off:
(i) If Ṽ4 and V4 are vacuum space-times, then k is geodesic with respect
to both (Thompson 1966).
(ii) If k is geodesic, then the mixed components

R̃ a
b = Ra

b + 2SkakiRbi − gaigmn [(Sknkb);i + (Sknki);b − (Skbki);n] ;m
(32.90)

are linear in S (Taub 1981). This property has also been used and dis-
cussed by Xanthopoulos (1986). The linearity of the field equations per-
mits the occurrence of shock waves (δ-functions).
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(iii) If Ṽ4 and V4 are vacuum space-times, and V4 is algebraically spe-
cial with k as a repeated null eigenvector, then the same is true for Ṽ4
(Thompson 1966).
(iv) If k is geodesic and if V4 is algebraically special with k as a repeated
null eigenvector (κ = Ψ0 = Ψ1 = 0), then Ṽ4 has the same properties
(Bilge and Gürses 1983).
(v) If k is a principal null direction of both Weyl tensors, then it is geodesic
(Bilge and Gürses 1983).
(vi) If the tetrad (m,m, l,k) is parallelly propagated along k in V4, then
the same holds in Ṽ4 (Bilge and Gürses 1983).

When using the generalized Kerr–Schild transformation (32.84) in the
search for solutions, both metrics – gab and g̃ab – have to be restricted.
We shall discuss now the different choices investigated so far.

32.5.2 Non-flat vacuum to vacuum

As shown above, the null congruence k is necessarily geodesic, but its
shear may or may not vanish. Gergely and Perjés (1993, 1994a, 1994b,
1994c) showed that the vacuum solutions with non-vanishing shear (σ �=
0) are the Kóta–Perjés metrics (18.48)–(18.50) generated from a type N
vacuum metric. In general, they have non-vanishing twist (ω �= 0), but
the metrics with ω = 0 are contained as a limiting case (Kupeli 1988b,
Gergely and Perjés 1994c): they are the Kasner metrics (13.53)–(13.51),
obtained from a plane wave V4 (Kóta and Perjés 1972).

For a general metric with vanishing shear (which is algebraically spe-
cial) it may happen that the non-flat background metric gab is already of
the Kerr–Schild type,

g̃ab = gab − 2S2kakb = ηab − 2S1kakb − 2S2kakb. (32.91)

An example for this is the Schwarzschild metric, for which S1 introduces
a mass into Minkowski space, and S2 only changes the mass parameter.
These cases will be considered trivial.

To get non-trivial solutions with non-zero expansion (ρ �= 0), one can
start from the line element (29.4), see §29.1 for further details. Because of
its definition, a generalized Kerr–Schild transformation is a transforma-
tion which adds a function S to H such that P, L andW are not changed
and that H̃ = H + S is again a solution of the field equations. An in-
spection of (29.13) reveals that the only admissible change of H is the
addition of a mass term, m̃ = m+mS , S = mSRe ρ = mSr/(r2+Σ2), cp.
also Dozmorov (1971b) and Talbot (1969). The field equations then imply

(P−3mS),u = 0, ∂mS = mSL,u. (32.92)
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If we now take a gauge with mS = const, (32.92) gives L,u = 0 = P,u. For
the background field this implies M,u = 0, ∂(m+ iM) = 0 and therefore

(∂∂ − ∂∂)m = (∂L− ∂L)m,u = 2iM,ζζ . (32.93)

So for non-vanishing twist (∂L− ∂L �= 0), m is at most linear in u,

m = au + β(ζ, ζ), a = const, (32.94)

and the same result (with β = const) can be obtained for zero twist
directly from the Robinson–Trautman field equation (28.8).

If a vanishes, all metric functions are independent of u, ξ = ∂u is a
Killing vector; this class has been considered by Fels and Held (1989)
using the GHP formalism. The twisting metrics with these properties
have been considered in §§29.2.3, 29.2.5, and the non-twisting in §28.1,
equation (28.26); the solutions are known only for a few subcases, among
them the Kerr–Schild metrics with ∂∂V = 0.

If a is non-zero, then the Kerr–Schild transformation amounts to
m̃ = au + β(ζ, ζ) + mS ; this class was found by Kerr (1998). But then a
coordinate transformation u′ = u−mS/a eliminates mS : the Kerr–Schild
transformation is equivalent to a trivial coordinate transformation.

Twisting type N solutions of the generalized Kerr–Schild form do not
exist (Xanthopoulos 1983b).

Similarly, for ρ = 0 a generalized Kerr–Schild transformation amounts
to a transformation H̃ = H + S that leaves P and W fixed and that
thus is a special case (W 0 fixed, Φ1 = 0 = Φ2) of the method described
in Theorem 31.1, see §§31.1, 31.4–31.5. We write G̃ 0 = G0 + G0S and
H̃ 0 = H0 + H0

S ; then because of (31.24a) and (31.25) the equations

G0S,ζ = 0, 2P 2H0
S,ζζ

+ P 2
(
W ,vH

0
S

)
,ζ

+ P 2
(
W,vH

0
S

)
,ζ

= 0 (32.95)

have to be satisfied. The general solution is not known, except for the
type III and N cases (31.38) and (31.34) with [H0

S/(ζ + ζ)],ζζ = 0 and
H0
S,ζζ

= 0.

32.5.3 Vacuum to electrovac

Only special cases have been considered so far. If k is geodesic and shear-
free, then both metrics are algebraically special and k is also an eigenvec-
tor of the Maxwell field (aligned case). As in the vacuum to vacuum case,
one can go through the Einstein–Maxwell equations in the relevant Chap-
ters 30, 31 and 24 and try to detect such Kerr–Schild transformations.
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Examples are the charged vacuum metrics of Theorem 30.2 (a special
case has been discussed by Bhatt and Vaidya (1991)) and the addition
of a Maxwell field (F or Ψ, respectively) to the solutions (24.35) and
(24.37a) admitting a null Killing vector, cp. also Gavrilina (1983) and
Garfinkle (1991). For a geodesic but shearing k, Kupeli (1988a) found an
example of a generalized Kerr–Schild transformation leading to

ds̃2 = f−2(r2a
+

dx2 + r2a
−

dy2)− 2dudr + 2r−sf2eαx+βy−γudu2,

f = (η + s−1r−s)−1, a+ = 1/2, a− = (2± 2
√

2)−1, (32.96)

s = (2 +
√

2)/(2 + 2
√

2), η = const.

It admits the two commuting spacelike Killing vectors, ∂x − (α/γ)∂u and
∂y − (β/γ)∂u, and starts from a special pp-wave (where ∂u is covariantly
constant).

32.5.4 Perfect fluid to perfect fluid

If k is geodesic (and perhaps shearfree) in flat space-time, then it remains
so under any conformal transformation; this makes conformally flat space-
times

ds2 = gabdxadxb = φ2(2dζdζ − 2du dv) (32.97)
good candidates for parent metrics gab: taking a null tetrad

ω1 = φ(dζ + Y dv), ω2 = φ(dζ̄ + Y dv),
(32.98)

ω3 = Y dζ + Y dζ̄ + Y Y dv + du, ω4 = φ2dv,

one can use the results of §32.1 (Taub 1981).
Starting with a conformally flat perfect fluid solution (cp. §37.4.2),

several classes of solutions have been found. If k is shearing but non-
twisting (σ �= 0, ρ− ρ = 0), then one can take a Friedmann metric in the
form

ds2 = −2Gdt du + 2G2Mdu2 + t1−c (dx + G,xt
cdu/c)2

+ t1+c
(
dy −G,yt

−cdu/c
)2

,
(32.99a)

M(t) = 2t(atc + bt−c), G(x, y) = sin(2c
√
a x)h(y),

k = ∂t, h,yy = −(2c)2bh, σ = c/2t �= 0, a, b, c = const,

and perform a Kerr–Schild transformation (32.84) with

S(x, y) =
const
G(x, y)

[
sin(2c

√
a x)

h(y)

]1/c
, kadxa = −Gdu, (32.99b)
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(Mart́ın and Senovilla 1986, Senovilla and Sopuerta 1994). The result-
ing perfect fluid solutions are of Petrov type D and admit a Killing
vector ∂u (and a second Killing vector ∂y if b = 0, h = 1, leading
to a diagonal non-separable metric). The four-velocity ũa, ũadxa =
−dt [2M(t) + 2S(x, y)]−1/2, does not lie in the plane spanned by the two
null eigenvectors of the Weyl tensor. If k is non-shearing and non-twisting
(σ = 0 = ρ − ρ), several classes have been constructed by Mart́ın and
Senovilla (1986, 1988). Among them are the type D solutions (33.11) and
several static spherically symmetric perfect fluids. Sopuerta (1998b) stud-
ied the case of a non-shearing but expanding k, with a rigidly rotating
perfect fluid, and found a class of new solutions (of Petrov types D and
II).

All solutions (33.9) with H0 �= 0 are of the generalized Kerr–Schild
form (32.84).

All static spherically-symmetric space-times can be written in the gen-
eralized Kerr–Schild form

ds̃2 = e2U(r)ds20 − 2S(r)(dt± dr)2, (32.100)

where ds20 is a Minkowski space (Mitskievic and Horský 1996), but the
first part is not necessarily a perfect fluid metric.

Starting with a perfect fluid LRS metric

ds2 = −dt2 + A2(t)dx2 + B2(t)
[
dy2 + Σ2(y, k)dz2

]
, (32.101)

see §13.1, one can make the transformation (Senovilla 1987a)

ds̃ 2 = ds2 + A2(t)f(t)(dx± dt/A)2, f(t) =
(
B

A

)2 [
c1

∫
A

B4
dt + c2

]
.

(32.102)

The new metric is again of the LRS class, with pressure and mass density
being related by

µ̃ + p̃ = (µ + p)(1 + f). (32.103)

Patel and Vaidya (1983) showed that a generalized Kerr–Schild trans-
formation

ds̃ 2 = a2
[
dx2 + dy2 + 1

2e2xdz2− (dt + exdz)2
]
−2S(y)(dy−exdz−dt)2,

(32.104)

S(y) = c sin(y
√

2), c = const, κ0p = (a2 − 2S)/2a4, κ0(µ + 3p) = 2/a2,
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relates the Gödel solution (12.26) – with S = 0 – to a subclass of the
Wahlquist solution (21.57) which admits four Killing vectors and is thus
contained in (13.2), and in a similar way the Einstein cosmos (12.24) to
the subclass of the Wahlquist solution (21.58) given by Vaidya (1977), cp.
also Taub (1981).



33
Algebraically special perfect fluid

solutions

Most of the algebraically special perfect fluid solutions admit symme-
tries, and have been found exploiting these symmetries. In this chapter
we want to present some methods of characterizing and constructing so-
lutions which do not rely on symmetries, and to indicate in which of the
other chapters algebraically special perfect fluid solutions can be found.
For a detailed discusssion of these solutions see also Krasiński (1997).

33.1 Generalized Robinson–Trautman solutions

Generalized Robinson–Trautman solutions are characterized by the fol-
lowing set of assumptions:
(i) The multiple null eigenvector k of the Weyl tensor is geodesic, shear-
free, and twistfree but expanding

Ψ0 = Ψ1 = 0, κ = σ = ω = 0, ρ = ρ̄ �= 0. (33.1)

(ii) The energy-momentum tensor is that of a perfect fluid,

Rab = κ0(µ + p)uaub + κ0(µ− p)gab/2. (33.2)

(iii) The four-velocity u of the fluid obeys

u[a;buc] = 0, k[cka];bu
b = 0. (33.3)

Introducing the null tetrad (m,m, l,k), one sees that (33.1) and (33.3)
imply that τ can be made zero by choice of l and that then u lies in the
plane spanned by l and k. With this choice, (33.2) yields

R11 = R14 = R13 = 0. (33.4)

From now on, the calculations run in close analogy with those for the
Robinson–Trautman solutions in Chapters 27 and 28. We will present
here only the main results, all due to Wainwright (1974).
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As a first step, one can infer from (33.1) and (33.4) that coordinates
ζ, ζ̄, r, u can be introduced such that the metric takes the form

ds2 = 2χ2(r, u)P−2(ζ, ζ̄, u)dζ dζ̄ − 2du dr − 2H(ζ, ζ̄, r, u)du2,
(33.5)

ρ = −∂r lnχ; H = −r∂u lnP −H0(ζ, ζ̄, u)− S(r, u),

the (irrotational) four-velocity u having the components

B
√

2 ui = (0, 0,−1,−H −B2). (33.6)

As a second step, the so far unknown real functions χ, P , H0, S and B
should be determined from the rest of the equations (33.2)–(33.3). Two
of the field equations (33.2) can be regarded as giving the energy density
µ and the pressure p in terms of the metric functions, so only two of the
equations (33.2) need to be considered. These ensure the correct algebraic
structure for Rab (i.e. the isotropy of pressure). It eventually turns out
that three different cases occur.

The first case is characterized by the Newman–Penrose coefficient ν
being zero, i.e. by

∂u∂ζ lnP = 0, ∂ζH
0 = 0, K = 2P 2∂ζ∂ζ̄ lnP = const. (33.7)

Obviously, these solutions admit a G3 acting on the 2-spaces r = const,
u = const, of constant curvature K, and are therefore of Petrov type D
or O. The corresponding metrics (including the spherically-symmetric so-
lutions) are discussed in detail in Chapters 15 and 16.

In the second case (ν �= 0, χ2 quadratic in r, a �= 0) the metric is given
by (33.5)–(33.6) with

χ2 = ε(r2 − a2), H0 = −εK/2, B2 = −H + cχ2, ε = ±1,
(33.8a)

S = χ2(b− 3m
∫

χ−4d r) + εa2c, K = 2P 2∂ζ∂ζ̄ lnP,

where the real constants a, b, c and m and the function P have to satisfy

cm = 0, c(c + 2b) = 0,
(33.8b)

P 2∂ζ∂ζ̄K + a2P 2∂u∂u(P−2) + 6εm∂u lnP + 2ca2(K − 2ca2) = 0.

In the third case (ν �= 0, χ2 linear in r), the metric is given by (33.5)–
(33.6) with

χ2 = εr, S = εra + εbr ln εr, B2 = −H, (33.9a)

where P and H0 have to satisfy

2P 2∂ζ∂ζ̄ lnP − ε∂u lnP = b, 2∂ζ∂ζ̄H
0 + ε∂u(H0P−2) = 0. (33.9b)
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The expressions for µ, p and the non-vanishing components Ψ2, Ψ3 and
Ψ4 of the Weyl tensor in the two cases (33.8) and (33.9) are given in
Wainwright’s paper. They show that no dust solutions and no solutions
of type III or N are possible.

Besides the Robinson–Trautman vacuum solutions (see Chapter 28),
which are contained in (33.8) as the subcase a = b = 0 (⇒ ε = 1, S =
m/r), only a few classes of solutions to (33.8) or (33.9) have been found.
All of them rely on a similarity reduction (Rainer and Stephani 1999).

If the ζ–ζ̄-space has a constant curvature K = K(u), one gets

P 2 = h−1(u)
(
1 + kζζ̄/2

)2
, K(u) = k/h(u), k = 0,±1, (33.10)

and an ordinary differential equation for h(u) which can easily be solved
(Rainer and Stephani 1999); the metrics necessarily admit a G3 on V2
(for (33.9): if H0 is chosen appropriately). Included here is the subcase
∂uP = b = 0 of (33.9) discussed by Wainwright (1974). With the choice
ε = 1 (r > 0) and S = 2r, it reads

ds2 = 2rdζ dζ̄ − 2du dr + 2[H0(ζ, ζ̄, u) + 2r]du2,

κ0µ = 3r−1 + H0r−2/2, κ0p = −r−1 + H0r−2/2, (33.11)
√

2ua = −(H0 + 2r)−1/2δ3a, (2∂ζ∂ζ̄ + ∂u)H0 = 0.

If ∂ζH
0 = 0, we return to (33.7). Non-trivial (∂ζH0 �= 0) real solutions of

the linear (heat conduction) equation for H0 can easily be constructed.
The solutions with ∂uH

0 = 0 have been discussed in the context of the
generalized Kerr–Schild transformation, see §32.5.4.

The only known solutions with 2P 2∂ζ∂ζ̄K = 0, K,ζ �= 0 are

ds2 = 2ε(r2 − 1)h(u)
(
ζ + ζ
)−3

dζdζ − 2dudr − 2Hdu2,

2H = r
h′(u)
h(u)

− 3ε(ζ + ζ)
h(u)

+ 2ε(r2 − 1)
[
b− 3m

∫ dr
(r2 − 1)2

]
, (33.12)

h = Au + B for m = 0, h = Ae3εmu/a2
+ B for m �= 0,

cp. (28.16).
For 2P 2∂ζ∂ζ̄K �= 0, assuming m = 0 and P = P (ζ + ζ), and in the

gauge a = 1, Kramer (1984b) found the special solution of (33.8b)

K = 2c
[
w(ζ + ζ) + 3

]
, P−2 = −ew+2w/2c, w′ = we1+w/2

√
2.

(33.13)
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Taking w and ϕ = e (ζ−ζ) / i
√

2 as new coordinates, the resulting Petrov
type II metric (with Killing vectors ∂u and ∂ϕ and an equation of state
κ0(µ− p) = −6εc) is

ds2 =
(1− r2)

2εc

[
dw2

4w
+ wewdϕ2

]
− 2du dr− εc(r2 + 2w + 3)du2. (33.14)

Other known solutions of this class are given by (33.8a) and

P 2(z) =
(
e2Az + 2BeAz + B2 −A2

)
e−Az/4A2,

z = ζ + ζ + u, c = 0 = m
(33.15)

(Drauschke 1996) or

P 2(z) = e3εmu
(
e2Az + 2BeAz + B2 −A2

)
e−Az/4A2,

z = ζ + ζ + 2e−3εmu/3εm, c = 0,m �= 0,
(33.16)

and by (33.9) and

P 2 = exp (Az) + ε/2, z = ζ + ζ + u, b = 0, (33.17)

P 2 = e−2εbu [exp(Az)− 1] /A; z = ζ + ζ + εe−2εbu/b, b �= 0, (33.18)

P 2 = 1
2 [Be−4εbu − b(ζ + ζ)2], b �= 0 (33.19)

(Rainer and Stephani 1999).
Looking for solutions which satisfy the above conditions (i)–(iii) except

u[a;buc] = 0, Bonnor and Davidson (1985) considered metrics of the form

ds2 = 2χ2(r)P−2(ζ, ζ)dζ dζ − 2dr du− 2[H0(ζ, ζ) + S(r)]du2, (33.20)

with a (non-expanding, shearfree but rotating) four-velocity parallel to
the Killing vector ∂u. From the resulting field equations

∂ζ∂ζH0 = 0, P 2∂ζ∂ζ lnP = (H0 + S)(χ′2 − χχ′′)− S′′χ2/2, (33.21)

they found an equation of state κ0(3p + µ) = const = 4n and the special
solutions

S = n[1− (r + m) cot r], χ =
√
a sin r,

P 2 = a
√

2(ζ + ζ)3, H0 = −3(ζ + ζ)/
√

2.
(33.22)

Algebraically special solutions with a geodesic and twistfree, but ex-
panding and shearing, multiple null eigenvector have been considered in
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detail by Oleson (1972). In coordinates with k = ∂u and four-velocity
ua = Bt,a, he gave as an explicit solution

ds2 = t3/2(dx + 3a1xdu)2 + t1/2 (dy − [m(u)x + a1y]du)2

−2dtdu− 2
(
5a1t− 1

2e4a1u
∫
m2e−4a1udu

)
du2,

(33.23)

cp. also (33.48).

33.2 Solutions with a geodesic, shearfree, non-expanding
multiple null eigenvector

In this section, we assume that the multiple null eigenvector k satisfies

Ψ0 = Ψ1 = 0, κ = σ = Θ = 0, ρ = −ρ̄ �= 0. (33.24)

Note that, because of (6.33), κ = σ = ρ = 0 implies µ + p = 0. We will
exclude this case here, i.e. in what follows k is necessarily twisting (ω �= 0).
We shall again present only the main results, all due to Wainwright (1970).

As a first step in solving the field equations, one uses (33.24) and parts
of (33.2) to introduce a suitable tetrad and coordinate system. These are
found to be

ds2 = 2P−2dζdζ̄ − 2[du + Ldζ + Ldζ̄]

×[dr + Wdζ + Wdζ̄ + H{du + Ldζ + Ldζ̄}],
mi = P (−1, 0,W,L), mi = P (0,−1,W ,L),

li = (0, 0,−H, 1), ki = (0, 0, 1, 0), ρ = i,

(33.25)

where L(ζ, ζ̄) is purely imaginary and determined by the real function
P (ζ, ζ̄) as

∂xL = −∂xL = iP−2√2, x
√

2 ≡ ζ + ζ̄. (33.26)

The coordinates and the tetrad (33.25) are of the Robinson–Trautman
type (27.27) if one inserts into (27.27) the value ρ = i and makes P in
(27.12) imaginary instead of real (for the remaining coordinate and tetrad
freedom see §§27.1.3 and 29.1.4). Equation (33.26) corresponds to the first
part of (27.26), the second part being invalid here. The four-velocity u
turns out to have the form

ua
√

2 = Bka + B−1la, B2 = κ0(µ + p)/4. (33.27)

As a second step, one has to solve the remaining field equations to
obtain explicit expressions for the so far unknown functions W (ζ, ζ̄, u) and
H(ζ, ζ̄, r, u). Three different cases can occur.
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The first case is characterized by W = 0, ∂r∂r(H + κ0p/2) �= 0. These
solutions are the case IIIa, α + E = τ = 0 of the locally rotationally-
symmetric solutions of Stewart and Ellis (1968).

The second case is characterized by ka;b + kb;a = 0. It includes all
algebraically special (not conformally flat) perfect fluid solutions whose
multiple null eigenvector k is a (twisting) Killing vector. W (ζ, ζ̄), chosen
to be purely imaginary, and H(ζ, ζ̄) are given by

∂xW = −∂xW = iκ0pP−2√2, 2H = −κ0p, (33.28)

and P (ζ, ζ̄), p(ζ, ζ̄) and µ(ζ, ζ̄) have to obey

4P 2∂ζ∂ζ̄ lnP = κ0(µ− 5p), 8P 2∂ζ∂ζ̄p = κ0(p− µ)(µ + 3p). (33.29)

To get the explicit metric, one has to solve (33.29) for P , p and µ (one
function can be prescribed) and then to determine H, L and W from
(33.28) and (33.26). Besides k, the metric admits a second Killing vector
ξ = ∂u. Unless space-time is conformally flat, the four-velocity u has
non-zero rotation.

Particular solutions include the Gödel universe (12.26), the Einstein
universe (12.24) and the Petrov type II solution

µ = p = x, P 2 = 4
3κ0x

3, 2H = −κ0x,
(33.30)

W = −i34
√

2/x, L = −i38
√

2/κ0x2,

which admits a G3 simply transitive on x = const, see §13.4.
The third case is characterized by ∂r(H + κ0p/2) = 0, ∂rH �= 0. The

only non-trivial field equation remaining to be solved is

P 2∂ζ∂ζ̄K = κ0m(κ0m + K),
(33.31)

K ≡ 2P 2∂ζ∂ζ̄ lnP, 2m ≡ µ + 3p = const.

Having found a solution P (ζ, ζ̄) of this equation, one can obtain the other
metric functions and the pressure p from (33.26) and the following set of
equations

∂xW (ζ, ζ̄) = −i(2κ0m + K)/4P 2
√

2, W = −W

∂ζ lnR(ζ, ζ̄) = 2iW, 2H(ζ, ζ̄, r) = κ0(m− p), (33.32)

8κ0p(ζ, ζ̄, r) = 4(Re2ir + Re−2ir) + 2κ0m−K.

These metrics admit a Killing vector collinear with the four-velocity

ui = (0, 0, 0, [κ0(m− p)]−1/2), (33.33)
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which is, therefore, expansion- and shear-free (rigid motion). Only Petrov
types II and D can occur; the metrics of type D are subcases or limits
of the Wahlquist solution (21.57).

Special solutions (of Petrov type D) are

K + κ0m = 0 ⇒ W = 0, R = R(ζ̄), (33.34)

which for R = const contains a solution admitting a G4 on r = const, cp.
§13.4, and the solution (Kramer 1984c)

K = −κ0m
[
w(ζ + ζ) + 3

]
, P−2 = ew+2w/κ0m, w′ = we1+w/2

√
2,

(33.35)
see also (33.13), where the same functions appear in a different solution.

33.3 Type D solutions

Most of the known algebraically special perfect fluid solutions are of
Petrov type D, but, as the following review shows, only a minor subset of
all such type D solutions is known.

In the type D solutions, the two multiple null eigenvectors l and k
define a preferred 2-space Σ. The four-velocity u may or may not lie
in Σ.

For u[akblc] �= 0, most of the known solutions admit an Abelian G2 of
motions, cp. Chapters 21 and 23, and many correspond to the interior of
a rigidly rotating body. Examples with a G2 are the Wahlquist solution
(21.57) and its limits, see §21.2.3, the solutions due to Mars and Senovilla
(1994) and Mars and Wolf (1997) (admitting an additional conformal
motion), and a solution belonging to the Kerr–Schild class (Mart́ın and
Senovilla 1986), see §32.5.4. An example of a solution with only a G1
(but two conformal symmetries) is the metric (35.78) due to Koutras and
Mars (1997).

For u[akblc] = 0, (33.36)

all known solutions have the property that the rotation ωa = εabcdubuc;d
and shear σab of the velocity field furthermore obey

ω[akblc] = 0, kdσd[akblc] = 0. (33.37)

Following Wainwright (1977b), we classify all solutions satisfying (33.36)
and (33.37) according to the acceleration u̇ and the Newman–Penrose
coefficients κ, ν, σ and λ (it can be shown that for the solutions in question
κ = 0 (σ = 0) if and only if ν = 0 (λ = 0)). For none of the subcases is
the complete list of solutions known.
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Solutions which fulfil (33.36) and have an equation of state p = p(µ)
and a zero magnetic part of the Weyl tensor, satisfy either dp/dµ = 0, 1
or admit at least three Killing vectors (Carminati and Wainwright 1985).
An example with an equation of state p = µ + const is the metric (21.74).

Many of the solutions with special subspaces considered in Chapter 36
are of type D; the classification with respect to the above given classes
has not yet been performed for all of them.

33.3.1 Solutions with κ = ν = 0

The subcase σ = λ = 0, u̇[akblc] = 0 contains all the locally rotationally
symmetric perfect fluid solutions considered by Stewart and Ellis (1968),
see Wainwright (1977a). The type D solutions covered by §§33.1, 33.2 also
belong to this subcase. The spherically-symmetric perfect fluid and dust
solutions and the Kantowski–Sachs models (see Chapters 15 and 16 and
§14.3) are important examples.

The subcase σ = λ = 0, u̇[akblc] �= 0 contains a solution found by
Barnes (1973b); it can be obtained from the solution (18.64) by allowing
A and B to be t-dependent.

The subcase σ �= 0, λ �= 0, u̇[akblc] = 0 contains the Ozsváth solution
(12.29), admitting a G4 on V4, the Bianchi type I solution (14.28b) and
the Allnutt solution (case m = 0 of (23.13)), admitting an Abelian G2.

No solutions are known for which σ, λ and u̇[akblc] are all non-zero.

33.3.2 Solutions with κ �= 0, ν �= 0

No solutions are known for which κ, ν, σ and λ are all non-zero. The static
Barnes solutions (18.65) and (18.66) and their generalizations (21.61) to
a rigidly rotating fluid are examples with σ = λ = 0, but u̇[akblc] �= 0.

A large variety of explicitly known solutions occurs in the subcase σ =
λ = u̇[akblc] = 0. They all have a metric of the form

ds2 = 2e2bdζdζ + e2adr2 − dt2, u = ∂t, (33.38)

and have been considered by Szekeres (1975) (for dust), Szafron (1977),
Tomimura (1977), Szafron and Wainwright (1977) and Wainwright
(1977a). To ensure κ �= 0, σ �= 0, a,ζ must be non-zero.

Two cases have to be distinguished, b,r �= 0 and b,r = 0. In both cases,
the mass density µ can be computed from

κ0(µ + 3p) = −2(ä + ȧ2 + 2b̈ + 3ḃ2). (33.39)

If b depends on r, then the metric must have the form

ds2 = Φ2(r, t)
[
2P−2(ζ, ζ, r)dζ dζ + (∂r ln

{
ΦP−1})2dr2 − dt2

]
, (33.40a)



514 33 Algebraically special perfect fluid solutions

where the ζ– ζ̄-space is a space of constant curvature K(r),

P (ζ, ζ̄, r) = α(r)ζζ̄+β(r)ζ+β̄(r)ζ̄+δ(r), K(r) = 2(αδ−ββ̄), (33.40b)

and the function Φ(r, t) is a solution of the ordinary (Friedmann-type)
differential equation

2ΦΦ̈ + Φ̇2 + κ0p(t)Φ2 = 1−K(r). (33.40c)

To get an explicit solution, one has to prescribe the pressure p(t) and the
functions α(r), δ(r) (both real) and β(r) (complex), and then to solve
(33.40c). For dust (p = 0), or a constant p = p0 (Covarrubias 1984), the
differential equation (33.40c) is integrated by

Φ̇2 − 2m(r)Φ−1 + κ0p0φ
2/3 = 1−K(r). (33.41)

In the dust case (Szekeres 1975), the solutions of (33.41) are of the form
(15.37). In general, these dust solutions contain five arbitrary functions of
r, and admit no Killing vector (Bonnor et al. 1977). Surprisingly, they can
be matched to the spherically-symmetric, static, exterior Schwarzschild
solution (Bonnor 1976). In the case of a non-zero p0, (33.41) can be inte-
grated in terms of elliptic functions (Barrow and Stein-Schabes 1984).

For a perfect fluid (with p �= 0), solutions of (33.40c) with

κ0p(t) = ϕ2(r)Φ−2(r, t) (33.42)

can easily be obtained from the dust solutions with 1−K(r) = const ϕ2(r),
m = const ϕ3.

For K = 1, the solutions of (33.40c) are

K = 1, Φ = [g(r) + h(r)f(t)] 2/3ḟ−1/3, 3κ0p(t) = 2
...
f /ḟ − 3(f̈/ḟ)2

(33.43)
(Szafron 1977, Bona et al. 1987a).

If b does not depend on r, then the metric must have the form

ds2 = −dt2 + Φ2(t)
[
2P−2(ζ, ζ̄)dζdζ̄ +

(33.44a)
+
{
A(r, t) + P−1 (U(r)ζζ̄ + V (r)ζ + V (r)ζ̄

)}2
dr2
]
,

with
P = 1 + kζζ̄/2, k = 0,±1, (33.44b)

2ΦΦ̈ + Φ̇2 + κ0p(t)Φ2 = −k, (33.44c)

ÄΦ2 + 3ȦΦ̇Φ−Ak = U. (33.44d)
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To get an explicit solution, one has to specify the pressure p(t) (or Φ(t))
and the functions U(r) (real) and V (r) (complex), and then to deter-
mine Φ(t) (or p(t)) from (33.44c) and A(r, t) from (33.44d). The energy
density µ can be obtained from (33.39). Equation (33.44c) has the same
structure as (33.40c), so the remarks on the integrable cases apply also
here.

For dust, the general solution of (33.44c)–(33.44d) is given in Szek-
eres (1975), see also Bonnor and Tomimura (1976), and the perfect fluid
case κ0p(t) = const Φ−2 has been solved by Tomimura (1977). Some other
perfect fluid solutions, corresponding to the choice k = 0, p(t) =const t−2,
have been constructed by Szafron and Wainwright (1977); the solution
(37.50)–(37.51) of embedding class one is also included here. Introduc-
ing a new time variable τ by dt = Φ3(τ)dτ, (33.44d) can be written as
∂2A/∂τ2 = (Ak + U)Φ4, which for k = 0 and prescribed Φ(t) can be
solved by quadratures (Stephani 1987); the special case U = 0 was also
solved by Bona et al. (1987a). For k = 0 and p = const, the solution was
given by Barrow and Stein-Schabes (1984), for k = 0 and κ0p = 1/t4 it is
the metric (37.50) of embedding class one.

33.4 Type III and type N solutions

The only known type III perfect fluid solution was given by Allnutt
(1981) as

ds2 = 2e3t+4xdx2 + (3et+2(x−y) + e3t+6x/a)du2

+ aet(e2y − 1)−1dy2 − 2e2t+3x−ydu(dt + 3dx + dy)
(33.45)

(a = const). The (geodesic) repeated principal null vector k = e−2t∂t
and the four-velocity uadxa = (e−t/a − 3

2e−3t−3x)−1/2dt are irrotational,
but shearing and expanding. The energy density µ and pressure p are
given by

κ0µ = 27
4 e−t/a− 9

8e−3t−4x, κ0p = −21
4 e−t/a− 9

8e−3t−4x; (33.46)

both are positive for e2y > 1 and e2t+4x > 3a/2. The only Killing vector
is ∂u.

The following theorems restrict the properties of possible type III and
N solutions (µ + p = 0 is always excluded).

Theorem 33.1 Any Petrov type III shearfree perfect fluid solution with
an equation of state p = p(µ) is rotating and has zero expansion (Carmi-
nati and Cyganowski 1997).
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Theorem 33.2 No type N perfect fluid (or dust) solutions with zero ac-
celeration (u̇a = 0) exist. (Oleson 1972; cp. also Kundt and Trümper 1962
and Szekeres 1966b).

Theorem 33.3 Any Petrov type N shearfree perfect fluid space-time in
which the fluid satisfies an equation of state p = p(µ) is stationary and
admits an Abelian G3 (Carminati 1988).

These solutions are a subcase of the rigidly rotating cylindrically-symme-
tric solutions (22.34).

Theorem 33.4 The principal null congruence of a type N perfect fluid
solution is geodesic if and only if the fluid is irrotational and pressure and
energy density are related by

µ = p + A(t), ua = (−2H)−1/2t,a. (33.47)

If it is geodesic, then it is twistfree but has non-zero shear and expansion
(Kundt and Trümper 1962, Oleson 1971).

Oleson (1971, 1972) determined all metrics covered by Theorem 33.4,
i.e. all type N perfect fluid solutions with a geodesic and twistfree but
shearing and expanding principal null congruence. He gave the following
two classes of solutions.

Class I: ρ−1 = −2t, σ−1 = −4t

ds2 = t3/2(dx− 2t−1/2G,xdu)2 + t1/2(dy + 2t1/2G,ydu)2

−2Gdtdu− 2G2Hdu2,

H(t, u) = −2[a2(u)t1/2 + b2t3/2], G(x, y, u) = g(x, u)h(y, u), (33.48)

g,xx + a2(u)g = 0, h,yy + b2h = 0, b = const,

4p = 3t−3/2(a2 − 7b2t), µ = p + 12b2t−1/2.

Class II: ρ−1 = (1− t2)/t, σ−1 = 2(t2 − 1),

ds2 = ε(1− t2)R−1(dx− εRG,xdu)2 + ε(1− t2)R(dy + εR−1G,ydu)2

−2Gdtdu− 2G2Hdu2, (ε, λ) = (1, 1) or (−1,±1),
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H(t, u) = −ε[ε(1− t2)]1/2[λa2(u)− b2(t + 1)], b = const,

R(t) = [ε(1− t)/(1 + t)]1/2, G(x, y, u) = g(x, u)h(y, u), (33.49)

g,xx + λa2(u)g = 0, h,yy + [ε(a2 − 2λ)b2]h = 0,

2p = 3ε[ε(1− t2)]−3/2[b2(4t3 − 5t− 1) + λa2],

µ = p + 12b2t[ε(1− t2)]−1/2.

For both classes, the fluid has non-zero shear, acceleration and expansion
provided that a′(u) �= 0; a = const gives conformally flat solutions. Killing
vectors (maximum number two) are possible only in Class I for metrics
with b = 0.



Part IV
Special methods

34
Application of generation techniques

to general relativity

In this chapter we shall apply some of the methods outlined in Chapter 10
to the Einstein or Einstein–Maxwell equations with two Killing vectors.
Maison (1978, 1979) was the first to show that these equations, which for
vacuum reduce to the Ernst equation, actually are an integrable system.
Not all of the methods will be discussed in detail as was mentioned in
Chapter 1. In particular we shall utilize harmonic maps (§10.8), ‘expo-
nentiate’ solutions of the linearized equations (§10.5) and study Bäcklund
transformations (§10.6) and the homogeneous Hilbert problem (§10.7).
The applications of other generation methods are summarized at the end
of this chapter. For reviews of some topics to be discussed below see
Gürses (1984), Harrison (1986), Guo et al. (1983b) and Kordas (1999).

34.1 Methods using harmonic maps (potential space
symmetries)

34.1.1 Electrovacuum fields with one Killing vector

In the present section we shall consider space-times admitting a non-null
Killing vector field ξ, i.e.

ξ(a;b) = 0, F = ξaξa �= 0, (34.1)
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and use the methods outlined in §10.8. For a null Killing vector see Julia
and Nicolai (1995). To recapitulate the essential results from Chapter 18,
it is convenient to introduce a three-dimensional metric γab defined by

γab = |F |(gab − F−1ξaξb), γ = det(γab) (34.2)

(Neugebauer 1969). The field equations assume the form

R̂ab = 1
2F

−2(E,(a + 2ΦΦ,(a)(E,b)2ΦΦ,b)) + 2F−1Φ,(aΦ,b), (34.3a)

0 = FE ;a,a + γabE,a(E,b + 2ΦΦ,b), (34.3b)

0 = FΦ;a,a + γabΦ,a(E,b + 2ΦΦ,b), F = −Re E − ΦΦ. (34.3c)

By inspection we have the following:

Theorem 34.1 For sourcefree Einstein–Maxwell fields admitting a non-
null Killing vector ξ, there exists a set {Φ, E , γab} such that the Einstein–
Maxwell equations (34.3) follow from a variational principle with the La-
grangian

L =
√
γ[R̂ + 1

2F
−2γab(E,a + ΦΦ,a)(E ,b + ΦΦ,b) + 2F−1γabΦ,aΦ,b] (34.4)

(R̂ denotes the curvature scalar with respect to γab), i.e. (34.3) are

δL/δγab = 0, δL/δΦ = 0, δL/δE = 0. (34.5)

The second term of this Lagrangian is precisely of the form (10.8) and
the methods discussed there can be applied. The curvature scalar in the
Lagrangian relates the two complex – or equivalently four real – fields Φ
and E to the three-dimensional metric γab. For the definitions of the two
complex scalar potentials Φ and E the reader is referred to (18.31) and
(18.35).

From a given solution (Φ, E , γab) of the Einstein–Maxwell equations
(34.3), the quantities F, ξa, the space-time metric and the Maxwell tensor
can be reconstructed – in that order – via (cp. §18.2)

−F = 1
2(E + E∗) + ΦΦ, K∗

ab = 2F−1(ξ[aE,b])∗,
gab = |F |−1γab + F−1ξaξb,

√
κ0/2F ∗

ab = 2F−1(ξ[aΦ,b)∗.
(34.6)

Taking Φ and E , respectively their real and imaginary parts, as coor-
dinates in a four-dimensional potential space, its metric GAB from §10.8
has according to (34.4) the form

dS2 = 1
2F

−2|dE + 2Φ dΦ|2 + 2F−1dΦ dΦ, (34.7)
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where F is given in terms of the complex potentials by the first of expres-
sions (34.6). For stationary fields (F < 0) the signature of this metric is
0 whereas it is 4 if the Killing vector in space-time is spacelike (F > 0).

According to §10.8 one now has to solve (10.86) to find the affine
collineations of the potential space (34.7). It turns out that they are all,
in fact, Killing symmetries. As the potential space is not of constant cur-
vature, the maximal dimension of its group of motions GR is R ≤ 8, cp.
Theorem 8.17. It turns out that there are precisely eight Killing vectors
and the associated finite transformations, the integrals of (10.87), are

E ′ = αᾱE , Φ′ = αΦ, (34.8a)

E ′ = E + ib, Φ′ = Φ, (34.8b)

E ′ = E(1 + icE)−1, Φ′ = Φ(1 + icE)−1, (34.8c)

E ′ = E − 2β̄Φ− ββ̄, Φ′ = Φ + β, (34.8d)

E ′ = E(1− 2γ̄Φ− γγ̄E)−1, Φ′ = (Φ + γE)(1− 2γ̄Φ− γγ̄E)−1 (34.8e)

(Neugebauer and Kramer 1969). The complex constants α, β and γ and
the real constants b and c are the eight real parameters of the isometry
group G8. Because the potential space admits a G8, its Ricci tensor RAB

is proportional to the metric GAB (Egorov 1955).
The Einstein–Maxwell equations (34.5) are invariant under an arbitrary

combination of the transformations (34.8). Hence we have shown

Theorem 34.2 Given a solution (Φ, E , γab) of the Einstein–Maxwell
equations with a non-null Killing field, then any set (Φ′, E ′, γab) obtained
by application of an arbitrary sequence of transformations (34.8) is also
a solution.

It should be noted that γ′
ab = γab; only the potentials are transformed.

The transformations (34.8b) and (34.8d) are simply gauge transforma-
tions of the potentials; neither the space-time metric nor the Maxwell field
are changed. The transformation (34.8a) is a duality rotation

F ∗
ab

′ =
√

α/ᾱF ∗
ab (34.9)

combined with a rescaling of the coordinate xn along the Killing vector
ξ = ∂n. Only the transformations (34.8c) and (34.8e) affect space-time
and Maxwell field in a non-trivial manner.

The product of the transformations (34.8b), (34.8c) and (34.8a) with
c = b−1 and α = ib−1, in the limit b→∞, leads to the inversion

E ′ = E−1, Φ′ = E−1Φ, (34.10)
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which maps the gauge transformations (34.8b) and (34.8d) into the non-
trivial transformations (34.8c) and (34.8d), respectively.

We shall list now some earlier results. Some transformations discovered
before 1969 are special cases of the general transformations (34.8).

Buchdahl (1954) found a transformation corresponding to the inversion
(34.10) for static vacuum fields, i.e. Φ = 0 and E = e2U , cp. (10.116). This
takes the simple form U ′ = −U .

The transformation (34.8c) applied to vacuum fields, (Φ = 0), i.e.

E ′ = E(1 + icE)−1, (34.11)

is known under the name ‘Ehlers transformation’ (1957). It maps static
into stationary solutions which in general, however, suffer from a NUT-like
singularity (see (20.28)).

The ‘charging’ transformation, (34.8e) with Φ = 0, found by Harrison
(1968), maps vacuum solutions into electrovac solutions

E ′ = E(1− γγ̄E)−1, Φ′ = γE(1− γγ̄E)−1. (34.12)

Harrison (1965, 1968) postulated a functional dependence between the
gravitational and electromagnetic potential, i.e. a relation Φ = Φ(E), but
did not investigate all possibilities. A linear relation between Φ and E
has also been found by Woolley (1973) who started with the assumption
that the bivectors F ∗

ab and K∗
ab in (34.6) determine the same geometry. In

view of the Rainich formulation (§5.4) this led to proportionality for the
bivectors and consequently to proportionality for the potentials.

Asymptotically flat Einstein–Maxwell fields generated from vacuum so-
lutions via (34.12) exhibit a typical feature: the sources of the gravitatio-
nal and electromagnetic field have a rather similar structure. This
follows from the analysis of the far-field behaviour (see e.g. Kramer
et al. (1972)).

34.1.2 The group SU(2,1)

In this section we shall study the transformations (34.8) or, equivalently,
the symmetry group of the metric (34.7), in more detail. The equations
(34.8) give a non-linear representation of the group G8 in question. A
linear representation will be obtained in what follows.

Following Kinnersley (1973) we introduce a vector Y in a three-dimens-
ional complex vector space and express the potentials E and Φ in terms
of its components as

Y µ = (u, v, w), E = (u− w)/(u + w), Φ = v/(u + w). (34.13)
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We introduce a metric ηµν = diag(1, 1,−1) and write the norm of Y as

|Y |2 = ηµνY
µ
Y ν = Y

µ
Yµ = Y µY

µ = uū + vv̄ − ww̄ ≡ A. (34.14)

The Lagrangian (34.4) takes the form

L =
√
γ[R̂ + 2A−2γab(Y µ

Yµ,aY
νY ν,b −AY

µ
,aYµ,b)]. (34.15)

By disregarding the redundancy of the description (34.13), i.e. treating
the Y µ as independent variables which is via the variational principle tan-
tamount to adding a suitable equation for one of the components of Y µ,
the field equations assume the forms

δL/δY µ = 0 : AY µ
,a
;a = 2Y ν

γabY µ
,aYν,b, (34.16a)

δL/δγab = 0 : Rab = A−2V µ(aV
µ
b) , V µ

a = εµνρYνYρ,a. (34.16b)

A linear homogeneous transformation

Y µ′ = Uµ
ν Y

ν (34.17)

is said to be pseudounitary if it preserves the norm (34.14). In matrix
notation, a pseudounitary matrix U satisfies the relation

U+ηU = η, η = diag(1, 1,−1). (34.18)

Equations (34.16) are invariant under the transformations (34.17)–
(34.18). The significant potentials E and Φ are determined by the ratios
of u, v and w. Hence a common factor in those functions is irrelevant
and we restrict ourselves to unimodular transformations, i.e. the group
SU(2,1).

Theorem 34.3 The group of symmetry transformations of the Einstein–
Maxwell equations with a non-null Killing vector is the group SU(2,1)
(Kinnersley 1973).

The group SU(2,1) has eight independent generators. With U = 1−iX
they can be written as

X =

 a1 b c

b̄ a2 d

−c̄ −d̄ a3

 ,
a1, a2, a3 real
a1 + a2 + a3 = 0
b, c, d complex.

(34.19)

These transformations can also be derived as Lie symmetries of (34.3b)–
(34.3c), see Leibowitz and Meinhardt (1978).

We shall now consider subgroups of SU(2,1) and two-dimensional sub-
spaces of the potential space. For stationary Einstein–Maxwell fields,
each two-dimensional subspace of the potential space (34.7) must be
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Table 34.1. The subspaces of the potential space for stationary
Einstein–Maxwell fields, and the corresponding subgroups of SU(2, 1)

Subspace Metric Curvature Subgroup Potentials
dS2 and of SU(2, 1) E and Φ

signature invariant

Φ = 0
(v = 0)
or
E = −1
(u = 0)

2dξdξ
(1− ξξ)2

2dΦdΦ
(1− ΦΦ)2

K = −2
(++)

SU(1, 1)
uu− ww

SU(1, 1)
vv − ww

E =
1− ξ

1 + ξ

E = +1
(w = 0)

−2dΦdΦ
(1 + ΦΦ)2

K = −2
(−−)

SU(2)
uu + vv

E = E ,
Φ = Φ,
(u = u,
v = v,
w = w)

8dζdη
(1− ζη)2

K = −1
2

(+−)
O(2, 1)

u2 + v2 − w2

E =
(1− ζ)(1− η)
(1 + ζ)(1 + η)

Φ =
ζ − η

(1 + ζ)(1 + η)

E = 0
(u = w) 0 vv

either a null surface or a space of constant curvature (Neugebauer, private
communication, Matos and Plebański 1994). There are four inequivalent,
modulo SU(2,1), cases:
(1) Φ = 0 or E = −1, vacuum;
(2) E = 1;
(3) E = E , Φ = Φ, electrostatic fields;
(4) E = 0, conformastationary fields, cp. §18.7.
The space-times in the second class become flat when the electromagnetic
field is switched off.

In Table 34.1 we have listed the metrics, signatures and Gaussian cur-
vatures of the corresponding 2-spaces. The exceptional case (4) is a null
surface in the potential space. All subspaces are planes in the variables
u, v and w (see also Tanabe (1977)).

The isometry groups of the 2-spaces are three-parameter subgroups
of SU(2,1). These subgroups have been classified by Montgomery et al.
(1969) up to conjugation, i.e. the generators of the inequivalent subgroups
are determined up to SU(2,1) transformations. Hence the inequivalent



524 34 Application of generation techniques to general relativity

= 0

= + 1
= - 1

Φ(     = 0) =

(34.22)

Φ = Φ

Fig. 34.1. The inequivalent classes of stationary Einstein–Maxwell fields.
The double arrow indicates a relation by a complex substitution.

classes given by the representatives in Table 34.1 can be generalized by
the application of arbitrary invariance transformations (34.11).

Figure 34.1 is to be understood as follows. The interior of each circle
indicates the class of Einstein–Maxwell fields generated from the fields
indicated by the symmetry operations of SU(2,1). For instance, the class
E = −1 discovered by Demiański (1976) is equivalent to the class of
vacuum fields Φ = 0; the two cases are linked by elements of SU(2,1). It is
impossible to pass from one class to another by a SU(2,1) transformation
if the subspace of the potential space is truly two-dimensional.

The overlapping regions, shaded in Fig. 34.1, represent those Einstein–
Maxwell fields for which the potentials depend on each other. In those
cases, the 2-spaces degenerate into one-dimensional subspaces of the
potential space, i.e. geodesics, cp. (10.91). The invariance transforma-
tions map each shaded region into itself. Electrostatic fields with only
one independent potential belong to one of the classes E = ±1, 0. The
Reissner–Nordström solution (15.21) is an example: it belongs to the
classes E = sign(e2 −m2); the three branches of the solution are inequiv-
alent with respect to SU(2,1) transformations which leave the quantity
e2 −m2 invariant. The subclass E = 1 contains (12.21) and the fields of
massless charges constructed by Tanabe (1978). As can be inferred from
Table 34.1, electrostatic fields are closely related to vacuum fields. This
relation is borne out by the following:

Theorem 34.4 From any stationary axisymmetric vacuum solution (E =
e2U+iψ, k) one obtains a static Einstein–Maxwell field (e2U

′
,Φ′, k′) or vice

versa by the substitutions

e2U
′

= EE , Φ′ = iψ, k′ = 4k. (34.20)
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The new solution will be purely electric if it is possible to continue the pa-
rameters analytically so that U ′ remains real and ψ becomes purely imag-
inary. As it stands the solution is purely magnetic (Bonnor 1961).

(Cp. also Fischer (1979) and for applications Hauser and Ernst (1978)
and Hoenselaers (1982b).)

Finally we note that for asymptotically flat stationary Einstein–
Maxwell fields generated from the corresponding vacuum fields by means
of invariance transformations, the gyromagnetic factor is equal to that of
an electron, g = 2m,µ = eJ/m (dipole moment µ, angular momentum J)
(Reina and Treves 1975).

34.1.3 Complex invariance transformations

Allowing a complex space-time metric and complex fields but main-
taining real space-time coordinates, we need four complex potentials
E1, E2,Φ1,Φ2. In the potential space metric (34.7) we have to substitute
E → E1, E → E2,Φ → Φ1,Φ → Φ2. After this complexification the isome-
try group of the potential space has eight complex parameters. The poten-
tials and the parameters in the invariance transformations (34.8) are now
considered to be independent of their complex conjugates. For instance,
the complexified version of (34.8e) reads

E ′1 =
E1

1− 2γ2Φ1 − γ1γ2E1 , Φ′
1 =

Φ1 + γ1E1
1− 2γ2Φ1 − γ1γ2E1 ,

E ′2 =
E2

1− 2γ1Φ2 − γ1γ2E1 , Φ′
2 =

Φ2 + γ2E2
1− 2γ1Φ2 − γ1γ2E2 .

(34.21)

Here, the replacements γ→γ1, γ̄→γ2 have been made; γ1 and γ2 are com-
plex parameters. In some cases, complex symmetry transformations can
be used to generate real solutions from complex ones (see Herlt (1978b)).

The two cases Φ = 0 and E = 1 have the same Gaussian curvature and
are related by the complex transformation

Φ′
1 = iξ1, Φ′

2 = iξ2. (34.22)

This correspondence is indicated by the ↔ in Fig. 34.1. Starting with a
real vacuum solution, we obtain a complex electromagnetic solution Φ2 =
−Φ1, which can be converted into a real solution by complex continuation
of the parameters. For instance, the potentials Φ and ξ for the Reissner–
Nordström solution (15.18) are Φ = e/r and ξ = (1 − E)/(1 + E) =
m/r. The complex transformation (34.22) and the substitution im →
e take the Schwarzschild solution into the Reissner–Nordström solution
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with vanishing mass parameter. There is a one-to-one correspondence
between stationary vacuum fields with sources characterized by masses
and angular momenta and stationary Einstein–Maxwell fields with purely
electromagnetic sources, i.e. charges and currents. The complex invariance
transformation can change the sign of e2 −m2.

The class E = 0 cannot be transformed into E = ±1 even by complex
invariance transformations.

34.1.4 Stationary axisymmetric vacuum fields

In this section we assume that space-time admits two commuting Killing
vectors the trajectories of which form two-dimensional orbits, cp. Chap-
ter 19 and Kramer et al. (1972). We also specialize our discussion to the
case in which one of the Killing vectors is time-like. We shall indicate in
§34.9 where changes occur when both Killing vectors are space-like. The
space-time metric is written in Lewis–Papapetrou form as

ds2 = e2K(dx2 + dy2) + gMN dxM dxN (34.23)

such that all functions appearing depend only on x and y. The ignorable
coordinates xM (M = 3, 4) are chosen such that

xM = (ϕ, t), ξ = ∂t, η = ∂ϕ, gMN =

(
ηαη

α ξαη
α

ξαη
α ξαξ

α

)
. (34.24)

A reparametrisation yields the metric in the form (19.17) with (19.20)

ds2 = e−2U [e2k(dx2 + dy2) + W 2dϕ2]− e2U (dt + Adϕ)2, (34.25)

in which case, with W 2 = −det(gMN ), gMN and K are given by

g = (gMN ) =

(
W 2e−2U −A2e2U −Ae2U

−Ae2U −e2U

)
, K = k − U. (34.26)

In this section we shall for brevity use the derivative operators

∇ = (∂x, ∂y), ∇̃ = (∂y,−∂x), ∂ = ∂x + i∂y, ∂∗ = ∂x − i ∂y. (34.27)

It can be shown (Hoenselaers 1976) that the Ricci scalar, the Lagrangian
for vacuum fields, becomes

−L =
√−gR = 2W∇2K +2∇2W −

[
(∇g34)2 −∇g33∇g44

]
/2W. (34.28)

After rewriting the second derivatives as divergence terms – which can be
omitted – the Lagrangian can be written as

L = 2∇K∇W +
[
(∇g34)2 −∇g33∇g44

]
/2W. (34.29)



34.1 Methods using harmonic maps 527

This Lagrangian is again of the form (10.83). It has a five-parameter affine
symmetry group since it is invariant under the transformations

g′ = A−1gA, K ′ = K + c, (34.30)

with constant matrix A and constant c. The Killing vectors in this group
correspond to the constant c and matrices A with det(A) = 1. It will be
seen later that the important transformations are the latter ones. The
overall scaling of g is a homothety. The transformations generated by A
are equivalent to a linear coordinate transformation in the ϕ–t-plane.

As the background space is two-dimensional we can use any linear com-
bination of the Killing vectors of (34.29) to effect a Legendre transforma-
tion (10.97). It turns out (Hoenselaers 1979a) that there are three linear
combinations such that the Legendre-transformed Lagrangian (10.98) ad-
mits more than one Killing vector. In one particular case, the parametri-
sation (34.26) casts the Lagrangian (34.29) into the form

L = 2∇k∇W − 1
2 [4W (∇U)2 − e4U (∇A)2/W ]. (34.31)

The equation for A, δL/δA = 0, is the integrability condition for the
existence of another function ψ,

∇[W−1e4U∇A] = 0 ⇔ W ∇̃ψ = e4U∇A. (34.32)

Using ψ instead of A, the transformed Lagrangian becomes

L′ = 2∇k∇W − 1
2W [4(∇U)2 + e−4U (∇ψ)2]. (34.33)

Introducing the Ernst (1968a) potential

E = e2U + iψ, (34.34)

this assumes the familiar form

L′ = 2∇k∇W − 2W∇E ∇E (E+E)−2, (34.35)

from which the Ernst equation (19.39) and equations (19.42), the first of
which corresponds to (10.93), can be derived.

The potential space metrics associated with the Lagrangians (34.33)
resp. (34.35) again admit four Killing vectors and one homothety. With
E given by (34.13), the important transformations are generated by the
matrix X from (34.19) with b = d = a2 = 0 and a3 = −a1. The other
ones are k′ = k + const and W ′ = constW .

As there are several Killing vectors one can try to iterate the process
of Legendre-transforming the Lagrangian. Again there are three linear
combinations of the Killing vectors such that the transformed Lagrangian
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L′′ admits more than one symmetry. Moreover, it turns out in each case
that L′′ has exactly the same form as L. The functions, however, are not
the same; they are related by equations of the form (34.32). At each step a
finite invariance transformation of the form (34.8) can be used to generate
a new solution of the field equations (Hoenselaers 1978b). None of these
solutions, however, is asymptotically flat.

To summarize: The metric associated with the Lagrangian (34.29) ad-
mits three non-trivial (in the sense that L′ admits more than one Killing
vector) linear combinations of its Killing vectors. Each of them can be
used to derive an L′. Each of the three Lagrangians L′ has the same form
as (34.33) and the metrics associated with them admit three non-trivial
linear combinations of the Killing vectors, one of which leads back to L.
There are thus six inequivalent (in the sense that they are related to the
original Lagrangian by equations of the form (34.32) with different right-
hand sides) Lagrangians L′′ all of which are of the form (34.29). There
are thus twelve Lagrangians L′′′. The process of Legendre-transforming
the Lagrangians can thus be continued ad infinitum. The group of trans-
formations yielding new solutions of the stationary vacuum equations is
thus infinite-dimensional (the same can be shown by analogous methods
for the Einstein–Maxwell equations).

Asymptotically flat solutions can only be obtained if the infinity of
potentials ψ is considered. We shall see in §34.3 how a convenient way of
doing so can be found.

That the Lagrangians (34.29) and (34.35) admit the same invariance
group suggests that they can be cast into the same form. To this end we
introduce new potentials and find

E± = W e−2U ±A, k = k′ + U − (lnW )/4,

L = 2∇k̃∇W − 2W (E+ + E−)−2∇E+∇E−.
(34.36)

Hence we can formulate (cp. Theorem 19.3).

Theorem 34.5 From a given stationary axisymmetric vacuum solution
(E = e2U + iψ, k) one gets a new solution (U ′, A′, k′) by the substitution

U ′ = −U + (lnW )/2, A′ = iψ, k′ = k − U + (lnW )/4. (34.37)

The new solution will be real if it is possible to continue the parameters
analytically such that U remains real and ψ becomes purely imaginary
(Kramer and Neugebauer 1968b).

To derive a set of equations analogous to (10.101) we note that the
metrics associated with both Lagrangians (34.35) and (34.36) admit
four Killing vectors and one homothety. The group acting on the E(E)
potential is SU(1,1) which has two-dimensional subgroups. We have



34.2 Prolongation structure for the Ernst equation 529

four-dimensional simply transitive subgroups and thus can utilize The-
orem 8.19 to write the field equations in the form (10.101). Using the
derivative operators ∂ and ∂∗ defined in (34.27) and the functions

M1 = ∂k, M2 = W−1∂W, M3 = (E + E)−1∂E , M4 = (E + E)−1∂E ,
(34.38)

we get as field equations (Kramer and Neugebauer 1984, Hoenselaers
1988)

∂∗M1 + 1
2(M3M∗3 + M4M∗4) = 0, (34.39a)

∂∗M2 + M2M∗2 = 0, (34.39b)

∂∗M3 + 1
2(M2M∗3 + M3M∗2)−M3M∗3 + M3M∗4 = 0, (34.39c)

∂∗M4 + 1
2(M2M∗4 + M4M∗2) + M4M∗3 −M4M∗4 = 0, (34.39d)

and the corresponding starred versions. N.b. the ‘∗’ operation is not to be
confused with complex conjugation; it only changes the derivative oper-
ator ∂. The frame vectors eαA from (10.100) and the rotation coefficients
(10.101) can be inferred from (34.38) and (34.39), respectively.

It should be noted that (34.39) remain the same if we replace E → E+
and E → E− in (34.38). In this case, the star operation is the same as
complex conjugation. Equations (34.39) have been the starting point in
Neugebauer’s Bäcklund transformations (Neugebauer 1979), cp. §34.4.

Finally we note that a similar treatment is possible for Einstein–
Maxwell fields with two commuting Killing vectors. In particular, using
the variables introduced in (34.13), the interchange Π : u ↔ v – which
is a subcase of (34.19) – and a coordinate transformation R (34.30),
Herlt (1979) (cp. also Clément (2000)) has generated the Kerr solu-
tion from the Schwarzschild solution, i.e. symbolically, Kerr = Π−1RΠ
Schwarzschild.

The invariance transformations (34.8) or their subcases and the Bonnor
transformation (34.20) have been applied frequently to vacuum and elec-
trovac solutions, see Table 34.2.

For further information about applications to the case of colliding plane
waves or, in general, two space-like Killing vectors we refer the reader to
the book by Griffiths (1991).

34.2 Prolongation structure for the Ernst equation

In this section we shall study the prolongation structure for the Ernst
equation. This was first investigated by Harrison (1978). Here, how-
ever, we shall not adhere to the original formulation, rather we shall use
(34.39b)–(34.39d) as a starting point (the equations for M1 decouple from
the other ones). According to the procedures outlined in §10.4.3 we write
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Table 34.2. Generation by potential space transformations

E, H and B refer to the Ehlers, Harrison and Bonnor transformations (34.11),
(34.12), and (34.20), respectively. ‘Transf.’ means Transformation.

Seed metric Transf. Author(s)
Reissner–Nordström E Neugebauer and Kramer (1969)
Minkowski space SU(2, 1) Hauser and Ernst (1979c)
Tomimatsu–Sato sol. H Ernst (1973), Wang (1974)

B,SU(2, 1) Önengüt and Serdaroǧlu (1975)
Erez–Rosen metric H Panov (1979b)
Curzon SU(2, 1) Hernandez P. et al. (1993)
Type D vacuum, H Garćıa D. and Breton B. (1985,

Kerr–Newman, 1989), Breton B. and Garćıa D.
Carter (1986a, 1986b)

E,H Demiański and Newman (1966),
Ernst and Wild (1976), Diaz (1985)

B,SU(2, 1) Bonnor (1966),
Kramer and Neugebauer (1969)

Weyl solutions H Salazar I. (1986)
H Patel and Trivedi (1975)

Stationary H Iyer and Vishveshwara (1983)
cylindrically– H Chamorro et al. (1991, 1993)
symmetric solution H Gutsunaev and Manko (1989)

H Quevedo and Mashhoon (1990)
SU(2, 1) Krisch (1983)
SU(2, 1) Denisova and Manko (1992)

Melvin solution E Garfinkle and Melvin (1994)
H Li and Ernst (1989)

Static electrovac SU(2, 1) Kramer (1987)

the equations in differential forms using complex coordinates ζ and ζ as

dM2 ∧ dζ = M2M∗2dζ ∧ dζ, dM∗2 ∧ dζ = −M2M∗2dζ ∧ dζ,

dM3 ∧ dζ = −[M3M∗3 −M3M∗4 − 1
2(M2M∗3 + M∗2M3)]dζ ∧ dζ,

dM∗3 ∧ dζ = [M3M∗3 −M∗3M4

(34.40)
−1
2(M2M∗3 + M∗2M3)]dζ ∧ dζ,

dM4 ∧ dζ = −[M4M∗4 −M4M∗3 − 1
2(M2M∗4 + M∗2M4)]dζ ∧ dζ,

dM∗4 ∧ dζ = [M4M∗4 −M∗4M3 − 1
2(M2M∗4 + M∗2M4)]dζ ∧ dζ.
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As in (10.51) we introduce an as yet unspecified number of new vari-
ables, the pseudopotentials y, by

dy = F (M i,M∗i, y) dζ + G(M i,M∗i, y) dζ, (i = 2, 3, 4). (34.41)

(ζ and ζ do not appear in (34.40) and we therefore neglect the depen-
dence on them in F and G. We also suppress the index on y, F and G,
the last two being vector fields with respect to y.) The following calcu-
lations are somewhat long albeit straightforward and we shall thus only
describe them. The integrability condition ddy = 0 yields an equation
which contains expressions proportional to dM i∧dζ, dM∗i∧dζ, dM∗i∧dζ
and dM i∧dζ. The former two expressions can be replaced by (34.40)
to yield terms proportional to dζ∧dζ, while the latter two arising from
∂M∗iF and ∂M iG cannot be replaced. As these terms have to vanish, we
conclude that F is independent of M∗i while G does not depend on M i.
Moreover, the two terms ∂yF dy∧dζ+∂yG dy∧dζ yield via (34.41) a term
(F∂yG−G∂yF ) dζ∧dζ = [F,G] dζ ∧dζ. The resulting equation is propor-
tional to dζ ∧dζ and is linear in M i and M∗i. By repeated differentiation
it can be shown that all second derivatives of F and G with respect to
M i resp. M∗i commute; it suffices to assume F and G to be linear (for
a more general treatment see Finley and McIver (1995)). With (for later
use we replaced the letter ‘X’ of (10.56) by an ‘A’)

F = M2A1 + M3A2 + M4A3,

G = M∗2A4 + M∗3A5 + M∗4A6,
(34.42)

where the Aks depend on the ys only, we get after sorting with respect to
M i and M∗i the commutator relations

[A1, A4] = A1 −A4, [A1, A6] = 1
2(A4 −A1), [A3, A4] = 1

2(A4 −A1),

[A1, A5] = A5 −A1, [A3, A6] = A6 −A3, [A2, A4] = A4 −A2, (34.43)

[A2, A5] = A2 −A5, [A2, A6] = 1
2(A5 −A2), [A3, A5] = 1

2(A5 −A2).

The problem is now to determine that free algebra generated by the above
commutators which still ‘remembers’ the original equations (34.40), cp.
the remarks below equation (10.57).

In terms of the semidirect product A11⊗V of the loop algebra of SU(1,1)
and the Virasoro algebra, i.e.

[Xi, Yk] = Yi+k, [Xi, Zk] = −Zi+k, [Yi, Zk] = 2Xi+k,

[Xi,Xk] = 0, and Y,Z, [Vi,Xk] = kXi+k and Y,Z,

[Vi, Vk] = (k − 1)Vi+k,

(34.44)
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the basic generators A1, ..., A6 are given by

A1 = −X0 + Y1, A2 = X0 + Z1, A3 = 1
2(V2 − V0),

A4 = −X0 + Y−1, A5 = X0 + Z−1, A6 = 1
2(V0 − V−2),

(34.45)

cp. Guo et al. (1982). The loop algebra of SU(1,1) can be represented
by setting Xi = λiX0 etc., thereby introducing the spectral parameter
λ. However, due to the presence of the Virasoro algebra this spectral
parameter cannot be constant, rather it is another pseudopotential. Using
a one-dimensional non-linear representation for SU(1,1), viz.

X0 = y∂y, Y0 = y2∂y, Z0 = ∂y, (34.46)

we find for (34.41) with two pseudopotentials y and λ

dy = [(λy2 − y)M3 + (λ− y)M4]dζ

+ [(y2λ−1)M∗3 + (λ−1 + y)M∗4]dζ,

dλ = 1
2λ(λ2 − 1)M2 + 1

2(λ− λ−1)M2.

(34.47)

In terms of a given solution M i, M∗i and the pseudopotentials y and λ
calculated from it, a new solution is given by a linear ansatz, viz.

M̃2 = u(λ)M2, M̃∗2 = v(λ)M2,
(34.48)

M̃3 = fiM
i, M̃4 = giM

i, M̃∗3 = f∗
i M

∗i, M̃∗4 = g∗iM
∗i.

In the course of the ensuing calculations one finds that u = v−1 equals
either λ2 or 1. The original choice in Harrison (1978) was u = v = 1. The
six functions fi(y, λ) etc. can be determined algebraically. Harrison (1983)
has given an exhaustive list. He has also analysed the group structure of
the transformations. We just quote one example:

M̃2 = λ2M2, M̃3 = yλM3, M̃4 = y−1λM4

M̃∗2 = λ−2M∗2, M̃∗3 = yλ−1M∗3, M̃∗4 = y−1λ−1M∗4 (34.49)

(Neugebauer 1979, Kramer and Neugebauer 1981, 1984).

34.3 The linearized equations, the Kinnersley–Chitre B group
and the Hoenselaers–Kinnersley–Xanthopoulos

transformations

34.3.1 The field equations

In this section we shall derive a linear problem for the stationary axi-
symmetric vacuum equations of the form (10.58) from first principles
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(Kinnersley 1977, Kinnersley and Chitre 1977, 1978a, Chitre 1980). To
this end we use a matrix f related to g from (34.29) by

f = gε =

(
Ae2U W 2e−2U −A2e2U

e2U −Ae2U

)
, ε =

(
0 1
−1 0

)
. (34.50)

It satisfies

f2 = W 21, εfT ε = f, det f = −W 2. (34.51)

The important part of the field equations, i.e. that part which involves
second derivatives of U,A and W , can be written as

∇(W−1f∇f) = 0. (34.52)

This implies the existence of a matrix Ω defined by

∇̃Ω = −W−1f∇f ⇔ ∇̃f = W−1f∇Ω. (34.53)

Ω generalizes the imaginary part of the Ernst potential, ψ. We have

Tr Ω = 2V, ∇̃W = ∇V. (34.54)

The complex matrix H = f+ iω satisfies

∇H = iW−1f∇̃H. (34.55)

H generalizes the Ernst potential (34.37); indeed, E is the lower left el-
ement. In (34.58) it will be seen that H is closely related to an instance
of the matrix H(λ) in (10.58). It can now be shown that there exists a
matrix F (λ), the analogue of Φ(λ) in (10.58), such that

[1− iλ(H + εH+ε)]∇F (λ) = iλ∇HF (λ),

F (0) = −i1, ∂λF (λ)|λ=0 = H.
(34.56)

To prove this, one operates with ∇̃ on this equation and uses (34.55)
and the algebraic properties of H. The matrix F (λ) has the following
properties

∇F (λ) = iW−1f∇̃F (λ), [1− iλ(H + εH+ε)]F (λ) + S(λ)F (λ) = 0,
(34.57)

εF+(λ)εF (λ) = S−1(λ), S(λ) ≡ (4λ2W 2 + (1− 2λV )2)1/2.

These relations can now be used to solve (34.56) for ∇F , thereby casting
it into the form (10.58). One finds

∇F (λ) = iλS(λ)−2[(1− 2λV )∇H − 2iλW ∇̃H]F (λ) (34.58)
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(for the details of these calculations see the original papers of Kinnersley
and Chitre or Hoenselaers 1984).

Now we have cast the relevant equations into the form (10.58) and we
also know that the solution of the linearized equations can be written in
the form (10.63). Before we proceed to integrate (10.64) we shall digress
for historical reasons and examine (10.67) and (10.68) in more detail.

Here, the matrix function G(λ, µ) as defined in (10.65) satisfies

∇G(λ, µ) = εF+(λ)ε∇F (µ). (34.59)

For static solutions, i.e. solutions of Weyl’s class, cp. §20.2, the matrix
F (λ) can be calculated without much ado. Indeed, if f is given by

f = A−1RA, A = diag (eU , e−U ), R =
(

0 W 2

1 0

)
, (34.60)

then

F (λ) = A−1Y (λ)B(λ), B(λ) = diag (eβ(λ), e−β(λ)),

Y (λ) = 1
2S

−1(λ)
(−i (1− 2λV + S(λ)) −2 + 2λV + S(λ)

2λ −2i

)
, (34.61)

∇(W∇U) = 0, S(λ)∇β(λ) = (1− 2λV )∇U − 2λW ∇̃U, β(0) = U.

34.3.2 Infinitesimal transformations and transformations preserving
Minkowski space

In this subsection we shall investigate (10.67). We recall that the matrices
Nnm are defined as the expansion coefficients of

G(λ, µ) =
1

λ− µ
[−λ1 + µF−1(λ)F (µ)] =

∞∑
m,n=0

Nnmλnµm (34.62)

and transform as

Ṅnm = αkNn+k,m −Nn,m+kαk−
k∑

s=1

NnsαkNk−s,m. (34.63)

Note that, due to (34.56), G(0, µ) = iF (µ). The lower left element of H,
H21, is the Ernst potential and from the explicit expression (34.61) with
U = β = 0 one can verify by direct calculation that

αk,21 : E → 1− iε(2r)k+1Pk+1(cosϕ),
r2 = W 2 + V 2,

αk,11 : E → 1− ε(2r)kPk(cosϕ), (34.64)
tanϕ = V/W,

αk,12 : E → 1− iε(2r)k−1Pk−1(cosϕ),
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with the obvious notation for the components of αk. The weak gravita-
tional fields generated in this manner contain static and stationary mul-
tipole moments of all orders but of the ‘wrong’ variety. They are all inner
solutions; the sources which produce them are located at infinity.

Some of the infinitesimal transformations can be exponentiated. One set
of those are transformations with only αk,12 �= 0; for details see Kinnersley
and Chitre (1978a). They are equivalent to SU(1, 1) transformations in
the chain of Lagrangians derived from the repeated application of (10.98)
(Hoenselaers 1978b).

The form of (34.64) suggests that one considers transformations gener-
ated by

βk = αk,12 − αk+2,21; (34.65)

they form an Abelian subgroup called B. The infinitesimal transforma-
tions leave Minkowski space invariant. Kinnersley and Chitre (1977) have
shown that this holds also for the finite transformations. These trans-
formations also preserve asymptotic flatness (in the sense of E → ∞ for
large r). The action of B on the potentials can be exponentiated for the
Zipoy–Voorhees solutions with integer δ: Minkowski space (δ = 0) remains
unchanged, the Schwarzschild solution (δ = 1) yields the Kerr solution,
while δ = 2 gives the Kinnersley and Chitre (1978b) solution (20.41).

34.3.3 The Hoenselaers–Kinnersley–Xanthopoulos transformation

We now turn to the integration of (10.64). We write it in the abbreviated
form (10.63), i.e.

∂εF (λ) = λ(λ− σ)−1
[
F (σ)αF−1(σ)F (λ)− F (λ)α

]
. (34.66)

We are dealing with 2 × 2 matrices and α is tracefree. It has only been
possible to integrate these equations if the constant matrix α is nilpotent,

α2 = 0. (34.67)

The main line of attack is to solve for terms involving F (σ) first. By
taking the limit λ→ σ we find

∂εF (σ) = σ[F (σ)αF−1(σ)F ′(σ)− F ′(σ)α], (34.68)

where the prime denotes the derivative of F with respect to its first ar-
gument, i.e. F ′(λ) = ∂λF (λ). Due to the nilpotence of α, we note that

α∂ε
[
F−1(σ)F (λ)

]
α = αF−1(σ)F ′(σ)αF−1(σ)F (λ)α. (34.69)
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As α is nilpotent, we have, for any matrix X, αXα = αTr(Xα) =
αTr(αX). To exploit this identity in solving (34.69), we define

Θ(λ, σ) =
λ

λ− σ
Tr
[
F−1(σ)F (λ)α

]
⇒ Θ(σ, σ) = σTr

[
F−1(σ)F ′(σ)α

]
.

(34.70)
The equation for Θ(σ, σ) and its solution become

∂εΘ(σ, σ) = Θ(σ, σ)2 ⇒ Θ(σ, σ) = [1− εΘ0(σ, σ)]−1Θ0(σ, σ). (34.71)

The subscript ‘0’ refers to the corresponding quantity for the seed solution.
From (34.68) we find

∂ε
(
F (σ)αF−1(σ)

)
= F (σ)αF−1(σ)Θ(σ, σ),

⇒ F (σ)αF−1(σ) = [1− εΘ0(σ, σ)]−2F0(σ)αF−1
0 (σ). (34.72)

This can now be inserted into (34.66) which can be solved for F (λ). The
solution is

F (λ) =

[
1 +

ελ

λ− σ

F0(σ)αF−1
0 (σ)

1− εΘ0(σ, σ)

]
F0(λ)
(
1− ελα

λ− σ

)
. (34.73)

Recall that the real part of H contains the metric functions and that
the lower left element of H is the E potential. H can be calculated from
(34.56). Note that the quantities σ, ε and the components of α appear as
parameters in the final solution.

The transformation can be iterated. The result can conveniently be
written in matrix notation by introducing the vectors and matrices

Θ = (Θ0(σi, σk)εk) , K = (F0(σi)αεi) , L =
(
F−1
0 (σi)σ−1

i

)
(34.74)

(i, k = 1, . . . , N). One finds

H = H0 + iKT (1−Θ)−1L. (34.75)

N.b. the components of the vectors K and L are themselves matrices; but
the transposition does not affect the components of K.

The Ernst potential E is the lower left element of H. If the original
metric is static, i.e. F0(λ) is given by (34.61), and α is chosen as α =(

0 1
0 0

)
, one finds (Dietz 1983b), dropping the subscript ‘0’ and denoting

zi = σi/2,

E = e2UD−D−1
+ , D± = det(δik + γ±(zi, zk)εk),

γ±(η, ζ) = ie2β(ζ)S(ζ)−1([S(η)− S(ζ)]/[η − ζ]± 1), (34.76)

S(ζ) = (W 2 − (ζ − V )2)1/2, S(ζ)∇β(ζ) = (ζ − V )∇U −W ∇̃U.
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Table 34.3. Applications of the HKX method

Seed References
Minkowski Hoenselaers (1981), Dietz and Hoenselaers (1982b)

Hoenselaers and Dietz (1984)
Curzon Hernandez P. et al. (1993)
Weyl Dietz and Hoenselaers (1982a), Dietz (1983a, 1984b)

Castejon-Amenedo and Manko (1990b)
Quevedo and Mashhoon (1991)
Xanthopoulos (1981), Hernandez P. et al. (1993)

Erez–Rosen Quevedo (1986a, 1986b)
Zipoy–Voorhees Dietz (1984a)

These transformations were first derived – albeit in a different form – by
Hoenselaers et al. (1979) and are known as HKX transformations.

The special solution which we shall mention as an example of the HKX
transformations is the following (Dietz and Hoenselaers 1982c, Hoense-
laers 1983) (other examples are listed in Table 34.3). One starts with a
superposition of two Curzon particles (20.5). One then performs two HKX
transformations (34.76) and chooses the parameters so that z1 = −z2 = σ.
The solution depends on four parameters, m, ε1, ε2 and σ. The last, how-
ever, can be scaled to unity. We shall not give the metric functions as
they are rather lengthy, rather we shall describe the principal features of
this solution, depicted in Fig. 34.2.

In the standard prolate spheroidal coordinates x and y (cp. (20.7)), the
coordinate axis ρ = 0 splits into three parts: I: y = 1, II: x = 1, III:
y = −1. The solution has rather complicated singularities at x = 1, y =
±1. For ρ = 0 to be an axis in space-time, i.e. a set of fixed points of the
action of the ∂ϕ Killing vector, we need A(ρ = 0) = 0. It follows from
(34.32) that A at ρ = 0 is at most a step function of z, i.e. it is constant
on the three parts mentioned above. It is also defined up to an additive
constant which can be chosen such that A(III) = 0. The condition that
the solution be asymptotically flat, i.e. possess no NUT-like singularity,
yields one condition on the parameters, ε = ε1 = −ε2. The condition of
the existence of an axis between the objects, i.e. A(II) = 0, is a condition
on the remaining parameters m and ε.

The metric function k, the conformal factor of the ρ − z part of the
metric, cp. (19.31), is by (19.42) also at most a step function of z at ρ = 0.
It is also only defined up to an additive constant which can be chosen such
that k(I) = k(III) = 0; the latter relation follows from the behaviour
of the Ernst potential at infinity. For the axis II to be regular, i.e. to
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III

= 0 by appropriate choice of constants

= 0: condition for absence of NUT-like singularity

k
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A
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= 0: condition for absence of a conical singularity

= 0: condition for an axis between the objects

= 0 by appropriate choice of constant

= 0 by appropriate choice of constant

ρ

z

Curzon-like object
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Curzon-like object

I

II

Fig. 34.2. The configuration of two Curzon-like objects in balance

be such that one can introduce locally Cartesian coordinates, one needs
k(II) = 0. This is yet another condition on the remaining parameters. It
can be shown that the two conditions A(II) = k(II) = 0 can be satisfied
for particular numerical values of ε and m. It can also be shown that the
solution is free of singularities except those located at x = 1, y = ±1; it
is invariant under y → −y.

The solution with the particular choice of parameters just defined de-
scribes two objects (whatever they are) that can be enclosed in convex
regions surrounded by vacuum gravitational field. The two objects are
balanced against their gravitational attraction by relativistic interaction
of angular momentum.

34.4 Bäcklund transformations

In this section we follow Neugebauer (1979) (see also Neugebauer (1981),
Kramer and Neugebauer (1984), Neugebauer and Kramer (1985)) and
adapt (34.39c)–(34.39d) to the polynomial Bäcklund transformations out-
lined in §10.6. To this end we use Weyl’s canonical coordinates and intro-
duce a coordinate ζ related to them by

ζ = ρ + iz. (34.77)

Note that now M2 = ρ−1ρ,ζ . One can reformulate (34.39c)–(34.39d)
as a linear problem analogous to (10.58); however, due to the explicit
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coordinate dependence, the ‘parameter’ is no longer constant, rather it is
given by

Λ =
√

(K − iζ)/(K + iζ). (34.78)

Using this Λ the linear problem becomes

dΦ =
[(

M4 ΛM4

ΛM3 M3

)
dζ +
(

M∗4 Λ−1M∗4
Λ−1M∗3 M∗3

)
dζ
]

Φ. (34.79)

We have (cp. (34.38))

M3 = 1
2e−2UE,ζ , M∗3 = 1

2e−2UE,ζ , M4 = 1
2e−2UE ,ζ , M∗4 = 1

2e−2UE ,ζ
(34.80)

(Ernst picture). We note that the matrix Φ(Λ) at Λ = 1, i.e. in the limit
K →∞, is given by

Φ(1) =
( E 1
E −1

)
. (34.81)

The matrix corresponding to H (λ) in (10.58) is not tracefree, an-
other manifestation that the independent variables appear explicitly in
the equation. Nevertheless, we seek a new solution of (34.79) in the form

Φ = qPΦ0, P =
n∑

s=0

PsΛs (34.82)

(Meinel et al. 1991), where the matrices Ps are independent of Λ. The
scalar function q is determined by the conditions

q,ζ = 0, (Λnq),ζ = 0, (34.83)

which are chosen such that the ansatz (34.82) inserted into (34.79) allows
the comparison of coefficients of ascending resp. descending powers of Λ.
The determinant of P is a polynomial in Λ of degree 2n, i.e.

det (P ) = β
2n∏
i=1

(Λ− Λi), (34.84)

where β(ζ, ζ) is independent of Λ. The particular choice of Λ guarantees
that d[det (Φ)]=Tr(Φ−1dΦ) = 0 at Λ = Λi := Λ(Ki). It turns out that, in
order to preserve the particular algebraic structure (34.79), det(P ) is an
even polynomial of Λ such that we have essentially n zeros Λi.

According to (10.78) we have to solve

P (Λi) Φ0 (Λi)p(i) = 0, i = 1, . . . , n (34.85)
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and it can be shown that the vectors p(i) are constant. An appropriate
form for the solution of (34.83) is

q =
n∏
i=1

√
(1− Λ2i )/(Λ2 − Λ2i ). (34.86)

For the solution of (34.85) it is useful to introduce the quantities(
li
mi

)
= Φ0 (Λi)p(i). (34.87)

With P (−1) = 1 one finds that the new Ernst potential can be expressed
in terms of the Vandermonde-like determinant

Θ(Λ, l,m) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

m Λl Λ2m Λ3l · · · Λnl

m1 Λ1l1 Λ21m1 Λ31l1 · · · Λn
1 l1

m2 Λ2l2 Λ22m2 Λ32l2 · · · Λn
2 l2

...
...

...
...

...
mn Λnln Λ2nmn Λ3nl2n · · · Λn

nln

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (34.88)

The new solution of Ernst’s equation is given by

E = Θ(−1,−E0, E0)/Θ(−1, 1, 1). (34.89)

This expression involving n×n determinants can, for even n, be rewritten
as (Kramer and Neugebauer 1980, Yamazaki 1984)

E = E0 det

(
αprp − αqrq
Kp −Kq

− E0
E0

)/
det

(
αprp − αqrq
Kp −Kq

− 1

)
, αk =

lk
mk

,

(34.90)
r2k = (Kk − iζ)(Kk + iζ), p = 1, 3, . . . n− 1, q = 2, 4, . . . n.

For the new Ernst potential (34.90) to yield a real gravitational field, the
αk have to be restricted by one of the two following expressions:

αkαk = 1 or αkαm = 1 (k �= m). (34.91)

In terms of the parameters Kk this implies that they are either real or
come in complex conjugate pairs, i.e.

Kk = Kk or Kk = Kk+1. (34.92)

It should be noted that the αk satisfy the Riccati equations

dαk = (αk + Λk)
(
M4 − αkM

3
)

dζ +
(
αk + Λ−1

k

) (
M∗4 − αkM

∗3) dζ.
(34.93)
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Fig. 34.3. Two rotating black holes in Weyl coordinates

For a given Ernst potential E0 (seed solution) one calculates the Mk

from (34.80), solves (34.93) for the αk and inserts the result into (34.90) to
obtain the new Ernst potential. The most prominent example of a solution
generated by this method results from the application of two Bäcklund
transformations to Minkowski space (Kramer and Neugebauer 1980). It is
the so-called double-Kerr solution. In terms of the determinants (34.90)
it can be written as (Yamazaki 1983a, 1983b)

E =
J−
J+

, J± =

∣∣∣∣∣∣∣∣∣
S1 − S2
K1 −K2

± 1
S1 − S4
K1 −K4

± 1

S3 − S2
K3 −K2

± 1
S3 − S4
K3 −K4

± 1

∣∣∣∣∣∣∣∣∣ ,

Sk = eiωk

√
ρ2 + (Kk − z)2, ωk = const.

(34.94)

For real K it describes the superposition of two Kerr black holes. The
horizons are located at ρ = 0, K1 ≥ z ≥ K2, K3 ≥ z ≥ k4, see Fig. 34.3.

This solution has been analysed extensively (e.g. Tomimatsu and
Sato (1981), Kihara et al. (1983), Dietz and Hoenselaers (1985), Kramer
(1986b), Dietz (1988)). The first problem is to give some physical mean-
ing to the parameters appearing in the solution. In an asymptotically flat
system with only one constituent the mass, angular momentum etc. can
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Fig. 34.4. Two hyperextreme Kerr objects in balance

be taken to be given by the multipole moments, cp. §18.8, and can eas-
ily be related to the parameters of the solution. For a system consisting
of several objects the problem is more complicated. Dietz and Hoense-
laers (1985) have chosen the so-called Komar (1959) integrals

M = − 1
4π

∫
Σ
ξα;βdΣαβ , J =

1
8π

∫
Σ
ηα;βdΣαβ (34.95)

as definitions for the masses and angular momenta of the individual ob-
jects. Σ is a closed 2-surface surrounding the object and ξ = ∂t, η = ∂ϕ.
It can be shown that the integrals are independent of the surface, i.e.
M(Σ1) = M(Σ2), if and only if Rαβ ≡ 0 between Σ1 and Σ2.

Again, as was the case for the solution described in Fig. 34.2, the con-
dition k = 0 on the middle part of the axis is a rather simple one. The
difficult ones are the condition of asymptotic flatness, i.e. A = 0 at I, and
the condition of the existence of an axis between the objects, i.e. A = 0
at II – without which the interpretation of the solution as describing two
Kerr objects is not tenable. It can be shown analytically that balance
cannot be achieved for positive Komar masses (Manko and Ruiz 2001).

The situation changes if one considers hyperextreme Kerr objects
(Fig. 34.4). In the symmetric case, M1 = M2 = M, J1 = J2 = J > 0
(without loss of generality), it can be shown that the three conditions
reduce to

D = M

[
Q

(
1 +
√

1− 2/Q
)
− 2
]
, Q = JM−2. (34.96)

The reality of D requires Q > 2. Loosely speaking, a black hole is too
small to store the angular momentum required for balance. It should
be noted that the limit K1 → ∞ combined with an appropriate scal-
ing of E yields the rotating version of the C-metric (21.11) (Hoenselaers
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1985a). Ernst (see Hauser and Ernst 1979a) has used data specified on the
symmetry axis to determine the parameters Ki of Neugebauer’s Bäcklund
transformation.

34.5 The Belinski–Zakharov technique

In this section we shall introduce the main features of the Belinski–Zakha-
rov technique (Belinskii and Zakharov 1978, 1979); for reviews, see Mic-
cichè (1999) and Belinski and Verdaguer (2001). Belinski and Zakharov
started with the matrix g representing the ϕ–t-part of the metric, i.e.

g = W e−U
( −1 −A

−A e2U + A2

)
, (34.97)

and introduced the matrices

A = −Wgζg−1, B = Wgζg
−1 (34.98)

(ζ given by (34.77)). The important part of the field equations, i.e. the
part involving the ϕ–t-components of the metric, becomes

Aζ −Bζ = 0. (34.99)

Apart from this equation, there are integrability conditions following from
(34.98). They are

W (Aζ + Bζ) + [A,B]−WζA−WζB = 0. (34.100)

We are thus interested in two matrices A and B satisfying (34.99) and
(34.100).

Belinski and Zakharov introduced the following operators

D1 = ∂ζ − 2λ
λ−W

Wζ∂λ, D2 = ∂ζ +
2λ

λ + W
Wζ∂λ. (34.101)

It can be shown by direct calculation that the condition that the Ds
commute is equivalent to the equation for W , i.e.

[D1,D2] = 0 ⇐⇒ Wζζ = 0. (34.102)

Moreover, the Ds are invariant under the rescaling

λ −→ λ′ = W 2λ−1. (34.103)

A linear pair, analogous to (10.58) albeit using two derivative operators
in place of the exterior derivative, is introduced by

D1Φ =
1

λ−W
AΦ, D2Φ =

1
λ + W

BΦ, (34.104)
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where Φ is a complex matrix depending on the so-called spectral parame-
ter λ. The field equations (34.99) and the integrability conditions (34.100)
are equivalent to the integrability condition of the system (34.104). In par-
ticular we have

Φ(λ = 0) = g. (34.105)

In analogy to (34.82) we use the dressing ansatz, i.e. we look for a new
solution in the form

Φ(λ) = P (λ)Φ0(λ), (34.106)

where, as usual, a subscript ‘0’ indicates quantities pertaining to the seed
metric. This ansatz implies by (34.105)

D1P =
1

λ−W
(AP − PA0), D2P =

1
λ + W

(BP − PB0). (34.107)

Not all solutions of (34.107) are acceptable. For instance, the reality of
g imposes the condition

P (λ) = P (λ), Φ(λ) = Φ(λ). (34.108)

Moreover, we can only accept a symmetric metric g. To this end we con-
sider a new matrix P ′(λ) defined by

P ′(λ) = gP (λ′)g−10 (34.109)

(λ′ as given by (34.103)). By using the invariance of the Ds under (34.103),
it can be shown that P ′ also satisfies (34.107) if g is symmetric. Indeed,
the symmetry of g implies gA†−1g−1 = A, which in turn ensures that
P ′ is also a solution. Consequently the symmetry of g is assured if there
exists a scalar function h(λ) such that

P ′(λ) = h(λ)P (λ). (34.110)

In general such a function will be different from 1. The new g is given by

g = h(λ)P (λ′)g0P T (λ). (34.111)

To write this in the form

g = P ′(λ = 0)g0 (34.112)

we need to impose the condition

lim
λ→0

h(λ)P (λ′) = 1. (34.113)
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Finally, one requires det(g) = −W 2. This implies for P

det [P (λ = 0)] = 1. (34.114)

In fact, any solution of the linear pair (34.104) is defined up to a scaling
g → h(λ = 0)−1g. Thus, given any solution g of (34.105) the physical
metric gph (detgph = −W 2) can be obtained by

gph = W (detg)1/2g, (34.115)

in which case we have h = (detg)1/2W−1.
In order to construct a solution explicitly, we now introduce some as-

sumptions on the pole structure of the matrix P in the complex λ-plane.
Here, we shall assume that P and P−1 have singularities in λ and that
these are simple poles, i.e. both P and P−1 are meromorphic. Of course,
the poles will depend on W and V ; note that – whenever possible –
we have suppressed the coordinate dependence of the various quantities.
This is analogous to prescribing the zeros of the dressing matrix P in
§34.4. Let us assume that P (λ) is not invertible at a number of points νk
(k = 1, . . . , n) and that these are simple poles for P−1. Then it can be
shown that P has simple poles at µk = W 2ν−1k .

From (34.108) it can be concluded that the poles of P are either real or
come in complex conjugate pairs. Thus the general forms of P and P−1
are

P =
n∑

k=1

[
(λ− µk)Rk + (λ− µk)−1Rk

]
, (34.116a)

P−1 =
n∑

k=1

[
(λ− νk)−1Qk + (λ− νk)Qk

]
, (34.116b)

where the matrices Rk and Qk are related through the condition PP−1 =
1. By inserting (34.116) into (34.107) we find an equation for µk the
solution of which is

µk = wk ±
√

(wk − V )2 + W 2. (34.117)

The Rk cannot be chosen arbitrarily, rather they are given in terms of
vectors nk and mk by

Rk = nkm
T
k . (34.118)

For a given seed metric g0 one obtains, at least in principle, Φ0 from
(34.104). Then one defines matrices Mk and with their help the vectors
mk by

Mk = Φ0(λ = µk), mk = MT
k κk, (34.119)
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Table 34.4. Applications of the Belinski–Zakharov method

The Killing vector types are AS (axisymmetric stationary), CY (cylindrical
symmetry), CO (cosmological symmetry), BR (boost-rotation symmetry).

Seed Type Result

Minkowski AS Vac. Alekseev (1981), Gruszczak (1981)
Azuma et al. (1993)
Letelier and Oliveira (1998a)

CY Vac. Tomimatsu (1989)
BR Vac. Jantzen (1983)

Euclidean AS Vac. Verdaguer (1982)
Weyl AS Vac. Letelier (1982, 1985a, 1985c)

Tomimatsu (1984)
Carot and Verdaguer (1989)

Kerr AS Vac. Tomimatsu (1980)
v. Stockum AS Vac. Letelier (1986)
Kasner CO Vac. Belinskii and Fargion (1980b)

Carr and Verdaguer (1983)
Ibañez and Verdaguer (1983, 1985, 1986)
Das (1985), Griffiths and Miccichè (1999)

CY Vac. Cespedes and Verdaguer (1987)
Bianchi II CO Vac. Belinskii and Francaviglia (1982, 1984)

vacuum Vac. Bradley et al. (1991)
Einstein– CY Vac. Letelier (1985b)

Rosen Fustero and Verdaguer (1986)
Oliver and Verdaguer (1989)

Non-diagonal AS Vac. Das and Chaudhuri (1991)
Minkowski AS EM Alekseev (1980), Wang et al. (1983b)

CY EM Dagotto et al. (1993)

where κk are arbitrary complex vectors. The nk are now constructed
via

nl =
2n∑
k=1

Nkµ
−1
k Γ−1

kl , Nk = g0mk, Γkl =
(
µkµl −W 2

)
mkg0ml.

(34.120)

Finally the new physical metric is given by

g =
2n∏
k=1

(µkW−1)
2n∑

k,l=1

(
g0 − µ−1

k µ−1
l Γ−1

kl NkN
T
l

)
. (34.121)
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The Belinski–Zakharov formulation of the field equations gives also rise
to an infinite number of conserved quantities, see Wu et al. (1983). For
poles of higher order see Gleiser et al. (1988b).

34.6 The Riemann–Hilbert problem

34.6.1 Some general remarks

It was recognized quite early that the linear problem equivalent to the
field equations in the stationary axisymmetric case admits a formula-
tion in terms of a Riemann–Hilbert problem (or of integral equations),
in which the values of the Ernst potential on the axis of symmetry quite
naturally occur, see e.g. Belinskii and Zakharov (1978), Hauser and Ernst
(1979a, 1979b, 1980a, 1980b), Sibgatullin (1984, 1991), Manko and Sib-
gatullin (1993) and Alekseev (1980, 1985). For a detailed discussion of
the mathematics involved cp. Hauser (1984). In most of the applications
solutions were constructed which have been – or could have been – quite
easily found by using the more direct approaches discussed in the previous
sections. An example of a more intricate application is the Neugebauer–
Meinel solution discussed below. For other formulations and applications
of the Riemann–Hilbert problem see also Guo et al. (1983a), Wang et al.
(1983a, 1984) and Nagatomo (1989).

Hauser (1980) and Hauser and Ernst (1981) used a Riemann–Hilbert
formulation (referring to the linear system (34.58), cp. §10.7) to prove a
conjecture due to Geroch, namely that any stationary axisymmetric so-
lution which is regular in an open neighbourhood of at least one point on
the axis can, at least in principle, be generated from flat space by appli-
cation of the Geroch group, the algebra of which is given in (34.62) (that
a solution is uniquely determined by the values of the Ernst potential on
the axis follows from standard theorems on elliptic differential equations).
Some first applications of this formulation are discussed in Ernst (1984)
and Guo (1984a, 1984b). The analogous formulations for the colliding
plane waves (including a generalized Geroch conjecture) have been dis-
cussed by Ernst et al. (1988) and in a series of papers by Hauser and
Ernst, see e.g. Hauser and Ernst (1991, 2001).

The method proposed by Alekseev has been applied on several exam-
ples, see e.g. Alekseev and Garćıa D. (1996) (where also a detailed pre-
sentation of the method is given) and Miccichè and Griffiths (2000) and
the references given therein.

Sibgatullin’s method has been used in many applications by Sibgat-
ullin himself and by Manko and coworkers, see e.g. Il’ichev and Sibgat-
ullin (1985), Manko and Sibgatullin (1992), Aguirregabiria et al. (1993a),
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Fig. 34.5. The parameters and boundary conditions for the rotating disc
of dust

Manko et al. (1995), Breton B. and Manko (1995), Manko and Ruiz
(1998), Manko (1999) and Manko et al. (1999) and the references given
therein. Many of these papers deal with the equilibrium problem of n
bodies on the axis, including some solutions not readily given by other
methods.

34.6.2 The Neugebauer–Meinel rotating disc solution

Neugebauer and Meinel (1993, 1994, 1995) and Neugebauer et al. (1996)
have constructed and used a Riemann–Hilbert problem pertaining to the
linear problem (34.79) to find the exact solution for a rigidly rotating
disc of dust. The boundary data for such a configuration are shown in
Fig. 34.5.

First, (34.79) are solved on the coordinate axis ρ = 0 and the equato-
rial plane z = 0 where they reduce to ordinary differential equations. In
particular, the Ernst potential on the axis, E(ρ = 0, z), is given in terms
of a solution, β(x), of a linear integral equation the details of which can
be found in the original papers. The Ernst potential can, according to
(34.81), be read off from the matrix Φ(Λ, ρ, z) evaluated at Λ = 1. For
arbitrary fixed values of ρ and z the matrix Φ(λ) is regular everywhere in
the complex Λ-plane except on the curve

Γ : Λ =
√

(iz + ρ0x− ρ)/(iz + ρ0x + ρ),

−1 ≤ x ≤ 1, (ReΛ > 0 for z > 0).
(34.122)

On Γ, Φ jumps in a well-defined way, i.e.

[Φ(Λ)]+ = A(x) [Φ(Λ)]− −B(x)Φ(−Λ). (34.123)
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The jump coefficients A and B – the scattering data – are algebraic
functions of β(x) and x. This is a matrix Riemann–Hilbert problem and
can be reformulated as an integral equation. The approach via the axis
data can also be used to derive the Kerr solution (Neugebauer 2000).

The solution for the rigidly rotating disc of dust depends on two pa-
rameters, the radius ρ0 and the angular velocity Ω. It exists for µ =
2Ω2ρ20e

−2V0 ≤ µ0 = 4.62966 . . . . The surface potential e−2V0 is an im-
plicit function of µ. For µ = µ0 the solution reduces to the extreme Kerr
solution.

The solution of the Riemann–Hilbert problem leads to a class of
Ernst potentials involving elliptic and hyperelliptic functions (Meinel and
Neugebauer 1996). Let, for given n, Ki, i = 1, . . . , n, be arbitrary complex
constants and

W =

[
(K + iζ) (K − iζ)

n∏
i=1

(K −Ki)(K −Ki)

]1/2
. (34.124)

Additional quantities K(m),m = 1, . . . , n, are defined as solutions of the
so-called Jacobi inversion problem

n∑
m=1

K(m)∫
Km

KjdK

W
= uj , j = 0, . . . , n− 1, (34.125)

where the uj are given recursively by

∆u0 = 0, i∂ζuj = 1
2uj−1 + ζ∂ζuj−1, j = 1, . . . , n. (34.126)

All uj are thus solutions of Laplace’s equation. Finally, the Ernst potential
is

E = exp

 n∑
m=1

K(m)∫
Km

KndK

W
− un

 (34.127)

This Ernst potential can also be expressed in terms of theta functions
(Neugebauer et al. 1996).

For other applications using hyperelliptic functions see Korotkin (1988,
1993), Klein and Richter (1997, 1999) and the references given therein.
The relation between the different approaches is discussed in Korotkin
(1997) and Meinel and Neugebauer (1997).

34.7 Other approaches

In this section we shall mention several other approaches to solving Ernst’s
equation.
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Chinea (1983, 1984), Harrison (1980, 1983), Cosgrove (1981), Omote
and Wadati (1981a, 1981b) and Nakamura (1979, 1987) have constructed
various Bäcklund transformations distinct from the one discussed here
in detail. Hirota’s method has been applied by Masuda et al. (1998)
and Nakamura and Ohta (1991). Twistor methods have been used by
Ward (1983) and Woodhouse and Mason (1988). The infinitesimal trans-
formation for the system (34.56) discovered by Hou and Li (1988) and Li
(1988, 1989a) and studied further by Kinnersley (1990, 1991) is a general-
ization of the original Geroch transformations; the resulting algebra turns
out to be a semidirect product of the original Kinnersley–Chitre transfor-
mations (34.63) and a Virasoro algebra operating on the fields W and V
(Wu and Ge 1983). For yet other approaches see Dodd and Morris (1982),
Dodd et al. (1984), Zhong (1985) and Korotkin and Nicolai (1994).

Relations between various solution-generating methods have been stud-
ied in detail by Cosgrove (1980, 1982a, 1982b).

34.8 Einstein–Maxwell fields

All solution-generating methods that have been discussed above and
that pertain to vacuum solutions can be generalized to Einstein–Maxwell
fields. In particular, Kinnersley (1980) has generalized the approach of
§34.3 to include electrovac solutions. Bäcklund transformations have been
found and used by Kramer and Neugebauer (1981, 1984), Neugebauer
and Kramer (1983), and Kramer (1984a). Guo and Ernst (1982) and
Ernst (1994) have generalized the double Kerr solution to the double
Kerr-Newman solution. Alekseev’s technique has been applied frequently
to Einstein–Maxwell fields (Alekseev 1983, 1990). Another Bäcklund
transformation has been found by Omote et al. (1980). Most solution-
generating techniques can generate only the hyperextreme Kerr–Newman
solution, i.e. m2 < a2 + e2, whereas Sibgatullin’s method also allows the
generation of the underextreme solution from flat space. (An n-body so-
lution conatining such objects was given in Ruiz et al. (1995).) For a
relation of the Einstein–Maxwell equations to the non-linear σ-model see
Mazur (1983).

34.9 The case of two space-like Killing vectors

Having concentrated so far mostly on the stationary axisymmetric case we
shall in this section describe briefly how to translate the main equations
into the case where both Killing vectors are spacelike. The metric now
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assumes the form

ds2 = e−2U [e2k(dz2 − dt2) + W 2dx2] + e2U (dy + Adx)2, (34.128)

cp. (17.4) and (22.40), and the Killing vectors are ξ = ∂x and η = ∂y. The
field equations are to be derived from the Lagrangian given in (34.31) with
the difference that here ∇f ∇g = ∂zf ∂zg − ∂tf ∂tg, i.e. the metric for
manipulating the ∇ operator is diag(1,−1). Equation (34.27) translates
into

∇ = (∂z, ∂t), ∇̃ = (∂t, ∂z), ∂ = ∂z + ∂t, ∂∗ = ∂z − ∂t (34.129)

and the transformed Lagrangian analogous to (34.33) becomes

L′ = 2∇k∇W − 1
2W
[
4(∇U)2 − e−4U (∇ψ)2

]
. (34.130)

N.b. (34.32) remains unchanged. Now two real Ernst potentials are intro-
duced by

E = e2U + ψ, E∗ = e2U − ψ, (34.131)

and the Lagrangian becomes

L′ = 2∇k∇W − 2W∇E ∇E∗ (E + E∗)−2. (34.132)

This is the same function as (34.36) and consequently every solution
of the corresponding field equations gives rise to two different space-
times.

The rule for translating formulae from the stationary axisymmetric
situation into the one with two spacelike Killing vectors is that in every
occurrence of the Ernst potential E or the derivative operator ∂ an ‘i’
should be replaced by a ‘±’, the conjugation operation being ± → ∓.
By this replacement the complex Ernst potential E splits into two real
potentials, i.e. E = e2U+iψ → e2U ± ψ, cp. (34.131). Note that (34.39)
can be used without change after a reinterpretation of the symbols Mk

and ∂.
The field equation for the metric function W becomes

∇2W = W,zz −W,tt = 0, (34.133)

and in contrast to the stationary case there are the possibilities of ∇W
being spacelike, timelike, null or even zero. The first case is commonly
referred to as ‘cylindrical waves’ (§22.3), the second one as ‘cosmological
solutions’ or ‘colliding waves’ (Chapter 25) and the third case gives rise
to plane waves (§22.3). The fourth case implies that space-time is flat for



552 34 Application of generation techniques to general relativity

vacuum (§24.5). For a detailed discussion of colliding waves the reader is
referred to Griffiths (1991).

Bäcklund transformations for the case of two space-like Killing vec-
tors have been given by various authors; indeed, the Belinski–Zakharov
technique discussed above and the methods developed by Alekseev were
first formulated for this case. In addition to the papers quoted above we
mention Papanicolaou (1979) and Fokas et al. (1999).
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Special vector and tensor fields

35.1 Space-times that admit constant vector and tensor fields

35.1.1 Constant vector fields

Because of the definition of the curvature tensor, the very existence of a
constant vector field a,

ab;c = 0, (35.1)

imposes severe conditions on the curvature tensor and the metric: a is
(proportional to) a constant vector field if and only if it satisfies

abR
b
cde = 0 (35.2)

and all equations obtained by repeated differentiation of (35.2).
Equation (35.2) shows that a four-dimensional space admitting four

(independent) constant vectors is necessarily flat. The constancy of the
metric gab and the existence of three constant vectors imply the existence
of a fourth constant vector (which completes the system of the three) via
(3.2), and therefore the space is again flat.

If two constant vectors a and b exist (and are linearly independent), it
follows from (35.2) by considering a tetrad representation of the curvature
tensor that this tensor can be given in terms of a simple bivector Acd:

Rcdef = AcdAef , Acda
c = 0 = Acdb

c. (35.3)

Two different cases occur, depending on whether a and b can both be
chosen to be non-null, in which case

Acd = pcqd − qcpd, acb
c = 0, pcq

c = 0, (papa)(qbqb) �= 0, (35.4)

or not, in which case one of them is necessarily a null vector, say b = k,
and their product vanishes,

Aab = pakb− kapb, pap
a �= 0, aca

c �= 0, kak
a = aak

a = kap
a = 0. (35.5)

553



554 35 Special vector and tensor fields

In the first case (35.4), the metric can be transformed into

ds2 = gAB(x1, x2)dxAdxB + ε1(dx3)2 + ε2(dx4)2,

ac = δc4, bc = δc3, A,B = 1, 2, ε1, ε2 = ±1.
(35.6)

Because of (35.3), the energy-momentum tensor Tcd is proportional to
(acad/a2 + bcbd/b

2). In the second case (35.5), we get

ds2 = gAB(x1, x2)dxAdxB + 2dx1dx3 + (dx4)2, ac = δc4, kc = δc3, (35.7)

the energy momentum tensor κ0Tab = p2kakb being that of a pure radia-
tion field. (For both cases, see Eisenhart (1949), p. 162, and Takeno and
Kitamura (1968).)

Finally, if the space-time admits one constant vector ac = δc4, this vector
is either non-null, the metric being

ds2 = gαβ(xν)dxαdxβ + ε(dx4)2, ε = ±1, α, β, ν = 1, 2, 3, (35.8)

or the vector ac = δc4 is null,

ds2 = gαβ(xν)dxαdxβ − 2dx3dx4, α, β, ν = 1, 2, 3. (35.9)

The existence of a non-null constant vector ac = δc4 implies R4knm = 0

and
4
Rαβγδ =

3
Rαβγδ. For vacuum solutions Rab = 0 this yields

3
Rαβ= 0,

which is equivalent to
3
Rαβγδ = 0: if a vacuum solution admits a constant

vector field, this vector is a null vector or space-time is flat. For perfect
fluid solutions it immediately follows that for a timelike constant vector
the equation of state is µ + 3p = 0 (and the solution is the Einstein
universe, (12.24) or (37.40), and for a space-like constant vector µ = p. In
the latter case the general solution is not known; particular cases are the
Gödel solution (12.26), the special Kasner solution (13.53) with p3 = 0
and some solutions with a G2 (Coley and Tupper 1991).

35.1.2 Constant tensor fields

Decomposable space-times A four-dimensional space-time is decomposable
if it is the product of a three- and a one-dimensional space

ds2 = gαβ(xν)dxαdxβ + ε(dx4)2, ε = ±1, (35.10)

or the product of two two-dimensional spaces

ds2 = gAB(xC)dxAdxB + gMN (xP )dxMdxN . (35.11)
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Decomposable space-times can be characterized (Petrov 1966, p. 398)
by the existence of a symmetric tensor hmn which is idempotent and
constant,

hab = hba, habh
b
c = hac, hab;c = 0. (35.12)

This tensor can be used to split the metric tensor into two parts,

gab = (1)gab + (2)gab = hab + (gab − hab), (35.13)

both satisfying (35.12). The rank of the matrix hab is three (one) or two,
respectively.

The metric (35.10) is that of (35.8), admitting a constant non-null vec-
tor. In the metric (35.11), the only surviving components of the curvature
tensor are R1212 and R3434, and the Ricci tensor obeys

R11 = R22, R33 = R44, Rb
a = 0 otherwise. (35.14)

Correspondingly, of the energy-momentum tensors considered in this
book, only that of a Maxwell field is possible, and for this one should
have R = 0, i.e. a conformally flat space-time (35.35).

Space-times conformal to decomposable space-times, the conformal fac-
tor depending only on one of the two coordinate sets (warped space-times)
were considered by Carot and da Costa (1993).
Constant symmetric tensors of order two It can be shown (Hall 1991)
that the existence of a constant symmetric tensor of order two implies
that a constant vector exists, or space-time is (2 + 2)-decomposable.
Constant non-null bivectors A constant non-null bivector Fab (which need
not be the actual electromagnetic field, but trivially satisfies the Maxwell
equations) implies the existence of a constant self-dual bivector F ∗

ab, which
because of (5.11) has the form

F ∗
ab = AWab, A = const. (35.15)

Wab is constant, and so is the tensor

2hab = gab −WacW
c
b = 2(gab + kalb + kbla), (35.16)

which obeys (35.12). Consequently, if a V4 admits a constant non-null
bivector, it is decomposable and its metric can be written in the form
(35.11) (Debever and Cahen 1960).

Conversely, if a V4 is decomposable, the constant constituent parts of
the metric being

(1)gab = 2m(amb), (2)gab = −2k(alb), (35.17)

then (mamb);c, (kalb);c and Wab = 2m[amb] + 2l[akb] are constant too.
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Constant null bivectors A null bivector Fab can be written in the form

Fab = pakb − pbka, pnpn = 1, kaka = 0, pnkn = 0. (35.18)

If Fab is constant, so is FabFc
b = kakc, which implies ka;b = 0. It can be

shown (Ehlers and Kundt 1962) that a V4 admits a constant null bivector
if and only if it is a pp-wave (§24.5)

ds2 = dx2 + dy2 − 2du dv − 2H(x, y, u)du2, ka = −u,a. (35.19)

35.2 Complex recurrent, conformally recurrent, recurrent and
symmetric spaces

35.2.1 The definitions

A complex recurrent space-time V4 is a space for which the self-dual Weyl
tensor (3.53) satisfies the condition

C∗
abcd;e = C∗

abcdKe. (35.20)

Generally, the recurrence vector Ke is complex; if it is real, then the space
is a conformally recurrent space

Cabcd;e = CabcdKe, (35.21)

and if Ke is zero, one gets a conformally symmetric space.
A recurrent space is a space in which the Riemann tensor satisfies

Rabcd;e = RabcdKe. (35.22)

For a recurrent space, the identities Rabcd;[mn]+Rcdmn;[ab]+Rmnab;[cd] = 0
yield Ke = K,e. If instead of (35.22) only

Rac;e = RacKe (35.23)

holds, the space is Ricci recurrent (for which see Hall 1976b).
A recurrent space is said to be symmetric if Ke vanishes,

Rabcd;e = 0. (35.24)

Obviously, each recurrent (symmetric) space-time is conformally recurrent
(conformally symmetric) and hence a complex recurrent space too.

Using the canonical forms (§4.2) of the self-dual Weyl tensor C∗
abcd

and evaluating (35.20), it can easily be shown that there are no complex
recurrent space-times of Petrov types I, II and III. Therefore, we have
only to deal with types D,N and O. We shall list the main results in the
following, only indicating the ideas of the proofs which can be found in
Sciama (1961), Kaigorodov (1971), McLenaghan and Leroy (1972) and
the references given there.
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35.2.2 Space-times of Petrov type D

The canonical form (cp. Table 4.2)

C∗
abcd = 2Ψ2(VabUcd + UabVcd + WabWcd) (35.25)

of a type D Weyl tensor is compatible with (35.20) only if

Ψ2,e = Ψ2Ke, Uab;eW
ab = Vab;eW

ab = 0 (35.26)

holds. Equation (35.26) implies Wab = const, which means that a type D
complex recurrent space-time is necessarily decomposable and a product
(35.11) of two two-dimensional spaces.

Because of (35.20) and (35.26), C∗
abcd;[ef ] = 0 holds. Inserting (35.25)

and using the decomposition (3.45) of the curvature tensor one obtains

Ψ2 = −R/12, 4Eabcd = EW abWcd,

4Rab = −(R + E)(lakb + kalb) + (R− E)(mamb + mamb).
(35.27)

One sees that the recurrence vector Ke = Ψ2,e/Ψ2 is real; all complex
recurrent space-times of type D are conformally recurrent . Furthermore,
(35.27) shows that the scalar curvatures of the (m, m)- and the (k, l)-
spaces are given by

(1)R(x1, x2) = (R− E)/4, (2)R(x3, x4) = (R + E)/4. (35.28)

If the space is recurrent , with Ke non-zero, then R2 = E2 holds,
i.e. the space-time is a product of a flat and a curved two-dimensional
space.

For a conformally symmetric space-time, R is constant, and the full set
of Bianchi identities yields E = const: the space is symmetric and has the
line element (12.8),

ds2 =
2dζdζ[

1 + (R− E)ζζ/8
]2 − 2du dv

[1− (R + E)uv/8]2
. (35.29)

35.2.3 Space-times of type N

Inserting the canonical form C∗
abcd = −4VabVcd of a Weyl tensor of type

N into (35.20), one obtains ka;b = kapb, the (eigen-) null vector k is
recurrent. Conversely, these two relations yield (35.20): a space-time of
type N is complex recurrent exactly if it contains a recurrent null vector.
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The metric of these complex recurrent spaces of type N is

ds2 = 2k−2(1 + εζζ)−2(dζ + b du)(dζ + b du)

−2du
[
dv + du(εk2v2 + lv + H)

]
,

l = (b,ζ + b,ζ)/2− ε(1 + ζζ)−1(ζb + ζb), b = b(u, ζ),

H = H = H(u, ζ, ζ), k2 = 1 + ε2K2(u), ε = 0,±1.

(35.30)

For a conformally recurrent space, this line element specializes to (35.19)
with H = f(u, x) + g(u, y), and the conformally symmetric and the sym-
metric spaces have (35.19) with H = x2 − y2 + const(x2 + y2).

Among all these spaces of type N , the only vacuum solutions are the
pp-waves (§24.5), which can be characterized by being complex recurrent
vacuum solutions (Ehlers and Kundt 1962).

35.2.4 Space-times of type O

Starting from the definition (35.22) of a recurrent space, one easily obtains

R,a = RKa, 2Sab;[cd] = SebR
e
acd + SaeR

e
bcd = 0. (35.31)

The Weyl tensor being zero, from this equation follows

SacS
c
b − 1

4gabScdS
cd + 1

6RSab = 0. (35.32)

Inserting into (35.32) the canonical forms (§5.1) of the traceless tensor Sab
and substituting the results back into (35.23), one sees that the following
cases can occur.

Space-times with a non-vanishing recurrence vector Ka must be plane
waves

ds2 = dx2 + dy2 − 2du dv − 1
2κ0Φ

2(u)(x2 + y2)du2,

Ka = Φ,a/2Φ, ka;b = 0, Rab = κ0Φ2kakb.
(35.33)

Symmetric space-times (Ka = 0) are either spaces of constant curva-
ture (§8.5) or they possess a constant timelike or spacelike vector field
orthogonal to a three-dimensional space of constant curvature,

ds2 =
dx2 + dy2 + εdw2

[1 + R(x2 + y2 + εw2)/24]2
− εdz2, ε = ±1, (35.34)

or they are a product of two 2-spaces of constant curvature

ds2 = 2dζdζ [1 + λζζ]−2 − 2du dv [1 + λuv]−2 (35.35)

(which is a Bertotti–Robinson metric (12.18), see also Kasner (1921)), or
they are plane waves (35.33) with Φ = const, Ka = 0.
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35.3 Killing tensors of order two and Killing–Yano tensors

35.3.1 The basic definitions

A Killing tensor of order m is a symmetric tensor Ka1···am , which satisfies
K(a1···am;c) = 0. (35.36)

Killing tensors are generalizations of Killing vectors (m = 1). Since not
much is known on solutions with higher-order Killing tensors, we will
confine ourselves to Killing tensors of order two, which in accordance
with (35.36) obey

Kab = Kba, K(ab;c) = 0. (35.37)

Splitting the Killing tensor into its traceless part Pab and the trace K,
Kab = Pab + Kgab/4, one easily gets

4P a
b;a = −3K,b (35.38)

and P(ab;c) − 1
3g(abP

d
c);d = 0. (35.39)

A symmetric traceless tensor Pab is said to be a conformal Killing tensor
if it satisfies (35.39). If, in addition to (35.39), P a

b;a is a gradient, then
Kab constructed from Pab is a Killing tensor.

Trivial examples of Killing tensors are gab and all products

Kab = ξ(aηb) (35.40)

of Killing vectors ξa, ηb (not necessarily different), and linear combina-
tions of these with constant coefficients. Killing tensors not admitting
this type of representation are referred to as non-trivial or non-redundant
or irreducible.

Killing tensors of order two (not necessarily trivial) may also be ob-
tained from (special) homothetic or conformal Killing vectors by con-
structions similar to (35.40) (Koutras 1992a). For example

Kab = ξ(aηb) − 2ϕgab (35.41)

is a Killing tensor if the vectors ξa, ηa obey

ξa;b + ξb;a = 2Φgab, ηa;b + ηb;a = 2Ψgab, Φηa + Ψξa = ϕ,a. (35.42)

Condition (35.42) is satisfied e.g. if ξa = ηa = ϕ,a/2Φ (ξa is a hypersur-
face-orthogonal conformal vector), or if Φ = 0 (ξa = ϕ,a/Ψ is a special
hypersurface-orthogonal Killing vector).

A Killing–Yano tensor is a skew-symmetric tensor abc···de satisfying

abc···de;f + abc···df ;e = 0, (35.43)
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which is also a generalization of the Killing equation. At first glance this
seems to be a quite different type of tensor, but it can easily be shown
that (symmetric) Killing tensors can be constructed from Killing–Yano
tensors. In four dimensions, the maximal order of a Killing–Yano tensor
is four. In the case of Killing–Yano tensors ab = ξb and abcde =const εbcde,
the corresponding Killing tensors ξaξb and εbcdeε

cde
a = −6gab are trivial.

For second-order tensors a
A
bc the corresponding Killing tensors are

Knm = a
A
ni a

B

i
m + a

B
ni a

A

i
m (35.44)

and linear combinations of these. A third-order Killing–Yano tensor abcd
can be replaced by the vector ae = εe

bcdabcd, which because of (35.43)
satisfies

4ae;i = geia
c
;c, (35.45)

i.e. an is a special conformal motion which (because of the Ricci identities)
is hypersurface orthogonal. If a

A
b and a

B
c are two such vectors, then

Kbc = a
A
b a
B
c+ a

A
c a
B

b − 2 a
A

d a
B
d gbc (35.46)

and linear combinations of such terms are symmetric Killing tensors.

35.3.2 First integrals, separability and Killing or Killing–Yano tensors

From the more physical point of view, the interest in Killing tensors orig-
inated in their connection with quadratic first integrals of geodesic mo-
tion and the separability of various partial differential equations, e.g. the
Hamilton–Jacobi equation.

Let ta be the tangent vector of an affinely parametrized geodesic,

Dta/Dλ = ta;bt
b = 0. (35.47)

Then, because of (35.37),

dKabt
atb/dλ = Kab;ct

atbtc = 0 (35.48)

holds, so Kabt
atb is a quadratic first integral of motion. For a conformal

Killing vector Pab, satisfying the weaker condition (35.39), the analogous
statement is true only for null geodesics.

Skew-symmetric Killing–Yano tensors abc induce the existence of a vec-
tor abct

b, which because of (35.43) is parallelly propagated along any
geodesic, and to each vector a satisfying (35.45) corresponds a skew-
symmetric tensor actb−abtc which is constant along the geodesic. Each of
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these cases gives rise to quadratic first integrals, arising, respectively, from
the invariants of the vector and the tensor, in accordance with (35.44),
(35.45) and (35.48).

For the connection between Killing tensors and the separability of par-
tial differential equations, we refer the reader to the literature, see e.g.
Kamran (1988) and Benenti (1997) and the references given there. We
mention only the result of Woodhouse (1975) that the separable coor-
dinates for the Hamilton–Jacobi equation in a Lorentzian manifold are
adapted either to a Killing vector or to an eigenvector of a (symmetric)
Killing tensor of order two. If the field equations can be cast into a Hamil-
tonian formulation, which may be possible if there is a Gr acting on V3,
then the Killing tensor of the corresponding Jacobi metric can be used in
the search for solutions (Uggla et al. 1995b), cp. also §13.2.

For the connection between Killing tensors and solutions of the equation
of geodesic deviation, see Caviglia et al. (1982).

35.3.3 Theorems on Killing and Killing–Yano tensors in
four-dimensional space-times

In analogy with the treatment of Killing vectors and groups of motions,
the final goal of studying Killing and Killing–Yano tensors is (a) to find
all such tensors of a given space-time and/or (b) to classify space-times
with respect to the nontrivial Killing tensors and Killing–Yano tensors
they admit. Problem (a) can be attacked using computer programs, see
Wolf (1998). For problem (b) we shall list some of the few known results.

Theorems and results on Killing tensors Kab

Theorem 35.1 A four-dimensional space-time admits at most 50 lin-
early independent Killing tensors of order two. The maximum number of
50 is attained if and only if the space is of constant curvature; in that case,
all 50 Killing tensors are reducible (Hauser and Malhiot 1975a, 1975b).

Theorem 35.2 Every type D vacuum solution, the Weyl tensor being

C∗
abmn = 2Ψ2(VabUmn + UabVmn + WabWmn), (35.49)

admits a conformal Killing tensor

Pab = −1
2ΦΦWacW

c
b = (A2 + B2)

[
kalb + lakb + 1

2gab
]
,

(35.50)
Φ = A + iB = const(Ψ2)−1/3.

The conformal Killing tensor is irreducible provided the space-time admits
fewer than four Killing vectors (Walker and Penrose 1970).
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Theorem 35.3 Every type D vacuum solution, with the exception of the
C-metric and its generalization (case III of Kinnersley’s (1969b classifi-
cation), admits a Killing tensor

Kab = (A2+B2)(lakb+kalb)+B2gab, A+iB = const(Ψ2)
−1/3, (35.51)

the complex constant being adjusted such that DA = ∆A = δB = 0
(Walker and Penrose 1970, Hughston et al. 1972, Hughston and Sommers
1973).

Theorem 35.4 If a space-time admits a Killing tensor of Segre charac-
teristic [(11)(1,1)],

Kab = A2(lakb + kalb) + B2(mamb + mamb), (35.52)

then its two eigenvectors k and l are both shearfree and geodesic and,
therefore, principal null vectors of the Weyl tensor if R11 = R14 =
R44 = 0, cp. Theorem 7.1. Furthermore, the functions A and B have to
satisfy

DA = ∆A = δB = 0, δA2 = (π − τ)(A2 + B2),

DB2 = −(ρ + ρ)(A2 + B2), ∆B2 = (µ + µ)(A2 + B2).
(35.53)

If the space-time is a vacuum solution, then (35.51) holds.

The metrics corresponding to this type of Killing tensor have been deter-
mined by Hauser and Malhiot (1978) and Papacostas (1988).

Theorem 35.5 If a space-time admits a Killing tensor (35.52) with non-
constant A and B and A,aA,aB

,bB,b �= 0, then Φ01 = eΦ21 is a necessary
and sufficient condition for the existence of an Abelian group which acts
on spacelike (e = −1) or timelike (e = 1) orbits. For e = 1, the only per-
fect fluid solution compatible with such a Killing tensor is the Wahlquist
solution (21.57) with a G2 on timelike orbits (Papacostas 1988).

Perfect fluid space-times known to admit a Killing tensor (35.52) not
satisfying the conditions of Theorem 35.5 are e.g. the interior Schwarz-
schild solution (16.18), the Kantowski–Sachs solutions, the Gödel solution
(12.26) and a solution of the Wahlquist class (21.57) with a vanishing
Simon tensor found by Kramer (Papacostas 1988). They all have at least a
G2. For Killing tensors in static spherically-symmetric metrics see Hauser
and Malhiot (1974), in pp-waves Cosgrove (1978b).

Theorems and results on Killing–Yano tensors
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Theorem 35.6 If a space-time admits a non-degenerate second-order
Killing–Yano tensor, then this tensor can be written as

abc = A(lbkc − kblc) + iB(mbmc −mbmc), (35.54)

the Weyl tensor is of type D (or 0), the degenerate, geodesic and shearfree
null eigenvectors being l and k, the Ricci tensor satisfies Rbca

c
d+Rdca

c
b =

0, and the real functions A and B have to obey

DA = ∆A = δB = 0,

D(A + iB) = −ρ(A + iB), ∆(A + iB) = µ(A + iB),

δ(A + iB) = −τ(A + iB), δ(A + iB) = π(A + iB)

(35.55)

(Collinson 1974, 1976a, Stephani 1978).

Theorem 35.7 All type D vacuum solutions that admit a Killing tensor
Kbc (see Theorem 35.3), also admit a Killing–Yano tensor abc, the two
tensors being connected by (35.44) (Collinson 1976a, Stephani 1978).

Theorem 35.8 If a space-time admits a degenerate Killing–Yano tensor
abc, then this tensor can be written as

abc = kbpc − pbkc, (35.56)

k is a (null) Killing vector, the Weyl tensor is of type N (or O), k being
the multiple eigenvector, and the Ricci tensor has to satisfy Rbca

c
d +

Rdca
c
b = 0 (Collinson 1974, Stephani 1978).

Theorem 35.9 If a vacuum space-time admits a third-order Killing–
Yano tensor, i.e. a vector a satisfying (35.45), then a is a constant null
vector or space-time is flat (Collinson 1974).

Theorem 35.10 If a space-time admits at least two independent Killing–
Yano tensors, then (a) it is of constant curvature and admits ten in-
dependent Killing–Yano tensors, or (b) it is not an Einstein space but
contains a 3-space of constant curvature and admits exactly four indepen-
dent Killing–Yano tensors, or (c) space-time is decomposable (35.11) and
admits exactly two independent Killing–Yano tensors, or (d) space-time
admits a constant null vector and exactly two independent Killing–Yano
tensors. For non-flat vacuum fields, only this last case applies (Hall 1987).

Normal forms of metrics admitting second-order Killing–Yano tensors
have been constructed by Dietz and Rüdiger (1981, 1982). Papacostas
(1985) discussed Killing–Yano tensors for type D Einstein–Maxwell fields
with two Killing vectors, for the interior Schwarzschild solution (16.18),
and for Kantowski–Sachs solutions. For other examples see Ibohal (1997).
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35.4 Collineations and conformal motions

35.4.1 The basic definitions

Besides Killing vectors (motions)

Lξgnm = ξn;m + ξm;n = 0 (35.57)

and homothetic vectors (homothetic motions)

Lξgnm = 2agnm, a = const, (35.58)

which originate in the symmetries of Einstein’s equations in the process
of a similarity reduction (cp. §10.2.3), there are several other vector fields
which originate in the symmetries of e.g. the equation of geodesic mo-
tion (so that their existence puts severe restrictions upon space-time) and
which can also be used to characterize space-times. These are

conformal motions: Lξgnm = 2φ(x)gnm, (35.59)

projective collineations: LξΓi
jk = δijϕ,k + δikϕ,j , (35.60)

affine collineations: LξΓi
jk = 0, (35.61)

Ricci collineations: LξRnm = 0, (35.62)

curvature collineations: LξRa
bnm = 0. (35.63)

Conformal motions (Petrov 1966) preserve angles between two direc-
tions at a point and map null geodesics into null geodesics. Projective
collineations map geodesics into geodesics; affine collineations preserve,
in addition, the affine parameters on geodesics (Katzin and Levine 1972).
Obviously, motions, affine collineations and homothetic motions are au-
tomatically curvature collineations. The connection between those vec-
tor fields and geodesic first integrals is discussed e.g. in Katzin and
Levine (1981). A collection of formulae on the incorporation of all these
symmetries into the field equations can be found in Zafiris (1997).

For perfect fluids, the notion of a homothetic vector has been general-
ized to that of a similarity vector (kinematic self-similarity) satisfying

Lξ(gmn + unum) = 2a(gmn + unum), Lξun = αun, a, α = const,
(35.64)

which for α = a is equivalent to (35.58). For applications see Carter and
Henriksen (1989), Coley (1997a), Benoit and Coley (1998), and Sintes
(1998), and for a further generalization Collins and Lang (1987).

We will discuss in some detail only the proper curvature collineations
and the conformal motions. Definition (35.61) implies that proper affine



35.4 Collineations and conformal motions 565

collineations satisfy ξa;nm = Ranm
iξi, and if they exist then space-time

admits a constant symmetric tensor (see above in §35.1) which is not a
multiple of the metric (Hall and da Costa 1988).

35.4.2 Proper curvature collineations

Curvature collineations were introduced by Katzin et al. (1969). Proper
curvature collineations (i.e. those which are not affine collineations or even
conformal motions) are rare. They are almost always special conformal
motions (McIntosh 1980).

In the vacuum case, they can only occur in non-twisting type N met-
rics (Collinson 1970). For the pp-waves (§24.5), they were studied by
Aichelburg (1970), for the Robinson–Trautman metrics (§28.1) by Vaz
and Collinson (1983) and Vaz (1986), and for the non-expanding metrics
(Kundt’s class §31.5) by Halford et al. (1980).

In the Einstein–Maxwell and pure radiation cases, they can occur only
if the Maxwell field is null and the Weyl tensor of type N or O (Tariq
and Tupper 1977). An example is the metric (22.70), cp. Singh et al.
(1978). For non-null Einstein–Maxwell fields, all curvature collineations
are homothetic motions (McIntosh 1979).

In the perfect fluid case, proper curvature collineations occur only in
the conformally flat solutions with a µ + 3p = 0 equation of state (i.e. in
the Einstein universe (37.40) and in a subcase of (37.45)) or in type D
solutions with µ = p which admit a spacelike constant vector field (Carot
and da Costa 1991).

35.4.3 General theorems on conformal motions

Conformal motions (or conformal Killing vectors) are defined by (35.59)
or, equivalently, by

ξa;b = φgab + fab, fab = −fba. (35.65)

They are called proper if φ,a �= 0, and special if φ;ab = 0. The integrability
conditions of the system (35.65) turn out to be

LξCi
abc = 0 (35.66)

and all equations obtained from this by repeated differentiation (Eisenhart
1949, Defrise 1969, Collinson 1989). As a consequence of the defining
equation one has

LξRab = 2φ;ab − φ,c;cgab. (35.67)
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If a space-time admits several conformal motions ξA, then they form a
group and satisfy

LξAgab = 2φAgab, [ξA, ξB] = CD
ABξD, LξAφB − LξBφA = CD

ABφD.
(35.68)

Theorem 35.11 A space of dimension n (> 2) admits at most (n+1)(n+
2)/2 independent conformal motions, not all of them being proper. If this
maximum number is attained, space-time is conformally flat. If space-time
is not conformally flat, then the maximal order of the group of conformal
Killing vectors is 7 for Petrov type N , 6 for type D, and 5 for type III
(Eisenhart 1949, Hall and Steele 1991).

For flat space-time, and in Cartesian coordinates, the general solution to
(35.65) is

ξa = Aa + pabx
b +Bxa + 2Bnx

nxa−Baxnxn, φ = B + 2Bnx
n, (35.69)

where Aa, pab = −pba, B, Ba are constant (see e.g. Choquet-Bruhat
et al. (1991)); among these conformal motions only those with Ba �= 0
are proper. If only these Ba are non-zero, the corresponding finite trans-
formations are

x̃a = (xa − λBaxnx
n)/(1− 2λBnx

n + λ2BnBn), λ = const. (35.70)

If two spaces are connected by a conformal transformation ĝab = e2Ugab,
cp. §3.7, and ξaA is a conformal motion of gab, then it is a conformal motion
of ĝab, too,

LξA ĝab = 2φ̂Aĝab, φ̂A = φA + U,nξ
n
A. (35.71)

So (35.69) are also the conformal motions of any conformally flat space-
time.

Relation (35.71) indicates that it may be possible to construct for a
space-time with (proper) conformal vectors a conformally related space-
time in which these vectors are Killing vectors: one has to find a function
U(xn) such that all φ̂A are zero, i.e. such that

ξnAU,n = −φA (35.72)

holds. This will not always be possible: if there is a conformal motion with
a fixed point P such that ξn(P ) = 0, but φ(P ) �= 0, then ξnU,n + φ = 0
cannot be solved. Taking such exceptions into account, one finds:

Theorem 35.12 If a space-time gab admits a group of conformal mo-
tions, and the Petrov type, the dimension and the nature (spacelike, etc.)
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of the orbits is the same at each point, and there are no local non-globali-
zable conformal motions, then there exists a conformally related metric
ĝab = e2Ugab such that the group is a group of motions (if the Petrov type
is not O, and the space-time is not conformally related to

ds2 = dx2 + dy2 − 2dudv − 2
[
α(u)x2 + β(u)y2 + γ(u)xy

]
du2, (35.73)

i.e. to a special pp-wave), or is a group of homothetic motions (if the
space-time is conformally a pp-wave). For any Petrov type, ĝab can be
chosen so that φ̂A;ab = 0 (Bilyalov 1964, Defrise-Carter 1975, Hall 1990a,
Hall and Steele 1991).

If a space-time admits a special conformal Killing vector φ;ab = 0, (i.e.
a constant vector field φ,a) with φ,aφ

,a �= 0 , then its metric is of the form
(35.8). It can be shown that the 3-space orthogonal to φ,a – in which the
projection of ψa = fabφ

b is a homothetic vector – does not admit a group
of Killing vectors acting transitively on it; a detailed study of the still
possible cases Gr, r ≤ 3, has been given (Carot 1990, Hall 1990b).

From the above results one may guess that proper conformal vectors
are particularly to be expected in those space-times which are either con-
formally flat or contain conformally flat subspaces. Homogeneous space-
times (Chapter 12) of Petrov types I, II or D do not admit proper con-
formal vectors (Hall 2000).

35.4.4 Non-conformally flat solutions admitting proper conformal
motions

The only vacuum solutions which admit a proper (φ,n �= 0) conformal
motion are special pp-waves (§24.5); up to the addition of Killing or ho-
mothetic vectors this conformal Killing vector is uniquely determined and
special, φ;ab = 0 (Eardley et al. 1986, Hall 1990a). The vacuum solutions
with a cosmological constant, Gab = Λgab, which admit a conformal mo-
tion with φ �= 0, are conformally flat (Garfinkle and Tian 1987).

In the case of a general non-zero energy-momentum tensor Tab, the
constituent parts of it (e.g. pressure p, four-velocity ua) in general do
not inherit the conformal symmetry, i.e. relations such as Lξp = −2φp,
Lξua = −φua etc. in general do not follow from Lξgab = 2φgab – in
contrast to the case of a homothetic motion (§11.3) (Coley and Tupper
1990a, Saridakis and Tsamparlis 1991). The deeper reason for this non-
inheritance is that conformal motions are not based on symmetries of the
field equations, cp. §10.3.

Perfect fluids do not admit special conformal motions (Coley and Tup-
per 1989). If a perfect fluid with an equation of state p = p(µ), p+µ �= 0,
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admits a proper conformal motion parallel to the four-velocity, it is con-
formally flat (Coley 1991); if it is rotating and shearfree and has a zero
magnetic part of the Weyl tensor, it admits (besides at least two Killing
vectors) a conformal motion (Collins 1984).

Spherically-symmetric perfect fluids with a conformal vector orthogonal
to the four-velocity and the orbit of the group, where the fluid inherits
the symmetry in the sense discussed above, are either static, with

ds2 = [dr2+(2n2−1)−1r2(dϑ2+sin2 ϑdϕ2)−dt2]/[ar1+n+br1−n], (35.74)

or of the form (15.72)–(15.74), where the plane- and pseudospherically-
symmetric counterparts are also included (Coley and Tupper 1990b, Coley
and Czapor 1991, Kitamura 1994, 1995a, 1995b). Spherically-symmetric
perfect fluids with an equation of state p = p(µ), µ + p �= 0 and a proper
arbitrary inheriting conformal vector are contained in (15.72) or are con-
formally flat Friedmann universes (Coley and Czapor 1991). An example
with a conformal motion not satisfying Lξp = −2φp is the metric (15.86).
The conformal motions in a general static spherically-symmetric space-
time have been determined by Maartens et al. (1995).

The only static perfect fluid solutions for which the proper conformal
vector ξ commutes with η = ∂/∂t are spherically- (pseudospherically-)
symmetric, not inheriting, and given by (Bona and Coll 1991)

ds2 = 2[k + Λr2/3]−1dr2 + r2[dx2 + Σ2(x, k)dy2]− r2dt2,

Σ(x, k) = sinx, sinhx for k = 1,−1, (35.75)

κ0p = (Λ + k/r2)/2 = κ0µ− Λ, ξ = r[k + Λr2/3]1/2∂/∂r.

If a plane-symmetric solution with an equation of state p = p(µ), µ+p �= 0
admits an inheriting proper conformal motion, it is either contained in
(15.72), or it is the static solution

ds2 =
[
dx2 + xc(dy2 + dz2)− dt2

]
(Axa + Bxb)−2, (35.76)

with b = a, c = 4a(1−a)/(1− 2a), or b = (a− 1)/(2a− 1), c = 4a (Coley
and Czapor 1992).

Dust solutions with a G3 acting on S2 and a proper conformal vector
commuting with the motions of the G3 are conformally flat (Bona 1988a).

If a perfect fluid solution with an Abelian orthogonally transitive G2
acting on a non-null V2 (see §17.1) admits one proper conformal motion,
the orbits of the resulting three-dimensional conformal group can be non-
null or null. For non-null orbits, Carot et al. (1996) considered the case
of a general V2 when the metric is diagonal. Mars and Wolf (1997) found
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all solutions when the V2 is spacelike and the motions are an invariant
subgroup of a non-Abelian conformal group (and no extra symmetry is
present). The (four) metrics are necessarily diagonal, cp. also §23.3.1, and
one of them,

ds2 = taxc−2[dx2 + t1−a−bdy2 + t1−a+bdz2 − dt2],
c = 2a2/(b2 + a2 − 2a− 1) �= 0, a, b = const,

un = −sign (c)ta/2xc/2−1
[
a2x2 − t2

]−1/2 (t, 0, 0, 2a/c) ,

(35.77)

admits besides the conformal Killing vector ∂x (which commutes with the
two Killing vectors ∂y and ∂z) a homothetic vector ζ = 2t∂t+2x∂x+(1+
a + b)y∂y + (1 + a− b)z∂z. The related metric, with x and t interchanged
in the metric functions, contains a metric found by Bray (1971). Czapor
and Coley (1995) considered metrics with a spacelike V2 and an inheriting
conformal vector, cp. also Vera (1998a); the only perfect fluid diagonal
space-time with an equation of state p = p(µ) satisfying µ > 0, µ + p > 0
and admitting a proper conformal vector is the Allnutt solution m = 0 of
(23.13). The case of null orbits (and a spacelike V2) has been studied by
Sintes et al. (1998).

For stationary axially-symmetric perfect fluids (i.e. with a G2 acting
on a timelike surface) with one additional conformal vector, the following
results are known: If the resulting three-dimensional Lie algebra of ξ=
∂/∂t, η= ∂/∂ϕ, and the conformal motion ζ is Abelian, then the solutions
(of type D, equation of state p = µ+ const, in general with differential
rotation) are (21.74) and a metric of Herlt’s class (the twist vector is a
gradient, see §21.2) with a conformally flat 3-space (Kramer 1992, 1990,
Mars and Senovilla 1994). All non-static rigidly rotating solutions with a
proper conformal vector are contained here (Kramer and Carot 1991).

If for a non-rotating perfect fluid (with µ + p > 0) there is an Abelian
group of one Killing vector ∂x and two conformal Killing vectors η and ζ
acting on a spacelike hypersurface, then in coordinates with η = ∂y and
ζ = ∂x the non-conformally flat solutions are of the form

ds2 = N
1−α
α (y)Q

−1−α
α (z)[A(t)dx2 + t1+αdy2 + t1−αdz2 −A(t)dt2],

A(t) = a0 + a1t
1−α + a2t

1+α, α (�= 0), ai = const,
(35.78)

N ′2 = α2(a1N2 − b1)q, Q′2 = α2(a2Q2 − b2), bi = const,

uadxa = N
1−α
2α (y)Q

−1−α
2α (z) d(tN1/αQ−1/α)

(Koutras and Mars 1997). They are of Petrov type D and generalize the
solutions (32.98)–(32.99) found by Senovilla and Sopuerta (1994) using a
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generalized Kerr–Schild transformation. Subcases may admit more than
one Killing vector, e.g. for ai = 0 a non-Abelian G2.

For axial symmetry and exactly one conformal symmetry, the two gen-
erators commute, so that in axially-symmetric and stationary space-times
with one conformal Killing vector the axial Killing vector commutes with
the other two (Mars and Senovilla 1993a).

If a pure radiation field, Rab = Φ2kakb, k being a geodesic and shearfree
null vector, admits a proper conformal Killing vector, then the twist ω of
k vanishes (Lewandowski 1990) and the Petrov type is either N (with
ka;b = 0) or III (with φ,a = λka, ka;b = νkakb). In the latter case, the
solutions belong to the class (31.34); an example is

ds2 = 2dζdζ − 2du(dv + Wdζ + Wdζ + [u−4(ζ + ζ)v −WW ]du),
(35.79)

W = u−4ζ2 + u−2 + u−1, ξ =u3∂u − u2v∂v + u2(ζ∂ζ + ζ∂ζ)

(Hall and Carot 1994). The Petrov type N case (the pp-waves) has been
studied by Maartens and Maharaj (1991); an example with a non-special
conformal Killing vector is

ds2 = dx2 + dy2 − 2du dv − 2Hdu2,

H = u−3h(u−3/2x, u−3/2y)− 3u−2(x2 + y2)/8,

ξ = 2
3u
3∂u + u(x2 + y2)∂v + u2(x∂x + y∂y), φ = u2.

(35.80)

Methods of finding the conformal Killing vector of space-times confor-
mal to a decomposable space-time (35.11) have been discussed by Tup-
per (1996).



36
Solutions with special subspaces

When studying exact solutions, subspaces of space-time occur naturally
and frequently. Trivially in any chosen coordinate system there are sub-
spaces in which one or two of the coordinates are constant; these subspaces
may have some significance if the coordinates they are attached to have.
More significantly, subspaces arise as group orbits of groups of motions.

In this chapter we shall discuss a third idea, namely to look for (three-
dimensional) subspaces which admit intrinsic symmetries or have some
other special properties which are not shared by the full space-time. This
idea was formulated by Collins (1979) in an explicit way, but had been
implicitly used earlier. It has been applied also to the space of Killing
trajectories of a timelike Killing vector; in particular the case where this
space (which in general is not a subspace of space-time) is conformally
flat has been discussed, see e.g. Perjés et al. (1984) and §18.7.

36.1 The basic formulae

We parametrize the hypersurfaces we are interested in by the (spacelike
or timelike) coordinate x4, and denote their normal unit vector by

na = (0, 0, 0, εN), na = (−Nα/N, 1/N), nana = ε = ±1,

a, b, ... = 1, ..., 4, α, β, ... = 1, ..., 3.
(36.1)

The space-time metric then reads

ds2 = gαβ(dxα + Nαdx4)(dxβ + Nβdx4) + ε(Ndx4)2 (36.2)

and has

gab =

(
g
3αβ + εNαNβ/N2 −εNα/N2

−εNβ/N2 ε/N2

)
. (36.3)

571
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Here and in the following equations, Greek indices are raised and lowered
by g

3αβ and gαβ , i.e.
Nα = gαβN

β, gαβg
3αν = δνβ . (36.4)

By coordinate transformations xα
′

= xa
′
(xν , x4), x4

′
= x4

′
(x4) one

could achieve Nα = 0. Applying standard projection techniques (see e.g.
Stephani (1996)), we introduce the tensor of exterior curvature Kab by

Kab = −na;b + εṅanb, ṅa ≡ na;bn
b. (36.5)

It is symmetric (Kab = Kba) and orthogonal to the normal vector
(Kabn

a = 0). Its 3-space components are given by

Kαβ = εNΓ4αβ = (Nα||β + Nβ||α − gαβ,4)/2N, (36.6)

where the double stroke || denotes the covariant derivative with respect
to the 3-space metric gαβ . The (four-dimensional) Riemann tensor com-
ponents can then be expressed as follows:

Rαβµν = R
3

αβµv + ε(KβµKαv −KβvKαµ), (36.7a)

Ra
βµνna = Kβν||µ −Kβµ||ν , (36.7b)

Ra
βmνnan

m = KβµK
µ
ν + LnKβν − εṅβṅν + ṅ(β;ν) (36.7c)

(if space-time is flat, we regain from (36.7a)–(36.7b) the Gauss and
Codazzi equations in the form (37.23)–(37.24) used in embedding, with
Ωab replaced by Kab). Einstein’s field equations read

Rαβ = R
3

αβ + 2εKανK
ν
β − εKν

νKαβ + LnKαβ + ṅ(α;β)

= R
3

αβ + εgν(βK
ν
α),4/N − εKαβ||νNν/N − εKν

νKαβ
(36.8)

+ εKν
βN[α,ν]/N + εKν

αN[β,ν]/N − εN,α||β/N

= κ0(Tαβ − Tgαβ/2),

R4α = ε(Kβ
β||α −Kβ

α||β)/N = κ0T
4
α, (36.9)

R− 2g
3αβRαβ = ε(Kα

αK
β
β −KαβK

αβ) = 2κ0(T − g
3αβTαβ). (36.10)

The strategy for constructing solutions is to assume special properties
of the 3-space (with metric gaβ), of the exterior curvature Kαβ , and –
for non-vacuum solutions – of the direction of the four-velocity ua of a
perfect fluid source with respect to the slicing (these ideas have not yet
been applied to electrovac solutions, probably because an electromagnetic
field is more naturally related to a (2+2)- than to a (3+1)-foliation of
space-time). So far only some simple cases have been investigated in a
systematic way.
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36.2 Solutions with flat three-dimensional slices

36.2.1 Vacuum solutions

By inspection of the solutions given in this book, one may easily find
examples falling into this class, e.g. all metrics admitting a G3I on V3.
A less obvious example is the exterior Schwarzschild solution, where this
property of the subspaces t = const was already observed by Lemâıtre
(1933) when introducing the coordinates

ds2 = 2mdR2/r + r2(dϑ2 + sin2 ϑdϕ2)− dt2, R = t + 1
3

√
2r3/2/

√
m.

(36.11)

For a more systematic study one should consider the different structures
of the exterior curvature Kαβ .

For Kαβ = 0, in coordinates with Nα = 0, one immediately sees from
(36.7) that space-time is flat: non-flat vacuum solutions do not exist
(Verma and Roy 1956). The same is true for Kαβ = λ(xν , x4)gαβ where
(36.8)–(36.9) lead to λ = 0 (Stephani and Wolf 1985).

For Kαβ = Ahαhβ, hαh
α = 0, the vacuum solutions with flat slices

are special pp-waves or special type N solutions of Kundt’s class (Wolf
1986a). The general case (arbitrary Kαβ) has not been solved. But since
some Petrov type III solutions of Kundt’s class (Wolf 1986a) and the
Petrov type I solution (12.14) also admit flat slices, one sees that all
Petrov types can occur, and that these solutions may have high symmetry
or no symmetry at all.

The general vacuum solution admitting flat slices is not known.

36.2.2 Perfect fluid and dust solutions

Whereas in the case of vacuum solutions the above listed solutions ad-
mitting flat slices were known before, the search for non-vacuum solutions
with such slices led to new solutions.

For Kαβ = 0 and in the gauge Nα = 0, (36.6) implies that the 3-metric
gαβ is independent of x4. Since the 3-space is flat, its metric can be written
as

ds2 = εN2(x4, xα)(dx4)2 + ηαβdxαdxβ, ηαβ = diag (1, 1,−ε). (36.12)

From Tαβ = (µ + p)uαuβ + pgαβ and the field equation (36.9) one sees
that (since µ + p �= 0) the four-velocity has to be orthogonal or parallel
to the slices, and (36.10) then shows that the first case is ruled out: one
necessarily has ε = +1, p = 0. The resulting dust solutions are given by

N = −1
2M
[
(uαxα)2 + 1

2ηαβx
αxβ
]

+ gax
α + h, µ = M/N, (36.13)
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where uα, M, gα and h are arbitrary functions of x4 restricted only
uαu

α = −1 and µ > 0, and

N = M ln
√
T + gαx

α + h, uα = T,α,

T 2 = −ηαβ(xα − fα)(xβ − fβ), µ = M/NT 2,
(36.14)

where M, fα, gα and h are arbitrary functions of x4 (Stephani 1982,
1987). These solutions are of Petrov type D. In general the four-velocity
has non-zero rotation, and the metric does not admit a Killing vector.
The non-rotating solutions (uα,4 = 0) contained here belong to the class
of the Szekeres dust solutions, see §33.3.2.

A Petrov type N pure radiation field Tmn = Φ2kmkn is contained in
the metric (36.12) as

N = A(kαxα, x4) + aα(x4)xα + b(x4), ε = 1,

kαkα = 0, kα = kα(x4), Φ2 = −∂2A/∂(kαxα)2
(36.15)

(Stephani 1982). Its multiple null eigenvector km = (kα, 0) is shearing.
For Kαβ = λ(xn, x4)gαβ , λ �= 0, and in coordinates with Nα = 0,

equation (36.6) shows that the 3-metric gαβ depends on x4 only through
an overall factor,

ds2 = V −2(xν , x4)
[
ηαβdxαdxβ + εM2(dx4)2

]
, ηαβ = diag(1, 1,−ε),

(36.16)

with λM = V,4. To yield a flat 3-space, the function V has to satisfy

V V,αβ = ηαβη
νµ (2V,νV,µ − V V,νµ) , (36.17)

i.e. it has to be in one of the forms

V = Aηνµ(xν − fν)(xµ − fµ)

or V = Bνx
ν + C, ηνµBνBµ = 0,

(36.18)

where the functions A,Bν , C and fν are (up to now) arbitrary functions
of x4.

If λ is a function only of x4, then the solutions are either (for ε = +1,
λ = const, µ + p = 0) the de Sitter universe, or (for ε = −1)

ds2 = V −2
[
dx2 + dy2 + dz2 − V 2,4(dx

4)2/λ2
]
,

V = A
[
(x− f1)2 + (y − f2)2 + (z − f3)2

]
,

(36.19)

where A, fα are arbitrary functions of x4. These solutions generalize the
3-flat Friedmann models and are contained in (37.45) as a limiting case;
in general they admit no Killing vector.
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If λ depends on the xα, then the solutions are given by

ds2 = (x4)−2
[
ηαβdxα dxβ + εn2(w, x4)(dx4)2

]
, ηαβ = diag(1, 1,−ε),

ε = ±1, w = ηαβx
αxβ or w = mαx

α, mα = const, ′ ≡ ∂/∂w,

κ0µ = (x4)2w,αw
,αn′′/n− 3ε/n2, κ0p = 3ε/n2 + 4εn′2/n3n′′, (36.20a)

uα = w,α[−n′′/κ0(µ + p)n]1/2, (u4)2 = −ε(x4)2

n2
+

εw,αw
,αn′′(x4)2

κ0(µ + p)n3
,

(Stephani and Wolf 1985), where n is a solution of

ε(x4)2 [w,αw
,αn′′/n + (w,αw

,α)′n′/n]− 4n′2/n3n′′ + 2n,4x4/n3 = 0.
(36.20b)

The metrics (36.20) admit a G3 which leaves w invariant. For ε = −1 and
w = ηαβx

αxβ they are spherically-symmetric (and given in non-comoving
coordinates); in that case the new variable s = εw/(x4)2 leads to

[sn̈/n + ṅ/n] [1− ṅ/n̈n2 ] + n,4x
4/2n3 = 0, ṅ ≡ ∂n/∂s. (36.21)

Special solutions of this equation can easily be constructed. For flat slices
in spherically-symmetric space-times see also below.

For Kαβ||ν = 0, Kαβ �= λgαβ , the field equation (36.9) implies that (for
µ + p �= 0) either uα = 0 and ε = −1, or u4 = 0 and ε = +1. Taking
coordinates with gαβ = gαβ(x4), one has Kαβ = Kαβ(x4). Depending on
the algebraic structure of the 3-tensor Kαβ and the timelike or spacelike
character of the slices, 15 subcases occur which are listed and discussed
in Wolf (1986b). Among them are the following classes.

(1) The Bianchi type I models with a G3 on S3 or T3. Here the field
equation can be completely solved up to algebraic conditions ensuring
the reality of the metric functions and the four-velocity components. The
metrics with a G3 on T3 are

ds2 = dx2 − [dt + (at− hy + fz)dx]2 + [dy + (by − ht + gz)dx]2

+ [dz + (ft− gy + cz)dx]2 ,

u2t = A2/κ0(µ + p), u2y = B2/κ0(µ + p), u2z = C2/κ0(µ + p),

h = AB/(b− a), g = BC/(c− b), f = CA/(a− c), (36.22)

A = (b + c),x − b2 − c2 + a(b + c), κ0(µ + p) = A2 −B2 − C2,

B = −(a + c),x + a2 + c2 − b(a + c), κ0p = ab + bc + ca,

C = −(a + b),x + a2 + b2 − c(a + b),
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where a(x), b(x), and c(x) are arbitrary functions, and

ds2 = dw2 + 2 (dx + N2dw) [bdx/a2 + dy + (N1 − bN2/a
2)dw]

+(dz + N3dw)2,
(36.23)

N1 = (1 + (b/a2),w)x + gy − sz, N2 = wz − gx− a2y,

N3 = sx− wy + cz, µ = 5p + 2[Kα
α,w − (Kα

α )2 ]/κ0,

where the functions a, g, s, w and c can be given in terms of the arbi-
trary functions Kα

α (w), b(w) and p(w) which can be chosen such that
reasonable equations of state etc. arise, see Wolf (1986b) for details. Both
metrics have Petrov type I and a non-diverging, shearing and rotating
four-velocity.

(2) The Gödel solution.
(3) Three classes of Petrov type D solutions with timelike slices, an

equation of state µ = p, a purely electric Weyl tensor and u[akbln] = 0,
see §33.3. They have at least either a G2 on T2 (and a four-velocity with
Θ = σ = u̇ = 0, ω �= 0) or a G1 on S1 (with Θ, ω, σ, u̇ all nonzero) and
are given by

ds2 = (F,t + G,t)2dx2 − [dt + a(F + G)dx]2

+
[
dy +

√
ab(F −G)dx

]2
+ dz2,

F =
[
t +
√

by/a

]
(a− b),x(a + b)

2(a− b)(a2 + b2)
+
∑
±

n±
(

a− b

a(a2 + b2)

)1/2
×

× exp
{
±
[
a(a2 + b2)/(a− b)

]1/2 [
t + (by/a)1/2

]}
, (36.24)

G =
[
t + (by/a)1/2

]
{a,x(a− 3b)− b,a(b− 3a)} /2(a2 + b2)(a− b),

u2t = (ab),x/ [2n(a + b)] (F,t + G,t) + b/(b− a),

u2x = −uta(F + G) + uy
√
ab(F −G), κ0µ = κ0p = ab,

u2y = (ab),x/ [2n(a + b)] (F,t + G,t) + a/(b− a), uz = 0,

where n = const, a(x) and b(x) have to satisfy ab(a−b) = n(a+b), ab > 0,
and n+(x) and n−(x) are arbitrary functions which are real if b > a and
complex conjugate if b < a.

For spherically-symmetric space-times, by means of a coordinate trans-
formation T = T (t, r), the general spherically-symmetric line element

ds2 = r2dΩ2+e2λ(r,T )dr2−e2ν(r,T )dT 2, dΩ2 ≡ dϑ2+sin2 ϑ dϕ2, (36.25)
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is transformed into

ds2 =
[
e2λ − e2νT 2,r

]
dr2 + r2dΩ2 − e2ν

[
2T,rT,tdr + T 2,tdt

]
dt. (36.26)

Obviously the slices t = const are flat if

(∂T/∂r)2 = e−2ν(r,T )
[
e2λ(r,T ) − 1

]
(36.27)

holds, i.e. only if e2λ(r,T ) ≥ 1, and then there are two distinct families
of slices (Stephani and Wolf 1985). For static solutions this condition
is satisfied if the mass function m(r) defined by (16.5) is positive. It is
also satisfied for the general open ( ε = −1) Robertson–Walker metric
(12.8).

If the flat slices are comoving, then for spherically-symmetric space-
times the four-velocity is geodesic and the solutions are the subcase ε = 0
of (15.66)–(15.71) (Bona et al. 1987b). The subcases of the Szekeres–
Szafron classes of solutions (§33.3.2) which have flat comoving slices are
(33.43) and the subcase k = 0, U = 0 of (33.44a) (Berger et al. 1977,
Bona et al. 1987a). Also the plane-symmetric fluids (15.80) and the plane-
symmetric dust solutions – (15.43) with k = 0 – have flat slices.

36.3 Perfect fluid solutions with conformally flat slices

For vacuum solutions, no systematic search has been carried out, and
also among the perfect fluid solutions only some restricted cases have
been investigated. We shall first consider those solutions (or theorems on
them) which have been found by asking for metrics with conformally flat
slices, and then give a list of (further) solutions where this property has
been detected in hindsight.

Verma and Roy (1956) considered metrics of the form

ds2 = ϕ(x, y, z, t)[dx2 + dy2 + dz2]− dt2. (36.28)

They found as solutions the subcase x0, y0, z0 = const of (37.45).
All solutions with Kαβ = 0,

ds2 = N2(x4, xα)(dx4)2 + gαβ(xν)dxαdxβ, (36.29)

where R
3

αβ has at most two different eigenvalues and has the four-
velocity uα as an eigenvector, have been found by Stephani (1987) and
Barnes (1999). They are necessarily of Petrov type D or 0. There are two
cases.
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If the 3-spaces are of constant curvature, then one obtains either the
dust solutions (36.13)–(36.14) (with a flat 3-space), or the rotating perfect
fluid solutions

ds2 = N2(dx4)2 + ηαβdxαdxβ(1− pr2/12)−2,

N = −Mf(τ) +
[
h(1 + pr2/12) + hαx

α + 3M/p
]

(1− pr2/12)−1,

f(τ) =
3
4
τ

p
ln

1 + τ

1− τ
, τ =

[
g
(
1 + 1

12pr
2
)

+ gαx
α
] (

1− 1
12pr

2
)−1

, (36.30)

r2 = ηαβx
αxβ, ηαβ = diag (1, 1,−1), ηαβgαgβ = p(g2 − 1)/3,

uα = T,α, cos
(
1
3T
√

3p
)

= τ, µ = −p + M/N sin2
(
1
3T
√

3p
)
,

where the pressure p is an arbitrary positive constant and M, h, hα, gα are
arbitrary functions of x4. For negative p (corresponding to a cosmological
constant Λ), similar solutions occur.

If the 3-spaces are not of constant curvature, then the fluid is non-
rotating and the metric must be of the form

ds2 = N2(x4, ζ, ζ, t)(dx4)2 + 2e2b(ζ,ζ,t)dζ dζ − e2α(ζ,ζ,t)dt2. (36.31)

Contained here are subcases of the generalized interior Schwarzschild so-
lution (37.39), subcases of the generalized Friedmann solutions (37.45),
and the Szekeres–Tomimura class (33.44a)–(33.44d) (note that here the
ζ–ζ–t-space is conformally flat; for the ζ–ζ–x4-space see below).

Dust metrics with comoving constant curvature slices (Bona and Palou
1992) are either the Szekeres dust solutions (contained in (33.38)) or they
are of Bianchi type I (with zero curvature) or V (contained in (13.32)).

Properties of metrics with a S3 of constant curvature have been discussed
by Bona and Coll (1985a).

Metrics with conformally flat comoving slices have been studied by
Szafron and Collins (1979).

The following solutions are known to admit conformally flat subspaces:
(i) Comoving: The Szekeres metrics (33.38) (slices t = const!) (Berger
et al. 1977, Szafron and Collins 1979), the Wainwright–Goode solutions
(23.13) (Wainwright and Goode 1980), the dust solutions (15.38) with a
G3 on V2.
(ii) Non-comoving: Spherically-symmetric metrics which admit isotropic
coordinates (16.22).
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36.4 Solutions with other intrinsic symmetries

Martinez and Sanz (1985) studied metrics of the form

ds2 = B(t, r)dr2 + C(t, r)
[
dϑ2 + M2(ϑ)dϕ2

]
−A(t, r, ϑ, ϕ)dt2, (36.32)

which on t = const have (at least) one Killing vector ∂ϕ.
Vacuum solutions of this form have either a G3 on S2 (the ϑ–ϕ-space

has constant curvature) or are given by the special case

ds2 = t−2dr2 + a2t2(e2x
2
dx2 + x2dy2)− e2x

2
dt2, a = const (36.33)

of (17.13) (admitting a G2).
Perfect fluid solutions with four-velocity orthogonal to t = const contain

the conformally flat solutions (37.39) and (for Aϕ = 0) the two rigidly
rotating solutions

ds2 = dr2 + dϑ2 + F (ϑ)2,ϑdϕ2 − F 2dt2,

F,ϑϑ = b/F, κ0µ = κ0p = bF−2, b = const
(36.34)

(admitting a G3) and

ds2 = dr2/(λ + br2) + r2(dϑ2 + F (ϑ)2,ϑdϕ2)− r2F 2dt2,
(36.35)

FF,ϑϑ = c− λF 2, κ0µ = c/r2F 2 − 3b = κ0p− 6b, λ, b, c = const

(admitting a G2), and the metric

ds2 = t−2dr2 + t2(dϑ2 + F (ϑ)2,ϑdϕ2)− (b ln t + c)−1F 2dt2,

F,ϑϑ = aF−1 + bF−1 lnF, a, b, c = const, (36.36)

κ0p = (tF )−2 [a + b lnF − c− b ln t] = κ0µ + b(tF )−2

(admitting a G2).
In generalizing (36.32), Argüeso and Sanz (1985) considered the metrics

ds2 = B(t, r)dr2 + C(t, r)dϑ2 + H(t, r)M2(ϑ)dϕ2 −A(t, r, ϑ, ϕ)dt2,
(36.37)

(H �= C), again with one symmetry (∂ϕ) on t = const. If A,ϕ �= 0,
the solutions are either static degenerate vacuum B-metrics (with Λ) or
the conformally flat perfect fluid (37.39). If A,ϕ = 0, only the subcase
C = C(t), H = H(t) has been considered. It leads to solutions with a
G2I and – for perfect fluids – to an equation of state µ = p, see §23.1.

Space-times with a G3 transitive on a S3, where the S3 admits an
intrinsic G4, have been studied by Szafron (1981), see also McManus
(1995).



37
Local isometric embedding of

four-dimensional Riemannian manifolds

37.1 The why of embedding

It is a well-known theorem of differential geometry (Eisenhart 1949) that
one can regard every (analytic) four-dimensional space-time V4 (at least
locally) as a subspace of a flat pseudo-Euclidean space EN of N ≤ 10
dimensions. If we choose Cartesian coordinates yA in describing EN ,

(N)

ds 2 =
N∑

A=1

eA(dyA)2 = ηAB dyAdyB, eA = ±1, (37.1)

then the subspace V4 (coordinates xa) will be given by the parametric
representation

yA = yA(xa) (37.2)

and the metric of this subspace as induced by (37.1) is

ds2 = gab dxadxb = ηAB yA,a y
B
,bdxadxb,

A,B, . . . = 1, . . . , N, a, b, . . . = 1, . . . , 4.
(37.3)

If these three equations (37.1)–(37.3) hold, they describe a local isometric
embedding of V4 into EN . The minimum number of extra dimensions is
called the embedding class p (or just class) of the V4 in question, 0 ≤ p ≤ 6.

Attempts have been made to give a physical meaning to the flat embed-
ding space, or to use it as an auxiliary space for visualizing or deriving
physical properties of the embedded space-time. In the context of this
book, our point of view is a more pragmatic one. The invariance of the
embedding class gives rise to a classification scheme of all solutions of
Einstein’s field equations according to their respective embedding class.
From a mathematical point of view, this classification scheme is on an

580
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equal footing with the classifications with respect to groups of motions or
to the Petrov types, and it will give a refinement of both these schemes.
Moreover, there is some hope of obtaining exact solutions by the method
of embedding, at least for some simple cases of low embedding class, so-
lutions which are not readily available by other methods. We are not
interested in the embedding itself; the functions yA(xa) will not be deter-
mined or given here. A large number of explicit embeddings can be found
in Rosen (1965) and Collinson (1968b). Other aspects of the embedding
problem are discussed in Goenner (1980).

Nearly all work summarized in this chapter deals with local embedding
only, i.e. the embedding of an open and simply connected neighbourhood
of a point of the given V4. In contrast, the global embedding of a V4 can be
considered. It may give a deeper insight into the geometrical properties of
space-time. In fact, the maximal analytic extension of the Schwarzschild
solution was found by the method of embedding (Fronsdal 1959). The
number of extra dimensions needed for the embedding can be consider-
ably higher than that for local embedding; only upper limits are known:
a compact (non-compact) space-time V4 is at most of embedding class
p = 46 (p = 87). For theorems and results on global embeddings, see
Friedman (1965), Penrose (1965), Clarke (1970), Greene (1970). No sys-
tematic analysis of global embedding of exact solutions has yet been done.

37.2 The basic formulae governing embedding

To get a deeper insight into the geometrical properties of the embedding
described by (37.1)–(37.3), we introduce an N -leg at every point of V4 and
consider the change of this N -leg along V4, i.e. we consider the covariant
derivative with respect to the coordinates xn of V4.

The N -leg in question consists of four vectors yA,a (vectors in EN , a =
1, . . . , 4) tangent to V4 and p unit vectors nαA (α = 1, . . . , p) orthogonal
to V4 and to each other,

ηABnαAnβB = eαδαβ , ηABnαAyB,a = 0, eα = ± 1. (37.4)

(In these and the following formulae, summation over Greek indices takes
place only if explicitly indicated.)

The covariant derivatives (covariant with respect to coordinates xn and
metric gab) of the basic vectors nαA and yB,a are vectors and tensors (re-
spectively) in V4, but again vectors in the embedding space EN and are,
therefore, linear combinations of the basic vectors. Starting from the met-
ric (37.3), we get

gab;c = ηAB (yA,a;cyB,b + yA,ay
B
,b;c) = 0, (37.5)
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and subtracting from this the expressions obtained by substituting (cab)
and (acb) for (abc), we conclude that

ηAB yA,c y
B
,a;b = 0 (37.6)

holds. Equation (37.6) tells us that yB,a;b is a vector orthogonal to V4,
which can therefore be expressed as a linear combination of the normal
vectors nαB,

yB,a;b =
∑
α

eαΩα
abn

αB, Ωα
ab = Ωα

ba. (37.7)

The p symmetric tensors Ωα
ab (tensors in V4) defined by this equation are

generalizations to higher dimensions of the tensor of the second funda-
mental form used in the theory of hypersurfaces.

In a similar way we conclude from (37.4) and (37.7) that

nαA,a = −Ωα
abg

bcyA,c+
∑
β

eβtβαan
βA, tβαb + tαβb = 0 (37.8)

holds. The p(p − 1)/2 vectors tβαb (vectors in V4) defined by (37.8) are
sometimes called torsion vectors.

The Ωα
ab and the vectors tβαb cannot be prescribed arbitrarily. They

have to satisfy the conditions of integrability of the system (37.7)–(37.8),
which turn out to be

Rabcd =
∑
α

eα(Ωα
abΩα

bd − Ωα
adΩα

bc) (Gauss), (37.9)

Ωα
ab;c − Ωα

ac;b =
∑
β

eβ(tβαcΩβ
ab − tβαbΩβ

ac) (Codazzi), (37.10)

tβαa;b − tβαb;a =
∑
ν

eν(tνβbtναa − tνβat
νβ
b) + gcd(Ωβ

cbΩα
da − Ωβ

caΩα
db)

(Ricci). (37.11)

Equations (37.9)–(37.11) are the most important equations of embed-
ding theory. They are written entirely in terms of the V4 in question, using
only vector and tensor fields on V4.

If a V4 is of embedding class p, then it must admit p tensor fields Ωα
ab

and p(p−1)/2 vector fields tαβa which satisfy (37.9)–(37.11), the constants
eα = ±1 being suitably chosen; and if p is the minimum number enabling
(37.9)–(37.11) to be satisfied, then the V4 is of embedding class p. For
p > 1, the tensors Ωα

ab and the vectors tαβa are not uniquely defined by
the embedding because of the possibility of performing a rotation (pseudo-
rotation) at each point of V4 of the basic unit vectors nαA orthogonal to
V4. These degrees of freedom may be used to simplify (37.9)–(37.11) in
special cases, see §37.5.
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If one inserts the curvature tensor (37.9) into the Bianchi identities
Rab[cd;e] = 0, one gets identities involving the derivatives of the tensors
Ωα

ab. It turns out (Gupta and Goel 1975, Goenner 1977) that as a con-
sequence of these identities parts of the Codazzi equations (37.10) are
automatically satisfied. In this sense, the Gauss equations (37.9) and the
Codazzi equations (37.10) are not completely independent of each other.
In some exceptional cases, only the Gauss equations need to be satisfied
to ensure the embedding property of a given V4.

37.3 Some theorems on local isometric embedding

In the general case, no practical way of solving the Gauss–Codazzi–Ricci
equations (37.9)–(37.11) is known, either in the sense of determining all
solutions of Einstein’s equations of a given embedding class or in the sense
of determining the embedding class of a given metric. Progress made so far
concentrates on three points, namely: (a) solutions of embedding classes
one and two, (b) explicit embedding of certain metrics or classes of metrics
and (c) the connections between embedding class and other properties of
the metric, e.g. special vector and tensor fields, groups of motions. We
shall postpone the discussion of (a) and (b) to later sections and deal
here only with (c).

37.3.1 General theorems

If we denote by Vn(s, t) a Riemannian space with s spacelike and t timelike
directions, and by EN (S, T ) the pseudo-Euclidean embedding space, then
we have:

Theorem 37.1 Any analytic Riemann manifold Vn(s, t) can be (locally)
isometrically embedded in EN (S, T ) with s+ t = n, S +T = N , n ≤ N ≤
n(n + 1)/2, s ≤ S, t ≤ T (Eisenhart 1949, Friedman 1965).

Correspondingly, the embedding class p of a Vn is at most n(n− 1)/2.
For space-time n = 4, and p ≤ 6. If the embedding space is assumed to be
Ricci-flat (instead of flat), then for any n only one additional dimension
is needed (Campbell 1926).

If we start from the embedding (37.3), with N = n + p, of a Vn with
metric gab into a flat (p + n)-dimensional space, then relations

zA = eUyA, zN+1 = eU (η AB yAyB − 1/4),

zN+2 = eU (η AB yAyB + 1/4),
(37.12)

give an explicit embedding of a V̂n with metric ĝab = e2Ugab into a flat
(n + p + 2)-dimensional space.
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Theorem 37.2 If two spaces are conformally related, then their respec-
tive embedding classes differ by at most two. In particular, the embedding
class of conformally flat spaces is at most two.

An example of a conformally flat space of embedding class one is the
Robertson–Walker metric

ds2 = f2(t)[dϕ2 + sin2 ϕ(dψ2 + sin2 ψ dα2)]− dt2, (37.13)

the embedding being given by

y1 = f(t) cosϕ, y2 = f(t) sinϕ cosψ,

y3 + iy4 = f(t) sinϕ sinψ eiα, y5 =
∫ √

f ′2(t) + 1 dt,

ds2 = (dy1)2 + (dy2)2 + (dy3)2 + (dy4)2 − (dy5)2.

(37.14)

37.3.2 Vector and tensor fields and embedding class

The existence of special vector and tensor fields in a V4 may reduce its
embedding class below the maximum value p = 6.

As an example we consider a V4 which admits a non-null vector field v
satisfying

Lvhab = Lv(gab − vavb/v
2) = 0, habv

a = 0. (37.15)

In the frame of reference defined by vi = (0, 0, 0, v4), condition (37.15)
implies h4i = 0, hji,4 = 0, i.e.

ds2 = hαβ(xν)dxαdxβ + εv−2(vidxi)2, α, β = 1, 2, 3, ε = ±1. (37.16)

(In the case of a timelike unit vector field, va/v = ua, the field would be
called shear- and expansionfree; it describes a rigid congruence.)

If, in addition, va/v is a gradient, vidxi/v = dx4, then the metric admits
a (covariantly) constant vector field, cp. (35.8). As the hαβ part of the
metric is a V3 and can be embedded in at most six dimensions, we get

Theorem 37.3 If a V4 admits a non-null constant vector field, then its
embedding class is p ≤ 3.

By inspection of the metric (35.9) admitting a constant null vector field,
and using the representation dx3dx4 = du2 − dv2, one gets in a similar
way

Theorem 37.4 If a V4 admits a constant null vector field, then its em-
bedding class is p ≤ 4.

As every V2 can be embedded in a E3, in the case of the metrics (35.6)
and (35.7) which possess two constant vector fields we get
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Theorem 37.5 If a V4 admits two constant non-null vector fields, then
its embedding class is p ≤ 1.

Theorem 37.6 If a V4 admits a constant null vector field and a constant
non-null vector field orthogonal to each other, then its embedding class is
p ≤ 2.

If in (37.16) va/v is proportional to a gradient, the metric can be writ-
ten as

ds2 = hαβ(xγ)dxαdxβ + εf2(xi)(dx4)2. (37.17)

With respect to the embedding class, two different cases may occur. For
f,4 = 0, the metric

ds2 = hαβ(xν)dxαdxβ + εf2(xν)(dx4)2, α, β, ν = 1, 2, 3, (37.18)

is that of a space-time admitting a normal Killing vector field ξi =
(0, 0, 0, ξ4). By introducing (Szekeres 1966a)

u + iv = feix
4
, ε(du2 + dv2) = ε[df2 + f2(dx4)2], (37.19)

we see that the problem has been reduced to finding an embedding of
the three-dimensional metric hαβdxαdxβ − εdf2, which can be done in at
most six dimensions:

Theorem 37.7 If a V4 admits a non-null normal Killing vector field,
then its embedding class is p ≤ 4.

In the general case f,4 �= 0, the f2(dx4)2 part of the metric (37.17) needs,
according to Theorem 37.2, at most three dimensions for embedding,
which add to the six dimensions of the hαβdxαdxβ part. Hence we get

Theorem 37.8 If a V4 admits a normal non-null vector field v, satisfying
(37.15), then its embedding class is p ≤ 5.

Besides metrics satisfying (37.15), we may consider metrics character-
ized by the existence of a vector field va = (x4),a with

va;b = Θ(gab − εvavb)/3, vav
a = ε �= 0,

ds2 = f2(xa)hαβ(xν)dxαdxβ + ε(dx4)2, α, β, ν = 1, 2, 3.
(37.20)

For the embedding of the three-dimensional space with metric hαβ we
need at most three additional dimensions; application of Theorem 37.2
then leads to

Theorem 37.9 If a V4 admits a normal non-null vector field v satisfying
(37.20), then its embedding class is p ≤ 5.
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Table 37.1. Upper limits for the embedding class p of various metrics
admitting groups

Group → G10 G7 G6 G3 A3 A2
Orbit G6 ⊃ G5 G6 �⊇ G5
↓
V4 p ≤ 1 p ≤ 2 p ≤ 4 p ≤ 2

S3, T3 p ≤ 1 p ≤ 3

N3 p ≤ 2 p ≤ 3

S2, T2 Flat: p ≤ 3 p ≤ 4
Non-flat:

p ≤ 2

37.3.3 Groups of motions and embedding class

If groups of motions of a V4 induce the existence of subspaces of low em-
bedding class, e.g. of subspaces of constant curvature, then the existence
of the group will induce a low class for V4 too. The details will depend
on the order r of the groups Gr (Ar, if Abelian) and on the dimensions
of their orbits (S = spacelike, T = timelike, N = null). Some results
(Goenner 1973) are given in Table 37.1. We see that, to a certain extent,
high symmetry induces low embedding class. The converse is not true;
metrics of class one without symmetry are known, see e.g. (37.45).

To give an example of the method of reasoning, we consider an arbitrary
spherically-symmetric line element

ds2 = b2(r, t)(dθ2 + sin2 θdϕ2) + a2(r, t)dr2 − c2(r, t)dt2. (37.21)

If we put

y1 = b cos θ, y2 = b sin θ cosϕ, y3 = b sin θ sinϕ,

(dy1)2 + (dy2)2 + (dy3)2 = b2(dθ2 + sin2 θdϕ2) + (db)2,
(37.22)

and take into account that the 2-space with metric a2(r, t)dr2 −
c2(r, t)dt2 − [db(r, t)]2 can be embedded into E3, we see that spherically-
symmetric space-times are of class p ≤ 2 (p = 1 is possible for special
functions a, b, c, see Karmarkar (1948) and Ikeda et al. (1963)).

If one compares the theorems given in this section (and especially the
methods of the proofs outlined or mentioned) with the general theory of
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embedding sketched in the preceding section, one may feel that the two
sections are disconnected: no use has been made of the Gauss–Codazzi–
Ricci equations. The reason for this incoherence is the fact, already stated
above, that no systematic treatment of these equations has been carried
out, with the exception of metrics of class one or two. The following
sections will be devoted to these metrics.

37.4 Exact solutions of embedding class one

37.4.1 The Gauss and Codazzi equations and the possible types of Ωab

Application of the general theory outlined in §37.2 to class one yields: a
V4 is of class one if and only if there is a symmetric tensor Ωab satisfying

Rabcd = e(ΩacΩbd − ΩadΩbc), e = ±1 (Gauss), (37.23)

Ωab;c = Ωac;b (Codazzi), (37.24)

e = ±1 being suitably chosen.
If Ω−1

ab exists, then the Codazzi equations are a consequence of the
Gauss equations and the Bianchi identities (cp. Goenner 1977):

Theorem 37.10 If there is a non-singular symmetric tensor Ωab satis-
fying (37.23), then space-time is of embedding class p = 1.

The Gauss equations (37.23) and the field equations yield

κ0(Tab − 1
2gabT

c
c) = Rab = e(ΩabΩc

c − ΩacΩc
b). (37.25)

Due to the algebraic simplicity of this equation, all possible tensors Ωab

which correspond to an energy-momentum tensor of a perfect fluid or
Maxwell type can be determined. The calculations are straightforward,
starting with a suitable tetrad representation of Tab and Ωab. If Ωab is
known, the Petrov type can easily be obtained from (37.23). Four different
cases occur, namely (Stephani 1967b):
Perfect fluid metrics, Petrov type O (conformally flat)

Tab = (µ + p)uaub + pgab, Ωab = Auaub + Cgab,

κoµ = 3C2 > 0, κ0p = C(2A− 3C), e = +1.
(37.26)

Perfect fluid metrics, Petrov type D

Tab = (µ + p)uaub + pgab, κoµ = e(3C + 2A)C, κ0p = eC2,
(37.27)

Ωab = 2Cuaub + Cgab + Avavb, vav
a = 1, uav

a = 0, AC �= 0.
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Pure radiation fields, Petrov type N

Tab = Φ2kakb, Ωab = Akakb + Czazb, kak
a = 0,

κ0Φ2 = eAC, zaz
a = 1, zaka = 0,

(37.28)

and

Tab = Φ2kakb, Ωab = B(kazb + zzkb), kak
a = 0,

κ0Φ2 = −eB2, zaz
a = 1, zaka = 0.

(37.29)

The corresponding space-times will be determined in the following sec-
tions. In each of the four cases the functions A, B, C and the vector
fields u, v, k, z have to be chosen so that the Gauss and Codazzi equa-
tions (37.23) and (37.24) are satisfied. To get the metric, one uses the
Codazzi equations (and parts of the Gauss equations) to find preferred
vector fields, adjusts the coordinates to these vector fields and tries to
solve the remaining Gauss equations. In the case of an electromagnetic
null field, the Maxwell equations have to be satisfied too.

Concerning the remaining types of energy-momentum tensor, the ques-
tion is answered by

Theorem 37.11 There are no embedding class one solutions of the
Einstein–Maxwell equations with a non-null electromagnetic field
(Collinson 1968a), and no embedding class one vacuum solutions.

37.4.2 Conformally flat perfect fluid solutions of embedding class one

The problem we have to solve is the following: find all metrics with curva-
ture tensor (37.23) and Ωab given by (37.26), i.e. all metrics with curvature
tensor

Rabcd = C2(gacgbd− gadgbc) +CA(gacubud + gbduauc− gadubuc− gbcuaud).
(37.30)

(Because of Theorem 37.10, the Codazzi equations are a consequence of
the Bianchi identities for C �= A; C = A is either (if Θ = 0) the Einstein
universe (37.40) or (if Θ �= 0) a special case of (37.45).) For C = 0,
space-time is flat.

An almost trivial solution of (37.30) is

A = 0, κ0Tab = −3C2gab, C2 = const, (37.31)

which corresponds to a space of constant curvature (de Sitter space).
Allowing for negative µ (C2 < 0), we have thus shown that the spaces of
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constant curvature are of embedding class one (or zero, if they are flat).
From now on we assume A �= 0.

Starting from (37.30), the Bianchi identities give us

ua;b = −u̇aub + Θhab/3, hab ≡ gab + uaub; (37.32)

the velocity field u is normal and shearfree. In a comoving frame of ref-
erence ui = (0, 0, 0, u4) the metric takes the form

ds2 = hµνdxµdxν − (u4)2dt2, µ, ν = 1, 2, 3. (37.33)

Furthermore, the Bianchi identities yield

C = C(t), ∂tC = ΘAu4/3, Θ = Θ(t), A,a = Ȧua −Au̇a. (37.34)

The calculations now depend on whether the velocity field is expansionfree
(Θ = 0) or not (Θ �= 0).
Expansionfree solutions If Θ vanishes, (37.32) and (37.34) lead to

C = const, ∂thµν = 0, A = u4f(t). (37.35)

Because of (37.35), the spatial part of the Gauss equations (37.30) reads

R
3

µνστ = R
4

µνστ = C2(hµσhντ − hµτhσν), (37.36)

so the 3-space hµν is a space of constant curvature,

ds2 = dr2/(1− C2r2) + r2(dθ2 + sin2 θdϕ2)− (u4)2dt2. (37.37)

The remaining Gauss equations

C(A− C)(u4)2hστ = −u4(uσ;4;τ − uσ;τ ;4 = u4(u4,στ − Γν
στu4,ν) (37.38)

are a system of differential equations for the function u4 which can be
completely integrated. The result (Stephani 1967b, Kramer et al. 1972)
is the metric

ds2 = dr2/[1− C2r2] + r2(dθ2 + sin2 θdϕ2)− (u4)2dt2,

u4 = rf1(t) sin θ sinϕ + rf2(t) sin θ cosϕ + rf3(t) cos θ
(37.39)

+f4(t)
√

1− C2r2 − C−1,

κ0µ = 3C2 = const, κ0p = −κ0µ + 2Cu4, A = u4(�= const).

We see that all these expansionfree conformally flat solutions are general-
izations of the interior Schwarzschild solution (16.18) (f1 = f2 = f3 = 0,
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f4 = const), containing four arbitrary functions of time. In the general
case, the metric admits no Killing vector at all.

No dust solutions (p = 0) are included in the class (37.39): p = 0,
µ �= 0 leads to 2A = 3C = const, and u̇ vanishes because of (37.34), i.e.
u is covariantly constant. This is compatible with the form (37.30) of the
curvature tensor only if A = C = 0; i.e. space-time must be flat.

The case A = C is the Einstein universe

ds2 = dr2/(1− C2r2) + r2(dθ2 + sin2 θdϕ2)− dt2. (37.40)

Solutions with non-vanishing expansion For Θ �= 0, we get from (37.32)–
(37.34) the system

3∂thµν = −2Θu4hµν , A,µ = Au4u4,µ, 3∂tC = ΘAu4, (37.41)

which is integrated by

hµν = hµν(xσ)V −2(xσ, t), ∂tV = V Θu4/3, A = u4f(t),

Θ = Θ(t), C = C(t), ∂tC = −Θf/3.
(37.42)

The spatial part hµν of the metric tensor is time-dependent; hence we
have to calculate the curvature tensor of the hypersurface t = const by
means of

R
3

µνστ = R
4

µνστ − 1
4 [(∂thµσ)(∂thντ )− (∂thµτ )(∂thσν)](u4)2. (37.43)

Using (37.41) and (37.30), we get from this representation

R
3

µνστ = (C2 −Θ2/9)(hµσhντ − hµτhνσ); (37.44)

the hypersurfaces t = const are spaces of constant curvature, but with a
time-dependent metric. Transforming the metric hµν for t = 0 into the
canonical form hµν = V −2δµν , we find that, due to (37.41), this form is
preserved in time, and the complete metric takes the form

ds2 = V −2(dx2 + dy2 + dz2)− (3V,4/V )2Θ−2(t)dt2,

κ0µ = 3C2(t), κ0p = −κ0µ + 2CC,4V/V,4 = C(2A− 3C) (37.45)

V = V0(t) +
C2(t)− 1

9Θ2(t)
4V0(t)

{
[x−x0(t)]2 + [y−y0(t)]2 + [z−z0(t)]2

}
,

(Stephani universe, Stephani 1967b). The remaining Gauss equations
being satisfied, the metrics (37.45) are all of class one, with arbitrary
functions x0(t), y0(t), z0(t), C(t), Θ(t) and V0(t). These solutions are
generalizations of the Robertson–Walker cosmological models (§14.2).
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Dust solutions of this class are obtained by putting 2A = 3C. This
implies u4 = −1 and 3∂tV = −V Θ, which exactly characterizes the
Friedmann dust models. A detailed study of the various cases in which the
conformally flat metrics (37.39) and (37.45) admit one or several Killing
vectors was given by Barnes and Rowlingson (1990) and Barnes (1998);
see also Bona and Coll (1985b) and Seixas (1992b).

37.4.3 Type D perfect fluid solutions of embedding class one

The type D solutions of embedding class one are characterized by (37.27),
i.e. by

Ωab = 2Cuaub + Cgab + Avavb, AC �= 0,
(37.46)

κ0Tab = e2C(A + 2C)uaub + eC2gab,

Rabcd = e(ΩacΩbd − ΩacΩbc). (37.47)

For A + 2C = 0, the Codazzi equations (37.24) give ua;b = vapb, va;b =
uapb. The Ricci identities ua;bc−ua;cb = udRdabc, together with the Gauss
equations (37.47), then imply C = 0; i.e. space-time is flat. We can there-
fore confine the discussion to the case 2C + A �= 0.

As with the conformally flat solutions, two different cases occur, de-
pending now on whether the acceleration u̇a = ua;bu

b vanishes or not.
The two cases will be treated separately.

Solutions with vanishing acceleration After some lengthy but straightfor-
ward calculations, the Codazzi equations and parts of the Gauss equations
(via the Ricci identity for ua) give the expressions

ua;b = a1vavb + a2(gab − vavb + uaub), C,a = 2Ca2ua,

va;b = a1uavb + pavb, pau
a = 0 = pav

a,

A,a = [(2C + A)a1 − 2Ca2]ua + a3va + Apa,

(37.48)

for the derivatives of ua, va, A and C. In adapted coordinates ui =
(0, 0, 0,−1), vi = (0, 0, V, 0), the metric then reads

ds2 = F 2(t)
[
dx2 + H2(x, y)dy2

]
+ V 2(x, y, z, t)dz2 − dt2; (37.49)

it belongs to the Szekeres class (33.44a). The system of embedding equa-
tions, i.e. (37.48) and the Gauss equations, can be completely integrated.
It turns out that the x–y-space is of constant curvature.
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If this space is flat, then only e = 1 is possible, and we get the metric

ds2 = t(dr2 + r2dϕ2) + V 2dz2 − dt2, G21 + G25 �= 0,

V (r, ϕ, z, t) = t
√
tG1(z) +

√
t[G2(z)r cosϕ + G3(z)r sinϕ

(37.50)
+ 3
4G1(z)r2 + G4(z)] + G5(z),

κ0p = 1/4t2, κ0µ = 3κ0p− [4t
√
tG1(z) + G5(z)]/2V t2,

(Stephani 1968b). This metric contains five arbitrary functions Gi(z). It is
a subcase of the type D metrics (33.44). The subclass G1 = G2 = G3 = 0
is a metric of plane symmetry.

If the x–y-space is non-flat, one finally gets

ds2 = F 2(t)
[
dr2/(1 + εr2) + r2dϕ2

]
+ V 2(r, z, ϕ, t)dz2 − dt2,

V = G1(z)
∫

F−1dt + G2(z) + F [G3(z)r cosϕ

+G4(z)r sinϕ + εG5(z)
√

1 + εr2
]
, (37.51)

κ0µ = 3κ0p +
2

V F 4

[
G1(z)

{
εtF + b

∫ dt
F

}
+ bG2(z)

]
, ε = ±1,

κ0p = −bF−4, F 2 = ε(t2 + b), b = const, G21 + G22 �= 0

(Stephani 1968b, Barnes 1973c). The metrics (37.50) and (37.51) cover
all class one type D perfect fluid solutions without acceleration.
Solutions with acceleration Evaluation of the Codazzi equations (37.24)
for the tensor Ωab given in (37.46) and partial use of the Ricci identities
give

ua;b = a1vaub + a2vavb + a3(gab − vavb + uaub), a1 �= 0,

va;b = a1uaub + a2uavb + (2C + A)A−1a1(gab − vavb + uaub), (37.52)

C,b = 2Ca3ub + (2C + A)a1vb, A,b = [(2C + A)a2 − 2Ca3ub] + a4vb.

The preferred vector field v is parallel to the acceleration u̇, and both
fields are normal; the space orthogonal to them turns out (via the Gauss
equations) to be of constant curvature. So we are led to introduce a co-
ordinate system

ds2 = Y 2(r, t)
[
dρ2/(1− kρ2) + ρ2dϕ2

]
+ e2λ(r,t)dr2 − e2ν(r,t)dt2,

(37.53)
ui = (0, 0, 0,−eν), vi = (0, 0, eλ, 0), k = 0,±1.
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These metrics obviously admit a G3 on V2, cp. Chapter 15. Equations
(37.52) furthermore imply

C = h(r)Y −2(r, t), Y ′ ≡ ∂Y/∂r �= 0, h′ �= 0. (37.54)

The function h(r) could be gauged to h = r.
If Y depends only on r (Ẏ = 0), then the metric is necessarily static

and thus also shearfree; conversely, if the shear vanishes, the metric is
static. The resulting metric is (Kohler and Chao 1965, Stephani 1967b)

ds2 = k
(a + 2br2)
a + br2

dr2 + r2
(

dρ2

1− kρ2
+ ρ2dϕ2

)
− (a + br2)dt2,

(37.55)

κ0p =
kb

a + 2br2
, κ0µ = kb

3a + 2br2

(a + 2br2)2
, a, b = const, k = ±1.

If Y ′ �= 0, the Gauss and Codazzi equations (37.47) and (37.52) yield

e2λ(−λ̈− λ̇2 + λ̇ν̇) + e2ν(ν ′′ + ν ′2 − ν ′λ′) = e2λ+2ν
h

Y 2

(
h′

Y ′Y
− h

Y 2

)
,

Y 2(k − Y ′2e−2λ + Ẏ 2e−2ν) = eh2(r),
(37.56)

−Ẏ ′ + Y ′λ̇ + Ẏ ν′ = 0, ν′ = 2hY ′2Y −2/h′ − Y ′Y −1,

h′(r) �= 0, κ0p = eh2(r)Y −4, κ0µ = −κ0p + 2eh′hY −3/Y ′, e = ±1.

The general solution to these equations is not known.
If one assumes an equation of state µ = µ(p), then it turns out that

only µ = p is possible, and the resulting metrics are (Stephani 1968a)

ds2 = 1
2r
2
[
k + a1et + a2e−t

] [
dρ2/(1− kρ2) + ρ2dϕ2

]
+ dr2 − 1

4r
2dt2,
(37.57)

κ0p = κ0µ = (k2 − 4a1a2)r−2(k + a1et + a2e−t)−2, k = 0, ±1.

They are a special case (F (t) = 0, H = ce−r/2, r rescaled) of (15.72)–
(15.74), admit a homothetic vector (Collins and Lang 1987), and include
a spherically-symmetric solution given by Gutman and Bespal’ko (1967)
and its plane-symmetric counterpart (Kitamura 1989).

By starting from an explicit embedding, Gupta and Gupta (1986) found
spherically-symmetric solutions (in non-comoving coordinates) which
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belong to the class (37.56). They are given by

ds2 = dr2 + r2dΩ2 − dt2 + dU2, (37.58)

U = C−1/2) ln
[
2
√
C
√

C (r2 + g(t))2 − 4r2 − 4g(t) + 2C[r2 + g(t)]− 4
]
,

g(t) = A−2 cosh2(At), −A−2 sinh2(At), −A−2 cos2(At), (37.59)

κ0p = 4
[
C(r2 + g)2 − 4A2g2

]−1
, κ0µ = 3p− p2(r2 + g)r2C(g̈ + 2)/4.

In a similar way, special plane-symmetric solutions were found by Gupta
and Sharma (1996a, 1996b) and Bhutani and Singh (1998).

37.4.4 Pure radiation field solutions of embedding class one

As mentioned above, a pure radiation field Tab = Φ2kakb, kak
a = 0, can

be of embedding class one only for either of the two forms

Ωab = Akakb + Czazb, κ0Φ2 = eAC > 0, (37.60)

Ωab = B(kazb + zakb), κ0Φ2 = −eB2 > 0, (37.61)

of Ωab (kaza = 0, zaz
a = 1). In both cases the Gauss equations give

Rabcd = κ0Φ2(kakczbzd + zazckbkd − kakdzbzc − zazdkbkc), (37.62)

and because of
Cabcdk

d = 0 = Rabk
b (37.63)

these solutions are of Petrov type N .
For the case (37.61), the null vector field k turns out to be geodesic,

shearfree, normal and non-diverging, so that the metric necessarily be-
longs to Kundt’s class (see Chapter 31). For the case (37.60), only met-
rics belonging to Kundt’s class have been studied, although only a pure
radiation field satisfying Maxwell equations must have a k with those
properties. So from now on we assume that the metric is of Kundt’s class
(it is not known whether there are type N , embedding class one, solutions
of the form studied in §26.1).

The case Ωab = Akakb + Czazb Here the Codazzi and Gauss equations
show that (in a suitable gauge) the null vector k is constant. As shown
in §24.5, such pure radiation fields of type N can be transformed to

ds2 = dx2 + dy2 − 2du dv − 2H(x, y, u)du2,
(37.64)

κ0Φ2 = H,11 + H,22, zi = (z1, z2, 0, z4), ki = (0, 0, 0,−1).
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The general solution of the Gauss–Codazzi equations is not known. A
special solution and its electromagnetic field are given by

ds2 = dr2 + r2dϕ2 − 2du dv − 2[rα(u) + β(u)]du2, κ0Φ2 = αr−1,

ki = (0, 0, 0,−1), zi = (0, r, 0, 0), eA = α(u), C = r−1,
(37.65)

Fab = kapb − kbpa,
√
r pi =

√
α (cosψ, −r sinψ, 0, 0),

ψ = ϕ/2 + δ(u).

Another special solution is given in Ludwig (1999).
The case Ωab = B(kazb+zakb). Two different types belong to this class,

depending on whether the null vector k is constant or not.
If k is constant, then the Gauss–Codazzi equations imply

ds2 = dx2 + dy2 − 2du dv − [α(u)x + β(u)y]2du2,

κ0Φ2 = α2 + β2, e = −1
(37.66)

(Collinson 1968a). The corresponding electromagnetic null field is

Fab = kapb − pakb, pi = (α cosϕ, β sinϕ, 0, 0), ϕ = ϕ(u). (37.67)

If k is not constant, then the metric is necessarily of the form (Collinson
1968a, Ludwig 1999)

ds2 = −2
{

[α(u) + yγ(u)]2 + β(u)xy + δ(u)x− v2/(2x2)
}

du2 + dx2

(37.68)
+ dy2 + 4vdudx/x− 2du dv, κ0Φ2 = 2(α + yγ)2/x2 + 2γ2.

No Einstein–Maxwell field with metric (37.68) exists, because the condi-
tion of integrability ∆ ln Φ2 = 0 cannot be satisfied.

37.5 Exact solutions of embedding class two

37.5.1 The Gauss–Codazzi–Ricci equations

According to the general theory outlined in §37.2, a V4 is of embedding
class two if and only if there exist two symmetric tensors Ωab (= Ω1ab),
Λab (= Ω2ab), and a vector ta satisfying

Rabcd = e1(ΩacΩbd − ΩadΩbc) + e2(ΛacΛbd − ΛadΛbc), (37.69)

Ωab;c − Ωac;b = e2(tcΛab − tbΛac),

Λab;c − Λac;b = −e1(tcΩab − tbΩac),
(37.70)

ta;b − tb;a = ΩacΛc
b − ΛacΩc

b. (37.71)
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The tensors Ωab, Λab and ta are not uniquely determined. If a set
(Ωab,Λab, ta, e1, e2) satisfies the embedding equations (37.69)–(37.71),
then so does (Ωab,Λab, t̄a, ē1, ē2) given by

Ωab = AΩab + BΛab, Λab = CΩab + DΛab,

t̄a = (AD −BC)ta + e1CA,a + e2DB,a,
(37.72a)

if the functions A, B, C, D satisfy

e1 = ē1A
2 + ē2C

2, e2 = ē1B
2 + ē2D

2, e1AC + e2BD = 0,

ē1 = e1A
2 + e2B

2, ē2 = e1C
2 + e2D

2, ē1AB + ē2CD = 0.
(37.72b)

This transformation corresponds to a rotation (pseudorotation) in the
two-dimensional space orthogonal to the V4 in the embedding space E6;
it can be used to simplify Ωab and Λab, the curvature tensor being given.

Some simple purely algebraic conditions can be derived from the em-
bedding equations. Using the property

εabcdΩanΩbmΩcpΩdq = εnmpqΩ/g (37.73)

of the ε-tensor (Ω being the determinant of Ωab), one obtains (Yakupov
1968a, 1968b)

εabcdεnmrsεpqikRabnmRcdpqRrsik = 0. (37.74)

Combining the Gauss and Ricci equations, one gets (Matsumoto 1950)

−1
2e1e2ε

idmnRab
cdRmnab = εidmn(tc;d − td;c)(tm;n − tn;m). (37.75)

Because of the skew symmetry of the tensors involved, the only informa-
tion contained in (37.75) is

εcdmnRabcdR
ab
mn = −e1e28εcdmntc;dtm;n. (37.76)

As the curvature tensor and the Weyl tensor always satisfy

εedmnRabcdR
ab
mn = εedmnCabcdC

ab
mn, (37.77)

the curvature tensor may be replaced in (37.76) by the Weyl tensor
(Goenner 1973).

Theorem 37.12 If a V4 is of embedding class two, it necessarily satisfies
(37.74) and (37.76).

A thorough investigation of the embedding class two space-times has
been carried out only for vacuum solutions, conformally flat solutions,
and Petrov type D Einstein spaces. We shall summarize the results in the
following sections, see also Table 37.3.
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37.5.2 Vacuum solutions of embedding class two

In addition to the algebraic conditions (37.74) and (37.76) imposed on the
curvature tensor Rabcd and on tc;d, another simple condition can be derived
in the vacuum case from the Gauss–Codazzi–Ricci equations (Yakupov
1968a, 1968b). Calculating the derivatives Ωa[b;c;i] and Λa[b;c;i] either by
means of the Codazzi and Ricci equations or by means of the Ricci iden-
tity, one gets

2e2Λa[btc;d] = Rea[bcΩ
e
d], −2e1Ωa[btc;d] = Rea[bcΛ

e
d], (37.78)

and after summation over a, c and insertion of Rnm = 0,

Ωa
a(tc;b − tb;c) + Ωa

b (ta;c − tc;a)− Ωa
c (ta;b − tb;a) = 0,

Λa
a(tc;b − tb;c) + Λa

b (ta;c − tc;a)− Λa
c (ta;b − tb;a) = 0.

(37.79)

Multiplication of these equations with Ωc
d and Λc

d, respectively, and anti-
symmetrization leads to

−(Ωa
a)2(tb;d − td;b) + (ta;c − tc;a)(Ωa

bΩc
d − Ωa

dΩc
b)

−Ωa
cΩc

d(ta;b − tb;a) + Ωa
cΩc

d(ta;d − td;a) = 0
(37.80)

and an equivalent equation for Λab. Making use of

Rab = e1(Ωc
cΩab − Ωc

aΩcb) + e2(Λc
cΛab − ΛacΛc

b) = 0, (37.81)

and of the Gauss equations (37.69), one finally gets from (37.80)

Theorem 37.13 A vacuum space-time of embedding class two necessar-
ily satisfies

Rac
bdta;c = 0. (37.82)

If one evaluates the Gauss equations (37.69) in the Newman–Penrose
formalism and partially uses the Codazzi equations (37.70), one gets

Theorem 37.14 If an algebraically special vacuum solution is of embed-
ding class two, then its multiple null eigenvectors are normal (and geodesic
and shearfree); if it is non-degenerate (Type II or III ), then the null con-
gruence has zero divergence too (Collinson 1966).

Starting with the normal form (Table 4.2) of the curvature tensor
for each Petrov type, the purely algebraic relations (37.74), (37.76) and
(37.82) can be used to get further information about the algebraic struc-
ture of the curvature tensor and the tensor ta;b, which will simplify the
evaluation of the Gauss–Codazzi–Ricci equations.

Following this line of investigation, Yakupov (1973) arrived at the fol-
lowing results (published without proof):
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Theorem 37.15 There are no embedding class two vacuum solutions of
Petrov type III (Yakupov 1973).

Theorem 37.16 In all embedding class two vacuum solutions t is a gra-
dient, i.e. Ωab and Λab commute, cf. (37.71) (Yakupov 1973).

Starting from Theorem 37.16, Hodgkinson (1984) determined the pos-
sible algebraic structures of Ωab and Λab for all Petrov types, see also Van
den Bergh (1996a). Using these lists, all type D and type N solutions
could be found (for Petrov types I and II, the problem is still open).

The type D vacuum solutions of embedding class two are exactly the
Robinson–Trautman solutions (28.21) and the subclass l = 0 of the so-
lutions (31.41) of Kundt’s class, or, equivalently, the subclass l = 0 of
(13.48) and their counterpart from (13.17), or, again equivalently, the
static degenerate metrics of class A and B of Table 18.2 and the type D
subclass of the Kasner solutions (13.53)–(13.51) (Van den Bergh 1996b,
Hodgkinson 1987). The Schwarzschild solution is included here. They all
have a G4 on V3 and were known to have embedding class two long since
(Rosen 1965, Collinson 1968b).

The Petrov type D Einstein spaces of embedding class two are either
products of two 2-spaces of constant curvature as in (12.8), or they are
generalizations to Λ �= 0 of the embedding class two vacuum solutions (as
the Kottler solution of Table 15.1 generalizes the Schwarzschild metric)
(Hodgkinson 2000).

The type N vacuum solutions of embedding class two are exactly the
pp-waves (§24.5) and the subcase

ds2 = dx2 + dy2 − 2du
[
dv − 2vdx/x− v2du/2x2

]
+
[
a(u)x ln(x2 + y2) + b(u)xy + c(u)x2 + f(u)x

]
du2

(37.83)

of the solution (31.38) of Kundt’s class (Van den Bergh 1996b).

37.5.3 Conformally flat solutions

By definition, conformally flat metrics can always be transformed to

ds2 = e2U(x,y,z,t)[dx2 + dy2 + dz2 − dt2]. (37.84)

They can be characterized by the property that their Weyl tensor Cabcd

vanishes, which in view of (3.50) is equivalent to

Rabcd = 1
2(gacRbd+Racgbd−gadRbc−Radgbc)− 1

6R(gacgbd−gadgbc). (37.85)
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One easily sees from (37.85) that non-flat vacuum solutions cannot exist.
Even if a space-time is known to satisfy (37.85), the explicit transforma-
tion of its metric into the form (37.84) can be rather difficult to find.

As stated in Theorem 37.2, all conformally flat metrics are at most of
embedding class two. In this section, we will use the technique of embed-
ding to determine all conformally flat gravitational fields created by a per-
fect fluid or an electromagnetic field (Stephani 1967a). The conformally
flat Einstein–Maxwell fields have also been found by other techniques
(Cahen and Leroy 1966, McLenaghan et al. 1975).

Conformally flat solutions with a perfect fluid
In the case of a perfect fluid

Tab = (µ + p)uaub + pgab, (37.86)

the condition (37.85) of zero Weyl tensor reads

6Rabcd = 3κ0(µ + p)(gacubud + uaucgbd − gadubuc − uaudgbc)

+2κ0µ(gacgbd − gadgbc). (37.87)

Comparing (37.86) with (37.30) together with (37.26), we see that the
curvature tensor (37.87) can be written as

Rabcd = ΩacΩbd − ΩadΩbc, (37.88)

Ωab = Auaub + Cgab, κ0µ = 3C2, κ0p = 2CA− 3C2. (37.89)

Equation (37.88), which is exactly the Gauss equation for a embedding
class one space-time, indicates that the conformally flat perfect fluid so-
lutions may be of class one. To prove this conjecture, we have to show
that the Codazzi equations Ωab;c = Ωac;b are satisfied too.

If A = C, i.e. µ = −3p, then the curvature tensor is simply

Rabcd = κ0µ(hachbd − hadhbc)/3, hab = gab + uaub, (37.90)

and the Bianchi identities yield

3ua;b = Θhab, 3µ,a = 2µΘua. (37.91)

Because of these equations, Ωab satisfies the Codazzi equations and this
implies that space-time is of embedding class one. In detail, for Θ = 0 the
corresponding solution is the Einstein universe (37.40), and for Θ �= 0 the
solution is a special case of the Friedmann universes (37.45).

If A �= C and C �= 0, the tensor Ωab is non-singular, and because of
Theorem 37.10 the Codazzi equations are satisfied and space-time is of
class one. We summarize the results in
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Theorem 37.17 All conformally flat perfect fluid solutions (µ �= 0) are
of embedding class one, and are therefore all contained either in the gener-
alized Schwarzschild type metrics (37.39) or in the generalized Friedmann
type metrics (37.45) (Stephani 1967a).

All conformally flat solutions with µ = 0 (Barnes 1973c) are of embed-
ding class two, because if µ was zero in (37.26), this would imply C = 0
and space-time would be flat.

Conformally flat solutions with electromagnetic non-null fields
In the case of a non-null field (5.13), i.e.

Tab = Φ2g
1

ab − Φ2g
2

ab (37.92)

gab = g
1

ab + g
2

ab = (xaxb + yayb)− (zazb − uaub), (37.93)

the curvature tensor has the form

Rabcd = κ0Φ2
[(

g
1

ac g
1

bd − g
1

ad g
1

bc

)
−
(
g
2

ac g
2

bd − g
2

ad g
2

bc

)]
. (37.94)

If we start with a tetrad representation of Ωab and Λab, use the identities

εabcd[(RabnmΩcpΩdq − ΩcqΩdp) + (ΩanΩbm − ΩamΩbn)Rcdpq] = 0,
(37.95)

εabcd[(RabnmΛcpΛdq − ΛcqΛdp) + (ΛanΛbm − ΛamΛbn)Rcdpq] = 0

(n, m, p, q not all different), which follow from the Gauss equations
(37.69), together with (37.73) and (37.94), and perform some suitable
gauge transformations (37.72), a lengthy but straightforward calculation
yields

Λab = Guaub + H(uazb + zaub) + Kzazb,

Ωab = Exaxb + Fyayb, e1EF = e2(GK −H2) = κ0Φ2.
(37.96)

The Codazzi and Ricci equations (37.70)–(37.71) then tell us that ta
vanishes and

g
1

ab;c = 0 = g
2

ab;c, Φ,c = 0 ⇒ Rabcd;e = 0 (37.97)

holds; the curvature tensor is constant, and the solution in question is a
symmetric, decomposable, conformally flat space-time. As shown in §35.2,
the only metric with these properties is the Bertotti-Robinson metric
(35.35), i.e.

ds2 = dx2 + cos2 (
√
κ0Φx) dy2 + cos2 (

√
κ0Φt) dz2 − dt2. (37.98)
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The corresponding Maxwell field (determined only up to a duality rota-
tion) is constant too, and can be written as

Fab = Φ
√

2(uazb − zaub), ui = −δ4i , zi = δ3i cos (
√
κ0Φt) . (37.99)

Theorem 37.18 The only conformally flat solution with non-null elec-
tromagnetic field is the metric (37.98)–(37.99), which is the product of
two-dimensional spaces of constant curvature. Both the curvature tensor
and the electromagnetic field tensor are constant (Cahen and Leroy 1966,
Stephani 1967a; see also Singh and Roy 1966).

Conformally flat solutions with pure radiation or electromagnetic null
fields.
In the case of

Tab = Φ2kakb (37.100)

the curvature tensor of a conformally flat metric is given by

2Rabcd = κ0Φ2(kakcgbd + gackbkd − kakdgbc − gadkbkc). (37.101)

One can now use a tetrad representation of Ωab and Λab and evaluate the
Gauss equations along the lines indicated above. The result is that only
the following two structures are admissible:

Ωab = Ckakb + D(xaxb + yayb), 2e1CD = κ0Φ2, kaxa = 0 = kaya,

(37.102)
Λab = Fxaxb + Gyayb, e1D

2 + e2FG = 0, xaxa = 1 = yaya,

Ωab = Ckakb + D(kayb + yakb) + Eyayb, −2e2F 2 = κ0Φ2,
(37.103)

Λab = F (kaxb + xakb), 2e1(EC −D2) = κ0Φ2.

In both cases the null eigenvector is expansion- and shear-free, and the
corresponding metrics belong to Kundt’s class (Chapter 31). So to pro-
ceed further, one should start from the metrics (31.34) and (31.38), omit
the differential equation for H0 (cp. §31.6) and impose the condition of
conformal flatness.

If the metric is of the form (31.34), then conformal flatness implies that
metric and Maxwell field have the form

ds2 = dx2 + dy2 − 2du dv − κo(x2 + y2)Φ2(u)du2/2, (37.104)

Fab = Φ(u) (kapb − pakb) , pa = (cosϕ, sinϕ, 0, 0), ϕ = ϕ(u). (37.105)
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Table 37.3. Metrics known to be of embedding class two

Type of metric Metrics Reference
(for embedding)

Vacuum type D (28.21) Rosen (1965)
with G4 on V3 (31.41), l = 0 Collinson (1968b)

Some type D vacuum §37.5.2
solutions and
Einstein spaces

All conformally flat (37.98)–(37.99) §37.5.3
Einstein–Maxwell fields (37.104)–(37.105)

All pp-waves dx2 + dy2 − 2dudv Collinson (1968b)
(vacuum or not)+ −2Hdu2

Melvin universe (Geon) (22.13) Collinson (1968b)

All metrics with a G3 Chapters 15, 16 §37.3.3
on a non-flat S2 or T2

+

+: Some of them have embedding class one.

If the metric is of the form (31.38), then conformal flatness implies

ds2 =
{
v2/x2 − x

[
(x2 + y2)h1(u) + xh2(u) + yh3(u) + h4(u)

]}
du2

(37.106)
+ dx2 + dy2 − 2du dv + 4v du dx/x, κ0Φ2 = xh1(u)

(Wils 1989a, Edgar and Ludwig 1997a). No Maxwell field exists for this
case. There is a homothety if the hi(u) are specialized to appropriate
powers of u.

Theorem 37.19 The only conformally flat solutions with a null electro-
magnetic field are the special plane waves (37.104)–(37.105) with a con-
stant null eigenvector k (McLenaghan et al. 1975). The conformally flat
pure radiation fields which cannot be interpreted as a Maxwell field are
given by (37.106) (Wils 1989a, Edgar and Ludwig 1997a).

37.6 Exact solutions of embedding class p > 2

So far no systematic research has been done to find solutions of embed-
ding class greater than two. We can only give some metrics where the
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embedding class p is known either from general theorems as given in
§37.3 or from the explicit embedding. These metrics are:
p = 3 : (i) Static axisymmetric vacuum solutions (Weyl’s class, see §20.2
(Szekeres 1966a, Collinson 1968b). Some of them have class p = 2. (ii)
The Petrov type III vacuum metric (31.40) with a G2 (Collinson 1968b).
(iii) The Gödel cosmos (12.26) (Collinson 1968b).
p = 4 : All Robinson–Trautman solutions (Chapter 28) (Collinson 1968b).



Part V
Tables

38
The interconnections between the main

classification schemes

38.1 Introduction

As already pointed out in Chapter 1, the solutions of Einstein’s field equa-
tions could be (and have been) classified according to (at least) four main
classification schemes, namely with respect to symmetry groups, Petrov
types, energy-momentum tensors, and special vector and tensor fields.
Whereas the first two schemes have been used in extenso in this book,
the others played only a secondary role, and the connections between
Petrov types and groups of motions were also treated only occasionally.

This last chapter is devoted to the interconnection of the first three of
the classification schemes mentioned above. It consists mainly of tables.
§38.2 gives the (far from complete) classification of the algebraically spe-
cial solutions in terms of symmetry groups. §38.3 contains tables, wherein
the solutions (and their status of existence and/or knowledge) are tab-
ulated by combinations of energy-momentum tensors, Petrov types and
groups of motion. In the tables the following symbols are used:

S: some special solutions are known A : all solutions are known
�: does not exist

Th., Ch. and Tab. are abbreviations for ‘Theorem’, ‘Chapter’ and ‘Table’
respectively.

605
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For perfect fluid solutions, the connection between the kinematical
properties of the four-velocity (see §6.1) and groups of motions was dis-
cussed e.g. by Ehlers (1961) and Wainwright (1979).

The reader who is interested in an introductory survey of the solutions
as classified by some invariant properties should consult (besides the sub-
ject index and the table of contents):

Table 11.1 for metrics with isometries,
Tables 11.2–11.4 for metrics with homotheties
Table 12.1 for homogeneous solutions,
Tables 13.2–13.4 for hypersurface-homogeneous solutions
§§26.1–26.4 for algebraically special solutions,
Table 32.1 for Kerr-Schild solutions,
Table 37.2 for solutions of embeddding class one,
Table 37.3 for solutions of embedding class two.

38.2 The connection between Petrov types
and groups of motions

In Parts II and III of this book, two methods for the invariant classification
of gravitational fields, namely groups of motions and Petrov types, were
treated quite independently. We have seen that many solutions admitting
an isometry group are algebraically special and vice versa. Occasionally, if
it was known to us, we mentioned the Petrov type of a solution classified
according to the underlying group structure or referred to the group of
motions of a solution of a certain Petrov type. In this section and in
Tables 38.3–38.10 we want to collect the known results on the connection
between these two invariant classifications.

If one knows the group of motions and asks for the possible Petrov
types, the following facts impose some restrictions.

(i) The existence of an isotropy group Is (see §11.2) implies that the
Weyl tensor is degenerate, i.e. the Petrov type is N, D or O. In particular,
a group G3 on non-null orbits V2 implies type D or O (Theorem 15.1).

(ii) The static solutions are of type I, D or O (§18.6.1).
(iii) The stationary axisymmetric vacuum solutions cannot be of type

III (see §19.5). For all admissible Petrov types, the subclasses admitting
a group Gr, r ≥ 3, were determined by Collinson and Dodd (1971). Those
of type II are given by (20.32).

The hypersurface-homogeneous (Chapter 13) algebraically special
Einstein spaces (Rab = Λgab) were determined by Siklos (1981). Apart
from special plane waves (§24.5) and the Λ-term solutions of (12.8),
(13.48), (13.65) and (13.67), Siklos obtained the Petrov type III



38.2 Petrov types and groups of motion 607

Table 38.1. The algebraically special, diverging vacuum solutions of maximum
mobility

Petrov type Twist Maximal group solutions

N ω �= 0 G2
ω = 0 G2 S Table 38.2

III ω �= 0 G2 S (38.4), m + iM = 0
ω = 0 G3 A (38.1)

II ω �= 0 G2 S (29.62), (38.4)–(38.6)
ω = 0 G2 S Table 38.2

D ω �= 0 G2 A §29.5
ω = 0 G4 A (28.21)

Robinson–Trautman solution (28.16), i.e.

ds2 = r2x−3(dx2 + dy2)− 2dudr + 3
2xdu2, (38.1)

where the Killing vectors ∂y, ∂u and 2(x∂x + y∂y) + r∂r − u∂u generate
a group G3V Ih, h = −1/9, its Λ �= 0 generalization (13.64) and the
homogeneous non-diverging solutions (12.34) and (12.35). These latter
solutions belong to Kundt’s class (Chapter 31) and are, in the metric
form (31.6), given by (λ ≡ √|Λ|, Λ < 0)

ds2 = 2(λx)−2(dx2 + dy2)− 2du(dv + 2vdx/x + xdu), (38.2)

ds2 = 2
(dx2 + dy2)

(λx)2
− 2du

[
dv + 2vdx/x +

4x
3λ

dy + 2x4
]
. (38.3)

They were found by Kaigorodov (1962) to be the type N and III
Einstein spaces of maximum mobility (maximum order of Gr): the groups
of motions are G5 for (38.2) and G4 for (38.3); in both cases there is a
subgroup G3V Ih, h = −1/9.

We now start with a specified Petrov type and ask for the groups of mo-
tions. For the various Petrov types of the algebraically special, diverging
(ρ �= 0) vacuum fields, the dimension of the maximal group Gr and the
corresponding solutions are given in Table 38.1. The restrictions on the di-
mension of the maximal group were obtained by Kerr and Debney (1970).

The type D vacuum solutions admit either a G2 or a G4. The same holds
true for the type D Einstein–Maxwell fields (21.11) and (30.36). Kerr and
Debney (1970) determined all algebraically special, diverging, vacuum
solutions admitting a group Gr, r > 2, and some solutions admitting a
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G2. These latter solutions are: (i) the Demianski solution (29.62), (ii) the
solution

m + iM = m0 + iM0 = const, P2 = (x
√

2)3 = (ζ + ζ)3,

L = 1
6 iM0(2)−1/2x−3

[
C1x

√
13/2 + C2x

−√
13/2
] (38.4)

(C1, C2 being real constants), which is a special member of (29.50) to
which it is related by a transformation (29.26) with f = ζ, F,u = 1, and
(iii) the solution

P = 1, iM −m = 2A(1 + α)ζα, L = Aζ
2
ζ1+α + Bζζα/3, (38.5)

where Reα = −3, and A and B are complex constants. The metrics
(38.4) and (38.5) respectively admit groups G2I and G2II and belong to
the classes (29.46)–(29.50) and (29.60)–(29.61). A vacuum solution of the
class (29.46)–(29.50), with a G2II, was found by Lun (1978): it reads

m + iM = (m0 + iM0)ζ
3/2

, P 2 = (ζ + ζ)3, s ≡ y/x,

L = x−3/2
[
A
(
s +
√

1 + s2
)√13/2 (

s− 1
2

√
13
√

1 + s2
)

(38.6)

+B
(
s +
√

1 + s2
)−√

13/2 (
s + 1

2

√
13
√

1 + s2
)]

+
m + iM

3P 2

(m0, M0, A, B real constants). The twisting type N vacuum solutions
admit at most a (non-Abelian) G2 (Stephani and Herlt 1985).

The classes (29.46)–(29.50) and (29.60)–(29.61) cover all algebraically
special diverging vacuum solutions which admit a G1 generated by an
asymptotically timelike Killing vector field ξ = ∂u (Held 1976a, 1976b,
Zenk and Das 1978). The algebraically special vacuum solutions (ρ �= 0)
with an orthogonally transitive G2I (cp. §8.6) are of Petrov type D (Weir
and Kerr 1977).

The groups of motion of the Robinson–Trautman vacuum solutions
(Chapter 28) were systematically analysed by Collinson and French (1967)
using a null tetrad formulation of the Killing equations. The results are
given in Table 38.2. To the authors’ knowledge, the groups of motions of
the algebraically special diverging non-empty spaces have not been sys-
tematically investigated and the same is true for the symmetries of the
(non-diverging) solutions of Kundt’s classs (Chapter 31) except for the
null Killing vector case and the pp-waves, see §§24.4–24.5 and Tables 24.1–
24.2).

Tables 38.3–38.5 give the solutions listed in this book for which both the
Petrov type and the symmetries are known. Special cases of some solutions
may admit a higher-dimensional group or/and the Petrov type may be
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Table 38.2. Robinson–Trautman vacuum solutions admitting two or more
Killing vectors

The gauge m = const is used. Numbers in brackets [ ] refer to equations in
Collinson and French (1967). Type III solutions with G2 exist for all three

forms of P , but only (28.17) is explicitly known.

P (ζ, ζ, u) II D III N

G4 1 + Kζζ/2 � A (28.21) � �

G3 (ζ + ζ)3/2, m = 0 � � A (38.1) �

P (ζ, ζ) S (28.26) � �

G2 P (ζ + ζ, u) S (28.25) A (28.24) S (28.17) A [6.17]

P (ζ + u, ζ + u) � � A [6.20]
P,ζ �= P,ζ –[6.22]

Table 38.3. Petrov types versus groups on orbits V4

G7 G6 G5 G4

I � §11.2 � §11.2 � §11.2 (12.14), (12.21)
(12.27)–(12.32)

D � §11.2 (12.8) (12.26)
(12.29)II � §11.2 � §11.2 � §11.2

N � §11.2 (12.6), (12.12) (12.34)
III � §11.2 � §11.2 � §11.2 (12.35)

0 (12.24) (12.7), A = 0
(12.37) (12.16)

more special. A variety of solutions are not contained in these Tables
because the group or the Petrov type is not known, but these solutions
are partly covered by Tables 38.6–38.10.

38.3 Tables

The tables refer to the equation numbers of the solutions given in this
book and/or the relevant chapters or sections. As a rule, reference to a
chapter or a section includes all (or most of the) solutions given therein.
The symbols � (= non-existence), A (= All), S (= Some) are used as
explained at the end of §38.1.
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Table 38.4. Petrov types versus groups on non-null orbits V3

G6 G4 G3

I � §11.2 � §11.2 §§13.3.4, 13.4, 14.4
§§22.2; (13.53)–(13.62)

D � §11.2 §§13.4, 14.3, 15.4 (18.65), (28.43)
§16.1; (13.48), (15.78)
in Tab. 18.1, (22.13)
(28.44), (31.41)
(31.58), (33.34)

II � §11.2 � §11.2 (13.65), (22.17), (33.30)
N � §11.2 Tab. 24.2, (13.67)

III � §11.2 � §11.2 (13.64), (13.67), (28.16)
(38.1)

0 §14.2 (16.18)

Table 38.5. Petrov types versus groups on non-null orbits V2 and V1

G3 on V2 G2 on V2 G1

I � §11.2 Ch. 17, 20, 21, 23, 34 §17.3; (18.73)
§§22.4; (20.16), (22.48) (26.21) b = 0, (26.22)
(21.59)–(21.60), (25.71)

D Th. 15.1 §§18.6.2, 21.1.2, 29.5
Ch. 15 (18.64), (18.66), (21.24)
§16.2 (21.57), (21.61), (23.43)

in: (23.2), (23.13), (23.40)
(23.50), in (25.26)

(28.43) (25.56), (25.59)
(37.50) (28.24), (28.45), (30.36)

(31.60)–(31.61), (33.9a)
II � Th. 15.1 §29.2.6; (18.50), (20.32) §§29.2.3, 29.2.5

(22.48), (22.64), in (23.8) 32.2; (18.48)–(18.49)
(25.43), (28.26), (29.62) (28.56), (31.43)
(33.14), (33.28) (30.51)–(30.52), (32.80)
(38.4)–(38.6) (33.31), (33.43)

N � Th. 15.1 Tab. 24.2 (29.72)
III � §11.2 (28.17), (31.40)

0 §37.5.3
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Table 38.6. Energy-momentum tensors versus groups on orbits V4 (with
LξFab = 0 for the Maxwell field)

G7 G6 G5 G4

Vacuum � Th. 12.1 A (12.12), � Th. 12.1 A (12.14)
a = 0

Einstein– � Th. 12.3 A (12.16) � Th. 12.3 � Th. 12.3
Maxwell
non-null

Einstein– � Th. 12.1 A (12.12) � Th. 12.1 � §13.1
Maxwell
null

Pure A (12.37) A (12.12)
radiation

Λ-term � §12.5 A (12.8) A (12.34) A (12.35)
Perfect fluid A (12.24) � Th. 12.4 A (12.26) A (12.27)–(12.32)

Table 38.7. Energy-momentum tensors versus groups on non-null orbits V3

G6 G4 G3

Vacuum � §13.1 A §§13.3.1, 15.4 S §13.3.2; (22.5)–(22.7)
in Table 18.2 (38.1), Table 24.2
(28.21), (31.41)

Einstein– � §13.1 A §§13.3.1, 15.4 S §13.3.4
Maxwell (28.44), (31.58) (22.11)–(22.16)
non-null

Einstein– � §13.1 (22.17)
Maxwell
null

Pure � §13.1
radiation

Λ-term � §13.1 A §13.3.1 S §13.3.2; (22.8)
Perfect fluid S §14.2 S §§14.3, 16.1 S §§13.4, 14.4; (18.65)

(15.78) (22.19), (22.21)–(22.24)
(35.75)–(35.79) (22.27)–(22.33)

(22.34)–(22.39), (33.30)
(36.22)–(36.23)



612 38 The interconnections between the classification schemes

Table 38.8. Energy-momentum tensors versus groups on non-null orbits V2
and V1

G3 on V2 G2 on V2 G1

Vacuum A Th. 15.5 S Ch. 20, 34; §§17.1, S §§10.3.2, 17.3
17.2, 22.3, 25.3, in 29.2, 34.1.1
25.4, 29.5; Tab. 24.2 32.2.1
(18.50), (26.23) (18.48)–(18.49)
(28.17), (29.62) (26.21) b = 0,
(28.24)–(28.25) (26.22), (29.72)
(31.40), (36.33) (31.43
(38.4)–(38.6)

Einstein– A Th. 15.5 S Ch. 34, §§21.1, S §34.1.1; (18.73)
Maxwell 22.4, 25.5 (28.56)
non-null Th. 22.1; (28.45)

(30.36), (32.96)
(31.60)–(31.61)

Einstein– A (28.43) S (22.59)
Maxwell
null

Pure A Tab. 15.1 S §25.6.2 S (30.46), (30.51)
radiation (22.68)–(22.70) (30.52), (32.80)

Λ-term A Th. 15.5 S
Perfect S §§15.5, S Th. 10.2, Ch. 23 S §§10.3.2, 23.4

fluid 15.6, 16.2 §§10.11.1, 21.2 (33.12), (33.20)
(15.80) 25.6.1; (18.64), (33.32), (35.78)
(33.10) (18.66), (33.13) (33.45)–(33.46)
(36.24) (33.28)–(33.35)
(37.53) (35.77)
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Bičák, J. and Griffiths, J.B. (1994). Scattering and collision of gravitational waves in
Friedmann–Robertson–Walker open universes.PRD 49, 900.See §25.6.
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Bičák, J. and Schmidt, B.G. (1989). Asymptotically flat radiative space-times with
boost-rotation symmetry: the general structure.PRD 40, 1827.See §17.2.
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tion.CQG 13, L33.See §20.6.

Campbell, J.E. (1926). A course of differential geometry (Clarendon, Oxford). See
§37.3.

Capovilla, R. (1994). No new symmetries of the vacuum Einstein equations. PRD 49,
879.See §10.3.

Carigi, L. and Herrera, L. (1986). Killing vectors and Maxwell collineations in general
relativity.Can. J. Phys. 64, 1496.See §11.1.

Carlson, Jr., G.T. and Safko, J.L. (1980). Canonical forms for axial symmetric space-
times.Ann. Phys. (USA) 128, 131.See §19.1.

Carmeli, M. (1977). Group theory and general relativity (McGraw-Hill, New York).
See §26.4.

Carmeli, M. and Charach, Ch. (1980). Inhomogeneous generalizations of some Bianchi
models.Phys. Lett. A 75, 333.See §22.3.

Carmeli, M., Charach, Ch. and Feinstein, A. (1983). Inhomogeneous mixmaster uni-
verses: Some exact solutions.Ann. Phys. (USA) 150, 392.See §10.11.

Carmeli, M., Charach, Ch. and Malin, S. (1981). Survey of cosmological models with
gravitational, scalar and electromagnetic waves. Phys. Rep. 76, 79. See §§10.11,
22.3, Ch. 23.

Carmeli, M. and Kaye, M. (1976). Transformation laws of the Newman–Penrose field
variables.Ann. Phys. (USA) 99, 188.See §7.1.



624 References

Carminati, J. (1981). An investigation of axially symmetric electrovac solutions. GRG
13, 1185.See §21.1.

Carminati, J. (1987). Shear-free perfect fluids in general relativity. I. Petrov type N
Weyl tensor.JMP 28, 1848.See §6.2.

Carminati, J. (1988). Type-N, shear-free, perfect-fluid spacetimes with a barotropic
equation of state.GRG 20, 1239.See §33.4.

Carminati, J. and Cooperstock, F.I. (1983). Coordinate modelling for static axially
symmetric electrovac metrics.J. Phys. A 16, 3867.See §21.1.

Carminati, J. and Cooperstock, F.I. (1992). Herlt metrics and gravitational-
electrostatic balance in general relativity.GRG 24, 881.See §21.1.

Carminati, J. and Cyganowski, S. (1997). Shearfree perfect fluids in general relativity.
IV. Petrov type III spacetimes.CQG 13, 1167.See §§6.2, 33.4.

Carminati, J. and McIntosh, C.B.G. (1980).A non-static Einstein–Maxwell solution.J.
Phys. A 13, 953.See §11.4.

Carminati, J. and McLenaghan, R.G. (1991).Algebraic invariants of the Riemann ten-
sor in a four-dimensional Lorentzian space.JMP 32, 3135.See §9.1.

Carminati, J. and Wainwright, J. (1985). Perfect-fluid space-times with type-D Weyl
tensor.GRG 17, 853.See §33.3.

Carot, J. (1990). Exact solutions for space-times admitting nonnull special conformal
Killing vectors.GRG 22, 1135.See §35.4.

Carot, J. (2000).Some developments on axial symmetry.CQG 17, 2675.See §19.1.
Carot, J., Coley, A.A. and Sintes, A.M. (1996). Space-times admitting a three-

dimensional conformal group.GRG 28, 311.See §§23.3, 35.4.
Carot, J. and da Costa, J. (1991). Perfect fluid spacetimes admitting curvature

collineations.GRG 23, 1057.See §35.4.
Carot, J. and da Costa, J. (1993). On the geometry of warped spacetimes. CQG 10,

461.See §35.1.
Carot, J., Mas, L. and Sintes, A.M. (1994). Space-times admitting a three-parameter

similarity group.JMP 35, 3560.See §§23.1, 23.3.
Carot, J., Senovilla, J.M.M. and Vera, R. (1999).On the definition of cylindrical sym-

metry.CQG 16, 3025.See §22.1.
Carot, J. and Sintes, A.M. (1997).Homothetic perfect fluid spacetimes.CQG 14, 1183.

See §§15.7, 23.1, 23.2, 23.3.
Carot, J. and Verdaguer, E. (1989). Generalised soliton solutions of the Weyl class.

CQG 6, 845.See §34.5.
Carr, B.J. and Coley, A.A. (1999). Self-similarity in general relativity. CQG 16, R31.

See §11.3.
Carr, B.J. and Verdaguer, E. (1983). Soliton solutions and cosmological gravitational

waves.PRD 28, 2995.See §34.5.

Cartan, È (1945). Les systèmes différentiels extérieurs et leurs applications géomé-
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Krümmung des Raumes.Z. Phys. 31, 2001.See §14.2.

Friedrich, H. and Rendall, A. (2000). The Cauchy problem for the Einstein equations,
in Einstein’s field equations and their physical implications. Selected essays in
honour of Jürgen Ehlers. Lecture notes in physics, vol. 540, ed. B.G. Schmidt,
page 127 (Springer, Berlin).See Ch. 9.

Frolov, V.P. (1977). Newman–Penrose formalism in general relativity (in Russian).
Problems General Rel. Theory Group Representations, Trudy Lebedev Inst.,
Akad. Nauk SSR 96, 72.See §§7.1, 28.3.

Frolov, V.P. and Khlebnikov, V.I. (1975). Gravitational field of radiating systems
I. Twisting free type D metrics.Preprint no. 27, Lebedev Phys. Inst. Akad. Nauk.
Moscow.See §28.3.

Fronsdal, C. (1959). Completion and embedding of the Schwarzschild solution. Phys.
Rev. 116, 778.See §37.1.

Ftaclas, C. and Cohen, J.M. (1978). Locally rotationally symmetric cosmological model
containing a nonrotationally symmetric electromagnetic field. PRD 18, 4373.
See §13.3.

Fulling, S.A., King, R.C., Whybourne, B.G. and Cummins, C.J. (1992).Normal forms
for tensor polynomials I. The Riemann tensor.CQG 9, 1151.See §9.1.

Fustero, X. and Verdaguer, E. (1986).Einstein–Rosen metrics generated by the inverse
scattering transform.GRG 18, 1141.See §34.5.

Gaete, P. and Hojman, R. (1990). General exact solution for homogeneous time-
dependent self-gravitating perfect fluids.JMP 31, 140.See §14.3.

Gaffet, B. (1988). Common structure of several completely integrable non-linear
equations.J. Phys. A 21, 2491.See §10.4.

Gaffet, B. (1990).The Einstein equations with two commuting Killing vectors.CQG 7,
2017.See §17.1.
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Gürses, M. and Halilsoy, M. (1982). Interacting superposed electromagnetic shock
plane waves in general relativity.Lett. Nuovo Cim. 34, 588.See §25.5.
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steinschen Gleichungen mit idealer Flüssigkeit, die eine homothetische gruppe
gestatten.Ph.D. thesis, Jena.See §§11.4, 13.4, 21.2.

Hernandez P., J.L., Manko, V.S. and Mart́ın, J. (1993). Some asymptotically flat
generalizations of the Curzon metric.JMP 34, 4760.See §§34.1, 34.3.

Hernandez P., J.L. and Mart́ın, J. (1994). Monopole-quadrupole static axisymmetric
solutions of Einstein field equations.GRG 26, 877.See §20.2.

Herrera, L. and Jimenez, J. (1982). The complexification of a nonrotating sphere: an
extension of the Newman–Janis algorithm.JMP 23, 2339.See §21.1.

Herrera, L., Paiva, F.M. and Santos, N.O. (1999). The Levi-Civita spacetime as a
limiting case of the γ spacetime.JMP 40, 4064.See §9.5.

Herrera, L. and Ponce de León, J. (1985). Perfect fluid spheres admitting a one-
parameter group of conformal motions.JMP 26, 778.See §15.6.

Hewitt, C.G. (1991a). Algebraic invariant curves in cosmological dynamical systems
and exact solutions.GRG 23, 1363.See §§13.2, 22.3.

Hewitt, C.G. (1991b). An exact tilted Bianchi II cosmology. CQG 8, 109. See
§14.4.

Hewitt, C.G., Bridson, R. and Wainwright, J.A. (2001). The asymptotic regimes of
tilted Bianchi II cosmologies.GRG 33, 65.See §14.4.

Hewitt, C.G. and Wainwright, J. (1990).Orthogonally transitive G2 cosmologies.CQG
7, 2295.See §§23.1, 23.3.

Hewitt, C.G., Wainwright, J. and Glaum, M. (1991). Qualitative analysis of a class
of inhomogeneous self-similar cosmological models: II. CQG 8, 1505. See §§23.1,
23.2.



References 647

Hewitt, C.G., Wainwright, J. and Goode, S.W. (1988). Qualitative analysis of a class
of inhomogeneous self-similar cosmological models.CQG 5, 1313.See §§23.1, 23.2.
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Kundt, W. and Trümper, M. (1966). Orthogonal decomposition of axi-symmetric
stationary spacetimes.Z. Phys. 192, 419.See §19.2.

Kundu, P. (1979).Class of ‘noncanonical’ vacuum metrics with two commuting Killing
vectors.Phys. Rev. Lett. 42, 416.See §24.4.

Kundu, P. (1981). Multipole expansion of stationary asymptotically flat vacuum
metrics in general relativity.JMP 22, 1236.See §18.8.

Kupeli, A.H. (1988a). Generalised Kerr–Schild transformation from vacuum back-
grounds to Einstein–Maxwell spacetimes.CQG 5, 401.See §32.5.

Kupeli, A.H. (1988b). Vacuum solutions admitting a geodesic null congruence with
shear proportional to expansion.JMP 29, 440.See §32.5.

Kustaanheimo, P. (1947). Some remarks concerning the connexion between two
spherically symmetric relativistic metrics. Comment. Phys. Math., Helsingf. 13,
8.See §16.2.

Kustaanheimo, P. and Qvist, B. (1948). A note on some general solutions of the
Einstein field equations in a spherically symmetric world.Comment. Phys. Math.,
Helsingf. 13, 1.See §§15.6, 16.1, 16.2.



658 References

Kyriakopoulos, E. (1987). Solutions of Einstein’s equations for the interior of a
stationary axisymmetric perfect fluid.JMP 28, 2162.See §21.2.

Kyriakopoulos, E. (1988). A class of solutions of Einstein’s equations for the interior
of a rigidly rotating perfect fluid.GRG 20, 427.See §21.2.

Kyriakopoulos, E. (1992). Interior axisymmetric stationary perfect fluid solution of
Einstein’s equations.CQG 9, 217.See §21.2.

Kyriakopoulos, E. (1999). Petrov type I, stationary, axisymmetric, per-
fect fluid solution of Einstein’s equations. Mod. Phys. Lett. A 14, 7.
See §21.2.

Lake, K. (1983). Remark concerning spherically symmetric nonstatic solutions to the
Einstein equations in the comoving frame.GRG 15, 357.See §16.2.

Lanczos, C. (1962). The splitting of the Riemann tensor.Rev. Mod. Phys. 34, 379.See
§3.6.
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Lukács, B., Perjés, Z., Porter, J. and Sebestyén, A. (1984). Lyapunov functional
approach to radiative metrics.GRG 16, 691.See §28.1.
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tionäre Gravitationsfeld im Innern einer starr rotierenden idealen Flüssigkeit.Z.
Naturforsch. 22a, 1347.See §21.2.



References 683

Tsamparlis, M. and Mason, D.P. (1983).On spacelike congruences in general relativity.
JMP 24, 1577.See §6.2.

Tseitlin, M.G. (1985). Solutions of two-dimensional Einstein equations parametrized
by arbitrary functions and generated by the O(2, 1) sigma model. Theor. Math.
Phys. 64, 679.See §§10.11, 20.6.

Tsoubelis, D. (1989).Plane gravitational waves colliding with shells of null dust.CQG
6, L117.See §25.6.

Tsoubelis, D. and Wang, A. (1991). On the gravitational interaction of plane symmetric
clouds of null dust.JMP 32, 1017.See §25.6.

Tsoubelis, D. and Wang, A. (1992). Head-on collision of gravitational plane waves
with noncollinear polarization: a new class of analytic models.JMP 33, 1054.See
§25.4.

Tsoubelis, D. and Wang, A.Z. (1989). Asymmetric collision of gravitational plane
waves: a new class of exact solutions.GRG 21, 807.See §25.3.

Tsoubelis, D. and Wang, A.Z. (1990). Impulsive shells of null dust colliding with
gravitational plane waves.GRG 22, 1091.See §25.6.

Tupper, B.O.J. (1976). A class of algebraically general solutions of the Einstein–
Maxwell equations for non-null electromagnetic fields. II. GRG 7, 479.
See §12.3.

Tupper, B.O.J. (1981). The equivalence of electromagnetic fields and viscous fluids in
general relativity.JMP 22, 2666.See §5.2.

Tupper, B.O.J. (1983). The equivalence of perfect fluid space-times and viscous
magnetohydrodynamic space-times in general relativity.GRG 15, 849.See §5.2.

Tupper, B.O.J. (1996). Conformal symmetries of conformal-reducible spacetimes with
nonzero Weyl tensor.CQG 13, 1679.See §35.4.

Uggla, C. (1990). New exact perfect fluid solutions of Einstein’s equations. CQG 7,
L171.See §14.4.

Uggla, C. (1992). Inhomogeneous self-similar cosmological models. CQG 9, 2287. See
§§23.1, 23.2, 23.3.

Uggla, C., Bradley, M. and Marklund, M. (1995a). Classifying Einstein’s field equa-
tions with applications to cosmology and astrophysics.CQG 12, 2525.See §§9.4,
13.2.

Uggla, C., Jantzen, R.T. and Rosquist, K. (1995b). Exact hypersurface-homogeneous
solutions in cosmology and astrophysics.PRD 51, 5522.See §§13.2, 35.3.

Uggla, C. and Rosquist, K. (1990). New exact perfect fluid solutions of Einstein’s
equations. II.CQG 7, L279.See §14.4.

Uggla, C., Rosquist, K. and Jantzen, R.T. (1990). Geometrizing the dynamics of
Bianchi cosmology.PRD 42, 404.See §13.2.

Unti, T.W.J. and Torrence, R.J. (1966).Theorem on gravitational fields with geodesic
rays.JMP 7, 535.See §26.4.

Urbantke, H. (1972).Note on Kerr–Schild type vacuum gravitational fields.Acta Phys.
Aust. 35, 396.See §32.2.

Urbantke, H. (1975).Der metrische Ansatz von Trautman, Kerr und Schild und einige
seiner Anwendungen.Acta Phys. Aust. 41, 1.See §§26.1, 32.4.

Vaidya, P.C. (1943). The external field of a radiating star in general relativity. Curr.
Sci. 12, 183.See §15.4.

Vaidya, P.C. (1968).Nonstatic analogues of Schwarzschild’s interior solution in general
relativity.Phys. Rev. 174, 1615.See §16.2.

Vaidya, P.C. (1973). Some algebraically special solutions of Einstein’s equations. II.
Tensor 27, 276.See §32.4.

Vaidya, P.C. (1974). A generalized Kerr–Schild solution of Einstein’s equations. Proc.
Camb. Phil. Soc. 75, 383.See §32.4.

Vaidya, P.C. (1977).The Kerr metric in cosmological background.Pramana 8, 512.See
§21.2.



684 References

Vaidya, P.C. and Patel, L.K. (1973).Radiating Kerr metric.PRD 7, 3590.See §32.4.
Vajk, J.P. (1969). Exact Robertson–Walker cosmological solutions containing

relativistic fluids.JMP 10, 1145.See §14.2.
Vajk, J.P. and Eltgroth, P.G. (1970). Spatially homogeneous anisotropic cosmological

models containing relativistic fluid and magnetic field.JMP 11, 2212.See §14.3.
Valiente Kroon, J.A. (2000). On conserved quantities, symmetries and radiative

properties of peeling and non-peeling (polyhomogeneous) asymptotically flat
spacetimes.Ph.D. thesis, Queen Mary and Westfield College, London.See §§17.2,
29.2.

Van den Bergh, N. (1986a). Conformally Ricci flat Einstein–Maxwell solutions with a
null electromagnetic field.GRG 18, 1105.See §10.11.

Van den Bergh, N. (1986b). Conformally Ricci-flat perfect fluids. JMP 27, 1076. See
§10.11.

Van den Bergh, N. (1986c). Conformally Ricci-flat spacetimes admitting a Killing
vector field parallel to the gradient of the conformal scalar field. Lett. Math.
Phys. 12, 43.See §10.11.

Van den Bergh, N. (1986d). Irrotational and conformally Ricci-flat perfect fluids.GRG
18, 649.See §§10.11, 14.4.

Van den Bergh, N. (1986e). Shearfree and conformally Ricci-flat perfect fluids. Lett.
Math. Phys. 11, 141.See §10.11.

Van den Bergh, N. (1987). Comment on conformally Ricci-flat perfect fluids of
Petrov-type N .GRG 19, 1131.See §10.11.

Van den Bergh, N. (1988a). A class of inhomogeneous cosmological models with
separable metrics.CQG 5, 167.See §22.3.

Van den Bergh, N. (1988b). Conformally Ricci-flat perfect fluids. II. JMP 29. See
§10.11.

Van den Bergh, N. (1988c). Nonrotating and nonexpanding perfect fluids. GRG 20,
131.See §§13.4, 23.3.

Van den Bergh, N. (1988d). Perfect-fluid models admitting a non-Abelian and maximal
two-parameter group of isometries.CQG 5, 861.See §23.3.

Van den Bergh, N. (1989). Einstein–Maxwell null fields of Petrov type D. CQG 6,
1871.See §31.6.

Van den Bergh, N. (1996a). Lorentz- and hyperrotation-invariant classification
of symmetric tensors and the embedding class-2 problem. CQG 13, 2817.
See §37.5.

Van den Bergh, N. (1996b). Vacuum solutions of embedding class 2: Petrov types D
and N .CQG 13, 2839.See §37.5.

Van den Bergh, N. (1999). The shear-free perfect fluid conjecture. CQG 16, 117. See
§6.2.

Van den Bergh, N. and Skea, J.E.F. (1992). Inhomogeneous perfect fluid cosmologies.
CQG 9, 527.See §23.3.

Van den Bergh, N. and Wils, P. (1983). A class of stationary Einstein–Maxwell
solutions with cylindrical symmetry.J. Phys. A 16, 3843.See §22.2.

Van den Bergh, N. and Wils, P. (1985a). Exact solutions for nonstatic perfect fluid
spheres with shear and an equation of state.GRG 17, 223.See §16.2.

Van den Bergh, N. and Wils, P. (1985b). The rotation axis for stationary and
axisymmetric space-times.CQG 2, 229.See §19.1.

Van den Bergh, N., Wils, P. and Castagnino, M (1991). Inhomogeneous cosmological
models of Wainwright class A1.CQG 8, 947.See §23.3.

van Elst, H. and Ellis, G.F.R. (1996). The covariant approach to LRS perfect fluid
spacetime geometries.CQG 13, 1099.See §6.2.

van Elst, H, Uggla, C., Lesame, W.M., Ellis, G.F.R. and Maartens, R. (1997).
Integrability of irrotational silent cosmological models. CQG 14, 1151. See
§6.2.



References 685

van Stockum, W.J. (1937).The gravitational field of a distribution of particles rotating
about an axis of symmetry. Proc. Roy. Soc. Edinburgh A 57, 135. See §§20.4,
21.2.

Vandyck, M.A.J. (1985). Some time-dependent axially symmetric metrics gen-
eralising the Weyl and the Einstein–Rosen line elements. CQG 2, 241.
See §17.3.

Vaz, E.G.L.R. (1986). Bianchi types of a three-parameter group of curvature
collineations.GRG 18, 1187.See §35.4.

Vaz, E.G.L.R. and Collinson, C.D. (1983). Curvature collineations for type-N
Robinson–Trautman space-times.GRG 15, 661.See §35.4.

Vera, R. (1998a). On ”Diagonal G2 spacetimes admitting inheriting conformal Killing
vector fields”.CQG 15, 2037.See §§14.4, 23.3, 35.4.

Vera, R. (1998b). Theoretical aspects concerning separability, matching and matter
contents of inhomogeneities in cosmology.Ph. D. thesis, University of Barcelona.
See §23.3.

Verdaguer, E. (1982). Stationary axisymmetric one-soliton solutions of the Einstein
equations.J. Phys. A 15, 1261.See §34.5.

Verma, D.N. and Roy, S.R. (1956). Special metric forms and their gravitational
significance.Bull. Calc. Math. Soc. 48, 127.See §§36.2, 36.3.

Vishveshwara, C.V. and Winicour, J. (1977). Relativistically rotating dust cylinders.
JMP 18, 1280.See §§21.2, 22.2.

Vishwakarma, R.G., Abdusattar and Beesham, A. (1999). LRS Bianchi type-I
models with a timedependent cosmological “constant ”. PRD 60, 063507.
See §14.3.

Volkoff, G.M. (1939). On the equilibrium of massive spheres. Phys. Rev. 55, 413. See
§16.1.

Voorhees, B.H. (1970). Static axially symmetric gravitational fields. PRD 2, 2119. See
§20.2.

Wahlquist, H.D. (1968). Interior solution for a finite rotating body of perfect fluid.
Phys. Rev. 172, 1291.See §21.2.

Wahlquist, H.D. (1992). The problem of exact interior solutions for rotating rigid
bodies in general relativity.JMP 33, 304.See §21.2.

Wahlquist, H.D. and Estabrook, F.B. (1966). Rigid motions in Einstein spaces. JMP
7, 894.See §6.2.

Wahlquist, H.D. and Estabrook, F.B. (1975). Prolongation structures of nonlinear
evolution equations.JMP 16, 1.See §10.4.

Wainwright, J. (1970). A class of algebraically special perfect fluid space-times.
Commun. Math. Phys. 17, 42.See §33.2.

Wainwright, J. (1974). Algebraically special fluid space-times with hypersurface-
orthogonal shearfree rays.Int. J. Theor. Phys. 10, 39.See §33.1.

Wainwright, J. (1977a). Characterization of the Szekeres inhomogeneous cosmologies
as algebraically special space-times.JMP 18, 672.See §33.3.

Wainwright, J. (1977b). Classification of the type D perfect fluid solutions of the
Einstein equations.GRG 8, 797.See §33.3.

Wainwright, J. (1979). A classification scheme for non-rotating inhomogeneous
cosmologies.J. Phys. A 12, 2015.See Ch. 23, §38.1.

Wainwright, J. (1981). Exact spatially inhomogeneous cosmologies. J. Phys. A 14,
1131.See Ch. 23, §23.3.

Wainwright, J. (1983). A spatially homogeneous cosmological model with plane-wave
singularity.Phys. Lett. A 99, 301.See §14.4.

Wainwright, J. (1984). Power law singularities in orthogonal spatially homogeneous
cosmologies.GRG 16, 657.See §14.4.

Wainwright, J. (1985). Self-similar solutions of Einstein’s equations, in Galaxies,
axisymmetric systems and relativity. Essays presented to W.B. Bonnor on his



686 References

65th birthday, ed. M.A.H. MacCallum, page 288 (Cambridge University Press,
Cambridge).See §§11.3, 13.4.

Wainwright, J. and Ellis, G.F.R. (1997).Dynamical systems in cosmology (Cambridge
University Press, Cambridge).See §§1.4, 11.3, 13.2, 14.1, 14.4.

Wainwright, J. and Goode, S.W. (1980). Some exact inhomogeneous cosmologies with
equation of state p = γµ.PRD 22, 1906.See §§23.3, 36.3.

Wainwright, J., Ince, W.C.W. and Marshman, B.J. (1979). Spatially homogeneous
and inhomogeneous cosmologies with equation of state p = µ.GRG 10, 259. See
§§5.5, 10.11, 14.1, 14.3, 14.4, 17.1, 23.1, 23.3, 25.6.

Wainwright, J. and Marshman, B.J. (1979). Some exact cosmological models with
gravitational waves.Phys. Lett. A 72, 275.See §§10.11, 23.1.

Wainwright, J. and Yaremovicz, P.A.E. (1976a). Killing vector fields and the
Einstein–Maxwell field equations with perfect fluid source.GRG 7, 345.See §11.3.

Wainwright, J. and Yaremovicz, P.A.E. (1976b). Symmetries and the Einstein–Maxwell
field equations: the null field case.GRG 7, 595.See §§11.1, 11.3.

Walker, A.G. (1936). On Milne’s theory of world-structure. Proc. London Math. Soc.
42, 90.See §12.1.

Walker, M. and Kinnersley, W. (1972). Some remarks on a radiating solution of the
Einstein–Maxwell equations, in Methods of local and global differential geometry
in general relativity. Lecture notes in physics, vol. 14, eds. D Farnsworth, J. Fink,
J. Porter and A. Thompson, page 48 (Springer-Verlag, Berlin).See §21.1.

Walker, M. and Penrose, R. (1970). On quadratic first integrals of the geodesic
equations for type {2, 2} spacetimes.Commun. Math. Phys. 18, 265.See §35.3.

Wang, A. (1991). The effect of polarization of colliding plane gravitational waves on
focusing singularities.Int. J. Mod. Phys. A 6, 2273.See §§25.4, 34.5.

Wang, M.Y. (1974).Class of solutions of axial-symmetric Einstein–Maxwell equations.
PRD 9, 1835.See §34.1.

Wang, Shi-kun, Guo, Han-ying and Wu, Ke (1983a). The N -fold charged Kerr
family solution, in Proceedings of the third Marcel Grossmann meeting on
general relativity. Pt. B., ed. Hu Ning, page 1039 (North-Holland, Amsterdam).
See §34.6.

Wang, Shi-kun, Guo, Han-ying and Wu, Ke (1983b). The N -fold Kerr family and
charged Kerr family solutions.Commun. Theor. Phys. 2, 921.See §34.5.

Wang, Shi-kun, Guo, Han-ying and Wu, Ke (1984). Principal Riemann–Hilbert
problem and N -fold charged Kerr solution.CQG 1, 379.See §34.6.

Ward, J.P. (1976). Equilibrium – its connection to global integrability conditions for
stationary Einstein–Maxwell fields.Int. J. Theor. Phys. 15, 293.See §18.7.

Ward, R.S. (1983). Stationary axisymmetric space-times: a new approach. GRG 15,
105.See §34.7.

Warner, F.W. (1971). Foundations of differential manifolds and Lie groups (Scott,
Foresman, Glenview, Illinois).See §8.1.

Waylen, P.C. (1982). The general axially symmetric static solution of Einstein’s
vacuum field equations.Proc. Roy. Soc. London A 382, 467.See §20.2.
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Gödel solution, 177, 178, 576
Goldberg–Sachs theorem, 87
Gowdy universes, 351
group parameters, 91
groups

Abelian, 94
derived, 94
G2, G3, 95
G4, 96
G5, 97
semisimple, 94
simple, 94
solvable, 94
transitive, 97

groups of motions, 98
and energy-momentum tensors,
611, 612

and Petrov types, 606, 609, 610
maximal, 100
multiply-transitive, 106
on non-null orbits, 264
on null orbits, 375
orbits of, 104
simply-transitive, 105

half null tetrad, 32
harmonic map, 148, 518



694 Index

Harrison solutions, 272
Harrison transformation, 521

for colliding waves, 402
Hauser solution, 451

radiating, 466, 469
Herlt’s class, 320
Hirota’s direct method, 152
HKX transformations, 535

applications of, 537
holonomic frame, 12, 33
holonomy, 26
homogeneous space, 99
homogeneous space-time, 157, 171

with boost symmetry, 172
with null rotation symmetry,
171

with rotation symmetry, 172
homothetic vector, 110

and similarity reduction, 132
homothety, 98
homothety groups, 110
horizontal, 28
hypersurface, 11
hypersurface-homogeneous space-

times, 157, 183
hypersurface-orthogonal vector field,

68

ideal, 94
impulsive waves, 388
incoherent radiation, 66
initial value problem

for colliding waves, 387, 389
integral manifold, 137
invariant subgroup, 94
invariants, 112, 113

algebraically independent, 113
Cartan, 116
of the Ricci tensor, 114
of the Riemann tensor, 114
of the Weyl tensor, 114
scalar, 113
scalar polynomial, 114

isogroup, 140
isometry, 98

isometry groups, 91
determination of their
dimensions, 120

isotropic coordinates, 227, 233, 249,
296

isotropy group, 99, 228
isotropy of pressure, condition of, 248
isovector, 140
Israel–coordinates, 234

Jacobi identity, 13
jet bundle, 29, 137
junction conditions, 45

Kantowski–Sachs solutions, 185, 215,
243

Kasner metric, 197, 426
Kerr solution, 311, 449, 453, 493

radiating, 465, 498
Kerr–Newman solutions, 325

superposition of, 327
Kerr–Schild metrics, 485

Einstein–Maxwell, 493, 495
energy-momentum tensor, 488
generalized, 499
geometrical interpretation, 487
of Kundt’s class, 481
pure radiation, 497
special, 490
twisting pure radiation, 465
vacuum, 450, 492

Khan–Penrose solution, 392
Killing bivector, 99
Killing equation, xxix
Killing tensor, 559–561

of perfect fluid solutions, 562
of type D vacuum solutions,
561

Killing vector
and similarity reduction, 132
cyclic, 293

Killing–Yano tensor, 559, 560, 562
of type D space-times, 563

kinematic self-similarity, 564
Kinnersley’s photon rocket, 435, 489
Kinnersley–Chitre B-group, 535



Index 695

Kinnersley–Chitre solution, 313, 316
Kramer-Neugebauer transformation,

528
Kronecker delta, xxvii
Kruskal–Szekeres coordinates, 233
Kundt’s class, 470
Kundt–Thompson theorem, 89
Kustaanheimo–Qvist solutions, 256

Λ-term solutions
homogeneous, 180, 181
of Kundt’s class, 483
of Robinson–Trautman type, 436
plane-symmetric, 235
stationary cylindrically-
symmetric, 343

with a G3 on V2, 230
with a G3 on V3, 199

Lanczos potential, 43
left translation, 92
Lemaitre–Novikov coordinates, 233
Levi–Civita solution, 343
Levi-Civita tensor, xxviii, 35
Lewis’s class of vacuum solutions, 311
Lie algebras, 91, 93

ideal, 94
Lie derivative, 21
Lie groups, 91
Lie point symmetry, 129, 131

generator of, 130
Lie transport, 22
Lie’s theorems, 93, 98
Lie–Bäcklund symmetry, 134, 140
lifted curve, 28
limiting procedures

for type D Einstein–Maxwell
fields, 323

limits of families of space-times, 126
line element, 31
linear isotropy group, 99
linear problem, 532
Lorentz frame, 31
Lorentz transformations, 32
Lorentzian metric, 30
LRS space-time, 160

main equations, 437
manifold, 10

boundary of a, 21
differentiable, 10
orientable, 11

mass function, 228
Maxwell equations

in Newman–Penrose formalism,
80

Maxwell field
energy-momentum tensor, xxix,
61

null and non-null, 62
null tetrad components, xxix
Rainich conditions, 64

McVittie solution, 258
Melvin solution, 345
metric condition, 33
metric tensor, 30
Misner’s parametrization, 189
Morgan–Morgan disk, 308
motions, 98

conformal, 564, 565, 567
multipole moments for stationary

vacuum solutions, 289

n-bein, 13
Neugebauer–Meinel solution, 548
Newman–Penrose equations, 75, 79

integrability conditions, 82, 83
Newman–Tamburino solutions, 414
Noether’s theorem, 149
normal vector field, 68
normal-hyperbolic, 30
null dust, 61
null Killing vector, 379

non-twisting, 380
null rotation, 32, 160
null rotation isotropy, 186
null surface, 375
null tetrad, xxviii, 31
null vector fields, 70

geodesic, 86
geodesic and shearfree, 87,
491
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NUT solution, 310, 449, 453
Nutku–Halil solution, 394

orbits of a group, xxix, 97, 104
orientable manifold, 11
orthogonal transitivity, 110, 265, 294
orthonormal basis, xxviii
orthonormal tetrad, xxviii, 31
orthonormal tetrad approach, 190

Painlevé function solution, 199,
202, 220, 255, 315, 316, 344,
345, 356

Papapetrou’s class, 309
parallel transport, 25
parameter group, 92
Penrose diagram, 56
perfect fluid, xxix, 61, 63, 65

equation of state, 65
isentropic motion, 66

perfect fluid solutions
admitting conformal motions, 567
algebraically special, 506
Bianchi type I, 575
colliding waves, 403
conformally flat, 587, 588, 599
cosmological, 358
differentially rotating, 337
generalized Kerr–Schild, 503, 508
generalized Robinson–Trautman,
506

generation methods, 152
homogeneous, 177, 181
homogeneous and spherically-
symmetric, 258

homogeneous on T3, 204
inhomogeneous, 358
locally isotropic, 162
LRS, 162
of embedding class one, 587, 588
of Petrov type D, 334
plane-symmetric, 243
rigidly rotating, 333, 349
Robertson–Walker cosmologies,
211

shearfree, 74

spherically symmetric, 247, 575,
576

spherically-symmetric,
spherically-symmetric and non-
static, 251

spherically-symmetric and with a
conformal Killing vector, 242

spherically-symmetric without
shear, 253

static and with a G3 on V2, 238
static cylindrically-symmetric,
346

static degenerate, 286
static plane-symmetric, 243
static spherically-symmetric, 247,
251, 252

stationary axisymmetric, 330
stationary cylindrically-
symmetric, 349

stiff matter with a G2, 153, 358,
403

stiff matter with a H3, 359
type D, 512, 576, 577, 591
type III, 515
type N , 515
with a G1 or a H2, 374
with a G2, 359
with a G2 on S2

diagonal metrics, 363
non-diagonal metrics, 372
partially separable comoving,
367

separable comoving, 364
separable non-comoving, 368
with a conformal motion, 370

with a G3 on S3, 218
with a G3 on V2, 237, 593
with a G4 on S3, 214
with a maximal H3 on S3, 359
with a maximal H3 on T3, 361
with a null Killing vector, 511
with conformally flat slices, 577
with differential rotation, 350
with flat slices, 573
with twisting shearfree rays, 510
without shear, 238
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Petrov types, 48, 49, 51
and groups of motions, 161, 606,
609, 610

and spinors, 56
degenerate, 52
determination of, 54
of Einstein–Maxwell fields, 613,
614

of pure radiation fields, 613, 614
of vacuum solutions, 613

Pfaffian form, 13
plane symmetry, 226, 229
plane waves, 377, 385

colliding, 387
Plebański notation, 57
Poincaré’s theorem, 19
point transformation, 129
post-Bianchi equations, 83
potential space, 126, 148, 149, 520

subspaces of, 523
potential space symmetries, 520, 521,

525
potential symmetries, 134
power-law behaviour, 167
power-law behaviour, 133
pp-waves, 381, 383, 556

symmetry classes, 385
pressure isotropy methods, 205
principal bundle, 28
principal null directions, 53
projection, 27
projection formalism

for stationary axially symmetric
metrics, 296

for stationary space-times, 275
projection tensor, xxviii
projective collineations, 564
prolongation, 137
prolongation algebra, 143
prolongation structure, 137, 142

for the Ernst equation, 529
pseudopotential, 137, 141
pure radiation fields, 61, 62

admitting conformal motions, 570
algebraically special with non-
zero shear, 410

aligned, 409, 470
and Petrov types, 613, 614
colliding waves, 405
conformally flat, 602
cylindrically-symmetric, 357
diverging twisting, 463
homogeneous, 180, 181
Kerr–Schild, 497
of embedding class one, 588, 594
of Kundt’s class, 480
of Robinson–Trautman type, 435
plane waves, 386
plane-symmetric, 235
shearing type N , 409
stationary axisymmetric, 330
twisting type D, 464
twisting type N , 464
type D, 480
type N , 574, 594
with a G3 on V2, 230
with a null Killing vector, 381,
382

with diverging twisting rays, 455

R-region, 227
Rainich conditions, 64
Raychaudhuri equation, 72
recurrent space-time, 556
regularity condition, 293
Reissner–Nordström solution, 320
Reissner–Nordström–Weyl solution,

430, 489
Reissner-Nordström-Weyl solution,

231
Ricci collineations, 564
Ricci equations, 582
Ricci identity, 25, 79
Ricci principal tetrad, 60
Ricci recurrent space-time, 556
Ricci rotation coefficients, 25
Ricci tensor, 26

algebraic types, 57, 59
and invariance groups, 60

invariants, 114
Λ-term type, 61
Segre type of, 57
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Riemann tensor, 25, 34
covariants of, 116
decomposition, 37
invariants, 114
spinor equivalent, 42

Riemann–Hilbert problem, 148
for stationary axisymmetric
fields, 547

right translation, 92
right-invariant vector field, 92
rigid frame, 33
rigid motions, 73, 512
rigid rotation

and cylindrical symmetry, 346,
349

Robertson–Walker cosmologies, 211
generalized, 590

Robinson–Trautman solutions, 421,
422
charged vacuum, 431
Einstein–Maxwell, 427
field equation, 423
generalized, 506
Petrov types versus groups of mo-
tions, 609

pure radiation, 435
vacuum, 423
with Λ, 436

Robinson–Trautman solutions,
rotation, 160

of a geodesic null vector field, 71
of a time-like unit vector field, 70
of a vector field, 68

scalar polynomial invariants, 114
Schwarzschild coordinates, 247
Schwarzschild solution, 231, 306, 426,

453, 489
flat slices of, 573
generalized interior, 589
interior, 250

section, of a bundle, 13, 27
sectional curvature, 101
Segre type, 57

determination of, 123

self-similar solutions, 163
shear

of a geodesic null congruence, 71
of a time-like unit vector field, 70

shock waves, 388
Σ2(x, ε), xxix
silent universes, 74
similarity of the first kind, 163
similarity reduction, 132
similarity solutions, 132, 140, 163
similarity vector, 564
Simon tensor, 288
simply-transitive groups, 105
SO(3, C), 49
space-time, 30

algebraically special, 50, 88
and groups of motion, 162
boost-rotation-symmetric, 268
conformally flat, 37, 599
conformastationary, 287
cylindrically-symmetric, 341
decomposable, 554
equivalence of, 112, 116
homogeneous, 157, 171
hypersurface-homogeneous, 157,
183

limits, 126
locally isotropic, 160
locally rotationally symmetric,
160

LRS, 160
LRS with a G4, 184
of embedding class one, 587, 595
of embedding class two, 596
of Kerr–Schild type, 487, 490
of Kundt’s class, 471
recurrent, 556
static, 275, 283
stationary, 275
stationary axisymmetric, 292
stationary cylindrically-
symmetric, 342

symmetric, 556
warped, 555
with a G2I, 264, 265
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with a G2II, 264, 267
with a G3 on V2, 226, 576
with a G4 on T3, 186
with a G4 on V3, 183
with a G6 on V3, 183
with boost isotropy, 186
with flat slices, 573
with geodesic non-twisting rays,
421

with geodesic twisting rays, 416,
419, 439

with null rotation isotropy, 186
with proper homothetic motions,
162

with spatial rotation isotropy, 184
with two commuting Killing
vectors, 341

spaces of constant curvature, 101, 161
spectral parameter, 532
spherical symmetry, 226, 229
spin coefficients, 75

transformation laws, 77
spin tensor, 41
spinors, 40
stability group, 97, 99
Stephani universe, 590
stiff matter, 63, 66
Stokes’s theorem, 21
structure constants, xxix, 93
structure group, 27
SU(2,1)-symmetry of potential space,

521
submanifold, 11
superposition

of two Curzon particles, 537
of two Kerr black holes, 541

supplementary conditions, 437
symmetric space-time, 556
symmetries

contact, 134
inheritance of, 159, 164
intrinsic, 571, 579
Lie point, 131
Lie–Bäcklund, 134
of potential space, 521

of the energy-momentum tensor,
158

potential, 134
symmetrization, xxvii
syzygy, 113
Szekeres solution, 393, 513

T -region, 227
tangent bundle, 13
tangent space, 12
Taub–NUT solution, 195, 449
tensor bundles, 16
tensor fields, 16

constant, 554
tensors, 15

maps of, 15
tetrad, 13

half null, 32
null, xxviii
orthonormal, xxviii
real null, 32

tilted velocity field, 188
time-like unit vector fields, 70

and Riemann tensor, 72
expansion, shear and rotation of,
70

Tolman solution, 236
Tomimatsu–Sato solutions, 312, 316

generalized, 313
trajectory of a group, 97, 98
transformation groups, 91
trivial equation, 437
twist

of a geodesic null vector field, 71
twist vector, 276
type D solutions

Einstein–Maxwell, 322
Einstein–Maxwell of Kundt’s
class, 482

Kerr–Schild vacuum, 492
perfect fluid, 512
recurrent, 557
Robinson–Trautman Einstein–
Maxwell, 429
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type D solutions (contd)
Robinson–Trautman pure
radiation, 435

twisting diverging Einstein–
Maxwell, 461

twisting pure radiation, 464
twisting vacuum, 452
vacuum Kundt’s class, 478
vacuum of embedding class two,
599

vacuum Robinson–Trautman,
425

type N solutions
diverging Einstein–Maxwell, 462
Kerr–Schild, 496
Kerr–Schild pure radiation, 499
Kundt’s class Einstein–Maxwell,
481

Kundt’s class vacuum, 476
perfect fluids, 515
recurrent, 557
Robinson–Trautman Einstein–
Maxwell, 429

Robinson–Trautman pure radia-
tion, 435

Robinson–Trautman vacuum,
424

shearing pure radiation, 410
twisting vacuum, 451
vacuum Kerr–Schild, 492
vacuum of embedding class two,
599

with a G4 on T3, 186

vacuum solutions
algebraically special, 88
colliding waves, 392, 394
conformastationary, 287
cylindrically-symmetric, 350
homogeneous, 174, 175, 181
Lewis’s class, 311
of embedding class two, 598
of Kerr–Schild type, 450
of Kundt’s class, 475, 476
of Robinson–Trautman type, 423

Papapetrou’s class, 309
plane-symmetric, 234
static, 284
static axisymmetric, 304
stationary axisymmetric, 304,
526

stationary cylindrically-
symmetric, 343

stationary with geodesic
eigenrays, 282

twisting, 437, 442
type D, 412, 452, 478
type N , 424, 451, 476
Weyl’s class, 304
with a G3 on V2, 230
with a G3 on V3, 196
with a G4 on V3, 195
with a null Killing vector, 136,
380

with a spacelike Killing vector
and geodesic eigenrays, 283

with flat slices, 573
with shearing null vector,
414

Vaidya solution, 231, 436, 489
vector bundle, 27
vector fields

and Riemann tensor, 72
conformal Killing, 565
constant, 553
geodesic, 68
homothetic, 69, 564
hypersurface-orthogonal, 68
Killing, 69
non-rotating, 68
normal, 68
null, 74, 75, 86
recurrent, 69
similarity, 564
surface-forming, 69
time-like unit, 70

vectors, 12
covariant, 14
orthogonal, 31
spacelike, timelike, null, 31
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vertical, 28
vierbein, 13
vorticity

of a time-like unit vector field, 70

Wahlquist solution, 334
Wainwright classes, 362
wave surfaces, 472
wedge product, 17
Weyl principal tetrad, 52
Weyl tensor, xxix, 37, 44

algebraically special, 55
decomposition, 38
eigenvalue equation, 48

electric and magnetic part, 39, 50,
53, 73

invariants, 52
normal forms, 51
null tetrad components, xxix
principal null directions, 53
self-dual, 38
spinor equivalent, 42

Weyl’s canonical coordinates, 297
Weyl’s class of vacuum solutions,

304
Weyl’s electrovac class, 319

Zipoy–Voorhees solution, 306


