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As i"swell known, geometry presupposes both the concept [J3emff) of space,

and the first principles (Grundbegriffe) for the constructions in space, as
something given. It provides only nocinal definitions of these, whereas the
essential specifications appear in the form of axioms. The relationship of
these presuppositions is left thereby in the dark: one neither sees clearly
whether and to what extent their combination is necessary, nor a priori whether
it is possible.

From Euclid up to Legendre (to name the most celebrated modern writer on
geometry), this darkness has been lifted neither by the mathematicians nor by
the philosophers who have concerned themselves with these matters. The reason
for that failure surely consists in this, that the general concept of multiply
extended magnitudes-under which concept the spatial ma¢ tudes are comprised-
has not been treated at all. I have therefore set myself first the task, to
construct the concept of a multiply extended magnitude out of general magnitude-
concepts. It will turn out that a multiply extended magnitude is susceptible of
various measure-relations-so that space is but a particular instance of a
triply extended magnitude. But it then follows necessarily ~hat the propositions
of geometry cannot be derived from general magnitude-concepts; that, rather,
those properties by which space is distinguished from other conceivable triply
extended magnitudes can only be taken from experience. Hence arises the task, to
seek for the simplest facts by which the measure-relations of space can be
specified-a task that from the nature of the case is not fully determinate: for
several systems of simple facts can be cited, which suffice for the specification
of the measure-relations of space: most important for the present purpose is that
laid down by Euclid. These facts are, like all facts, not necessarj, but only of
empirical certainty-they are hypotheses; one can thus investigate their

\ probability-which, of course, within the limits of observation, is very great-
~,),'\\\and subsequently judge the reliabili ty of their extension beyond the limits of

'\~ \\Observation. both on the side of the immeasurably great and on the side of the
immeasurably small.
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In now attempting first to solve the first of these problems, the development
of the concept of multiply extended magnitudes, I believe that I may so much the
more clgim an indulgent judgment as I aIJ little practiced in such works of philo-
sophical nature, where the difficulties lie more in the concepts than in the
construction; and, with the exception of a few quite brief indications which
Herr Geheimer Hofrat Gauss has given in the second memoir on biquadratic residues
in the G8ttingen Scholarly Notices and in his jubilee paper, and a few philosoph-
ical investigations of Herbart, I could make use of no previous work at all.

Magnitude-concepts are possible only where there occurs a general concept
allowing various modes of specification. According as there does or does not
exist a continuous transition from one to another of these modes of specifica-
tion, they constitute a continuous or a discrete manifold; the individual modes
of specification are called in the first case points, in the second elements of
this manifold. Concepts whose modes of specification constitute a discrete mani--------------------------------fold are so frequent, that for arbitrarily given things there can always be found (l>1t.. ~f
-a t least in the more cul tivated languages-a concept under which they are com- (./1' (IV" v' C~- __=_ ----_____ \-z
prised (and the mathematicians have therefore been able to proceed without ~ .
scruple, in the theory of discrete magnitudes, from the postulate that given
things are to be considered as homogeneous); in contrast, the occasions to form
concepts whose modes of specification constitute a continuous canifold are so
rare in ordinary life that the places of sense-objects, and the colors, are
perhaps the only simple concepts whose modes of specification constitute a
multiply extended manifold. More frequent occasion for the creation and elabora-
tion of such concepts is found only in the higher i:lB. thematics.

Definite parts of a manifold, distinguished by a characteristic or a
boundary, are called quanta. Their comparison in respect of quantity is effected
for discrete magnitudes by counting, for continuous ones by measurement. Meas-
uring consists in a superposition of the magnitudes to be compared; it therefore
requires a I:leansof transporting the one magnitude as a measuring-rod for the
other. Failing this, one can compare two magni tudes only when the one is a part
of the 'other--and even then can only decide the more-or-less, not the how-much.
The investigations that can be instituted concerning them in this case fo~ a
general part of the theory of magnitudes, independent of measure-dete~tions,
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in which the magnitudes are regarded, not as existing independently of position
and not as expressible in terms of a unit, but fjust1 as domains in a manifold.
Such investigations have become a requisite for several parts of mathematics,
especial_1y for the treatment of multiply-valued analytic functions; and their
lack is surely a principal cause why the famous theorem of Abel and the results
of Lagrange, Pfaff, Jacobi have remained so long unfrui.tful for the general
theory of differential equations. For the present purpose it suffices to bring
forward from this general part of the theory of extended magnitudes-in which
nothing more is presupposed than what is already contained in the concept of
such magnitudes-two points: the first concerns the generation of the concept of
a multiply extended cagnitude; the second concerns the reduction of the specifi-
cations of place in a given manifold to specifications of quantity, and will
make clear the essential criterion of an ll-fold extension.

If, for a concept whose modes of specification constitute a continuous
manifold, one proceeds in a definite way from one mode of specification to
another, the traversed modes of specification constitute a simply extended
manifold-the essential criterion of which is that in it a continuous passage
from a point is possible only in two directions, forwards or backwards. If, now,
one thinks of this manifold as passing over into another entirely different one,
and once again in a definite way (i. e., so that each point in one goes over to
a definite point of the other), then all the modes of specification so obtained
constitute a doubly extended manifold. In similar fashion one obtains a triply
extended QBnifold if one represents to oneself a doubly extended one as passing
over in a definite way into an entirely different one; and it is easy to see how
this construction can be continued. If, instead of regarding the concept as
subject to specification, one thinks of its object as variable, then this
construction can be described as the synthesis of a variability of 11 + 1
dimensions out of a variability of 11 dimensions and a variabiE ty of one
dimension.

I shall now show how, conversely, one can decompose a variability whose
domain is given, into a variability of one dimension and a variability of fewer
dimensions. To this end, think of a variable piece of a manifold of one dimension
--reckoned. from a fixed. origin-point, so that its values are mutually comparable
--which has for each point of the given manifold a definite value, varying

46 

in which the magnitudes are regarded, not as existing independently of position 

and not as expressible in terms of a unit, but (just1 as domains in a manifold. 

Such investigations have become a requisite for several parts of mathematics, 

especial_ly for the treatment of multiply-valued analytic functions; and their 

lack is surely a principal cause why the famous theorem of Abel and the results 

of Lagrange, Pfaff, Jacobi have remained so long unfruitful for the general 

theory of differential equations. For the present purpose it suffices to bring 

forward from this general part of the theory of extended magnitudes-in which 

nothing more is presupposed than what is already contained in the concept of 

such magnitudes-two points: the first concerns the generation of the concept of 

a multiply extended ca.gnitude; the second concerns the reduction of the specifi

cations of place in a given manifold to specifications of quantity, and will 

make clear the essential criterion of an ll-fold extension. 

2. 

If, for a concept whose modes of specification constitute a continuous 

manifold, one .proceeds in a definite way from one mode of specification to 

another, the traversed modes of specification constitute a simply extended 

manifold-the essential criterion of which is that in it a continuous passage 

from a point is possible only in two directions, forwards or backwards. If, now, 

one thinks of this manifold as passing over into another entirely different one, 

and once again in a definite way (i.e., so that each point in one goes over to 

a definite point of the other), then all the modes of specification so obtained 

constitute a doubly extended manifold. In similar fashion one obtains a triply 

extended I:lB.Ilifold if one represents to oneself a doubly extended one as passing 

over in a definite way into an entirely different one; and it is easy to see how 

this construction can be continued. If, instead of regarding the concept as 

subject to specification, one thinks of its object as variable, then this 

construction can be described as the synthesis of a variability of .!l + 1 

dimensions out of a variability of .n. ditlensions and a variability of one 

dimension. 

I shall now show how, conversely, one can decompose a variability whose 

domain is given, into a variability of one dimension and a variability of fewer 

dimensions. To this end, think of a variable piece of a manifold of one dimension 

-reckoned from a fixed origin-point, so that its values are mutually comparable 

-which has for each point of the given manifold a definite value, varying 

3 



continuously with that point; or in other words, assume within the given mani-
fold a continuous function of place, and indeed a function that is not constant
along a part of this manifold. Every system of points on which the function has
a cons~t value then forms a continuous manifold of fewer dimensions than the
given one. These manifolds pass continuously into one another as the function
varies; it can be assumed, therefore, that one of them gives rise to all the
others-and this, spea.ldDg in general, can occur in such a way that each point 1

goes over to a definite point of the other; the exceptional cases, whose
investigation is important, can be left aside here. By this means the specifica-
tion of place in the given manifold is reduced to a magnitude-specification and
a specification of place in a manifold whose extendedness has lower multiplicity.
Now it is easy to show tha~itl~~fold has n - 1 dimensions, if the given

"" -manifold is an ll-tuply extended one. By ll-fold iteration of this process the
specification of place in an !l-tuply extended manifold is therefore reduced to 1l
magnitude-specifications; and thus the specification of place in a given manifold
is reduced-if such reduction is possible--to a finite number of specifications
of quantity. Nevertheless, there are also manifolds in which the specification of
place requires not a finite number, but either an infinite series or a continuous ~ Jo<A------- *" ~<.k.-
manifold of l:lB.gnitude-specifications. Such manifolds are constituted, e.g., by
the possible specifications of a function on a given domain, the possible shapes
of a spatial figure, etc.
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cation of place to 1l magnitude-specifications, there follows as the second of
the tasks proposed above an investigation of the measure-relations of which such

through formulas; yet under certain presuppositions one can resolve them into
relations that are individually susceptible of a geometric representation, and
thereby it becomes possible to express the results of the calculation geometri-
cally. To win to solid ground, therefore, an abstract investigation in formulas
is indeed unavoidable, but the results of the investigation will adI:l.itof a
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presentation in geometric garb. The foundations in both respects are contained
in the celebrated memoir of Herr Geheimer Hofrat Gauss on curved surfaces.

Mea~eterminations require that cagnitudes be independent of place, and
this can occur in more than one way; the first assumption that suggests itself,
and the one I intend to pursue here, is that the lengths of lines are independent
of positiont hence that each line is measurable by each. If the specification of
place is reduced to magnitude-specifications, and thus the position of a point
in the given n.-tuply extended manifold is expressed by IIvariable magnitudes
.!.l'.!.2'.!.;and so forth to~, then the specification of a line will come to
this, that the magnitudes.!. are given as functions of one variable. The problem
is then to establish a mathematical expression for the lengths of lines--to
which end the magnitudes.!. must be considered as expressible in units. I shall
treat this problem only under certain restrictions, and in the first place
restrict myself to lines in which the ratios among the magnitudes dx--the
respective changes of the magnitudes .!.--varYcontinuously; one can then conceive
the lines as divided into elements, within which the ratios of the magnitudes dx
may be regarded as constant; and the problem then reduces to that of establishing
for each point a general expression for the line-element i§. ~:'.l~:;fi;~from that
point--an expression, therefore, that will contain the magnitudes.!. and the
magnitudes dx. In the second place, I assume that the length of the line-element
remains unchanged, if we neglect magnitudes of the second order, when all of its
points are subjected to the same infinitely small change of place--which implies
at the same time that when all the magnitudes dx grow in the same ratio, the
line-element is likewise altered in this ratio. Under these assumptions, the
line-element will be able to be an arbitrary homogeneous first-degree function
of the magnitudes dx, which remains unchanged when all the magni tudes 1.!. change
their sign, and in which the arbitrary constants are continuous functions of the
magnitudes.!.. In order to find the simplest cases, I first seek an expression
for the (n.- l)-tuply extended manifolds that lie everywnere equally distant from
the origin-point of the line-element; i.e., I seek a continuous function of
place, which distinguishes these manifolds from one another. This function will
have either to decrease in all directions or to increase in all directions from
that origin-point; I choose to assume that it increases in all directions, and
therefore has a minimum in that point. If, then, its first and second differential
quotients are finite, the first-order differential must vanish and the second-
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order one can never be negative; I assume that it is always positive. This

differential expression of the second order then remains constant whends

remains constant, and grows in quadratic ratio whenthe magnitudes ~, and

therefo:roealso M, change all in the same ratio; it is therefore equal to

const.ds2, and consequently ds is equal to the square-root of an always positive

entire homogeneoussecond-degree function of the magnitudesg, in which the

coefficients are continuous functions of the magnitudes ~. For space, if one

expresses the position of the points by rectangular coordinates, there results

II = JZ (g)2; space is thus contained under this simplest case. The next most

simple case would comprise the manifolds in which the line-element can be

expressed by the fourth root of a differential expression of fourth degree. The

investigation of this more general species would indeed demandno essentially

different principles, but wouldbe rather tice-consuming and throw little new

light upon the theory of space, especially since the results cannot be expressed

geometrically; I therefore restrict myself to the manifolds where the line-element

is expressed by the square-root of a differential expression of second degree-.

Onecan transfom such an expression into another similar one by substituting

for the n independent variable functions n newindependent variables. But in this

wayone will not be able to transform each expression into each; for the expres-

sion contains nn+ 1 coefficients, which are arbitrary functions of the independent- 2
variables; and by introduction of newvariables one will be able to satisfy only

n relations and so to makeonly n of the coefficients equal to given magnitudes.

The remaining rf! - 1 are then fully determined by the nature of the manifold to
2 n-lbe represented, and thus n- functions of place are required for the specifica-- 2

tion of the measure-relations of the manifold. The manifolds in which, as in the

plane and in space, the line-element can be brought into the fom. J.l (~)2

therefore constitute only a special case of the manifolds to be investigated

here; they deserve a special name, and I shall therefore call tnese manifolds,

in which the square of the line-element can be brought to a sumof squares of

independent differentials, planar Lor flat1. In order to be able nowto survey

the essential differences amongall manifolds representable in the presupposed

way, it is necessary to eliminate the differences that stem from the modeof

representation; and this will be achieved by a choice of the variable magnitudes

according to a definite principle.

\ . . 
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all the shortest lines emanating from that point; the position of an indetermi-
•

nate point will then be specifiable by the initial direction of the shortest

line in which it lies, and by its distance along that line from the origin-point

-it can-therefore be expressed by the ratios of the magnitudes dXO,1oe. the

magnitudes ~ at the origin of this shortest line, and by the length ~ of this

line. Nowintroduce iitstead of ~O such linear expressions fonned from them, .£.~,
that the initial value of the square of the line-element is equal to the sumof

the squares of these expressions-so that the independent magnitudes are: the

magnitude ~ and the ratios of the magnitudes '£'0(.; and finally put instead of the

.£.0(. such magnitudes AI' A2' ••• , Zn' proportional to the former, that the sumof

their squares is equal to ~2. If one introduces these magnitudes, then for

infini tely small values of A the square of the line-element becomesequal to

Z dx2; but the tenn of next order in the square of the line-element becomes
n-lequal to a homogeneousexpression of the second degree in the n-z-- magnitudes

(Aldx2 - ~l)' (xl~ - ~l)' ••• , thus an infinitely small magnitude of the
fourth dimension; so that one obtains a finite magnitude if one divides it by

the square of the infinitely small triangle in whosevertices the values of the

variables are (0, 0, 0, ••• ), (Xl' A2' ~, ••• ~, (dxl, dx2, ~, ... ). This
magnitude retains the samevalue, so long as the magnitudes ~ and .£.!. are contained

in the samebinary linear foms (more clearly and correctly: so long as the ratios

of the bilinear foI"ClS(.!:ldx. - A.dx.) are preserved], or so long as the two~--.:J. ~
shortest lines from the values ° to the values ~ and from the values ° to the

values £!. remain in the same surface-element; it thus depends only upon the

place and the direction of that surface-element. It is obviously = ° whenthe

represented manifold is flat-i.e., whenthe square of the line-element is

reducible to l dx2; and it can therefore be regarded as the measure of the

deviation of the manifold from flatness in this point and in this surface-

direction. Multiplied by -t, it becomesequal to the magnitude which Herr

GeheimerHofrat Gauss has called the measure of curvature of a surface. Wehave

previously found that for the specification of the measure-relations of an

ll-tuply extended manifold, representable in the form wehave presupposed,
n - In- functions of place are necessa1"'V;when, therefore, the measure of curva-- 2 ."

ture is given at each point in nn; I surface-directions, the measure-relations

of the manifold will be determinable therefrom--only supposing that no identical

relations hold amongthese values (as in fact, speaking generally, they do not).

The measure-relations 01 these manifolds, in which the line-element is repre-
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sented by the square-root of a differential expression of second degree, can be

thus expressed in a wayentirely independent of the choice of the variable mag-

nitudes. A quite similar waycan be taken to this goal for those manifolds, too,

in which-the line-element is given by a less simple expression-e.g., by the

fourth root of a differential expression of fourth degree. Then, generally

speaking, the line-element could no longer be brought into the form of the

square-root of a sumof squares of differential expressions; and so in the

expression for the square of the line-element the deviation from flatness would

be an infinitely small magnitude of the second dimension-whereas for the fomer

manifolds it was an infinitely small magnitude of the fourth diI:1ension.This

peculiarity of those manifolds can therefore reasonably be called flatness in

the smallest parts. But the most important peculiarity of these manifolds for

the present purpose, on account of which they alone have been investigated here,

is this, that the circumstances of the doubly extended ones can be represented

by surfaces, and those of the multiply extended ones can be reduced to those of

the surfaces they contain--a point that still requires a brief discussion.

In the idea of surfaces there is always mixed, together with the inner

measure-relations for which only the length of paths inside them comesinto

consideration, also their situation with respect to points that lie outside them.

But one can abstract from the external circUIlLStances,by subjecting the surfaces

to such variations as leave unchanged the length of the lines within them: 1oe.,

by conceiving them to be bent arbitrarily (without distention), and. regarding

all surfaces that arise frol:l one another in this .wayas alike. Thus, e.g., all

cylindrical or conical surfaces count as like a plane, because they can be

fomed from a plane by mere bending (in which the inner measure-relations remain

the saI:le, and all propositions about these measure-relations-hence all of pla-

nimetry--preserve their validity); by contrast, these same surfaces count as

essentially different from the sphere, which cannot be transformed. without

distension into a plane. According to the preceding investigation, for a doubly

extended magnitude wnoseline-element can be expressed, as it can for surfaces,

by the square-root of a differential expression of second degree, the inner

measure-relations are characterized at each point by the measure of curvature.

No'"this magnitude admits in the case of surfaces the intuitive explication,

that it is the product of the two {principal) curvatures of the surface at the

point in question; or, again, that its product by an infinitely small triangle
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formed of shortest lines is equal to the excess of its angle-sum over two right
angles, expressed in parts of the radius I.i. e., in radian measure]. The first
definition would presuppose the proposition that the product of the two
{principil,) radii of curvature remains uncha.'lgedon mere bending of the surface;
the second, that at the same place the excess of the angle-sum of an infinitely
small triangle over two right angles is proportional to its area. In order to
give a palpable meaning to the measure of curvature of an n-tuply extended
manifold at a given point in a given surface-direction through that point, one
must start from the fact that a shortest line emanating from a point is fully
determined when its initial direction is given. It follows that one will obtain
a definite surface, if one extends to shortest lines all the initial directions
emanating from the given point and lying in the given surface-element; and this
surface has, at the given point, a definite measure of curvature, which is at
the same time the measure of curvature of the n-tuply extended manifold at the
given point and in the given surface-direction.

There are still, before the application to space is made, a few considera-
tions necessary concerning the flat manifolds in general--i.e., concerning those
in which the square of the line-element is representable by a sum of squares of
complete differentials.

In a flat n-tuply extended manifold the measure of curvature at each point
in each direction is null; but according to the earlier investigation it is
sufficient, in order to determine the measure-relations, to know that at each
point that measure is null in ~ - 1 surface-directions wnose measures of

2curvature are mutually independent. The manifolds whose measure of curvature is
everywhere = 0 can be considered as a special case of those manifolds whose
measure of curvature is everywhere constant. The cOl!llD.oncharacter of these mani-
folds, whose measure of curvature is constant, can also be expressed thus: that
the figures within them can be moved without distension. For obviously the
figures within them could not be arbitrarily displaceable and rotatable unless
the measure of curvature were the same at every point in all directions. But
conversely the measure-relations of the manifold are completely determined by
the measure of curvature; therefore the measure-relations about one point in all
directions are exactly the same as about another, and thus the same constructions
can be carried out from it, and consequently in the :nanifolds of constant curva-
ture figures can be given every arbitrary position. The measure-relations of
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these lIIanifolds depend only upon the val.ue of the measure of curvature, and in

respect of the analytical representation it maybe remarked that, if one denotes

this value by«, the expression for the line-element can be given the form

1 Jz:..dX2
2 -1 + .!&.lx.

4 --

For geometrical elucidation, the consideration of the surfaces with constant

measure of curvature can serve. It is easy to see that the surfaces whosemeasure

of curvature is positive can always be wrappedupon a sphere whose radius is

equal to 1 divided by the (square-]root of the measure of curvature; but to

survey the entire manifold of these surfaces, let us give one of them the shape

of a sphere, and the others the shape of surfaces of rotation tangent to that

sphere at the equator. The surfaces with greater measure of curvature than this

sphere will then be tangent to the sphere from inside, and will aSSUJ:lea shape

like the outer part. of the surface of a ring--the part facing away from the axis;

they would admit of being wrapped upon zones of spheres of smaller radius, but

going more than once around. The surfaces with smaller positive measure of curva-

ture will be obtained, if from spherical surfaces of larger radius one cuts out a

piece boundedby two great circles, and fuses together the cut-lines. The surface

with the measure of curvature null will be a cylindrical surface over the equator;

and the surfaces with negative measure of curvature will be tangent externally to

this cylinder, and will be famed like the inner part of the surface of a ring-

the part facing towards the axis. If one thinks of these surfaces as locus for

pieces of surface thAt are movable within them-as space is locus for bodies--

then in all these surfaces the pieces of surface are movable without distension.

The surfaces with positive measure of curvature can always be so fanned that the

pieces of surface can also be movedarbitrarily without bending--namely, formed

into spherical surfaces--but those with negative measure of curvature cannot.

Besides tr~s independence of the piece of surface from its place, there also

holds for the surface with the measure of curvature null an independence of

direction from place, which does not hold for the other surfaces.

After these investigations concerning the determination of the measure-rela-

tions of an ll-tuply extended magnitude, the conditions can nowbe given which are
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III. APPLICATION TO SPACE. 

1. 

After these investigations concerning the determination of the measure-rela
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sufficient and necessary to the determination of the measure-relations of space,
if independence of the tlength of) lines from position and representability of
the line-element by the square-root of a differential expression of second degree

--in snort, flatness in the smallest parts-is presupposed.
They can, first, be expressed thus: that the measure of curvature at each

point in three surface-directions is = 0; and therefore the measure-relations of
space are deteminad., if the angle-sum in triangles is everJWhere equal to two
right angles.

But, second, if one presupposes, as Euclid does, an existence independent of
position not merely for lines, but also for bodies, it follows tl~t the measure
of curvature is everywhere constant; and the angle-sum is then determined in all
triangles when it is determined in one.

Third and finally, instead of assuming the length of lines as independent
i.. '_,from place and direction, one could also presuppose an independence of theirj ~~~t/'I.~ .

\ . r-.. .r:;. length and direction from place. According to this conception, the changes of
- 'r'- ~ ;"\"k- .",~):"..ri, ~"~ -VE. d..r, •• I

~,\--_.\-\ place or d'ifferences of place are complex magnitudes, expressible in three
- \ \t. ..\'v-,.f- ( independent unit~: J...t t:..J~~ )r'<.~

r~,>~'''''.\.- 0.--:, 'j-" _.'1 \1 k...,..... S'r--"-L 5-t-rl L 'L .'"

.J<..<..""'() 2 •.....--

In the course of the considerations 50 far, first the extension-relations or
domain-rela tiona were separa tad. from the measure-relations, and it was found that
for the same extension-relations various measure-relations are conceivable; then
the systems of simple measure-determinations were sought, by which the measure-
relations of space are fully determined and of which all propositions about those
relations are a necessary consequence; it remains now to discuss the question,
how--in what degree, and within what range--these presuppositions are warranted
by experience. In this respect there is an essential difference between the mere
extension-relations and the measure-relations: in that for the former, where the
possible cases constitute a discrete manifold, the pronouncements of experience
are indeed never completely certain, but are not inexact; whereas for the latter,
where the possible cases constitute a continuous manifold, every determination
from experience remains always inexact--no matter how great may be the probability
that that d~nation is approximately correct. This circumstance becomes
important for the extension of these empirical determinations beyond the limits
of observation into the immeasurably large and inoeasurably snail; for beyond
the limits of observation, the second sort may obviously become ever more
inexact-but the first sort cannot.
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For the extension of space-constructions into the immeasurably great, 
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unboundedness and infinitude are to be distinguished; the fomer pertains to the
extension-relations, the latter to the measure-relations. That space is an
unbounded triply extended manifold is a presupposition which is applied in every
conception of the external world; a presupposition in accordance with which the
domain of actual perceptions is each moment supplemented, and the possible places
of a sought-for object are constructed; and a presupposition which in these
applications is continually confirmed. The unboundedness of space therefore
possesses a greater e~pirical certainty than any external experience. But from
this its infinitude in no way follows; on the contrary, if one presupposes
independence of bodies from place, and thus ascribes to space a constant measure
of curvature, it would necessarily be finite as soon as this measure of curvature
had a positive value, no matter how small. One would obtain, on prolonging to
shortest lines the initial directions that lie in a surface-element, an unlimited
surface with constant positive measure of curvature--thus a surface which in a
fla t triply extended ClaIlifoldwould assume the shape of a spherical surface, and
which consequently is finite.

The questions about the immeasurably great are, for the explanation of
nature, idle questions. But it is otherwise with the questions about the immeas-
urably small. Upon the exactness with which we pursue the phenomena into the
infinitely small essentially rests our knowledge of their causal connection. The
advances of the last century in the knowledge of mechanical nature are almost
solely conditioned by the exactness of construction which has become possible
through the invention of the infinitesimal analysis and through the simple
principles tGrundbegriffeJ' discovered by Archimedes, Galilei, and Newton, which
present-day physics has at its disposal. In those natural sciences, however,
where the simple principles for such constructions are still wanting, one pursues
the phenomena, in order to know the causal connection, as far into the spatially
small as the microscope will allow. The questions about the measure-relations of
space in the imceasurably small therefore do not belong to the idle ones.

If one presupposes that bodies exist independently of place, then the measure
of curvature is everywhere constant; and it follows from the astronomical meas-
urements that that measure cannot be different from zero--at any rate its
reciprocal would have to be equal to an area in relation to which the region
accessible to our telescopes is Vanishingly small. But if such an L~dependence
of bodies from place does not obtain, then ene cannot infer the measure-relations
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in the infinitely small from those in the large; in that case the measure of
curvature can have an arbitrary value at each point in three directions, if only
the total curvature of every meas'~ble part of space does not differ noticeably
from zero; still l:lorecomplicated relationships can occur, if the presupposed
representabili ty of a line-element by the square-root of a differential expres-
sion of second degree does not obtain. Now the empirical concepts in which the
spatial measure-detercinations are grounded--the concept of the solid body and
of the light-ray--appear to lose their validity in the infinitely small; i~
therefore very well conceivable that the measure-rela.tions of space in the
~nfinitely small are not in accord with the presuppositions of geol:letry--andon~
would in fact have to adopt this assumption, as soon as the phenomena were found
to admit of simpler explanation by this means.

The question of the validity of the presupposi tions of geometry in the
infinitely small is bound up with the question of the inner ground of the
measure-relations of space. In this question, which may well be still reckoned
to the account of the theory of space, the earlier remark comes to application,
tnat for a discrete. manifold the principle of the measure-relations is already
contained in the concept of this l:laOifold,but for a continuous one must come
from somewhere else. Therefore either the reality that lies at the basis of
space must constitute a discrete nanifold, or the ground of the measure-relations
must be sought outside of it, in binding forces that act upon it.

The decision of these questions can only be found by proceeding from the
traditional and empirically confirmed conception of the phenomena, of which
Newton has laid the foundation, and gradually revising this, driven by facts

r,\ oJ"..J')v~t. that do not adJ:litof explanation by it; such investigations as, like that
,~ - ~v<---; conducted here, proceed from general concepts, can only serve to ensur~ that

I/O/" -'I: .f
~o~. • this work shall not be hindered by a narrowness of conceptions, and that progress+- "-iJ" .<..\ - •

~~~ ~; in the knowledge of the connections of things shall not be hampered by traditional
.t.._ /1., ~ -.>L ~ prejudices.
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physics, upon which the nature of the present occasion makes it inappropriate
to enter .
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Plan of the investigation.
1. Concept of an ll-tuply extended magnitude 1).

§ 1.-Continuous and discrete lIlB.l1ifolds.Definite parts of a oanifold are
called quanta. Division of the theory of continuous magnitudes into
the theory
1. of the mere domain-relations, in which an independence of the

magni tudes from place is not presupposed,
2. of the measure-relations, in which such an independence must be

presupposed.
~ 2. Generation of the concept of a simply, doubly, •••, ll-tuply extended

cani.fold.
~ 3. Reduction of the specification of place in a given manifold to specifi-

cations of quantity. Essential criterion of an ll-tuply extended manifold.
II. Measure-relations of which a manifold of II dir:lensionsis susceptible2), under

the presupposition that the lines possess a length independently of position,
therefore that each line is measurable by each.
~1. Expression for the line-element. Those" manifolds will be considered as

flat, in which the line-element is expressible as the root of a sum of

~2.

squares of complete differentials.
Investigation of the ll-tuply extended manifolds in which the line-element
can be represented by the square-root of a differential expression of
second degree. Measure of their deviation from flatness (measure of
curvature) at a given point in a given surface-direction. For the
specification of their measure-relations it is (under certain restric-
tions) admissible and sufficient that the measure of curvature be given
arbi trarily at each point in .Ji - I surface-directions.

- 2
~ 3. Geometric elucidation.
§4. The flat manifolds (in which the neasure of curvature is everywhere = 0)

can be regarded as a special case of the manifolds with constant measure
of curvature. These latter can also be defined by the fact that in then
there is independence of the ll-tuply extended I:lagl'litudesfrom place
(nobility of those magnitudes without distension).

;5. Surfaces with constant measure of curvature.

1) Art. I constitutes at the same time the preliminary work for contributions
to Analysis situs.

2) The investigation of the possible measure-detercinations of an rr-tuply
extended canifold is very incomplete, although for the present purpose perhapsS1ufficient.
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III. Application to space.
§l. Systems of facts which suffice to determine the measure-relations of

•space, as geometry presupposes these.
§2. To what extent is the validity of these empirical determinations

probable beyond the limits of observation in the icmeasurably large?
~3. To what extent in the immeasurably small? Connection of this question

with the explanation of na tu.re1) •

1) The '3 of Art. III. still requires revision and further elaboration.
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