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Error and doubt no longer encumber us with mist;
For the keenness of a sublime intelligence has made it possible for us to enter

The dwellings of the gods above and to climb the heights of heaven.

Mortals arise, put aside earthly cares,

And from this treatise discern the power of a mind sprung from heaven,

Far removed from the life of beasts.
He who commanded us by written tablets to abstain from murder,

Thefts, adultery, and the crime of bearing false witness,

Or he who taught nomadic peoples to build walled cities, or he who enriched the

nations with the gift of Ceres,

Or he who pressed from the grape a solace for cares,

Or he who with a reed from the Nile showed how to join together

Pictured sounds and to set spoken words before the eyes,

Exalted the human lot less, inasmuch as he was concerned with only a few

comforts of a wretched life,

And thus did less than our author for the condition of mankind.

But we are now admitted to the banquets of the gods;

We may deal with the laws of heaven above; and we now have

The secret keys to unlock the obscure earth; and we know the immovable order

of the world
And the things that were concealed from the generations of the past.

O you who rejoice in feeding on the nectar of the gods in heaven,

Join me in singing the praises of NEWTON, who reveals all this,

Who opens the treasure chest of hidden truth,

NEWTON, dear to the Muses,

The one in whose pure heart Phoebus Apollo dwells and whose mind he has filled

with all his divine power;

No closer to the gods can any mortal rise.

Edm. Halley

Author's Preface to the Reader

SINCE THE ANCIENTS (according to Pappus) considered mechanics to be of

the greatest importance in the investigation of nature and science and since the

moderns—rejecting substantial forms and occult qualities—have undertaken to

reduce the phenomena of nature to mathematical laws, it has seemed best in

this treatise to concentrate on mathematics as it relates to natural philosophy. The

ancients divided mechanics into two parts: the rational, which proceeds rigorously

through demonstrations, and the practical.' Practical mechanics is the subject that

comprises all the manual arts, from which the subject of mechanics as a whole

has adopted its name. But since those who practice an art do not generally work

with a high degree of exactness, the whole subject of mechanics is distinguished

from geometry by the attribution of exactness to geometry and of anything less

than exactness to mechanics. Yet the errors do not come from the art but from

those who practice the art. Anyone who works with less exactness is a more

imperfect mechanic, and if anyone could work with the greatest exactness, he

would be the most perfect mechanic of all. For the description of straight lines

and circles, which is the foundation of geometry, appertains to mechanics. Geometry

All notes to the translation are keyed to the text by superscript Letters. When a note is introduced by

two letters, such as "as," it refers to that part of the text enclosed between an opening superscript "a" and

a final or closing "a."
These notes are, for the most part, extracts from variant passages or expressions as found in the first

two editions. The glosses and explanations of the text are to be found in the Guide, the text of which

follows the order of Newton's presentation in the Principia.

a. Newton's comparison and contrast between the subject of rational or theoretical mechanics and

practical mechanics was a common one at the time of the Principia. Thus John Harris in his Newtonian

Lexicon Technicum (London, 1704), citing the authority of John Wallis, made a distinction between the

two as follows. One was a 'Geometry of Motion," a "Mathematical Science which shews the Effects of
Powers, or moving Forces," and "demonstrates the Laws of Motion." The other is "commonly taken for

those Handy-crafts, which require as well the Labour of the Hands, as the Study of the Brain." The subject

of the Principia became generally known as "rational mechanics" fallowing Newton's use of that name in

his Preface.
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does not teach how to describe these straight lines and circles, but postulates such

a description. For geometry postulates that a beginner has learned to describe tines

and circles exactly before he approaches the threshold of geometry, and then it
teaches how problems are solved by these operations. To describe straight lines

and to describe circles are problems, but not problems in geometry. Geometry

postulates the solution of these problems from mechanics and teaches the use of
the problems thus solved. And geometry can boast that with so few principles
obtained from other fields, it can do so much. Therefore geometry is founded on
mechanical practice and is nothing other than that part of universal mechanics

which reduces the art of measuring to exact propositions and demonstrations. But
since the manual arts are applied especially to making bodies move, geometry is
commonly used in reference to magnitude, and mechanics in reference to motion.
In this sense rational mechanics will be the science, expressed in exact propositions

and demonstrations, of the motions that result from any forces whatever and of
the forces that are required for any motions whatever. The ancients studied this
part of mechanics in terms of the five powers that relate to the manual arts [i.e.,

the five mechanical powers] and paid hardly any attention to gravity (since it

is not a manual power) except in the moving of weights by these powers. But

since we are concerned with natural philosophy rather than manual arts, and are

writing about natural rather than manual powers, we concentrate on aspects of
gravity, levity, elastic forces, resistance of fluids, and forces of this sort, whether
attractive , or impulsive. And therefore our present work sets forth mathematical
principles of natural philosophy. For the basic problem [lit. whole difficulty b] of
philosophy seems to be to discover the forces of nature from the phenomena of

motions and then to demonstrate the other phenomena from these forces. It is to

these ends that the general propositions in books 1 and 2 are directed, while in

book 3 our explanation of the system of the world illustrates these propositions.

For in book 3, by means of propositions demonstrated mathematically in books 1

and 2, we derive from celestial phenomena the gravitational forces by which

bodies tend toward the sun and toward the individual planets. Then the motions

of the planets, the comets, the moon, and the sea are deduced from these forces

by propositions that are also mathematical. If only we could derive the other

phenomena of nature from mechanical principles by the same kind of reasoning!

For many things lead me to have a suspicion that all phenomena may depend on

certain forces by which the particles of bodies, by causes not yet known, either

are impelled toward one another and cohere in regular figures, or are repelled

b. Newton would seem to be expressing in Latin more or less the same concept that later appears in
English (in query 28 of the Optick.r) as "the [Oak' Business of natural Philosophy."

from one another and recede. Since these forces are unknown, philosophers have

hitherto made trial of nature in vain. But I hope that the principles set down here

will shed some light on either this mode of philosophizing or some truer one.

In the publication of this work, Edmond Halley, a man of the greatest in-

telligence and of universal learning, was of tremendous assistance; nor only did

he correct the typographical errors and see to the making of the woodcuts, but

it was he who started me off on the road to this publication. For when he had

obtained my demonstration of the shape of the celestial orbits, he never stopped

asking me to communicate it to the Royal Society, whose subsequent encourage-

ment and kind patronage made me begin to think about publishing it. But after I

began to work on the inequalities of the motions of the moon, and then also began

to explore other aspects of the laws and measures of gravity and of other forces,
the curves that must be described by bodies attracted according to any given laws,

the motions of several bodies with respect to one another, the motions of bodies in

resisting mediums, the forces and densities and motions of mediums, the orbits of

comets, and so forth, I thought that publication should be put off to another time,

so that I might investigate these other things and publish all my results together.

I have grouped them together in the corollaries of prop. 66 the inquiries (which are

imperfect) into lunar motions, so that I might not have to deal with these things

one by one in propositions and demonstrations, using a method more prolix than

the subject warrants, which would have interrupted the sequence of the remaining

propositions. There are a number of things that I found afterward which I pre-

ferred to insert in less suitable places rather than to change the numbering of the

propositions and the cross-references. I earnestly ask that everything be read with

an open mind and that the defects in a subject so difficult may be not so much

reprehended as investigated, and kindly supplemented, by new endeavors of my

readers.

Trinity College, Cambridge	 Is. Newton

8 May 1686
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Scholium

AXIOMS, OR THE LAWS OF MOTION

The principles I have set forth are accepted by mathematicians and con-

firmed by experiments of many kinds. By means of the first two laws and

the first two corollaries Galileo found that the descent of heavy bodies is

in the squared ratio of the time and that the motion of projectiles occurs
in a parabola, as experiment confirms, except insofar as these motions are
somewhat retarded by the resistance of the air. 5 When a body falls, uniform
gravity, by acting equally in individual equal particles of time, impresses equal

forces upon that body and generates equal velocities; and in the total time it

impresses a total force and generates a total velocity proportional to the time.

And the spaces described in proportional times are as the velocities and the

times jointly, that is, in the squared ratio of the times. And when a body is

projected upward, uniform gravity impresses forces and takes away velocities

proportional to the times; and the times of ascending to the greatest heights
are as the velocities to be taken away, and these heights are as the velocities

and the times jointly, or as the squares of the velocities. And when a body
is projected along any straight line, its motion arising from the projection is

compounded with the motion arising from gravity.

For example, let body A by the motion of projection alone describe the

straight line AB in a given time, and by the motion of

falling alone describe the vertical distance AC in the

same time; then complete the parallelogram ABDC,

and by the compounded motion the body will be found

in place D at the end of the time; and the curved line
AED which the body will describe will be a parabola
which the straight line AB touches at A and whose
ordinate BD is as AB2 . a

What has been demonstrated concerning the times of oscillating pendu-

lums depends on the same first two laws and first two corollaries, and this

is supported by daily experience with clocks. From the same laws and corol-

laries and law 3, Sir Christopher Wren, Dr. John Wallis, and Mr. Christiaan

Huygens, easily the foremost geometers of the previous generation, indepen-

dently found the rules of the collisions and reflections of hard bodies, and

communicated them to the Royal Society at nearly the same time, entirely

agreeing with one another (as to these rules); and Wallis was indeed the

aa. Ed. 1 and ed. 2 lack this.
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first to publish what had been found, followed by Wren and Huygens. But
Wren additionally proved the truth of these rules before the Royal Society by

means of an experiment with pendulums, which the eminent Mariotte soon

after thought worthy to be made the subject of a whole book.

However, if this experiment is to agree precisely with the theories, ac-

count must be taken of both the resistance of the air and the elastic force

of the colliding bodies. Let the spherical bodies A and B be suspended

from centers C and D by parallel and

equal cords AC and BD. With these

centers and with those distances as

radii describe semicircles EAF and

GBH bisected by radii CA and DB.

Take away body B, and let body A

be brought to any point R of the arc
EAF and be let go from there, and let it return after one oscillation to point

V. RV is the retardation arising from the resistance of the air. Let ST be

a fourth of RV and be located in the middle so that RS and TV are equal

and RS is to ST as 3 to 2. Then ST will closely approximate the retardation

in the descent from S to A. Restore body B to its original place. Let body

A fall from point S, and its velocity at the place of reflection A, without
sensible error, will be as great as if it had fallen in a vacuum from place

T. Therefore let this velocity be represented by the chord of the arc TA.

For it is a proposition very well known to geometers that the velocity of a

pendulum in its lowest point is as the chord of the arc that it has described

in falling. After reflection let body A arrive at place s, and body B at place

k. Take away body B and find place v such that if body A is let go from this

place and after one oscillation returns to place r, st will be a fourth of ry

and be located in the middle, so that rs and tv are equal; and let the chord

of the arc to represent the velocity that body A had in place A immediately

after reflection. For t will be that true and correct place to which body A

must have ascended if there had been no resistance of the air. By a similar

method the place k, to which body B ascends, will have to be corrected, and

the place 1, to which that body must have ascended in a vacuum, will have

to be found. In this manner it is possible to make all our experiments, just

as if we were in a vacuum. Finally body A will have to be multiplied (so
to speak) by the chord of the arc TA, which represents its velocity, in order
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to get its motion in place A immediately before reflection, and then by the

chord of the arc to in order to get its motion in place A immediately after

reflection. And thus body 13 will have to be multiplied by the chord of the arc

B/ in order to get its motion immediately after reflection. And by a similar

method, when two bodies are let go simultaneously from different places, the

motions of both will have to be found before as well as after reflection, and

then finally the motions will have to be compared with each other in order-

to determine the effects of the reflection.

On making a test in this way with ten-foot pendulums, using unequal

as well as equal bodies, and making the bodies come together from very

large distances apart, say of eight or twelve or sixteen feet, I always found—

within an error of less than three inches in the measurements—that when the

bodies met each other directly, the changes of motions made in the bodies in

opposite directions were equal, and consequently that the action and reaction

were always equal. For example, if body A collided with body B, which was

at rest, with nine parts of motion and, losing seven parts, proceeded after

reflection with two, body B rebounded with those seven parts. If the bodies

met head-on, A with twelve parts of motion and B with six, and A rebounded

with two, B rebounded with eight, fourteen parts being subtracted from each.

Subtract twelve parts from the motion of A and nothing will remain; subtract

another two parts, and a motion of two parts in the opposite direction will be

produced; and so, subtracting fourteen parts from the six parts of the motion

of body B, eight parts will be produced in the opposite direction. But if the

bodies moved in the same direction, A more quickly with fourteen parts

and 13 more slowly with five parts, and after reflection A moved with five

parts, then B moved with fourteen, nine parts having been transferred from

A to B. And so in all other cases. As a result of the meeting and collision

of bodies, the quantity of motion—determined by adding the motions in'the

same direction and subtracting the motions in opposite directions—was never

changed. I would attribute the error of an inch or two in the measurements

to the difficulty of doing everything with sufficient accuracy. It was difficult

both to release the pendulums simultaneously in such a way that the bodies

would impinge upon each other in the lowest place AB, and to note the places

s and k to which the bodies ascended after colliding. But also, with respect

to the pendulous bodies themselves, errors were introduced by the unequal

density of the parts and by irregularities of texture arising from other causes.

Further, lest anyone object that the rule which this experiment was de-

signed to prove presupposes that bodies are either absolutely hard or at least

perfectly elastic and thus of a kind which do not occur bnaturally, b I add that

the experiments just described work equally well with soft bodies and with

hard ones, since surely they do not in any way depend on the condition of

hardness. For if this rule is to be tested in bodies that are not perfectly hard,

it will only be necessary to decrease the reflection in a fixed proportion to

the quantity of elastic force. In the theory of Wren and Huygens, absolutely

hard bodies rebound from each other with the velocity with which they have

collided. This will be affirmed with more certainty of perfectly elastic bodies.

In imperfectly elastic bodies the velocity of rebounding must be decreased

together with the elastic force, because that force (except when the parts of

the bodies are damaged as a result of collision, or experience some sort of ex-

tension such as would be caused by a hammer blow) is fixed and determinate

(as far as I can tell) and makes the bodies rebound from each other with a

relative velocity that is in a given ratio to the relative velocity with which they

collide. I have tested this as follows with tightly wound balls of wool strongly

compressed. First, releasing the pendulums and measuring their reflection, I

found the quantity of their elastic force; then from this force I determined

what the reflections would be in other cases of their collision, and the ex-

periments which were made agreed with the computations. The balls always

rebounded from each other with a relative velocity that was to the relative

velocity of their colliding as 5 to 9, more or less. Steel balls rebounded with

nearly the same velocity and cork balls with a slightly smaller velocity, while

with glass balls the proportion was roughly 15 to 16. And in this manner

the third law of motion—insofar as it relates to impacts and reflections—is

proved by this theory, which plainly agrees with experiments.

I demonstiate the third law of motion for attractions briefly as follows.

Suppose that between any two bodies A and 13 that attract each other any

obstacle is interposed so as to impede their coming together. If one body A is

more attracted toward the other body B than that other body B is attracted

toward the first body A, then the obstacle will be more strongly pressed by

body A than by body B and accordingly will not remain in equilibrium. The

stronger pressure will prevail and will make the system of the two bodies and

bb. Evidently "in natural compositions" or "in natural bodies."
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the obstacle move straight forward in the direction from A toward B and,

in empty space, go on indefinitely with a motion that is always accelerated,

which is absurd and contrary to the first law of motion. For according to

the first law, the system will have to persevere in its state of resting or of

moving uniformly straight forward, and accordingly the bodies will urge the

obstacle equally and on that account will be equally attracted to each other.

I have tested this with a lodestone and iron. If these are placed in separat e
vessels that touch each other and float side by side in still water, neither one

will drive the other forward, but because of the equality of the attraction in

both directions they will sustain their mutual endeavors toward each other,

and at last, having attained equilibrium, they will be at rest.

`In the same way gravity is mutual between the earth and its parts. Let

the earth Fl be cut by any plane EG into two parts EGF and EGI; then their

weights toward each other will be equal. For if

the greater part EGI is cut into two parts EGKH

and HKI by another plane HK parallel to the

first plane EG, in such a way that HKI is equal

to the part EFG that has been cut off earlier,

it is manifest that the middle part EGKH will
not preponderate toward either of the outer parts

but will, so to speak, be suspended in equilibrium

between both and will be at rest. Moreover, the outer part HKI will press

upon the middle part with all its weight and will urge it toward the other

outer part EGF, and therefore the force by which EGI, the sum of the parts

HKI and EGKH, tends toward the third part EGF is equal to the weight

of the part HKI, that is, equal to the weight of the third part EGF. And

therefore the weights of the two parts EGI and EGF toward each other

are equal, as I set out to demonstrate. And if these weights were not equal,
the whole earth, floating in an aether free of resistance, would yield to the

greater weight and in receding from it would go off indefinitely.'

As bodies are equipollent in collisions and reflections if their velocities

are inversely as their inherent forces [i.e., forces of inertia], so in the motions

of machines those agents [i.e., acting bodies] whose velocities (reckoned in the
direction of their forces) are inversely as their inherent forces are equipol-

cc. Ed. I lacks this.

lent and sustain one another by their contrary endeavors. Thus weights are

equipollent in moving the arms of a balance if during oscillation of the bal-
.

ance they are inversely as their velocities upward and downward; that is,

weights which move straight up and down are equipollent if they are in-

versely as the distances between the axis of the balance and the points from

which they are suspended; but if such weights are interfered with by oblique

planes or other obstacles that are introduced and thus ascend or descend
obliquely, they are equipollent if they are inversely as the ascents and de-

scents insofar as these are reckoned with respect to a perpendicular, and this

is so because the direction of gravity is downward. Similarly, in a pulley or

combination of pulleys, the weight will be sustained by the force of the hand
pulling the rope vertically, which is to the weight (ascending either straight

up or obliquely) as the velocity of the perpendicular ascent to the velocity

of the hand pulling the rope. In clocks and similar devices, which are con-

structed out of engaged gears, the contrary forces that promote and hinder

the motion of the gears will sustain each other if they are inversely as the

velocities of the parts of the gears upon which they are impressed. The force

of a screw to press a body is to the force of a hand turning the handle as the
circular velocity of the handle, in the part where it is urged by the hand, is to

the progressive velocity of the screw toward the pressed body. The forces by

which a wedge presses the two parts of the wood that it splits are to the force

of the hammer upon the wedge as the progress of the wedge (in the direction

of the force impressed upon it by the hammer) is to the velocity with which
the parts of the wood yield to the wedge along lines perpendicular to the

faces of the wedge. And the case is the same for all machines.

The effectiveness and usefulness of all machines or devices consist wholly

in our being able to increase the force by decreasing the velocity, and vice

versa; in this way the problem is solved in the case of any working machine

or device: "To move a given weight by a given force" or to overcome any

other given resistance by a given force. For if machines are constructed in
such a way that the velocities of the agent [or acting body] and the resistant

[or resisting body] are inversely as the forces, the agent will sustain the re-

sistance and, if there is a greater disparity of velocities, will overcome that

resistance. Of course the disparity of the velocities may be so great that it can

also overcome all the resistance which generally arises from the friction of

contiguous bodies sliding over one another, from the cohesion of continuous
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bodies that are to be separated from one another, or from the weights of

bodies to be raised; and if all this resistance is overcome, the remaining force

will produce an acceleration of motion proportional to itself, partly in the

parts of the machine, partly in the resisting body.'

But my purpose here is not to write a treatise on mechanics. By these

examples I wished only to show the wide range and the certainty of the

third law of motion. For if the action of an agent is reckoned by its force

and velocity jointly, and if, similarly, the reaction of a resistant is reckoned

jointly by the velocities of its individual parts and the forces of resistance

arising from their friction, cohesion, weight, and acceleration, the action and

reaction will always be equal to each other in all examples of using devices

or machines. And to the extent to which the action is propagated through

the machine and ultimately impressed upon each resisting body, its ultimate

direction will always be opposite to the direction of the reaction.

d. Newton writes of "instrumentorum" (literally, "equipment") and of "instrumentis mechanicis"
(literally, "mechanical instruments"), as well as "machinae." See §5.7 of the Guide.

BOOK 1

THE MOTION OF BODIES
















