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Introduction

One sometimes hears expressed the view that some sort of uncertainty princi-
ple operates in the interaction between mathematics and physics: the greater
the mathematical care used to formulate a concept, the less the physical
insight to be gained from that formulation. It is not difficult to imagine how
such a viewpoint could come to be popular. It is often the case that the
essential physical ideas of a discussion are smothered by mathematics through
excessive definitions, concern over irrelevant generality, etc. Nonetheless, one
can make a case that mathematics as mathematics, if used thoughtfully, is

almost always useful—and occasionally essential—to progress in theoretical
physics.

What one often tries to do in mathematics is to isolate some given struc-
ture for concentrated, individual study: what constructions, what results,
what definitions, what relationships are available in the presence of a certain
mathematical structure—and only that structure? But this is exactly the sort
of thing that can be useful in physics, for, in a given physical application,
some particular mathematical structure becomes available naturally, namely,
that which arises from the physics of the problem. Thus mathematics can
serve to provide a framework within which one deals only with quantities of
physical significance, ignoring other, irrelevant things. One becomes able to
focus on the physics. The idea is to isolate mathematical structures, one at a
time, to learn what they are and what they can do. Such a body of
knowledge, once established, can then be called upon whenever it makes con-
tact with the physics.

An everyday example of this point is the idea of a derivative. One could
who do not understand, as mathematics, the notion of a

imagine physicis
derivative and the properties of derivatives. Such physicists could still formu-
late physical laws, for example, by speaking of the ‘“rate of change of ...
with . .." They could use their physical intuition to obtain, as needed in
various applications, particular properties of these ‘rates of change.” [t
would be more convenient, however, to isolate the notion “derivative” once
and for all, without direct reference to later physical applications of this con-
cept. One learns what a derivative is and what its properties are: the
geometrical significance of a derivative, the rule for taking the derivative of a
product, etc. This established body of knowledge then comes into play
automatically when the physics requires the use of derivatives. Having
mastered the abstract concept “rate of change” all by itself, the mind is freed
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for the important, that is, the physical, issues.

The only problem is that it takes a certain amount of effort to learn
mathematics. Fortunately, two circumstances here intervene. First, the
mathematics one needs for theoretical physics can often be mastered simply
by making a sufficient effort. This activity is quite different from, and far
more straightforward than, the originality and creativity needed in physics
itself. Second, it seems to be the case in practice that the mathematics one
needs in physics is not of a highly sophisticated sort. One hardly ever uses
elaborate theorems or long strings of definitions. Rather, what one almost
always uses, in various areas of mathematics, is the five or six basic
definitions, some examples to give the definitions life, a few lemmas to relate
various definitions to each other, and a couple of constructions. In short,
what one needs from mathematics is a general idea of what areas of
mathematics are available and, in each area, enough of the flavor of what is
going on to feel comfortable. This broad and largely shallow cover:
in my view be the stuff of “mathematical physics.”

There is, of course, a second, more familiar role of mathematics in phy-
sics: that of solving specific phy

ge should

sical problems which have already been formu-
lated mathematically. This role encompasses such topics as special functions
and solutions of differential equations. This second role has come to dominate
the first in the traditional undergraduate and graduate curricula. My pur-
pose, in part, is to argue for redressing the balance.

We shall here take a brief walking tour through various areas of
mathematics, providing, where appropriate and available, examples in which
this mathematics provides a framework for the formulation of physical ideas.

By way of general organization, chapters 2-24 deal with things algebraic
and chapters 25-42 with things topological. In chapters 43-50 we discuss

some special topics: structures which combine algebra and topology, Lebesque
integrals, Hilbert spaces. Lest the impression be left that no difficult
mathematics can ever be useful in physics

» we provide, in chapters 51 56, a
counterexample: the spectral theorem. Strictly speaking, the only prere-
quisites are a little elementary set theory, algebra, and, in a few places, some
elementary calculus. Yet some informal contact with such objects as groups,
vector spaces, and topological spaces would be most helpful.

The following texts are recommended for additional reading: A. H. Wal-
lace, Algebraic Topology (Elmsford, NY: Pergamon, 1963), and C. Goffman
and G. Pedrick, First Course in Functional Analysis (Englewood Cliffs, NJ:
Prentice-Hall, 1965). Two examples of more advanced texts, to which the
present text might be regarded as an introduction, are: M. Reed and B.
Simon, Methods of Modern Mathematical Physics (New York: Academie,
1972), and Y. A4:5:3-?._:::, C. Ucﬁ.:?ZoZ_:ﬁ and M. Dillard-Bleick,
Analysis, Manifolds and Physics (Amsterdam: North-Holland, 1982)

Categories

In each area of mathematics (e.g., groups, topological spaces) there mﬁro E,w__”
able many definitions and constructions. It turns out, however, ::.:. wﬂo. ‘
a number of notions (e.g., that of a product) that occur naturally _w Va m_.”z“.ﬁ
areas of mathematics, with only slight changes _..35 osﬂc area Jo another. _:w
convenient to take advantage of this ovmciﬁ.:c:. .m ategory :_Mﬁ.ui 3:71:
described as that branch of mathematics in which one mﬁ.: __om cer ]
definitions in a broader context—without reference to the v.mw:q*,: ar hﬂaom,pw-
which the definition might be applied. It is Fo :_:N:‘_:_:wi._?.o 5<m 2: '
" Although this subject takes a little getting used to, it is, in Bv_ ov::o. "
It provides a systematic framework that can help one to

les.’
worth the effort. : .
1 > stand what
remember definitions in various areas of mathematics, to under .~ H
> y vent use-
many constructions mean and how they can be used, and even to in
g s 0

. 7 s 4 d T,
11 de S Whe e S (0} C gory
A. _ * finitions v T nn OQA,L We rﬁ_m. summarize a _A w facts fr 1 cate

theory. . ! o )
A category consists of three things—i) a class O ?rayo elements <.»_~_._ .vm
called objects), ii) a set Mor(A,B) (whose elements will be called morp S.S.w
m. m A to B), where A and B are any two! objects, and iii) a rule which
rom . ; ere A a . ) .
assigns, given any objects A, B, and C and any morphism ¢ from A G m and
::‘V:V_LTE ) from B to C, a morphism, written ¥ o ¢, from A to C' A:_._u Yoy
will be called the composition of ¢ with 1))—subject to the following two
conditions: .
1. Composition is associative. ‘ : .
and ¢, ¥, and X are morphisms from A to B, from B to C, and from Cto D,
: ©, ¥,

If A, B, C, and D are any four objects,

respectively, then
Now)op=XAo (o)

(Note that each side of this equation is a morphism from A Z.V b.v. .
2. Identities exist. For each object A, there is a morphism i, .?oE. A to
A (called the identity morphism on A) with the following property: if ¢ is any

morphism from A to B, then
poiyg=1p ;

if g is any morphism from C to A, then

°T reafter t a ements spec orde r, more
/ ts in a specific order,” or,
1. Here and hereafte wo elements’’ means “two elemen P!

formally, an “‘ordered pair.




