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Preface

This publication of Robert Geroch’s course notes on quantum field theory
is the second book in the new Lecture Notes Series of the Minkowski Institute
Press. The idea of this series is to extend the life in space and time of valuable
course notes in order that they continue to serve their noble purpose by bringing
enlightenment to the present and future generations.

Although written in 1971 Geroch’s lecture notes are still a very helpful text
on quantum field theory since they contain a concise exposition of its core topics
accompanied by compressed but deep and clear explanations. What also makes
this book a valuable contribution to the existing textbooks on quantum field
theory is Geroch’s unique approach to teaching theoretical and mathematical
physics – the physical concepts and the mathematics, which describes them, are
masterfully intertwined in such a way that both reinforce each other to facilitate
the understanding of the most abstract and subtle issues.

Robert Geroch would like to thank Michael Seifert for producing the initial
LATEXversion of the typed course notes from mimeographed originals.

Montreal, February 2013 Vesselin Petkov
Minkowski Institute Press
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1. The Klein-Gordon Equation

We want to write down some kind of a quantum theory for a free relativistic
particle. We are familiar with the old Schrödinger prescription, which more or
less instructs us as to how to write down a quantum theory for a simple, nonrela-
tivistic classical system. The idea is to mimic as much at that prescription as we
can. In doing this, a number of di�culties will be encountered which, however,
we shall be able to resolve. There is a reasonable and consistent quantum theory
for a free relativistic (spin zero) particle.

Recall the Schrödinger prescription. We have a classical system (e.g., a pen-
dulum, or a ball rolling on a table). The manifold of possible instantaneous con-
figurations of this system is called configuration space, and points of this manifold
are labeled by letters such as x. However, in order to specify completely the state
of the system (i.e., in order to give enough information to uniquely determine
its future evolution), we must specify at some initial time both its configuration
x and its momentum p. The collection of such pairs (x, p) is called phase space.
(More precisely, phase space is the cotangent bundle of configuration space.) Fi-
nally, the dynamics of the system is described by a certain real-valued function
on phase space, H(x, p), the Hamiltonian. The time-evolution of the system
(i.e., its point in phase space) is given by Hamilton’s equations:

d

dt
x =

@

@p
H

d

dt
p = � @

@x
H (1)

Thus, the complete dynamical history of the classical system is represented by
curves (solutions of Eqn. (1)), (x, p)(t), in phase space. (More precisely, by
integral curves of the Hamiltonian vector field in phase space.)

The state of the corresponding quantum system is characterized not by a
point in phase space as in the classical case, but rather by a complex-valued
function  (x) on configuration space. The time-evolution of the state of the
system is then given, not by Eqn. (1) as in the classical case, but rather by the
Schrödinger equation

i~ @
@t
 = H

✓
x,�i~ @

@x

◆
 (2)

where the operator on the right means “at each appearance of p in H, substitute
�i~ @

@x”. (Clearly, this “prescription” may become ambiguous for a su�ciently
complicated classical system.) Thus, the complete dynamical history of the

1



2 1. THE KLEIN-GORDON EQUATION

system is represented by a certain complex-valued function  (x, t) of location in
configuration space and time.

We now attempt to apply this prescription to a free relativistic article of
mass m � 0. The (4-)momentum of such a classical particle, pa, satisfies papa =
m2. (Latin indices represent (4-)vectors or tensors in Minkowski space. We
use signature (+,�,�,�).) Choose a particular unit (future-directed) timelike
vector ta (a “rest frame”), and consider the component of pa parallel to ta,
E = pata, and its components perpendicular to ta, ~p. Then, from papa = m2,
we obtain the standard relation between this “energy” and “3-momentum”:

E =
�
~p · ~p+m2

�
1/2

. (3)

(Here and hereafter, we set the speed of light, c, equal to one.) The plus sign on
the right in Eqn. (3) results from the fact that pa is a future-directed timelike
vector. It seems natural to consider Eqn. (3) as representing the “Hamiltonian”
for a free relativistic particle. We are thus led to consider the dynamical history
of the quantum particle as being characterized by a complex-valued function
�(xa) on Minkowski space (xa represents position in Minkowski space — it
replaces both the “x” and “t” in the Schrödinger theory), satisfying the equation:

i~ @
@t
� =

⇥
�~2r2 +m2

⇤
1/2

� (4)

The first set of di�culties now appear. In the first place, it is not obvious
that Eqn. (4) is in any sense Lorentz invariant - that it is independent of our
original choice of pa. Furthermore, it is not clear what meaning is to be given
to the operator on the right side of Eqn. (4): what does the “square root” of a
di↵erential operator mean? Both of these di�culties can be made to disappear,
after a fashion, by multiplying both sides of Eqn. (4) by another, equally obscure,

operator, i~ @
@t+

⇥
�~2r2 +m2

⇤
1/2

, and expanding using associativity. The result
is the Klein-Gordon equation:

✓
⇤+

m2

~2

◆
� = 0, or

�
⇤+ µ2

�
� = 0 (5)

which is both meaningful and relativistically invariant. (We set µ = m/~.)
We might expect intuitively that the consequence of multiplying Eqn. (4) by
something to get Eqn. (5) will be that the number of solutions of Eqn. (5) will
be rather larger than the number of solutions of Eqn. (4) (whatever that means.)
As we shall see later, this intuitive feeling is indeed borne out.

To summarize, we have decided to describe our quantized free relativistic
particle by a complex-valued function � on Minkowski space, which satisfies
Eqn. (5).

Just for the fun of it, let’s look for a solution of Eqn. (5). We try

� = eika

xa

(6)

where ka is a constant vector field in Minkowski space. Substituting Eqn. (6)
into Eqn. (5), we discover that (6) is indeed a solution provided

kaka = µ2 (7)
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i.e., provided ka is timelike with norm µ.
In the Schrödinger prescription, the wave function  has a definite and simple

physical interpretation:   ⇤ represents the probability contribution for finding
the particle. What is the analogous situation with regard to the solutions of the
Klein-Gordon equation? We know, e.g., from electrodynamics, that what is a
“density” in a nonrelativistic theory normally becomes ”the time-component of
a 4-vector” in a relativistic theory. Thus, to replace “  ⇤”, we are led to look
for some 4-vector constructed out of a solution of the Klein-Gordon equation.
This suggestion is further strengthened by the observation that for a Schrödinger
particle in a potential (so H = (1/2m)p2 + V (x)), we have the equation

@

@t
(  ⇤) = �~r ·


~

2mi

⇣
 ⇤~r �  ~r ⇤

⌘�
(8)

(Proof: evaluate the time-derivatives on the left using (2), and verify that the
result is the same as the expression on the right.) This looks very much like
the nonrelativistic form of the statement that the 4-divergence of some 4-vector
vanishes. Hence, we want to construct some divergence-free 4-vector from solu-
tions of the Klein-Gordon equation. One soon discovers such an object which,
in fact, looks suggestively like the object appearing in Eqn. (8):

Ja =
1

2i
(�⇤ra�� �ra�

⇤) (9)

Note that, because of (5), Ja is divergence-free.
We cannot interpret the “time-component” of Eqn. (9) as a probability den-

sity for the particle unless this quantity is always nonnegative, that is to say,
that Jata � 0 for every future-directed timelike vector ta, that is to say, unless
Ja itself is future-directed and timelike. To see whether this is indeed the case,
we evaluate Ja for the plane-wave solution (Eqn. (6)), and find:

Ja = ka (10)

This expression is indeed timelike, but is not necessarily future-directed:
Eqn. (6) is a solution of the Klein-Gordon equation whether ka is future- or past-
directed. Thus, we have not succeeded in interpreting a solution of the Klein-
Gordon equation in terms of a “probability density for finding the particle.”

We next consider the situation with regard to the initial value problem.
Since the Schrödinger equation is first order in time derivatives, a solution of
that equation is uniquely specified by giving  0(x) at some initial time, say
t = 0. The Klein-Gordon equation, on the other hand, is second order in time
derivatives. Hence, to specify a solution, one must give both � and @�/@t at the
initial time t = 0. This radical change in the structure of the initial data is clearly
a consequence of our having “squared” Eqn. (4). It is still another indication
that the transition to the relativistic case is not just a trivial application of the
Schrödinger prescription.

Finally, let’s look briefly at the structure of the space of solutions of the
Klein-Gordon equation. In the non-relativistic case, the space of solutions of the
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Schrödinger equation is a Hilbert space: it’s obviously a complex vector space,
and we define the norm of the state  by:

k k2 =

Z

t=const.
  ⇤dV (11)

That the real number (11) is independent of the t = const. surface over which
the integral is performed is a consequence of Eqn. (8) (assuming, as one always
does, that  falls o↵ su�ciently quickly at infinity.) One might therefore be
tempted to try to define the norm of a solution of the Klein-Gordon equation as
an integral of Ja Z

S
Jads

a (12)

over a spacelike 3-plane S. But it is clear from (10) that the expression (12) will
not in general be nonnegative. Thus, the most obvious way to make a Hilbert
space out of solutions of the Klein-Gordon equation fails. This, of course, is
rather embarrassing, for we are used to doing quantum theory in a Hilbert
space, with Hermitian operators representing observables, etc.

To summarize, a simple “relativization” of the Schrödinger equations leads
to a number of maladies.



2. Hilbert Space and Operators

The collection of states of a quantum system, together with certain of the struc-
ture naturally induced on this collection, is described by a mathematical object
known as a Hilbert space. We recall the basic definitions.

A Hilbert space consists, first of all, of a set H. Secondly, H has the structure
of an Abelian group. That is to say, given any two elements, ⇠ and ⌘, of H, there
is associated a third element of H, written ⇠ + ⌘, this operation subject to the
following conditions:

H1. For ⇠, ⌘ 2 H, ⇠ + ⌘ = ⌘ + ⇠.

H2. For ⇠, ⌘,� 2 H, (⇠ + ⌘) + � = ⇠ + (⌘ + �).

H3. There is an element of H, written “0”, with the following property: for
each ⇠ 2 H, ⇠ + 0 = ⇠.

H4. If ⇠ 2 H, there exists an element of H, written “�⇠”, with the following
property: ⇠ + (�⇠) = 0.

Furthermore, H has the structure of a complex vector space. That is to say,
with each complex number ↵ and each element ⇠ of H there is associated an
element of H, written ↵⇠, this operation subject to the following conditions:

H5. For ⇠, ⌘ 2 H, ↵ 2 C, ↵(⇠ + ⌘) = ↵⇠ + ↵⌘.

H6. For ⇠ 2 H, ↵,� 2 C, (↵+ �)⇠ = ↵⇠ + �⇠ and (↵�)⇠ = ↵(�⇠).

H7. For ⇠ 2 H, 1⇠ = ⇠.

There is, in addition, a positive-definite inner product defined on H. That is to
say, with any two elements, ⇠ and ⌘, of H there is associated a complex number,
written (⇠, ⌘), this operation subject to the following conditions:

H8. For ⇠, ⌘,� 2 H, ↵ 2 C, (↵⇠ + ⌘,�) = ↵(⇠,�) + (⌘,�).

H9. For ⇠, ⌘ 2 H, (⇠, ⌘) = (⌘, ⇠).

H10. For ⇠ 2 H, with ⇠ 6= 0, (⇠, ⇠) > 0. (That (⇠, ⇠) is real follows from H9.)

5



6 2. HILBERT SPACE AND OPERATORS

We sometimes write k⇠k for
p

(⇠, ⇠). Finally, we require that this structure have
a property called completeness. A sequence, ⇠i (i 2 1, 2, ...), of elements of H is
called a Cauchy sequence if, for every number ✏ > 0, there is a number N such
that k⇠i � ⇠jk < ✏ whenever i and j are greater than N . A sequence is said to
converge to ⇠ 2 H if k⇠ � ⇠jk ! 0 as i ! 1. H is said to be complete if every
Cauchy sequence converges to an element of H.

H11. H is complete.

There are, of course, hundreds of elementary properties of Hilbert spaces which
follow directly from these eleven axioms.

A (linear) operator on a Hilbert space H is a rule A which assigns to each
element ⇠ of H another element of H, written A⇠ , this operation subject to the
following condition:

O1. ⇠, ⌘ 2 H, ↵ 2 C, A(↵⇠ + ⌘) = ↵A⇠ +A⌘.

We shall discuss the various properties and types of operators when they arise.
There is a fundamental di�culty which arises when one attempts to use

this mathematical apparatus in physics. The “collection of quantum states”
which arises naturally in a physical problem normally satisfies H1–H10. (This
is usually easy to show in each case.) The problem is with H11. The most
obvious collection of states often fails to satisfy the completeness condition. As
one wants a Hilbert space, he normally corrects this deficiency by completing the
space, that is, by including additional elements so that all Cauchy sequences will
have something to converge to. (There is a well-defined mathematical procedure
for constructing, from a space which satisfies H1–H10, a Hilbert space.) The
unpleasant consequence of being forced to introduce these additional states is
that the natural operators of the problem, which were defined on the original
collection of states, cannot be defined in any reasonable way on the entire Hilbert
space. Thus, they are not operators at all as we have defined them, for they
only operate on a subset of the Hilbert space. Fortunately, this subset is dense.
(A subset D of a Hilbert space H is said to be dense if, for every element ⇠
of H, there is a sequence consisting of elements of D which converges to ⇠. )
Some very unaesthetic mathematical techniques have been devised for dealing
with such situations. (See Von Neumann’s book on Mathematical Foundations
of Quantum Mechanics.)

This problem is not confined to quantum field theory. It occurs already
in Schrödinger theory. For example, the collection of smooth solutions of the
Schrödinger equation for which the integral (11) converges satisfy H1–H10, but
not H11. To complete this space, we have to introduce “solutions” which are,
for example, discontinuous. How does one apply the Schrödinger momentum
operator to such a wave function?



3. Positive-Frequency Solutions of
the Klein-Gordon Equation

We represent solutions of the Klein-Gordon equation as linear combinations of
plane-wave solutions (Eqn. (6)):

�(x) =

Z

M
µ

f(ka)e
ik

a

xa

dVµ (13)

Of course, we wish to include in the integral (13) only plane-waves which satisfy
the Klein-Gordon equation, i.e., only plane waves whose ka satisfy the normal-
ization condition (7). The four-dimensional (real) vector space of constant vector
fields in Minkowski space-time is called momentum space. The collection of all
vectors ka in momentum space which satisfy Eqn. (7) consists of two hyperbolas
(except in the case µ = 0, in which case the hyperbolas degenerate to the two
null cones through the origin). This collection is called the mass shell (asso-
ciated with µ), Mµ (Fig. 3.1). Thus the function f in (13) is defined only on
the mass shell, and the integral is to be carried out over the mass shell. It is
convenient, furthermore, to distinguish the future mass shell M+

µ (consisting of
future-directed vectors which satisfy (7)) and the past mass shell M�

µ (consisting
of past-directed vectors which satisfy (7)), so Mµ = M+

µ [M�
µ .

Eqn. (13) immediately suggests two questions: i) What are the necessary
and su�cient conditions on the complex-valued function f on Mµ in order that
the integral (13) exist for every xa, and in order that the resulting �(x) be

q 
M 

  M0
+

  M0
−

 
Mµ

+

 
Mµ

−

 
Mµ

+

 
Mµ

+

Figure 3.1: The mass shell in momentum space.
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S A A' 

 
Mµ

+

 t
a

 S

  A '

 A

 
Mµ

+
 
Mµ

+

 
Mµ

+

Figure 3.2: The volume element on the mass shell.

smooth and satisfy the Klein-Gordon equation? ii) What are the necessary and
su�cient conditions on a solution �(x) of the Klein-Gordon equation in order
that it can be expressed in the form (13) for some f? These, of course, are
questions in the theory of Fourier analysis. It su�ces for our purposes, however,
to remark that the required conditions are of a very general character (that
functions not be too discontinuous, and that, asymptotically, they go to zero
su�ciently quickly). The point is that all the serious things we shall do with
the Klein-Gordon equation will be in momentum space. We shall use Minkowski
Space and �(x) essentially only to motivate definitions and constructions on the
f ’s in momentum space.

One question regarding (13) which must be answered is what is the volume
element dVµ we are using on the mass shell. Of course, it doesn’t make any
real di↵erence, for a change in the choice of volume element would merely result
in a suitable readjustment of the f ’s. Our choice can therefore be dictated by
convenience. We require that our volume element be invariant under Lorentz
transformations on momentum space (note that these leave the mass shell in-
variant), and that it be applicable also in the case µ = 0. It is easy to state an
appropriate volume element in geometrical terms. Let µ > 0. Then the mass
shell is a spacelike 3-surface in momentum space, in which there is a metric, so a
metric is induced on Mµ. A metric on this 3-manifold defines a volume element
dṼµ. This dṼµ is clearly Lorentz-invariant, but, unfortunately, it approaches
zero as µ ! 0. To correct this, we define

dVµ = µ�1dṼµ (14)

which is easily verified to he nonzero also on the null cone. In more conventional
terms, our volume-element can be described as follows. Choose a unit time-like
vector ta in momentum space, and let S be the spacelike 3-plane perpendicular
to ta. Then any small patch A on Mµ, located at the point ka, can be projected
along ta to give a corresponding patch A0 on S (see Fig. 3.2.) Let dV 0

µ be the
volume of A0 on S (using the usual volume element in the 3-space S). Our
volume element on Mµ is then given by the following expression:

dVµ = dV 0
µ|taka|�1 (15)

The existence of a limit as µ ! 0 is clear from (15), but Lorentz-invariance
(independence of the choice of ta) is not.
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Is there any “gauge” in f? Given a solution �(x) of the Klein-Gordon equa-
tion, is f uniquely determined by (13)? The only arbitrary choice which was
made in writing (13) was the choice of an origin: “xa” refers to the position
vector of a point in Minkowski space with respect to a fixed origin. We are thus
led to consider the behavior of the f ’s under origin changes. Let O and O0 be
two origins, and let va be the position vector of O0 relative to O (see Fig. 3.3.)
Let the position vectors of a point p in Minkowski space with respect to 0 and

object 

ξ�  

object 

s 

θ 

xa 

O' O va 

x'a 

P 

Figure 3.3: Illustration of vectors in Minkowski space.

O0 be xa and x0a, respectively, whence

x0a = xa � va (16)

Then, if f and f 0 are the Fourier transforms of � with respect to the origins O
and O0, respectively, we have

�(p) =

Z

M
µ

feika

xa

dVµ =

Z

M
µ

f 0eika

x0a
dVµ (17)

Clearly, we must have
f 0(k) = f(k)eika

va

(18)

Thus, when we consider states as represented by functions on the mass shell, it
is necessary to check that conclusions are unchanged if (18) is applied simulta-
neously to all such functions.

Now look again at Eqn. (3). It says, in particular, that the energy-momen-
tum vector is future-directed. This same feature shows up in the right side of
Eqn. (4) by the plus sign. If this sign were replaced by a minus, we would be deal-
ing with a past-directed energy-momentum vector. The trick we used to obtain
Eqn. (5) from (4) amounted to admitting also past-directed energy-momenta.
It is clear now how Eqn. (4) itself can be carried over into a well-defined and
fully relativistic condition on �. We merely require that the f of Eqn. (13) van-
ish on M�

µ . We call the corresponding solutions of the Klein-Gordon equation
positive-frequency (or positive-energy) solutions. Defining negative-frequency so-
lutions analogously, it is clear that every solution of the Klein-Gordon equation
(more precisely, every solution which can be Fourier-analyzed) can be written
uniquely as the sum of a positive-frequency and a negative-frequency solution.
The positive-frequency solutions (resp., negative-frequency solutions) form a vec-
tor subspace of the vector space of all (Fourier analyzable) solutions.

To summarize, we are led to take as the “wave function of a free relativistic
(spin zero) particle” a positive-frequency solution of the Klein-Gordon equation.
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To what extent does this additional condition take care of the di�culties we
discovered in Sect. 1?

Consider first the current, Eqn. (9). We saw before, from the example of
a negative-frequency plane wave, that in general J is neither future-directed
or even timelike. Is it true that J is future-directed timelike for a positive-
frequency solution of the Klein-Gordon equation? Unfortunately, the answer is
no. Consider a linear combination of two positive-frequency plane waves:

� = eika

xa

+ ↵eik
0
a

xa

(19)

That is, ↵ is a complex constant, and ka and k0a are future-directed constant
vectors satisfying (7). (Strictly speaking, this example is not applicable, for (19)
cannot be Fourier analyzed. It is not di�cult, however, to appropriately smear
(19) over the future mass shell to obtain an example without this deficiency.)
Substituting (19) into (9), we obtain:

Ja =
1

2
ka

h
2 + ↵ei(k

0
b

�k
b

)xb

+ ↵⇤ei(kb

�k0
b

)xb

i

+
1

2
k0a

h
2↵↵⇤ + ↵ei(k

0
b

�k
b

)xb

+ ↵⇤ei(kb

�k0
b

)xb

i (20)

Clearly, one can choose ↵, ka, and k0a so that this Ja is not timelike in certain re-
gions. Thus, even the assumption of positive-frequency solutions does not resolve
the di�culty associated with not having a simple probabilistic interpretation for
our wavefunction �: we still cannot think of Jata (with ta unit, future-directed,
timelike) as representing a probability density for finding the particle. The res-
olution of this problem must await our introduction of a position operator.

Note from Eqn. (20) that Ja is trying very hard to be timelike and future-
directed in the positive-frequency case: it is only the cross terms between the
two plane waves which destroys this property. This observation suggests that, in
the positive-frequency case, the integral of Ja over a spacelike 3-plane might be
positive. In order to check on this possibility, we want to rewrite the integral of
Ja in terms of the corresponding function f on Mµ. It will be more illuminating
to do this for the general solution � of the Klein-Gordon equation, i.e., not
assuming, for the time being, that � is positive-frequency. Substituting (13)
into (9):

Ja =

Z

M
µ

dVµ

Z

M
µ

dV 0
µ
1

2
k0a⇥

⇥
h
f⇤(k)f(k0)ei(k

0
b

�k
b

)xb

+ f(k)f⇤(k0)ei(kb

�k0
b

)xb

i (21)

We now let S be a spacelike 3-plane through the origin, and let ta be the unit,
future-directed normal to S. Then

Z

S
Jat

a dS =

Z

M
µ

dVµ

Z

M
µ

dV 0
µ
1

2
k0at

a


f⇤(k)f(k0)

Z

S
ei(k

0
b

�k
b

)xb

dS

+f(k)f⇤(k0)

Z

S
ei(kb

�k0
b

)xb

dS

� (22)
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But, from the theory of Fourier analysis
Z

S
ei(k

0
b

�k
b

)xb

dS = (2⇡)3|taka|�1�(k � k0) (23)

and so (22) becomes

Z

S
Jat

a dS = (2⇡)3
"Z

M+
µ

ff⇤ dVµ �
Z

M�
µ

ff⇤ dVµ

#
(24)

In particular, if f vanishes on M�
µ , the left side of (24) must be positive, or

vanishes if and only if � vanishes. (The actual form of (24) was rather suggested
by Eqn. (15). If we had omitted the absolute-value sign on the right (and what
better thing could be done with an absolute-value sign?), the “volume element”
on M�

µ would have been negative.) This calculation was not done merely for
idle curiosity; the right side of (24) will be important later.

We saw before that the initial-value problem for the Klein-Gordon equation
is as follows: one must specify � and tara� on an initial spacelike 3-plane. How
does the initial-value problem go for positive-frequency solutions of the Klein-
Gordon equation? In fact, we only have to specify � as initial data in this case.
To see this, suppose we know the value of the integral

�(x) =

Z

M+
µ

f(k)eika

xa

dVµ (25)

for every xa which is perpendicular to a unit timelike vector ta at the origin
(i.e., on the spacelike 3-plane perpendicular to ta, through the origin). The
integral (25) can certainly be expressed as a Fourier integral over S (ta sets
up a one-to-one correspondence between M+

µ and S). But then, by taking a
Fourier transform, we can determine f on M+

µ . Thus, we know � throughout
Minkowski space. That is to say, when we properly interpret (4), we obtain a
“Schrödinger-type” initial-value problem. If we ignore questions of smoothness
and convergence of Fourier integrals, the situation can be roughly summarized
as follows:

1. There is a one-to-one correspondence between: i) solutions of the Klein-
Gordon equation, ii) complex-valued functions f on Mµ, and iii) values of
� and tara� on a spacelike 3-plane.

2. There is a one-to-one correspondence between: i) positive-frequency solu-
tions of the Klein-Gordon equation, ii) complex-valued functions on M+

µ ,
and iii) values of � on a spacelike 3-plane.
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4. Constructing Hilbert Spaces
and Operators

There is a general and extremely useful technique for obtaining a Hilbert space
along with a collection of operators on it. It is essentially this technique which
is used, for example, in treating the Schrödinger and Klein-Gordon equations.
It is convenient, therefore, to describe this construction, once and for all, in a
general case. Special cases can then be treated as they arise.

The fundamental object we need is some n-dimensional manifold M on
which there is specified a smooth, nowhere-vanishing volume-element dV . In
di↵erential-geometric terms, this means that we have a smooth, nowhere-vani-
shing, totally skew tensor field ✏a1···an

on M . Our Hilbert space, and operators,
are now defined in terms of certain fields on M .

We first define the Hilbert space. Consider the collection H of all complex-
valued, measurable, square-integrable functions f on M . This H is certainly a
complex vector apace. We introduce a norm on H:

kfk2 =

Z

M
ff⇤ dV (26)

It is known that this H thus becomes a Hilbert space. (Actually, we have
been a little sloppy here. One should, more properly, define an equivalence
relation on H: two functions are equivalent if they di↵er only on a subset (of
M) of measure zero. It is the equivalence classes which actually form a Hilbert
space. For example, the function f which vanishes everywhere on M except one
point, where it is one, is measurable and square-integrable. Its norm, (26), is
zero, although this f is not the zero element of H. It is, however, in the zero
equivalence class, for it di↵ers from the zero function only on a set (namely, one
point) of measure zero.) This is a special case of a more general theorem: the
collection of all complex-valued, measurable, square-integrable functions (more
precisely, the collection of equivalence classes as above) on a complete measure
space form a Hilbert space.

We now introduce some operators. Let va be any smooth (complex) con-
travariant vector field, and v any smooth (complex) scalar field on M . Then
with each smooth, complex-valued function f on M we may associate the func-
tion

V f = varaf + vf (27)

13
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where ra denotes the gradient on M . To what extent does (27) define an
operator on H? Unfortunately, (27) is not applicable to every element of H,
for two reasons: i) a function f could be measurable and square-integrable (i.e.,
an element of H), but not di↵erentiable. Then the gradient operation in (27)
would not be defined. ii) an element f of H could even be smooth, but could
have the property that, although f itself is square-integrable, the function (27)
is not. However, there is a large class of elements of H on which (27) is defined
and results in an element of H. Such a class, for example, is the collection of
all functions F which are smooth and have compact support. (Such a function
is automatically square-integrable and measurable.) This class is, in fact, dense
in H. Clearly, (27) is linear whenever it is defined. Thus, we can call (27) an
“operator on H”, in the sense that we have agreed to abuse that term.

We agree to call an operator Hermitian if, whenever V f and V g are defined,
(V f, g) = (f, V g). What are the necessary and su�cient conditions that (27) be
Hermitian? Let f and g be smooth functions on M , of compact support. Then:

(V f, g) =

Z

M
(varaf + vf)g⇤ dV

=

Z

M
[�fvarag

⇤ + fg⇤(�rav
a + v)] dV

(28)

where we have done an integration by parts (throwing away a surface term by
the compact supports). Eqn. (28) is clearly equal to

(f, V g) =

Z

M
[fv⇤arag

⇤ + fv⇤g⇤] dV (29)

for every f and g when and only when:

v⇤a = �va v � v⇤ = rav
a (30)

These, then, are the necessary and su�cient conditions that V be Hermitian.
One further remark is required with regard to what the divergence in the first
Eqn. (30) is supposed to mean. (We don’t have a metric, or a covariant deriva-
tive, defined on M .) It is well-known that the divergence of a contravariant
vector field can be defined on a manifold with a volume-element ✏a1···an

. This
can be done, for example, using either exterior derivatives or Lie derivatives.
For instance, using Lie derivatives we define “rava” by:

Lvm✏a1···an

= (rav
a)✏a1···an

(31)

(Note that, since the left side is totally skew, it must be some multiple of ✏a1···an

.)
Finally, we work out the commutator of two of our operators; V = (va, v)

and W = (wa, w). If f is a smooth function of compact support, we have:

[V,W ]f = (vara + v)(wbrb + w)f � (wbrb + w)(vara + v)f

= (vbrbw
a � wbrbv

a)raf + (varaw � warav)f
(32)
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Note that the commutator is again an operator of the form we have been dis-
cussing, (27). Note furthermore that the vector part of the commutator is the
Lie bracket of the vector fields appearing in V and W .

To summarize, with any n-manifold M on which there is given a smooth,
nowhere-vanishing volume element we associate a Hilbert space H along with a
collection of operators on H. The commutator of two operators in this collection
is again an operator in the collection.
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5. Hilbert Space and Operators for
the Klein-Gordon Equation

We now complete our description of the quantum theory of a free, relativistic,
spin-zero particle.

For our Hilbert space we take, as suggested by Sec. 3, the collection of
all complex-valued, measurable, square-integrable functions on the future mass
shell, M+

µ . In order to obtain position, momentum, energy, etc. operators, we
use the scheme described in Sec. 4. That is, we look for vector and scalar fields
on M+

µ .
We first consider momentum operators. Let pa be any constant vector field

in Minkowski apace, and � any positive-frequency solution of the Klein-Gordon
equation. Then, clearly,

~
i
para� (33)

is also a positive-frequency solution of the Klein-Gordon equation. In terms of
the corresponding functions on M+

µ , (33) takes the form

f ! (~paka)f (34)

That is to say, we multiply f by the real function (~paka) on M+

µ . Thus, for
each constant vector field pa, we have an operator, P (pa), on our Hilbert space
H. Since the multiplying function in (34) is real, the operators P (pa) are all
Hermitian. (See (30).) We now interpret these operators. Choose a constant,
unit, future-directed timelike vector field ta in Minkowski space (a preferred
“state of rest”). Then P (ta) is the “energy” operator, and P (pa), with pa unit
and perpendicular to ta, is the “component of momentum in the pa-direction”
operator.

The position operators are more complicated. Not only do they depend on
more objects in Minkowski space (rather than just a single pa as in the momen-
tum case), but also they require us to take derivatives in the mass shell. To
obtain a position operator, we need the following information: a choice of origin
O in Minkowski space, a constant, unit, future-directed timelike vector field ta

in Minkowski space, and a constant unit vector field qa which is perpendicular
to ta. (Roughly speaking, O and ta define a spacelike 3-plane — the “instant”
at which the operator is to be applied — qa defines “which position coordinate
we’re operating with”, and O tells us what the origin of this position coordinate

17
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is.) Now, qa is a vector in momentum space, and therefore defines a constant
vector field in momentum space, which we also write as qa. One is tempted to
take the derivative of f along this vector field. But this will not work, for qa is
not tangent to the mass shell, whereas f is only defined on the mass shell. To
correct this deficiency, we project qa into the mass shell — that is, we add to qa

that multiple of ta which results in a vector field lying in M+

µ :

� 1

i

⇥
qa � ta(tbkb)

�1(qckc)
⇤

(35)

We now have a vector field on M+

µ , and therefore an operator on our Hilbert
space H. But are those operators Hermitian? From (30), we see that this
question reduces to the question of whether the divergence of (35) vanishes or
not. Unfortunately, we obtain for this divergence

� 1

i

�
gab � µ�2kakb

�
@a

⇥
qb � tb(tckc)

�1(qdkd)
⇤
= �1

i
(qaka)(t

bkb)
�2 (36)

where we have denoted the derivative in momentum space by @a. To obtain a
Hermitian operator, we take the Hermitian part of the operator represented by
(35):

f ! �1

i

⇥
qa � ta(tbkb)

�1(qckc)
⇤
@af � 1

2i
(qaka)(t

bkb)
�2 (37)

In (37), f is to be the function on M+

µ obtained using O as the origin (see (18).)
(Why is there no ~ in (37)? We should, perhaps, have called k-space “wave
number and frequency space” rather than “momentum space”.) We shall write
the operator (37) X(O, ta, qa). For any value of its arguments, X is a Hermitian
operator on H. (It is strange — and perhaps rather unpleasant — that the
position and momentum operators are so di↵erent from each other.)

We now have a lot of operators, and so we can ask for their commutators.
This is easily done by substituting into our explicit formula, Eqn. (32). The
result is the standard formulae:

⇥
P (pa), P (p0

a
)
⇤
= 0

⇥
X(O, ta, qa), X(O, ta, q0

a
)
⇤
= 0

[P (pa), X(O, ta, qa)] = �i~(paqa)
(pata) = 0

(38)

The next thing one normally does with operators (in the Heisenberg repre-
sentation, which is the one we’re using) is to work out their time derivatives.
For the momentum operators, this is easy, for no notion of a “time” was used to
define P (pa)). Thus, whatever reasonable thing one wants to mean by a “ ˙ ”,
we have:

Ṗ (pa) = 0 (39)

This, of course, is what we expect for the momentum operator on a free particle.
For the position operators, on the other hand, we have an interesting notion
of time-derivative. We want to compare X(O, ta, qa) with “the same position
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operator at a slightly later time”. This “at a slightly later time” is expressed by
slightly displacing O in the ta-direction. Thus, we are led to define:

Ẋ(O, ta, qa) = lim
✏!0

1

✏
[X(O0, ta, qa)�X(O, ta, qa)] (40)

where O0 is defined by the property that its position vector relative to O is ✏ta.
It is straightforward to check, with this definition, that

Ẋ(O, ta, qa)f = �(qaka)(t
bkb)

�1f (41)

which, of course, is what we expected. Note that a number of statements about
how X(O, ta, qa) depends on its arguments follow directly from Eqn. (41).

Finally, one would like to ask about the eigenvectors and eigenvalues of our
operators. It is clear from Eqn. (34) that the only candidate for an eigenfunc-
tion of P (pa) would be a �-function on M+

µ . Of course, a �-function is not a
function, and hence not an element of H (we cannot enlarge H to include such
functions, if we want to keep a Hilbert space, for a �-function should not be
square-integrable.) It is convenient to have the idea, however, that if P (pa) had
eigenfunctions, they would be plane-waves. We next ask for eigenfunctions of
X(O, ta, qa). We look for the wave function of a “particle localized at the ori-
gin”, that is we look for an f such that X(O, ta, qa)f = 0 for every qa which is
perpendicular to ta (ta and O fixed). That is, from (37), we require that

⇥
qa � ta(tbkb)

�1(qckc)
⇤
@af � 1

2
(qaka)(t

bkb)
�2f = 0 (42)

for every such qa. The solution to (42) is:

f = const. (taka)
1/2 (43)

The first remark concerning (43) is that it is not square-integrable, and hence
does not represent an element of H. This does not stop us, however, from
substituting (43) into (13) to obtain a function � on Minkowski space. The
resulting � (the explicit formula is not very enlightening — it involves Hankel
functions) is not a �-function at O. In fact, this � is “spread out” around O to
distances of the order of µ�1 — the Compton wavelength of our particle. Thus,
our picture is that a relativistic particle cannot be confined to distances much
smaller than its Compton wavelength.
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6. The Direct Sum of Hilbert
Spaces

Associated with any countable sequence, H 0, H 00, H 000, . . ., of Hilbert spaces there
is another Hilbert space, written H 0 �H 00 �H 000 � . . ., and called the direct sum
of H 0, H 00, H 000, . . .. We shall give the definition of the direct sum and a few of
its elementary properties.

Consider the collection of all sequences

(⇠0, ⇠00, ⇠000, . . .) (44)

consisting of one element (⇠0) of H 0, one element (⇠00) of H 00, etc., for which the
sum

k⇠0k2 + k⇠00k2 + k⇠00k2 + . . . (45)

converges. This collection is the underlying point set of the direct sum. To
obtain a Hilbert space, we must define addition, scalar multiplication, and an
inner product, and verify H1–H11.

The sum of two sequences (44) is defined by adding them “component-wise”:

(⇠0, ⇠00, ⇠000, . . .) + (⌘0, ⌘00, ⌘000, . . .) = (⇠0 + ⌘0, ⇠00 + ⌘00, ⇠000 + ⌘000, . . .) (46)

We must verify that, if the addends satisfy (45), then so does the sum. This
follows immediately from the inequality:

k⇠0 + ⌘0k2 = k⇠0k2 + (⇠0, ⌘0) + (⌘0, ⇠0) + k⌘0k2

 k⇠0k2 + 2k⇠0kk⌘0k+ k⌘0k2

 2k⇠0k2 + 2k⌘0k2
(47)

The product of a sequence (44) and a complex number ↵ is defined by:

↵(⇠0, ⇠00, ⇠000, . . .) = (↵⇠0,↵⇠00,↵⇠000, . . .) (48)

That the right side of (48) satisfies (45) follows from the fact that

k↵⇠0k = |↵|k⇠0k (49)

We have now defined addition and scalar multiplication. That these two opera-
tions satisfy H1–H7, i.e., that we have a complex vector space, is trivial.

21
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We define the inner product between two sequences (44) to be the complex
number

((⇠0, ⇠00, ⇠000, . . .), (⌘0, ⌘00, ⌘000, . . .)) = (⇠0, ⌘0) + (⇠00, ⌘00) + (⇠00, ⌘00) + . . . (50)

The indicated sum of complex numbers on the right of (50) converges if (in fart,
converges absolutely if and only if) the sum of the absolute values converges.
Thus, the absolute convergence of the right side of (50) follows from the fact
that

|(⇠0, ⌘0)|  k⇠0k  1

2
k⇠0k2 + 1

2
k⌘0k2 (51)

We now have a complex vector space in which there is defined an inner product.
(Note incidentally, that the norm is given by (45).) The verification of H8, H9,
and H10 is easy.

Thus, as usual, the only di�cult part is to check H11. Consider a Cauchy
sequence of sequences (44). That is to say, we have a countable collection of
such sequences,

�
1

= (⇠0
1

, ⇠00
1

, ⇠000
1

, . . .)

�
2

= (⇠0
2

, ⇠00
2

, ⇠000
2

, . . .)

�
3

= (⇠0
3

, ⇠00
3

, ⇠000
3

, . . .)

...

(52)

with the following property: for each real ✏ > 0 there is a number N such that

k�i � �jk2 = k⇠0i � ⇠0jk2 + k⇠00i � ⇠00j k2 + · · ·  ✏ (53)

whenever i, j � N . We must show that the sequence of elements (52) of the
direct sum converge to some element of the direct sum. First note that (53)
implies

k⇠0i � ⇠0jk2  ✏, k⇠00i � ⇠00j k2  ✏, . . . (54)

That is to say, the first “column” of (52) is a Cauchy sequence in H 0, the second
column a Cauchy sequence in H 00, etc. Since H 0, H 00, . . . are Hilbert spaces, these
Cauchy sequences converge, say, to ⇠0 2 H 0, ⇠00 2 H 00, etc. Form

� = (⇠0, ⇠00, ⇠000, . . .) (55)

We must show that the �i converge to �, and that is � is an element of the
direct sum (i.e., that (45) converges for �). Fix ✏ � 0 and choose i such that
k�i � �jk2  ✏ whenever j > i. Then, for each positive integer n,

k⇠0i � ⇠0jk2 + k⇠00i � ⇠00j k2 + . . .+ k⇠(n)i � ⇠(n)j k2  ✏ (56)

Taking the limit of (56) as j ! 1, we obtain

k⇠0i � ⇠0k2 + k⇠00i � ⇠00k2 + . . .+ k⇠(n)i � ⇠(n)k2  ✏ (57)



23

but n is arbitrary, and so, taking the limit of (57) as n ! 1,

k�i � �k2 = k⇠0i � ⇠0k2 + k⇠00i � ⇠00k2 + . . .  ✏ (58)

That is to say, the �i converge to �. Finally, the fact that � is actually an
element of the direct sum, i.e., the fact that

k⇠0k2 + k⇠00k2 + k⇠00k2 + . . . (59)

converges, follows immediately by substituting

k⇠0k2  2k⇠0ik2 + 2k⇠0i � ⇠0k2 (60)

(and the corresponding expressions with more primes) into (59), and using (58)
and the fact that �i is an element of the direct sum. Thus, the direct sum is
complete.

To summarize, we have shown how to construct a Hilbert space from a count-
able sequence of Hilbert spaces. Note, incidentally, that the direct sum is es-
sentially independent of the order in which the Hilbert spaces are taken. More
precisely, the direct sum obtained by taking H 0, H 00, . . . in one order is naturally
isomorphic to the direct sum obtained by taking these spaces in any other order.

Finally, we discuss certain operators on the direct sum. Consider a sequence
of operators: A0 acting on H 0, A00 acting on H 00, etc. Then with each element
(44) of the direct sum we may associate the sequence

(A0⇠0, A00⇠00, A000⇠000, . . .) (61)

Unfortunately, (61) may not be an element of the direct sum, for

kA0⇠0k2 + kA00⇠00k2 + kA000⇠000k2 + . . . (62)

may fail to converge. However, (61) will produce an element of the direct sum
when acting on a certain dense subset of the direct sum, namely, the set of
sequences (44) which consist of zeros after a certain point. Is there any condition
on the A’s which will ensure that (61) will always be an element of the direct
sum? An operator A on a Hilbert space H is said to be bounded if A is defined
everywhere and, for some number a, kA⇠k  ak⇠k for every ⇠ 2 H. The smallest
such a is called the bound of A, written |A|. (The norm on a Hilbert space
induces on it a metric topology. Boundedness is equivalent to continuity in
this topology.) It is clear that (62) converges for every element of the direct
sum provided i) all the A’s are bounded, and ii) the sequence of real numbers
|A0|, |A00|, . . . is bounded.
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7. The Completion of an
Inner-Product Space

It is sometimes the case, when one wishes to construct a Hilbert space, that
one finds a set on which addition, scalar multiplication, and an inner product
are defined, subject to H1–H10 — what we shall call an inner product space.
One wants, however, to obtain a Hilbert space, i.e., something which also satisfies
H11. There is a construction for obtaining a Hilbert space from an inner product
space. Since this construction is in most textbooks, we merely indicate the
general idea.

Let G be an inner product space. Denote by G0 the collection of all Cauchy
sequences in G0. If ⇠i 2 G0, ⌘i 2 G0 (i = 1, 2, . . .), we write ⇠i ⇡ ⌘i provided

lim
i!1

k⇠i � ⌘ik = 0 (63)

One verifies that “⇡” is an equivalence relation. The collection of equivalence
classes, denoted by G, is to be made into a Hilbert space.

Consider two elements of G, i.e., two equivalence classes, and let ⇠i and ⌘i
be representatives. We define a new sequence, whose ith element is ⇠i + ⌘i.
One verifies, using the fact that ⇠i and ⌘i, are Cauchy sequences, that this new
sequence is also Cauchy. Furthermore, if ⇠i and ⌘i are replaced by equivalent
Cauchy sequences, the sum becomes a Cauchy sequence which is equivalent to
⇠i + ⌘i. Thus, we have defined an operation of addition in G. In addition, if
⇠i is a Cauchy sequence and ↵ a complex number, ↵⇠i is a Cauchy sequence
whose equivalence class depends only on the equivalence class of ⇠i. We have
thus defined an operation of scalar multiplication in G. These two operations
satisfy H1–H7.

If ⇠i 2 G0, ⌘i 2 G0, then

lim
i!1

(⇠i, ⌘i) (64)

exists. Furthermore, this complex number is unchanged if ⇠i and ⌘i are replaced
by equivalent Cauchy sequences. Thus, (64) defines an inner product on G. One

must now verify H8, H9, and H10, so that G becomes an inner product space.
Finally (and this is the only hard part), one proves that G is complete, and so

constitutes a Hilbert space. The Hilbert space G is called the completion of the
inner product space G.
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Note that G can be considered as a subspace of its completion; with each
⇠ 2 G associate the element of G (the equivalence class) containing the Cauchy
sequence ⇠i = ⇠ of G. It is easily checked from the definition, in fact, that G is
dense in G. Suppose that G itself were already complete? Then every Cauchy
sequence in G would converge, and, from (63), two Cauchy sequences would be
equivalent if and only if they converged to the same thing. Thus, in this case
G would be just another copy of G; the completion of a complete space is just
that space again.

Finally, suppose that A is a bounded operator on the inner product space
G. Then A can be extended to a bounded operator on G. That is, there is a
bounded operator on G which reduces to A on G considered as a subspace of G.
To prove this, let ⇠i be a Cauchy sequence in G. Then, since A is bounded,

kA⇠i �A⇠jk = kA(⇠i � ⇠j)k  |A|k⇠i � ⇠jk (65)

whence A⇠i is a Cauchy sequence in G. Furthermore, if two Cauchy sequences
satisfy (63), then

lim
i!1

kA⇠i �A⌘ik  |A| lim
i!1

k⇠i � ⌘ik = 0 (66)

That is to say, A⇠i is replaced by an equivalent Cauchy sequence when ⇠i is.
Therefore, we can consider A as acting on elements of G to produce elements
of G. This action is clearly linear, and so we have an operator A defined on G.
Furthermore, this A is bounded, and in fact |A| = |A|, for

lim
i!1

kA⇠ik  |A| lim
i!1

k⇠ik (67)

for any Cauchy sequence in G.



8. The Complex-Conjugate
Space of a Hilbert Space

Let H be a Hilbert space. We introduce the notion of the complex-conjugate
space of H, written H̄. As point-sets, H = H̄. That is to say, with each element
⇠ 2 H there is associated an element of H̄; this element will be written ⇠̄.
Furthermore, we take as the group structure on H̄ that is induced from H:

⇠̄ + ⌘̄ = (⇠ + ⌘) (68)

In other words, the sum of two elements of H̄ is defined by taking the sum (in
H) of the corresponding elements of H, and taking the result back to H̄. Scalar
multiplication in H, on the other hand, is defined by the formula (µ 2 C, ⇠̄ 2 H̄):

µ⇠̄ = (µ̄⇠) (69)

That is, to multiply an element of H̄ by a complex number, one multiplies the
corresponding element of H by the complex-conjugate of that number, and takes
the result back to H̄. (Note that a bar appears in two di↵erent senses in (69). A
bar over a complex number denotes its complex-conjugate; a bar over an element
of H denotes the corresponding element of H̄.) Finally, the inner product on H̄
is fixed by requiring that the transition from H to H̄ preserve norms:

k⇠̄k = k⇠k (70)

It is obvious that this H̄ thus becomes a Hilbert space.
Note that the complex-conjugate space of H̄ is naturally isomorphic with H.

We write ¯̄H = H, and, for ⇠ 2 H, ¯̄⇠ = ⇠.
The reason for introducing H̄ is that one frequently encounters mappings

on H which are anti-linear (T (µ⇠ + ⌘) = µ̄T (⇠) + T (⌘)) rather than linear
(T (µ⇠+⌘) = µT (⇠)+T (⌘)). Anti-linear mappings on H become linear mappings
on H̄, and it is easier to think about linear mappings than anti-linear ones.
Consider, for example, the inner product on H, (⇠, ⌘). This can be considered
as a mapping H ⇥H ! C, which is linear in the first H and anti-linear in the
second. If, however, we consider the inner product as a mapping H ⇥ H̄ ! C,
it becomes linear in both factors.
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9. The Tensor Product of
Hilbert Spaces

With any finite collection of Hilbert spaces, H↵, H� , . . . , H� , there is associated
another Hilbert space, called the tensor product of H↵, H� , . . ., H� , and written
H↵ ⌦H� ⌦ · · ·⌦H� . We shall define the tensor product and derive a few of its
properties.

It is convenient to introduce an index notation. We attach a raised Greek
index to a vector to indicate to which Hilbert space it belongs, e.g., ⇠↵ 2 H↵,
⌘� 2 H� . The corresponding complex-conjugate spaces, H↵, H� , . . . , H� , will
be written H̄↵, H̄� , . . . , H̄� . Membership in the complex-conjugate spaces will
be indicated with a lowered Greek index. The element of H̄↵ which corresponds
to ⇠↵ 2 H↵ would be written ⇠̄↵, while (69) would be written thus: µ⇠̄↵ = (µ̄ ⇠↵).
Finally, the operation of taking the inner product (which associates a complex
number, linearly, with an element of H and an element of H̄) is indicated by
placing the two elements next to each other, e.g., ⇠↵⌘̄↵. Hence, k⇠↵k2 = ⇠↵⇠̄↵.
The inner product operation looks (and is) similar to “contraction.”

We now wish to define the tensor product. In order to avoid cumbersome
strings of dots, we shall discuss the tensor product of just two Hilbert spaces, H↵

and H� . The tensor product of n Hilbert spaces is easily obtained by inserting
dots at appropriate places in the discussion below.

Consider the collection of all formal expressions of the following type:

⇠↵⌘� + . . .+ �↵⌧� (71)

“Formal” here means that the pluses and juxtapositions of elements in (71) are
not to be considered, for the moment, as well-defined operations. They are
merely marks on the paper. We introduce, on the collection of all such formal
sums, an equivalence relation: two formal sums will be considered equivalent
if they can be obtained from each other by any combination of the following
operations on such sums:

1. Permute, in any way, the terms of a formal sum.

2. Add to a formal sum, or delete, the following combination of terms: (µ⇠↵)⌘�+
(�⇠↵)(µ�1⌘�).

3. Add to a formal sum, or delete, the following combination of terms: (⇠↵+
�↵)⌘� + (�⇠↵)⌘� + (��↵)⌘� .
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4. Add to a formal sum, or delete, the following combination of terms: ⇠↵(⌘�+
⌧�) + ⇠↵(�⌘�) + ⇠↵(�⌧�).

We denote the collection of equivalence classes by F↵� . The idea is to intro-
duce on this F↵� the structure of an inner-product space, and then take the
completion to obtain the tensor product.

We add two formal sums by “stringing them together”:

(⇠↵⌘� + . . .+ �↵⌧�) + (�↵ � + . . .+ �↵�) =

= ⇠↵⌘� + . . .+ �↵⌧� + �↵ � + . . .+ �↵�
(72)

The equivalence class of the formal sum on the right in (72) depends, of
course, only on the equivalence classes of the two formal sums on the left, and
so we have defined an operation of addition on F↵� . Similarly, the product of a
format sum and a complex number, defined by

µ(⇠↵⌘� + . . .+ �↵⌧�) = (µ⇠↵)⌘� + . . .+ (µ�↵)⌧� (73)

induces an operation of scalar multiplication on F↵� . (Note that we don’t change
the equivalence class of the right side of (73) by placing some or all of the µ’s with
the second vectors rather than the first.) Thus, we have on F↵� the structure of a
complex vector space. So far, we have merely repeated the standard construction
of the tensor product of two vector spaces.

We next wish to define an inner product, or, equivalently, a norm, on F↵� .
The norm of a formal sum, Eqn. (71), is defined by writing

(⇠↵⌘� + · · ·+ �↵⌧�)(⇠̄↵⌘̄� + · · ·+ �̄↵⌧̄�) (74)

and expanding using associativity. For example, the norm of a formal sum with
just two terms would be given by the sum of the complex numbers on the right
of:

(⇠↵⌘� + �↵⌧�)(⇠̄↵⌘̄� + �̄↵⌧̄�)

= (⇠↵⇠̄↵)(⌘
� ⌘̄�) + (�↵⇠̄↵)(⌧

� ⌘̄�) + (⇠↵�̄↵)(⌘
� ⌧̄�) + (�↵�̄↵)(⌧

� ⌧̄�)
(75)

This norm clearly depends only on the equivalence class of the formal sum, and
so defines a norm, and hence an inner product on F↵� . This inner product on
F↵� certainly satisfies H8 and H9 — but does it satisfy also H10? To show that
it does involves a bit more work. A formal sum will be said to be in normal form
if any two elements of H↵ appearing in that sum are either proportional to each
other (parallel) or have vanishing inner product with each other (perpendicular)
and if, furthermore, any two elements of H� appearing in that sum are also
either parallel or perpendicular, and if, finally, no two terms in that sum have
the property that both their H↵ elements and their H↵ elements are parallel.
(This last condition can always be achieved by combining terms.) The norm of
a formal sum in normal form is clearly positive. For example, if Eqn. (71) were
in normal form, its norm would be

��⇠↵⌘� + . . .+ �↵⌧�
��2 = (⇠↵⇠̄↵)(⌘

� ⌘̄�) + . . .+ (�↵�̄↵)(⌧
� ⌧̄�) (76)
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Thus, the proof that the norm we have defined on F↵� is positive-definite will
be complete if we can show that every formal sum is equivalent to a formal sum
in normal form. The essential step in this demonstration is the Gram-Schmidt
orthogonalization procedure. Let ⇠, ⌘

1

, . . . , ⌘n be elements of a Hilbert space H.
Then

⇠ = µ
1

⌘
1

+ · · ·+ µn⌘n + ⌧ (µi 2 C, (⌘i, ⌧) = 0) (77)

That is to say, any vector in H can be written as a linear combination of
⌘
1

, . . . , ⌘n, plus a vector perpendicular to the ⌘’s. Consider now a formal sum,
say

⇠↵⌘� + �↵⌧� + �↵ � (78)

We obtain an equivalent formal sum by replacing �↵ by a vector parallel to
⇠↵ plus a vector perpendicular to ⇠↵ and combining terms. Thus, Eqn. (78) is
equivalent to a formal sum

⇠↵⌘0
�
+ �0↵⌧� + �↵ � (79)

in which �0↵ is perpendicular to ⇠↵. We next obtain an equivalent formal sum
by replacing �↵ by a vector parallel to �0↵ plus a vector parallel to ⇠↵ plus a
vector perpendicular to both �0↵ and ⇠↵. Thus, Eqn. (79) is equivalent to a
formal sum

⇠↵⌘00
�
+ �0↵⌧ 0

�
+ �0

↵
 � (80)

with ⇠↵, �0↵, and �0↵ all perpendicular to each other. We now repeat this
procedure with the H� vectors to obtain a formal sum in normal form which is
equivalent to Eqn. (78). Hence, every formal sum is equivalent to a formal sum
in normal form, whence the norm on F↵� is positive-definite, whence F↵� is an
inner-product space.

We now define the tensor product of H↵ and H� to be the completion of
F↵� :

H↵ ⌦H� = F↵� (81)

This is really quite complicated. An element of the tensor product is an equiv-
alence class of Cauchy sequences in an inner-product space whose elements are
equivalence classes of formal sums. Note that F↵� itself can be considered as
a subspace of H↵ ⌦H� . Elements of the tensor product which belong to F↵�

will be called finite elements. In fact, we shall go one step further and consider
formal sums (71) to be elements of the tensor product. Equivalent formal sums
are then equal as elements of the tensor product. With these conventions, we
shall be able to avoid, for the most part, having to speak always in terms of
equivalence classes and Cauchy sequences.

The tensor product of more than two Hilbert spaces, H↵ ⌦H� ⌦ · · · ⌦H� ,
is defined in a completely analogous way. We use Greek indices to indicate
membership in the various tensor products, e.g., we write ⇠↵�···� for a typical
element of H↵ ⌦H� ⌦ · · ·⌦H� . Addition and scalar multiplication within the
tensor products is indicated in the obvious way:

⇠↵�···� + ⌘↵�···�

µ⇠↵�···�
(82)
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Note, incidentally, that our original formal sums are now considerably less for-
mal. For example, Eqn. (71) can be considered as the sum, in H↵ ⌦H� , of the
following elements of H↵ ⌦H� : ⇠↵⌘� , . . . ,�↵⌧� .

We next observe that there is a natural, one-to-one correspondence between
the formal sums which are used to obtain H↵ ⌦ · · ·⌦H� ,

⇠↵ · · · ⌘� + · · ·+ �↵ · · · ⌧� (83)

and those which are used to obtain H̄↵ ⌦ · · ·⌦ H̄� :

⇠̄↵ · · · ⌘̄� + · · ·+ �̄↵ · · · ⌧̄� (84)

That is to say, the inner product space consisting of finite elements of H̄↵ ⌦
· · ·⌦ H̄� is the complex conjugate space of the inner product space consisting of
finite elements of H↵ ⌦ · · ·⌦H� . This relationship clearly continues to hold in
the actual tensor product spaces. We conclude that H̄↵ ⌦ · · ·⌦ H̄� is the same
as (words we shall frequently use instead of “is naturally isomorphic with”)
H↵ ⌦ · · ·⌦H� . The tensor product of the complex-conjugate spaces is the
same as the complex-conjugate space of the tensor product. This fact allows
us to extend our index notation still further. A typical element of H̄↵⌦ · · ·⌦ H̄�

will be written ⇠̄↵···� , this being the element which corresponds to the element
⇠↵···� of H↵ ⌦ · · ·⌦H� . The inner product, in the tensor product space, of two
elements, ⇠↵···� and ⌘↵···� , of H↵ ⌦ · · ·⌦H� can now be written as follows:

⇠↵···� ⌘̄↵···� (85)

Thus, the index notation extends very nicely from the original collection of
Hilbert spaces to the various tensor products which can be constructed.

We now introduce some operations between elements of our tensor product
spaces. Let ⇠↵···��···� and ⌘̄�···� be finite elements ofH↵⌦. . .⌦H�⌦H�⌦. . .⌦H�

and H̄� ⌦ . . . ⌦ H̄�, respectively. We can certainly associate with these two an
element, ⇠↵···��···� ⌘̄�···� of H↵ ⌦ . . .⌦H� . For example,

(⇠↵⌘���⌧ � + �↵ ����)(⇢̄� ✏̄� + ⌫̄� ⇣̄�)

= ⇠↵⌘�(�� ⇢̄�)(⌧
� ✏̄�) + �↵ �(�� ⇢̄�)(

� ✏̄�) + ⇠↵⌘�(�� ⌫̄�)(⌧
� ⇣̄�)

+ �↵ �(�� ⌫̄�)(
� ⇣̄�)

(86)

Note, furthermore, that

k⇠↵···��···� ⌘̄�···�k  k⇠↵···��···�kk⌘̄�···�k, (87)

a result which is easily checked by placing ⇠↵···��···� and ⌘̄�···� in normal form.
Can this operation be extended from finite ⇠↵···��···�, ⌘̄�···� to the entire tensor

product? To see that it can, let ⇠↵···��···�i and ⌘̄i�···�, be Cauchy sequences of
finite elements of H↵⌦ . . .⌦H�⌦H�⌦ . . .⌦H� and H̄�⌦ . . .⌦H̄�, respectively.
Then

k⇠↵···�i ⌘̄i�···� � ⇠↵···�j ⌘̄j�···�k
= k⇠↵···�i ⌘̄i�···� � ⇠↵···�j ⌘̄i�···� + ⇠↵···�j ⌘̄i�···� � ⇠↵···�j ⌘̄j�···�k
 k⇠↵···�i � ⇠↵···�j kk⌘̄i�···�k+ k⇠↵···�j kk⌘̄i�···� � ⌘̄j�···�k

(88)
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where we have used (87). Thus, ⇠↵···��···� ⌘̄�···� is a Cauchy sequence in the
Hilbert space H↵⌦ . . .⌦H� ; hence it converges to some element of this Hilbert
space. In this way, we associate with any (not necessarily finite) elements
⇠↵···��···� and ⌘̄�···� an element ⇠↵···��···� ⌘̄�···�. This product is clearly linear
in the factors, and satisfies (87). The operation of contraction is thus extended
from the Hilbert spaces to their tensor products. Note that (85) is now a special
case.

Now let ⇠↵···� and ⌘�···� be finite elements of H↵⌦. . .⌦H� and H�⌦. . .⌦H�,
respectively. We can certainly associate with these two an element, ⇠↵···�⌘�···�,
H↵ ⌦ . . .⌦H� ⌦H� ⌦ . . .⌦H�. For example,

(⇠↵⌘� + �↵⌧�)(�� � + ���) =

= ⇠↵⌘��� � + �↵⌧��� � + ⇠↵⌘���� + �↵⌧����
(89)

Note, furthermore, that

k⇠↵···�⌘�···�k = k⇠↵···�kk⌘�···�k (90)

This operation, too, can be extended from finite elements to the entire tensor
product. Let ⇠↵···�i and ⌘�···�i be Cauchy sequences. Then ⇠↵···�i ⌘�···�i is also a
Cauchy sequence, for

k⇠↵···�i ⌘�···�i � ⇠↵···�j ⌘�···�j k

= k⇠↵···�i ⌘�···�i � ⇠↵···�j ⌘�···�i + ⇠↵···�j ⌘�···�i � ⇠↵···�j ⌘�···�j k

 k⇠↵···�i � ⇠↵···�j kk⌘�···�i k+ k⇠↵···�j kk⌘�···�i � ⌘�···�j k

(91)

This Cauchy sequence must converge to some element of H↵⌦ . . .⌦H� ⌦H� ⌦
. . . ⌦ H�. Thus, with any (not necessarily finite) elements ⇠↵···� and ⌘�···� we
may associate an element ⇠↵···�⌘�···�. This product is linear in the factors and
satisfies (90). The operation of “outer product” is thus defined on our tensor
product spaces. Note that the “formal products” which appear in (71) now have
operational significance. (This informalization is typical of the final status of
formal operations.)

We remark that our discussion of outer products above is merely the “finite
part” of a more general result:

(H↵ ⌦ . . .⌦H�)⌦ (H� ⌦ . . .⌦H�) = H↵ ⌦ . . .⌦H� ⌦H� ⌦ . . .⌦H� (92)

That is, we have shown that finite elements of the left side can be considered
as elements of the right side of (92). The rest of the proof is analogous to the
proofs above.

We next consider the extension of operators from our Hilbert spaces to their
tensor products. Let A be a linear operator from H↵ to H� . This operator can
be written A�↵: the result of acting on ⇠↵ 2 H↵ with A is written A�↵⇠↵. (The
notation may be misleading here. While every element of H� ⌦ H̄↵ defines such
an operator, not every operator can be considered as belonging to H� ⌦ H̄↵.)
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With each finite element ⇠↵···� of H↵ ⌦ . . .⌦H� we may certainly associate an
element, A�↵⇠↵···� , of H� ⌦ . . .⌦H� . For example,

A�↵(�
↵ � + �↵�) = (A�↵�

↵) � + (A�↵�
↵)� (93)

Unfortunately, there is in general no inequality which will permit us to extend
this operation to the entire Hilbert space H↵ ⌦ . . . ⌦ H� . Thus, in general,
A�↵⇠↵···� will only be defined for finite ⇠↵···� ; these elements, fortunately, are
dense in H↵ ⌦ . . . ⌦ H� . There is, however, one condition under which the
operation can be extended to the entire Hilbert space H↵ ⌦ . . .⌦H� . If A�↵ is
bounded, then

kA�↵⇠↵···�k  |A|k⇠↵···�k. (94)

(Proof: Use normal form.) In this case, (94) implies that A�↵⇠
↵···�
i is a Cauchy

sequence if ⇠↵···�i is, and so we may define A�↵⇠↵···� for any ⇠↵···� .
In fact, in many applications of the tensor product, the H↵, H� , etc. are

all merely copies of one fixed Hilbert space H. We then have one-to-one corre-
spondences between H↵, H� , etc. These correspondences can be indicated by
retaining the root letter. For example, the element of H� corresponding with
⇠↵ 2 H↵ would be written ⇠� . The correspondences between our underlying
Hilbert spaces induce correspondences, in an obvious way, between various ten-
sor products. We may thus give meaning to such expressions as ⇠↵� + ⇠�↵. In
this case — when all our underlying Hilbert spaces are copies of a Hilbert space
H — we may introduce symmetrization over tensor indices (round brackets),
e.g.,

⇠(↵��) =
1

6

�
⇠↵�� + ⇠��↵ + ⇠�↵� + ⇠�↵� + ⇠��↵ + ⇠↵��

�
(95)

and anti-symmetrization over tensor indices (square brackets), e.g.,

⇠[↵��] =
1

6

�
⇠↵�� + ⇠��↵ + ⇠�↵� � ⇠�↵� � ⇠��↵ � ⇠↵��

�
(96)

Note that any Cauchy sequence of symmetric (resp., skew) tensors of a given
rank converges to a tensor which is necessarily symmetric (resp., skew). Hence,
the symmetric (resp., skew) tensors of a given rank themselves form a Hilbert
space. Similar remarks apply, of course, to any other symmetry on tensor indices.

There are an enormous number of facts about tensor products of Hilbert
spaces. We have stated a few of them — and proven still fewer — here. It
is the sheer bulk of the information, however, which makes the index notation
valuable. Elementary facts are made to look elementary, and the mind is freed
for important questions.



10. Fock Space:
The Symmetric Case

The arena in which one discusses systems of many noninteracting identical par-
ticles is a Hilbert space called Fock space. This Hilbert space is constructed in
terms of the Hilbert space H of one-particle states. Although the construction of
H itself depends on the type of particle being considered (neutrinos, electrons,
mesons, photons, etc.), the steps leading from H to its Fock space are indepen-
dent of such details. In fact, there are two Fock spaces which can be associated
with a given Hilbert space H — what we shall call the symmetric Fock space
and the anti-symmetric Fock space. If H represents the one-particle states of a
Boson field, the appropriate space of many-particle states is the symmetric Fock
space based on H. Similarly, fermions are described by the anti-symmetric Fock
space. We shall define the Fock spaces associated with a Hilbert space H and a
few of the operators on these spaces.

Let H be a Hilbert space. The (symmetric) Fock space based on H is the
Hilbert space

C�H↵ � (H(↵ ⌦H�))� (H(↵ ⌦H� ⌦H�))� · · · (97)

where H↵, H� , etc. are all copies of H (Sect. 9), and where the round brackets
surrounding the indices of the tensor products mean that the Hilbert space of
symmetric tensors is to be used. More explicitly, an element of the symmetric
Fock space consists of a string

 = (⇠, ⇠↵, ⇠↵� , ⇠↵�� , . . .) (98)

where ⇠ is a complex number, ⇠↵ is an element of H, ⇠↵� is a symmetric (⇠↵� =
⇠(↵�)) second-rank tensor over H, ⇠↵�� is a symmetric third-rank tensor over H,
etc., for which the sum

k k2 = ⇠⇠̄ + ⇠↵⇠̄↵ + ⇠↵� ⇠̄↵� + ⇠↵�� ⇠̄↵�� + · · · , (99)

which defines the norm of  , converges. Physically, ⇠↵1···↵n represents the “n-
particle contribution” to  . That the tensors are required to be symmetric
is a reflection of the idea that “ is invariant under interchange of identical
particles”.
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We next introduce the creation and annihilation operators. Let � 2 H. We
associate with this � an operator C(�) on Fock space, this operator defined by
its action on a typical element (98):

C(�) = (0,�↵⇠,
p
2�(↵⇠�),

p
3�(↵⇠��), . . .) (100)

Similarly, with each ⌧̄ 2 H̄ we associate an operator A(⌧̄), defined by

A(⌧̄) = (⇠µ⌧̄µ,
p
2⇠µ↵⌧̄µ,

p
3⇠µ↵� ⌧̄µ, . . .) (101)

This C(�) is called the creation operator (associated with �); A(⌧̄) the anni-
hilation operator (associated with ⌧̄). Note that the creation and annihilation
operators are only defined on a dense subset of Fock space, for, in general, the
sum on the right in (99) will not converge for the right sides of (100) and (101).
It is an easy exercise in tensor calculus to work out the commutators of these
operators:

[C(�), C(�0)] = 0

[A(⌧̄), A(⌧̄ 0)] = 0

[A(⌧̄), C(�)] = (�µ⌧̄µ)I
(102)

For example, the last equation in (102) would be derived as follows:

A(⌧̄)C(�) = A(⌧̄)(0,�↵⇠,
p
2�(↵⇠�),

p
3�(↵⇠��), . . .)

= (⇠�µ⌧̄µ, ⇠
↵�µ⌧̄µ + �↵⇠µ⌧̄µ, ⇠

↵��µ⌧̄µ + 2�(↵⇠�)µ⌧̄µ, . . .)

C(�)A(⌧̄) = C(�)(⇠µ⌧̄µ,
p
2⇠µ↵⌧̄µ,

p
3⇠µ↵� ⌧̄µ, . . .)

= (0,�↵⇠µ⌧̄µ, 2�
(↵⇠�)µ⌧̄µ, 3�

(↵⇠��)µ⌧̄µ, . . .)

(103)

Furthermore, if � represents the element (⌘, ⌘↵, ⌘↵� , . . .) of Fock space, we have

(C(�) ,�) = ( , A(�̄)�) (104)

for both sides of this equation are given by the sum

⇠�µ⌘̄µ +
p
2⇠↵�� ⌘̄↵� +

p
3⇠↵��� ⌘̄↵�� + · · · (105)

Eqn. (104) is often summarized in words by saying that C(�) and A(�̄) are
adjoints of each other. (An operator is thus its own adjoint if and only if it
is Hermitian. Technical distinctions are sometimes made between the adjoint
and the Hermitian conjugate, and between self-adjoint and Hermitian. We shall
not make these distinctions until they arise.) We can now understand why the
strange factors

p
2,

p
3, etc. were inserted in the definitions (100) and (101).

These are the only positive real factors for which the resulting creation and
annihilation operators will satisfy (102) and (104).

We next introduce two number operators. For � 6= 0, the number operator
in the state � is defined by

N(�) = k�k�2C(�)A(�̄) (106)
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whence
N(�) = k�k�2(0,�↵⇠µ�̄µ, 2�

(↵⇠�)µ�̄µ, . . .) (107)

The total number operator, N , is defined by

N = (0, ⇠↵, 2⇠↵� , 3⇠↵�� , 4⇠↵���, . . .) (108)

Note that these operators, too, are only defined on a dense subset of Fock space.
We can think, intuitively, of N as resulting from “summing the N(�)’s over an
orthonormal basis”, using

“
X

orthonormal

basis

�↵�̄µ = �↵µ” (109)

where �↵µ is the “Kronecker delta”. The number operators, N(�) and N , are
Hermitian. Various commutators are as follows:

[N(�), C(�)] = [N,C(�)] = C(�)

[N(�), A(�̄)] = [N,A(�̄) = �A(�̄)

[N(�), N ] = 0

(110)

(Commutators involving N(�) are most easily evaluated using (106) and (102),
rather than (107), (100), and (101). Furthermore, one can guess the commuta-
tors involving N using the intuitive remark surrounding (109).)

Finally, we write down the eigenvectors and eigenvalues of our number oper-
ators. Clearly, from (108), the eigenvalues of N are precisely the non-negative
integers: 0, 1, 2, . . .. The most general eigenvector with eigenvalue n is:

(0, 0, . . . , 0, ⇠↵1···↵n , 0, . . .) (111)

The eigenvectors of N(�) are only slightly more di�cult. First note that a tensor
⇠↵1···↵n satisfies

�(↵1⇠↵2···↵n

)µ�̄µ = ⌫⇠↵1···↵n (112)

for some complex number ⌫ if and only if

⇠↵1···↵n = �(↵1 · · ·�↵m↵m+1···↵n

) (113)

for some ↵m+1···↵n satisfying ↵m+1···↵n �̄↵
n

= 0. Proof: If ⌫ = 0, we’re through.
If ⌫ 6= 0, (112) implies

⇠↵1···↵n = �(↵1�↵2...↵n

) (114)

for some �↵2...↵n . If �↵2...↵n �̄↵
n

= 0, we’re through. If not, substitute (114) into
(112) to obtain

⇠↵1···↵n = �(↵1�↵2⇢↵3...↵n

) (115)

Continue in this way. It is now clear, from (107), that the most general si-
multaneous eigenvector of N and N(�), with eigenvalues n and m, respectively,
is

(0, 0, . . . , 0,�(↵1 · · ·�↵m↵m+1···↵n

), 0, . . .) (116)

where ↵m+1···↵n �̄↵
n

= 0.
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11. Fock Space:
The Anti-Symmetric Case

The definition and properties of Fock space in the antisymmetric case are closely
analogous to those in the symmetric case.

Let H be a Hilbert space. The (anti-symmetric) Fock space based on H is
the Hilbert space

C�H↵ � (H [↵ ⌦H�])� (H [↵ ⌦H� ⌦H�])� · · · (117)

where H↵, H� , etc. are all copies of H, and where the square brackets sur-
rounding the indices of the tensor products mean that the Hilbert space of
anti-symmetric tensors is to be used. That is, an element of the antisymmetric
Fock space consists of a string

 = (⇠, ⇠↵, ⇠↵� , ⇠↵�� , . . .) (118)

of anti-symmetric tensors over H for which the sum

k k2 = ⇠⇠̄ + ⇠↵⇠̄↵ + ⇠↵� ⇠̄↵� + · · · , (119)

which defines the norm of  , converges. That the tensors are required to he
anti-symmetric is a reflection of the idea that “ reverses sign under the in-
terchange of identical particles.” Physically, ⇠↵1···↵n represents the “n-particle
contribution” to  .

We associate with each � 2 H a creation operator, C(�), and with each
⌧̄ 2 H̄ an annihilation operator, A(⌧̄), on Fock space as follows:

C(�) = (0,�↵⇠,
p
2�[↵⇠�],

p
3�[↵⇠��], . . .) (120)

A(⌧̄) = (⇠µ⌧̄µ,
p
2⇠µ↵⌧̄µ,

p
3⇠µ↵� ⌧̄µ, . . .) (121)

As in the symmetric case, these operators are only defined on a dense subset
of Fock space. The commutators of these creation and annihilation operators
certainly exist — but they don’t reduce to anything simple. We define the
anti-commutator of two operators:

{A,B} = AB +BA (122)
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It is the anti-commutators of the creation and annihilation operators which are
simple in the antisymmetric case:

{C(�), C(�0)} = 0

{A(⌧̄), C(⌧̄ 0)} = 0

{A(⌧̄), C(�)} = (�µ⌧̄µ)I
(123)

The creation and annihilation operators are still adjoints of each other:

(C(�) ,�) = ( , A(�̄)�) (124)

There is one further property of the creation and annihilation operators which
is special to the antisymmetric case. Setting � = �0 in (123), we obtain:

C(�)2 = 0 A(⌧̄)2 = 0 (125)

These equations have a simple physical interpretation. If we try to create two
particles in the same state, or annihilate two particles from the same state, we
obtain zero. That is to say, one “can’t have more than one particle in a given
state.” This, of course, is the essential feature of Fermi statistics.

The number operator in the state � ( 6= 0) and total number operator are
defined by:

N(�) = k�k�2C(�)A(�̄) = (0,�↵⇠µ�̄µ, 2�
[↵⇠|µ|�]�̄µ, . . .) (126)

N = (0, ⇠↵, 2⇠↵� , 3⇠↵�� , . . .) (127)

These operators are Hermitian. We can think of N as obtained by “summing
the N(�)’s over an orthonormal basis.” Some commutators are:

[N(�), C(�)] = [N,C(�)] = C(�)

[N(�), A(�̄)] = [N,A(�̄)] = �A(�̄)

[N(�), N ] = 0

(128)

(It is interesting that one must use commutators, and not anticommutators,
to make (128) simple.) The number operator in the state � has one further
property, this one special to the antisymmetric case. From (126), (123), and
(125), we have

N(�)2 = N(�) (129)

Clearly, (129) is again saying that “occupation numbers in the antisymmetric
case are either 0 or 1.” A Hermitian operator which is equal to its square is
called a projection operator. Eqn. (129) (or, alternatively, Eqn. (126)) implies
that N(�) is bounded (and, in fact, |N(�)| = 1). Hence, from Section 7, N(�)
is defined on all of Fock space. On the other hand, N is only defined on a dense
subset.

Finally, we write down the eigenvectors and eigenvalues of our number op-
erators. Once again, the eigenvalues of N are the nonnegative integers, and the
general eigenvector with eigenvalue n is:

(0, 0, . . . , 0, ⇠↵1···↵n , 0, . . .) (130)
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The eigenvalue-eigenvector structure of N(�), however, is quite di↵erent from
that of the symmetric case. In fact, (129) implies that the only eigenvalues of
N(�) are 0 and 1. First note that

�[↵1⇠|µ|↵2···↵n

]�̄µ = ⌫⇠↵1···↵n (131)

if and only if either ⇠↵1···↵n �̄↵
n

or

⇠↵1···↵n = �[↵1↵2···↵n

] (132)

for some tensor ↵2···↵n which is antisymmetric. (We needn’t require, in addi-
tion, that ↵2···↵n �̄↵

n

= 0. Any multiples of �↵ which are contained in ↵2···↵n

will be lost in (132) because of the anti-symmetrization on the right.) Thus the
most general eigenvector of N(�) with eigenvalue 0 is (118) with

⇠↵�̄↵ = 0, ⇠↵� �̄↵, ⇠↵�� �̄↵ = 0, . . . (133)

The most general eigenvector with eigenvalue 1 is

(0,�↵,�[↵�],�[↵��],�[↵���], . . .). (134)
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12. Klein-Gordon Fields as
Operators

Everybody knows that one essential idea of quantum field theory is that classical
fields (e.g., real or complex-valued functions of position in Minkowski space) are
to become operators (operator-valued functions of position in Minkowski space)
on some Hilbert space. We have now assembled enough machinery to discuss
this transition from fields to operators in the Klein-Gordon case. Of course, the
same program will have to be carried out later — in essentially the same way —
for other fields. The resulting field operators will play an important role when
we discuss interactions.

Let �+ be a positive-frequency solution of the Klein-Gordon equation. That
is, �+ is a complex-valued function of position in Minkowski space. The com-
plex-conjugate function of �+, i.e., the function defined by the property that its
value at a point in Minkowski space is to be the complex-conjugate of the value
of �+, will be written ��. Clearly, �� is a negative-frequency solution of the
Klein-Gordon equation. Finally, we introduce the real solution

�(x) = �+(x) + ��(x) (135)

of the Klein-Gordon equation. The functions �+ and �� can certainly be re-
covered from �: they are the positive- and negative-frequency parts, respec-
tively, of �. Alternatively, these relations can be discussed in terms of functions
in momentum space. Let h+ (resp., h�) be the complex-valued function on
the future mass shell M+

µ , (resp., the past mass shell M+

µ ) which represents
the positive-frequency (resp., negative-frequency) solution �+ (resp., ��) of the
Klein-Gordon equation. Then h+ and h� are clearly related as follows:

h�(k) = h+(�k) (136)

That is to say, the value of h� at ka 2 M�
µ is the complex-conjugate of the

value of h+ at (�ka) 2 M+

µ . Finally, the function h in momentum space which
represents the real solution � is given by

h = h+ + h� (137)

This h has the property that it is invariant under simultaneous complex-conju-
gation and reflection through the origin, a property equivalent to the reality of
�.
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Our �+, ��, and � each assign a number (for the first two, a complex num-
ber; for the last, a real number) to each point of Minkowski space. Roughly
speaking, what we want to do is find objects �+(x), ��(x), and �(x) which as-
sign, to each point in Minkowski space, an operator. These operators are to act
on the (symmetric) Fock space based on the Hilbert space of positive-frequency
solutions of the Klein-Gordon equation. The relationship between the functions
�+(x), ��(x), and �(x) is to be reflected, in an appropriate way, as a relation-
ship between the corresponding operators. Since the functions �+(x) and ��(x)
are complex-conjugates of each other, we demand that the operators �+(x) and

��(x) be adjoints of each other; since the function �(x) is real and the sum of
�+(x) and ��(x), we demand that the operator �(x) be Hermitian and the sum

of the operators �+(x) and ��(x). Still speaking roughly, one might imagine pro-
ceeding as follows. Choose an orthonormal basis �i (i = 1, 2, . . .) for the Hilbert
space H of positive-frequency solutions of the Klein-Gordon equation. Then for
each i we have a positive-frequency solution �+i (x), a negative-frequency solution
��i (x) (the complex-conjugate function of �+i (x)), and a real solution �i(x) (the
sum of �+i (x) and �

�
i (x)). Then any triple of solutions, �+(x), ��(x), and �(x),

related as above (i.e., �+ is positive-frequency, �� is its complex-conjugate, and
� is their sum) could be expanded in terms of our basis:

�+(x) =
X

i

ai�
+

i (x) (138)

��(x) =
X

i

āi�
�
i (x) (139)

�(x) = �+(x) + ��(x) =
X

i

(ai�
+

i (x) + āi�
�
i (x)) (140)

Here, a
1

, a
2

, . . . are simply complex numbers. Thus, triples of solutions related
as above would be characterized by sequences of complex numbers. To pass from
fields to operators, we could now simply replace the coe�cients in the expansions
(138), (139), and (140) by the corresponding creation and annihilation operators:

�+(x) = ~
X

i

�+i (x)A(�i) (141)

��(x) = ~
X

i

��i (x)C(�̄i) (142)

�(x) = �+(x) + ��(x) = ~
X

(�+i (x)A(�i) + ��i (x)C(�̄i)) (143)

Fix the basis �i. Then, for each position x in Minkowski space, �+i (x), �
�
i (x),

and �i(x) are just numbers. The right sides of (141), (142), and (143) are
simply (infinite!) sums of operators on Fock space. In this way, we might
expect to be able to associate operators, �+(x), ��(x), and �(x) with positions
in Minkowski space. These operators would, of course, satisfy the appropriate
adjoint, Hermiticity, and sum conditions. One further di↵erence between (138),
(139), (140) and (141), (142), (143) should be emphasized. Whereas (138),
(139), (140) involve a particular solution of the Klein-Gordon equation, which is
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expanded in terms of a basis, no such particular solution is singled out in (141),
(142), (143). The sums in (141), (142), (143) need be done just once to obtain
operator-valued functions on Minkowski space.

The paragraph above merely outlines a program. In order to actually carry
it out, we would, at least, have to solve three problems:

i) find a basis for our Hilbert space H whose elements can be represented
as smooth (or at least continuous) functions on Minkowski space (recall
that an element of H is a function on the mass shell which need only be
measurable and square-integrable),

ii) prove that the sums on the right of (141), (142), (143) converge in a suitable
sense, and

iii) prove that the resulting operators are independent of the choice of basis.

The problem is with ii): in no reasonable sense do such sums converge. The way
out of this di�culty is through the use of “smearing functions.” The support of
a function f on Minkowski space (more generally, on any topological space) is
defined as the closure of the collection of points on which f is nonzero, so the
support of f is a subset of Minkowski space. A smooth, real-valued function
f with compact support will be called a test function. Note that, if G is any
continuous function on Minkowski space, then the value of

G(f) =

Z
G(x)f(x) dV (144)

for every test function f determines uniquely the function G. (The integral
(144) converges because f has compact support.) These remarks suggest that,
instead of dealing with an operator-valued function �(x) on Minkowski space —
something we have not been able to obtain — we “smear out the x-dependence
of the operators”:

�(f) =

Z
�(x)f(x) dV (145)

That is to say, we consider our operators as depending, not on points in Min-
kowski space, but rather on the test functions themselves. Roughly speaking,
�(f), for every test function f , has the same information content as �(x) for
every point x of Minkowski space, just as G(f) determines G(x). The advantage
of this formulation is that we may be able to define �(f), whereas we have not
been able to define �(x). To obtain evidence on this question as to whether �(f)
can be defined, we naively carry out the “smearing operation”, (145), for (141),
(142), (143):

�+(f) = ~
X

i

(

Z
�+i (x)f(x) dV )A(�i) (146)

��(f) = ~
X

i

(

Z
��i (x)f(x) dV )C(�̄i) (147)

�(f) = �+(f) + ��(f) (148)
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Thus, the operators which result from smearing are merely the creation and
annihilation operators, “weighted by the components of f with respect to the
basis vectors.”

The preceding two paragraphs — particularly (146), (147), (148) — are
intended to motivate the simple and precise definitions which follow. Let f(x)
be a test function. Then the Fourier inverse of f , f 0(k), is a smooth function
on all of momentum space (not just on the mass shell: f(x) doesn’t have to
satisfy the Klein-Gordon equation). If, however, we restrict f 0(k) to the future
mass shell, M+

µ , we obtain a measurable and square-integrable function on M+

µ ,
and hence an element, �(f), of our Hilbert space. (The proof that this f 0(k)
is actually square-integrable over the mass shell is given in books on Fourier
analysis.) That is, with each test function f there is associated an element �(f)
of H. We now define:

�+(f) = ~A(�(f)) (149)

��(f) = ~C(�(f)) (150)

�(f) = �+(f) + ��(f) = ~(A(�(f)) + C(�(f))) (151)

(See (146), (147), (148).) These are the smeared-out field operators. We remark
that these field operators are linear mappings from the real vector space of test
functions to the vector space of operators on Fock space. Note that �+(f)

and ��(f) are adjoints of each other, and that �(f) is Hermitian with �(f) =

�+(f) + ��(f). It is now clear why we were not able to define operators such

as �+(x) earlier. We can think of �+(x) as being the “limit of �+(f) as f
approaches a �-function at x” (see (145).) But as f approaches a �-function,
f 0(k) approaches a function which is not square-integrable on the mass shell.
Thus, �+(x) represents “creation in an un-normalizable state.”

We next wish to establish a result whose intuitive content is: “in their de-
pendence on x, the operators �(x), ��(x), and �(x) satisfy the Klein-Gordon
equation, e.g.,

(⇤+ µ2)�+(x) = 0.” (152)

Strictly speaking, of course, (152) has no meaning, for �+(x) has no meaning. Is
it possible, however, to express the essential content of (152) in terms of the well-
defined operators (149)? Yes. The idea is to replace (152) with the statement
that the result of smearing out the left side with an arbitrary test function f
gives zero: Z

f(x)(⇤+ µ2)�+(x) dV = 0 (153)

Formally integrating by parts twice, and throwing away surface terms since f
has compact support, we are led to replace (153) (and hence (152)) by

Z
�+(x)(⇤+ µ2)f(x) dV = 0 (154)

These considerations suggest that we replace the meaningless equations (152)
or (153) by an “equivalent” equation, (154), to which we can assign a meaning.
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We are thus led to the following conjecture: If f is a test function, then

�+((⇤+ µ2)f) = 0

��((⇤+ µ2)f) = 0

�((⇤+ µ2)f) = 0

(155)

(Note that if f is a test function, so is (⇤ + µ2)f .) In fact, our conjecture is
true, for if f 0(k) is the Fourier inverse of f(x), then (�kaka + µ2)f 0(k) is the
Fourier inverse of (⇤+µ2)f . But (�kaka +µ2)f 0(k) vanishes on the mass shell,
so �((⇤ + µ2)f) = 0. Eqns. (155) now follow from (149), (150), (151). We
conclude that, in an appropriate sense, our operator fields satisfy the Klein-
Gordon equation.

Finally, we consider the commutators of our operators. Let f and g be test
functions. Since any two creation operators commute with each other, and any
two annihilation operators commute with each other (see (102)), we clearly have

[�+(f),�+(g)] = [��(f),��(g)] = 0 (156)

Furthermore, since the commutator of any creation operator with any annihila-
tion operator is a multiple of the identity operator (see (102)), we have

[�+(f),��(g)] =
~
i
D+(f, g)I [��(f),�+(g)] =

~
i
D�(f, g)I (157)

where D+(f, g) and D�(f, g) are complex-valued (not operator-valued) func-
tions of the test functions f and g. In fact, it follows immediately from (156),
(149), (150), and (102) that

D+(f, g) = i~�↵(g)�̄↵(f)
D�(f, g) = �i~�↵(f)�̄↵(f)

(158)

Therefore,

D+(f, g) = �D�(g, f) (159)

D+(f, g) = D�(f, g) (160)

The commutators of the � operators follow from (151) and (157),

[�(f),�(g)] =
~
i
(D+(f, g) +D�(f, g))I = ~

i
D(f, g)I (161)

where the second equality is the definition of D(f, g). Eqns. (159) and (160)
now imply

D(f, g) = �D(g, f) (162)

D(f, g) = D(f, g) (163)

The D-functions have one further property, which can be called Poincaré in-
variance. Let x ! Px be a Poincaré transformation on Minkowski space which
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does not reverse the future and past time directions. (This last stipulation is
necessary because the distinction between positive frequency and negative fre-
quency requires a particular choice of a “future” time direction on Minkowski
space.) Then, defining the test functions f̃(x) = f(Px), g̃(x) = g(Px), we have

D±(f̃ , g̃) = D±(f, g) D(f̃ , g̃) = D(f, g) (164)

The functions D±(f, g) and D(f, g) are often discussed by introducing dis-
tributions D±(x, y) and D(x, y) on Minkowski space, and setting

D±(f, g) =

Z
dVx

Z
dVy D

±(x, y)f(x)g(y)

D(f, g) =

Z
dVx

Z
dVy D(x, y)f(x)g(y)

(165)

It is not surprising that there should exist such distributions. A distribution,
after all, is just a continuous linear mapping from the topological vector space
of test functions to the reals, and D±(x, y) and D(f, g) are certainly linear in
their arguments. We shall not at this time discuss the topology on the space of
test functions, nor prove that D± and D are continuous. Poincare invariance
implies that

D±(x, y) = D±(x� y)

D(x, y) = D(x� y)
(166)

where we have written x � y for the position vector of x relative to y. It is
not di�cult to evaluate the functions (166) explicitly using (158) and a table of
integrals. They involve Bessel functions.

There is, however, one particularly interesting property of D(f, g). Test
functions f and g will be said to have relatively spacelike supports if, for any
point x of the support of f and any point y of the support of g, x � y is
spacelike. The property is the following: If f and g have relatively spacelike
supports, then D(f, g) = 0. The easiest proof is by means of the distribution
D(x, y). Eqn. (162) implies

D(x� y) = �D(y � x) (167)

But if x � y is spacelike, there is a Poincaré transformation which does not
reverse future and past and which takes x to y and y to x (i.e., x = Py, y = Px).
Poincaré invariance, (164), now implies

D(x� y) = D(y � x) (168)

whence D(x, y) = 0 for x � y spacelike. That D(f, g) = 0 when f and g have
relatively spacelike supports now follows from (165).



13. The Hilbert Space of
Solutions of Maxwell’s
Equations

We now wish to write down the quantum theory for a system of many free
(non-interacting) photons. Our starting point is the classical field equations:
Maxwell’s equations. The method is entirely analogous to that of the Klein-
Gordon equation: the electromagnetic field plays the role of the Klein-Gordon
field �, the Maxwell equations the role of the Klein-Gordon equation. There are,
of course, important di↵erences between the two cases: a tensor field rather than
a scalar field, two first-order tensor equations rather than one second-order scalar
equation, etc. One further di↵erence should be emphasized. Whereas the Klein-
Gordon equation is, in a sense, the Schrödinger equation for a free particle, the
Maxwell equations are classical (non-quantum). The electromagnetic analogy of
the classical free particle, on the other hand, would be geometrical optics. Thus,
we have the following table:

Electrodynamics Free Relativistic Particle

Geometrical Optics Classical Dynamics
Maxwell’s Equations Klein-Gordon Equation
Quantum Electrodynamics Many-Particle Theory

(169)

Theories appearing in the same row are described, mathematically, in roughly
the same terms: for the first row, curves in Minkowski space; for the second row,
fields in Minkowski space; for the third row, creation and annihilation operators
on Fock space.

The first step is to impose the structure of a Hilbert space on a certain
collection of solutions of Maxwell’s equations — just as we began the second-
quantization of the Klein-Gordon equation by making a Hilbert space of solutions
of that equation.

The electromagnetic field is a skew, second-rank tensor field Fab ( = F
[ab])

on Minkowski space. In the absence of sources, this field must satisfy Maxwell’s
equations:

r
[aFbc] = 0 (170)

raFab = 0 (171)
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Eqn. (170) implies that there exists a vector field Aa on Minkowski space for
which

Fab2r
[aAb] (172)

Conversely, given any vector field Aa, the Fab given by (172) satisfies (170). This
Aa is called a vector potential. Substituting (172) into (171), we obtain

⇤Aa �ra(rbA
b) = 0 (173)

Thus, any vector field satisfying (173) defines, via (172), a solution of Maxwell’s
equations, end, conversely, every solution of Maxwell’s equations can be obtained
from some vector potential satisfying (173). Two vector potentials, Aa and Ãa,
define (via (172)) the same Fab if and only if

Ãa = Aa +ra⇤ (174)

for some scalar field ⇤ on Minkowski space. Changes in the vector potential of the
form (174) are called gauge transformations. By means of a gauge transformation
one can find, for any solution of Maxwell’s equations, a vector potential which
satisfies

raA
a = 0 (175)

Vector potentials which satisfy (175) are said to be in the Lorentz gauge. If a
vector potential for a solution of Maxwell’s equations is in the Lorentz gauge,
then, from (173), it satisfies

⇤Aa = 0 (176)

If two vector potentials are both in the Lorentz gauge, and di↵er by a gauge
transformation (174), then necessarily

⇤⇤ = 0 (177)

We can summarize the situation with the following awkward remark: the vector
space of solutions of Maxwell’s equations is equal to the quotient space of the
vector space of vector fields which satisfy (175) and (176) by the vector subspace
consisting of gradients of scalar fields which satisfy (177). All fields above are,
of course, real.

We now do with Maxwell’s equations what was done earlier with the Klein-
Gordon equation: we go to momentum space. Let Aa(x) be a vector potential,
in the Lorentz gauge, for a solution to Maxwell’s equations. Set

Aa(x) =

Z

M
A0

a(k)e
ik

b

xb

dV (178)

In (178), k represents position in momentum space, and A0
a(k) associates a

complex vector in momentum space with each such k. The integral on the right
in (178) associates, with each point x in Minkowski space, a vector in momentum
space, and hence a vector in Minkowski space at the point x. Thus, the right
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side of (178) defines a vector field in Minkowski space. We now demand that
Aa(x) given by (178) satisfy (176) and (175):

⇤Aa(x) =

Z

M
(�kck

c)A0
a(k)e

ik
b

xb

dV = 0 (179)

raA
a(x) =

Z

M
ikaA0

a(k)e
ik

b

xb

dV = 0 (180)

Eqn. (179) states that A0
a(k) vanishes unless kaka = 0. That is to say, A0

a(k)
need only be specified on the null cone in momentum space, or, what is the same
thing, on the mass-zero shell, M

0

. Thus, we can replace (178) by

Aa(x) =

Z

M0

A0
a(k)e

ik
b

xb

dV
0

(181)

Eqn. (180) states that
kaA0

a(k) = 0 (182)

for every k 2 M
0

. An A0
a(k) which satisfies (182) will be said to be transverse.

Finally, the condition that A(x), given by (181), be real, is

A0
a(�k) = A0

a(k) (183)

Eqn. (183) implies, in particular, that the knowledge of A0
a(k) onM+

0

determines
uniquely the values of A0

a(k) on M�
0

. We thus need only concern ourselves with
A0

a(k) on M+

0

.
To summarize, there is a one-to-one correspondence (modulo questions of

convergence of Fourier integrals) between real vector fields Aa(x) on Minkowski
space which satisfy (175) and (176) and transverse complex vector functions
A0

a(k) on M+

0

.
Unfortunately, real vector fields Aa(x) on Minkowski space which satisfy

(175) and (176) are not the same as solutions of Maxwell’s equations: we have
to deal with the problem of gauge transformations. Let ⇤ satisfy (177), and let
Ãa(x) be given by (174). Then the corresponding Fourier inverses, ⇤0(k) and
Ã0

a(k), are clearly related by:

Ã0
a(k) = A0

a(k) + ika⇤
0(k) (184)

In other words, a gauge transformation on Aa(x) which preserves the Lorentz
gauge corresponds simply to adding to A0

a(k) a complex multiple of ka. Note
that, since ka is null, the gauge transformations (184) do not destroy the transver-
sality condition, (182).

To summarize, there is a one-to-one correspondence (modulo convergence
of Fourier integrals) between solutions of Maxwell’s equations and equivalence
classes of transverse complex vector functions A0

a(k) on M+

0

, where two such
functions A0

a(k) are regarded as equivalent if they di↵er by a multiple of ka.
The reason for expressing the content of Maxwell’s equations in terms of

momentum space is that certain properties of the space of solutions of Max-
well’s equations become more transparent there. We first impose on the (real!)
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solutions of Maxwell’s equations the structure of a complex vector space. To
add two solutions of Maxwell’s equations, one simply adds the tensor fields on
Minkowski space. Expressed in terms of momentum space, this means that one
adds the corresponding A0

a(k). To “multiply” a solution Fab of Maxwell’s equa-
tions by a complex number ↵, one multiplies the corresponding complex vector
function A0

a(k) by ↵ in the usual way, and interprets the result, ↵A0
a(k), as a

solution of Maxwell’s equations (necessarily, a real solution). These operations
clearly extend to operations on the equivalence classes of A0

a(k), and hence are
well-defined operations on solutions of Maxwell’s equations. It is only when ↵
is real that multiplying a solution Fab by ↵, in the sense described above, is
equivalent to simply multiplying the tensor field Fab by ↵ in the usual way. This
cannot be the case, of course, when ↵ is complex, for the usual product, ↵Fab,
would be a complex field on Minkowski space rather than a real one, and solu-
tions of Maxwell’s equation must he real. We can, however, give a picture for
what the product of i and Fab (“product” and “multiply” will always refer to
that operation defined above) means. Let Aa(x) be a vector potential in the
Lorentz space, and let A0

a(k) be as in (181). Then iA0
a(k) corresponds to the

vector potential
Z

M+
0

iA0
a(k)e

ik
b

xb

dV
0

�
Z

M�
0

i A0
a(k)e

ik
b

xb

dV
0

=

Z

M+
0

A0
a(k)e

ik
b

xb

+

⇡

2 dV
0

+

Z

M�
0

A0
a(k)e

ik
b

xb�⇡

2 dV
0

(185)

In other words, multiplication of a solution of Maxwell’s equations by i cor-
responds to resolving Fab into complex plane-waves, and shifting the phase of
the positive frequency parts by ⇡/2 while shifting the phase of the negative-
frequency parts by �⇡/2. (In exactly the same way, the real solutions of the
Klein-Gordon equation form a complex vector space.)

We next introduce an inner product on our complex vector space. We define
the norm of a transverse complex vector function A0

a(k) on M+

0

by

2

~

Z

M+
0

(�A0
a(k)A

0a(k)) dV
0

(186)

Since A0
a(k) is transverse, and since kaka = 0 on M

0

, the real number (186)
is clearly invariant under gauge transformations, (184), on A0

a(k). Thus, the
norm (186) is well-defined on solutions of Maxwell’s equations. Furthermore,
the norm (186) is non-negative and vanishes when and only when A0

a(k) = 0
(more properly, when and only when A0

a(k) is in the zero equivalence class, i.e.,
when and only when A0

a(k) is a multiple of ka). To prove this, we show that the
integrand is non-negative. Fix k, and let

A0
a(k) = ma + ina (187)

where ma and na are real. By transversality,

mak
a = nak

a = 0 (188)
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The integrand of (186) is

(�A0
a(k)A

0a(k)) = �mama � nana (189)

But (188) implies that ma and na are either spacelike or multiples of ka, whence
(189) is nonnegative and vanishes when and only when ma + ina is a multiple
of ka.

Thus, the collection of all equivalence classes of (say, continuous) transverse
A0

a(k) on for which (186) converges has the structure of an inner-product space.
Its completion is our Hilbert space, HM , of solutions of Maxwell’s equations.
Just as in the Klein-Gordon case, one can describe HM directly in momen-
tum space. It is the collection of all equivalence classes of measurable, square-
integrable (in the sense that (186) converges), transverse A0

a(k) on M+

0

.
This HM represents the one-photon states. (Intuitively, a solution of Max-

well’s equations represents a “wave function” for a single photon.) The space
of many-photon states is the (symmetric, since photons are bosons) Fock space
based on HM . Thus, from our earlier discussion, we have creation, annihilation,
and number operators for (free) photons. The commutation relations and other
properties of these operators have already been worked out.

Finally, we introduce momentum operators on HM . Let pa be a constant
vector field in Minkowski space. Then, with each solution Fab(x) of Maxwell’s
equations, we associate another solution: multiply the solution �~pcrcFab of
Maxwell’s equations by the number i (“multiply”, of course, in the sense of
HM ). We thus define a linear operator, P (pa), on HM . In momentum space,
this operator clearly takes the form

P (pb)A0
a(k) = ~(pbkb)A0

a(k) (190)

Note that the momentum operators are only defined on a dense subset ofHM , are
Hermitian, and commute with each other. Another interesting property of these
operators — which also holds in the Klein-Gordon case — is that “energies are
positive.” Let pa be timelike and future-directed, so P (pa) represents an energy
operator. Then paka � 0 for any ka 2 M+

0

. Hence, from (190) and (186), the
inner product of � and P (pa)� is positive for any element � ( 6= 0) of HM .

Although they are not commonly discussed, one can also introduce position
operators on HM . As in the Klein-Gordon case, one projects to obtain a vector
field on the mass shell. Instead of taking the directional derivative of a function
on the mass shell as in the Klein-Gordon case, one takes the Lie derivative of
A0a(k), considered as a contravariant vector field on M+

0

. (It’s important, in
order to preserve transversality, that one takes A0a(k) to be a contravariant
rather than a covariant field.) Finally, one includes an appropriate “divergence-
type term” in the operators in order to make them be Hermitian.
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14. Maxwell Fields as
Operators

We shall now introduce, on the Fock space for the Maxwell equation, operators
associated with the classical fields, Aa and Fab, of the Maxwell theory. The
definitions are closely analogous to those of the Klein-Gordon theory.

Since the classical Klein-Gordon field � is a scalar field, the test functions
used to “smear out” the corresponding field operators are scalar fields. In the
Maxwell case, on the other hand, the classical fields are vector or tensor fields on
Minkowski space. One must therefore introduce “test functions” which them-
selves have vectorial or tensorial character. The support of a tensor field fa1···an

on Minkowski space is defined as the closure of the collection of all points of
Minkowski Space at which fa1···an 6= 0. A smooth, real tensor field on Minkow-
ski space, with compact support, will be called a test field. In order to facilitate
calculations with such test fields, it is convenient to establish the following re-
mark:

Lemma 1. Let Ta1···an

be a smooth, totally antisymmetric tensor field on Min-
kowski space. Then Z

Ta1···an

r[a1fa2···an

] dV = 0 (191)

for every totally antisymmetric test field fa2···an if and only if

ra1Ta1a2···an

= 0 (192)

Furthermore, Z
Ta1···an

rmfma1···an dV = 0 (193)

for every totally antisymmetric test field fma1···an if and only if

r
[mTa1···an

]

= 0 (194)

Proof. Integrating by parts once, and discarding the surface term by compact
support, we have the identity

Z
Ta1···an

r[a1fa2···an

] dV = �
Z
(ra1Ta1···an

)fa2···an dV (195)
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for every totally antisymmetric test field fa2···a
n . But clearly the right side of

(195) vanishes for every test field if and only if (192) holds. The second part of
the Lemma is proved in the same way, using the identity

Z
Ta1···an

rmfma1···an dV = �
Z
(r

[mTa1···an

]

)fma1···an dV (196)

Note that Lemma 1 is easily generalized to higher order equations, to other
symmetries of the tensors, etc. The essential idea is that linear di↵erential
equations on a tensor field Ta1···an

on Minkowski space can be expressed by the
condition that the smeared-out version of this field vanish for an appropriate
collection of test fields.

We begin with the field operators for the vector potential. Unfortunately,
the classical vector potential, Aa(x), is not determined uniquely by a solution of
Maxwell’s equations; there is the freedom of gauge transformations (174), where
⇤ is a solution of the wave equation. We would expect this gauge freedom to
appear in some way in the corresponding operators. The essential observation
is that, by Lemma 1, the quantity

Z
Aaf

a dV (197)

is invariant under gauge transformations provided the test field fa is the sum of
a gradient and a vector field whose divergence vanishes. Conversely, the value
of the real number (197) for every test field which is the sum of a gradient and
a divergence-free field determines Aa(x) uniquely up to gauge transformations.
We are thus led to view the gauge freedom in the vector potential as representing
a restriction on the class of test fields which are appropriate for smearing out
the vector potential.

The remarks above motivate the definitions below. Let fa be a test field,
and let f 0a(k) be its Fourier inverse, a vector function on momentum space.
Evidently, if fa is divergence-free then

f 0a(k)ka = 0 (198)

while if fa is a gradient then

f 0a(k) = h(k)ka (199)

It is clear, therefore, that if fa is the sum of a gradient and a divergence-free field,
then f 0a(k), restricted to M+

0

, is transverse. In other words, we may associate,
with each test field fa on Minkowski space which is the sum of a gradient and
a divergence-free field, an element �(fa) of HM . We define the vector potential
operators

A(fa) = ~(C(�(fa)) +A(�(fa)) (200)

Note that the operator (200) is Hermitian, a result one expects because the
corresponding classical field is real. The definition of the electromagnetic field
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operators is suggested by Lemma 1 and Eqn. (172). If fab is a skew test field,
we define

F (fab) = A(2rbf
ab) (201)

Thus, the electromagnetic field operators (which are also Hermitian) must be
smeared out with skew, second-rank test fields. (Note that the right side of (201)
is well-defined, for the argument is necessarily divergence-free.)

We next verify that our field operators satisfy the same equations as the
classical fields. Using Lemma 1, Eqns. (175) and (176) are translated into

A(raf) = 0 (202)

A(⇤fa) = 0 (203)

where f is any test function and fa is any test field which is the sum of a gradient
and a divergence-free field. Eqn. (202) follows immediately from (199). To prove
(203), note that, if f 0a(k) is the Fourier inverse of fa, then (�kbkb)f 0a(k) is the
Fourier inverse of ⇤fa. But (�kbkb)f 0a(k) vanishes on M+

0

, whence (203) fol-
lows. We conclude that, in a suitable sense, our vector potential operators satisfy
(175) and (176). Similarly, using Lemma 1, Maxwell’s equations (170) and (171)
on Fab are to be translated into the following conditions on the electromagnetic
field operators:

F (rcf
abc) = 0 (204)

F (r[af b]) = 0 (205)

where fabc is a totally antisymmetric test field and fa is any test field. To prove
(204) and (205), we substitute the definition (201):

F (rcf
abc) = A(2rbrcf

abc) = A(0) (206)

F (r[af b]) = A(2rbr[af b]) = A(ra(rbf
b)�⇤fa) (207)

Thus, (204) is clearly true, while (205) follows immediately from (202) and
(203). We conclude that, in a suitable sense, our Maxwell field operators satisfy
Maxwell’s equations.

Finally, we remark briefly on the commutators of the vector potential oper-
ators. Let fa and f̃a be test fields, each of which is the sum of a gradient and
a divergence-free field. Then, from (200) and (102),

[A(fa), A(f̃a)] = ~2(��↵(fa)�̄↵(f̃
a) + �↵(f̃a)�̄↵(f

a))I

=
~
i
D(fa, f̃a)I

(208)

where the second equality defines D(fa, f̃a). Thus, D(fa, f̃a) is real and satisfies

D(fa, f̃a) = �D(f̃a, fa) (209)

These properties imply that whenever fa and f̃a have relatively spacelike sup-
ports, D(fa, f̃a) = 0. As in the Klein-Gordon case, D(fa, f̃a) can be written
out explicitly in terms of a distribution on Minkowski space.
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15. The Poincaré Group

A smooth mapping from Minkowski space to itself which preserves the norms of
vectors is called a Poincaré transformation. If, in addition, this mapping i) does
not reverse the of past and future time directions, and ii) does not reverse spatial
parities ( i) and ii) together are equivalent to i) and the condition that ✏abcd
be invariant), then the Poincaré transformation is called a restricted Poincaré
transformation. The result of applying two Poincaré transformations (resp.,
restricted Poincaré transformations) in succession is clearly again a Poincaré
(resp., restricted Poincaré) transformation. These transformations thus form a
group, called the Poincaré group (resp. restricted Poincaré group), P (resp.,
RP.) One sometimes expresses this relation between the Poincaré group and
Minkowski space by saying that the Poincaré group acts on Minkowski space.
That is, we have a mapping  : P ⇥ M ! M (M = Minkowski space) with
the following properties:

 (P, (P 0, x)) =  (PP 0, x) (210)

 (e, x) = x (211)

for P, P 0 2 P, x 2 M .
In fact, the Poincaré group has more structure than merely that of a group.

It is also a (10-dimensional, real, di↵erentiable) manifold. This additional man-
ifold structure on P leads naturally to the notion of an “infinitesimal Poincaré
transformation”.

A group G which is also a smooth manifold, and for which the group oper-
ations (composition within the group, considered as a mapping from G ⇥ G to
G, and the operation of taking the inverse, considered as a mapping from G to
G) are smooth mappings, is called a Lie group. Let G be a Lie group, and let
LG denote the collection of all contravariant vectors at the identity element e
of G. This LG is thus a real vector space whose dimension is the same as the
dimension of the manifold G. (Vectors at the identity of G represent “elements
of G which di↵er infinitesimally from the identity.”)

So far, our LG involves only the manifold structure of G (and, of course, the
location of the identity element.) Is there some way in which the group structure
of G can also be incorporated into LG? Let v 2 LG, so v is a contravariant
vector at e 2 G. Let g(✏) be a smooth curve, parameterized by the parameter ✏,
in G such that g(O) = e and such that the tangent vector, with respect to ✏, of
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g(✏) at e is just v. (“Tangent vector with respect to ✏” means that one takes the
derivative of g(✏) with respect to ✏ and evaluates at ✏ = 0.) Similarly, let g0(✏)
be a curve associated with v0 2 LG. Consider now the smooth curve

g(✏)g0(✏)g�1(✏)g0
�1

(✏) (212)

in G. Unfortunately, the tangent vector (with respect to ✏) of the curve (212)
vanishes at e. It turns out, however, that (212) is still a smooth curve if we take
as its parameter not ✏ but rather ✏2. The tangent vector of (212), with respect
to the parameter ✏2, is not in general zero at e. Furthermore, this tangent vector
depends only on v and v0 (and not on the particular curves g(✏) and g0(✏) which
actually appear in (212)), and so we may write it as follows: [v, v0]. Thus, with
any two elements, v and v0, of LG, we associate a third element, [v, v0], of LG.
It is by means of this bracket operation that the group structure of G appears
in LG. It can be proven that the bracket is necessarily linear, antisymmetric,
and subject to the Jacobi identity:

[av + bv0, v00] = a[v, v00] + b[v0, v00]

[v, av0 + bv00] = a[v, v0] + b[v, v00]
(213)

[v, v0] = �[v0, v] (214)

[v, [v0, v00]] + [v0, [v00, v]] + [v00, [v, v0]] = 0 (215)

(a, b 2 R; v, v0, v00 2 LG.) More generally, a Lie algebra is a vector space V on
which there is given a mapping from V ⇥V to V (the bracket), subject to (213),
(214), and (215).

To summarize, the collection LG of contravariant vectors at the identity of
any Lie group G has the structure of a Lie algebra.

There is a more formal way of expressing the structure of LG in terms of
that of G. Let v 2 LG. For each g 2 G, “left multiplication by G” defines a
smooth mapping from G to G which takes e to g. This mapping therefore carries
v (a vector at e) to some vector at g. Repeating, for each g 2 G, we obtain a
vector field on G. That is, with each v 2 LG there is associated a certain vector
field on the manifold G. If v, v0 2 LG, then the Lie derivative of the vector
field associated with v0 by the vector field associated with v, evaluated at e, is
precisely the element [v, v0] of LG. In this formulation, properties (213), (214),
and (215) of the bracket are clearly true.

The Poincaré group P is a Lie group: hence we have a Lie algebra L P.
(The Lie algebra of the restricted Poincaré group is the same as the Lie algebra of
the Poincaré group: “infinitesimal Poincaré transformations” cannot reverse past
and future or spatial parities.) Fortunately, elements of L P can be expressed
very simply as certain vector fields on Minkowski space. This is not surprising:
if we think of an element of L P as representing an “infinitesimal Poincaré
transformation,” then its action on Minkowski space should be expressible in
terms of some vector field on Minkowski space. The vector fields in Minkowski
space which represent elements of L P are those which satisfy

r
(avb) = 0 (216)
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(Eqn. (216) states that the Lie derivative of the Minkowski metric by va van-
ishes.) Choosing a particular origin O, the most general solution of (216) can
be expressed in the form

va = vOabx
b + vOa (217)

where vOa is a constant vector field on Minkowski space, vOab is a constant skew
tensor field on Minkowski space, and xa is the position vector of x relative
to our origin O. Note that the particular constant fields vOab and vOa which
describe a given va(x) will depend on the choice of origin O. Note also that the
dimensions are correct: six dimensions for vOab plus four dimensions for vOa make
ten dimensions for L P. The bracket operation in L P becomes Lie derivatives
of solutions of (216). That is to say, if v, v0 2 L P correspond to solutions va, v0a,
respectively, of (216), then the solution of (216) which corresponds to [v, v0] is
just

Lvv
0a = vbrbv

0a � v0
brbv

a (218)

As a check, one can verify (213), (214), and (215) for (218).
To summarize, whereas the Lie algebra L P of the Poincaré group arises

from very general considerations involving the structure of Lie groups, L P can
in fact be expressed very simply in terms of certain vector fields in Minkowski
space.
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16. Representations of the
Poincaré Group

Let P be a member of the restricted Poincaré group. Then, with each positive-
frequency solution �(x) of the Klein-Gordon equation, we may certainly associate
another positive-frequency solution, �(Px). This mapping from solutions to
solutions is clearly linear, and so represent an operator, UP , on the Hilbert
space HKG of positive-frequency solutions of the Klein-Gordon equation. That
is, for each P 2 RP, we have an operator UP on HKG. Since the operators
arise from the action of RP on Minkowski space, we have

UPUP 0 = UPP 0 (219)

Ue = I (220)

where e denotes the identity of RP. A mapping from a group into a collection of
operators on a Hilbert space, subject to (219) and (220), is called a representation
of the group. (More generally, the term representation is used when the operators
act on any vector space.) Thus, we have defined a representation of RP.

The inner product we have defined on HKG is clearly invariant under the
action of the restricted Poincaré group. That is to say, if P 2 RP, �, ⌧ 2 HKG,
we have

(UP�, UP ⌧) = (�, ⌧) (221)

An operator on a Hilbert space which is defined everywhere and which satis-
fies (221) for any two elements of that Hilbert space is said to be unitary. A
representation of a group with the property that the operator associated with
each group element is unitary is called a unitary representation. We thus have
a unitary representation of RP on HKG.

A similar situation obtains in the Maxwell case (and for the other relativistic
field equations we shall introduce later.) We have a unitary representation of
RP on HM .

Associated with the restricted Poincaré group RP is its Lie algebra L P.
What does a unitary representation of RP look like in terms of L P? Let UP

be a unitary representation of the restricted Poincaré group on a Hilbert space
H. Let v 2 L P, and let P (✏) be a corresponding curve in RP. Consider, for
each � 2 H, the right side of

Hv� =
~
i
lim
✏!0

UP (✏)� � UP (0)

�

✏
(222)
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(“lim”, of course, refers to the topology on H.) It may happen, of course, that
the limit in (222) does not exist for certain �. It is normally the case in practice,
however, that the limit does exist for a dense subset of H, and, furthermore,
that the limit depends only on v and not on the particular curve P (✏). In this
case, the right side of (222) is certainty linear in � (since the UP are), and so
defines an operator Hv on H. (The factor ~/i in (222) is for later convenience.)
Thus, we associate with each v 2 L P an operator Hv on H. The operator Hv

is linear in v, i.e.,
Hav+bv0 = aHv + bHv0 (223)

How is H
[v,v0

]

related to Hv and Hv0? To answer this question, we consider the
operators associated with the curve (212):

UP (✏)UP 0
(✏)U

�1

P (✏)U
�1

P 0
(✏) (224)

Taking the derivative (i.e., as in (222)) of (224), and evaluating at ✏ = 0, we
obtain the desired relation

[Hv, Hv0 ] =
~
i
H

[v,v0
]

(225)

where we have used (222). In other words, the bracket operation on the v’s
becomes commutators of the Hv’s. (Note that (225) is consistent with (213),
(214), and (215).) One further property of the Hv’s follows from the unitary
character, (221), of our representation. Taking the derivative of

(UP (✏)�, UP (✏)⌧) = (�, ⌧) (226)

with respect to ✏ and evaluating at ✏ = 0, we obtain, using (222),

(Hv�, ⌧) = (�, Hv⌧) (227)

That is, each operator Hv, is Hermitian.
To summarize, a unitary representation of the restricted Poincaré group on a

Hilbert space H normally leads to a linear mapping from L P to the collection
of Hermitian operators on H. The Lie bracket operation in L P translates to
the commutator of the corresponding operators.

The general remarks above are merely intended to provide a framework for
what follows. In practice, it is not necessary to go through a limiting process
to obtain the Hermitian operators associated with a representation of RP. Let
v 2 L P be the vector field va on Minkowski space, so va satisfies (216). Then,
if �(x) is a positive-frequency solution of the Klein-Gordon equation, so is the
right side of

Hv� =
~
i
vara� (228)

We thus define an operator Hv on (a dense subset of) HKG. The Hv’s clearly
satisfy (223) and (225). In terms of momentum space, (228) may be described
as follows. Let �(k) be the Fourier inverse of �(x) with respect to an origin O,
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and let va be given by (217) with respect to the same origin O. It then follows
immediately, taking the Fourier inverse of (228), that

Hv�(k) = ~(v0aka)�(k) +
~
i
v0abk

b@a�(k) (229)

(Note that (229) is well-defined, for v0abkb tangent to M+

µ .) We see from (229)
and (30) that each Hv is Hermitian.

The situation is completely analogous for the Maxwell Hilbert space HM .
Eqn. (228) is replaced by

HvFab =
~
i
LvFab =

~
i
(vcrcFab + Fcbrav

c + Facrbv
c) (230)

where the multiplication by i in (230) refers to multiplication within the Hilbert
space HM . In momentum space, our Hermitian operators take the form

HvA
0a(k) = ~(v0bkb)A0a(k) +

~
i
Lv0c

b

kbA0a(k) (231)

To summarize, we can take L P be simply the Lie algebra of solutions of
(216), and the operators Hv, to be defined by (228) and (230) (or by (229) and
(231)). Then Hermiticity, (223), and (225) follow directly.

To facilitate calculations with the Hv’s, it is convenient to introduce a special
notation. Let T a1···an be a tensor field on Minkowski space. Then T a1···an asso-
ciates, with each point x and tensor fa1···an

at x, a real number, T a1···anfa1···an

.
For fixed x, this mapping is linear in fa1···an

. Furthermore, the value of this num-
ber for every x and fa1···an

determines T a1···an uniquely. (Think of fa1···an

as a
“test function.”) An operator field is what results if we replace “real number” in
the remarks above by “operator on a Hilbert space H.” Thus, an operator field,
T a1···an , associates, with each point x of Minkowski space and tensor fa1···an

at
x, an operator on H, written T a1···anfa1···an

, such that, for x fixed, this operator
is linear in fa1···an

. (For example, an operator field is what Aa(x) and F ab(x)
would be, if they existed.) Note that a tensor field is a special case of an operator
field — when all the operators are multiples of the identity operator on H.

The easiest way to discuss the Hv’s is as operator fields. Let x be a point of
Minkowski space, and fa a vector at x. Then the constant vector field

va = fa (232)

on Minkowski space certainly satisfies (216), and so defines an operator Hv (on
either HKG or HM ). We have defined an operator field, which we write as P a.
(These, of course, are our old momentum operators, expressed in a di↵erent
way.) Let x be point of Minkowski space, and let fab be a skew tensor at x.
Then the vector field

va(y) = fabx
b (233)

on Minkowski space, where xa denotes the position vector of y relative to x,
satisfies (216), and so defines an operator Hv. We have thus defined a skew
operator field, which we write Pab.
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We introduce three operations on operator fields. The first is outer product.
Let fabc be a tensor at the point x of Minkowski space. Write fabc in the form

fabc = mambc + · · ·+ nanbc (234)

Then, for example, the outer product of P a and P bc is the operator field P aP bc,
defined by

P aP bcf
abca = (maP a)(m

bcP bc) + · · · (naP a)(n
bcP bc) (235)

where the products on the right are to be interpreted as merely products of
operators. Note that (235) is independent of the particular expansion (234).
The outer product of two operator fields in general depends on the order in
which they are written. For example, P aP bc 6= P bcP a. The second operation is
contraction. Let f b be a vector at the point x of Minkowski space. Then, for
example, P aP ab is the operator defined by

P aP abf
b = (P ctc)(P dbt

df b)� (P cxc)(P dbx
df b)� (P cyc)(P dby

df b)

� (P czc)(P dbz
df b)

(236)

where ta, xa, ya, za are vectors at x which define an orthonormal basis

tata = 1 xaxa = yaya = zaza = �1

taxa = taya = taza = xaya = xaza = yaza = 0
(237)

Note that (236) is independent of the choice of basis. The final operation on
operator fields is di↵erentiation. Let ra and f b be vectors at the point x of
Minkowski space. Let x0 be the point of Minkowski space whose position vector
relative to x is ✏ra, and let f 0b be f b translated to the point x0. Then, for
example, raP b is the operator field defined by

(raP b)r
af b = lim

✏!0

P af
0a � P af

a

✏
(238)

(provided this limit exists). In short, operator fields are handled exactly as
tensor fields, except that one must keep track of the order in products. The
terms Hermitian operator field, unitary operator field, etc. are self-explanatory.

First note that P a and P ab are Hermitian operator fields. We next consider
the derivatives of our two operator fields. It is clear from (232) and (238) that
P a is constant:

raP b = 0 (239)

To compute the derivative P ab, we first note the following fact. If va(x), a
solution of (216), is expressed in the form (217) with respect to two di↵erent
origins, O and O0, then

vO
0

ab = vOab vO
0

a = vOa + vOabr
b (240)
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where ra is the position vector of O0 relative to O. It now follows from (233)

and (240) that, if scd is a skew tensor at O and s0cd is scd translated to O0, then

P cds
0cd � P cds

cd = �scdr
dP c (241)

Hence,
raP bc = ⌘a[bP c] (242)

Eqns. (239) and (242) imply, in particular, that the second derivative of P ab
vanishes. Finally, we evaluate the commutators of our operator fields. We have
already seen that the momentum operators commute:

[P a, P b] = 0 (243)

The other commutators are computed using the following fact: if va(x) and
wa(x) are elements of L P, expressed in the form (217) with respect to the
same origin O, then [v, w] takes the form

2vO
[a

cwO
b]cx

b + (vOcwO
ac � wOcvOac) (244)

with respect to O. Hence, from (225), (233), and (244), we have

[rabP ab, s
cdP cd] =

2~
i
ra

csbcP
ab (245)

where rab and sab are skew tensors at x. Therefore,

[P ab, P cd] =
~
i

⇣
⌘b[cP d]a � (⌘a[cP d]b

⌘
(246)

By an identical argument, we obtain, finally,

[P a, P bc] = �~
i
⌘a[bP c] (247)

The interaction between the restricted Poincaré group and our Hilbert spaces
is expressed completely and neatly by the operator fields P a and P ab. The
important equations on these fields are (239), (242), (243), (246), and (247).
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17. Casimir Operators:
Spin and Mass

Our plan is to introduce a number of relativistic field equations, and, for each one,
to make a Hilbert space of an appropriate collection of solutions, to introduce
the corresponding Fock space, and to replace the classical fields by operators
on Fock space. This program has now been carried out for the Klein-Gordon
and Maxwell equations. With each set of equations there are associated two
real numbers called the mass and the spin. We could, of course, merely state
what mass and what spin are to be associated with the equations in each case.
It is useful, however, to see how these quantities arise in a natural way from
very general considerations involving the structure of the Poincaré group. In
fact, what we need of the Poincaré group is the action of its Lie algebra, L P,
on our Hilbert spaces (Sect. 16), and certain objects, called Casimir operators,
associated with L P. More generally, there are Casimir operators associated
with any Lie algebra. We begin with this more general situation.

Let L be a Lie algebra. Then, in particular, L is a vector space. It is
convenient to introduce an index notation. An element of L will be written
with a raised Greek index (not to be confused with the Greek indices used in
the discussion of Fock space.) Elements of the dual space of L (elements of
the vector space of linear maps from L to the reals (or the complexes, if L
were a complex vector space)) are written with lowered Greek indices. Objects
with more that one index represent tensors over L and its dual. Finally, the
action of the dual induces the operation of contraction between one raised and
one lowered Greek index: this is indicated by using a repeated index. (When
one wants to do anything except the most trivial calculations with multilinear
algebra, it is usually simpler in the long run to introduce an index notation.)
For example, the bracket operation in L is a bilinear mapping from L ⇥ L to
L , and so can be represented by a tensor Cµ

↵� :

[v, v0]µ = Cµ
↵�v

↵v0
�

(248)

(This tensor is sometimes called the structure constant tensor.) Eqns. (214) and
(215), expressed in terms of Cµ

↵� , become

Cµ
↵� = Cµ

[↵�] (249)

Cµ
⌫[↵C

⌫
��] = 0 (250)

69



70 17. CASIMIR OPERATORS: SPIN AND MASS

In other words, a Lie algebra is simply a vector space over which there is given
a tensor Cµ

↵� , subject to (249) and (250). (For example, the invariant metric
of a Lie algebra, which we shall not use here, is Cµ

⌫↵C⌫
µ� .)

We now introduce the set A of all finite strings of tensors over L :

(v↵, v↵�, . . . , v↵1···↵n , 0, 0, . . .) (251)

What structure do we have on A ? We can certainly add two finite strings by
adding them “component-wise” — i.e., adding the vector of the first string to
the vector of the second string, the second-rank tensor of the first string to the
second-rank tensor of the second string, etc. — to obtain a new element of A .
Furthermore, we can multiply a finite string by a number by multiplying each
element of that string by the number. Thus, A has the structure of an (infinite-
dimensional) vector space. We can also introduce a product operation on A .
(This, in fact, is the reason for considering A at all.) To take the product of
two finite strings, take all possible outer products consisting of one tensor from
the first string and one from the second, always placing the tensor from the first
string first, and add together the resulting tensors when they have the same rank
to obtain the product string. For example,

(v↵, v↵� , 0, . . .)(w↵, w↵� , w↵�� , 0, . . .)

= (0, v↵w� , v↵�w� + v↵w�� , v↵�w�� + v↵w���, v↵�w��✏, 0, . . .) (252)

Note that the product, AB, of elements A and B of A is linear in A and B:

(aA+A0)B = aAB +A0B

A(aB +B0) = aAB +AB0 (253)

(a 2 R, A,A0, B,B0 2 A .) A vector space on which there is defined a product
which satisfies (253) is called an algebra. So A is an algebra. (Note that every
Lie algebra is an algebra: the product is the bracket.) Since outer products of
tensors are associative, so is A :

A(BC) = (AB)C (254)

(A,B,C 2 A ). An algebra for which (254) holds for any three of its elements is
called an associative algebra.

Our algebra A so far involves only the vector-space structure of L . (In
fact, A is sometimes called the tensor algebra of the vector space L .) We now
want to incorporate in some way the remaining structure of L , i.e., the bracket.
Consider the collection of all elements of A of the form

(�C↵
µ⌫v

µw⌫ , 2v[↵w�], 0, . . .) (255)

for v, w 2 L . Let I denote the set of all elements of A which can be written
as a sum of products of elements of A in such a way that at least one factor in
each product is of the form (255). Clearly, we have (i) I is a vector subspace
of A , and (ii) the product of any element of I with any element of A is again
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an element of I . (A subset of an associative algebra, satisfying (i) and (ii), is
called an ideal.) We now want to take the quotient algebra, A /I , of A by
the ideal I . We define an equivalence relation on A : two elements of A are
to be regarded as equivalent if their di↵erence is in I . That the equivalence
class of any linear combination of elements A and B of A depends only on the
equivalence classes of A and B follows from (i). That the equivalence class of the
product of any two elements A and B of A depends only on the equivalence class
of A and B follows from (ii). Thus, the collection of equivalence classes is itself
an associative algebra. It is written U L and called the universal enveloping
algebra of the Lie algebra. To summarize, with every algebra there is associated
an associative algebra U L .

There is an important relation between L and U L . Let v↵ 2 L , and let
 (v) denote the element of U L whose equivalence class contains the element
(v↵, 0, 0, . . .) of A . We thus have a — clearly linear — mapping from to L to
U L . Furthermore, it follows from (255) that

 ([v, v0]) =  (v) (v0)�  (v0) (v) (256)

for any two elements of L . (In fact, it was to make (256) hold that we defined
U L as we did.) In other words, the bracket operation in the Lie algebra L
corresponds to the commutator of elements of the associative algebra U L .
Note that, applying  to both sides of (214) and (215), and using (256) and
associativity, we obtain identities.

Why this interest in the universal enveloping algebra? Let L be a Lie al-
gebra, and suppose, for each element v of L , we are given an operator Hv on
some fixed Hilbert space H. Suppose, furthermore, that Hv is linear in v, and
that

H
[v,v0

]

= HvHv0 �Hv0Hv (257)

for any v, v0 2 L . (Compare (225). It is convenient to omit the factors ~/i —
not an essential change, for such factors can always be included in the operators
— when considering purely mathematical questions.) We show that this action
of L on H can be extended naturally to an action of U L on H. Consider an
element of the associative algebra A , written (as every element of A can be
written) as sums of outer products of vectors, e.g.

(v↵, u↵w� + p↵q� , r↵s�t� , 0, 0, . . .) (258)

We associate with each expression of the form (258) an operator on H, e.g.,

Hv +HuHw +HpHq +HrHsHt (259)

It follows from the fact thatHv is linear in v that the operator (259) depends only
on the element of A represented by (258) (and not on the particular expansion
used.) Furthermore, (255) and (257) imply that if (258) is an element of I (2
A ), then the operator (259) is zero. Thus, (259) depends only on the equivalence
class of (258). In other words, we have, for each element � of U L , an operator,
H

�

, on H. The operators H
�

are linear in H:

Ha�+�

0 = aH
�

+H
�

0 (260)
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and, clearly, satisfy
H (v) = Hv (261)

Furthermore, it follows immediately from (259) that

H
��

0 = H
�

H
�

0 (262)

Let us summarize the situation. We have a Lie algebra L acting on a
Hilbert space H by means of the operators Hv (v 2 L ) on H. The collection of
all operators (at least, the collection of all those which are defined everywhere)
on a Hilbert space has the structure of an associative algebra. We thus have a
mapping from a Lie algebra to an associative algebra, with these two algebraic
structures related via (257). Things could be better. It would be nice if we could
express the bracket operation in L in the form

[v, v0] = vv0 � v0v (263)

and have
Hvv0 = HvH

0
v (264)

Then (257) would follow already from (263) and (264). This program, unfortu-
nately, cannot be accomplished directly, for the only “product” which is defined
in L is the entire bracket, and not the individual terms on the right of (263).
But it can be accomplished indirectly. We “enlarge” L to U L . We still cannot
write (263) — but instead we have (256). (Eqn. (256) also states that the alge-
braic structure of L has been incorporated into that of U L .) We still cannot
write (264) — but instead we have (262). In short, since L is being mapped to
an associative algebra (the operators on H), and since the natural thing to map
to an associative algebra is another associative algebra, we “force associativity”
on L by enlarging it to U L .

We can now introduce the Casimir operators. A Casimir operator of the Lie
algebra L is an element of the center of U L , i.e., an element � of U L such
that

����� = 0 (265)

for every � 2 U L . It should be emphasized that the Casimir operators of
a Lie algebra are not themselves elements of that Lie algebra, but rather of
its universal enveloping algebra. That is, they must be represented as strings of
tensors over L . Note that the collection of all Casimir operators of a Lie algebra
form an associative algebra. Finally, we remark that the universal enveloping
algebra U L and hence the Casimir operators (which are not operators, as we
have defined them, but merely elements of an algebra) are fixed once and for all
given the Lie algebra L . They do not depend on the presence of a Hilbert space
H or on the Hv’s. For example, the Casimir operators of L P (the Lie algebra
of the Poincaré group) simply exist. (In fact, there are just two algebraically
independent ones.) They needn’t be found individually for HKG, HM , etc.

Now suppose again that we have a Hilbert space H and, for each v 2 L , an
operatorHv onH, where theHv’s are linear in v and satisfy (257). Then we have
an operator H

�

on H for each � 2 U L , and, in particular, an operator on H for
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each Casimir operator of L . Eqns. (265) and (262) imply that, if � is a Casimir
operator, then H

�

commutes with all the H
�

’s, and, in particular, with all the
Hv’s (see (261)). This normally implies, as we shall see in examples later, that
H

�

is simply a multiple of the identity operator. Thus, the Casimir operators
assign numbers to our relativistic field equations, i.e., to our representations of
the restricted Poincaré group.

The words “normally implies” above are rather vague. I do not know whether
or not there is a general theorem which implies that the Casimir H

�

’s are mul-
tiples of the identity in cases of interest. However, the following result suggests
this conclusion:

Lemma 2 (Schur’s Lemma). Let H be a finite-dimensional complex vector space,
and let L be a set. Suppose, for each v 2 L , we are given an operator (defined
everywhere) on H, Hv. Suppose, furthermore, that the only vector subspaces S
of H having the property that Hv� 2 S for every v 2 L and � 2 S are S = {0}
and S = H. Let K be an operator (defined everywhere) on H which commutes
with all the Hv’s. Then K is some complex multiple of the identity.

Proof. Since H is a complex vector space, K has at least one eigenvector, i.e.,
there exists a complex number  and a nonzero element � of H such that

K� = � (266)

Fix , and let S be the collection of all �’s which satisfy (266). Then, for � 2 S,
v 2 L ,

K(Hv�) = HvK� = (Hv�) (267)

Hence, Hv� 2 S. By hypothesis, therefore, S = {0}, or S = H. But by
construction S contains at least one nonzero element of H, so we must have
S = H. In other words, every element of H satisfies (266), whence K = I.

We now want to apply all this mathematics to our relativistic fields. As
usual, one can regard the formal developments as merely providing motivation
and insight into what turn out to be very simple notions in practice. The
operators on our Hilbert spaces associated with the Casimir operators of L P
can be expressed quite easily in terms of the operator fields P a and P ab discussed
in Section 16. The first Casimir operator is

P aP
a = m2 (268)

We see from (243) and (247) that m2 commutes with P a and P ab. Furthermore,
(239)) implies that m2 is a constant operator field. Hence, m2 is just an ordinary
operator on our Hilbert spaces. It turns out to be a multiple of the identity (as
suggested above), and that multiple is called the (squared) mass of the field. To
define the second Casimir operator, we first introduce the operator field

W a✏abcdP bP cd (269)

Then (239) and (242) imply that W a is constant. The second Casimir operator
is the left side of

W aW
a = �~2m2s(s+ 1) (270)
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Note, from (243), (246), and (247), that W aW
a commutes with P a and P ab. It

turns out to be a multiple of the identity, and the non-negative number s which
makes that multiple be the right side of (270) is called the spin of the field. We
remark that the mass and spin are associated not with each individual solution
of a relativistic field equation, but rather with the equation itself.

Unfortunately, (270) will not give the spin s when m = 0. In the massless
case, it is found that there is a number s for which

W a = s~P a (271)

and so this equation is used to define the spin. This definition has an interesting
consequence. Note that the definition of W a involves one ✏abcd, while there
are none in P a. That is, W a is a pseudovector, while P a an ordinary vector
(operator field). Hence, the spin s is a pseudoscalar in the massless case, and
a scalar when m 6= 0. We shall see shortly that this feature is related to the
notion of helicity.

Finally, we evaluate the mass and spin in the Klein-Gordon and Maxwell
cases. Let ra be a vector at the point x of Minkowski space, and let positive-
frequency solution of the Klein-Gordon equation. Then

raP a(r
bP b�) = raP a

✓
~
i
rbrb�

◆
= �~2rarbrarb� (272)

To evaluate P aP
a� we must sum (272), with the appropriate signs, as ra runs

over an orthonormal tetrad (see (236).) Clearly, the result of taking this sum is
simply to replace rarb by the Minkowski metric, ⌘ab. So

P aP
a� = �~2⇤� = ~2µ2� (273)

But ~2µ2 for the Klein-Gordon equation is what we earlier (c.f. (5)) called m2.
Hence, the m in Sect. 1 is indeed the mass for the Klein-Gordon equation. To
evaluate the spin, let ra be a vector and sab a skew tensor at the point x. Then,
writing xa for the position vector relative to x,

raP a(s
bcP bc�) = raP a

✓
~
i
sbcx

crb�

◆
=

~
i
rara

✓
~
i
sbcx

crb�

◆

= �~2(rcsbcrb�+ rasbcx
crarb�) (274)

Let ua be another vector at x. Then, to evaluate uaW
a�, we must sum (274)

over r’s and s’s so that
P

rbscd = ua✏abcd. The result, clearly, is just to replace
the combination rbscd in (274) by ua✏abcd. So,

uaW
a� = �~2ua✏

abcd(⌘bdrc�+ xdrbrc�) = 0 (275)

Thus, W a is zero on HKG. Now (270) implies s = 0 in the massive case, while
(271) gives s = 0 in the massless case. The Klein-Gordon equation describes a
particle of mass m and spin zero.



75

It is enlightening, instead of treating just the Maxwell case, to discuss the
more general equation

(⇤+ µ2)Aa = 0 raAa = 0 (276)

Maxwell’s equations are obtained for µ = 0. If ra is a vector at x,

raP a(r
bP bAc) = �~2rarbrarbAc (277)

Hence,
P aP

aAb = �~2⇤Ab = ~2µ2Ab (278)

Hence, the mass of the fields described by (276) is just as in the Klein-Gordon
case. (In particular, photons have mass zero.) If ra is a vector and sab a skew
tensor at x, then

raP a(s
bcP bcAd) = raP a

✓
~
i
Lsb

c

xcAd

◆

=
~
i
rara

✓
~
i

�
sbcx

crbAd +Abs
b
d

�◆

= �~2
⇥
rasbcx

crarbAd + rcsbcrbAd + rasbdraAb

⇤
(279)

Therefore, by the same argument as before,

uaW
aAe = �~2ua✏

abcd [xdrbrcAe + ⌘bdrcAe + ⌘edrbAc]

= �~2✏aebcuarbAc
(280)

where ua is a vector at x. Hence,

W aW
aAc = �~2✏aebcrb

�
�~2✏acpqrpAq

�

= �4~4rb(r
[eAb]) = �2~4µ2Ae

(281)

Thus, the spin of the fields (276) is s = 1, provided µ 6= 0.
But something appears to be wrong in the Maxwell case, µ = 0. Eqn. (280)

is not proportional to

uaP
aAe =

~
i
raraAe (282)

First note that, by a gauge transformation on the right in (282), we can write

uaP
aAe =

~
2i
uar

[aAe] (283)

We still don’t have proportionality with (280). The reason is that the represen-
tation of L P on HM is not irreducible. A solution of Maxwell’s equations is
said to have positive (resp. negative) helicity if

✏abcdFcd = ± i

2
F ab (284)
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with the plus (resp. minus) sign on the right. (In (284), “i” means multiplication
in HM . The factor i/2 is necessary because ✏abcd✏cdefF ef = �4F ab for any skew
F ab.) In momentum space, a positive-helicity or negative-helicity solution takes
the form

A0
a(k) = ma + ina (285)

with mama = nana, mana = 0. The two helicities arise because there are two
directions through which ma can be rotated through 90o to obtain na. Every
solution of Maxwell’s equations can be written uniquely as the sum of a positive
and a negative helicity solution. Furthermore, the inner product of a positive
helicity solution with a negative helicity solution is zero. (These facts follow
immediately from (285).) Thus, HM is the direct sum of the Hilbert space of
positive-helicity solutions with the Hilbert space of negative-helicity solutions.
On the Hilbert space of positive-helicity solutions, s = 1; on the Hilbert space
of negative-helicity solutions, s = �1.



18. Spinors

Particles with half-integer spin (electrons, neutrinos, etc.) are described by
mathematical objects called spinor fields. We shall base our treatment of such
particles on what are called “two-component spinors” (rather than the more
common four-component spinors.) Essentially the only di↵erence between the
two is one of notation. Whereas the two-component spinors lend themselves
more naturally to an index notation, the four-component spinors are slightly
more convenient when discussing discrete symmetries. We shall first define (two-
component) spinors, and then indicate how formulae can be translated to the
four-component language.

Let C be a two-dimensional, complex vector space. Membership in C will be
indicated with a raised, upper case Latin index, e.g., ⇠A, ⌘A, etc. We introduce
three additional two-dimensional complex vector spaces:

i) The complex-conjugate space, C̄, of C (see Sect. 8);

ii) The dual space, C⇤, of C (i.e., the vector space of linear mappings from C
to the complexes; and

iii) The complex-conjugate space of the dual space of C, C̄⇤ (or, what is the
same thing, the dual space of the complex-conjugate space of C).

Membership in C̄ will be indicated with a primed raised index, e.g., ⇠A
0
; mem-

bership in C⇤ by an unprimed lowered index, e.g., ⇠A; and membership in C̄⇤ by a
primed lowered index, e.g., ⇠A0 . That is, we now have four di↵erent vector spaces,
with their elements represented by four di↵erent index combinations. What op-
erations can be performed on the elements of C, C̄, C⇤, and C̄⇤? Of course, we
can multiply elements by complex numbers, and add elements which belong to
the same vector space (i.e., which have the same index structure). Furthermore,
our four vector spaces can be grouped into pairs which are complex-conjugates
of each other: C and C̄ are complex-conjugates of each other, and C⇤ and C̄⇤

are complex-conjugates of each other. Thus, we have an operation of complex-
conjugation, which, applied to an element of C (resp. C̄, C⇤, or C̄⇤), yields an
element of C̄ (resp. C, C̄⇤, C⇤). For example,

⇠A = ⇠̄A
0

�A = �̄A0

⌘A0 = ⌘̄A

⌧A0 = ⌧̄A
(286)

77
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Note the e↵ect of the operation of complex-conjugation on the index structure:
it adds a prime if there was none before, and a deletes a prime if there was
one before. Finally, we can group our four vector spaces into pairs which are
duals of each other: C and C⇤ are duals of each other, and C̄ and C̄⇤ are duals
of each other. We thus have the operation of contraction: an element ⇠A 2 C
together with an element ⌘A 2 C⇤ defines a complex number, ⇠A⌘A; an element
�A0 2 C̄ together with an element ⌧A0 2 C̄⇤ defines a complex number, �A0

⌧A0 .
One indicates contraction, as above, by using a repeated index. Note that one
can only contract between a raised and a lowered index when these are of the
same type (both primed or both unprimed). We have, for example,

(⇠A⌘A) = ⇠̄A
0
⌘̄A0 (287)

(Note that the index notation we used for Hilbert spaces is essentially a special
case of that described above. The inner product on a Hilbert space induces
a natural isomorphism between C̄ and C⇤, and between C̄⇤ and C. One can
therefore do away with primed indices entirely.)

Now consider the various tensor products between C, C̄, C⇤, and C̄⇤. The
particular tensor product to which an object belongs is indicated by its index
structure, e.g., TA···BC0···D0

E···FG0···H0 . Complex-conjugation extends in an ob-
vious way to the tensor products, e.g.,

TA···BC0···D0
E···FG0···H0 = T̄A0···B0C···D

E0···F 0G···H (288)

We define a spinor-space as a two-dimensional, complex vector space C on which
is specified a nonzero object ✏AB which is skew:

✏AB = ✏
[AB]

(289)

(Note that, since C is two-dimensional, any two skew ✏AB ’s di↵er at most by a
complex factor. Hence, there is “just one” spinor space.) Elements of the tensor
products will be called spinors. Thus, we can multiply spinors by complex num-
bers, add spinors when they have the same index structure, take outer products
of spinors, and contract over spinor indices (one raised and one lowered, both
primed or both unprimed.) Since ✏AB 6= 0, there is a unique spinor ✏AB which
is skew and satisfies

✏AM ✏
BM = �BA (290)

where �BA is the unit spinor (defined by �BA⇠A = ⇠B for all ⇠A.) We can now
“raise and lower spinor indices” (i.e., define isomorphisms between C and C⇤ and
between C̄ and C̄⇤):

⇠A = ✏AB⇠B

⌘A
0
= ✏̄A

0B0
⌘B0

⇠A = ⇠B✏BA

⌘A0 = ⌘B
0
✏̄B0A0

(291)

(Note the placement of indices in (291).) Similarly, one can raise and lower an
index of a spinor with more than one index. Note that, since ✏AB is skew, we
have

⇠A�A = �⇠A�A (292)
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Let V denote the collection of all spinors ⇠AA0
which are real:

⇠AA0 = ⇠AA0
(293)

We can certainly add two elements of V obtain another element of V , and
multiply an element of V by a real number to obtain another element of V . (Note
that multiplication by a complex number does not preserve (293): (↵⇠AA0) =
↵̄⇠AA0 .) Thus, V is a real vector space, which, as can easily be checked by
introducing a basis, is four-dimensional. (The collection of all Hermitian 2 ⇥ 2
matrices is a real four-dimensional vector space.) We can furthermore define on
V an inner product (i.e., a metric) via

⇠AA0
⇠AA0 (294)

By introducing a basis, or otherwise, it is easily checked that the signature of
this metric is (+,�,�,�).

So far, spinor space is a purely mathematical construct. In order to actually
use the spinor space in physics, we must somehow tie it down to our space-
time — Minkowski space. This is accomplished, of course, through the vector
space V of solutions of (293). The vectors at a point x of Minkowski space
form a four-dimensional vector space on which there is a metric of signature
(+,�,�,�). We “tie down” spinor space, therefore, by specifying some metric-
preserving isomorphism between V and this vector space of vectors at the point
x. We assume that such an isomorphism has been fixed once and for all. Thus,
we can regard a tensor in Minkowski space at x, e.g., T ab

c, defining a spinor,
TAA0BB0

CC0 which is real:

TAA0BB0
CC0 = TAA0BB0

CC0 (295)

We shall allow ourselves to write such “equivalent” quantities as equal:

T ab
c = TAA0BB0

CC0 (296)

In other words, we are free to replace a lowercase Latin index (tensor index in
Minkowski space) by the corresponding uppercase Latin index written twice,
once unprimed and once primed. For example, the metric in Minkowski space
takes the form (see (294))

⌘ab = ✏AB ✏̄A0B0 (297)

We may thus regard tensors at x as merely a special case of spinors (those having
an equal number of primed and unprimed indices, and which, for a real tensor,
are real). Finally, note that translation in Minkowski space defines a metric-
preserving isomorphism between the vectors at x and the vectors at any other
point y. Hence, we have automatically spinors at the point y. More generally,
we have the notion of a spinor field, a spinor function of position in Minkowski
space. Tensor fields in Minkowski space are, of course, a special case. We can
multiply spinor fields by real or complex scalar fields, and spinor fields (when
they have the same index structure), take outer products of spinor fields, and
contract appropriate spinor indices.
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It is possible, in addition, to take derivatives of spinor fields. Let, for example,
TA

BC0 be a spinor field. Let rm be a vector at x, and let x0 be the point whose
position vector relative to x is ✏rm. We define rmTA

BC0 by

rmrmTA
BC0 = lim

✏!0

TA
BC0(x0)� TA

BC0(x)

✏
(298)

The replacement of Minkowski tensor indices by spinor indices can, of course,
be extended to the index of the derivative operator. That is,

rmTA
BC0 = rMM 0TA

BC0 (299)

In short, the mechanics of calculating with spinor fields is in no essential way
di↵erent from that of tensor fields. The one point one has to be careful about is
the index locations in contractions (see (292).)

One further question must be discussed. To what extent does the imposition
of the notion of spinor fields on Minkowski space enrich the structure of Min-
kowski space? That is, are there essentially inequivalent spinor structures on
Minkowski space? To obtain evidence on this question, consider the collection
of vector fields on Minkowski space of the form

⇠A⇠̄A
0

(300)

where ⇠A(x) is a spinor field. This vector field is certainly real, and, from (294)
is null. (From (292), ⇠A⇠A = 0.) Furthermore, the inner product of two such
fields,

(⇠A⇠̄A
0
)(⌘A⌘̄A0) = (⇠A⌘A)(⇠̄

A0
⌘̄A0) = (⇠A⌘A)(⇠B⌘B) (301)

is necessarily non-negative. Thus, the spinor structure on Minkowski space de-
termines a particular time orientation, which we may specify as being the “fu-
ture.” (Past-directed null vectors then have the form �⇠A⇠̄A0

.) Furthermore,
the tensor field on Minkowski space defined by the right side of

✏abcd = �i(✏AB✏CD ✏̄A0C0 ✏̄B0D0 � ✏̄A0B ✏̄C0D0✏AC✏BD) (302)

is real, totally antisymmetric, and satisfies ✏abcd✏abcd = �24. Hence, this must
be all alternating tensor on Minkowski space. Thus, a spinor structure on Min-
kowski space induces both temporal and spatial parities on Minkowski space.
In fact, this is all the structure induced on Minkowski space by a spinor struc-
ture. More precisely, given two metric-preserving isomorphisms between V and
vectors in Minkowski space, such that these induce the same spatial and tem-
poral parities on Minkowski space, these are related by a linear mapping from C
onto C which preserves ✏AB (i.e., by an element of SL(2,C).) Finally, note that
there are precisely two ✏AB-preserving linear mappings on C which leave V (and
hence tensors in Minkowski space) invariant, namely the identity and minus the
identity. This is the statement of the “two-valuedness” associated with spinors.

Finally, we briefly indicate how one translates formulae from the two-compo-
nent to the four-component spinor notation. A four-component spinor is a pair
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of two-component spinors, (⇠A, ⌘A0), consisting of one spinor with a primed and
one with an unprimed index. One then normally chooses a basis for C and writes
this pair out as a 4⇥1 column matrix. The “�-matrices” in the four-component
notation serve the function of combining these components in the appropriate
way to obtain the various scalar, vector, and tensor fields on Minkowski space
associated with the pair (⇠A, ⌘A0). For example, a pair (⇠A, ⌘A0) defines the
following fields on Minkowski space:

⇠A⌘̄A, ⇠A⇠̄A0 , ⌘A0 ⌘̄A, ⇠A⌘A0 , ⇠A⇠B ✏̄A0B0 ,

⌘A0⌘B0✏AB , ⇠A⌘̄B ✏̄A0B0 , ⇠B ⇠̄A0✏AC ✏̄C0B0
(303)

The spinor notation discussed here (which is due to Penrose) essentially avoids
the �-matrices by choosing a basis for neither spinor space nor Minkowski space.
Questions of (restricted) Lorentz invariance simply do not arise: one cannot,
with this notation, write anything which is not invariant.
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19. The Dirac Equation

The field which describes a free, massive, spin- 1
2

particle consists of a pair,
(⇠A, ⌘A0), of spinor fields on Minkowski space. These fields must satisfy the
Dirac equation:

rAA0⇠A =
µp
2
⌘A0 (304)

rAA0
⌘A0 = � µp

2
µ⇠A (305)

where µ is a positive real number (which, as we shall see shortly, is essentially
the mass of the particle.) The Dirac equations are to be considered as analogous
to the Klein-Gordon equation, or to the Maxwell equations.

There is another, for some purposes more illuminating, form for Dirac’s equa-
tions. Taking the derivative of (304), we have

rBA0
rAA0⇠A =

µp
2
rBA0

⌘A0 (306)

Substituting (305) on the right in (306), and using the fact that

rBA0
rAA0 =

1

2
�BA⇤ (307)

we obtain
(⇤+ µ2)⇠B = 0 (308)

Thus, the Dirac equations imply that the spinor field ⇠A (and, by a similar argu-
ment, ⌘A0) satisfies the Klein-Gordon equation. Conversely, if ⇠A is any solution
of (308), then, defining ⌘A0 by (304) (note µ 6= 0), (⇠A, ⌘A0) is a solution of
Dirac’s equations. In other words, there is a one-to-one correspondence between
solutions of Dirac’s equations and solutions of (308). Why, then, do we choose to
deal with a pair of spinor fields and the relatively complicated equations (304),
(305) rather than simply a simple spinor field and (308)? The reason is that
there is a certain symmetry between ⇠A and ⌘A0 which, while merely a curios-
ity at present, will later be found to be related to the discrete symmetries of
Minkowski space.

One further consequence of (308) is that it makes clear the fact that the
problem of finding solutions of Dirac’s equations is no more and no less di�cult

83
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than that of finding solutions of the Klein-Gordon equations. Fix two constant
spinor fields, ↵A and �A, on Minkowski space. Then, by the remarks above,
each solution, (⇠A, ⌘A0), of Dirac’s equations defines two solutions, ⇠A↵A and
⇠A�A, of the Klein-Gordon equation, and, conversely, if � and  are solutions
of the Klein-Gordon equation, then �↵A+ �A is a solution of (308), and hence
defines a solution of Dirac’s equations.

Note that if (⇠A, ⌘A0) is a solution of Dirac’s equations, so is (⌘̄A, ⇠̄A0). We
call (⌘̄A, ⇠̄A0) the complex-conjugate of the solution (⇠A, ⌘A0) (analogous to the
complex-conjugate of a solution of the Klein-Gordon equation). Of course,
complex-conjugation, applied twice to a solution of Dirac’s equations, yields
the original solution.

We now go to momentum space. Set

⇠A(x) =

Z

M
µ

⇠A(k)eikb

xb

dVµ (309)

⌘A0(x) =

Z

M
µ

⌘A0(k)eikb

xb

dVµ (310)

where ⇠A(k) and ⌘A0(k) are spinor-valued functions. These functions are only
defined on Mµ, and the integrals (309), (310) are only carried out over Mµ,
because of (308). Inserting (309) and (310) into (304) and (305), we obtain

ikAA0⇠A(k) =
µp
2
⌘A0(k) (311)

ikAA0
⌘A(k) = � µp

2
⇠A(k) (312)

Note that each of (311) and (312) implies the other. Thus, a solution of Dirac’s
equations is characterized by a pair of spinor-valued functions, ⇠A(k) and ⌘A0(k),
on Mµ, subject to (311) and (312). (Alternatively, a solution is characterized
by a single, arbitrary, spinor function ⇠A(k) on Mµ. Then ⌘A0(k) is defined by
(311), and (312) follows identically.) A solution of Dirac’s equations is said to be
positive-frequency (resp. negative-frequency) if ⇠A(k) and ⌘A0(k) vanish on M�

µ

(resp. M+

µ ). In momentum space, complex conjugation has the e↵ect

⇠A(k) ! ⌘̄A(�k) ⌘A0(k) ! ⇠̄A0(�k) (313)

Thus, just as in the Klein-Gordon case, complex-conjugation takes positive-
frequency solutions to negative-frequency solutions, and vice-versa. (Roughly
speaking, positive-frequency solutions represent electrons, and negative-frequen-
cy solutions positrons.)

Let (⇠A, ⌘A0) be a solution of Dirac’s equations, and consider the real vector
field

ja = ⇠A⇠̄A
0
+ ⌘A

0
⌘̄A (314)

in Minkowski space. First note that, since each term on the right in (314) is a
future-directed null vector, ja is future-directed and either timelike or null. We
have, for the divergence of ja,

raj
a = ⇠ArAA0 ⇠̄A

0
+ ⇠̄A

0
rAA0⇠A + ⌘A

0
rAA0 ⌘̄A + ⌘̄ArAA0⌘A

0
(315)
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Substituting (304) and (305), and using (292), we find

raj
a = 0 (316)

Thus, ja is a real, future-directed timelike or null, divergence-free vector field.
Therefore, the integral of ja over a spacelike 3-plane yields a nonnegative number
which, assuming that the Dirac field goes to zero su�ciently quickly at infinity,
is independent of the choice of the 3-plane. This integral can be used to define
a norm on solutions of Dirac’s equations. The situation is much simpler when
translated into momentum space (see (23)). We define the norm by

i
p
2

µ

 Z

M+
µ

⇠A(k)⌘̄A(k) dVµ �
Z

M�
µ

⇠A(k)⌘̄A(k) dVµ

!
(317)

Note that, because of (311) and (312), the expression (317) is equal to both of
 Z

M+
µ

�
Z

M�
µ

!
1

µ2

(⇠A⇠̄A
0
+ ⌘̄A⌘A

0
)kAA0 dVµ (318)

 Z

M+
µ

�
Z

M�
µ

!
2

µ2

⇠A⇠̄A
0
kAA0 dVµ (319)

The forms (318) or (319) show, in particular, that our norm is positive. (The
vector ⇠A⇠̄A

0
is future-directed null, whereas kAA0 is future-directed timelike on

M+

µ and past-directed timelike on M�
µ .)

We have now obtained a norm on our collection of solutions of Dirac’s equa-
tion. In order to obtain a Hilbert space, therefore, we have only to impose the
structure of a complex vector space on our collection of solutions. In other words,
we must define addition of solutions and multiplication of solutions by complex
numbers. There is only one reasonable way to define addition: one simply adds
the corresponding spinor fields in Minkowski space (or, in momentum space,
adds the corresponding spinor functions on the mass shell.) One might think, at
first glance, that there is also only one reasonable definition of the product of a
complex number and a solution of Dirac’s equations: if ↵ is a complex number,
and (⇠A(k), ⌘A0(k)) is a solution of Dirac’s equations, one defines the product to
be the solution (↵⇠A(k),↵⌘A0(k)). In other words, since the Dirac equation is
linear on (complex) spinor fields, the solutions of this equation naturally have
the structure of a complex vector space. There is, however, an alternative way
to define the product of a solution of Dirac’s equations and a complex number.
Let ⇠(k) and ⌘A0(k) be a pair of spinor functions on Mµ which satisfy (311) and
(312), i.e., a solution (in momentum space) of Dirac’s equations. Let ↵ be a com-
plex number. Then we might also define the product of ↵ and (⇠A(k), ⌘A0(k))
to be the solution

(↵⇠A(k),↵⌘A0(k)) for k 2 M+

µ

(↵̄⇠A(k), ↵̄⌘A0(k)) for k 2 M�
µ

(320)

of Dirac’s equations. That is to say, we multiply the positive-frequency part of
the fields by ↵ and the negative-frequency part by ↵̄. We obtain, in this way,
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an essentially di↵erent complex vector space of solutions of Dirac’s equations.
In fact, we adopt this second — rather less aesthetic — alternative. As we
shall see later, this choice is essential to obtain agreement between theory and
experiment.

We now have a complex vector space with a norm, (317), and hence a Hilbert
space. More precisely, the Hilbert space of the Dirac equation, HD, is the
collection of all pairs, (⇠A(k), ⌘A0(k)), of spinor functions on Mµ which satisfy
(311), which are measurable, and for which the integral (317) converges. The
inner product on our Hilbert space can now be obtained from the norm via the
identity

(�, ) =
1

4

�
k�+  k2 � k��  k2

�
+

i

4

�
k + i k2 � k�� i k2

�
(321)

Using (317) and (321), the inner product on HD takes the form

1

µ2

Z

M+
µ

⇣
⇠A�̄A0

+ ⌘A
0
⌧̄A

⌘
kAA0 dVµ � 1

µ2

Z

M�
µ

⇣
⇠̄A

0
�A + ⌘̄A⌧A

0
⌘
kAA0 dVµ

(322)
where (⇠A(k), ⌘A0(k)) and (�A(k), ⌧A0(k)) are two solutions of Dirac’s equations.
Note the appearance of the complex-conjugations in the integral overM�

µ . These
arise because of our choice of the complex vector space structure for HD.

To summarize, whereas the solutions of Dirac’s equations have only one rea-
sonable real vector space structure and only one reasonable norm, there are two
possible complex vector space structures, of which we choose one. This choice
then leads to the particular form for the inner product on our Hilbert space.

We now introduce the antisymmetric Fock space based on HD. We thus have
creation and annihilation operators, number operators, etc.

In the real Klein-Gordon and Maxwell cases, we were dealing with real fields
on Minkowski space. This feature was reflected in momentum space by our
requirement that the fields on the mass shell be invariant under simultaneous
complex-conjugation and reflection through the origin. Physically, we were deal-
ing with particles which are identical with their antiparticles. While we could,
of course, restrict ourselves to real (⇠A = ⌘̄A) solutions of Dirac’s equations, it is
convenient not to do so. Thus, the functions on the future mass shell need bear
no special relation to those on the past mass shell. This state of a↵airs leads
to a pair of projection operators on HD. Let (⇠A(k), ⌘A0(k)) 2 HD. Then the
action of P+ (projection onto the positive frequency part) is defined by

P+(⇠A(k), ⌘A0(k)) =

(
(⇠A, ⌘A0) for k 2 M+

µ

(0, 0) for k 2 M�
µ

(323)

and similarly for P�. Note that

P+ + P� = I (324)

These operators are both projection operators, i.e., they are defined everywhere
and satisfy

(P+)2 = P+ (P�)2 = P� (325)
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Eigenstates of P+ with eigenvalue one (i.e., positive-frequency solutions) are
called particle states, and those of P� antiparticle states. Thus, we can speak
of creation or annihilation of particle and antiparticle states, number operators
for particles and antiparticles, etc. When we discuss charge, for example, we
shall introduce the total charge operator, eP� � eP+, (this is the form when
the particles have negative charge, e.g., electrons) where e is the fundamental
charge.

The Dirac equation describes particles of mass ~µ and spin 1

2

. This statement
must, of course, be proven using the techniques of Sect. 17. We now give the
proof. The only piece of additional machinery we require is the notion of the Lie
derivative of a spinor field. Quite generally, any smooth mapping, with smooth
inverse, from Minkowski space to itself takes any tensor field on Minkowski
space to another tensor field on Minkowski space. Smooth mappings which
“di↵er infinitesimally from the identity mapping” are described by smooth vector
fields. The corresponding “infinitesimal change in a tensor field” defines the Lie
derivative of that tensor field. Does a smooth mapping, with smooth inverse,
on Minkowski space take spinor fields to spinor fields? In other words, can we
formulate a natural notion of the Lie derivative of a spinor field (by a vector
field) so that the Lie derivative of a tensor field will arise as a special case (i.e.,
considering a tensor field as merely a special case of a spinor field when the
numbers of primed and unprimed spinor indices are equal)? Unfortunately, the
answer to these questions is no. To see this, suppose for a moment that it were
possible to generalize the Lie derivative from tensor to spinor fields. Let va be
an arbitrary smooth vector field on Minkowski space. Then we would have

Lv⌘ab = Lv(✏AB ✏̄A0B0) = ✏ABLv ✏̄A0B0 + ✏̄A0B0Lv✏AB (326)

But, since ✏AB is skew, so must be Lv✏AB , and similarly for Lv ✏̄A0B0 . Thus, the
right side of (326) must be some multiple of the Minkowski metric ⌘ab. But it is
simply false that, for an arbitrary smooth vector field va on Minkowski space,
Lv⌘ab is a multiple of ⌘ab. Thus, we cannot in general define the Lie derivative
of a spinor field. Intuitively, the problem is that the light-cone structure of
Minkowski space is an essential ingredient in the very definition of a spinor field.
A smooth (finite or infinitesimal) mapping on Minkowski space which alters the
light-cone structure simply does not know what to do with a general spinor field.

The remarks above are also the key to resolving the problem. In order to
define spin and mass, it is only necessary to take Lie derivatives of spinor fields
by vector fields va which satisfy (216) — i.e., by vector fields which do preserve
the light-cone structure of Minkowski space. We might expect to be able to
define Lie derivatives by such vector fields, and this is indeed the case. The
formula is, for example,

LvT
ABC0

DE0 = vmrmTABC0
DE0 � 1

2
TMBC0

DE0rMM 0vAM 0

� 1

2
TAMC0

DE0rMM 0vBM 0
� 1

2
TABM 0

DE0rMM 0vMC

+
1

2
TABC0

ME0rDM 0vMM 0
+

1

2
TABC0

DM 0rME0vMM 0
(327)
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Note that Lie di↵erentiation commutes with complex-conjugation (va is real),
raising and lowering of spinor indices, and contraction of spinor indices. Note,
furthermore, that (327) reduces to the usual Lie derivative for tensor fields. It
follows from the remarks on p. 80 that (327) is the only formula which satisfies
these properties.

We first determine the mass associated with the Dirac equation. Let (⇠A(x),
⌘A0(x)) be a solution of the Dirac equation, and ra a vector at some point x of
Minkowski space. Then

(raP a)⇠
M =

~
i
rara⇠

M

(raP a)(r
bP b)⇠

M = ~2rarbrarb⇠
M (328)

Substituting ⌘ab for rarb, we obtain

P aP
a⇠M = �~2⇤⇠M = ~2µ2⇠M (329)

where we have used (308). Hence, from (268), the mass associated with the
Dirac equation is ~µ. The spin calculation is slightly more complicated. Let scd

be a skew tensor at x. Then, from (327),

scdP cd⇠
M =

~
i

✓
scdx

drc⇠
M � 1

2
⇠NsMN 0

NN 0

◆
(330)

If rb is a vector at x, we have, therefore.

rbP bs
cdP cd⇠

M = ~2rbrb

✓
scdx

drc⇠
M � 1

2
⇠NsMN 0

NN 0

◆

= ~2rBB0
sCC0DD0

✓
✏BD ✏̄B0D0rCC0⇠M +

1

2
✏̄D0C0�MCrBB0⇠D

◆
(331)

Substituting ua✏abcd for rbscd, and using (269) and (302),

uaW a⇠
M = i~2

⇣
✏AB✏CD ✏̄A

0C0
✏̄B

0D0
� ✏̄A

0B0
✏̄C

0D0
✏AC✏BD

⌘
uAA0

⇥
✓
✏BD ✏̄B0D0rCC0⇠M +

1

2
✏̄D0C0�MCrBB0⇠D

◆

= � i

2
~2uara⇠

M + i~2uMA0
rAA0⇠A

(332)

Therefore,

uaW au
bW b⇠

M = (i~2)2
✓
1

4
uaubrarb⇠

M � 1

2
uMA0

ubrAA0rb⇠
A

�1

2
uMB0

uarBB0ra⇠
B + uMA0

uAB0
rAA0rBB0⇠B

◆
(333)

Finally, substituting ⌘ab for uaub, we have

W aW a⇠
M =

3

4
~4⇤⇠M = �3

4
~2m2⇠M (334)

We conclude from (270) that the Dirac equation describes a particle with spin 1

2

.



20. The Neutrino Equation

A neutrino is essentially a “massless Dirac particle”. There are, however, a few
features which are particular to the case µ = 0.

The (four-component) neutrino field consists of a pair, (⇠A, ⌘A0) of spinor
fields on Minkowski space, subject to the neutrino equation (see (304), (305)):

rAA0⇠A = 0 (335)

rAA0
⌘A0 = 0 (336)

Note that, whereas in the massive case either of the two spinor fields can be
obtained from the other (via (304), (305)), the fields become “uncoupled” in the
massless case. That is to say, each spinor field satisfies its own equation. Taking
a derivative of (335),

rBA0
rAA0⇠A = 0 (337)

and using (307), we obtain
⇤⇠A = 0 (338)

and similarly for ⌘A0 . Thus, each of our neutrino fields satisfies the wave equa-
tion. Note, however, that (338) does not imply (335). (Solutions of the neutrino
equations can, however, be obtained from solutions of the wave equation. If ↵A0

satisfies the wave equation, then ⇠A = rAA0
↵A0 satisfies (335).)

The complex-conjugate of the solution (⇠A, ⌘A0) of the neutrino equation is
the solution (⌘̄A, ⇠̄A0).

Passing to momentum space, we set

⇠A(x) =

Z

M0

⇠A(k)eikb

xb

dV
0

(339)

⌘A0(x) =

Z

M0

⌘A0(k)eikb

xb

dV
0

(340)

where ⇠A(k) and ⌘A0(k) are spinor-valued functions on the zero-mass shell, M
0

.
In momentum space, (335) and (336) become

⇠A(k)kAA0 = 0 (341)

⌘A0(k)kAA0
= 0 (342)
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Positive-frequency and negative-frequency solutions of the neutrino equations
are well-defined. Complex-conjugation again reverses frequency, and is again
expressed in momentum apace by the equations (313).

The current (314) is still divergence-free in the massless case. (In fact, the
proof is rather simpler with µ = 0.) This fact leads to a norm on solutions of
the neutrino equation. The simplest way to obtain the norm, however, is as a
“µ ! 0 limit” of the Dirac norm. Consider (318). It is not di�cult to check
from (311) and (312) that

⇠A(k)⇠̄A
0
(k) + ⌘A

0
⌘̄A(k) = ↵(k)kAA0

(343)

where ↵(k) is a real function on Mµ which is positive on M+

µ and negative on
M�

µ . From (318), the norm in the Dirac case is simply

Z

M0

|↵(k)| dVµ (344)

We now return to the massless case. Eqn. (341) implies that ⇠A(k)⇠̄A
0
(k) is

proportional to kAA0
, while (342) implies that ⌘A

0
(k)⌘̄A(k) is also proportional

to kAA0 . Therefore,

⇠A(k)⇠̄A
0
(k) + ⌘A

0
⌘̄A(k) = ↵(k)kAA0

(345)

on M
0

, where ↵(k) is real on M
0

and positive on M+

0

and negative on M�
0

. We
therefore define the norm in the neutrino case, in analogy with (344), by

Z

M0

|↵(k)| dVµ (346)

For the complex vector space structure in the massless case, we use the same
convention as in the massive case (see (320)).

In fact, the theory we have been discussing is not very interesting physi-
cally. The reason is that our Hilbert space of solutions of the neutrino equation
contains four irreducible subspaces: positive-frequency solutions with ⌘A0 = 0,
negative-frequency solutions with ⌘A0 = 0, positive-frequency solutions with
⇠A = 0, and negative-frequency solutions with ⇠A = 0. Every solution can be
written uniquely as the sum of four solutions, one from each class above. Thus,
our neutrino field describes four similar particles. But neutrinos in the real
world appear in pairs (particle-antiparticle.) Thus, we would like to introduce a
field whose Hilbert space has only two irreducible (under the restricted Poincaré
group) subspaces. The result is what is called the “two-component neutrino the-
ory”, which we now describe. (The only purpose in treating the four-component
theory at all was to make explicit the analogy with the Dirac equation.)

The (two-component) neutrino field is a single spinor field ⇠A on Minkowski
space which satisfies (335), and, therefore, (338). In momentum space, we have a
spinor-valued function ⇠A(k) on M

0

which satisfies (341). This equation implies

⇠A(k)⇠̄A
0
(k) = ↵(k)kAA0

(347)
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where ↵(k) is real, and positive on M+

0

and negative on M�
0

. We define the
norm on our solutions by Z

M0

|↵(k)| dV
0

(348)

The complex vector space structure is defined as before: the product of a complex
number � and a solution ⇠A(k) is defined to be the solution

�⇠A(k) for k 2 M+

0

�̄⇠A(k) for k 2 M�
0

(349)

The collection of all measurable spinor functions ⇠A(k) on M
0

for which (341)
is satisfied and (348) converges, with the above complex vector space structure,
is a Hilbert space which we write as HN .

We introduce the antisymmetric Fock space based on HN . We thus have
creation and annihilation operators, number operators, etc.

We introduce on HN the two projection operators P+ and P�, projection
onto positive and negative frequency, respectively. These operators, of course,
satisfy (324) and (325).

Finally, we remark on the spin and mass to be associated with HN . We have
done the mass calculation several times: (338) clearly leads to m = 0 for HN .
Furthermore, most of the work involved in calculating the spin has already been
done. Nowhere in the argument leading to (332) did we use the fact that ⇠A

satisfies the Dirac equation, and so (332) holds also in the neutrino case. But
now (335) implies that the second term on the right in (332) vanishes, so we
have

uaW a⇠
B =

1

2

~2
i
uara⇠

B (350)

Since, furthermore,

uaP a⇠
B =

~
i
uara⇠

B (351)

one is tempted to conclude from (271) that s = 1

2

for HN . This conclusion is
essentially correct, but one technical point must be clarified. (Unfortunately,
our notation is rather badly suited to the remarks below, and so they will sound
rather mystical.) The problem involves what the i’s mean in (350) and (351).
(This problem never arose in the Dirac case because the i’s were always squared
away, so their meaning was irrelevant.) Where did the i’s come from? The i
in (351) came from the ~/i factors which are introduced in the operator fields
associated with the Poincaré group. This i means “multiplication by i within
the Hilbert space HN” because only in this way does one obtain Hermitian
operators from “infinitesimal unitary operators”. In other words, the i in (351)
arises from very general considerations involving the action of a Lie group on a
Hilbert space, and, in this general framework within which the formalism was set
up, there is only one notion of multiplication by i, namely, multiplication within
the Hilbert space. Thus, the “i” in (351) multiplies the positive-frequency part
of what follows by i, and the negative-frequency part by �i. (See (349).) The
i in (350), on the other hand, is a quite di↵erent animal. It arose from the i in



92 20. THE NEUTRINO EQUATION

(302). (The i’s in P a and P ab (see (269)) combine to give �1.) But the i in (302)
appears because of the way that the real tensor field ✏abcd must be expressed
in terms of spinors. Hence, the “i” in (350), because of its origin, represents
simply multiplication of a tensor field by i. That is to say, the “i-operators” in
(350) and (351) are equal for positive-frequency solutions, and minus each other
for negative-frequency solutions. Thus, s = 1

2

for positive-frequency solutions
(neutrinos), and s = � 1

2

for negative-frequency solutions (antineutrinos). That
is, in the neutrino case the particle and its antiparticle have opposite helicity.
This “prediction” is in fact confirmed by experiment.



21. Complex Klein-Gordon
Fields

In Sect. 5, we dealt with real equations of the Klein-Gordon equation (although,
for reasons of motivation, we chose to characterize such fields as complex posi-
tive-frequency solutions). Such fields describe particles with spin zero which are
identical with their antiparticles (e.g., the ⇡0). On the other hand, there are
spin-zero particles which are not identical with their antiparticles (the ⇡+ and
⇡�). These are described by complex solutions of the Klein-Gordon equation.

Consider a complex scalar field, �(x), in Minkowski space which satisfies the
Klein-Gordon equation, (5). In momentum space,

�(x) =

Z

M
µ

�(k)eikb

xb

dVµ (352)

Thus, our solution is characterized by a complex-valued function �(k) on Mµ.
(In the real case, one requires in addition �(�k) = �̄(k).) The norm of such a
function is defined by

1

~

Z

M
µ

�(k)�̄(k) dVµ (353)

We adopt, for the complex vector space structure on these functions, essentially
the same structure used in the Dirac and neutrino case. To “multiply” �(k) by
a complex number, one takes

↵�(k) for k 2 M+

µ

↵̄�(k) for k 2 M�
µ

(354)

The collection of all measurable, square-integrable (in the sense of (353), com-
plex-valued functions on Mµ, with this complex vector space structure, is our
Hilbert space, HCKG, for complex solutions of the Klein-Gordon equation. (We
shall write the Hilbert space of Sect. 5 as HRKG.)

There is defined on HCKG the two projection operators, P+ and P�, which
take the positive-frequency part and negative-frequency part, respectively.

We introduce the symmetric Fock space based on HCKG, creation and anni-
hilation operators, number operators, etc.
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22. Positive Energy

Many of the quantities associated with an elementary particle (e.g., charge)
are reversed in the passage from a particle to its antiparticle. It is observed
experimentally, however, that energy is not one of these quantities. For example,
if an electron and a positron annihilate (say, with negligible kinetic energy), then
the total, energy released is 2m, and not zero. We are thus forced to assign a
(rest) energy +m to both a positron and an electron. Where does this fact
appear in our formalism?

Of course, “energy” refers to the state of motion of an observer. This “state
of motion” is represented by some constant, unit, future-directed timelike vector
field ra in Minkowski space. The energy operator is then E = raP a. It should be
emphasized that we are not free to assign energies arbitrarily to obtain agreement
with experiment. The very concept of energy is based in an essential way on
the action of the Poincaré group (more explicitly, on the time translations). If
we wish to avoid a radical change in what energy means in the passage from
classical to quantum theory, we must choose for the energy in quantum field
theory that quantity which arises naturally from time translations in Minkowski
space, i.e., we must choose the E above. We take as our precise statement that
“energies are nonnegative” the statement that the expectation value of E in any
state � (on which E is defined) be nonnegative:

(�, E�) � 0 (355)

Is it true or false that (355) holds for the five Hilbert spaces we have constructed,
HRKG, HCKG, HM , HD, HN?

We begin with the real Klein-Gordon case. The Hilbert space consists of
measurable, square-integrable, complex-valued functions �(k) on Mµ which sat-
isfy

�(�k) = �̄(k) (356)

Such functions do not have an obvious complex vector space structure. If �(k)
satisfies (356), and ↵ is a complex number, then ↵�(k) will not in general satisfy
(356). This fact, of course, is not surprising: there is no obvious way to take the
“product” of a complex number and a real solution of a di↵erential equation to
obtain another real solution. This problem is resolved, in HRKG, by choosing
one of the two mass shells to be preferred, and calling it the “future” mass shell,
M+

µ . We then agree that, to multiply by ↵, “M+

µ gets ↵ while M�
µ must be
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content with ↵̄.” In other words, we define multiplication of �(k) by ↵ by

↵�(k) k 2 M+

µ

↵̄�(k) k 2 M�
µ

(357)

It should be emphasized that, in the real case, we are forced (by the requirement
that we obtain a Hilbert space) to select one preferred mass shell and define
multiplication by (357).

Now consider the energy. If �(x) is a real solution of the Klein-Gordon
equation, then

E�(x) =
~
i
rara�(x) (358)

Because of the i in (358), one might naively think that (358) does not represent a
real solution of the Klein-Gordon equation, and so that (358) is not a definition
for E. This, of course, is not the case. The i in (358) arose because of general
considerations involving representations of the Poincaré group (Sect. 16), and
means “multiplication within the Hilbert space HRKG.” In momentum space,
the operator ~rara has the e↵ect

�(k) ! i~(raka)�(k) (359)

Note that (359) does not destroy (356), a statement which reflects the fact that

�(x) ! ~rara� (360)

is an unambiguous operation on real solutions of the Klein-Gordon equation.
Now using (357), the energy operator in momentum space takes the form

�(k) !
(

~raka�(k) k 2 M+

µ

�~raka�(k) k 2 M�
µ

(361)

The expectation value of E in the state �(k) is

Z

M+
µ

(raka)�(k)�̄(k) dVµ �
Z

M�
µ

(raka)�(k)�̄(k) dVµ (362)

which, of course, is positive. (Why don’t we just define the energy operator by
(359), (360), leaving out the i? Because the expectation value of this operator
is not real. That is, the i is needed for Hermiticity.)

We summarize the situation. In order to make a Hilbert space of real so-
lutions of the Klein-Gordon equation, we are forced to select a preferred mass
shell to be called “future”. Then, provided ra is “future-directed” according to
this convention, E will have positive expectation values.

Now consider the complex Klein-Gordon case. The energy operator still has
the form

E�(x) =
~
i
rara�(x) (363)
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and i still means multiplication within our Hilbert space. In momentum space,
�(k) is an arbitrary measurable, square-integrable, complex-valued function.
The operator ~rara has the e↵ect

�(k) ! i~(raka)�(k) (364)

We must still multiply (364) by 1/i. But we now have the freedom to select one
of two possible complex vector space structures on the complex solutions of the
Klein-Gordon equation. For the “product” of a complex number ↵ and �(k), we
could choose

↵�(k) (365)

or, alternatively,

↵�(k) k 2 M+

µ

↵̄�(k) k 2 M�
µ

(366)

The resulting energy operators are

E�(k) = ~(raka)�(k) (367)

E�(k) =

(
~raka�(k) k 2 M+

µ

�~raka�(k) k 2 M�
µ

(368)

respectively. Finally, the resulting expectation values of E are
Z

M
µ

raka�(k)�̄(k) dVµ (369)

Z

M+
µ

(raka)�(k)�̄(k) dVµ �
Z

M�
µ

(raka)�(k)�̄(k) dVµ (370)

respectively. But note that (369) can take both positive and negative values,
while (370) is always nonnegative. But this is exactly what one might expect.
The complex vector space structure (365) does not prefer one time direction
over the other: it makes no reference to past and future. Therefore, it could not
possibly lead to a positive energy, for the energy associated with ra is certainly
minus the energy associated with �ra. The complex vector space structure
(366), on the other hand, picks out a particular “future” time direction. Then
the expectation value of E is positive provided ra is “future-directed” in this
sense. It is for this reason that we are led to select (366) as our complex vector
space structure.

We summarize. If energy is to arise from time translations, there is no
freedom to alter the energy operator itself. In the real Klein-Gordon case, we
are forced, in order to obtain a Hilbert space, to select a preferred “future” mass
shell. Then energy is positive provided ra is future-directed. In the complex
Klein-Gordon case, there are two distinct ways to obtain a Hilbert space, one
which selects a preferred “future” mass shell, and one which does not. It is only
the former choice which leads to positive energies. We make this choice.
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There is an additional sense in which (366) is a more natural choice for the
complex vector space structure for HCKG. Every real solution of the Klein-
Gordon equation is certainly also a complex solution. We thus have a mapping
⇤ : HRKG ! HCKG. This mapping is certainly norm-preserving. Is it also
linear? The answer is no if we choose the structure (365), and yes if we choose
the the structure (366).

A completely analogous situation holds for the other Hilbert spaces. HM is
based on real solutions of Maxwell’s equations, its complex vector space structure
depends on choosing a particular future mass shell, and energies are naturally
positive. On the other hand, HD and HN are based on complex fields. We
have two choices for the complex vector space structure, one of which leads to
positive energies and one of which does not. We choose the complex vector
space structure to be the one which, by preferring a future mass shell, makes
the energy be positive. (See (320), (349).)



23. Fields as Operators:
Propagators

Ordinary relativistic fields are to be replaced, eventually, by an appropriate
class of operators on Fock space. This transition from fields to operators is to
be carried out according to the following general rules:

i) A real field becomes a Hermitian operator; a pair of complex-conjugate
fields is a pair of adjoint operators;

ii) The operators have the same index structure, and satisfy the same equa-
tions, as the corresponding fields; and

iii) The “positive-frequency part” of the operator is annihilation of a particle,
the negative-frequency part creation of an antiparticle.

We have already discussed these operators in the real Klein-Gordon and Maxwell
cases (Sects. 12 and 14, respectively). The purposes of this section are, firstly,
to treat the complex Klein-Gordon and Dirac cases, and, secondly, to establish
certain properties of the functions which appear in the commutators or anti-
commutators. For completeness, we briefly review Sects. 12 and 14.

Real Klein-Gordon. HRKG consists of (measurable, square-integrable)
complex-valued functions �(k) on Mµ which satisfy �̄(k) = �(�k). The inner
product is

(�(k), (k)) =
1

~

Z

M+
µ

�(k) (k) dVµ +
1

~

Z

M�
µ

�(k) (k) dVµ (371)

Let f(x) be a real test function on Minkowski space, and let f(k) be its Fourier
inverse, so f̄(k) = f(�k). Then f(k), restricted to Mµ, defines an element, �(f),
of HRKG. The corresponding field operator on symmetric Fock space is

�(f) = ~C(�(f)) + ~A(�(f)) (372)

Note that (372) is Hermitian and satisfies the Klein-Gordon equation:

�
�
(⇤+ µ2)f

�
= 0 (373)
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The commutator is
⇥
�(f),�(g)

⇤
= ~2 ([C(�(f)), A(�(g))] + [A(�(f)), C(�(g))])

= ~2 (��↵(f)�̄↵(g) + �↵(g)�̄↵(f)) I

=
~
i
D(f, g)I

(374)

where we have defined

D(f, g) = �i

 Z

M+
µ

�
Z

M�
µ

!
�
f(k)ḡ(k)� f̄(k)g(k)

�
dVµ (375)

Complex Klein-Gordon. HCKG consists of (measurable, square-inte-
grable) complex-valued functions �(k) on Mµ. The inner product is

(�(k), (k)) =
1

~

Z

M+
µ

�(k) (k) dVµ +
1

~

Z

M�
µ

�(k) (k) dVµ (376)

Let f(x) be a real test function on Minkowski space, and let f(k) be its Fourier
inverse, so f̄(k) = f(�k). Let �+(f) be the element of HCKG given by f(k) on
M+

µ and zero on M�
µ , and let ��(f) be given by f(k) on M�

µ and zero on M+

µ .
The corresponding field operators on symmetric Fock space are

�(f) = ~
⇣
C(��(f)) +A(�+(f))

⌘
(377)

�⇤(f) = ~
⇣
A(��(f)) + C(�+(f))

⌘
(378)

Note that these are adjoints of each other, and that they satisfy the Klein-Gordon
equation:

�
�
(⇤+ µ2)f

�
= �⇤

�
(⇤+ µ2)f

�
= 0 (379)

We clearly have ⇥
�(f),�(g)

⇤
=
⇥
�⇤(f),�⇤(g)

⇤
(380)

For the other commutator, however,

⇥
�(f),�⇤(g)

⇤
= ~2

⇣h
C(��(f)), A(��(g))

i
+
h
A(�+(f)), C(�+(g))

i⌘

= ~2
⇣
���↵(f)��

↵ (g) + �+↵�+

↵ (f)
⌘
I = ~

2i
D(f, g)I (381)

where D(f, g) is given by (375).
Maxwell. HM consists of (measurable, square-integrable) complex vector

functions Aa(k) on M
0

which satisfy Āa(k) = Aa(�k) and kaAa(k) = 0, where
two such functions which di↵er by a multiple of ka are to be regarded as defining
the same element of HM . The inner product is

(Aa(k), Ba(k)) = �1

~

Z

M+
0

Aa(k)B̄
a(k) dV � 1

~

Z

M�
0

Āa(k)B
a(k) dV (382)
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Let fa(x) be a real test vector field on Minkowski space which is the sum of a
divergence-free field and a gradient, and let fa(k) be its Fourier inverse. Then
fa(k) satisfies fa(�k) = f̄a(k) and kafa(k) = 0, and so defines an element,
�(fa), of HM . The corresponding operator on symmetric Fock space is

A(fa) = ~C(�(fa)) + ~A(�(fa)) (383)

This operator is Hermitian, and satisfies Maxwell’s equations (for the vector
potential):

A(raf) = 0 A(⇤fa) = 0 (384)

The commutator is

[A(fa), A(ga)] = ~2 (��↵(fa)�̄↵(g
a) + �↵(ga)�̄↵(f

a)) I = ~
i
D(fa, ga)I (385)

where we have defined

D(fa, ga) = i

 Z

M+
0

�
Z

M�
0

!
�
fa(k)ḡ

a(k)� ga(k)f̄
a(k)

�
dV (386)

Dirac. HD consists of (measurable, square-integrable) pairs,
(⇠A(k), ⌘A0(k)), of spinor functions on Mµ which satisfy

ikAA0⇠A(k) =
µp
2
⌘A0(k) ikAA0

⌘A0(k) = � µp
2
⇠A(k) (387)

The inner product is

�
(⇠A, ⌘A0), (�A, ⌧A0)

�
=

2

µ2

Z

M+
µ

⇠A(k)�̄A0
kAA0 dV

� 2

µ2

Z

M�
µ

�A(k)⇠̄A
0
kAA0 dV

(388)

Let fA(x), f̄A0(x) be a pair of test spinor fields on Minkowski space which is
real in the sense that the second field is the complex-conjugate of the first. (Of
course, “test” means having compact support.) Let fA(k) be the Fourier inverse
of fA(x), and consider the pair

 
µfA(k)� i

p
2

µ
kAA0

f̄A0(k), µf̄A0(k) +
i
p
2

µ
kAA0fA(k)

!
(389)

of spinor functions onMµ. Note that the pair (389) satisfies (387). Let �+(fA, f̄A0)
be the element of HD which is given by (389) on M+

µ and zero on M�
µ , and let

��(fA, f̄A0) be the element given by (389) on M�
µ and zero on M+

µ . The corre-
sponding operators on antisymmetric Fock space are

 (fA, f̄A0) = C(��(fA, f̄A0)) +A(�+(fA, f̄A0)) (390)

 ⇤(fA, f̄A0) = A(��(fA, f̄A0)) + C(�+(fA, f̄A0)) (391)
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These operators are adjoints of each other, and satisfy the Dirac equation:

 

 
µfA(k)�

p
2

µ
rAA0

f̄A0(k), µf̄A0(k) +

p
2

µ
rAA0fA(k)

!

=  ⇤

 
µfA(k)�

p
2

µ
rAA0

f̄A0(k), µf̄A0(k) +

p
2

µ
rAA0fA(k)

!
= 0 (392)

We clearly have
�
 (fA, f̄A0), (gA, ḡA0)

 
=
�
 ⇤(fA, f̄A0), ⇤(gA, ḡA0)

 
= 0 (393)

For the other anticommutator,
�
 (fA, f̄A0), ⇤(gA, ḡA0)

 

=
�
��↵(fA, f̄A0)�̄�

↵ (g
A, ḡA0) + �+↵(gA, ḡA0)�̄+

↵ (f
A, f̄A0)

�
I

= D
�
(fA, f̄A0), (gA, ḡA0)

�
I

(394)

where, using (388) and (389),

D
�
(fA, f̄A0), (gA, ḡA0)

�

= 2

 Z

M+
µ

�
Z

M�
µ

!h⇣
fA(k)ḡA

0
(k) + f̄A0

(k)gA(k)
⌘
kAA0

+
iµp
2

⇣
fA(k)gA(�k)� f̄A0

(k)ḡA0(�k)
⌘�

dV (395)

The functions (375), (386), and (395) play a very special role in relativistic
quantum field theory. They are called Feynman propagators. Several properties
of the propagators follow immediately from the definitions. In the first place,
they are all real. Secondly, we have the symmetries

D(f, g) = �D(g, f) (396)

D(fa, ga) = �D(ga, fa) (397)

D
�
(fA, f̄A0), (gA, ḡA0)

�
= D

�
(gA, ḡA0), (fA, f̄A0)

�
(398)

Furthermore, since the propagators arise from commutators or anticommutators
of the field operators, they satisfy the appropriate field equations:

D
�
(⇤+ µ2)f, g

�
= 0 (399)

D(raf, ga) = 0 D(⇤fa, ga) = 0 (400)

D

✓✓
µfA(k)�

p
2

µ
rAA0

f̄A0(k), µf̄A0(k)

+

p
2

µ
rAA0fA(k)

◆
, (gA, ḡA0)

◆
= 0

(401)
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Note also that the propagators are linear in the real test fields on which they
depend.

A more remarkable property of the propagators is that they can all be ex-
pressed directly in terms of the Klein-Gordon propagator, D(f, g). Let va and
wa be constant vector fields on Minkowski space, f and g real test functions,
and consider the expression

� vawaD(f, g) (402)

Inserting (375) in (402), we see that (402) is precisely the right side of (386),
provided we set fa = fva, ga = wga. Thus, we may define a function D(fa, ga)
for test fields of the form fa = fva, ga = wga by (402). Then, assuming linearity
in fa and ga, we extend the range of D(fa, ga) to arbitrary real test vector fields.
Finally, restricting fa and ga to fields which can be expressed as the sum of a
divergence-free field and a gradient, we obtain precisely the Maxwell propagator.

The situation is similar in the Dirac case. Let ⇠A and �A be constant spinor
fields, f and g real test functions. Then, from (395) and (375), we have

D
�
(fA, f̄A0), (gA, ḡA0)

�

= 2D
⇣
(⇠A�̄A0

+ �A⇠̄A
0
)rAA0f, g

⌘
+

µp
2
(⇠A�A + ⇠̄A

0
�̄A0)D(f, g) (403)

But, again by linearity, if we know the Dirac propagator for test fields of the form
f(⇠A, ⇠̄A0) with constant ⇠A, we know the Dirac propagator for all test fields.
In this sense, then, the Dirac propagator follows already from the Klein-Gordon
propagator.

We may now derive a particularly important property of the Feynman prop-
agators. A function of a pair of test fields will be called causal if it vanishes
whenever the test fields have relatively spacelike supports (see p. 48). We have
seen in Sect. 12 that the Klein-Gordon propagator, D(f, g), is causal. The re-
marks above imply, therefore, that all the Feynman propagators are causal.
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24. Spin and Statistics

What is it that determines whether the appropriate Fock space for an elemen-
tary particle is the symmetric or the antisymmetric one? (This distinction is
said to one of statistics. Particles described by the symmetric Fock space are
called bosons, and are said to satisfy Bose statistics. Particles described by the
antisymmetric Fock space are called fermions, and are said to satisfy Fermi
statistics.) It is found in Nature that the statistics a particle obeys is invariably
correlated with another feature of the particle, its spin. It is found, in fact, that
all particles with half-integer (i.e., half-odd-integer) spin obey Fermi statistics,
while particles with integer spin obey Bose statistics. How should this fact be
incorporated into quantum field theory? One could, of course, merely regard
the correlation between spin and statistics as an empirical fact — a fact which
can be used to choose the appropriate statistics in each case. It is natural to
ask, however, whether there is some deeper theoretical reason why Nature oper-
ates as She does. Certainly, no obvious internal inconsistencies arise if we insist
that Klein-Gordon and Maxwell particles be fermions, while Dirac particles be
bosons. It would be desirable, however, to find some very general requirement
on quantum field theories which would force the experimentally observed re-
lation between spin and statistics. There is, in fact, such a requirement: the
demand that the propagators be causal. We have seen in Sect. 23 that, with the
“correct” statistics, the propagators are indeed causal. In this section, we shall
indicate why the propagators for “fermion Klein-Gordon”, “fermion Maxwell”,
and “boson Dirac” particles are not causal. These results are a special case of a
core general theorem. If we require that energy be positive (to fix the complex
vector space structure), and that the propagator be causal, then particles with
half-integer spin must be fermions and those with integer spin bosons. We shall
not discuss this general theorem further.

We begin with HRKG. The (one-particle) Hilbert space is the same as before,
the inner product given by (371). The operator �(f) is still defined by (372).
Now, however, we suppose that the creation and annihilation operators act on
antisymmetric Fock space. Then (373) still holds, but (374) must be modified
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as follows:
�
�(f),�(g)

 
= ~2{C(�(f)), A(�(g)}+ ~2{A(�(f)), C(�(g))}
= ~2 (�↵(f)�̄↵(g) + �↵�̄↵(f)) I

= ~
 Z

M+
µ

+

Z

M�
µ

!
�
f(k)ḡ(k) + f̄(k)g(k)

�
dV I

(404)

The “propagator” for antisymmetric statistics — the last line in (404) — is
simply not causal. (Proof: Choose almost any test functions f and g with
relatively spacelike supports, and evaluate the integral.) That is to say, we
obtain a causal propagator in the real Klein-Gordon case if and only if we use
Bose statistics. Thus, if we take causality of the propagator as a fundamental
assumption, we are led to assign Bose statistics to real Klein-Gordon particles.

Now consider the complex Klein-Gordon case. If we choose Fermi statistics,
(376), (377), (378), and (379)) still hold. Furthermore, (380) holds if we replace
the commutators by anticommutators. For (381), however, we have

�
�(f),�⇤(g)

 
= ~2{C(��(f)), A(��(g))}+ ~2{A(�+(f)), C(�+(g))}
= ~2

�
��↵(f)�̄�

↵ (g) + �+↵(g)�̄+

↵ (f)
�
I

=
~
2

 Z

M+
µ

+

Z

M�
µ

!
�
f(k)ḡ(k) + f̄(k)g(k)

�
dV I

(405)

But the last line of (405) is not causal. Hence, in order to obtain a causal
propagator, complex Klein-Gordon particles must be bosons.

If we assign Fermi statistics to HM , (382), (383), and (384) remain valid.
But (385) becomes

{A(fa), A(ga)} = ~2 (�↵(fa)�̄↵(g
a) + �↵(ga)�̄↵(f

a)) I

= �~
 Z

M+
µ

+

Z

M�
µ

!
�
fa(k)ḡa(k) + f̄a(k)ga(k)

�
dV I

(406)

The last line is not causal. So causality of the propagator implies Bose statistics
for photons.

Finally, we attempt to impose Bose statistics on Dirac particles. Eqns. (387),
(388), (389), (390), (391), and (392) remain valid. Eqn. (393) remains valid if
the anticommutators are replaced by commutators. But (394) becomes

h
 (fA, f̄A0), ⇤(gA, g

A0)
i

=
�
���↵(fA, f̄A0)�̄�

↵ (g
A, ḡA0) + �+↵(gA, ḡA0)�̄+

↵ (f
A, f̄A0)

�
I

= �2

 Z

M+
µ

+

Z

M�
µ

!h⇣
fA(k)ḡA

0
(k)� f̄A0

(k)gA(k)
⌘
kAA0

+
iµp
2

⇣
f̄A0

(k)ḡA0(�k) + fA(k)gA(�k)
⌘�

dV I

(407)
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which, again, is not causal. Causality of the propagator implies Fermi statistics
for Dirac particles.

We summarize. The requirement that energies be positive fixes the com-
plex vector space structure of the one-particle Hilbert spaces. The additional
requirement that the propagators (the commutators or anticommutators of the
field operators) be causal then requires that particles with integer spin be bosons
and particles with half-integer spin be fermions, at least for the our cases HRKG,
HCKG, HM , and HD.



108 24. SPIN AND STATISTICS



25. ?-Algebras

We have now obtained a number of quantum field theories of relativistic, non-
interacting particles. Our approach consists, basically, of the following steps:

i) form a Hilbert space of an appropriate collection of solutions of the field
equations (Klein-Gordon, Maxwell, Dirac, neutrino),

ii) introduce the corresponding symmetric or antisymmetric Fock space, and

iii) replace the original fields by operators on Fock space.

However, there exists an alternative approach, in which one begins with the
field operators and their commutators (or anticommutators) as the basic ob-
jects, deriving from these the Fock space and finally the one-particle Hilbert
space. While the two approaches are completely equivalent logically, they di↵er
considerably in attitude. In particular, the alternative approach emphasizes the
analogy between second quantization (the ultimate passage from fields to field
operators) and first quantization (e.g., the passage from Newtonian mechanics
to the Schrödinger equation). One thinks of the fields (Klein-Gordon, Max-
well, Dirac, etc.) as “classical quantities” (analogous to x and p in Newtonian
mechanics) which, in the quantized version of the theory, are to become opera-
tors on some Hilbert space. This alternative approach is the one conventionally
followed in textbooks. We discuss it in this section.

It is convenient to first introduce a mathematical object. A ?-algebra consists,
first of all, of an associative algebra A (over the complexes) with unit I. That
is to say, A is a complex vector space on which there is defined a product, AB,
between elements A and B of A , where this product is linear in the factors and
satisfies (254). Furthermore, there is an element I of A such that

IA = AI = A (408)

for every A 2 A . (Clearly, this I is unique.) Furthermore, we require that, as
part of the structure of a ?-algebra, there be given a mapping from A to A (the
image of A 2 A under this mapping written A?) subject to:

A1. For each A 2 A , (A?)? = A.

A2. For each A,B 2 A , (AB)? = B?A?.

A3. For each A,B 2 A , ↵ 2 C, (↵A+B)? = ↵̄A? +B?.
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The standard example of a ?-algebra is the collection of all bounded operators
which are defined everywhere on a fixed Hilbert space H. Addition is defined by
adding the operators, and scalar multiplication by multiplying the operator by
the complex number in the usual way. The product of two operators is defined
by applying them in succession. The unit I is, of course, the identity operator.
Finally, “?” represents the operation of taking the adjoint of an operator. (In
fact, every bounded operator defined everywhere on a Hilbert space H has a
unique adjoint. We omit the (moderately di�cult) proof.) Note that it is well-
defined to speak of projection, Hermitian, and unitary elements of a ?-algebra,
for these notions involve only the structure incorporated in to the ?-algebra.
Intuitively, one can think of a ?-algebra as representing “operators on a Hilbert
space, but without the Hilbert space itself.”

The essential idea of the approach to be described below is identical for all
the relativistic field equations. It will su�ce, therefore, to treat one case in
detail. We select the complex Klein-Gordon fields.

The idea is to first introduce a certain ?-algebra A . We suppose that, with
each real test function f on Minkowski space, there is associated a pair of ele-
ments of A , �(f) and �?(f), which are related by the ?-operation. We suppose,
furthermore, that A is generated by I, �(f), and � ? (f) (as f runs over all test
functions). That is to say, the most general element of A consists of a finite
linear combination, with complex coe�cients, of I and products of the �(f)’s
and � ? (f)’s, e.g.,

↵I+ ��?(f) + ��(g)�?(k) + ��(m)�?(n)�(p) (409)

Clearly, we can take the sum or product of objects of the form (409) multiply such
an object by a complex number, and take the ? of such an object. Unfortunately,
we still do not have quite the ?-algebra we require. We wish to require, in
addition, that certain expressions of the form (409), while formally distinct,
are to be regarded as equal as elements of A . That is to say, we wish to
impose certain relations among the elements (409) of A . (This construction is
analogous to that in which one obtains a group by postulating the existence of
certain elements subject to relations. If we wished to be more formal, we would
introduce an equivalence relation.) We impose the following relations:

�(af + g) = a�(f) + �(g) �?(af + g) = a�? + �?(g) (410)

�
�
(⇤+ µ2)f

�
= �?

�
(⇤+ µ2)f

�
= 0 (411)

⇥
�(f),�(g)

⇤
=
⇥
�?(f),�?(g)

⇤
= 0 (412)

⇥
�(f),�?(g)

⇤
=

~
2i
D(f, g) I (413)

where f and g are any test functions, a is any real number, and D(f, g) is the
Feynman propagator, (375). This completes the specification of the ?-algebra A .
(Although, of course, this ?-algebra A looks familiar, it is to be regarded, for the
present as merely the mathematical object which results from the construction
above.)
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It is useful conceptually to restate the construction above from a more phys-
ical point of view. We have taken the classical field �(x) and its complex-
conjugate field �̄(x), and replaced them by operators, �(f) and �?(f). (“Oper-
ators” which, as yet, act on no particular Hilbert space: therefore, elements of
a ?-algebra.) We impose on these operators a number of more or less natural
conditions. We require that the operators be linear in the test functions, (410).
We require that the operators, in their position dependence, satisfy the same
equations as the fields they replaced, (411). We require that the �’s commute
with each other, and that the �?’s commute with each other, (412). (This condi-
tion is analogous to the statement in Schrödinger theory that position operators
commute with each other and momentum operators commute with each other.)
We must be careful, however, that we do not have all the operators commute
with each other, for the passage from classical to quantum theory involves re-
placing classical variables by operators with certain, nontrivial, commutation
relations. What should we choose for the commutator of �(f) and �(g)? We
require, firstly, that the commutator be a multiple of the identity (just as the
commutator of the operators x and p in the Schrödinger theory is a multiple
of the identity). We require, furthermore, that [�(f),�?(g)] vanish when f and
g have relatively spacelike supports. (This assumption is perhaps not too un-
reasonable physically. When f and g have relatively spacelike supports, then,
by causality, measurements made in the support of I should in no way a↵ect
measurements made in the support of g. Since the field operators are, in some
sense, to be associated with measurements, we might expect commutativity in
this case.) But these conditions ((410), (411), (412), and the assumption that
the right side of (413) be a multiple of the identity which is a causal function)
imply that the right side of (413) be precisely the Feynman propagator, up to an
overall factor. (This statement is not di�cult to prove.) Note that the “passage
to a quantum theory” arises because of the assumed noncommutativity, (413).

To summarize, if we take the Klein-Gordon equation as a “classical” equation,
and attempt to “quantize” it, more or less in the standard way, we are led to
introduce the ?-algebra A .

We next construct an inner-product space. While the construction could in
principle be carried out directly in terms of the ?-algebra A , it is more convenient
to first introduce a second ?-algebra B. This B is to be generated by elements
A+(f), C+(f), A�(f), and C�(f), for each real test function f , subject to the
following relations:

(A+(f))? = C+(f) (A�(f))? = C�(f) (414)

A±(af + g) = aA±(f) +A±(g)

C±(af + g) = aC±(f) + C±(g)
(415)

A± �
(⇤+ µ2)f

�
= C± �

(⇤+ µ2)f
�
= 0 (416)

⇥
C+(f), C+(g)

⇤
=
⇥
C+(f), C�(g)

⇤
=
⇥
C�(f), C�(g)

⇤
= 0

⇥
A+(f), A+(g)

⇤
=
⇥
A+(f), A�(g)

⇤
=
⇥
A�(f), A�(g)

⇤
= 0

⇥
A+(f), C�(g)

⇤
=
⇥
A�(f), C+(g)

⇤
= 0

(417)
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⇥
A+(f), C+(g)

⇤
=

~
2i
D+(f, g)I

⇥
A�(f), C�(g)

⇤
=

~
2i
D�(f, g)I (418)

First note that we may regard A as a ?-subalgebra of B. Specifically, we set

�(f) = ~
⇥
C�(f) +A+(f)

⇤

�?(f) = ~
⇥
C+(f) +A�(f)

⇤ (419)

whence each element of A defines an element of B. Note that the identifications
(419) indeed establish A as ?-subalgebra of B, for (414)–(418) imply (410)–
(413). In fact, although B is larger than A , there is a sense in which B “does
not add anything new” to A . Specifically, each element of B can be considered
as limiting case of elements of A : A+(f), for example, is the “positive-frequency
part” of �(f). (Just as a complex-valued solution �(x) of the Klein-Gordon
equation can be decomposed into its positive-frequency and negative-frequency
parts, so can an operator-valued solution, �(f), of the Klein-Gordon equation.
It in perhaps not surprising that if one introduces enough machinery, it becomes
possible to describe such a decomposition directly in terms of the ?-algebra.)

Why do we introduce two distinct ?-algebras when they carry essentially
the same information? Because A is easier to motivate while B is easier to
manipulate.

We now construct our inner-product space, KB. We postulate, first of all,
the existence of an element �

0

(the “vacuum”, more commonly written |0i). The
most general element of KB is to consist of the juxtaposition of an element of
B and �

0

. We add such elements of KB, and multiply by complex numbers, by
performing the indicated operation on B, e.g.,

↵(A�
0

) + (B�
0

) = (↵A+B)�
0

(420)

where A,B 2 B, ↵ 2 C. We wish, however, to impose on these elements a
further relation, namely

A+(f)�
0

= 0 A�(f)�
0

= 0 (421)

(“annihilation on the vacuum gives zero”). We now have a complex vector space.
To obtain an inner-product space, we must introduce a norm. To evaluate the
norm of an element of KB, one first formally takes the “inner product” of the
element with itself. For ↵A+(f)C�(g)C+(h)�

0

, for example, one would write

(↵A+(f)C�(g)C+(h)�
0

,↵A+(f)C�(g)C+(h)�
0

) (422)

We now set down certain rules for manipulating such expressions. Firstly, an
element of B which appears first on either side of the “formal inner product”
can be transferred to the other side (where it must also appear first) provided
that, simultaneously, it is replaced by its starred version. (That is, we mimic
the usual rule for transferring an operator to the other side of an inner product.)
For example, (423) can be rewritten

(↵C�(g)C+(h)�
0

,↵C+(f)A+(f)C�(g)C+(h)�
0

) (423)
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or
(↵↵̄A�(g)C+(f)A+(f)C�(g)C+(h)�

0

, C+(h)�
0

) (424)

Secondly, one can use the commutation relations (417) and (418). For example,
(423) can be rewritten

(↵C�(g)C+(h)�
0

,↵A+(f)C+(f)C�(g)C+(h)�
0

)

+ (↵C�(g)C+(h)�
0

,↵
~
2i
D+(f, f)C�(g)C+(h)�

0

) (425)

Thirdly, one can use (421). Finally, we postulate

(�
0

,�
0

) = 1 (426)

(“the vacuum is normalized to unity”). By using these rules, every “norm” can
be reduced to some number. This is done, roughly speaking, as follows. First
use the commutators to “push the annihilation operators to the right” until
they stand next to �

0

and hence give zero. There then remain only creation
operators. Each of these, in turn, is transferred to the other side of the inner
product, thus becoming an annihilation operator. Each annihilation operator
obtained in this way is then “pushed to the right” again, where it eventually
meets �

0

and gives zero. In this way, all the operators are eventually eliminated,
leaving only the functions which appear in the commutators. Now use (426). As
a simple example, we evaluate the norm of C+(f)�

0

:

(C+(f)�
0

, C+(f)�
0

) = (A+(f)C+(f)�
0

,�
0

)

= (C+(f)A+(f)�
0

,�
0

) + (
~
2i
D+(f, f)�

0

,�
0

)

= 0 +
~
2i
D+(f, f)(�

0

,�
0

)

=
~
2i
D+(f, f)

(427)

Thus, KB has the structure of an inner-product space. (We shall establish
shortly that the norm, defined above, is indeed positive.) In particular, if we
consider only the elements of KB which can be obtained by applying elements
of A to �

0

we obtain an inner-product subspace, KA , of KB. Finally, we take
the completion, KA , of KA to obtain a Hilbert space. (In fact, KA is dense in

KB, so KA = KB.)
All these formal rules and relations sound rather mysterious. It is easy,

however, to see what the resulting Hilbert space is. Consider the symmetric
Fock space based on HCKG. As we have mentioned, the ?-algebras A and
B can be represented as operators on this Hilbert space. Consider now the
element (1, 0, 0, . . .) (see (98)) of Fock space. It satisfies (421) and (426). Clearly,
the inner-product space KA (resp. KB) is identical to the inner-product space
consisting of all elements of Fock space which can be obtained by applying
elements of A (resp. B) to (1, 0, 0, . . .). Thus, KA and KB can be considered
as subspaces of our Fock space. But in fact, both these subspaces are dense in
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Fock space. Hence, KA and KB are identical with symmetric Fock space based
on HCKG. In other words, we have simply re-obtained Fock space by a di↵erent
route.

We summarize the situation. In the conventional approach, one begins with
the classical fields, which are replaced by “operators” (elements of a ?-algebra),
subject to certain commutation relations. One then assumes the existence of a
vacuum, and builds an inner-product space by applying the elements of our ?-
algebra to the vacuum. The norm is defined by formal manipulative rules, using
the postulated commutators. Finally, one completes this inner-product space to
obtain a Hilbert space. One has the feeling that one is “quantizing” a classical
theory. We have proceeded in a rather di↵erent direction. We “looked ahead” to
see what the resulting Hilbert space would be, and simply wrote it out. It turned
out to be what we called the symmetric Fock based on the Hilbert space HCKG,
which, in turn, was based on the solutions of the original equation. We then
simply defined the action of creation operators, annihilation operators, and field
operators on this explicit Fock space. The resulting mathematical structures
are identical — the methods of deriving this structure quite di↵erent. We have
sacrificed much of the motivation to gain a certain explicitness.



26. Scattering: The S-Matrix

Our discussion so far has been restricted to free particles. That is to say, we have
been dealing with systems consisting of any number of identical particles which
interact neither with themselves nor with particles of any other type. While
such systems provide a convenient starting point for quantum field theory, they
are by themselves of very little physical interest. Particles in the real world do
interact with other particles: electrons have charge, and so interact with photons;
nucleons interact, at least, with ⇡-mesons to form nuclei, etc. Furthermore,
even for systems in which interactions play a minor role, the experiments which
provide information about such systems must come from the interaction with
other systems (i.e., the experimental apparatus). One of the most important
situations — from both the theoretical and experimental points of view — in
which interactions play a significant role is that of scattering. In this section, we
shall set up the general framework for the description of scattering experiments.

We first recall a general principle of quantum theory. Let S
1

and S
2

represent
two quantum systems which, we assume, in no way interact with each other. Let
H

1

be the Hilbert space which encompasses the possible states of S
1

, and H
2

the Hilbert space for S
2

. It is because the systems do not interact that each
is characterized by its own Hilbert space. Now suppose we introduce a new
quantum system, S, which consists of S

1

and S
2

together. Note that we are
not here turning on any interactions — we have merely decided to consider two
systems as a single system. What is the Hilbert space of states of the system
S? It is H

1

⌦ H
2

. (Note: the tensor product, not the direct sum.) That is to
say, a state of S can be obtained by taking a formal sum of formal products of
states of S

1

and S
2

. (Simple example: if H
1

and H
2

were both one-dimensional,
so S

1

and S
2

each had essentially one state, then S should also have essentially
one state. But in this example H

1

�H
2

is two-dimensional, whereas H
1

⌦H
2

is
one-dimensional.) Note, incidentally, that any operator on H

1

(i.e., which acts
on S

1

) extends naturally to an operator on H
1

⌦H
2

(i.e., extends to an operator
which acts on S).

Now suppose we wish to consider a situation in which only certain types
of particles will be permitted to interact — say, electrons-positrons, photons,
and neutral ⇡-mesons. We begin by writing down the Hilbert space H which
encompasses the states of such a system when the interactions are “turned o↵”.
That is to say, we imagine a system in which our various particles co-exist but
do not interact, and describe its states by H . In our example, H would be the
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tensor product of the antisymmetric Fock space based on HD, the symmetric
Fock space based on HM , and the symmetric Fock space based on HRKG. Note
that this is a purely mathematical construct. In the real world such particles
would interact: we do not have the option of turning o↵ interactions to suit our
convenience.

It is in terms of this H that scattering processes are described. We consider
the following situation. In the distant past, our particles are represented by
broad and widely separated wave packets. These particles then enter a region
in which the amplitudes are large and the wave packets overlap significantly.
They interact. Finally, we suppose that, in the distant future, all the particles
are again widely separated. We wish to describe such a process as follows. It is
perhaps not unreasonable to suppose that, as one goes further and further into
the past, the interactions play a smaller and smaller role. Thus, in the limit as
one goes into the past, it might be possible to describe the system by an element
of our non-interacting Hilbert space H . That is, our incoming state is to be
some element of H . Similarly, in the limit as one goes into the future, i.e., for
the outgoing state, one obtains some other element of H . It is only in these
“past and future limits” that H provides an accurate description of the state of
the system. In any actual finite region of Minkowski space — and particularly
where the interactions are strong — a description in terms of H is impossible.
We therefore simply abandon, for the time being, any attempt to describe in
detail what is happening while the interaction takes place. We agree that all we
care to know about the interaction is simply the relation between the incoming
state and the outgoing state — both elements of H . This relation is given by
some mapping S from H to H .

We illustrate this idea with a classical analogy. (Caution: This analogy can
be misleading if pushed too far.) Suppose we are interested in solutions of

(⇤+ µ2)� = �3 (428)

Let L denote the collection of solutions of this equation which are, in some
suitable sense, well-behaved asymptotically. (Note that L is not a vector space.
It is analogous to the states of the interacting quantum system, which do form
a vector space.) Let H denote the collection of asymptotically well-behaved
solutions of the Klein-Gordon equation. Fix a time-coordinate t in Minkowski
space (i.e., rat is constant, unit, and timelike). For each value of t, we define
a mapping, ⇤(t), from L to H . Fix t

0

. Then, if �(x) is a solution of (428),
the values of � and (rat)raphi on the 3-surface t = t

0

are initial data for
some solution of the Klein-Gordon equation, which we write ⇤(t)�. Clearly, this
mapping ⇤(t) is invertible. We now ask whether the right side of

S = lim
t2!1
t1!�1

⇤(t
2

)⇤(t
1

)�1 (429)

exists and is independent of our original choice of time-coordinate. If so, we
obtain a mapping S from H to H . This S clearly provides a great deal of
information about the structure of Eqn. (428).
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We now return to quantum field theory. All the information we want about
the interactions is to be contained in the mapping S, called the S-matrix, from
the non-interacting Hilbert space to itself. One could, of course, merely deter-
mine S, as best as one can, from experiments. But this would hardly represent a
physical theory. Ultimately, we shall be concerned with the problem of calculat-
ing S from specific assumptions concerning the nature of the interaction. It is of
interest, however, to first ask whether there are any very general properties of S
which one might expect to hold merely from its physical interpretation. In fact,
there are two such properties. The first is that S is an operator on H , i.e., S
is linear. I do not know of a water-tight physical argument for this assumption.
It is, however, suggested by the principle of superposability in quantum theory.
Let �

1

and �
2

be unit, orthogonal elements of H. Then � = (�
1

+ �
2

)/
p
2 is

also a unit vector in H . A system whose incoming state is � has probability
1/2 that its incoming state is �

1

, and probability 1/2 that its incoming state is
�
2

. Hence, we might expect the corresponding outgoing state, S(�) , to be the
same linear combination of S(�

1

) and S(�
2

), i.e., we might expect to have

S(�) =
1p
2
(S(�

1

) + S(�
2

)) (430)

These considerations strongly suggest the assumption we now make: that S is a
linear operator on H . The second property of S follows from the probabilistic
interpretation of states in quantum theory. Let � be a unit vector in H . Then,
if we write H as a direct sum of certain of its orthogonal subspaces, the sum
of the norms of the projections of � into these subspaces is one. This fact is
interpreted as meaning that the total probability of the system’s being found
in one of these subspaces is one. But if this � is our incoming state, the total
probability for all possible outgoing states must also be one. Hence, we might
expect to have

kS�k = 1 (431)

provided k�k = 1. In other words, we expect S to be a unitary operator on H .
To summarize, the probabilities for all possible outcomes of all possible scat-

tering experiments (involving a certain, given list of particles) are specified com-
pletely by a unitary operator S on the non-interacting Hilbert space H . We
want to find this S.

The S-matrix approach to scattering problems involves a number of physical
assumptions. Among these are the following:

1. In the limit to the distant past (and distant future), the interactions have
negligible influence, so the state of the actual physical system can be asso-
ciated, in these limits, with elements of the non-interacting Hilbert space,
H .

2. The interaction is completely described by the S-matrix (e.g., there are no
bound states.)

3. One can find short list of particles such that, if only particles which appear
on this list are involved in the incoming state, then all outgoing particles
will also appear on the list.
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In fact, all of these assumptions are believed to be false:

1. Even in the distant past and future, particles carry a “cloud of virtual par-
ticles” which a↵ect, for example, the observed mass. Thus, the interactions
are important even in the limits. It appears, however, that these e↵ects
can be accounted for by suitably modifying the parameters (e.g., mass)
which appear in the non-interacting Hilbert space H . This procedure is
associated with what is called renormalization.

2. There exist bound states, e.g., the hydrogen atom.

3. Suppose we decide that we shall allow incoming states containing only
photons and electron-positrons. Then, if the energies are su�ciently large,
the outgoing states could certainly include ⇡-mesons, proton-antiproton
pairs, etc. The problem is that we do not have an exhaustive list of all
“elementary” particles, and so we cannot write down the “final” H . We
are forced to proceed by a series of approximations. In certain situations,
interactions which produce elementary particles not included in our H
will not play an important role. Thus, we can closely describe the phys-
ical situation by using only one or two of the many interactions between
elementary particles. Whenever we write down an H and an S, we have
a physical theory with only a limited range of validity. The larger our H ,
and the more interactions included, the larger is the domain of validity of
our theory.

Despite these objections, we shall, as our starting point for the discussion of
interactions, use the S-matrix approach.



27. The Hilbert Space of
Interacting States

We have seen in Sect. 26 that scattering phenomena are completely described by
a certain unitary operator S on a Hilbert space H . We also remarked that, since
H represents noninteracting states, and since the states of the actual physical
system are influenced by interactions, we cannot interpret H as encompassing
the states of our system. Is it possible, then, to construct a Hilbert space L
which does represent the states of the interacting system? The answer is yes (at
least, for scattering states), provided we accept a su�ciently loose interpretation
for the word “construct.”

What features would we expect for a Hilbert snare which is to represent
the “interacting states of the system”? Firstly, comparing L and H in the
distant past, we might expect to have an isomorphism ⇤

in

: L ! H between
L to H . (See the example on p. 116.) (An isomorphism between two Hilbert
spaces is a mapping from one to the other which is one-to-one, onto, linear,
and norm-preserving. Clearly, any isomorphism has an inverse, which is itself
an isomorphism.) Similarly, we would expect to have a second isomorphism
⇤
out

: L ! H . Finally, from the definition of the S-matrix, we would expect
to have

S = ⇤
out

⇤�1

in

(432)

Fix H and S. A triple, (L ,⇤
in

,⇤
out

) consisting of a Hilbert space L and two
isomorphisms, ⇤

in

and ⇤
out

, from L to H , subject to (432), will be called on in-
teraction space. How many essentially di↵erent interaction spaces are there for a
given H , S? In fact, there is just one, in the following sense: Let (L 0,⇤0

in

,⇤0
out

)
and (L ,⇤

in

,⇤
out

) be two interaction spaces for H , S. Then there exists a
unique isomorphism  from L to L 0 such that

⇤
in

= ⇤0
in

· ⇤
out

= ⇤0
out

· (433)

(Proof: Evidently, we must choose  = ⇤0
in

�1⇤
in

, which, by (432), is the same
as  = ⇤0

out

�1⇤
out

.) That is to say, the interaction space is unique up to
isomorphism (which, of course, is as unique as we could expect it to be.)

All this looks rather pedagogical. After all, L is just another copy of H , so
why don’t we just say so instead of speaking of “triples,” etc.? The point is that
the interaction space is more than just another cony of H — it also contains,
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as part of its structure, certain isomorphisms from L to H . As a consequence,
only certain portions of the (extensive) structure on H can be carried over, in
a natural way, to L . Examples of structure on H — which arise from the way
in which H was constructed — are:

1. The total charge operator on H .

2. The “total number of photons” operator on H (if, say, H happens to
include photons).

3. The projection operator onto photon states (eliminating all other types of
particles).

4. The operators which arise from the action of the restricted Poincaré group
on H .

5. The “number of baryons minus number of anti-baryons” operator.

6. The creation and annihilation operators of various particles in various
states.

7. The field operators on H .

The important point is that, in every case, the “additional structure” on H can
be described by giving an operator on H . The question of transferring structure
from H to L reduces, therefore, to the following: under what conditions does
an operator A on H define, in a natural way, an operator on L ? In fact, given
an operator A on H , there are two natural operators on L , namely,

⇤�1

in

A⇤
in

⇤�1

out

A⇤
out

(434)

In other words, we can carry A from H to L via either of the isomorphisms
⇤
in

or ⇤
out

. Which of (434) should we choose? There would he no choice if
these two operators were equal. Thus, an operator A on H leads to a unique
operator on the interaction space L provided A is such that the two operators
(434) are equal. Using (432), this is equivalent to the condition

[S,A] = 0 (435)

This, of course, is the result we expect. It is only properties of H which are in-
variant under the interaction (i.e., operators which commute with the S-matrix)
which lead unambiguously to properties of the interaction states.

To summarize, structure on the interaction space is obtained from operators
on H which commute with the S-matrix.

The operators which commute with S characterize what are called conserved
quantities. They include charge, baryon number, lepton number, momentum,
angular momentum, etc. Operators such as 2, 3, 6, and 7 above will not commute
with S. They describe quantities which are not conserved in interactions.



28. Calculating the S-Matrix:
An Example

We shall soon begin writing down formulae for the S-matrix. Unfortunately,
these formula are rather complicated. They contain large numbers of terms,
sums and integrals whose convergence is doubtful, and symbols whose precise
meaning is rather obscure. We wish to avoid encountering all of these problems
simultaneously. It is convenient, therefore, to first study a simpler example — a
problem in which some of the features of the S-matrix formulae are exhibited,
and in which some, but only some, of the di�culties are seen. We discuss such
an example in the present section.

Let H he a fixed Hilbert space. Let K(t) be a one-parameter family of
bounded operators defined everywhere on H. That is, for each real number t,
K(t) is an operator on H. Suppose furthermore that K(t) = 0 unless t is in
some finite interval. That is, suppose that there are numbers ti < tf such that
K(t) = 0 for t � tf and t  ti. We are interested in studying curves in H, i.e.,
one-parameter families �(t) of elements of H, which satisfy the equation

� ~
i

d

dt
�(t) = K(t)�(t) (436)

(Note: Derivatives and integrals of one-parameter families of elements of a
Hilbert space, and operators on a Hilbert space, are defined by the usual limiting
procedure.) Let �(t) satisfy (436). Then, since K(t) = 0 for t  ti, �(t) is a
constant element of H, �i, for t  ti. Similarly, �(t) = �f for t � tf . Clearly, a
solution of (436) is completely and uniquely determined by �i, and �f is a linear
function of �i. We write

�f = S�i (437)

where S is some operator on H. The problem is to find an expression for S in
terms of K(t).

We first consider a special case in which the solution is easy. Suppose that
all the K(t)’s commute with each other, i.e., [K(t),K(t0)] = 0 for any t and t0.
Then

�(t) =


exp

✓
� i

~

Z t

t
i

d⌧K(⌧)

◆�
�i (438)

is clearly a solution of (436). (Note: If A(t) is a one-parameter (di↵erentiable)
family of operators on H, then d

dt expA(t) = (expA(t)) d

dtA(t) only when A(t)
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and d

dtA(t) commute.) Therefore,

S = exp

✓
� i

~

Z t
f

t
i

d⌧K(⌧)

◆

= I+
✓
� i

~

Z t
f

t
i

d⌧K(⌧)

◆
+

1

2!

✓
� i

~
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f

t
i

d⌧K(⌧)

◆
2

+
1

3!

✓
� i

~

Z t
f

t
i

d⌧K(⌧)

◆
3

+ · · · (439)

(The exponential of an operator is, of course, defined by the second equality in
(439). We ignore, for the time being, questions of the convergence of such series.)
Thus, when the K(t)’s commute, S is given by the relatively simple expression
(439).

Now suppose that the K(t)’s do not commute. Integrating (436), we rewrite
it as an integral equation:

�(t) = �i �
i

~

Z t

t
i

d⌧K(⌧)�(⌧) (440)

We shall solve (440), at least formally, using a sequence of approximations. We
begin with a trial solution, �

0

(t). We substitute this �
0

(t) into the right side
of (440), and denote the result by �

1

(t). We now take �
1

(t) as our next trial
solution. Substituting it into the right side of (440) to obtain �

2

(t), etc. Thus,
the general formula for passing from one trial solution to the next is

�n+1

(t) = �i �
i

~

Z t

t
i

d⌧K(⌧)�n(⌧) (441)

As our initial trial solution, we take �
0

(t) = �i, a constant. The hope is that
the resulting �n(t) will, as n ! 1, converge, in a suitable sense, to a solution
�(t) of (436). Using (441) successively, we have
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(442)

or, more generally,

�n(t) =

"
nX

m=0

✓
� i

~

◆m Z t
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i

d⌧
1

Z ⌧1
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d⌧
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· · ·
Z ⌧
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(443)
Thus, our formal limiting solution is

�n(t) =

" 1X

m=0
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(444)
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Figure 28.1: Region of integration in (447).

Indeed, if we substitute (444) into (436), and ignore questions of convergence of
sums and the validity of interchanging the order of di↵erentiation and summa-
tion, we obtain an identity. Thus, our formal expression for S is

S =
1X

m=0

✓
� i

~

◆m Z t

t
i
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t
i
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d⌧mK(⌧
1

) · · ·K(⌧m) (445)

It is convenient to recast (445) into a form which more closely resembles
(439). The idea is to eliminate integrals whose limits of integration lie between
ti and tf , i.e., to have all integrals be over the full range from ti to tf . Explicitly,
the first few terms of (445) are
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The first two terms on the right in (446) are already in the desired form. How-
ever, the third term on the right,
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is not. The region of integration in (447) is shown in the figure. The idea is
to reverse the orders of the two integrations, while keeping the actual region
over which the integration is performed — the shaded region in Figure 28.1 —
unchanged. Thus, the expression (447) is equal to
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We next reverse the roles of the integration variables, ⌧
1

and ⌧
2

, in (448) to
obtain ✓
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Finally, adding (447) and (449), we find that (447) is equal to
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where we have defined
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A similar procedure can be applied to each successive term in (446). The nth

term is equal to
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where T [K(⌧
1

),K(⌧
2

), . . . ,K(⌧n)] is defined to be the product of these operators,
but arranged in the order in which the operator associated with the smallest ⌧m
is placed on the right, the operator associated with the next-smallest ⌧m is placed
next, etc. This T [K(⌧

1

), K(⌧
2

), . . ., K(⌧n)] is called the time-ordered product.
Thus, our final formal expression for S is

S =
1X

n=0

1

n!

✓
� i

~

◆n Z t
f

t
i

d⌧
1

Z t
f

t
i

d⌧
2

· · ·
Z t

f

t
i

d⌧nT [K(⌧
1

), . . . ,K(⌧n)] (453)

Note that, if all the K(⌧)’s commute, then the time-ordering is irrelevant, and
(453) reduces to (439).

To summarize, the only modification of (439) required when the operators
do not commute is that the products of operators in the multiple integrals must
be time-ordered.

Finally, note that if all the K(⌧)’s are Hermitian, then, from (436),

d

dt
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✓
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�,�

◆
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�,
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◆

=

✓
� i

~K�,�
◆
+

✓
�,� i

~K�
◆

=
i

~ [(K�,�)� (�,K�)] = 0

(454)

Hence, S must be a unitary operator. Unitarity is obvious in (439) — rather
less so in (453).

Our formulae for the S-matrix in field theory will also involve infinite series
of multiple integrals of time-ordered products of Hermitian operators.



29. The Formula for the
S-Matrix

In this section we shall write down the formula for the S-matrix in terms of a
certain (as yet unspecified) operator field on Minkowski space. While we shall
in no sense “derive” that our expression for S is correct, it will be possible, at
least, to show that the formula is a reasonable guess. We rely heavily on the
discussion in Sect. 28.

Consider Eqn. (453). We wish to write down an analogous formula for S
in quantum field theory. Since, first of all, S is to be an operator on the non-
interacting Hilbert space we must take the K’s to be operators on H . Secondly,
S should be unitary: we therefore take the K’s to de, Hermitian. By what
should we replace the interaction variables - the ⌧ ’s in Eqn. (453)? If we think
of ⌧ in Sect. 28 as representing a “time”, then a natural replacement would be
position x in Minkowski space-time. The integrals in (453) would then extend
over all of Minkowski space. (Note: This is the reason why it was convenient, in
Sect. 28, to obtain an expression in which the integrals extended over the entire
t-range from ti to tf .) Thus, we are led to consider the interaction is described
by a certain Hermitian operator field, K(x), which depends on position x in
Minkowski space, and acts on H . The S-matrix will then be given by the
formula

S =
1X

n=0

1

n!

✓
� i

~

◆n Z
dV

1

· · ·
Z

dVnT [K(x
1

), . . . ,K(xn)] (455)

where x
1

, x
2

, . . . represent points in Minkowski space, dV
1

, dV
2

, . . . the corre-
sponding volume elements in Minkowski space, and all integrals are over all of
Minkowski space. Note that Eqn. (453) already su↵ers from one di�culty: the
question of the convergence of the infinite series. In writing (455) we have re-
tained that di�culty, and, in fact , introduced a second one: the question of
the convergence of the integrals. (The integrals in (453) are all over compact
regions.)

In fact, there is a second problem with (455) which was not encountered in
(453), namely, the question of what the time-ordering operator T is to mean
in (455). In (453), T means that the K(⌧) operators are to be placed in the
order of decreasing ⌧ -values. Unfortunately, in the passage from a “time” ⌧ to
position x in Minkowski space-time, the natural ordering is destroyed. There is,
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126 29. THE FORMULA FOR THE S-MATRIX

however, one case in which points in Minkowski space can be ordered: we agree
that x

2

exceeds x
1

, x
2

> x
1

, if x
2

� x
1

(i.e., the position vector of x
2

relative to
x
1

) is future-directed and timelike or null. Hence, for the region of integration
in (455) for which all the x

1

, . . . , xn can be ordered in this way, T has a well-
defined meaning, and hence the integral makes sense. (More explicitly, the ⌧ ’s
are totally ordered, while points in (time-oriented) Minkowski space are only
partially ordered.) Clearly, there is no Poincaré-invariant way to “time-order”
K(x

1

) and K(x
2

) when x
2

�x
1

is spacelike. How, then, are we to give a meaning
to (455)? One way of doing this would be through an additional condition on
the K(x). We simply assume that the ordering of K(x

1

) and K(x
2

) is irrelevant
when x

2

�x
1

is spacelike. That is to say, a natural way of forcing a meaning for
(455) is to assume that the K(x) have the property

[K(x),K(x0)] = 0 for x� x0 spacelike (456)

We include (456) as a requirement on ourK(x). Thus, if x
1

, x
2

, . . . , xn are points
in Minkowski space, we define T [K(x

1

),K(x
2

), . . . ,K(xn)] to be the product of
these operators, placed in an order such that, if xi � xj is timelike or null and
future-directed, then K(xi) appears before K(xj) in the product. Clearly, there
always exists at least one ordering having this property. Furthermore, (456) im-
plies that all such orderings yield the same operator. Thus, T [K(x

1

), . . . ,K(xn)]
is a well-defined operator.

To summarize, the interaction is to be described by giving a Hermitian op-
erator field K(x) on H which satisfies (456). The S-matrix is to be expressed
in terms of K(x) by (455). The formal expression (455) is unsatisfactory insofar
as we have investigated the convergence of neither the infinite series nor the
integrals themselves.

The standard textbooks give a more detailed, but, I feel, no more satisfactory,
argument for (455). One chooses a time-coordinate t in Minkowski space, and
writes

H(t) =

Z

t=const.

K(x) (457)

for the “Hamiltonian”. One then imagines a “state vector” in the Hilbert space
H , �(t), which depends on the time-coordinate. One writes the “Schrödinger
equation”,

� ~
i

d

dt
�(t) = H(t)�(t) (458)

The argument of Sect. 28 then yields (455), where T refers to the ordering
induced by the time-coordinate t. Finally Poincaré invariance (i.e., the condition
that S be independent of our original choice of t) requires (456). This argument
assumes, implicitly, that the “states during the interaction” are described by H .
We have deviated only slightly from this conventional argument. We isolated
the simplest and clearest part in Sect. 28, and guessed the rest.



30. Dimensions

With each of the various fields and operators we have introduced, there is asso-
ciated a corresponding physical dimension. We shall determine these dimensions
in the present section.

Recall that we have set the speed of light equal to one, so length and time
have the same units. (E.g., we measure distance in light-seconds.) We may
therefore take as our fundamental units a mass (m) and a time (t). Then Planck’s
constant h has dimensions mt. We assign to position vectors in Minkowski
space dimensions t, so the derivative in Minkowski space has dimensions t�1,
and the wave operator ⇤ dimensions t�2. (Raising, lowering, and contracting
indices does not a↵ect dimensions.) The quantity µ which appears in the Klein-
Gordon and Dirac equations therefore has dimensions t�1. Position vectors in
momentum space have dimensions t�1. Finally, the volume element on the mass
shell has dimensions t�1 (see (14).)

The rule for determining the dimensions to be associated with a classical field
is the following: consider an element of the Hilbert space which has norm unity,
and work back to determine the dimensions of the corresponding field. Consider
first the (real or complex) Klein-Gordon case. A unit vector in the Hilbert space
is represented by a function �(k) on Mµ which satisfies

1

~

Z

M
µ

�(k)�(k) dVµ = 1 (459)

Therefore, �(k) has dimensions m1/2t3/2. But

�(x) =

Z
�(k)eikb

xb

dV (460)

and so the Klein-Gordon field has dimensions m1/2t�1/2. For the Dirac case,
Eqn. (388) implies that (⇠A(k), ⌘A0(k) has dimensions t1/2. Then (309) and
(310) imply that (⇠A(k), ⌘A0(k) has dimensions t3/2. The neutrino fields have
the same dimensions. Finally, for the Maxwell case, (382) implies that Aa(k)
has dimensions m1/2t3/2, whence, from (178), Aa(x) has dimensions m1/2t�1/2.
(In the Maxwell case, one has a simple independent check on the dimensions.
The dimensions above for the vector potential imply that electric and magnetic
fields have dimensions m1/2t3/2 which agrees, of course, with the dimensions
from classical electrodynamics.)
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128 30. DIMENSIONS

The other quantities whose dimensions are of particular interest are the field
operators. To assign dimensions to these operators, we must decide what di-
mensions are to be associated with the test fields. Recall that the role of the
test fields is to smear out the (undefined) operators associated with points of
Minkowski space, e.g.,

�(f) =

Z
f(x)�(x) dV (461)

Thus, we can think of a test field as a “smearing density.” We therefore take
all test fields to have dimensions t�4. (That is, we require that �(f) and the
(undefined) �(x) have the same dimensions.) With this convention, the deter-
mination of the dimensions of the field operators is straightforward. Consider
first the Klein-Gordon case. If f(x) is a test field (dimensions t�4), then, from

f(x) =

Z
f(k)eikb

xb

dV (462)

f(k) is dimensionless. But a dimensionless element of our Hilbert space, (459),
defines a �(k) with dimensions m1/2t3/2. Therefore, the element of our Hilbert
space associated with this f(k), �(f), has dimensions m�1/2t�3/2. Thus, the
creation and annihilation operators have dimensions m�1/2t�3/2. But

�(f) = ~C(�(f)) + ~A(�(f)) (463)

(say, for real Klein-Gordon fields), and so the field operators, �(f), have dimen-

sions m1/2t1/2. In the Dirac case, the test fields,
(fA(x), fA0(x)) have dimensions t�4, whence fA(k) is dimensionless. The cor-
responding pair of functions on the mass shell, (389), therefore has dimensions
t�1. Hence, the corresponding elements of our Hilbert space, �(fA, fA0), have
dimensions t�3/2. This, then, is the dimensions of the creation and annihilation
operators. Finally, from (390), the field operators in the Dirac case have dimen-
sions t�3/2. Similarly, in the Maxwell case, fa(x) has dimensions t�4, fa(k)
dimensionless, �(fa) dimensions m�1/2t�3/2. The creation and annihilation op-
erators therefore have dimensions m�1/2t�3/2, and so by (383), the Maxwell
field operators have dimensions m1/2t�1/2.

Note that, in every case, the classical fields and the corresponding field op-
erators have the same dimensions.



31. Charge Reversal

An important tool, both for constructing and analyzing interactions, is the dis-
crete symmetries — charge, parity, and time reversal. We begin with charge
reversal.

Let H be a non-interacting Hilbert space, and suppose we are given an
operator S, the S-matrix, on H . What does it mean to say that “the interaction
described by S is invariant under charge reversal?” Roughly speaking, this
means that if we replace any in-state, � 2 H , by “the same state, but with
all particles replaced by their antiparticles,” then the corresponding out-states
are again “the same, but with particles replaced by antiparticles.” Thus, we are
led to try to give a meaning to the notion “the same state (in H ), but with
particles replaced by antiparticles.” Let us suppose that this mapping from non-
interacting states to non-interacting states is accomplished by come operator C
on H , so that C� represents the same state as �, but with particles replaced
by antiparticles. Then the statement that the interaction (described by S) is
invariant under charge reversal reduces to the condition

SC� = CS� (464)

for any � 2 H . In other words, invariance under charge reversal is expressed
mathematically by the condition that S and C (both operators on H ) commute.

In general, there will be a number of di↵erent operators C which could be
interpreted as e↵ecting the replacement of particles by antiparticles. There is no
obvious, unambiguous way of translating this physical notion into a mathemati-
cal operator. We shall therefore proceed as follows. We first write down a list of
properties which reflect the intuitive idea of “replacing particles by antiparticles,
but not otherwise changing the state.” In general, there will he a moderately
large class of C’s which satisfy these criteria. Then, for each interaction, we look
for an operator C which satisfies our criteria and which, in addition, commutes
with the S-matrix. If such a C exists, we say that our interaction is invariant
under charge-reversal. The point is that any operator which commutes with
the S-matrix is valuable. We regard the words “charge reversal” as merely sug-
gesting a particularly fertile area in which such operators might be found. This
philosophy is important:

i) there is no natural, a priori charge-reversal operator;

ii) one sets up a class of possible charge-reversal operators, and then selects
from this class depending on what the interaction is,
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130 31. CHARGE REVERSAL

iii) if no operator in this class commutes with the S-matrix, there is little
point in considering charge-reversal for that interaction.

(The third point is somewhat over-stated, and will be modified slightly later.)
The first condition on C is that it should not mix up particles of di↵erent

types. That is to say, C should commute with the total number operators on
each of the Fock spaces which make up H . Therefore, C can be considered
as an operator on each of the Fock spaces separately. The assumption that C
commutes with the total number operators implies, furthermore, that C can be
decomposed into an operator on the one-particle Hilbert space, an operator on
the two-particle Hilbert space, etc. We next assume that the action of C on the
many-particle states can be obtained from the action on the one-particle states
as follows. Let H be one of our one-particle Hilbert spaces (e.g., HRKG, HCKG,
HM , HD). Then an element of the corresponding Fock space consists of a string

(⇠, ⇠↵, ⇠↵� , . . .) (465)

of tensors over H. The operator C on the one-particle Hilbert space H can be
written, in the index notation, as C↵

� : the result of applying C↵
� to an element

⇠� of H is written C↵
�⇠� . We assume that the action of C on the element (465)

of Fock space is
(⇠, C↵

�⇠
� , C↵

µC
�
⌫⇠

µ⌫ , . . .) (466)

This is a quite reasonable assumption: if we know what charge-reversal means on
a one-particle state, we assume that, for a two-particle state, the e↵ect of charge
reversal is to “apply charge-reversal to each of the particles individually.”

Thus, we are led to distinguish a class of charge-reversal operators on each
of our one-particle Hilbert spaces, HRKG, HM , etc.

It is convenient to introduce some definitions. A mapping T from a Hilbert
space H to itself is said to be antilinear if

T (↵� + ⌧) = ↵̄T (�) + T (⌧) (467)

for any �, ⌧ 2 H, ↵ 2 C. (Alternatively, T could be considered as a linear
mapping from H to H̄.) We shall sometimes refer to an antilinear mapping as
an antilinear operator. The word “operator” alone means “linear operator.” A
linear or antilinear operator T is said to be norm-preserving if

kT�k = k�k (468)

for every � 2 H. Eqn. (468) immediately implies that, for any �, ⌧ 2 H,

(T�, T ⌧) = (�, ⌧) (469)

or (T�, T ⌧) = (⌧,�) (470)

according as T is linear or antilinear, respectively. As we have remarked, a lin-
ear, norm-preserving operator is called unitary. An antilinear, norm-preserving
operator is said to be antiunitary.

Let H be one of the Hilbert spaces HRKG, HCKG, HM , or HD. A linear or
antilinear operator C on H will be called a charge-reversal operator if
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1. C is norm-preserving.

2. C commutes with all the unitary operators on H which arise from the
action of the restricted Poincaré group on H.

3. C, applied to a positive- (resp., negative-) frequency element of H, yields
a negative- (resp., positive-) frequency element.

These conditions are to reflect the intuitive that “the state is changed only in
that particles are replaced by antiparticles.” Conditions 1 and 3 are clearly
reasonable. (The passage from positive-frequency to negative-frequency is the
passage from particles to anti-particles.) Condition 2 ensures that quantities
such as the locations and momenta of particles are unchanged under C. Note
that, if C is a charge-reversal operator, and ↵ is a complex number with |↵| = 1,
then ↵C is also a charge-reversal operator. (One could, conceivably, impose the
further condition C2 = 1. We shall not do so.) Note that Condition 1 implies
that C is also norm-preserving on the non-interacting Hilbert space H .

Before discussing examples of charge-reversal operators, we establish the fol-
lowing result: C must be linear rather than antilinear. Let ra be a constant,
unit, future-directed, timelike vector field in Minkowski space. Then the energy
operator associated with ra is

E =
i

~r
aLa (471)

where raLa is the operator which comes from the unitary transformation as-
sociated with the Poincaré transformation (a translation) generated by ra. It
is essential, in (471), that the i/~ appear explicitly, so that ra is simply the
first-order di↵erence between a unitary operator and the identity operator. We
assume that C is antiunitary, and obtain a contradiction. For each of our Hilbert
spaces, the expectation value of the energy E in any state (and, in particular,
in the state C�1�, for � 2 H) is non-negative:

(C�1�, EC�1�) � 0 (472)

But, from (470), this implies

(CEC�1�,�) � 0 (473)

Write

CEC�1 =

✓
C

i

~C
�1

◆
(CraLaC

�1) (474)

Condition 2 above implies that C(raLa)C
�1. The assumption that C is antiu-

nitary implies C(i/~)C�1 = �i/~. Thus, we have

(C�1�, EC�1�) = �(E�,�) (475)

But this is a contradiction, for the left side is non-negative and the right side
non-positive. Therefore, C cannot be anti-linear.
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The question of the uniqueness of charge-reversal operators is settled by
the following fact: let O be a bounded operator defined everywhere on H (one
of our four one-particle Hilbert spaces). Suppose that O commutes with the
unitary operators which arise from the action of the restricted Poincaré group
and, furthermore, that O takes positive- (resp., negative-) frequency to positive-
(resp., negative-) frequency states. Then O is a multiple of the identity. I
know of no simple proof. (The statement is essentially an infinite-dimensional
generalization of Schur’s Lemma (p. 73).) Now suppose that C and C 0 are
charge-reversal operators. Then C 0C�1 satisfies the conditions above, and hence
must be a multiple of the identity. It follows that C 0 = ↵C, where ↵ is a complex
number with |↵| = 1. Thus, having found one charge-reversal operator on our
Hilbert space H, we have found them all.

We begin with HRKG. In this case, the only positive-frequency or negative-
frequency solution is the zero solution. (That is to say, HRKG describes parti-
cles which are identical with their antiparticles.) Hence, Condition 3 is empty.
Therefore, the identity is a possible charge-reversal operator. We conclude that
the most general charge-reversal operator on HRKG is ↵I, with |↵| = 1.

For HCKG, one charge-reversal operator is given by

�(x) ! �̄(x) (476)

or, in momentum space, by
�(k) ! �̄(�k) (477)

That this operator is unitary rather than antiunitary follows from our complex
vector-space structure on HCKG (see Sect. 12). Thus, the most general charge-
reversal operator on HCKG is given by

�(x) ! ↵�̄(x) (478)

with |↵| = 1.
The most general charge-reversal operator on HM is ↵I, with |↵| = 1.
The most general charge-reversal operator on HD is

(⇠A, ⌘A0) ! ↵(⌘̄A, ⇠̄A0) (479)

with |↵| = 1.



32. Parity and Time Reversal

The basic idea of the remaining two discrete symmetries — parity and time
reversal — is essentially the same as that for charge reversal. One is concerned
primarily with finding operators which commute with the S-matrix, and op-
erators which can be interpreted as representing parity and time reversal are
particularly good candidates.

We begin with some remarks concerning the Poincaré group. Recall that the
restricted Poincaré group, RP, is a connected, 10-dimensional Lie group. This
RP is a normal subgroup of another 10-dimensional Lie group, the full Poincaré
group P. However, P is not connected; it has four connected components.
These components consist of Poincaré transformations which reverse neither
time nor space orientation (RP), time but not space orientation, space but
not time orientation, and both time and space orientation. The quotient group,
P/RP, is isomorphic with the group Z

2

⇥ Z
2

. (Z
2

is the additive group of
integers mod 2.)

The situation is slightly di↵erent for the boson and fermion cases. We begin
with the boson case. Let H be one of the Hilbert spaces HRKG, HCKG, or HM .
Then, as we have seen (Sect. 16), H defines a representation of RP. That is to
say, with each P 2 RP there is associated a unitary operator UP on H, where
these UP ’s satisfy:

UPUP 0 = UPP 0

Ue = I
(480)

The problem of obtaining parity-reversal and time-reversal operators can be
stated as follows: we wish to extend this representation from RP to P. That
is to say, we wish to find, for each P 2 P, a (unitary or antiunitary) operator
UP , subject to (480) and to the condition that, for P 2 RP, this representation
reduces to the given representation (Sect. 16) of it RP. It is necessary to admit
both unitary and antiunitary operators for, as we shall see shortly, it is otherwise
impossible to find any extension of our original representation of RP.

There is an important di↵erence between charge reversal on the one hand and
parity and time reversal on the other. In the case of charge reversal, one settles
eventually on a single unitary charge-reversal operator C. There is, however, no
one natural “parity-reversal operator P” or “time-reversal operator T”. There
is, instead, a 10-dimensional manifold’s worth of such operators, namely, the
operators associated with the appropriate component of the Poincaré group.
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Suppose now that we have a representation of P as described above. Let
P and Q be in the same component of P, so PQ 2 RP. Now UPUQ = UPQ.
But, since PQ 2 RP, UPQ is unitary rather than antiunitary. We conclude
that either both UP and UQ are unitary, or else both are antiunitary. (The
product of two unitary operators, or two antiunitary operators, is unitary; the
product of a unitary and an antiunitary operator is antiunitary.) We conclude
that all the operators associated with the Poincaré transformations in a given
component of P are the same (all unitary or all antiunitary.)

In fact, it follows from an argument similar to that used for charge-reversal
that UP is antiunitary if and only if the Poincaré transformation P reverses time.
From the remarks above, it su�ces to show that, for some P which reverses
parity but not time, UP is unitary, and that, for some P which reverses time
but not parity, UP is antiunitary. Let ra be a constant, unit, future-directed
timelike vector field, and consider the energy operator E given by (471). All
expectation values of E are non-negative. Fix an origin O, and let ta be a unit,
future-directed timelike vector at O. Let P denote the Poincaré transformation
which sends

xa ! xa + 2ta(xbtb) (481)

where xa is the position vector relative to O. Evidently, this P reverses time
orientation but not space orientation. From the commutativity properties of the
Poincaré group,

U�1

P EUP =

✓
U�1

P

i

~UP

◆
r0

a
La (482)

where

r0
a
= ra + 2ta(rbtb) (483)

Since r0a is a past-directed timelike vector, the positivity of E implies, evidently,
that UP must be antiunitary. Similarly, let Q be the Poincaré transformation

xa ! �xa � 2ta(xbtb) (484)

So Q reverses spatial orientation but not time orientation. Then

U�1

Q EUQ =

✓
U�1

Q

i

~UQ

◆
r0

a
La (485)

where

r0
a
= �ra � 2ta(rbtb) (486)

Clearly, in this case r0a is a future-directed timelike vector, hence UQ must be
unitary.

We next consider uniqueness. Let UP and U 0
P be two extensions of our repre-

sentation of RP, so UP = U 0
P for P 2 RP. Let Q be a Poincaré transformation

which reverses, say, temporal orientation but not spatial orientation. Consider
the unitary operator

A = U 0
QU

�1

Q (487)
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We first how that this A depends only on the component of P in which Q lies.
Let W be another Poincare transformation which lies in the same component of
P as Q. Then W = QR for some R 2 RP. Hence,

U 0
WU�1

W = U 0
QRU

�1

QR = (U 0
QU

0
R)(U

�1

R U�1

Q ) = U 0
QU

�1

Q (488)

where we have used the fact that UR = U 0
R. We next show that, for P 2 RP,

UP commutes with A. Indeed, since PQ = QV for some V 2 RP, we have

UPAU
�1

P = UPU
0
QU

�1

Q U�1

P = U 0
PQU

�1

PQ

= U 0
QV U

�1

QV = (U 0
QUV )(U

�1

V U�1

Q ) = U 0
QU

�1

Q = A (489)

These properties do not yet su�ce, however, to show that A is a multiple of the
identity (see p. 132). We must impose an additional condition which ensures
that A does not mix up particles and antiparticles. However, it is reasonable,
on physical grounds, to make the following additional assumption: UP reverses
the roles of particles and antiparticles if and only if P reverses time directions.
Under this assumption, A must be a multiple of the identity, whence UQ = ↵U 0

Q,
where ↵ is some complex number (the same for every on Poincaré transformation
in the same component as Q). However, since QQ 2 RP, we have

U 0
QU

0
Q = U 0

QQ = UQQ = UQUQ (490)

whence ↵ = ±1.
To summarize, we are interested in extending a given representation from

RP to P in such a way that UP reverses the role of particles and antiparticles
when and only when P reverses temporal orientation. Every such extension has
the property that UP is antiunitary when and only when P reverses temporal
orientation. The extension of the representation is unique except for the follow-
ing possibilities: a�x a minus sign to UP whenever P reverses spatial parity,
a�x a minus sign to UP whenever reverses temporal orientation, or a�x a minus
sign to UP whenever P reverses spatial or temporal orientation, but not both.
Thus, from one extension of the representation, it is easy to write down them
all.

Finally, we write down a representation of P for each of our Hilbert spaces
HRKG, HCKG, and HM . Let P be a Poincaré transformation, and write Px for
the point of Minkowski space to which P sends the point x. For the real and
complex Klein-Gordon cases, the action of UP on an element �(x) of our Hilbert
space is as follows:

�(x) ! �(Px) (491)

This action clearly defines a representation of P. For the Maxwell case, note
that P is a smooth mapping from Minkowski space to Minkowski space, and
hence P sends any vector field on Minkowski space to another vector field. This
action defines UP on HM . For example, the two Poincaré transformations (481)
and (484) have the following actions on the vector potential Aa(x):

Aa(x) ! Aa(Px) + 2ta(t
bAb(Px))

Aa(x) ! �Aa(Qx)� 2ta(t
bAb(Qx))

(492)
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The situation with regard to HD di↵ers in some important respects from that
above. The fundamental di↵erence is that HD does not define a representation
of RP. Instead, the operative group is what is usually called “inhomogeneous
SL(2,C)”: the (double) covering group of RP. (SL(2,C) is the (double) cov-
ering group of the restricted Lorentz group.) We shall denote this connected,
10-dimensional Lie group by RS . If RS is to replace RP, what group should
replace P? One could, in fact, introduce such a group, and attempt to extend
to it our representation of RS . It is simpler, however, to proceed in a slightly
di↵erent way.

Let P 2 RP. Associated with P there are precisely two elements of RS .
The corresponding pair of unitary operators on HD di↵er only in sign. Thus, we
can regard HD as a double-valued representation of RP: with each P 2 RP,
there is associated two unitary operators on HD, these operators di↵ering only
in sign. These operators satisfy (480), modulo sign. The question in the fermion
case is therefore the following: Can this double-valued representation of RP be
extended to a double-valued representation of P? The argument given earlier
shows that the operators associated with P 2 P are antiunitary if and only if P
reverses time-orientation. The uniqueness situation is essentially the same, by
the same argument.

There remains, therefore, only the task of specifying what the operators are
for P /2 RP. Since the (double-valued) action of RP on HD is known, we
need only specify UP for one time-reversing P and one parity-reversing P . The
action is as follows. For the Poincaré transformation (481),

(⇠A(x), ⌘A0(x)) ! ± ip
2
(tAA0

⌘A0(Px), tAA0⇠A(Px)) (493)

and for the Poincaré transformation (484),

(⇠A(x), ⌘A0(x)) ! ± 1p
2
(tAA0

⌘A0(Qx), tAA0⇠A(Qx)) (494)



33. Extending Operators to
Tensor Products and
Direct Sums

We have now introduced a large number of operators — some on the one-particle
Hilbert spaces and some of the Fock spacs. In order that such operators can be
discussed relative to the S-matrix, however, their action must be defined on the
non-interacting Hilbert space H . Since H arises from two constructions — the
tensor product and direct sum of Hilbert spaces — we are led to the problem of
extending the action of operators through these two constructions.

We begin with the direct sum. Let H
1

, H
2

, . . . be a sequence of Hilbert
spaces. Then the direct sum of this sequence, H = H

1

� H
2

� H
3

� . . . is the
Hilbert space consisting of sequences

� = (�
1

,�
2

,�
3

, . . .) (495)

with �i 2 Hi for which the sum

k�k2 = k�
1

k2 + k�
2

k2 + · · · (496)

which defines the norm, converges. Now let O
1

, O
2

, . . . be a sequence of operators
(Oi onHi) which are either all linear or all antilinear. We then define an operator
O on H as follows:

O� = (O
1

�
1

, O
2

�
2

, O
3

�
3

, . . .) (497)

Clearly, O is linear (resp., antilinear) provided the Oi are linear (resp., antilin-
ear.) Note, furthermore, that if all the Oi are norm-preserving, so is O; if all
the Oi are Hermitian, so is O; if all the Oi are projection operators, so is O. Of
course, not every operator on H can be expressed in the form (497).

The tensor product is next. Let H↵, H� , . . . , H� be a finite sequence of
Hilbert spaces. Then the tensor product of this sequence, H = H↵⌦H� ⌦ · · ·⌦
H� is the Hilbert space obtained as the completion of the inner-product space
consisting of all formal expressions of the form:

⇠↵�···� = �↵⌧� · · ·µ� + · · ·+ �↵⇢� · · · ⌫� (498)
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(The index indicates the Hilbert space to which a vector belongs.) Now let
O↵0

↵, O�0
� , . . . , O�0

� be a sequence of linear operators on H↵, H� , . . . , H�, re-
spectively. We then can define an operator O on H by:

O(⇠↵�···�) = (O↵0
↵�

↵)(O�0
�⌧

�) · · · (O�0
�µ
�) + · · ·

+ (O↵0
↵�

↵)(O�0
�⇢
�) · · · (O�0

�⌫
�) (499)

If all the O’s are unitary, so is O; if all the O’s are Hermitian, so is O; if all the
O’s are projection operators, so is O. Now suppose that the given O-operators
are antilinear rather than linear. We thus have linear mappings from H̄↵ to H↵,
from H̄� to H� , etc. Thus, in the index notation, the O’s would be written

O↵0↵, O�0� , . . . , O�0�. In this case, we define the corresponding operator O on H
by

O(⇠↵�···�) = (O↵0↵�̄↵)(O
�0� ⌧̄�) · · · (O�0�µ̄�) + · · ·

+ (O↵0↵�̄↵)(O
�0� ⇢̄�) · · · (O�0� ⌫̄�) (500)

If the O’s are anti-unitary, so is O.
We next consider the application of these constructions to obtaining oper-

ators on H . Recall that the non-interacting Hilbert space H is the tensor
product of certain Fock spaces based on one-particle Hilbert spaces, e.g.,

H = F (HD)⌦ F (HM )⌦ F (HCKG) (501)

where F denotes the operation of taking the (symmetric or antisymmetric, as
appropriate) Fock space.

Consider first the unitary or antiunitary operators UP (P 2 P) which arise
from the Poincaré group. These operators are defined originally on the one-
particle Hilbert spaces. Their action is first extended to the many-particle
Hilbert spaces via (499) or (500), and then to the Fock spaces via (497). Fi-
nally, these operators are defined on H via (499) or (500). Thus, we obtain
a representation of the Poincaré group P on H . For P 2 P, we write the
corresponding operator on H as UP . (No confusion will result from this du-
plicity of notation.) Note that all the operators UP on H are norm-preserving,
and that UP is antilinear if and only if P reverses time orientation, linear oth-
erwise. The energy, momentum, and angular momentum operators on H are
obtained by considering the UP ’s which di↵er infinitesimally from the identity
(see Eqn. (222).) Similarly, the charge-reversal operator C is defined, first, on
the one-particle Hilbert spaces, and then extended successively to the many-
particle spaces, to the Fock spaces, and finally to H . The resulting operator on
H is again denoted by C.

Another operator of interest is the total charge operator, Q. On our real
Hilbert spaces (which represent neutral particles), HRKG and HM , Q = 0. On
the complex Hilbert spaces, HCKG and HD, Q takes one of the two forms

Q = eP� � eP+ (502)
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Q = eP+ � eP� (503)

where P+ and P� are the projection operators onto positive-frequency and
negative-frequency parts, respectively. The choice between (502) or (503) is
based essentially on convention. One uses (502) when the “particles” (positive-
frequency solutions) have negative charge, and (503) when they have positive
charge. (For example, one could perfectly well dictate that the positron is the
“particle”, and the electron the antiparticle. It is conventional, however, to make
the assignments the other way. This choice his no physical consequences.) Note
that, in every case, Q is Hermitian. We extend Q from the one-particle to the
many-particle Hilbert spaces via (499), to the Fock spaces via (497), and to H
via (499). The result is a Hermitian charge operator, Q, on H .

Finally, we consider the creation, annihilation, and field operators. These
operators, in distinction to the others defined above, are first defined on the Fock
spaces rather on the one-particle Hilbert spaces. Suppose, for example, that H
is given by (501), and we are considering the field operator �(f) on F (HCKG).
Now consider the following triple of operators: I (the identity) on F (HD), I on
F (HM ), and �(f) on F (HCKG). This triple defines, via the construction (499),
an operator on H . In this way, the creation, annihilation, and field operators
are extended from a single Fock space to H . The resulting operators on H
will, as usual, be denoted by the same symbols as the corresponding operators
on the single Fock spaces.

All of the commutators and other relations between these various operators
on H are simple to evaluate. We give a few examples. The operators associated
with the Poincaré group satisfy, of course,

UPUP 0 = UPP 0 (504)

The UP ’s leave invariant the charge of an element of H if P does not reverse
the orientation, and reverse that sign if P does reverse time orientation. Hence,
we have

UPQU�1

P = ±Q (505)

with the plus sign if P does not reverse time orientation, the minus sign other-
wise. Of course, charge-reversal reverses the sign of charge:

CQC�1 = �Q (506)

The commutators between the field operators (and the creation and annihilation
operators) within one Fock space are the same for H as for the original Fock
space. That is, for example, we have

⇥
�(f),�⇤(g)

⇤
=

~
2i
D(f, g)I (507)

on H . Similarly, the adjoint relations between these operators are unchanged
in the passage to H . Field operators (as well as creation and annihilation
operators) which act on di↵erent Fock spaces commute. For example,

⇥
�(f), A(fa)

⇤
= 0 (508)
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Finally, we consider the relationship between the field operators and C, Q, and
UP . Once again, everything is straightforward, so a single example will su�ce.
Consider HCKG, so

�(f) = ~C(��(f)) + ~A(�+(f))

�⇤(f) = ~A(��(f)) + ~C(�+(f))
(509)

Let P be a restricted Poincaré transformation. Then, from (497), (499), (100),
and (101),

UP�(f)U
�1

P = ~C(UP�
�(f) + ~A(UP�+(f)) (510)

Similarly, if C is a particle-reversal operator, then

C�(f)C�1 = ~C(C��(f)) + ~A(C�+(f))

= ~C(�+(f)) + ~A(��(f)) = �⇤(f)
(511)

For the charge operator Q, we note that �(f) creates an antiparticle (say, with
positive charge) and annihilates a particle. Hence, the total change in the charge
e↵ected by �(f) is just �e times the norm of ��(f) plus �e times the norm of
�+(f). Thus,

[Q,�(f)] = �e
�
k�+(f)k+ k��(f)k

�
I (512)

Clearly, the list of operators in this subject is almost infinite. Roughly speaking,
any two operators in this list have a relationship which is simple, straightforward
to derive, and easy to interpret physically.



34. Electromagnetic
Interactions

In Sect. 29 (see Eqn. (455)) we wrote down an expression for the S-matrix in
terms of an (unknown) operator field K(x) on Minkowski space. Of course,
this formula gives practically no information about the scattering unless one
knows K(x). One imagines that the actual K(x) which describes physical pro-
cesses in the real world can be written as the sum a certain number of terms
(e.g., the electron-photon interaction, the nucleon-photon interaction, the ⇡-
meson-photon interaction (electromagnetic interactions), the ⇡-meson-nucleon
interaction (strong interactions), the electron-neutrino interaction, the ⇡-meson-
neutrino interaction (weak interactions), etc.) There are at least some exper-
imental situations in which one single term dominates all the others. One at-
tempts to obtain an expression for this term using physical arguments and trial
and error. That is to say, one makes a reasonable guess for the term in K(x), and
compares the theoretical consequences of that guess (via (455)) with experiment.
The hope is that one can, in this way, isolate and study each term, and then,
by adding the well-established terms, obtain a reasonable approximation to the
“actual” K(x) which is operative in Nature. We shall here merely illustrate the
general idea by writing down and discussing a few of the K(x)’s associated with
the interaction of charged particles with the electromagnetic field.

We begin with the simplest case: the interaction of a complex Klein-Gordon
field with the Maxwell field, e.g., the interaction of ⇡±-mesons with photons. In
this case, we would take for our non-interacting Hilbert space

H = F (HCKG)⌦ F (HM ) (513)

What should we choose for the operator field K(x) on H ? In this case, we
have an important physical clue: we know what the classical “interaction energy
density” is between a classical Klein-Gordon field and a classical Maxwell field,
namely

K(x) =
ie

2~
�
�(x)ra�̄(x)� �̄(x)ra�(x)

�
Aa(x) (514)

(Note that it is only an integral of (514) which has meaning, for we have the free-
dom to add a gradient to the vector potential. Appropriate integrals are gauge-
invariant, however, because the first integral is, as we have seen, divergence-free.)
In (514), e is a constant. Using the discussion of Sect. 30, and the fact that K(x)
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has dimensions of energy density (mt�3), we see that the coupling constant e has
dimensions m1/2t1/2, whence e2/~ is dimensionless. In order to obtain eventual
agreement with experiment, it will, of course, be necessary to set this constant
to 1/137.

While (514) is a perfectly nice scalar field (on Minkowski space) constructed
out of a complex Klein-Gordon field and a Maxwell field, it is, unfortunately, just
that — a scalar field rather than an operator field. The expression (514) is just
not the right sort of mathematical object to be K(x). Now comes the “transition
from classical to quantum theory.” Roughly speaking, what we propose to do
is to replace the classical fields in K(x) (Eqn. (514)) by the corresponding field
operators to obtain K(x). Unfortunately, this replacement is not so simple and
unambiguous as it may appear at first sight.

By what operator should we replace �(x)? Our Klein-Gordon field operator,
�(f), depends on test fields in Minkowski space, and not on points of Minkowski
space. What one would like to do is define an operator field �(x) by

�(x) = lim
f!�

x

phi(f) (515)

where �x denotes a �-function located at the point x. But will the limit in (515)
exist? The answer, as we have seen earlier, is no. We could still regard �(x)
as an operator-valued distribution (i.e., a linear mapping from test functions
to operators on H — that, after all, is what �(f) is), but such an attitude
again leads to di�culties. Eqn. (514) will require us to take products of such
operator-valued distributions, but the ability to take products is precisely what
is lost in the transition from functions to distributions. That is to say, products
of distributions are not in general well-defined. (This is a genuine and serious
problem — not to be confused, for example with the standard complaints about
use of the Dirac �-function.) In short, we are stuck. There is no meaning which
can be given to (515) which would be appropriate for replacement in (514).

We adopt the following attitude. We leave the problem of the nonexistence
of limits such as (515) unresolved for the time being. We permit ourselves to
manipulate such quantities formally, as though the question of the limits had
never arisen. This marks the third (and, mercifully, the last) of the mathematical
problems associated with this formalism. For emphasis, we list these problems
again:

1. The question of the convergence of the infinite sun of operators in (455).

2. The question of the convergence of the integrals (over all of Minkowski
space) of operators in (455).

3. The nonexistence of the “�-function limits” of field operators used in ob-
taining K(x).

The situation will look less gloomy shortly. (I find it hard to believe that the
“ultimate”, mathematically acceptable, quantum field theory will result from a
brute-force attack on these problems.)
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We now have �(x) to replace �(x). Naturally, we replace the classical
complex-conjugate field, �̄(x), by the adjoint operator, �⇤(x). What about the
derivative terms? Let pa be a vector at the point x, and extend pa to a constant
vector field on Minkowski space. We then define

para�(x) = � lim
f!�

x

�(paraf) (516)

(See Eqn. (145).) Similar remarks concerning non-existence of limits apply.
We must next select an operator to replace the vector potential, Aa(x), in

(514). Ideally, one would like to define ulAa(x) by

paAa(x) = lim
f!�

x

A(paf) (517)

where pa is a constant vector field, and A( ) is the field operator (Sect. 14) for
the vector potential. Unfortunately, this won’t work, for A(fa) is only defined
for test fields fa which can be written as the sum of a divergence-free field and
a gradient; paf cannot be written in this form in general. The simplest way of
overcoming this di�culty is as follows. First note that the commutator of the
vector potential operators ((385) and (386)) is well-defined whether or not the
test fields, fa and ga, can be written as the sum of a divergence-free field and
a gradient. In fact, it is only these commutators which will enter the S-matrix.
Hence, we can work with vector potential operators, Aa(x), and use for the
commutators (385).

We now have an operator equivalent for each term in (514). We must now face
the next problem: in what order should the operators be placed? This di�culty
does not arise, of course, in the classical theory, because the classical fields may
be placed in any order. We consider the most general linear combination:

K(x) =
ie

2~
�
a�ra�

⇤ + b(ra�
⇤)�+ c�⇤ra�+ d(ra�)�

⇤�Aa (518)

where a, b, c, and d are real numbers. Taking the Hermitian conjugate of (518),

K(x) = � ie

2~
�
a(ra�)�

⇤ + b�⇤ra�+ c(ra�
⇤)�+ d�(ra�

⇤)
�
Aa (519)

We see that the Hermiticity of (518) requires

a = �d b = �c (520)

Further information about the coe�cients is obtained from the experimental
fact that electromagnetic interactions are invariant under charge reversal. From
(518):

CK(x)C�1 =
ie

2~
�
a�⇤ra�+ b(ra�)�

⇤ + c�ra�
⇤ + d(ra�

⇤)�
�
Aa (521)

Thus, invariance under charge reversal requires one of the following two alter-
natives:

a = c b = d CAaC�1 = Aa (522)

a = �c b = �d CAaC�1 = �Aa (523)
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We choose (523) for two reasons: (i) it is more reasonable on physical grounds
to have the vector potential reverse sign under charge reversal (for classical
electromagnetic fields reverse sign when the signs of all charges are reversed),
and (ii) with this choice, K(x) reduces, in the classical limit, to the classical
expression (514). Thus, we arrive at the interaction:

K(x) =
ie

4~
�
�ra�

⇤ + (ra�
⇤)�� �⇤ra�� (ra�)�

⇤�Aa (524)

Eqn. (524) describes an interaction which is invariant under charge reversal.
Note, furthermore, that if P is any Poincaré transformation, then

UPK(x)U�1

P = K(Px) (525)

Since K(x) is integrated over all of Minkowski space (Eqn. (455)), the final S-
matrix will commute with each UP . Thus, our interaction conserves the quan-
tities associated with the infinitesimal generators of energy, momentum, and
angular momentum. The interaction is also invariant under parity and time
reversal. Note, furthermore, that we have

[K(x),K(y)] = 0 (526)

for x � y spacelike, for when x � y is spacelike, any two operators in (524)
commute with each other. Finally, the total charge operator, Q, commutes with
K(x), for Aa(x) commutes with Q, �(x) decreases the total charge by 2e, while
�⇤(x) increases it by 2e.

To summarize, (524) is an interaction which is invariant under parity, time,
and charge reversal, and conserves charge, energy, momentum, and angular mo-
mentum.

As a second example, we discuss the interaction of photons with electrons
and positrons. As before, we begin with the classic interaction energy density:

K(x) = e
⇣
⇠A⇠̄A

0
+ ⌘A

0
⌘̄A

⌘
AAA0 (527)

The classical Dirac fields are to be replaced by the following operators:

pA⇠
A(x) = lim

f!�
x

1

2

⇥
 (fpA, f p̄A0)� i (ifpA,�if p̄A0)

⇤

p̄A
0
⌘
A0(x) = lim

f!�
x

1

2

⇥
 (fpA, f p̄A0) + i (ifpA,�if p̄A0)

⇤ (528)

where pA is a constant spinor field. Note that e in (527) again has dimensions
m1/2t1/2. The classical complex-conjugate fields, ⇠̄A

0
and ⌘̄A, are to be replaced

by the Hermitian conjugates, ⇠⇤A
0
and ⌘⇤

A
, respectively. In this case, the problem

of factor ordering is not resolved by the requirement that K(x) be Hermitian:
this condition is satisfied for any factor ordering. However, this electromagnetic
interaction should be invariant under charge reversal. We have

C⇠AC�1 = ⌘⇤A

C⌘
A0C

�1 = ⇠⇤
A0

(529)
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What should we adopt for the behavior of the vector potential operator, Aa(x),
under charge reversal? We have already decided, for the meson-photon interac-
tion, to use

CAaC
�1 = �Aa (530)

It is an important point that we must choose the same behavior for the present
interaction. The reason is that, for the “actual” interaction which Nature obeys,
K(x) will be the sum of the various interactions. If we use a di↵erent charge-
reversal operator for each term which appears in this sum, then we will have no
operator which commutes with the total K(x). In other words, the behavior of
each type of particle under the various reversals must be fixed once and for all.
One has, of course, freedom to choose that behavior, and this choice is based
on obtaining operators which commute with as many terms in the “final” K(x)
possible. Thus, using (529) and (530), we are led to adopt the expression

K(x) =
1

2
e
⇣
⇠A⇠⇤A

0
� ⇠⇤A

0
⇠A + ⌘A

0
⌘⇤A � ⌘⇤A⌘A

0
⌘
AAA0 (531)

for the interaction.
Note that (530) is Hermitian, and that the resulting S-matrix commutes

with the unitary operators which arise from the Poincaré group. Thus, (530)
conserves energy, momentum, and angular momentum. By the same argument
as before, K(x) commutes with the total charge operator Q. Finally, we note
that, if x� y is spacelike,

[K(x),K(y)] = 0 (532)

This arises from the following facts: when x � y is spacelike, any two boson
operators commute, while any two fermion operators anticommute. But K(x)
contains an even number of fermion operators. Since reversing the order of
two boson operators gives a plus sign, and reversing the order of two fermion
operators gives a minus sign, the total number of minus signs will be even, and
so we have (532).

Clearly a vast number of conceivable interactions could be written down
using the pattern illustrated above. One first writes down a real scalar field
constructed from the classical fields. One then replaces the classical fields by
the corresponding operators. The factors must be ordered so that the resulting
operator is Hermitian, and satisfies (532). Beyond that, the choice of factor
ordering must be based on physical or aesthetic considerations, experiment, etc.
We have merely discussed two possible interactions here in order to illustrate
the method. (In fact, these are the two simplest, for one can rely heavily on
classical theory as a guide.)
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35. Transition Amplitudes

Suppose now that we have selected a particular K(x), and wish to work out
its experimental consequences, using (455). The straightforward procedure —
substituting K(x) into (455), and attempting to carry out the integrals and sum
— turns out to be too di�cult to carry out in practice. Instead, one adopts
a more indirect approach — which leads ultimately to the Feynman rules. We
shall not attempt to derive the Feynman rules, or even discuss the large volume
of technical apparatus which has been developed to deal with (455). Instead, we
merely indicate the general idea of the method.

Suppose first that we were able, in some way, to obtain the value of the
complex number

(⌧, S�) (533)

for any two states �, ⌧ 2 H . (The expression (533) is called the transition
amplitude between the state � and the state ⌧ .) This information is, of course,
completely equivalent to a knowledge of the S-matrix. In fact, it su�ces to know
(533) only for �’s and ⌧ ’s drawn from a certain subspace of H , provided this sub-
space is dense in H . Let �

0

denote the vacuum state in H and C
1

, C
2

, . . . , Cn

any finite sequence of creation operators on H . (One Ci might create a photon,
another an electron, others mesons, etc.) We consider the state (element of H )

C
1

C
2

· · ·Cn�0 (534)

Clearly, the collection of all finite linear combinations of states of the form (534)
is dense in H . Hence, it su�ces to evaluate

(C
1

· · ·Cn�0, SC
0
1

· · ·C 0
m�0) = (C

1

· · ·Cn�0, C
0
1

· · ·C 0
m�0)

+

✓
� i

~

◆Z
dV

1

(C
1

· · ·Cn�0,K(x
1

)C 0
1

· · ·C 0
m�0)

+
1

2!

✓
� i

~

◆
2

Z
dV

1

Z
dV

2

(C
1

· · ·Cn�0, T [K(x
1

),K(x
2

)]C 0
1

· · ·C 0
m�0)

+ · · · (535)

for any C
1

, . . . , Cn, C 0
1

, . . . , C 0
m. One now attempts to evaluate the various terms

in the sum (535) individually. The first term is celled the 0th-order interaction.
It clearly vanishes unless n = m, and the C’s and C 0’s create the same number
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of photons, the same number of electrons, etc. The second term is called the
first-order interaction, etc. These orders correspond to the various orders of the
Feynman diagrams.

The next step is based on the following observation. The operator K(x)
is expressed in terms of the field operators, and can, therefore, be written in
terms of creation and annihilation operators. Thus, each inner product in (535)
is equal to the vacuum expectation value of some product of creation and an-
nihilation operators. But we have seen (p. 112) that such expectation values
can be reduced to products of the propagators. (One pushes the annihilation
operators to the the right, using the commutators, until they reach �

0

, and
there give zero.) Thus, each term in (535) can be written as an integral of a
product of operators. The Feynman rules represent a technique for writing out
such integrals directly without going through the algebra (p. 112). Since K(x)
was expressed in terms of the “unsmeared” field operators, the propagators will
be distributions. Thus, the evaluation of the S-matrix reduces to integrating
certain products of distributions over Minkowski space. Of course, the integrals
diverge. These are the divergences.

We illustrate these remarks with one example. Consider the second-order
interaction with K(x) given by (531). Now, K(x) contains two lepton operators
and one photon operator. Thus, the transition probability will vanish (in the
second order) unless the number of outgoing leptons di↵ers by no more than
four from the number of ingoing leptons, and the number of outgoing photons
di↵ers by no more than two from the number of ingoing photons. Clearly,
the higher the order of the interaction, the more possibilities for creating and
annihilating particles. Because of the smallness of the coupling constant in this
electromagnetic interaction, e2/~ = 1/137, many experiments are adequately
described by the first few orders.

“Would it not be better to get something done, even though one
might not quite understand what?”

– J. L. Synge



About the author

Robert Geroch is a theoretical
physicist and professor at the Univer-
sity of Chicago. He obtained his Ph.D.
degree from Princeton University in
1967 under the supervision of John
Archibald Wheeler. His main research
interests lie in mathematical physics
and general relativity.

Geroch’s approach to teaching the-
oretical physics masterfully intertwines
the explanations of physical phenom-
ena and the mathematical structures
used for their description in such a way
that both reinforce each other to fa-
cilitate the understanding of even the
most abstract and subtle issues. He
has been also investing great e↵ort
in teaching physics and mathematical
physics to non-science students.

Robert Geroch with his dog Rusty


	The Klein-Gordon Equation 
	Hilbert Space and Operators 
	Positive-Frequency Solutions of the Klein-Gordon Equation 
	Constructing Hilbert Spaces and Operators 
	Hilbert Space and Operators for the Klein-Gordon Equation 
	The Direct Sum of Hilbert Spaces 
	The Completion of an Inner-Product Space 
	The Complex-Conjugate Space of a Hilbert Space 
	The Tensor Product of Hilbert Spaces 
	Fock Space: The Symmetric Case 
	Fock Space: The Anti-Symmetric Case 
	Klein-Gordon Fields as Operators 
	The Hilbert Space of Solutions of Maxwell's Equations 
	Maxwell Fields as Operators 
	The Poincaré Group 
	Representations of the Poincaré Group 
	Casimir Operators: Spin and Mass 
	Spinors 
	The Dirac Equation 
	The Neutrino Equation 
	Complex Klein-Gordon Fields 
	Positive Energy 
	Fields as Operators: Propagators 
	Spin and Statistics 
	-Algebras 
	Scattering: The S-Matrix 
	The Hilbert Space of Interacting States 
	Calculating the S-Matrix: An Example 
	The Formula for the S-Matrix 
	Dimensions 
	Charge Reversal 
	Parity and Time Reversal 
	99993em.5Extending Operators to Tensor Products and Direct Sums 
	Electromagnetic Interactions 
	Transition Amplitudes 
	About the Author

