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1 Introduction

2 General Issues

Consider a simple physical system. That is, let there be given a set X, the
configuration space, and a real, nonnegative measure N, v on X. (Here, N is
the collection of measurable subsets of X with finite measure, and N' = R*
gives the value of the measure). Then L?(X,v), the collection of square-
integrable, complex-valued functions on X, is a Hilbert space. Further, let
there be given a family, U;, of bounded operators on this Hilbert space, la-
beled by the number ¢ > 0. We require that this family satisfy! the following
property: For any ¢,t' > 0, we have U; o Uy = Uy .

Fix a positive number 7' (the "total elapsed time”). It is convenient to
introduce a special notation for certain matrix elements of certain operators.
Let s be any positive integer, t = (to, - -, ts) any (s+1)-tuple of real numbers
with0 =ty <t; <---<ts=T,and A = (Ao, -, As) any (s + 1)-tuple of
measurable subsets of X with Ay and A, each having finite measure. Thus,
t is a partition of the interval [0, 7], and A assigns a measurable set to each
point of the partition. Given these things, set

U(t7 A) =< XAO’UtI*tOQAIUtQ*tlQAQ T Uts*ts—1‘XAs >, (1>

where x4 denotes the characteristic function of the set A C X, and Q4
denotes the configuration operator of A (i.e., the operator that multiplies

'In most examples, these U; will also be unitary, but this property will not be needed
in what follows.



a wave function by x4). Note that the conditions we have imposed on
t, A are precisely what are needed in order that the right side of 1 make
sense. This o has the following properties. i) Let t’, A’ result from t and
A = (Ag, -+, X, -+, A,) by omitting one entry of 7 X” from A, and also the
corresponding entry from t. Then o(t’, A’) = o(t, A). [This follows from the
fact that Qx =identity.] ii) Fix partition t, and let A, A’, A” be identical
except for one slot, in which the entries of A and A’ are disjoint and that of
A" is their union. Then o(t, A”) = o(t, A)+o(t, A’). [This follows from the
fact that, Q4 + Qs = Qaup whenever AN B = ()] iii) We have the bound
o (t, A)| < [V(Ao)v (AU —to| -+ U=t |-

Here are three examples.

For the first, let all the operators U; be the identity operator. Then
o(t,A) =v(4ogN---NA).

For the second example, let X = R" and v ordinary Lebesque measure,
and let the operators U; be the evolution operators for the heat equation.
Then, using the Green’s function for the heat equation, we have

o(t, A) = [(2mR)*(t — to) -+~ (ts — to1)] "2 (2)

exp—{(z1—20)*/(ti—to)+ - -+ (xs—m5_1)?/(ts—ts_1})/2K]

(3)
Ay - - - vy, (4)

where k£ > 0 is the thermal conductivity. Note that the integral on the right,
taken over a certain subset of X x --- x X (s 4 1 times), always converges.

For the third example, again let X = R" and v Lebesque measure. But
now let the operators U; be the evolution operators for the Schroodinger
equation for a free, mass-m, particle. Then, using the Green’s function for
the Schroodinger equation, we have

/($07~~~,$S)EA0><~~~><AS

o(t, A) = [(2inh/m)*(tr —to) -~ (ts — to1)] "2 (5)

explim{(x1—x0)?/(ty—to)+- - A+ (xs—5_1)*/(ts—ts_1)}/2R)

(6)
AVyy -+ - AUy, . (7)

Now, however, the right side cannot be regarded as an integral over a certain
subset of X x---x X (s+1 times), for this integral fails to converge in general.

~/(I0,---,CC5)€A()><---><A5
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[To see this, recall that an integral converges if and only if it converges with
the integrand replaced by its absolute value. But here this absolute value is
1.] Instead, the right side must be interpreted as an iterated integral, i.e.,
on that is to be carried out over the individual variables, zg, - - -, z,, one at a
time and in a certain specified order. The correct order in this case is: first
o and x4, then x; and x,_1, etc. Done in this way, convergence at each step
is guaranteed, and so the right side makes sense. It is this "right side”, so
defined, that yields o(t, A).

We now turn to spaces of paths. Denote by €2 the collection of all paths,
[0,7] - X, in X, parameterized by time ¢ in the interval [0,7]. Note that
we are including in 2 all paths, even, e.g., those that are discontinuous.
For any t, A as above, write {}; o for the collection of all such paths « with
v(to) € Ao, -+, 7(ts) € As. Note that membership in {2 o restricts the path
only at the times determined by the partition t. We call these subsets {2 o
of ) regular subsets. Note that any finite intersection of regular subsets is
another, and that any difference or finite union of regular subsets can be
written as a finite union of disjoint regular subsets. Now denote by M the
collection of all finite unions of regular subsets of . Let M £ C assign,
to each regular subset Q¢ a, the number o(t, A); and to each finite union
of disjoint regular subsets the sum of these corresponding numbers (noting
that these rules define u, unambiguously, on all sets in M.) The resulting
M, 11 is a premeasure space (in the sense of the Appendix, i.e., essentially, u
is finitely additive).

The key question is this: When does this premeasure, M, u, on €2 give
rise to a full measure on Q7 This question is answered in Appendix B:
A necessary and sufficient condition is given by Theorem 2. In order to
adapt that theorem to the present context, it is convenient to introduce the
following notation. Fix t, A, and then set

o|(6, A) = lub Y |o(t, A)]. ®)

Here, the sum is over some finite collection of t’, A’ such that the correspond-
ing ¢ A+ are disjoint subsets of {2 o. The least upper bound is then over
all such finite collections. The value of the right side of 8 can, of course, be
specified directly, without reference to spaces of curves: First fix partition
t’ D t, with s’ entries, and regard A as defining a subset or X x---x X (s'+1
times). Then take the sum above over a finite collection of corresponding A’



that (regarded as subsets of X x --- x X (s’ + 1 times)) are disjoint subsets
of A. Now the least upper bound is over such finite collections (for fixed
t’ D t), and also over all such partitions t’. Thus, the |o|(t, A) that results
from Eqn. (8) is a nonnegative number (where the value ”infinity” is also
allowed, in case the least upper bound fails to exist).

We now have the following

Theorem 1. The above premeasure M, on 2 gives rise to a measure on
Q if and only if the following conditions are satisfied. Given any A, B € N/,
1. |o|(t, A) is finite, where s = 1, t = (0,7") and A = (A, B); and
2. given, in addition, any measurable C; D Cy D --- € N with NC; = 0,
and any number 0 < ¢; < T, we have |o|(t/,A;) — 0 as i — oo, where?
S = 2, t' = (O,tl,T), and Ai = (A,OZ‘, B)

Proof: First note that |o|(t, A) = |u|(2,a), where on the right is the varia-
tion of the premeasure (as defined in Appendix B). Then condition 1 of the
Theorem is precisely the statement that the premeasure M, p have bounded
variation. Furthermore, condition 2 of the Theorem is precisely the state-
ment that this premeasure have the nesting property. [This is seen as follows.
Consider any nested sequence, «;, of sets in M, with empty intersection in
). Then, since () consists of all paths in X, there must be some number
0 < t; < T such that NC; = 0, where C; C X is the subset resulting from
evaluating the paths in «; at time ¢;. We further have C), D Cy O ---.] The
theorem itself is now merely a restatement of Theorem 2 of Appendix B.

Note that the first condition of Theorem 1 is precisely the requirement
that all the |o|(t, A) are finite. The second condition may be understood
as follows. First note that, given any A, B,t; and C; as in this condition, it
follows automatically that |o(t’, A;)] — 0 as i — oo. But condition 2 itself
requires something much stronger, namely that |o|(t’, A;) — 0.

Let us now turn, again, to our three earlier examples. For the first (with
U; = identity), we have |o|(t,A) = o(t,A) = v(AgN--- N As). Then
condition 1 of the theorem is immediate from this formula, and condition
2 follows directly from the fact that v is a measure on X. Hence, by the
Theorem, there is a measure on (2 in this example. For the second (heat

2The two limiting values of ¢; are to be treated as follows. If ¢; = 0, then instead set
s=1,t"=(0,T), and A; = (AN C;, B), and similarly if t; =T



equation), we again have |o|(t, A) = o(t, A), given by the right side of Eqn.
(2). Again, the two conditions of the theorem follow directly, and so, again,
we obtain a measure on ). This is Wiener measure. Finally, for the third
example (Schroodinger equation), we have |o|(t, A) = oo in all cases in which
v(Ap) and v(A,) are nonzero. This follows from the failure of the integral,
regarded as over a subset of X x---x X on the right in Eqn. (5) to converge.
So, in this case neither condition 1 nor condition 2 is satisfied, and we do not
have a corresponding measure on the space €2 of paths. I do not know of an
example in which condition 1 of Theorem 1 holds, while condition 2 fails.
Note that the conditions of the Theorem refer only to properties of the
matrix elements themselves, as reflected in the function o, and not to any
more abstract properties of path spaces. Thus, given a system — described by
a measure space X, N, v together with a family U; of operators on L*(X,v)
— it is in some sense an elementary calculation to check the conditions
of the theorem, and thus to decide whether or not that system admits a
corresponding measure on path space. But, unfortunately, things are not
normally this simple in practice. The problem is that it can be difficult in
practice to evaluate the function |o| given in Eqn. (8), because of the least
upper bound on the right. The follo/vging simplification is sometimes useful.
Fix t, A. Now define the number |o|(t, A) by the right side of Eqn. (8),
but with there imposed the further restriction that t' =t in the least upper
bound on the right. That is, we now allow only the partition t itself of [0, T7,
but no longer refinements of it. By virtue of this restriction, the evaluation
of |o| considerably simpler than of |o|. Clearly, we have |o|(t, A) < |o|(t, A).
Hence, the conditions of the theorem, imposed on |a rather than on |o|, are
now merely necessary — but need no longer be sufficient — for there to exist
an extension of the premeasure to a measure on path-space €2. Evaluation of
|o| is often sufficient to conclude that there is no appropriate measure on €.
We may interpret this simplification in the following way. Fix s and t.
Then with each corresponding A we may associate a subset, Ay x - -+ x A,
of X x-+-x X (s+1 times). Assign to each such subset the number o(t, A),
thus defining a premeasure on X X -+ x X (s 4 1 times). Then, still fixing
t, the conditions of the theorem are the necessary and sufficient conditions
that this premeasure extend to a measure on X x --- x X ((s 4 1) times).
Replacing the partition t by a finer partition results in a new premeasure
on {2 that extends the original premeasure. The issue of whether there is a



measure on all of {2, as given in Theorem 1, is then whether the resulting
family of premeasures on €2 (ordered by extension) have a suitable limit. In
the case of a free particle, to take one example, we do obtain a measure in the
case s = 1 (i.e.,, on X x X), but not for any larger s-value. It is interesting
to ask whether there are any examples of systems for which even the matrix
elements of Ur between initial and final states arise from no measure on
X x X. It turns out that there is such an example, that of a bead sliding
about a circular wire. This example is discussed in Appendix A.

Finally, we discuss briefly the issue of whether restrictions may be imposed
on the paths, still retaining a measure in the sense of the Theorem. The
only place we used that (2 consists of all paths was in translating the second
condition to the nesting property. Thus, we have a theorem similar to that of
the Theorem, but with i) the path-space €2 replaced by any fixed collection of
paths of X; and ii) condition 2 replaced by the statement that the premeasure
M, 1 on € satisfy the nesting property of Appendix B. Thus, in the first
example above, it suffices to take for 2 the space consisting only of the
constant paths. As a second example, it is known (ref) that, in the example
of Weiner measure for the heat equation, {2 can be replaced by all paths
satisfying a Lipschitz condition of order 1/2. (This merely reflects the fact
that initial data for the heat equation "spreads out” at a rate proportional
to t'/2, for small ¢.) As a second example, consider the case in which all the
U; are just the identity operator. In that case, we may replace {2 by a very
small collection of paths: those of the form 7(¢) = Z, i.e., the constant paths.
The measure on this collection of paths, guaranteed by the theorem, is then
of course precisely the original measure v on X.

3 A Class of Operators

Fix, again, a set X and a nonnegative measure, N, v, on X, and consider,
again, the Hilbert space L?*(X,v). We now introduce a particularly useful
class of operators on this Hilbert space.

Denote by P the collection of all complex-valued, measurable functions,
X x X & C, such that, for some positive number Kp, We have

[ el dn <, [ ipa)ldv <, 0



for almost all y € X (so, in particular, these two integrals must converge).
Let us agree to choose for x, the smallest number that suffices in Eqn. (?7?).
We now claim that each element p of P defines an operator, which we write
O,, on L*(X,v), given by the following formula:

<olofv >= | B(a)pla.y)oly) dvady, (10)
z,Y

for all ¢,v € L*(X,v). That is, we claim that the integral on the right always

converges, and yields the matrix elements of some operator O,. To see this,

first note that

| /ac,yeX o@)p(z y)v(y) dvsdyy| < (1/2) / P I Cle@) + [y /6) dvedy,

Y

(0/2) (Ol I[* + [12[]%/b). (11)

In the first step, we used the Schwarz inequality (where b is any positive
number). In the second, we used the Fubini theorem — integrating the y-
variable first in the first term and the x-variable first in the second — and
Eqn. (??). Finally, choosing b = |[¢||/||¢|| on the right in Eqn. (11), we
conclude that the left side of (11) is bounded by &, |[1/|| ||¢||- But this implies,
in turn, that there exists an operator O, — clearly unique — satisfying (10).
Note? that we have O, = O, if and only if p = p’ almost everywhere on
X x X.

We now derive some properties of this class* of operators.

1. The operator O, is bounded, and, in fact, |O,| < k,. This is immediate
from the proof, above, of convergence of the right side of Eqn. (9).

2. These operators form a vector space. Indeed, for any p,p’ € P and
c € C, we have that p+c¢p’ € P, and Opioy = O, + cO,y.

<
<

350, we could as well have defined P using equivalence classes of functions p, under
the equivalence relation of equality almost everywhere, noting that x, depends only on
equivalence class.

4There exists in fact a slightly more general class of operators having similar properties.
Consider a measure p on X x X for which there exist X-dependent measures o, O
(for all x € X) on X such that: i) For some positive number a, we have |a,|(X) <
a and |B;[(X) < a, for all x € X; and ii) for any measurable A,B C X, we have
Jeea0a(B) dve = [, 5 By(A) dvy = p(A x B). Then this measure p gives rise to an
operator in a manner similar to (9). The version above will be recognized as the special case
in which the measure is given by p(z,y) dvydv,. We have not adopted this generalization
because it adds more in complication than in content.
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3. These operators are closed under taking adjoints. Indeed, for any
p € P, we have, setting p'(z,y) = p(y, z), that p' € P, and (O,)" = O,:.

4. These operators are closed under composition. We first claim that,
for p,p’ € P, there is an element, p x p’ € P, given by (p * p')(x,y) =
[ p(z,2)p'(2,y) dv,. To see this, first note that [ |[p(x, 2)| |p/(2,v)| dv,dv, <
Kpky (a consequence of Fubini’s theorem and (?7)). But this implies, again
by Fubini’s theorem, that the p x p’ given above is well-defined for almost all
z,y, and is in P. In fact, we have K,y < kpky. Finally, we note that the
convolution operation on P thus defined reflects composition of operators:
Op 0Oy = Opyyr.

5. These operators are closed under taking limits, in the following sense.
Let pi,pa,--- € P be Cauchy in the norm | | (i.e., for every € > 0 there
exists a number N such that |p; — p;| < e whenever i,j > N). Then, we
claim, there exists p € P such that |p; — p| — 0 as i — oo. To see this, first
note, from the Cauchy property, that there exists a function p on X x X
such that p;(z,y) — p(z,y) in L' (X) (variable z), uniformly in y € X; and,
similarly, a function p such that p;(z,y) — p(z,y) in L'(X) (variable y),
uniformly in z € X. But this implies, by the Fubini theorem, that, for any
A BEN, f(x,y)eApri(x7y> dvydvy — f(g;,y)eAxBﬁ(xay) dvydyy, as i — oo,
and similarly for p. Hence, p = p almost everywhere in X x X. Let p € P be
this common value almost everywhere. Then we have |O,, — O,| — 0, i.e.,
that the O,, converge in norm to O,,.

6. These operators are dense in the space of all bounded operators, in
the following (what is usually called the ”strong”) sense. Let A be any
bounded operator on L?(X,v). Then there exists a sequence, py, ps,- - € P,
such that, for every ¢ € L*(X,v), we have |[(A — O,,)¢|| — 0 as i — oo.
This assertion in turn is a consequence of the following three facts. First,
the collection of all 1 € L*(X,v) that are both bounded and in L'(X,v) is
dense in L?(X,v). (To see this, note that the finite linear combinations of
characteristic functions on sets in A/ are bounded and dense in L?(X,v).)
Second, every function of the form p(x,y) = 27—, a;i(x)¥;(y), with the
1; both bounded and in L'(X, v), is in P. Third, the set of operators arising
from functions p of this form is dense, in the sense given above, in the space
of all bounded operators on L?(X,v).

Note that the set of operators of the form O, is closed (property 5) in a
different topology from that in which this set is dense (property 6). Thus,
there are in general many bounded operators (such as the identity) not among
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the O,.

Here is an example of an application of these properties. Let X x X & C
be any function in P satisfying p(x,y) = p(y,z). Then the corresponding
operator O, is self-adjoint. Now consider, for each ¢ > 0, the operator

U, = exp(itO,) = I +it0,/1! + (it)*0, 0 O, /2! + - -+ = [ + O, (12)

where w € P is the function given by w = itp/1! + (it)*p x p/2! + - - -. These
sums converge, by properties 1, 2, 4, and 5 above. The U, so defined is a
family of unitary operators on L?*(X,v), and they automatically satisfy the
semigroup property: U, o Uy = U,y .

We now wish to work out the matrix elements, o(t,A), of Eqn. (1),
for the family U, of unitary operators given above. This is straightforward:
Substitute I + O,, from Eqn. (9) for each U,, and expand. Each operator
I, sandwiched between configuration operators, drops out via Q,1Q4, , =
Qa,nA;,,- We are thus left with integrals of certain functions w over certain
subsets of X x --- x X. But an integral of w is less than or equal to that
integral of |w|, which is less than or equal to that integral of ¢|p|/1! + t?|p| *
Ip|/2! + - - -. We conclude that

|0(t, A)| < < Xap e TOIQa, - Qe Ty > (13)

From this and the definition of |o|, we have

o](t, A) < < xaleTOMQu, - Qa, e T x> < < xag €T xa, >
(14)

It follows immediately from Eqn. (14) that the hypothesis of Theorem 1 is

satisfied for the family U; of operators given by Eqn. (1).

Thus, we have shown: For any family U, of operators given by Eqn. (12)
with p € P satisfying p(z,y) = p(y, x), the premeasure ¢ on the space 2 of
paths extends automatically to a full (complex-valued) measure on 2.

We next claim that, given a physical system with configuration space X,
and quantum space of states L?(X,v); with evolution operators U;, we can
always find a p € P such that the family U, of operators given by Eqn. (11)
is close to the U, in the sense of property 6 above. For example, consider
the case in which X = R?, and our system is a particle in a (say, bounded)
potential V. A suitable function p in this case might be that given as follows.
Set f(z) = (2mp)~2exp(—a?/2p), for p > 0. Now set

p(z,y) = =02 2m f"(x —y)+ (V(z) + V() f(z —y)/2.  (15)

9



Then, as p — 0, we have, uniformly in ¢, that U, — U;, in the sense of
property 6 above.

The crucial question, then, is whether these families U, of operators for
which a measure over path-space exists ”approximate” the actual evolution
family U; in a sense sufficient for physical applications. Blah, blah, blah

Appendix A - Bead on a Wire

In this appendix, we give an example of a simple mechanical system whose
evolution cannot be described by any path integral — even in the weak sense
described in Sect. 1. That is, this system will be such that there is no
measure M,y on X x X that reproduces the transition amplitudes.

Let X be the circle of radius R (labeled by coordinate 6 € [0, 27]). Let the
Hamiltonian be that of a free particle of mass m, i.e., H = (1/2m)(h/iR)?9*/06*.
Thus, this system consists, physically, of a bead free to slide about a circular
wire. Schroodinger’s equation, on wave function (6, t), is —w/2 9% /06? =
iy /O, where we have set w = ii/mR?. Fix a time T' > 0, and denote by Ur
the corresponding unitary time-evolution operator.

We now claim: There exists (except possibly for a certain countable col-
lection of T-values, discussed below) no measure p on X x X (i.e., on the
torus) such that, for every measurable A, B C X, we have u(A x B) =<

xalUr|xs >.
A somewhat weaker version of this claim — that there can be no bounded
Green’s function for Ur — is actually quite easy to prove. Indeed, sup-

pose, for contradiction, that there were one, G(6,0’), so we would have
< QUrly >= [ x ¢(0)G(0,0))(0") dvgdvs. Choosing 1 # 0 supported
on measurable A C X, we have, using the Schwartz inequality, | < ¢|Ur|i) >
| <Nl 11| [xxa |G, 0 dvgdvy]'/?. Now set ¢ = Ur¢) in this inequal-
ity, so, by unitarity, the left side is |[1||?, the first factor on the right ||¢]|.
Letting v(A) — 0 results in a contradiction® .

5 Actually, we have shown more. Consider any simple mechanical system having mea-
surable A; D Ay D .-+ C X, each of positive measure, with NA; = (). Then this system
possesses no Green’s function, G(x,z'), lying in L?*(X x X).

6There is another argument that again suggests that there will be no Green’s function
for this problem. If there is to be a Green’s function, then one would expect that it be
given by G(0y,0,) = [2miwT]~1/2 3 ¢i(02=01+27n)" /20T \where the sum is over all integers
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We now proceed to demonstrate nonexistence of any measure that repro-
duces the transition amplitudes as above. To see this, we first note that our
system has two symmetries. For ¢(f,t) any solution of Schroodinger’s equa-
tion, so are 1) ¥(6+46,,t), for every 0, € [0, 27]; and ii) exp(inf—in*wt/2)(0—
nwt, t), for n any integer (a requirement necessary for single-valuedness of ).
The first is the simple rotational symmetry of the circular wire as a whole.
The second corresponds to a rotation that ”increases linearly in time”, ac-
companied by a #-dependent phase shift. This symmetry is an adaptation,
to circular geometry, of the (Galilean) ”"boost symmetry” for an ordinary free
particle. It is an immediate consequence of these symmetries that the uni-
tary time-evolution operator, Ur, has similar symmetries: < 9|Ur|¢ >=<
U|Ur|¢ >, provided either i) ¢(6) = ¢(0+0,), 1 (0) = ¥(0+80,), for some 0, €
[0,27]; or i) ¢(0) = exp(inf)p(0), h(0) = exp(ind — in®wT/2)1(0 — nwT),
for some integer n.

Now suppose, for contradiction, that there were some measure p on X x X
giving rise to these transition elements. It follows from these symmetries that
p must be invariant under i) simultaneous rotations of both circles through
any angle 0, € [0, 27]; and ii) rotation of the second circle through angle nwT,
and simultaneous multiplication of y by the phase factor ef(-f1+nf2—n*wT/2)
Hence, the absolute value of this measure, ||, must be invariant under i)
simultaneous rotations of both circles through the same angle; and ii) rotation
of the second circle through angle nwT, with no rotation of the first circle.
Now choose” the time T such that w7 is not a rational multiple of 2. Then
the rotations in ii) above are dense among all rotations of the circle. Hence®,
for any such choice of T, |u| must be invariant under arbitrary rotations of

n. That is, G(01,02) should be the result of ”wrapping” about the circle the Green’s
function for a free particle on the line. But this sum above fails to converge (absolutely).

Tt is not clear whether or not there exists a measure reproducing the transition am-
plitudes for the exceptional T-values. But note that, for w7 an integral multiple of 4,
Ur is the identity mapping, and so, for this choice, there does exist a suitable measure on
X x X.

8Here is a direct argument. It suffices to prove that |u| is proportional to Lebesque
measure when applied to any rectangle, A = (0,a) x (0,b). Let n be any positive integer,
and set B = (0,1/n) x (0,1/n) C X x X. Then A can be covered by not more than
(an 4+ 1)(bn + 1) images of B under the rotations given in i) and ii) above; and within A
there can be contained at least (an — 1)(bn — 1) disjoint such images of B. It follows that
(an — 1)(bn — 1)/(2mn + 1)% < |u|(A)/|u/(X x X) < (an + 1)(bn + 1)/(27n — 1)2. Let

n — 0.
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the two circles individually, i.e., || must be a constant multiple of Lebesque
measure on the torus. But this implies that p is some multiple, G(6,6’), of
Lebesque measure on the torus, with |G(6,6’)| = const. That is to say, this
implies there is a bounded Green’s function for the time evolution of this
system. But, as we have noted above, there can be no such Green’s function.

Appendix B - Measures

In this appendix, we organize the subject of (complex-valued) measures in a
way convenient for application to path integrals and other physical situations.

Fix a set X.

A premeasure on X consists of a nonempty collection, M, of subsets of
X, together with a mapping, M % C, from M to the complex numbers,
satisfying the following two conditions:

1. For any A,B € M, we have A— B€ M and AUB € M.

2. Forany A, B € M, with ANB = (), we have u(AUB) = u(A)+pu(B).
It follows immediately from condition 1 that ) € M, and that any result
of taking finite unions, intersections, and differences of sets in M is again
in M. It also follows that any finite union of sets in M is a finite union of
disjoint sets in M. It follows immediately from condition 2 that p(0) = 0,
and that p is additive on any finite collection of disjoint elements of M.
Note that ”o0” is not allowed as a value for p. These conditions are, in some
sense, the minimum in order that M, i be regarded as at all "measure-like”.
Think of a premeasure as having all the properties of a full-fledged measure,
but restricted to finite operations (sums, unions, etc). Of course, every mea-
sure (as defined, e.g., in Halmos) gives rise to a premeasure. Premeasures
arise frequently in physical situations, a common example being the matrix
elements of a bounded operator (Sect. 2).

Here are two examples. For the first, let X be any infinite set, let M
consist of all subsets of X that are either finite, or cofinite (i.e., having finite
complement in X). Let, for A € M, u(A) be the number of elements in A
if A is finite, and minus the number of elements in the complement of A if
A is cofinite. This is a premeasure on X. For the second example, let X be
the interval (0, 1), and let M consist of all finite unions of disjoint intervals
(open, closed, or half-open) in X. Fix a complex number ¢. For A € M,
let (A) be the sum of the lengths of those intervals, plus ¢ in case one of
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those intervals extends to 0 (i.e., is of the form (0,a) or (0,a]). This is a
premeasure on X. (It is basically Lebesque measure, except that there is
additional measure, of strength ¢, ”concentrated at 0”; this despite the fact
that 0 ¢ X.)

While the conditions for a premeasure are simple and natural, these con-
ditions are just too weak to have mathematically useful consequences. For
example, premeasures support only a very rudimentary integration theory,
as we shall see shortly. We now introduce two additional, stronger conditions
that may be imposed on a premeasure.

Fix a premeasure, M, on X. For any A € M, set

(4) = b 3 (49, (10

where Ay, -+, Ay € M is any finite collection of disjoint subsets of A, and the
least upper bound is over all such collections (for all values of the positive
integer s). Thus, |u|(A) > 0, with "o0” a possible value. We also have
l|(A) > |u(A)|. [Note that had we allowed, on the right side in the formula
above, infinite collections of disjoint A; € M, the result would have been the
same number, |u|(A). Had we allowed just a single A; € M, the result would
have been a number between |u|(A)/7 and |u|(A).°] We say the premeasure
M, p has bounded variation if |p|(A) is finite for every A € M. For instance,
for M,y any premeasure we have, setting M = {A € M| |u|(4) < oo},
that both M, w1 and M, || are premeasures having bounded variation. In
particular, whenever M, 1 itself already has bounded variation, then M, |u|
is also a premeasure having bounded variation.

A premeasure, M, u on X is said to have the nesting property provided:
Given any A; D Ay D --- € M with NA4; = 0, we have u(A;) — 0 as
1 — 00. In essence, the nesting property requires that the complex number
1(A) be ”continuous in the set A”. For instance, the nesting property is
equivalent to each of the following: i) Given A; D Ay D -+ € M, with
A =nNA; € M, then pu(A;) — u(A) asi — oo. ii) Given Ay C Ay C --- € M
with A = UA; € M, then u(A;) — wu(A) as i — oo. iil) Given disjoint
Al,AQ, ce- € M, with A = UAZ S M, then E/L(AZ) = ,LL(A)

These two conditions on a premeasure — bounded variation and the nest-
ing property — are clearly closely related to each other. For instance, in case

9This is a consequence of the following fact: Given any finite collection, c1,ca,- -, Cs
of complex numbers, lubgc 1,2 51| D jeg el = (1/7) X074 |eil-
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4 happens to take all its values in the nonnegative reals, then the nesting
property implies bounded variation (but not conversely, as is seen by set-
ting ¢ = 1 in an example above). But in the full complex case, these two
properties are logically distinct. Indeed, the first of the examples above
satisfies the nesting property but, provided the set X is uncountable, fails
to have bounded variation; while the second example has bounded varia-
tion but not the nesting property. The close relationship between the two
can be seen in the following. Let X, M, u be a premeasure, having both
bounded variation and the nesting property. Then, we claim, M, |u| also
has both bounded variation and the nesting property. To prove this, we
have only to show: Given A; D Ay D --- € M, with NA; = (), then
|it|(A;) — 0 as i — oo. To see this, suppose, for contradiction, that instead
|| (A;) — r > 0. By deleting the first few A;, we may assume |p|(A;) < 6r/5.
Choose B € M, B C Ay, with |u(B)| > r/4. Then we have N(B N A;) = (),
while |u(B N A;)| > |u(B)| — |u|(Ar — A;) > r/20. This contradicts the
nesting property of M, u.

A premeasure, M, u, on X is called a measure provided 1) it has bounded
variation, ii) it satisfies the nesting property, and iii) it also satisfies the
following condition: Given any A; C Ay C --- € M, with |u|(A;) bounded,
then UA; € M. Thus, in order that a premeasure be a measure, the function
p must be "well-behaved”, in the sense of condition i) and ii) above, and
further have M include ”as many sets as feasible”, in the sense of condition
iii). Note that this condition iii) cannot be strengthened to demand still more
sets in M, for UA; can never be in M when the |u|(A;) are unbounded, by
condition i). For M, i1 a measure, it follows that each of the following is also
in M: any countable intersection of sets in M; any countable union of sets
in M, if all are subsets of some common element of M; and any countable
union of sets A; € M, provided Y |pu|(A4;) < oo. This is the standard notion
of a "measure” (adapted to complex-valued) in the textbooks (ref). Note,
e.g., that, for M, 1 a measure on X, then M, |u is also a measure on X.

It will turn out that the best way to generate measures is by extending
premeasures. To explain this requires a definition. Let M, i be a premeasure
on X. An extension of M, u is a premeasure M’, ;i on X such that M’ D M
and i/ = pon M. Note, e.g., that an extension of an extension is an extension
of the original premeasure. We note that having bounded variation and
having the nesting property are passed backward under extensions. That is,
if an extension M, 1/ of M, i has of bounded variation (resp., has the nesting
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property), then M, u itself must have bounded variation (resp, the nesting
property). But this does not work in the other direction. Thus, a necessary
condition that premeasure M, 1 have an extension that is a measure is that
M., 1 have bounded variation and the nesting property.

So, what are the possibilities for extending a given premeasure? We first
remark that every premeasure on X, save the case in which M consists
already of all subsets of X, admits a proper extension '° But, unfortunately,
such extensions are not very useful, for two reasons. First, these extensions
generally involve making arbitrary choices, e.g., of the values p assigns to the
new subsets. Unless those choices are based on physical considerations, the
resulting extension is likely to be unphysical. Second, there is no guarantee
that, when M, u has bounded variation or the nesting property, then these
extensions will retain these properties.

But it turns out that there is a way, whenever the given premeasure M, u
happens to have both bounded variation and the nesting property, to con-
struct certain extensions that avoid these difficulties: These extensions are
based solely on the information contained already in M, p (thus, introducing
no arbitrary, unphysical elements), and automatically retain bounded vari-
ation and the nesting property. This construction proceeds as follows. Let
premeasure M, on X have bounded variation and the nesting property.
Let Y C X be any subset with the following property: There exists a nested
collection, Ay C Ay C --- € M with Y = UA; and the |u|(A4;) bounded.
This property requires, roughly, that ¥ be expressible as a countable union
of elements of M which do not get "too large”, as measured by |u|. We
now construct an extension of M,y which ”includes Y. [Note that, were
M, i already a measure, then we would automatically have Y € M. In this
case, the extension below would simply recover M, p1.| Let M’ consist of M,
together with, for all A € M, the sets ANY, AUY, A—Y,Y — A and
(A=Y)U (Y — A). Then M’ satisfies the first condition for a premeasure.

0The proof is along the following lines. Let Y C X with Y ¢ M. Let M’ consist of
the sets in M, together with, for every A € M, thesetsY — A, A—-Y, AUY,ANY, and
(A=Y)U (Y — A). Then M’ satisfies the first condition for a premeasure. We must now

extend M % C to M’ % C, while retaining the second condition for a premeasure. To
do this, first extend p, arbitrarily, to some new set in M’; then to those additional sets
in M’ on which its value is thereby determined via condition ii) for a premeasure; then,
again arbitrarily, to some new set in M’, etc. Continue in this way (using Zorn’s lemma)
until M’ is exhausted.
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Define M’ 2. ¢ as follows: First, set ' = p on M. Then, for any A € M,
set /(ANY) =lmpu(ANA), W/(AUY) = limu(A U A;), and similarly
for A—=Y,Y — A, and (A—-Y)U (Y — A). The limits (as i — 0o0) on the
right exist, by bounded variation of M, u, and are independent of the choice
of A;, by the nesting property. This function p’ on M’ satisfies the second
condition for a premeasure, as follows immediately from the corresponding
condition on u. So, M’, i’ is a premeasure space. It further follows that
this new premeasure has both bounded variation and the nesting property.
Indeed, we have |u'| = || on M, while [¢/|(ANY) = lim|u|(AN A;), ete.
Bounded variation and the nesting property for M’ i/ now follow from the
corresponding properties for M, p.

We have seen that, given a premeasure M, i, a necessary condition that
it have an extension that is a measure is that M, u have bounded variation
and the nesting property. A key theorem of this subject is the converse of
this: Every premeasure having both bounded variation and the nesting prop-
erty has an extension to a measure. In other words, the third condition in
the definition of a measure — that M be "sufficiently large” — can always
be achieved by an extension. Furthermore, this extending measure is unique
in a certain sense.

Theorem 2.!' Let, on X, M, u be a premeasure having both bounded
variation and the nesting property. Then there exists a unique measure,
M’ 1/, on X that is an extension of M, u, and is minimal in the following
sense: Any other measure, M”, 1”, on X that is an extension of M, i is also
an extension of M’ /.

The proof is actually quite simple. [?7?] Denote by M the collection of
subsets of X obtained by intersecting all collections closed under differences
and countable intersections and unions. Consider (premeasure) extensions,
MW, of M, pu, with M’ C M, ordered by inclusion. By Zorn’s lemma,
there is a maximal element. Were this element not a measure, then we

"UThere is an immediate generalization of all this, in which the premeasure is valued,
instead of in the complexes, in an arbitrary complete abelian topological group G. Then
bounded variation is stated thus: For every A € M, {u(B)|B € M,B C A} has compact
closure in G. The definitions of the nesting property and of an extension go through
unchanged. Finally, a premeasure is a measure if, whenever A;, As,--- € M and the
subset {u(B)|B € M, B C UA;} of G has compact closure, then UA; € M. With these
definitions, the theorem again holds.
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would be able to apply the construction above, adding a new set Y C X to
it.

A key reason for having (pre)measures at all is that they permit the
carrying out of integrals. We now briefly discuss the status of integration,
and its relation to the conditions above.

Fix a premeasure, M, on X. A set B C X will be called measurable if
BNAe M for every A € M. Thus, the complement of a measurable set,
as well as any finite (but not, in general, infinite) union or intersection of

measurable sets, yields a measurable set. A complex-valued function X L c
will be called measurable if, inverse images, under f, of open sets in C are
measurable. It follows from this that f~![U] is measurable also for U closed,
and, indeed, for U any set obtained by finite unions or intersections of open
and closed sets. Note that the sum of two measurable functions need not be
measurable in general. A step function is a measurable function with finite
range. Thus, every step function f is of the form f = aixa, + -+ + asxa.,
where a; € C, the A; are measurable subsets of X, and x4, denotes the
characteristic function of A; C X. Conversely, any function of this form is
a step function. Note that any finite linear combination of step functions is
again a step function. Were M, i a full measure on X, then, by virtue of
condition iii), countable unions and intersections of measurable sets would
be measurable, and finite linear combinations of measurable functions would
be measurable.

Again, M, i is a premeasure on X. There is a natural notion, in this
space, of the integral of any step function over any set A € M. This integral
is given by the following formula:

[ 7 du= (a0 A), (17)

where f has been expanded, in terms of characteristic functions, as above!Z.
Note that the right side is linear in the function f (i.e., is such that [,(f +
cg) = [af +cfy9), and is additive in the set A (i.e., is such that, for
ANB =0, [a,5 f = J4 [+ /5 f). Inshort, there is, even in a mere premeasure

127 similar integral can be defined in the case in which the measure is valued in a
locally compact abelian topological group, and the function to be integrated is valued in
(in general, some different) locally compact abelian topological group. Then the integral,
above, is valued in the tensor product of the two groups.
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space, a certain, natural notion of ”integration”. But, unfortunately, the
only functions that can be integrated via Eqn. (17) are the step functions,
and these form far too small a class to be the basis for a viable integration
theory. After all, few of the functions that arise in physical applications are
step functions.

Let us now impose on the premeasure M, u the further condition that it
have bounded variation. Then, for any A € M and any step function f, we
have

[ f dul < tabal ] 1l (A), (18)

as follows immediately from Eqn. (17). Next let fi, fo,--- be any sequence
of step functions, converging uniformly on A € M to some complex-valued
function f on A. Then, as follows directly from Eqn. (18), the complex num-
bers [, fi also converge to some complex number, and that number depends
only on f, and not on the choice of the f;. We write this number [, f du, and
call it the integral of f over A € M. The integral [, f du so defined has the
expected properties: It is linear in the function f, and (finitely) additive in
the set A. Thus, in the case in which our premeasure has bounded variation,
we may integrate over any set in M any function that is a uniform limit of
step functions. In this way, we greatly expand the collection of functions that
we can integrate, resulting in a far richer integration theory. For example,
any bounded, measurable function (not necessarily a step function) can now
be integrated over any A € M, for every such function is a uniform limit, on
A, of step functions. Indeed, the class of functions on A that are integrable
in this way is a rather large one: While all uniform limits of step functions
are bounded, some, in general, are not even measurable. As an example of
this integration theory, let X = (0,1), and let the premeasure be that given
above, with ”additional measure of magnitude ¢ located at 0”. This premea-
sure, as already noted, has bounded variation. Then the function f given by
f(z) =1 — z is integrable over A = X, and [, f du=1/2+c.

But even this integration theory — for a premeasure having bounded
variation — is not as rich as one might like. For instance, in the example
above, the given function f is not integrable over the set A C X consisting
of the rationals, for A ¢ M. Furthermore, setting A; = [1/2,1), Ay =
[1/4,1/2),- -, so the A; are disjoint and have UA;, = X, it is false that
> Ja, [ dp = [, f dp, for the left side has value 1/2, the right, 1/24-c. These
defects are ”corrected” in the integration theory of a full measure space, as
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we now discuss.

Now let M, u be a measure on X. Fix a measurable function f on X.
Denote by M the collection of all subsets A € M on which f is bounded.
For any A € M, set i(A) = [, f du, noting that f is necessarily a uniform
limit of step functions on A, and so the right side makes sense, by Eqn.
(18). This M, ji, we claim, is a premeasure on X. This is immediate from
the fact that the integral is additive in the set A. Furthermore, we have
|(A)| < lubalf| |px|(A). Tt follows from this that |a|(A) < lubalf| |p|(A);
and from this in turn that the premeasure M, i1 is of bounded variation, and
satisfies the nesting property. Now apply, to the premeasure M, it, Theorem
2, to obtain the unique measure minimally extending it. The result defines
the integral of f: The sets in this extension are those over which the integral
of f converges; and the value of the measure in this extension is the value
of the integral of f over the set. The important properties of integrals now
merely repeat properties of measures.
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