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1. Introduction

A manifold is, in general terms, "a space which, locally, loocks
like some simple space, although it may, in the large, look gquite
different from that simple space”. Different choices of this "simple
space” lead to different types of manifolds. By far the most common
such choice is B" (the finite-dimensional veetor space consisting
of n-tuples of real numbers). In this case, the corresponding
manifolds are said to be finite-dimensional (specifically, n-dimensional) ,
and the study of such manifolds and their structure is called
differential geometry.

Finite-dimensional manifolds are important in both mathematics
and physics. In mathematics, the study of finite-dimensional
manifolds, differential geometry, is an end in itself. However,
there exist in addition applications of manifolds to other areas of
matheamatics. An outstanding example is that of ordinary differential
equations. The question of the existence, uniqueness, and structure
of the solutions of ordinary differential equations can be reduced
to the study of vector fields and their integral curves on manifolds.
In this way, one recasts the subject of ordinary differentiil equations
into an elegant, geometrical, and remarkably simple form. 1In physics,
for example, the space-time of general relativity is found to have
the structure of a finite-dimensional (in fact, four-dimensional)
manifold. As a second example from physics, the space of configurations
of a mechanical system becomes a manifold (where the dimension is
what is called the number of degrees of freedom of the system).

One can also introduce manifolds based on spaces which are
"larger than finite-dimensional vector spaces”, i.e., on "infinite-
dimesnsional spaces®. Although it is perhaps true that the possible
applications of such manifolds have not yet been exploited fully,
there are already clear indications that these applications will be
rich and far-ranging. One may expect, for example, that the subjeact
of partial differential equations (particularly, hyperbolic and
parabolic eguations) can be formulated in the same geometrical
language as was possible for ordinary differential equations. In
physics, infinite-dimensional manifolds have already found their
way into such areas as general relativity and gquantum field theory.
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One might, therefore, wish to learn about infinite-dimensional
manifolds. The next issue one must resolve is this: On what
“simple (but infinite-dimensional) spaces” should bhese manifolds be
based? There is only cne such choice for which, as far as I am
aware, the subject has been worked out in any detail, namely, that
in which the simple space is what is called a Banach space. It is
my own view that manifolds based on Banach spaces might be "too righ
in structure” for certain applications. That is to say, although one
obtains a large number of strong theorems in this case, it may
sometimes turn out to be the case that it is not possible to make
the space one is considering in some application intc a manifold based
on a Banach space. HNontheless, one has to begin this subject somewhere,
and it seems advisable to begin in that regime in which i) many
thecrems are available, and ii) the subject has been worked out in
detail. If one should later decide that other types of manifolds
will be more fruitful, then one will at least have a feeling for
the kinds of things which are and are not likely to be true, the
techniques whibh are likely to lead to proofs, and where to look for
counteraxamples.

We shall here study manifolds based on Banach spaces: their
structure, and the kinds of ohjects which can be placed on them.



In thim foction, we dafine a Manach space, give a faw examples,
and introduce gavoval falated notions.

A Banach space consiste of twd things:

L. & real wvactor space 2. That is to say, E is a set (vhose
any two vecto.s srother (called thetir sum}, and another rule which
assigng to any vector and any real numbsr a vector (called the product
of the pumber and tho vecstor), subiect to the usual conditiona for
a vechtor space (namely, addition iy commutetive and associative, there
ig an additive identity, there are additive inverses, multiplicatien
of wvectors by nurbers is distributive, and 1*x = x for any vector x).

2. & norm on Lhe vector space E. That is to say, we are given
& mapping from the vector space E to the reals. The real number which
is the image of the vector ®x under this mapping is written Ix}, and
is called the norm of x, This mapping must satisfy the following
three conditions: i} for any vector x, |xl2 0, with equality if and
only if x = 0, ii) for any two vectors x and ¥y, {x + v| £ Ixl + Ivi.
and 1ii) for any vector x and any mmber a, |ax| = (|ajjx|. [These
thres conditions are perhaps rather natural if one interprets the norm
of a vesteor ag lits "length™.]

Finally., in order that E, || be a Banach space, it is necessary that
it be complet=, as desoribed below.

Let E ba a real vector space, with norm || . Let Xyr Xgr o o o
be a sequonce of vectors in E. This sequenca is called a Cauchy
sequence 1 f the following property is satisfied: given any positive
rumber & , there exists an integer N such that Ixi - le < g
whenaver 1 2 M and 3 2N, [In intuitive terms, the elementa of a
Cauchy seguence "gel closer and closer to each other along the seguence”.
This segquence is zaid to converge to vector x if the limit of |x - kjl
as j goes to infinity is zero (i.e., in intuitive terms, if "the
elements of the sequence get closer and closer to x"). It is easily
checked that a sequence that converges to some % is automatically
a2 Cauchy sequence. Our E, || is said to be complete if the converse
also holds tharein, i.e., if every Cauchy sequence in £, || converges
to aoma vector in E.

Thus, a Banach space is a complete normed vector space. We now

give some sxamples.
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E:-.'EE.E}E. Lnt E e the vactor gpace of resl nompars W addaition of
vactors io adaition of resl numbears, and multiplicaticn of vectorg

by npumibers i multislicétion of real numbers). Let thi norm of vector
({real aumber) x he the zhsolute value., The three propeacias of the
norm are elemsntacy facts about the absclute value; complstenass is

a baslec fact ebount the real number system. Thusa, we obtaiy a Banach

spacea.

Exmnple., Let E ba any finite-dimensiomal vector space. Chosza any
ok (it

gubset B of E which haz the following
two propertics: 1) B is convax, i.e.,
given any veotorz x and ¥ in B,

and any number & with 0tf£azl, the
vactor ax + {(l-aly is in B, and

ii) B i=s radial, i.e., givan any non-

gero vector x, there is a number aﬂ} V]
such thset a® is in B whenaver 0La< 2
&nd Aax is not in B whenevar a :I-au. [The first property requires that
"the line segment jolning any two vectors in B lies entirely within BY:
the second reguires that "any ray emamating from 0 is within B for

a while, and then leaves and remalns outside of B",] We usa this B

to dafine a norm on E as follows: for x any nonzero vector in B,

set |x| = Uaﬂ. where an, is the number in property ii) abowve. Then

the first and third propexties for a norm follow from the fact that B

is radizl, while tha sscond followa from the fact that B is convex.
Completaness is easily checked. Thus, wa obtain a Banach spaca.

[For example, 1f B is the "unit sphere"™ about 0, then the norm of &«
vactor is just itz "Euclidean length".]

Indeed, it iz mot difflicult to show that this last example vields
the "generic" finite-dimensional Banach space, in the sanse that every
such Banach space ariges as in the example. ([Sketch of proof: Given
a finite-dimensional Banach space, B, || , dencte by B the set of all
vectors x with |x) £ 1. This set B satisfies the two conditions ahovas,
and generatas, by the construction above, the criginal norm on E.]
Example. Dencte by E the collection of all sequences of real numbers,
Irl. rz, « « = ), which are pounded. Define addition and multiplicatico
by numbers componsnl-wise l!i.:ihr Erl‘ Eor = = o ] + a {rl'. T v
- Iri + A ':1'. r. A rE', « s =« )1}« Then EF ia a vector space. Ertxt.l



define a norm on B 23 follows: Ty For s o + | = lub {:illnntjnq
that the least upper bound on the right exists, zince the =y nust he
bounded for membershlpg in ). That this is indeed 2 norm is an
eaay check. Finally, cne must check completenesz. To this end,
let & = \Egr Tor = » d, X' = frl', II.* s a o T XYmooy o Pa

4 Cauchy sequence cf slements of E. Then the sequance of real numbers,
=% rl', rl", « « « iy Cauvchy, whence it converges to acma raal

number B, 3 tha sequence oy rz', - » « 0Of real numbers is Cauchy,
whence 1t converges o soma roal pumber nz; ete. In this way, one
constrnicts & seqguencs 151; 52, « » +fs ‘Since Erl, :2, s e ] A=
bounded, and since x, %', x'', . . . is Cauchy, the sequenc:

{83+ 85, « + - ) is bounded: hence, it defines some element y of E.
Finally, one cbserves that, by the construction by which v was
obtaired, the sequence %, x', x'*', . . . in E converges to y. Thus,

we have sketched the proof that E is complete: hence, it is a lanach
space.

Example. If, in the example above, one had restricted E to consit
only of sequences frlp Tar o = » ) for which 1lim ri (as 1=-+%9) exi ts,
using the same norm as above, then cne would again have chtained a
Banach space. Eimilarly, one cculd have restricted to (L3¢ Z50 & = )
with lim r, = 0, and would still obtain a Banach srpace. If, howaver,
ona had let E consist ¢of sequences {rl. Eas o o o | with tha property
that, for some N, Ty - 0 for 1% N, one would still obtain a vector
gpaca E, and one would still have tha above norm. Howaver, this would
not be & Banach space, for it would not be completz. [For example,

let x = {1,0,0,...), ' = (1,1/2,0,0,...); x"'" = {1,1/2,1/4,0,...}); ete.
Then =%, %', x'', « . - is a Cauchy sequence, but converges -0 no
element of this E (for (1,;172,1/4,1/8,. . . ) ie nct in this case an
alement of E).]

Example. Let E conaist of all bounded, real-valued functions on the
reals. Por £ such a function, let {f| = 1lub |f]. Tils is a vector
space {(where addition of fmncticns and multiplicatior by numbers are
point-wise), with norm. In fact, this is a Banach sp:ce. ([The oroof
of completenass is identical with that at the top of :hig page.]

If E had consisted only of the continuous bounded funi::ions, we would
8till have a Banach space. Suppose, however, that E luad consisted

of the differentiable bounded functions. Then, althouch we would still

have & vector space with norm, completeness would £ail, and we would




not obtain a Banach space. Indeed,
considar the sequence of differen-
tiable functions illustrated at the
right. These are a Cauchy sequence,
but it converges to no differentiable
function (the only candidate being
the non-differentiable function shown).
Example. Let E consist of all ", real-
valued functions on the reals, such that
the values of the function and of its
first n derivatives are all bounded. Let the norm of such a function
be £ = lub {£f] + lub |£'] + . . . + 1ub |£®]|. This is a Banach
space. [If the last term were left off the expression for the norm,
completeness would fail.]
Example., Let E consist of all sequences, (ry: ¥30 =« + - )}, of real
numbers , !nruhichth-mllriluﬂnit-. Let the norm of such
a sequence be this sum. This is a Banach space. More generally,
ﬂ:hqnnynmh:phl,htlmhtnf{rl,rr*‘.j-:l.th
Tlr;|® finite. Let the norm of an element of E be the p-th root of
tht.ml!hnt.kingcfthrmthnmnurrinurdnrtnhmhll
= |ajix|.] We obtain a Banach space.
ﬂmhmmmmmluymm-mlnfcnm
into Banach spaces, although there is for analytic functions. It is
important that one understand the examples above complately.

We next consider a few additional definitions associated with
Banach spaces. Let E, || be a Banach space. For x any vector in E,
and r any positive number, the ball with center x and radius r is
the subset of E consisting of all vectors y with |x - y|< r. The
intuitive meaning is that suggested by these terms. [For example,
in the second example on page 4, the ball with center 0 and radius 1
is essentially the set B of that example.] A subset X of our Banach
space is said to be gpen if, given K
any vector x in K, there is some gall
ball with center x which lies
entirely within K. For example,
every ball is itself open (a fact
whose proof requires use of the
second property of a norm). [Those
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familiar with topology will notice that these are the open sets for
a topology on E.] A subset K of E is said to be closed if its
complement in E is open, l.e., if, given any vector x not in K,
there is some ball centered at x which does not intersect K.

Now let E be a vector space, and let | | and || be two norms en
E, such that both E, || and E, | | are Banach spaces. These two
norms will be said to be equivalent if there are positive numbers
a and b such that, for every vector x, |x| ¢ a|x] and (x| & bix|.
[In intuitive terms, if each norm, after a suitable rescaling,
bounds the other.] MNote that eglivalence of norms is an eguivalence
ralation, and that two norms are equivalent if and only if they
define precisely the same open sets on E. It normally happens in
practice that the actual numerical values asscociated with a norm
are not relevant to one's particular problem, but rather only that
norm up to egquivalence. Indeed, it is possible to treat our subject
referring only to the open sets (i.e., to equivalence classes of
norms) , rather than to any particular norm. The resulting treatment
is more elegant, and asccasionally more awkward. We shall not proceed
in this way, howevar, because it would require a brief detour inte
topology. As an example of equivalence, we may note the following
fact: any two B's in the second example on page 4 give rise to
equivalent norms.

I.-tl.”h-:mnnuhlplnl. A subset F of E is called a
subspace if the following two conditions are satisfied: 1) F is a
vector subspace of vector space E (i.e., sums and numerical multiples
of vectors in F are again in F), and ii) F is a closed subset of E.
As motivation for this definition, we make the following cbservation.
Let F be a subspace of Banach space E. Then, by condition i), F
is itself a vector space. Since avery vector in F is also a vector
in E, the norm on E alsc defines a norm on F. We now claim that
condition ii) implies that this vector apace F, with this norm, is
complete (i.e., is a Banach space). [Sketch of proof: Since the
norm in F comes from that in E, every Cauchy sequence in F is also
a Cauchy sequence in E. Since E is complete, every such sequence
converges to some vector in E. Since F iz a closed subset of E,
this vector must in fact be in F. Hence, F is complete.)

We see here the first of several differences we shall encounter
between finite—dimensional and infinite-dimensional Banach spaces.



In the finite-dimensional case, condition ii) for a subspace follows
already from condition i), i.e., every vector subspace of finite-
dimensional E is necessarily closed. [Geometrically, e.g., a plane
through the origin in Euclidean 3-space is necessarily closed.] This
propaerty does not hold, however, for infinite-dimensional Banach
apaces:

Example. Let E be the Banach space of the last example on page 4
(bounded sequences of reals). Let F be the subset of E consisting
of all sequences, (r,, ¥, . . . ) such that r, = 0 for all 1 2 N
for some N. |[That is, F consists of segquences which are "all zerces
after a while".] Then, since the sum of two sequences in F is again
in F, and since a numerical multiple of a sequence in F is again in
F, F is a vector subspace of vector space E. We claim, however, that
this subset F is not closed. Consider the element x = (1, 1/2, 1/4, .
« « ) of E. This x is not an element of F. If F is to be closed,
then there must exist a ball, centered at x, which fails to intersect
F. We show that there is no such ball, whence F canncot be closed.
Let r be any positive number, and let B be the ball centered at x,
with radius r. We must find a vector common to B and F. Set

y= (1, 1/2, 1/4, . . . , /2", 0, 0, . . . ), vhere n is chosen
sufficiently large that 1/2" ¢ r. Thenjx - y/= (0, 0, . . . , 0,
Hﬂlr 211*2:-;-’:”“1:'}'{-”2:*1- Thus, the wvector
y ia in the ball B. But y is also in F (since F consists of sequences
which are 0 after a while). Hence, this y is common to B and F.
[Compare this arqument with the argument, in the middle of page 5,
that F itself is not a Banach space.]



3. Banach Spaces from Banach Spaces

In this section, we discuss two methods for ceonstructing Banach
spaces from Banach spaces. In particular, applied to our examples
these methods yield numerous new examples.

Let E and F be Banach spaces. Denote by G the collection of all
ordered pairs, (x,y), with x a vector in E and y in F. This set G
is made into a wvector space by defining addition and scalar multi-
plication component-wise, i.e., (x,¥y) + a(x',.¥') = (x + ax', v + ay').
We now wish to make this vector space G into a Banach space, i.e.,
we wish to define a norm on G. Set |(x,y)] = |x| + |y]. The three
conditions for a norm are immediate from those conditions in E and
F: e.g., latx,y)| = |(ax,ay)| = lax| + lay| = lalix| + |q|v|
= ja) (ix|+\v]) = \a} |(x,y)| . Thus, to show that G is a Banach space,
we must only check completeness. I.ltl:l,g'l‘.l. {::.rij, a = «

a Cauchy sequence in G. Then, for avery positive € there is an N
such that “‘.‘l'?ﬁl} - {ljrrjﬁli whenaver ’-rjiﬂu But H:rrli
'hjrrj]'l-lli—:jl‘l‘tri'fjim Hence, '1' :Iizp--.il-ﬂ
Cauchy sequence in E (whence it converges to some vector x in E),
-lrlrrz....hammmur{mnmw
some vector y in F). Consider now the vector (x,y) in G. We have
H"ﬂ"{:j,'fj_”' ke - %) +|y--1r1[. Since }w Y

= J.}r-yﬂ-ﬂtml:gminlmdﬂ,uhaﬂ

limit |(x,y) - (x;,¥;)] = 0. Hence, our sequence converges to (x,¥).
We have shown that G is complete; hence, is a Banach space. This
G is called the product of Banach spaces E and F, written G = E X F.
Note, for example, that each of E and F may be regarded as a subspace
of E %F.

The second construction is like an "inverse" of the first. Let
E be a Banach space, and lat F ba a subspace of E. Then in particular
F is a vector subspace of vector space E, and wo we may take the
guotient of vector spaces: denote the resulting vector space by G.
[In more detail: take two vectors x and x' of E as equivalent if
their difference, x - x', is an element of subspace F. Thie is an
equivalence relation, and G is the set of equivalence classes. To
add two elements of G (equivalence classes), find the sgquivalence claas
which includes the sum of one representative from each summand (noting
that this is independent of the choice of representative), and
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similarly for scalar multiplication.] We next introduce a norm on
this vector space G. For o any element of G (equivalence class),
let|ol| be the greatest lower bound of |x|, as x varies over the
eguivalence class ® . This is indeed a norm on G. [The third
condition for a norm is immediate, and the second is not hard. For
the first, first note that always |«| Z 0, Ifla]| = 0, then thare
is a sequence Xy, X,, . . . in o with limit |x,| = 0. Since P is
closed, therefore, the vector 0 in E must be in « . Hence, since
® has representative 0, we have o = 0.] Finally, we show that this
G is complete. Let ofys t.....h-lnmﬂwminm By
“iﬂnmﬂm,nmwmlihl-iﬂ
!1{2", Choose any vector x, in o« ,. Choose vector x, in o , - o,
with |x,|%fel, = @«,| + 1/2, vector x, in o, - «, with |x,|
il":" ._-2]1-13‘4, etc. [These uhnimmm:lhl:+:rhﬂm
of the norm in G.] Thus, for 1%2, we have |x,| £ 1/277°. HNext, set,
hllanhi,ri-:l-b::-l-...dr:r Then, fnrlluhi,rlhhqi.
w,mmm.mf-unthlmu!ﬂ-:'hthlriﬂ:n
a Cauchy sequence in E. Hence, this sequence converges to some vector
¥ in E. Denote by o the equivalence class containing y. Then
|« - « | %|y - y;| (by definition of the norm in G}, and so, since
ﬂlriw-m?ml.mdimﬂmm ! in G. We
have shown that every Cauchy sequence in G converges to some vector
in G, i.e., that G is complete. This Banach space C is called the
quotient of Banach space E by subspace F, and is written E/F.

The sense in which these two constructions invert each other
is this. ILet E and F be Banach spaces. Then E is a subspace of the
Banach space EXF (namely, the subspace consisting of pairs (x,y) with
y = 0). Hence, we may take the quotient of EXF by this subspace E.
The result is what one expects: (E XF)/E = F.
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4. Open Mapping Theorem

In this section we establish an important property of Banach
spaces. This property is not only useful in applications, but also
gives insight into the structure of the definition of a Banach space.

We shall regard the open mapping theorem as a criterion for
equivalence of norms.

Theorem (open mapping). Let E,| | and E, | | be two Banach spaces
(based on the same vector space E), and suppose that there is a
positive number a such that ]2} £a|x| for every vector x. Then
these two norms are equivalent, i.e., also |x| £ blxl for some b.

Proof: First note that no generality is lost by setting a = 1.
Next, introduce a copy, F, | | , of Banach space E,] ], and let 7
denote that mapping from E to F which arises from the identity

mapping on E. Then T is linear, one-to-ocne, onto, and norm-decreasing

(i.e., |T(x)| £ |x| for every x in E). Denote by B the ball with

radius one and center 0 in E, by B' the subset T(B) of F, and by

B' the closure of B' in F (i.e., E F
——

the set of all vectors in F . s "

intersects B'). We must show
that the subset B' of F
contdins some ball centered
at 0 (for, if 1/b is the

radius of such a ball, then we shall have |x| £ 1 whenever |T(x)] & 1/b,

which implies immediately that |T(x)| £ b x| for every x in E). We
divide the proof into three steps.
The set B' in F contains some ball. Suppose nota We obtain a

contradiction. chnuuvmrtlnntin'ﬁ"' Then, uim?l:ﬂn—d.

there is mhnllnl,mtmdutzl.mﬂum-nlhnmt
intersect B'. The set 2B' (the —TF
set of all vectors of the form
hwlthxinizl_mmtmtun
a ball (since B' does not), and
hence in particular cannot

mul.. Choose, mrm.
vector hllhtmi::l'
Gince 2B' is closed, there is '
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some ball B, centered at x, such that B, does not intersect 2B'.
ﬂ—llzlm#nl.mwﬂhm-mlmﬁhum
HII Hwﬂ'mnntmtl!.nlzt chuuuuxainn but not in 3B°.
Then, choose ball B, mu:ﬂ:t:,.mthummﬁr,:
l“tﬂlz.mmlwm;ulmtmmrnftutn!l:
mmm-m,nm-mﬁ.ﬁ....mL
which, by construction, must be a Cauchy sequence. Hence, this
mmrmm_mlmr* nrunnltmt.iﬁu t.h.tl
% cannot be in B' t-uu-‘i",-.n- = @), or in 28' Einu-l;nﬂl‘ =9,
atc. mtthhhnunntrnﬂiutiuu,ﬂnrn'u!l'uﬂ' . .
(which follows from the fact that Bw2B y3By. . . = E, and that T
is onto).

The set B' in F contains some ball centered at 0, Let B'
eontain a ball centered at T(x), where x is some vector in E. Then
B - 7(x) contains a ball centered at 0. But B’ - T(x) = T(B) - Tix)
= (T(B) - T(x)) = T(B - x). Choose positive number n such that
B - x is a subset of nB. !huﬂnl}-nﬂ:l]-nn' contains a ball
centered at 0 (since T(B - x) does). Hence, B' also contains a ball
cantared at 0.

The set B' in F contains some ball centared at 0. Suppose not:
We obtain a contradiction. Let B' contain the ball of radius &
centered at 0. Since B' contains no ball centered at 0, neither does
m'. mFMmtm-mmnm Hence, we may choose
a vector T(x) in B', but not in 3B'. Since T(x) is in B', we may
choose a vector T(x,) in B' with |?(x) - T(x,)| £ €/4. Denote by B,
thhﬂlu!rﬂiﬂlf!lhmt:l >
Then (since | Tix) - 'Hlll'l £€/
-ltiﬂllmtnimthlhnunf
radius €/2 about T(x,)) T'!lll
contains the ball of radius
€ /4 about T(x). Hence, we may
choose vector T(x,) in T(B,) |
with [T(x) - T(x,)|£€/8. Denote
hrlathnhnllnfrﬂiulfllbnutxz ﬂm!l!lmtuin-lblull
radius €/8 about x. Hence, we may choose 'rmtur T(xy) in T(B,)
with |T(x) - T(x;)|£€/16. Denote by B, the ball of radius 1/8 about
Xy Mhﬂhﬂ.-MIlT-n-ﬂm:r
Xyr + - « in E. Since [T(x) - Tix,)| £ , the T(x;) converge to
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T(x). Since T(x,) lli.i.l T(By_,), %; must be in By gy Lo, we
hml:i-ui_,ﬂim'l. Hence, Xyv Ezs o« 0 s is a Cauchy seguence
in E. Denotes by y the vector in E to which it converges. Then,
since x; is in B (i.e., since [x,(< 1), and since fxg = xy.q]% Jﬁ"""‘,
we must have |y|< 3, i.e., y must be in 3B. Furthermore, since T
is norm-decreasing, and since limit |!—:1[ = 0, wa must have
lmit |P(y) - Pix,)| = 0, i.e., the sequence T(x,) in F converges to
T(y). But we have already seen that the ﬂ:il converge to T(x):
Hence, T(x) = T(y). Thus, since T(y) is in 3B', T(x) must also be in
36'. This is a con#radiction with our original choice of T(x).

This completes the proof of the theorem.

The result above is beautiful and intricate. To see what it
means, consider first the finite-dimensional case. Imagine that we
have one norm on our vector space, and wish to construct a smaller
one. One could imagine obtaining a new norm by "scaling down the
original norm by a positive factor, one for each direction (i.e., for
each dimension) in the vector space”. If there are only a finite
nunber of dimensions, then these "scaling factors" will have a
minimum, and so the new norm will also bound (up to a factor) the
old one. In the infinite-dimensional case, however, things aras
different. Now, one could imagine "choosing different factors for
the various directions, such that these factors approach zero", thus
obtaining a new norm which dees not bound the old norm. Suppose,
however, that one wants ones new norm to yield a Banach space: Then
one must be careful about completeness, for scaling down the old norm
“too much" may lead to new Cauchy seguences whth nothing to converge
to. Is it necessary to actually have the "scaling factors" bounded
away from zero in order to avoid destroying completeness? The theorem
says yes.

The open mapping theorem is somewhat analogous to a theorem in
topology: Given a compact, Hausdorff topological space, then «ng
finer and no coarses topology can be both compact and Hausdorff.
The open mapping theorem says, similarly: Given a Banach space, then
no larger and no smaller norm (except for equivalence) can also give
a Banach space. In fact, whenever, in an argument about Banach spaces,
one is tempted to try to use compactness (which is almost never
available in this subject), one should try instead to apply the open
mapping theorem.
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5. splitking

An important issue about a subspace of a Banach space is that of
whether or not it has the property called splitting. In this section,
we introduce this property, show that it is always satisfied in certain
cases, and give an example in which it is not satisfied.

Let E be a Banach space, and F a subspace of E. A subspace G of
E is said to be complementary to E
F if the following property is ’
satisfied: every vector in E can
be written in one and only one
way as the sum of one wvector
in F and one in G.
Example. Let E be the Banach
space of all seguences, {rl,:j,...j,ufuum,mm
the r; converge, and let the norm of such a sequence be the least upper
bound of the absolute values of its éntries. Let E be the subspace
m&—mmmmmn,mlmfihm
subspace consisting of constant sequences. Then F and G are
complementary. :
Let F and G be complementary subspaces of Banach space E. We define
a mapping from G to the guotient (Banach) space E/F as follows: This
mapping takes the vector x in G to the equivalence clags (element of
E/F) which contains x. This mapping is clearly linear, one-to-one,
and onto. Furthermore, this mapping is norm-decreasing (since the
norm of x in G is just the norm of x in E, while the norm of an
aguivalence class (in E/F) is the greatest lower bound of the norms
of the representatives (including x) of that class). By the open
mapping theorem, therefore, this mapping is an isomorphism of Banach
spaces. Thus, if G is complementary to F in E, then G represents
"a realization of E/F in E", The Banach space E/F starts out as just
an abstract Banach space: It does not "live” in E. The finding of
a complementary subspace (to F) "realizes E/F".

Let E be a Banach space, and F a subspace of E. The subspace F
is said to split if there exists in E a subspace complementary to F.
The purpose of this section is to understand this definition.

We first show that "very small” subspaces do split.

Theorem. Let F be a one-dimensional subspace of Banach aspace E. Then
F splits.
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Proof: mm:‘.-&n}:,l-l.hr. Denote by B the ball

with center x, and radius 1/2. Next, denote by [ the collection of

all subsets C of E having the

following properties: i) C is

convex (i.e., the line segment

joining any two vectors in C

lies within C), ii) C is radial

(i.@., if x is in C and a is

a positive number, then ax is .

in C), iii) C contains the ball

B, and iv) C doces not contain

the vector - x,. There certainly exists at least one subset in € ,

namely, that consisting of all positive multiples of vectors in B.

Partially order the set [ by inclusion (i.e., 1711-1:2 if clcczl.

We next note that this partially ordered set [° satisfies the condition

for Zorn's Lemma (namely, that every totally ordered subset of [ is

bounded above), for, given a totally ordered subset of [° , their

union gives such a bound. [Conditions i)-iv) for this union are all

immediate from those conditions for the C's in the totally ordered

subset.] So, by Zorn's Lemma, there exists a maximal element, C, of .
We next obtain two properties of this set C. Pirst, C(-C) = E.

Indeed, if there were mome vector x in E, with x in neither C nor

=C, then we could consider the set C', consisting of the union of all

line segments joining a positive multiple of x to a vector in C.

This C' would clearly satisfy conditions i), 1i), and iii) above.

It would, furthermore, satisfy condition iv), for if —:nnr-inﬂ'.

Hﬁ"-lu'ﬂ'l'r{lpu‘llﬂh,finﬂlfthlnﬁmldhlﬂl--lfl

{lﬂﬂaﬂm:mldh.h:-c. But the existence of this '

(an element of [C, since it satisfies all four conditions for membership)

would vioclate maximality of C. Hence C y(-C) = E. The second property

is that C is closed. Indead, if not, we could let C' be the closure

of C. Then this C' clearly satisfies conditions i), ii), and ii4)

above. Furthermore, it would satisfy condition iv), for, were -x, in

i.':'.th.r-wﬂdh:ntnhmmtnrrhcvith]r+:u|£1ﬂ.

But - ¥y - 1/8 x, must be in C (for I{-r-lﬂxu}*:ﬂl = |y +

+1flln|£|?'l".ﬂﬂ1+|lfﬂ!n|f;3fﬂ=.m-?-1fﬂlﬂilll in

B). m.nl.panl:hmnm,lﬂ{r!-l-l.fil-g-:l.flx.]--uuzn

-uuunnc,m-:'muhu::-mmnm. Thus,
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the closure C' of C must also be an element of . This violates
maximality of C unless C is already closed (so C' = C).

Now set G = C n(-C). This subset G of E is a vector subspace of
vector space E (since, for x and y in G, ax + (¥-a)y is in G (for
0fa<l; convexifty of C and -C), ax is in G (for a > 0; radialness of
C and =C), and -x ies in G (since, for x in G, x is in both C and -C,
whence -x is also in both). Purthermore, this subset G is closed
(as the intersection of closed subsets C and -C). Thus, G is actually
a subspace of Banach space E. This subspace G is our candidate for
a subspace complementary to F. :

Hntmmtmmmhnitminmﬂns;mma
a linear combination of x, and a vector in G, for, were this possible,
:iitulfmmmmh-lnﬂilﬂﬁntrudintlm, :uﬂ'xﬂ__i:nnth
-C). Thus, we have only to show that every vector in E can be written
hﬂmunlmmmﬂ:u-duw&nn. Let x
be any vector in E (say, x in €).
Denote by ¥ the straight lina in
E through x parallel to the vector
%y (i.e., the set of all vectors
of the form x plus a multiple of e M
lﬂ}. Choose vector y a little
hqunl:umthnlimjuinlnq:
and Xg- By making the :.l:l.t'l:.ll"
_ulnnug:h.nmhtrlrhﬁti.n..nmm[r-xulélﬁi.
Clearly, there is a point z on the line " such that the line seqment
joining z and y contains -x,. Then this z cannot be in C (for y, being
in B, is necessarily in C, and if z were alsoc in C then, by convexity,
~%g would be in C, contradieting definition of C). Hence, the line
Y has some points in C and some in -C. Therefore, there must exist
some point w on ¥ "at the interface" (i.e., such that, given any &,
the intersection of ¥ with the ball of radius & about w intersects
both C and -C). Since C and -C are closed, this w must be in both
C and -C, i.e., w must be in G. But x can be written as a linear
nu.h:l.mtima!xﬂandu. Thus, the subspaces G and F are indead

complementary, completing the proof.

It is immediate from this result that every finite-dimensional

subspace of a Banach space splite. Indeed, let F be such a subspace,
nndhl::l...-.ulhliﬂlhrr. MHE,_.....GH

2
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l“ﬂ__‘fﬁ“““ﬁ.-f-,l‘r_ﬂﬂlr.
Then G, - - - n G, 18 a subspace complementary to F. It is also

easy to show that any subspace of finite co-dimension (codimension of

F in E equals dimension of E/F, i.e., is the dimension of "what is

left over in E after F") splits. Indeed, choose basis Kye = o v 0 K
!wlﬂ',nﬂwtnﬂm:l,... ,!nnfthlnmm
classes in E. utﬂhmmmm:v....:‘. Then

G is complementary to F. [This same arqument does not work when E/F
is infinite-dimensional, for then the G, so constructed, may not be
closed. )

We thus conclude that, given Banach space E, "very large” subspaces
(finite do-dimension) and "very small" subspaces (finite dimension)
split. Thus, if any subspaces are to fail to split, they must be
of "intermediate size" (infinite in both dimension and co-dimension).
It is perhaps not even obvious that there existsamn example of a
subspace which fails to split. It turns out that such esxamples do
exist, but that it is suprisingly difficult to display one. We
now give such an example (an example we shall not use again, but
which is nontheless perhaps worthwhile, eince it gives some insight
into the nature of the notion of splitting).

Example. For purposes of this example, we define a functional on
Banach space E as a linear mapping f from F to the reals such that
|etx)l ¢ |x| for every x in E.
mw:ltmm:pmmhﬂnqnfﬂlml.
{:1,:2,...].nfr-llmm:u:}!whm-hlnluumm,
:&tﬂ,iﬂfiﬂiﬂ,ﬂﬂitﬁﬂﬂtﬂﬂflﬂﬂhl“ﬁilﬂﬂllm.
We mext wish to claim that this Banach space E' has the following
property: Giﬂlnﬂrm,:l,:z,... .ufunitmh:l,
tﬂ-h“mﬂtiml!mslnnhthutth-wulm
f(lil, f{::l,...!l:l.lltumtn:m. The proof is as
follows. PFor any finite subset L of the positive integers, and any
pnﬂﬂnhtmi.hmhﬁiithmln“uhﬂiuﬂhrm
the sum Erj, whare :1; {rl, Tor o o o ). If, for any finite L,
we did not have _.tsn-n,ﬂ:uummmmz let f be the func-
tional which ass to x = (8,, 8,, ---l"l'h-nﬂblr!f::l-flj- So,
nmmpunmtw_gst-uturmﬂm muu!in&lnli-l
that ll:;lalﬂ. Then, fine integer n, such that |s)y] £1/16 whenever
jyn,. Next, choose finite IF. disjoint fram :1, such that |lm;1,u,
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rh—.ﬂuhlfnlyll-_ﬂr' ‘W_mj;nr Next,
choose finite L°, disjoint from L' and L°, such that |s"3|>1/4.
Continuing in this way, we obtain disjoint !:I.nihuti]:' !'..1, lé‘_. & e =
tmmmnm[ll,nz,...lﬂ!mm
according to the following rule: Ii-ﬂuiiiilmﬁfhl, L’, sesy
ll-+ll.£1hi.nl:-lhjwithl:;'1pu-iﬂn,Hﬂli--].i!!:l.
hhmhjﬂthﬂ:g'l negative. Now let f be the following
nuuﬂmﬂmmuhmllu !nr:-[rl.r....}lnll,
ﬂ:l:}-rllld-rﬁ,-l-... {(noting that this sum converges, since
ﬁllﬂﬂfﬁllﬁﬂlmﬂlmﬂ!thlriil!mtl,Ihl'l:l!ﬂll.’.]Ill
bounded). But, by construction, |f(x,)]21/8 for i one of the n,.
Hence, £(x,). f(x;), . . . cannot converge to zero.

We next denote by E° the Banach space consisting of all sequences
(£, 3, . . o ) Of real numbers for which the sun ¥ [r,|” is finite,
where the norm of such a sequence is the sguare root of this sum,

We claim that the Banach space E° fails to satisfy the property that
-jIﬂanrll. That is: mﬂm:mﬂlﬁ,ﬁ,...
-Innitmmrlinl:mﬂthltﬂx’_lmm:m!nrm
functional £. Indeed, let X, = 1,0,0,...),; x, = (0,1,0,0,...),

x, = {(0,0,1,0,...), ete. 8Set a, = ﬂl_l], ﬂu:-; f is some functional.
Then for infthnﬂﬂ:-!l Tyr T + + « Wwith T |r 0" finite, the sequence
in E whose n uﬂilyn-rl +...+rn:nismmhy,uhmtt
converges to some vector ¥ in E. Then, since f is a functional, the
mﬂril of real numbers must converge, whence the sum

T rya; must converge. I!hltiltnllf,thnmlimhm
that § rya, is finite whenever T |r,| % 1s finite. But this is
possible only if Z]-ilzuﬂnit-. But this, in turn, requires that
the a, converge to zero. We conclude: £(x;) approaches zero. But
this is what we wanted to show.

Thus, we now have two Banach spaces which differ in a certain
respect. [In particular, we know that there exists no isomorphism
from EX to EZ.]

The next step is the introduction of a certain mapping from E'
to 8. Let x;, X,, . . . be the sequence (ordered in some way) of
all wectors in E2 of the following form: al¥y, Ty « + o o X0 0, 0,
~~*huh-rn=1;1-.¢;r“mrutimu.uﬂthunmhrnisu
chosen that these are unit vectors in EZ. The mapping " is now
defined as follows. Given any element x = (8y, 85, . . . ) in 8%,
let Vix) be that element of E° which is the limit y of the Cauchy
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mul’_-ﬂ'—ur!-al:1+...¢.ﬁmmt
¥+ ¥ys + - « is indeed a Cauchy sequence since |x,| = 1 for every

i, while T (s;] is finite). This mapping ¥ is clearly linear.
Furthermore, it is onto E° (for finite linear n:-himtlunln'!thui
Itldlnlninl:}. Furthermore, this mapping is even norm-decreasing
iﬁt.mm:imunit,lﬁzlt...+:-:n[5|ll|+...+h.n.

Denote by K the kernel of the mapping 4", i.e., the set of all
vectors x in E' with Y*{x) = 0. Then, since 4" is linear, X is a
mmdmmr‘. Further, since " is norm-
decreasing, K is a closed subset of E' (for, given sequence %,, Z,. . .
in K, mginqtnl;thnlﬂll*'\"'tli”f I:-lil.m.dnul
“Ili umwmtn:,th-?‘[!ij converge to Y{z). But "f't:i'_l--ﬂ
and so we must have 4"(z) = 0, i.e., z must also be in K.)

m,ﬂmmm:puﬂll,-nd:uhml- We claim,
finally, that m-mﬂulmm-put. Suppose that it
did, say with complementary subspace G: We obtain a contradiction.
Since the mapping " is onto, the subspace G must be isomorphic with
mhmulz. m“-mﬂm:hnz, each unit,
ht-ﬂmt!nrmrfwumlfmn:,f.nppli-ﬂtuthhm.
approachas zero. ﬂhm!zisimrﬂinﬂthﬂ.ﬁﬂhtlinlﬂﬂlﬂ
seguence in G. Eimﬁhnnuhupmnut!l,ﬂuhuinnlil.ﬂl:
mlnll. Thnrmltlngmﬁlin!]', wl,uz....w:l.u
have the property that, for every functional f on E}, limit f{ui'_l = 0
tltnﬂmfmuﬂmﬂmllmumhw“nw
on the subspace G). l'u:ﬂnmu.thlmo!ﬂumburlwll...
will be bounded balow (since thnll_i_ arose originally from a seguence
of unit vectors in E°). But, (after rescaling the w,) so that they
are unit) this contradicts the property of E that we showed at the
beginning: mrluij-!n!ﬁrm!, ‘vil—}n. This contra-
diction establishes that the subspace K of E' has no complementary
subspace, completing the example.

The subspace of converging segquences in the Banach space of
bounded sequences also has no complementary subspace. Every subspace
of Izhlllﬂtﬂpl_ntlrf subspace.

The general rule seems to be that either one can discover with
relative ease some explicit complementary subspace, or none exists.
Note, incidentally, that, in the finite-dimensional case, every subspace
splits. It is for this reason that splitting is not normally mentioned
in the finite-dimensional case.



The "structure-preserving” (and, therefore, the useful, and
m}mmwmmmmmmm
bounded linear mappings. In this section, we introduce these, and
give some examples and properties.

Let E and F be Banach spaces. A mapping T from E to F is called
a bounded linear mapping provided i) T is a linear mapping of vector
spaces (i.e., for every x and y in E, and every real number b,

T{x + by) = T{(x) + b T(y)), and ii) T is bounded {(i.e., thera exists
a number a such that, for every x in E, [T(x) £ a|x|).

We have already used this notion, although not this term, several
times. What was called a functional on page 17 was precisely a
bounded linear mapping from E to [R. Banach spaces E, | | and B, |/
are equivalent (page 7) if and only if both the identity mapping
from E, | | to B, [} and its inverse are bounded linear mappings.
The open mapping theorem can be restated thus: If a bounded linear
mapping from one Banach space to anothar is one-to-one and onto
{so its inverse aexists), then that énverse is also a bounded linear
mapping.

For T a boundad linear mapping from Banach space E to Banach
space F, the smallest (necessarily non-negative) number a such that
|r(x)| £ ajxl for every x is called the norm or bound of T, and is
written |T).

Example. Let E be the Banach space of bounded sequences (with norm
the least upper bound of absolute vlhlues of entries), and F the
Banach space of convergent sequences (same norm). The identity mapping
from F to E (every element of F is automatically an element of E) is
a bounded linear mapping. The mapping from F to R which assigns to
each sequence its limit is a bounded linear mapping. The mapping from
lhn-hiﬂhmhnltn{rl,r,...lth.ntﬂuru.’lnlm
linear mapping. Each of these mappings has norm one.

Example. Let E be the Banach space of sequences the sum of the absolute
values of whose entries converges, and let F be the same, with the sum
of the sguares of absolute values. The identity mapping from E to F
is a bounded linear mapping, with norm one. The mapping ¥ at the
bottom of page 18 is a bounded linear mapping: the remarks of that
paragraph whows that its notm is less than of equal to one.
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Example. Let E be the Banach space of C" functions on the reals,
the values of whose first n derivatives are bounded (page 6). Let
F be the Banach space of C" | functions. Let T be the mapping
"take the derivative" from E to F. Then T is a bounded linear
mapping (with norm one). The mapping from E to R given by "evaluate
the derivative at real number 7" is alsc a bounded linear mapping
with norm cne (note that in this case, however, there is no nonzero
x with [T(x)| = |7l |x]).

In the finite-dimensional case, the second condition for a
bounded linear mapping is unnecessary: evaery linear mapping from one
finite-dimensional Banach space to another is necessarily bounded.
It turns out that boundedness does not follow from linearity in the
infinite-dimensional case, but examples seam to be rather difficult
to display.

Example. Let each of E and F be the Banach space of bounded sequences
of real numbers. Denote by A the subset of E consisting of segquences
which are zeros aftar a while. Mlhlmm:ﬂw
space E (but not a Banach subspace). trl....,rn.n.u....l
hn,lﬂ:ﬂrl,...,rn,ﬂ.....3-{:1,212,3:'3....,1::.
B = &0l ﬂmlr,i!ummmmimufmitlw
to all of E, we shall have our counterexample. Consider the collection
of all vector subspaces of vector space E having in common with A
only the zero vector. Ordering by inclusion, we have that the
hypothesis of Zorn's lemma is satisfied. Let B be a maximal element:
Then, by maximality, every vector in E can be written in one and only
one way as the sum of one vector in A and one in B, For x = y + 2

in E, with v in A and z in B, set T(x) = T(y). This is the desired

extension.

Finally, we consider candidates for subspaces defined by a
bounded linear mapping. Let E and F be Banach spaces, and let T be
a bounded linear mapping from E to F. We denote by Ker T, the kernel
of T, the set of all vectors x in E such that T(x) = 0. Then Ker T
is clearly a vector subspace of vector space E. We claim, furthermore,

that Fer T is closed. Inﬂ.d,ltt:l,xz....hlwh-th
converging to x in E. Then, since I‘.F[:l -T[:il'fflﬂl'.l—:i[.
the sequence T(x,), T(x,)}, . . . in F converges to T(x) in F. But

the T(x,) are zero, whence T{x) = 0, whence x is also in Ker T.



22.

Thus, Ker T is a subspace of E. Next, denote by Im T, the image
under T, the set of all vectors in F of the form T(x) for some x in
E. Then Im T is clearly a vector subspace of vector space P,
Howaver, Im T is not in general closed.

Example. Let E be the Banach space of bounded sequences, and F that
of convergent sequences. Let T be the bounded linear mapping from

Itmr-:l.th-uﬂnnﬂrl.ri....I-tt,rzﬂ,r:n,...}

(so |2| = 1). Then the vector (AT, 1//Z, 1/f5, . . . ) in F

is certainly in the closure of Im T, but is the image of no vector

in E (for the only candidate is (I,J2,/3, . . . ), which is not in B).

In the finite-dimensional case, Im T, as a vector subspace, is always
closed.

We shall next be concerned with spaces of bounded linear mappings.
Fix Banach spaces E and F. We denote by J(E; F) the set of all
bounded linear mappings from E to F. We define addition and multiplicatien
by reals within this set J(E; F) thus: For T and T' in J(E; F),
and a a real number, let T + aT' be that mapping with (T + aT') (x)
= T(x) + a T'(x). ([Note that the linear mapping T 4 aT', so defined,
is indeed bounded, for [(T + aT')(x)| = |T(x) + a T'(x)] = |r(x)|
+ Jal lz' ()l £ (el + jal J7°]) x|. Thus, |T + aT'[<|T|+ o I7] .}
With these operations, the set [ (E; F) becomes a vector space.

We next note that "take the norm" is a norm on the vector space

d (E; F), the three properties for a norm baing immediate frem the
little formula just derived. In fact, this vector space with norm,
L (E: F) is even a Banach space, i.e., it is complete under its norm.
Proof: I.-t!l.'r:,...h-lﬂunﬂhymin L(B; F}. Then
for each vector x in E, we have, since {litl}—'l'j{::fipiul‘j{lﬂ.
that T, (x}, T,(x), . . . is a Cauchy sequence in F. Hence, this
sequence converges to some vector in F, which we denote T(x), thus
defining a (clearly linear) mapping T from E to F. We next note that
this T is bounded, for, for any x in E, [T(x)] = lim |7,(x)| = 1im
|7y ) - (2 - T4 |2 )|+ Lim o1y - 20| £ (7] 4 1dm
[Ty = T4l) [&l. We show that the T, converge to T in J(E: F).
Given positive E.uhmuiunmulwi—tjuefurj;i. Then
ler - 2 G £ dmie (@ - 200 + (1) - 7) OIS Lim (07 - Ty) G2
+1h|t!j-!1{:}IiEhl,Ihm T-T|<£€. Thus, we
=m1mm£tt:rlunmm. This construction yields
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many new Banach spaces from those we have considered already.

One generalizes the notion of a bounded linear mapping to
saveral independent variables as follows. I-rl:ll.‘..,lnnnﬂl
ba Banach spaces. A mapping T which assigns to an n-tuple of vectors,
one from each of the E,, a vector in F is salled a bounded multi-
linear mapping provided, i) T is multilinear, i.e., linear in each
variable separately {-.q.,!{::l,::,-l-n:',x;,....,:n]-!u!. X0
.-..I'h}'*l!'{xl;::';---,xn}}.lldill!hw,i.-.,
there is a number a such that [r(x;, . . . , x M€ a Ixlixy| « - - x].
The smallest such number is called the bound, or norm, of T, and is
again denoted |r|. The various properties of bounded linear mappings
carry over almost immediately to similar properties of bounded
multilinear mappings. In particular, thtutn!.tllmhfrm!l...
.,lntur,w.ftll..*..ln:!],lilmahmul.

There is a certain sense, which we now explain, in which
multilinear mappings are extraneous. Let E, P, and C be Banach spaces.
We define a mapping 1" from the Banach space JZ (E, F; G) to
Le; L(P; G)) as follows: FPor T in J (B, P; G), let 4(T) be that
element of J(B; [(F; G)) which sends the vector x in E to that
element of [(F; G) whose action on vector y in F is the vector
T{x,y) in G. This mapping is clearly linear. It is, in fact,
invertible: Indeed, ¥ * sends the element W of J(E;Z (F; G))
to that element of J(E, F; G) whose action on x, ¥ (x in B; y in P)
is the element [W(x)](y) of G (noting that Wi(x) is an element of
LIF; G)). It is furthermore immediate from the definitions (although
confusing in detail) that T is norm-preserving. Thus, the Banach
spaces J(E, F; G) and J'(E; L (F; G)) are equivalent. Those who like
I''s will note that our > is a preferred element of [ ([ (B, F; G);
Li®; £(7; 6))). Spaces of multilinear mappings can thus always
be expressed in terms of iterated J's.

We conclude this section with the introduction of two additional
"praferred objects”. Let E and P be Banach spaces. Denote by of
the following element of J (E, (E; F); F): For x in E and T in
ZJ(E: F}), A(x, T) = P(x) (an element of F). Thus, « is the multilinear
mapping whose action is "action of an element of J (E; ¥) on an
element of E". Multilinearity of « is obvious; we have only to
show boundedness. But we have |«i(x, T) = |Tix) <|7f |x!. Thus,
not only is & bounded, but its norm is one. For the second cbjeot,
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let E, F, and G be Banach spaces. Let P denote the following element
of Z(J(e: P, XL (F; @); (B G)): FPor T in [/ (E; F) and U in
L#; 6), let P(T, U) = UeT (composition of mappings: a mapping
from E to G). We must first show that the linear mapping UoT is
actually in J(E; 6), i.e., that it is bounded. For x in E,
|twer) (x)f = [ur2ix)1] €[0] Jrx)1£ |u] |2) |x| , whence [ver(&[u] |rf.
Thus, UeT is indeed in [ (E; G), and so our mapping f is indeed
well-defined. It is obvious that this P is multilinear. Thus,
we have only to show that f is bounded. But, for T in Z(E; F)
and U in L(¥; G), we have |p(r, v)| = [ven|£ (0l I?|. Thus,
is indeed bounded, and in fact we have |B[ = 1. This B, of course,
just performs for us the operation of "composition of bounded linear
mappings". That f is itself a bounded multilinear mapping expresses
the basic properties of composition.

What is so nice about all this is that ewerything in sight is
a Banach space: Everything one tries to do with Banach spaces yields
just other Banach spaces. The result is that one has to learn
in detail but a single kind of mathematical object.
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7. Dexivatives

Elementary differential calculus (of several variables) is of
course carried out in R". But R® is a particular example of a Banach
space. In this section, we shall see that finite-dimensionality
plays essentially no role in differential calculus: We shall, indeed,
repeat the basic ideas of this subject for Banach spaces.

Fix Banach spaces E and F. mummuﬁfuln.m
every polnt x in U, there is a ball centered at x in U). Let £ be
a mapping from the set U to the set F. [In the finite-dimensional
case, with E n-dimensional and F m-dimensional, f is represented
as m functions of n real variables.] ([Wote that f is only defined
on U, Whenever we spesak of the action of f on a ball centered at
a point of U, we shall suppose implicitly that this ball is small
enough so that it is within U.]

Fix a point x, of U. The mapping f will be said to be
at x, provided that, mmmnme,muw
§ such that |£(x) - £(x,)|% € whenever |x - x,|£$. This £ is
said to be just continuous, or C°, if it is continuous at every point
of U.

We next wish to get hold of the "rate of change of f(x) with x".
We first introduce the notion of "zero rate of change". The mapping
f is said to be ,at x, provided that, for every positive
numbexr €, there is'a,number § such that |£(x) - £(xp)| €€ Ik - x,)
ml:—:nlii. mu.fumtlt:upmﬂﬂ'm
deviation of f£(x) from f(x,) mlﬂﬂtnthdlmumnf:!r_:ﬂ
becomes as small as we wish (€ ) whenever x is sufficiently close
($) to x,." Note that, if f is tangent at x,, then £ is automatically
continuous at x, (although the converse, as we shall see shortly, is
false).

The mapping f is said to be differentiable at x, provided that
there exists a bounded linear mapping T from E to F such that
thl—ﬂ:ul-'ﬂ:-:ul:l.lmtﬂ:u. In other words, we reguire
that, given any positive €, there is a positive § such that
| £6x) = £(x,) "T{I—:ﬂll!ll-:uliﬁ vhenever x # x, and |x - x|
€ § . Thus, for differentiability we require that "f - f(x,) can
be approximated, up to tangency, by a bounded linear mapping”. This
T, called the derivative of f at x,, is written Df(x,), so Df(x,)
is an element of Z(E; F). ([This is what we expect. In the finite-
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dimensional case, Df(x,) is represented by the n partial derivatives
of the m functions representing f. But this n)m matrix can bas
régarded as a linear mapping from n-dimensional E to m-dimensional F.]
We shall see shortly that the derivative is unique if it exists.

If £ is differentiable at every point x, of U, then f is said to be
just differentiable. In this case Df assigns, to each point x, of U,
nd-.tﬂhn}ulel: F). Thus, Df is a mapping from U (an open
subset of Banach space E) to J (E; F) (a Banach space). If this
mapping Df is continuous (examples in finite dimensions show that

it need not always be), then f is said to be continuously differemtiable,
oxr

In the finite-dimensional case, continuous, differsntiable, and
continuously differentiable reduce, of course, to their usual meanings.
Example. Let E and F be Banach spaces, and fix bounded linear mapping
T from E to F. Set U = E, and lat f be the mapping from U to F

with £(x) = T(x). m,mmnm:nmu,nmmm:
[£6x) - £(x,)| £\7| jx - x,|. Thus, £ is continuous (given € , choose
€ = €/|7D). By definition of the norm, we have that, for fixed x,
in U and for any number a1, there is an x in U such that

1£6) - H:E,J[ zalrllx - x,|. But by linearity this éneguality continues
tnhnldi!:hr-pllmdhrlnrﬂnhnrmthliu-julninq:udxr
Hence, :mhwnt:ﬂm-ftnm:mlmm
um;plnguh.tuhumrurtmtltm:nl. We next verify
that f is differentiable at x,. Indeed, ﬂ:tl-ﬂl,ul*-'!'{:—:.ﬂl-u
ﬁrﬂl:,mmlﬂtlﬂ-um:mtm:r Hence,
Ht:n:--r. Thnn.nfmimtnthnﬂmt:nufﬂthlﬂth
T of X(E; F). Since this (constant) mapping Df from U to J (B; ¥)
is certainly continuous, our £ is C

Example. Let f and f' both be continuous. Then so is £ + £' (with
action (£ + £')(x) = £(x) + £'(x)). Indeed, given E , find 51

such that |£(x) - £{x,)|£ €/2 whenever |x - x [<§,, and $, such

that |£'(x) - £'(x,)|£ €/2 whenever |x - xg|4{,. Then, whenever

ll - Iutf min IFJ_; ‘z]r we have tff"' £')(x) - (£ + !']flu‘::*.
Irn:inunrugmt,ﬂ-mnfmﬂmtimwn:ﬂh_h
tangent at xg. Next, suppose that each of £ and f' is differentiable
at x,. Then, since the functions with action f(x) - f(x,) - Df(x,)
{:-l‘}lﬂ!‘hl-!‘I:,i-ﬂ'h,“:*:.lmhﬂh“ﬂ:u;
so is thelr sum, (£ + £')(x) - (£ + l"l{:nl - {Hllu} + H'{:DHI: - :nl-
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Hence, £ + £' l.llllﬂ-ﬂm&milt:ﬂ, and, furthermore,

D(f + t'jt:al -nﬂ::n} + n!'{:ul. But now, since the sum of continuous
functions is continwous, it is immediate from D(f + f') = Df + Df"*
that the sum of two C- functions is C*.

Itfullm!rmth-ummthltthldlﬂminnﬂxul,ﬂit
exists, is unique. Indeed, let T and T' be two (80 each is in
Z(B: F)). Then both £(x) - £(x;) = Tlx - x,) and £(x) - £(x,)

- T'(x - x,) are tangent at x,, whence their difference, the mapping
T - T', is also tangent. But the only bounded linear mapping which
is tangent at x, is the zero one, whence T = T'.

Example. Let each of E and F be the Banach space of continuous,
bounded, real-valued functions on the reals. Let U = E, and let f
be the mapping from U to F which sends function @ to ®° (noting
mmmd.mmmum}

Fix element @, of U. Then f is continuous at @,- Indeed,
ht#l-ﬂﬁ,l[ﬂ{?' :r,,’l- [te -, +=1n=r-—'q,1|

£ 10~ @i+ 2191 19~ @] - m.hruts.nq |@ - @ | sufficiently
ﬂllnnlﬂﬂhl!{ﬂi—ff!ﬂ]l“—lllu-ﬂlh, We next
show that this f is in fact differentiable at @,. As a general
rule, it is difficult to show differentiability without first making
a guess as to what the derivative is to be. Taking our cues from
elementary calculus, we guess as follows: Let of be the boumded
linear mapping from E to F which sends element ¢ of E to element
q[m-:qql of F. :huu-hnv-ﬂq}-ﬂful--tw &y
-0 - @, 3 @ =- Q) = (@~ @)% Thus, |ﬂq1-ttqr,}
- ol - i!'nl{ﬁlq'- ®y(“- Clearly, then, (choose g = E£), the
Iiwhqmth-u!tiltmtltqﬂ. We conclude that f is
differentiable, and DE( @, ) = « . Finally, we claim that this mapping
Df from U to J (E; F) is itself continuous. Indeed, |DE(@Q) - DE(Q')
« |pf(q@ - ¢')S219- @'|. Thus, the mapping £ is C.

Example. Let E be any Banach space, and let F be thie Banach space of
reals. Set U = E, and let f be the mapping from U to F which sends
x in U to fi(x) = |x|. !hm,qlm:uinﬂ,filmntim-tttr
for |£(x) - £ixp)| = |ixl - |x,1|%[x - xy| (Choose § = £.]. Howewver,
!nﬂﬂmﬂrhﬂﬂfmﬂﬂlilt:u,m!_ulail. :
For example, let E be B?, with norm [(r, r')| = vmaN(WiW]} Then

f is not differentiable, e.g., at x, = {1, 1).



Let E and F be Banach spaces, U an open subsat of E, and £ a
¢! mapping from U to P. Then Df i& a continuous mapping from U &o
Z(e; ¥). But this Df is a mapping from an open subset (U) of a
Banach space to a Banach space. If this mapping is in fact differen-
tiable, and if its derivative, DDf, is continuous, then f is said
HhtﬂmmﬂmﬂM;ué. In this case, DDf
is a continuous mapping from U to J(E; [(E; F)). Similarly, if
mmuc‘tmmm“nmmmu
to F(B: L (B: F(E; F)))), then £ is said to be C°, Similarly for
Eﬁ. P a non-negative integer. Finally, £ is said to be %™ if £ is
El'fnr-'rn-jrp.

Example. The mapping of the first example on page 26 is €. Since
Df is constant (Df(x,) = T for every x,), DDf = 0, DDDf = 0, ete.
Example. The sum of two CF is cP. This is immediate frem
the facts that the sum of two C- mappings is C', that the derivative
of the sum is the sum of the derivatives.

Bxample. The mapping of the first example on page 27 is €™, Indeed,
DDf is that element of J (E; J (E; F)) which sends @ in E to the
mapping from E to P which sends @' to the element 2 ¢ @' of F.
Hence, DDf is constant. 8o, DDDf = 0, etc. [Just what one expects of
a "quadratic mapping®.]

Example. Let E and F be Banach spaces, and T an element of [ (B, . . . ,
B ¥). Set £(x) = T(x,. . . , x). Then £ ia C*,

ﬁnntlhuwthltmiﬂmufﬂpnppinniltp.

Theorem. Let E, F, and G be Banach spaces, U an open subset of E and
V an open subset of F. Let £ be a C° mapping from U to F with
£(U] C V, and g a CF mapping from V to G. Then the mapping gef from
U to G is also CF,
Proof: mtmttuttmqmnn. lhn.ﬂm:uhu-l
positive € , first choose §' such that [aly) - g(f(x,))| % & whenever
¥ - £txg)| €9’ . Then, choose © such that |f(x) - fix,)|£§' whenever
% - x;|45. Then, for [x - x (46, we have !gvﬂ:] - qﬂﬂln]‘ﬁi.
That is, g*f is C .

Next, suppose Bhat £ and g are C1. Fix x, in U. Then Dg(f(x,))
is an element of Z(F; G), while Df(x,) is an element of L(E; P).
Thelr composition is thus an element of [ (E; G). Wote first that
:hmiqﬂth-uu—!m—lh.l-nﬁtﬂ“l-lal is tangent at
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X = Xg. m“w}ﬂﬂlmmth“ﬁt

the composition of a bounded linear mapping with a function tangent

is a function tangent, we have that Dg(f(x,)) (£(x) - !fx.H

= Dgifix,))Df(x,) ({x = x,) is tangent at x = x,. But, since g(y)

- glfixy)) - hl!t:,l‘.lur - !hun is tangent at y = £lxg) and since

f is continuous, g(fix)) - glfixy)) - Dglfix,)) (fix) - fix,)) is

tangent at x = Xq- Adding these two, we cbtain: gl(fix)) - q{ﬂ:‘]]

- DIIHI.]!III!II:'I (x - x,) is tangent at x = x,. But this is precisely

the statement that gof is differentiable at X with D{rflhﬁl

= Dg(f(x,) )DE(x,). Next note that f(x) is continucus in x and Dgly)

is continuous &n y, whence their composition, Dg(f(x)),is continuous

is x. Further, Df(x) is continuous in x. But the element of

Life: 7, (F: G); f(B: G)) which composes is also contlnuous

{pp 24). Hence, Dg(f(x))Df(x) is a continuous mapping from U to

L (B; G). We conclude that gof is C,
meu-ththth!mqmcz. Since f(x) ilcl':ut:.

and Dgly) is ¢’ in y, Dg(£(x)) is ¢’ in x (last paragraph). Also,

pf(x) is ¢* in x. But tion is also C* (since it is bilinear).

Hence, Dg(f(x)) DE(x) is in x. That is, D(gof) is El. whencs

gof is C°. Continue in the obvious way to CP.

We next show that the operation "taking the inverse" is .lllnc".

Example. Let E and F be Banach spaces. Denote by U the subset

of Z(E; F) consisting of all T therein which are invertible. We
first show that this subset U is open. ;H.:'.I.'ninﬂ. !'hun'!uiln
isomorphism from E to F. Consider the isomorphism from [ (B; F)
to L (E; E) which sends T in [(B; F) to TT,"". Under this isomorphism,
!u itself is sent to I, the identity on E. It suffices, therefore,
to show that there is some ball centered at I in J (E; E) every
element of which is invertible. Let B be the ball with radius 1/2.
Let W ba an element of B. ﬂmﬂdlrthlm?l-t.?l-z-r{l*u},
1’,-:+{I-I}+{r—ﬂﬂ-lﬂ.m‘ This is a BequUance

in J(B: ll,farlviﬂ-vﬂ-|t.t-|l}"|§|1-lr]"£- 1/2". Hence,
this sequence converges to some element V of [ (E; E). We now have,
by direct computation, WV, - I = ¥, - V, .. Taking the limit of

@ach side as 1 increases, noting that that on the right is zero,

we obtain WV = I, and, similarly, VW = I. Thus, V is the inverse of W,
and so W is invertible. We have shown so far that pur subset U of
Z(E; ¥) is open. Note also that, above, |W |41+ 1/2 4+ 21/4 4+ . . .
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- 2,
Mext, introduce the mapping f from U te J (F; E) with the fellowing
action: For T in U, £(T) = T L, We next show that this mapping f
is continuous. Pixing T, in U, we have, for T in U, £(T) - £(T,)
w1l gt e v - meY, whence |£(1) - firdl £ [T T - T
"’-'n-lf- Given positive €, choose § such that, whenever |T - T, |
55,1!-‘15I,-lmtpﬂlﬂﬂl.ﬂrﬂthwm
that, whenever |I - Wl£1/2, W/ £2), and such that § &M T,
mmil-!,lﬁi.nhm[lm-fﬂnlliﬁ. Thus, £ is
Mﬂ!ﬂ,mﬂhmtmrhmm-nfum.
We next show that this mapping f is in fact differentiable at
T = T,. Its derivative at T, must be an element of [ (L (E; F);
L(F; E)). From elementary calculus, we guess the derivative as
follows: Let & be the bounded linear mapping from [ (E; F) to
Z(r; B) which sends T in J(E: F) to o (1) = - T, 7L,
M!ﬂl-ﬂrnl--Hr—".-l-'!:l-t'lqn!'!{t-rn'
) 3 -9 Sl 0 o' %o
=T (T - T,)T, I!-!J-'!g . Hence, we have |£(T) - £(T,)|
- (T - Tl f-l!'ll ]rrulg‘; |T - %y ". Now, given positive €,
mimhth-t.m{'r-lnlii.nml!'lffu
(some constant), and such that %< €/|7,"%/2. tThen, for |T - T,
£6, we have |£(T) - £(Ty) - « (T - Ty)| £ €|T - Ty}, We conclude
that the mapping £ from U to [ (F; E) is indeed differentiable at
!ninﬂ.andthntiﬂm'ltiﬂhi.
Mmh!ﬂhﬂ.um.unhﬂ,mdﬂlutinutfn
Ty n!{‘rul. Since "take the inverse” and "compose" are continuous
operations, this Df is a continuous mapping from U to J (F; E). 8o,
£ is c'. But now, since "take the inverse" and "compose" are
w&ﬂm;ﬂité;“ﬂlfilc:. !‘l:u.,lnfilﬂp.

All of the little calculations above are identical to those one
is familiar with in the finite-dimensional case.

Finally, we establish the result in the present context which
generalizes the finite-dimensional statement that "mixed partials
commute”. For this purpose, we note that DDf maps U to J (B: £ (By F)),
and that J°(E; f(E; ¥)) is isomorphic with the Banach space
Il.l, E; F). Hence, wa may regard m!{:ﬁ} as an element of
:'ﬂ: E; F).

Theosem. Let £ and F be Banach spaces, U open in E, and f a ¢
mapping from U to F. Then DDf is symmetric: !Hl“llllﬂ!.rln

- §
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E, WHrﬂ - ﬂt:a} L'f.rﬂ-

Proof: Pix an element of of I (F; B). Let h be the function of two
lll.‘nmim-llnﬂhﬂﬂllutiﬂh{l.h}-u‘t![:u+ui+-hfﬂ.,
m.hinmmhnuhmlwmﬁ+u+u
is in U.] Using the chain rule (preceeding theorem), we have
In/da = «(DE(x, + ax + by) (x)), and thus 2’n/9adb =

o (DDf (x, + ax + by) (y, x)). Evaluating at a =b = 0, we have
2°0/2adb|, . o o= (ODE(xy)(y, x)), and similarly 9°n/9 bPal
T -Itll}!tlnlhlrﬂl- But the left sides are egual (eguality
of mixed partials for real functions of two real variables), and

so = (DDE(x,) (y, x) - IIIH:I:,H:. ¥)) = 0 for every @ . Thus, we
shall be done if we can show that the only element z of F such

that «(2) = 0 for every o in J(F; R) 48 z = 0. Given z in F,
choose complementary subspace G in F to the subspace spanned by =z.
Then any vector u in F can be written uniquely in the form u = az

+ vwith v in G. Let o have action & (u) = a. Then & is a bounded
linear mapping (obviously linear, and bounded since « is bounded

on both G and the subspace spanned by z, and since F is isomorphic
with the product of these, by the open mapping theorem). But o« (2) = 1.
So, this « is the thing we wanted to find. This completas the proof,

The proof above is rather tacky, because it uses itself in the finite-
dimensional case, which is taken as known. Unfortunately, the proof
of this theorem in finite-dimensions does not seem to be directly
generalizable to infinite dimensions. I am aware of no more direct
proof of the theorem above.

It follows immediately by repeated application of this result
that higher mixed partials are also symmetric. mmn.mu:.
an element of ,fllr.fll:ﬂlrﬂ}hﬂnilﬁhrﬂnﬂﬂnlnll—-t
of (B, B, E,; F). In this case we have, for x, vy, and z in E and
for £ c,; that mtlu} (x,y,2) = mhﬂttrr:rti - m{lﬂ] (z,v,x), etc




We complete cur treatment of alemantary calculus in infinite
dimensions by proving the two titled theorems.

The mean value theorem states that the derivative of a funetion,
a measure of its rate of change, in fact bounds the actual changes
in the value of the funotion.

Theorem (mean value). Let E and F be Banach spaces, U an open siubset
of E, and £ a C" mapping from U to P. let x and y be points of U
such that the line segment ¥ joining x and y lies within U. Then

le) - £ool £ 1ub [peeml |y - x].

Proof: ([Of course ;filthllltﬂfmtﬂrlﬂfthlfmn+{1-llfr
with 0£a%1,] Pix, once and E

for all, positive number € . [ &)

Given z, on ¥ , the function

o
with action £(z) - Hlﬂl

-nﬂ:ull’l— lu] is tangent
at z = 7,. Hence, there
is a positive § such that,
whenever |z - z,|% § , we -
have (£(z) - £(zy)| £ {'Bﬂ:nll-lrs )|z - 2,]. Thus, for every z, on
# we have such a §. Since 2 is compact, we can find points Zy.
. oewor By on ¥ such that z 2, =% 3 =Y, tiar-:“_l (in the obvious
"~ E 2 l.lﬂmhthltll- 43l i® less than the
6 lpp&p:rlnt- to z,,7" " Now, we have [ﬂ:rl - !I:H & |£(z) - £z,
le6z) - £z, [+ . . .+ |26y - £02)] . But |£izy,,) - ﬂ:ﬂ]
& I'ﬂi;ll-lre }I'iﬂ - 2,] £ (lub I.nﬂ:u +€ )|zy,, - 3,]. Hence,
|£ty) - £(x)| ¢ (b Ihﬂ:}l . EHI!,, o o B . LD
lm:th-mnnth-rightujunll 2, = |y - x|. ln,“‘hlﬂ
|fly) - £(x)| £ (lub |pE(2)| + € Hr' x|. Since € is prbitrary,
the result follows.

One might imagine that another version of the mean value theorem,
which on the one hand would be stronger and on the other would be
more closely analogous to the one-dimensional mean value theorem, might
be true: Under the conditions of the theorem above, thera is a
pn:l.ntlﬂn!‘ ¥ such that £(y) - £(x) = Df(z)(y - x). This, however,
is false.

Example. Let B be the reals, and FsR°. Then a C' mapping f from
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U=E to F represents a curve in

g®. DE(z) is the tangent vector R3
to this curve at z in R. On the -F'-'f}

other hand, £(y) - fix) is the

vector joining these two points

in B°. Thus, we must find a

curve joining two points in R,
whose tangent vector is never
parallel to the vector joining F(x)

those points (for then we shall
never have fy) - fix) = Df(z)(y - x})). But a spiral, as in the
figure above, does the job.

Example. Let Df = 0. Then, by the mean value theorem, f is comstant
(i.e., £(x) = £(y) for all x, y such that the line segment joining
them lies in U). Similarly, if DDf = 0, then the action of f is
£(x) = T(x) + x,, for some x, in E and T in J(B; F) (for Df is some
mt‘r.uﬂ.thnn[l-ﬂ:li-u,mmiulﬂtMIuJ

The inverse function theorem states that, if a mapping is
"invertible to first order about some point, then it is actually
invertible in some ball about that point". As a prerequisite to this
theorem, we need a little fact about mappings (a fact which, indeed,
is ahe basis for all existence and most unigueness theorems about
differential equations). Let C be a closed subset of a Banach space,
and £ a mapping from C to C such that, for some number a<1,
|etx) - £1y)] £ a|x - y| for every x, y in C. Then there is one and
only one x in C with £f(x) = x. Proof: First note that, if there were
two, x and y, then we would have |y - x| = |[€(¥) - £ix)| £ aly - %[,
whence, since a{l, |y - x| = 0, so y = x. Thus, we have only to
show that f(x) = x for some x. Ch—-?i'ﬂﬂ,llﬂlltrl-f;fl-
£(y,), ¥4 = £(y,),etc. Then, since |y,,, - ¥4l = t{rﬂ - £lyy il
i‘h’i"’i—i'“h‘“lrl"rﬂ.‘.‘j*""'" (for > 1),
whence the y, form a Cauchy sequence. Since the y, are in a Banach
space, this sequence converges toc some vector x; since C is closed
and the y, are in C, x is in C. But noWf(y,) - x = y,, - x.
Taking the limit of each side as ¥ increases, noting that that on the
right is zero, we obtain f(x) = x.

Theorem (inverse mapping). Let E and F be Banach spaces, U open in E,
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and £ a c¥ mapping from U to P, with p31. Let, for some x, in U,
the element Df(x,) of [ (E: F) be invertible. Then there is some
-ﬂ:uhm?n!umtmmg:nluﬂﬂutﬂ £[V] is open in F,

ii) f is one-to-one on V, and iii) the inverse mapping f from £([V)
to B is also cF,

Proof: Let  be the mapping from F to E with action dily) =
IH{:uI"t{r-ﬂoni-:n. Then o is C*. Purthermore, the ™
P from E to P with action Plx) = DE(x ) (x - x;) + £(x,) is its
inverse, i.e., dof is the identity on E and fey is the identity om F.
We may consider, instead of £, «eof, That is to say, we may assume
Mt!mﬂml,thltluhﬂ,thltﬂ:ul-D.lﬂthlt.l:lﬂﬂh
the identity element of Jf (E; E).
htqhthumingﬂﬂﬂmluhiﬂhlnﬂl:hﬂuqm
=x - f(x). Then g(0) = 0, and Dg(0) = D(identity) (0) - DE(0) = O,
miucl.thnhlmiunimmt,m]dill.
Ipg (x| < 1/2. Then, from the mean value theorem, we have, for || < 2¢€,
{atx)] < 172 |x. :

Next, fix y in E with | y[< €/2. Mn-blhrgrthill.ppinghﬁ
U to E with action g _(x) = y + x - £(x). Then, for |d£¢c , we
have |g (x)| = |y + gt € )yl + g% 1/2€ + 1/2)x| € €.

Thus, denoting by B the set of all vectors x with |x] € € , we have
that is a mapping from B to B. Furthermore, for x and x' in B,

we have Iqrt:l - g, x")| = |gtx) - g(x*)] £1/2 [x - x'|, again by

the mean value theorem (and the fact that|Dg(x)| < 1/2 for |x/< 2 1.
Thus, g?,ulnnpplanmthuulnndluhut!ufnmitulf.
lﬂppinguimthmuuummhrnfth-mmm Hance,
ﬂlﬂummm?mrinnuithg;lxlnx, i.e., with v + x - £(x)
= X, 1.e., with y = .- f(x).

Now let V consist of all x in U with [x|<€& and |£(x)|< €/2.
M?tumwm&!u.nmhn,nﬂmmt-n
by £ of an open ball) is open. Purthermore, f([V] is just the set
of y with |y|C€/2, and so is open in E. In addition, f is onéto-one
on V (for, as we showed above, given y with |y|4{&/2, there is one
and only one x with |x| < € and £(x) = y).

Denote by f the inverse of £, defined on W = £[V]. Then, for
x and x' dn V, |x - x'| = [f(x) + gx) -~ £0x') - gix")] £ [EF(x) - £x")|
+ |glx) - gix*)] < |£ix) - £(x")| +1{2}:-:'LM]:-:‘I_¢_

2 |£60 - fix')|. Setting y = f(x) and y' = £(x'), thie becomes
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[Ey) - Tiy') |4 2]y -~ y) . That is to say, this £ is

With x, %', y, and y' as above, we have |2(y) - fiy') - (Bfix'))" !
- ¥y | =]or ) o) (x - x') - £ix) % £x'))] € |oEEn ")
|DE(x") (x - x*) - flx) + £(x*)| . Pixing x', the right side,
regarded as a function of x, is tangent at x', since f is differentiable.
m.hgmlmlt:utﬁthldtlmumn:-r. We
conclude, therefore, that f is differentiable, and that DE(y)
= (0£(f1y))"). since ? is continuous, Df is continuous, composition
is continuous, and "take the inverse" is continuous, Df is contimuous.
That is, i.tlc:'.

If £ is C°, then, since £ is C', Df is C', composition is %,
and “take the inverse" is C*, pf is ', and so f is C2. Continuing
in this way, if f is CP, then so is f.

There is a corollary of the inverse function theorem, called
the impliecit function theorem. It states that one can, under
cartain circumstances, "solve" egquations of the form f(x, y) = 0 for
x as a function of y. More precisely, let E and F be Banach spaces,
and let U and V be open subsets of E and F respectively. For sach
¥ in V, let £ be a mapping from U to G. [We may thus regard f as
a mapping from UXV to G; above, we wréte f(x,y) for frt:l.l
that i) £_(x) 1lmthmmu;f,ﬂ}!nrmhyin?.frh .
udb!rl[: is continuous on UXV, and 1ii) for some x, in U and y, in
V, we have fy,(x,) = 0 and Dfy,(x,), an element of J(E; G), ie
invertibla. !hnth-riilmmmt?ﬂnfﬂ’mtninimgrn,
mlluppinqgfrc-vuhnmmhthlt!?lgfﬂl-ﬂfnr'v-rf
¥ in V,. [Thus, x = g(y) ie the “"solution" of f?{:r.}-ﬂ.l Proof:
l-thyll]'-!r[:}-f?{:u}. !hmh?{:n]-ﬂfurmf. Farthermore,
Oh, = Df . Hence, since Dfy,(x,) is invertible, since Df_(x) is
continuous, and since the invertible elements of X (E; @) form an
open subset of J(E; G}-'lhlﬂthltﬂh},l:nl is invertible for all
]'lﬂffiﬂllﬂtl]’ﬂlﬂlltﬂf'- Applying the inverse function theorem
t-hr. for each y, we have: There is an open subset W of G containing
0, and a mapping s, from W to E, for y sufficiently =1mturu.-
—hthnth!al!hth&iﬂ-ntitrmﬂ. [We may choosa W independent
of y because the size of the "V" in the inverse function theorem is
mmwmuuaf'nrinmm,mmn:?mn
m-] M%hlhmhrm:,ﬁm*ﬂ,
MrMﬂlﬂhr',frWhhﬁhI. How set g(y)
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=- ). Then, since -mtrﬂhﬂ'lw-

J o say, "HE‘H - % -::{b.h Hfrlﬂﬂl - :
Note that in the above E and G be isomorphic as Banach

spaces. This requires, essentially, that the "number of eguatiocns"

(represented by the "size" of G) be the same as the "mumber of
unknowns"” (represented by the size of E).
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We have now completed our discussion of differential calculus
on Banach spaces. We turm next to that mathematical object - a
manifold - which will be at the center of all we do hereafter. Im
this section, we define manifolds, give some examples, and give some
constructions which yield manifolds.

A manifeld is, roughly speaking, a space having the "local
smoothness structure"” of some Banach space. The ldea, then, is teo
isoclate, from the wery rich structure of a Banach space (e.g., its
vector-space structure, its norm structure) that ome type of structure
we call "local smoothness".

We first introduce a mechanism by which structure can be carried
from Banach spaces to other things. Fix a set M and a Banach space E.
A chart (or E-chart) on M consists of a subset U of M together with
lmm*fmuml,mmtllthmm*hm.
and ii) the subset “Y[U] of E, the image of U by “P, is open in E.
Thus, a chart sets up a one-to-one correspondence betwsen a certain
subset, U, of M and a certain open subset, (U], of E. It is by
means of this correspondence that structure is carried from E to M.

We next introduce a notion of "agreement between two charts as
regards their induced smoothness structures on M*, Let U,V and
0", 4" be two E-charts on the set M. Then on the intersection of
m:u'..v-uﬂn',mumm'mm'.
one from *“(which defines a correspondence between V and the subset
*+'[v] of E) and the other from A (which defines a correspondence
between V and the subset " [V] of E). We wish to these.

L vy

V]

To this ;rd, ':I.ntruﬁuul the mapping 4 e~ from PV] to Wiv), and its
m.‘f‘r*", from “I"W] to P[Vv). These mappings represent the

le_l.*" and U', ¥ . [Wote that M has now been
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eliminated: The mappings are between subsets of Banach spaces.)
Now fix a symbol p, either a non-negative integer or the symbol "ee".
We are led to the following definition: The charts U, ¥ and ©U', 4’
mHmlﬂdtnhlmih_lg_lm:cpﬂmﬁhh‘] if 1) 4r[v) and

ﬁﬂmﬂwmﬂl.ﬂultﬁm‘ﬁ'*—'ﬂmm
to B, and Yo ¥ trom ¥v] to B, are both CP mappings. The secend
condition is the crucial one. Note that we do not require that our
mappings preserve vector-space structure, or norm structure. Rather,
they need only preserve CF diffesential structure. It is in this

way that a single "type of structure” is isolated. MNote also that

two charts are necessarily compatible if their U's fail to intersect.

Example. Let U, be an E-chart on M, let U' be a subset of U such
that 4U'] is an open subset of “"[U], and let "' be ¥ restricted
to U'. Then U, ¥ and U', 7' are compatible.

A manifold consists of a non-empty set M, a Banach space E, a
symbol p, and a collection C of B-charts on M, satisfying the
following conditions:

1. Any two charts in the collection € are cP compatible.

2. The charts in € cover M, i.e., every point of M is in at
least one of the U's.

3. Any chart on M which is compatible with all the charts
in € is itself in (.

4. The charts separate points of M in the following sense: Giwven
distinct points p and p' of M, there are charts U,* and U',7'
in € such that p is in U and p' in U', and such that there is a ball
B centered at (p) in P(U] and a ball B' centered at Y(p') in
+10'1, with +"1(8] and ¥*"1[8'] not intersecting in M.

These conditions - or at least the first three - are exactly what one
might have expected intuitively. The first regquires that "whenever
two charts in € induce smoothness structures in the same region of
M, these structures agrea”. The second requires that "smoothness

structure has been induced over all of M". The third guarantees that
we have not induced any additiomal structure on M by cutting down the
number of charts. Finally, the fourth condition (which is normally
automatically satisfied in practice) eliminates certain pathological
objects, called non-Hausdorff manifolds, which are of little interest.
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The manifold defined above is sometimes called a C® manifold
based on Banach space E. The charts in (¢ are called the admissible
charts, or just the charts. We often denote a manifold just "M",
the rest understood. A subset O of manifold M is said to be open
if, for every admissible chart U, F , FI[U,0] is open in E. These
ara, of course, the open sets for a topology on M, The fourth
condition then raquires that this topological space be Hausdorff.
Our third condition is often omitted, and our fourth occasionally.

One might imagine that it would be very difficult to give any
examples of manifolds, for, by the third condition above, there will
be an enormous collection of charts, and it might be awkward to write
all these down. The possibility of giving examples easily arises
from the following fact.

Lemma. Let M be a non-empty set, E a Banach space, p a symbol (a
mmnﬂnhﬁmuv'l.malmllmﬂﬂbm“H
satisfying conditions one, two, and four above. Denote by £ the
collection of all charts on M compatible with all those in £ . Then
€ satisfies all four conditions.

Proof: First nota that, :Mmmhtilmilrh e .,
this { automatically satisfies the second and third conditions.
liﬂlulr,thtﬂnuﬂ:hunﬂitlunhnllnmtmuu Thus, we need only
verify the first., Let U, and v', ¥ be two charts in C , and set
V= U0, Fix point p of V, and chotse chart O, 1 €, withp i
ﬁnpo--ihh.hrmdms.uml. By compatibility of U, and
g, , and of O, ¥+ mu',*r*,th-ni-nbnnlmt-:unt
#"‘i‘liﬂ such that B is ""t"-:'[“'lf] (m l""'ﬂilil *!U'l}. By compatibility
of 0 ,+ and u. ¥ ., “l'ni.-.u:-.tu: , contains a ball
sentered at +lp), Thus Thus, 4\ V] 1s open in E, and similarly for 1.
H.nﬂlr,ﬂ.nm'h*fnﬂ"l‘ﬂ'md" mhthitm!.t.iml ‘f"'.'
ﬂlilill:lyﬂnr"r""‘- We conclude that U, T and U',¥ are
compatible.

Thus, to cbtain a manifold, one need only find charts satisfying
the first, second, and fourth conditions: Something which is often
rather easy to do.

Example. muhaﬂmmmﬂs.mm“p:m.

of course, the non-negative integers are ordered in the usval way,
q &% for every g, and = § p only if p == ). Then, since charts
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cP-compatible are also CY-compatible, the admissible charts on M
-&mmm.m,mﬂmﬂmimhuuﬂthpnplﬂhq.
By the Lemma, we obtain a C¥ manifold based on E. The question of
whether, given a C¥ manifold and p>gq, one can throw away some charts
to get a CF manifold is very difficult.

Example. Let E be a Banach space, and let M be the set E. Introduce
a chart with U = M (a subset of M), and " the identity mapping (from
U=HM=Eto E}). This single chart satisfies the first condition,
mmmumuaimhmmrm“.
m-mun—tmmmmmum.um.ﬂmﬂm
m_ﬂllmm.mmﬂnﬂnm-hhrmtmghﬂhm
at those points. By the Lemma, we obtain a C™ manifold based on E.
Example. Let M denmote the set of all sequences, (Fyr T3 = = & )y
of real numbers with (r,)? + ()% + . . . = 1. Let E be the Banach
mnfulmhl,l:,..-}th-mnfth-mid
whose entries converges. We introduce some E-charts on M. Let U
hmﬂutntlm#dlmuﬂthrl}ﬂ. For

(Fyr Fpr = - . ) In U, sot PAry, . . . ) = (r,, 7y, . . . ) (an
element of E, since the sum of the squares of the entries converges).
We claim that this is a chart. :m-ﬂ,!urﬁrirl.rz....l-'ﬁr'l.
"2"" .Lv-mlrtul:tmrhlﬂr:-rz', f;"-";- etoc. But
ﬂmtﬂmhnrl-r'l.iumhhthmitiwmmtd
one minus the sum of the sguares of the other entries, That is, P is
one-to-cna. nmtalmm'f_;m is the subset of E consisting
of all Ill, nz,...lﬂithhl} e 1, a claim which is
mmwmummt*?tﬁ —I{lili, B0 B < s = )

= (83, 85, - . . ). But this 4PU] is an open subset of E (in fact,
is the ball of radius one centered at the origin). Thus, we have a
chart.

Biﬁlﬂlg.ﬂlﬂntnhlﬂhl:tilthﬂmhﬂngu!{:l.ra....'.l
with r; £ 0, and the same 4. Doing the same thing with r,, and them
ﬂthrs,-tu.,uﬂbtun:tlummmu.

We next claim that these charts satisfy conditions one, two, and
four, for p = %@, The second and fourth are immediats, and so we
have only to check compatibility. Let us consider, e.g., the chart
U, 4 (where U requires r,> 0) and U', 4" (where U' requires £, >0.
Then V = U, U' consists of {.1-:1, Fae « + » ) in M with rl}ﬂ :nll.'.“p!,
whence V] donsists of (8, s, . . . ) with (80" + . . . g1
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-H-tthll;.ﬂ. But this is certainly an open subset of E. Similarly
for - hﬁlr.lr---lh#n,r_mﬂlr---l

= |, - B ¥ '1; ‘2' - & @ }r m‘r‘.‘*ﬂ"lr S } . -
- - : '.1 F l:r .'sr & & = }- We claim that this m‘i‘ﬂ "r"'i"r' from
V] to E is c* . It'iﬂ-:ﬂmlnnt{ll.l,...]h'rlﬂ,

!um.ud-{tl,ta,...lhlhthm
@1 - (802 /2 (gt +u,t,4. .00, £y €y - . . ) Of B [This guess
is made, of course, from ordinary calculus.]

Thus, our charts satisfy the first, second, and fourth conditions.
By the Lemma, we obtain a manifold. ([This is the infinite-dimensional
sphere. Similarly, one obsains the finite-dimensional sphare.]
Example. Let F be the Banach space of continuous, real-valued functions
f on the closed interval [0, 1] with £(0) = £{1) = 0. Let E=FNF,
product of Banach spaces. Next, - ti':ﬂ E‘
denote by M the set of all curves
in the plane which begin at (0,-2),

end at (0,42), and which avoid the @
closed disk of radius one centered 1 4

at the origin. ([That is, M is the

set of all continuous maps ¥ from to,-2)

—

[0,1] to B? with ¥(0) = (0,-2),
¥(1l) = (0,+2), and with |¥(r)|£ 1 for no r.] We introduce an E-ghart
on this set M. Fix an element ¥, of M. Let U = M, and let “f be
the mapping from U to E which sends ¥ in M to the element { ¥ (x) -¥(r),
of (E (noting that ¥ - ¥, as a continuous map from [0,1] to R® beginning
and ending at the origin, is an element of E). This " is clearly
one-to-one. Purthermore, “P[U] is open in E, for, given "M 7¥) in E,
one can find an €& such that, whenever WY ¥) - TI€ € , ¥ is alse in
4 [u]. Thus, this is a chart.

Again, this single chart satisfies the first, second, and fourth
conditions for a manifold. By the Lemma, we obtain a manifold.

We shall later display some more interesting examples of manifolds.

There are two elementary techniques for constructing new manifolds
from old. These techniques are of interest, first because they give
someé insight into what a manifold is, second because they yield a
rich source of examples, and third because the techniques themselves
often arise in practice. We now discuss these technigues.

Let M be a manifold based on Banach space E, and let N be a subset
of M and F a subspace of E. We suppose that these objects are related
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as follows: Given any point M E
p of N, there is an admissible
chart U, on M such that p
is in U, and such that
Plu,u] = U], F. Of course,
such a chart will not in general
axist: Our regquirement of its
existence represents an
additional condition on N
and F. This condition
rggquires essentially that
"N in M look like F in E*.

We next introduce some F-charts on this set N. Let U,“P be
an admissible chart on M, with " [U 4N] = (U] oF. Set W = UpN,
and let ¢ be the restriction of 4/* to W. Then W is certainly a subset
of N, and @ certainly maps this W to Banach space F. Furthermore,
since @ [W] = Y [U), P, this @ [W] is an open subset of F, while,
since " is one-to-one, so is @ . We conclude that W, § is an P-chart
on N.

The FP-charts on N, so obtained, clearly satisfy the fourth
condition for a manifold (since the admissible charts on M do). The
second condition follows from the condition above (since the above
is precisely the statement that our charts cover N). We next wverify
the first condition, i.e., we show that any two such charts are
compatible. Let W, @ lnﬂil"r? be two F-charts on N, obtained
from charts U, and U',4' on M, respectively. Then, since g [Wp W']
= " [U ,U') 4 F, and since the right side is an open subset of F,

8o is the left side. Similarly, @'(W,W'] is an open subset of ¥,
m,m_iﬂmlrtﬂmmtthIWI'ffﬂ Pla W]
to F is P, To this end, fix x, in @ [WAW'], and write  for
@'sq™ ana g for ' Then, since @ is differentisble at x,, we
have that fB(x) - B(x,) - D Pix,) (x - x,) (as x ranges over points
dllulﬂnimuyuluutn:n!hmn:-:n. Now fix x in F:
Then (x - x,), B(x), and g(x,) are all in F. We claim that,
mrm,n'{:n}lx-:n) must also be in F. [Proof: Suppose not.
Then there is a positive & such that |D Pix,) (x - x,) - y| 3, & for
every y in F. Then, for all positive a, we have |flax + (1-a)xg)
-M}-b’kolhl'—ll‘llglﬂ.ﬂmth-ﬂ::l:hnt_—h

v
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F. m,mh:'--*{l-ﬂn‘ﬂmiyumm
last inequality viclates tangency of f§ (x') - B (x,) - npi:;ulll" - ®,)
-l'-xo.l mhy!mwnpt:n}mﬂinﬂtﬁr,ﬁ
T is a bounded linear mapping from F to F. Then we have, for x
in F, gix) = plxg) - Dpixydix - x5) = a(x) - o« (%) - Tix -~ x5).
Itﬂmh!t!mumﬂl-zn!u:rwm“!.ﬂ
is also tangent for x ranging over F. Hence, the right side is also
mp-t-t:-z..:rmml. Thus, € is differentiable
;:-n,,-dn-lh:ul-r. Similarly, if P is c®, then o is alse
Thus, we have obtained a collection of F-charts on the set W,
satisfying the first, second, and fomthh condition for a manifold.
By the Lemma, ,therefora, we have a manifold N based on F. The
manifold so obtained is called a submanifold of M. [For some reason
that I do not understand, this term is normally reserved for the case
when F splits in E.]

Example. Let M be a manifold based on Banach space E, and let ©
be an open subset of M. We claim that this O is a submanifold of
M, i.e., that O satisfies the condition on N at the top of the
previous page (with F = E). Indeed, let p be any point of 0, and
let U, T be any admissible chart with p in U. Then, setting U' = Uph0,
and letting ¥ be the restriction of P to U', we cbtain an
admissible chart U', ¥ . But, for this chart, we have 4p'[U‘, O

= 4" [U0'] 4 E. Thus, we obtain a manifold O based on E.

Example. Regard the manifold M of the second example on page 40 as
llnhlltorthlmifﬂldltmhtingnflrl,r,...]-thl_
of whose squares converges). Then M is a submanifold.

We turn, finally, to the second method for constructing manifolds
from manifolds. Let M, and M, be C” manifolds, based on Banach
"P"'""'H.'“‘“:' respactively. We obtain a new manifold. Let
M = M, A M,, Cartesian product of sets (so an element of M is a
pair, inillzlrﬂthﬂlhulﬂllzh"‘l- “tt,htl-lll!’,
product of Banach spaces. We now introduce some E-charts on this
set M. Let U;, ¥, and U,, T, be admissible charts on M, and M,,
respectively. ﬂllu'ﬂllﬂi.-l'm't of M (so (m;, m,)) in M is
in U provided m; is in U, and M, is in U,). Let * be the mapping
from U to E with action (m,, my) = (4, (m), ¥y(m,)), noting that
the object on the right is indeed in E. We now claim that this v, ¥
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is an E-chart on M. Indeed, ¥ is one-to-ome, for Tm,, m,) = "f{n.l‘.
my') dmplies W, (m) = ¥y(m;') and Y,0m,) = 4,(m,'), whence, since
fllul ‘l‘zmm-m-m,nh:nnl-nl' and m, = m,', whence

(my, my) = (m,, m,"). HNext, note that ¥ [U] is open in E, for ¥ [0]

is the subset T)(U,)1x¥,(u,)

of E, while each factor is IH.:.H,
open in its respective Banach W, %0,

space. Thus, U, ¥ is indeed Wy DQ!

a chart on M. ﬁ

We have so far a set M,
together with some charts on
this set. We claim, next,
that this collection of n:l. aman
charts satisfies the first, "'_'W—_ M,
second, and fourth conditions for a manifold. For the second condition,
mote that, given (m,, m,) in M, we have, choosing U,, +1u1u-1hu1
and U,, fiﬂthl::lnu. that (m;, m,) is in the corresponding U.
Similarly, th-tmthmﬂu!ﬂunﬂfmmtmidlﬂmmulud
M,. Thus, we have only to verify the first condition, i.e., to show
that any two of our charts are compatible. Let U,4* and U', "' be
two such, coming from U;, ¥ and U,, ¥, and o'y V' and U, .0,
.u:p-cthf:l.r. Then, setting ‘Fi =Ual," and Vv, = U, 4U,", we have
that U,U =V, xV,. Thus, +-l{u,v'] = “!“1*1[?1]11‘3'1[?31. whence,
since each factor on the right is open in its Banach space, "f"ltnﬂtl*]
is open in E, and similarly for ¥ “1[U,U']. Next, consider the
mapping To " from MUl to B. 1It's action on (x,, X,) in E (se

:lf a vector inll and x, a vector in I=1 1:1‘*-1-**{:1, r.zl

= (e"10x,) By ~10x,)) . But, since £5™1 (from 4[0,] to B,) is

I
¢P and W3o,"1 is CP, so is this Tt -1, We conclude that, indeed,

any two of our charts are CP-compatible.

Thus, we so far have a set M, and a collection of E-charts on M
satisfying the first, Second, and fourth conditions for a manifold. By
the Lemma, therefore, we have a C” manifold M based on E. This manifold
is called the product of M, and M,, written M,y M,.

Example. Let E; and E, be Banach spaces. Then the product of the
manifold l;_ (first ml.ll, page 40) with the manifold E, is the
manifold !_ixlln {product of Banach spaces).

Example. Let M; and M, be C” manifolds, and let M be the ¢ manifold
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My wMy. m—-ﬂum-mﬂuqi Denote by N the
Mﬂlmﬁﬂﬂﬂﬂ-“ﬂﬂhtﬂ,!ﬂiﬂl}
hl:l.' Then N is a submanifold of M (where the ecorresponding subspace
Iﬂlhjﬁtﬂ“llﬂﬂ- Clearly, the resulting manifold
liht—lnﬁihhulmalﬂ-mmﬂnﬂur In this
_l.tm,ﬁjﬁh'lllﬂhmmm“mﬂﬂr
and also by copies of M,", just as one might expect of a product.

A characteristic feature of these two constructions should be
noted. A manifold "looks locally like a certain Banach space”. In
each case, one simply takes a construction applicable to Banach
spaces ("taking a subspace" and "taking a product", respectively) and
performs essentially that same construction for manifolds, using
the charts to "pull over" the construction from Banach spaces to the
manifolds. This general theme persists throughout the subject:
Things done to or on Banach spaces, "localized and pulled over wvia
charts”, yield things done to or on manifolds.
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10. Mappings of Manifolds

Each kind of mathematical object normally comes equipped with
the notion of a "structure-preserving mapping” between two such
objects. For vector spaces, the mappings are linear mappings; for
groups, homomorphisms; for topological spaces, continuous mappings;
for Banach spaces, bounded linear mappings. Manifolds are a "kind
of mathematical object”. We now introduce the corresponding mappings.

muurhd‘m.wmmm:ul'.
respectively. Let @ hum!uim-tllhnntll' This @@ is

E P —
Ll
Und'l
+~ ,9_13
el 1 Q‘m
L —

numh--_c_';m{urmfumjmmm1mmum
is satisfied: GCiven any admissible charts U, ¥ and U0', ¥ on

and M', ﬂlpﬂ'l:i‘!,l?p i] the subset "l"[unf lig*]] of B is opan, and
ii) the mapping ¥e@e 4* from this P(U, @~1{U']] to &' is P, we
fhltmmtmum:ndmppuq:ﬂknmu. First,

q [ﬂ]lll_ﬂlhlltﬂf!l. Hence, U, @ 1[1.'1‘] hmpunlhlf
smaller subset of M, and indeed is a subset of U. Hence, 4 [U, Loy
hnll-dlfimd and is a subset of E. !'u::inth:l.:tu‘hllt,'f- )
hinllﬂ# (U')], and so, in particular, '1"-1:} is in @ EH]. Hence,
q(ﬂ:nm-m-.muuﬂ-mtufu'-m. is actually
an element of the subset U' of M'. Hence, "r*t!{'h {x))) makes sense,
uﬂiuuﬂ_ntufi' Thus, everything makes sense. In condition
:i.},htuﬂ:l:r','l" and vary U, 4¥*. Then condition i) requires
precisely that ¢ rn*lh-uup-unhntntu In topological terms,
lcpﬂﬁinﬂm!thnmtm-ppingn!tﬂbﬁlﬂqinﬂm. In
the case p = 0, this is the only condition, for condition 1i) then
follows (since compositions of continuous mappings are continuous) Ffrom
eondition i). Por other p, however, we require still more: Roughly
speaking, we reguire that, "if the mapping ¢ is pulled back via the
mu:matmmmlmummfm then
the result is a C¥ mapping between those Bamach spaces”. Thus, this
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definition can be viewdd as another instance of our genaral program:
-“ﬂh'ﬂ'w—ﬂlhm“. and we carry over
that notion to manifolds via charts.

Example. Let M be a C* manifold, and N a submanifold, so N is also
a C¥ manifold in its own right. Let @ be the mapping from set W
to set M with @(n) = n, i.e., which "inserts ¥ into M®*. Then this
@ is a CP mapping of mani "

Example. Let M, and M, folds, so M X M, is also a ¢F manifold.
Let ¢ be the mapping from M, XM, to M, with action @(m,, m,) =m,
(*projection onto the first factor”). Then @ is a C* mapping of
manifolds.

Example. mum-&m:m.m“-uumd’mihun
ll!ﬂlﬂhlplﬂ,iﬂhlﬂilﬂ'lﬂi!ﬂlﬂ,uﬁhﬂﬂltpmiiﬂﬂh
l&mﬂf!ﬂlﬁﬂilmm:miﬂﬂ.

Example. Let M be a CF manifold, and let U,Y" be an admissible chart
on M. Set K = “¥¥[U], so K is an open subset of Banach space E.

We may regard K as a CF manifold (since E, as a Banach space, is a
manifold, and K is an open subset of E: first example, page 43).
Then ¥ i= a mapping from manifold X to manifold M. This is a CF mapping.

Let M and M' be CF manifolds, and let @ be a c® mapping from
MtoM'. If @ happens to have an inverse, i.e., if there is a
¢” mapping \ from M' to M such that A*¥ is the identity mapping
on M and @¢A is the identity mapping on M', then ¢ is called a
diffeomorphism (or cP diffeomorphism) from M to M'. Then necessarily
A is a diffeomorphism from M' to M. A diffeomorphism from M to M’
"makes M and M' identical as manifolds" (i.e., is analogous to an
isomorphism of groups or of Banach spaces, a homeomorphism of
topological spaces, etc.). If there exists a diffeomorphism from
M to M' then M and M' are said to be diffeomorphic (or ¢¥ diffecmorphic).

Example. Consider the manifold M of the second example on page 40.
Let O be the subset of M consisting of all points thereof except

(k, 0, 0, . . . ). Then O, as an open subset of M, is alsc a manifold.
The Banach space E of that example is, as a Banach space, also a
manifold. ILet q be the ll:qr'ﬂa”'j
mapping from O to E which
sends (ry, T,y « . « ) dn
0 to (1/(1- 1!l{r=- Tae -
«+ +» ) inB. This is a
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diffeomorphism of manifolds. [For example, a two-dimensional sphere,
minus a point, is diffeomorphic with the plane.)

!hmliumﬂmcrmn!mmhﬂ'. As
one expects, this carries over directly to manifeolds.

Theorem. Let M, M', and M'' be CP manifolds, and let ¥ be a cP
mapping from M to M', and @' a C” mapping from M' to M'', Then the
mapping 9@ from M to M'' is also a C¥ mapping of manifolds.

Proof: Let E, E', and E'' be the Banach spaces on which these manifolds

are based. Choose charts u, ¥ , u', ¥, Enuu".*l"“'. Then, since
E E -

O \

e 1R

¥ Uty 'liu"llilupml.n:‘ for every U', A, 1’*:1:..4!’-'1 o]
:I.:lupminl. Since the mappings of Banach spaces 1'*'#'1“" and
¥ oqep' ™" are P, 5o is their composition, 4''s glects ¥ .

Example. mmﬂmﬂmmm— is a diffeomorphism,
ﬂﬂ.u‘.mﬁlmtﬁ-m& @ and @', respectively, then
%2 1is the inverse of ¥ *9, mc?-mui-mmw
sition. Hence, "is diffeomorphic with" is an equivalence relation

on manifolds.

Example. Given a curve ¥ on M (so ¥ is a ' mapping from R to M),
uﬂ;lﬂplupmq&ulml',thnqii',n:c’mﬁul
to M', is a curve on M'.
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11. BScalar Fields

We have now completed, in the last two sections, our discussion
of what a manifold is and is like: We have the notion of a manifeold,
and of a structure-preserving mapping between manifolds. It turns
out, however, that manifolds, viewed as simply objects by themselves,
are not all that interesting. What is perhaps more interesting is
the various objects which live naturally in the environment of a
manifold. Among these objects are what will be called tensor fields.
We now begin, therefore, a program of defining and finding the proper-
ties of these tensor fields. Our approach will be to first treat
scalar fields and vector fields (by far the two most important examples).
These two examples out of the way, we shall then loock at the entire
situation regarding tensor fields from a more systematic viewpoint.
We begin, then, with the scalar fields.

Fix a ¢® manifold M, based on Banach space E. A scalar field
(or cP gcalar field) on M is a CP mapping £ from M to R (where R is
here regarded as a C* manifold). That is, a scalar field on M is
just a real-valued function on M, a function which happens to be
smooth in a certain sense.

Example. Regard Banach space E as a C* manifold. Then a bounded
linear mapping from E to R is a scalar field on E.

Example. utfhncpmllr!hlﬂmn,lndi'lﬂpm. Then
¥o¥ is one real function of one real variable (representing "evaluation
of the scalar field along the curve"). Mmiﬂmn!cpm
of manifolds, this function is also CF,

Fix cF manifold M. htfnnd!'hltuncﬂmalnrfhlﬂnmn,
and consider the famidkiofiléld f'4ofi'¥ with action (f + £') (p) = £(p)
+ £lp). Then this function is alse a CP scalar field (since the gum
ﬂmcpmlunhnlﬂhmhlcpfum:ﬂﬂnl. Furthermore,
for a a real number, the function af with action (af)(p) = a £(p) is
a cP scalar field. That is to say, the set of all CP scalar fields
on M has the structure of a real vector space. Finally, for f and
£' cP scalar fields, the function £f' with action (££')(p) = £(p)f" (p)
1-:1ncp[|inuuumanm}. Thus, we have available
a "multiplication” within our vector space. The collection of all
cP scalar fields on M thus becomes a ring (and, indeed, a commutative,
associative algebra with unit). i
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Next, we consider the behavior of scalar fields under mappings
of manifolds. Let M and M' be CP manifolds, and let @ be a cF
mapping from M to M'. Then, given any CF scalar field f on M',
we have that fe¢ is a real-valued function on M. But, as the
composition of CF mappings, this function is also cP, and hence is
a CP scalar field on M. Thus, we can "pull back" scalar fields from
M' to M under mappings from M to M'. Clearly, the pull-back of
the sum of two fields is the sum of their pull- » the pull-back
of a numerical multiple is that multiple of the pull-back, and the
pull-back of the product is the product of the pull-backs. In other
words, ¥ , a structure-preserving mapping from M to M', defines
a structure-preserving mapping from scalar fields on M' to those on
M. [In algebraic language, this last mapping is a homomorphism of
rings.]

Finally, we give some examples of some interesting - and perhaps
a bit suprising - differences between the properties of scalar fields
in the finite- and infinite-dimensional cases. Consider first the
following statement: For E a f
m-luu-,-ndrllndr: \
positive numbers with £y, Ty F=0
there is a c¥ real-valued
function f on E with f(x) = 1 £=
whenever Ixj¢r, and f(x) = 0
whenever |x|3r,. We first
note that this statement is
trua if E is finite-dimensional:
mrﬁﬂrlrl....,rnlin
l‘,ntr-{,trlll:-l-...-l-[rnlij"}
and let f be a C* function of r
mulmﬂﬂlfﬂ'r!rlﬂﬂ
zero for r2r,. In fact, this
statement in ®He finite-dimensional case represents an important and
&Iquﬂtlfuﬂp:nwtynfnnu It allows one to "localize arguments"”
by choosing functions which do what one wants in some small region,
but which, since they are zero farther away, do not do anything wvery
nastyoutside of that small region. !nrmh.unlmnmﬂrlh
from our fact that a finite-dimensional manifold admits a reasonable
number of C* scalar fields, in, e.g., the following sense: Given
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distinet points p and p! of finite-dimensional M, and any numbers a
and a', there exists a C* scalar field £ on M with £(p) = a and
£(p') = a'.

Iz the statement of the previocus paragraph true in general, i.e.,
is it also true in the infinite-dimensional case? It turns out that
the answer is no.

Example. Let E be the Banach space of all sequences of reale the sum
of whose absolute values converges, with norm this sum. Fix positive
r, and let £ be a C scalar field on the ball B of radius r centered
at 0. Also, let U be an open Ema gesmmmans
subset of E whose closure, U, is
in B. Then, given any point p of .F B
U and any positive &, there is a
point P of B, not in U, such that
lﬂ‘;h+ﬂp}[lt. Proof: Nothing
is lost by setting r = 1 and f(p) = 0. *
Fix, once and for all, positive number
g . mwpmmmufmmnttn.?hm%u-
non-negative number and ¥ is a continuous mapping from the closed
interval [0, ty] to U, satisfying the following conditions: i) & (0)
= P, and |¥(ty) - ¥F(0)| P £y/2, 1i) for any t and t' in [0, t,],
ree) - wer)] £ |t - ¢'], and 141) £(w(ty))4 € t,. [Think of the
mnut'mﬂngpohth?“lmﬂmntﬂﬂthrtt}'.

The first condition then requires that "the point begin at p, and
mmmﬂiﬂdhtmntluitt’/!h‘:-pbrtlntn'rm
second that "the speed of the moving point not exceed one"; the

third that "the function f not be too large where the curve ends".]

We now partially order this set ' by the relation "is an extension of":
(tgr ¥ ) £ (&5', ¥') provided €, & t," and ¥=¥' on [0, t,]. Note
that, by condition i) and the fact that U is a subset of a ball of
radius one, we have t, 4 & for every (t,, ¥ ) in .

We next claim that this partially ordered sét M satisfies the
condition for Zorn's Lemma. Indeed, given any totally ordered subset
of T, we certainly obtain, by "stringing these extensions together”,
-tn tthluhufth-tn'lnfthmm}_rummﬂthml
eontinuous mapping ¥ from [0, t,) to U satisfying the first part of
condition i) and condition ii). But, by condition i), the sequence
Tieg/2), ¥i3e/8), ¥(Tey/8), . . . in U is Cauchy, whence, since U is
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closed, this sequence converges to some element of U. Denote this
“rhg.nmﬂ“#lmhﬂﬂ,h‘;hl
But this (t,, ¥ ) 4s in I", the three conditions fo
continuity. Thus, we have obtained our mieemed sbemest, and so verified
the condition for Zorn's Lemma.
By forn's Lemma, there is a maximal element, (t,, ), of /.
1f ¥(ty) (necessarily in U) were not in U, then we would be done
(for, setting B = wity), we would have |£(B)|% €t, ¢ 4€, where
th-ﬂtﬂi-qu-nqhﬂunﬂﬂuiﬂ]ﬂﬂ-lﬂht.iﬂ.
m.-mmmmmmwﬂm:n-rnﬂih
in U leads to a contradiction. Make this assumption, and first note
that, since £ is C' at x,, there is a positive § such that,
whenever |z\$§, |f(x, + 2) - £(x,) - DE(x,) (2)|$ &5 . We next claim
thltthﬂlhlmlinlnﬂlthtlll-i,h‘"'l'l'l]m‘*‘fl,
Inﬂﬂuoltl}-ﬂ.. [Proof: meu-phin!,ithw
by a sequence, [rrri,...hn!rﬂllthlmu!mmm
values converges. mmmm—ﬂm-m.-qr:-lrr
with \rz'li‘flnu‘:!ll & /4. consider the subspace of E consisting
ﬂmuulﬂmmm,mmmrthmmum,
are zero. BSince Df(x,) is a linear mapping from this subspace to
the reals, and since this subspace is two-dimensional, there is some
element, z,0f this subspace with |z| = § mlll:ﬁ:ullll-!. But
now, since z is of the form (0, u, 0, 0, v, 0, . . . ), and since
Xg-P™ llrr Ty + + « ) has ]r:“iﬂ and |r.| 4 & /4, we have
also |x, - p + z| 2 \x; - p{+$/2. This 2, then, is what we wanted.]
Huwnt?n-tul-i,m
let ¥ be the mapping from
(0, €, with () = ¥(e) R 2
for t in [0, ty], and F(t) v
WL, + (-t = for
t3t,. We show that this
(€, #) is also in I,
violating maximality of
Itu;"'hlndﬂm:q:l.vingu.-l
“Ai“"m contradiction. Condition i): Clearly, ?m} = p. Also,
17k - (@) = \riey) + 2 - w(0) = g - P+ 2| 2 \x; - pl + §/2
;u:uuhu-m!n,m-{.um;mgu:;mun
ﬁlﬂltip,uthlﬁnllm[tn.?iinthlfm. Condition 11i):
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'ﬂ'r‘-"*rtﬁ[‘ltt’]“"h“ﬂ""r-“’ﬁﬂ"“'#
= l#ee) + (e -/ 2 - Ve £ |Fey) - Fe| ¢ (2 -t )4 6
£ (g - t') + (£ -t)) = |t~ ¢t', where we used |z} =§ in the
mmn,nlmﬂitmujutte.?]hthﬂdﬂ. Condition
iii): Since DE(x,)(z) = 0 and |2| = § , we have, by the paragraph
above, that |£(x, + z) - £(x)| £ €8. mHence, |£(F E )| =
oy + 2 & leixpdl + [exy + =) - £xp)] £ ety + 68 = €F,.
This completes the proof of the result claimed in our example.

The crucial step in the proof above is finding the "direction =z,
motion along which gets one significantly farther from p, but along
which the function f does not increase tooc much". The statament
itself asserts that "the C' function f tastes outside of U any value
that it assumes inside of U". m-mﬂfclmm:ln
infinite dimensions is rather like the well-known behavior of harmenic
functions in finite dimensions. One concludes, then, that C' functions
on certain infinite-dimensional spaces are similar in their behavior
te harmonic functions on finite-dimensional spaces. Indeed, we can
push this analogy still further. The only harmonic functions on a
finite-dimensional sphere are the constants. In infinite dimensions,
we have the following.

Example. Let E be the Banach space of the example above. Let E be

lﬂp}ﬂ!thutl{ﬂth#lm-h-m,mtnnppimhmfmﬂ.
and let M be the union of E with one additional point Ww. We introduce
two E-charts on this set M. For
one, set U=E, and ¥* = ¢ . For

s P
iRt e e \X%Y/"
those K in E with @(k) # 0, ﬁq-‘
and let ¥(w) = 0 and ¥'(K) /)[‘F =3} /; -

sy

@ik )/ \®(x)| 2. for k in F.
These two charts make M a C
ifold based on E. [This M is "like a sphere", in, e.g., the sense
that the same construction in the finite-dimensional case yields a

sphere. ]

hmutht&@r&mluﬂuld:!mﬂd-mﬁﬂlu
are those which are constant. Indeed, let f be such a f , and
let f(w) = a. Then fo¥ is a C* function on E, with - a.

Fix positive €. Then, by continuity, there is a positive § such that
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_I-lil;i!"bh-ﬁ;‘ﬂ!ll ' -q..h'l"""hne‘
don on E. By what we have just shown, whenever |x|2 Jg .
-a)l4 €& . But, by the result of the previous example,

it follows that }tc'l‘"{xl-nlli for every x in E. Hence,
letp) - al $ € for every p in M. Since € is arbitrary, we must have

f(p) = a for every p in M.
Thus, the manifold of this example, at least, has no interesting
¢! scalar fields whatever.
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We have now completed our discussion of the first example of a
field on 2 manifold: scalar fields. We turn now to the second
example. (p3 1)

Let M be a C® manifold,based on Banach space E. Fix a point p
of M. Consider mow thg collection of all pairs, (x; u,¥), where x
is a vector in E and U, ¥ is an admissible chart on M with p in U.
Given two such, write (x; U, ¥ ) = (x'; UN, ¥) if Died™) (P (p)) (%)
= x', Wq now claim that this " %" is an egquivalence relation.

[Proof: Clear)y, (x; U, ¥') X (x; U, ¥ ). Next, let (x; U, ¥ )

%{x's U',4'). We have that (¥ *+" )e(+ ¥ is the identity
mapping. Taking the derivative of this equation, using the chain
rule, we have D(¥et ) (4 (p)) D{Te+™) (¥ (p)) = I, the identity on E.
Hence, since D(¥'+¥ ) (4 (p)) (x) = x', we have D(++¥ ) (¥(p)) (') = x,
i.e., (=*; ﬂ',f.]- 2 (x) U0,%+). Finally, lst (x; “rr, % (x'y rr"""
and (x'; U', ¥') % (x*'; U'y 4"). Taking the derivative of

(o] (o) = 4™, we nave that DI+or ) (¥ (p)) DITe# ) (¥ (p))
= D(T%¥) (v(p)). Applying each side to x, we have D(+*+) (+(p)) (x)
= D' T (A (p)) (DI+er) (P (2)) (x)) = D(Her™) (4'(p)) (x*) = %',
Hence, (x; U, 4 ) % (x''; U'', ¥').1 An equivalence class is called

a tangent vector (to M, at p), or just vector im M.

Intuitively, a tangent ve®tor at p represents "an infinitesimal
displacement from p, in M". We support this intuitive picture, and
thus motivate the definition above, by the following "first order
calculation". Fix point ﬁ in M "near p". Lat us represent the

relationship between these points in germs of chart U, “b , with p
‘ - H . _ E
™R
S, )
(@) M)
_ - |

in U. This representation can be accomplished by considering the
vector x = ¥(B) - ¥(p) in §. A different chart gives a different
representation, namely, U', "F' gives x' = "t‘tFJ - ﬁpl. To compare
these two "representations of the same displacement in M", we note



that x* = H @) - #E) = FeF ) PEN - (o) (Pip))
() (F (2)) (B - P(P)) = D(He¥ ) (4 (p)) (x), where "zg"

means "ignoring a mapping tangent at “*(p)". But this formula is
precisely the equivalence relation above. The "term ignored becomes
-ﬂugﬁhummmm?mpmlhm'. Thus,
we interpret our eguivalence relation as requiring that “various
mumdmmmum—ium-

Further support for our intuitive picture comes from the following.

Example. Let M be a C® manifold (p21), and let ¥ be a curve in M,

i.e., a CF mapping from R to M. H E
Let p be the point ¥(0) of M. o« +

we obtain a tangent wector at p. | =9 —3

Given any chart U, ¥ in M with [/ ;j
p in U, we have that Yoy is

a mapping from R to E, whence
its derivative at 0, D(+ey) (0) IR
is a linear mapping from R to E,
whence x = D(*tew) (0} (1) is a
vector in E. Given another such chart, we similarly set x' = D(¥ew ) (0) (1
But, taking the derivative of ¥e¥s (+s+)o (ver) at 0, we have

B(+'a7) (0) = D+ (4o ¥ (0)) BIH¥)(0). Applying this to the

number "1° in R, we see that x' = D{¥e¥') (4 (2°(0)))(x). That is to

gsay, we have that (x; U, ) % (x"; B'.‘l"‘l'. We thus obtain in this

way an equivalence class as on the previous page. This tangent

vector is called the tangent to the curve ¥ at ¥ (0).

This last example gives what we might expect: Since a curve
"moves in M", it should define, at each point of the curve, a tangent
vector giving the "direction of motion in M".

Example. Let M be a C* manifold (p21), p a point of ¥, § a tangent
vector at p, and £ a CP gcalar field on M. let (x; U, 4 ) be any
representative of the eguivalence class § , and consider the number

a -nun'F'HTtp‘lH:l. Given any other (x'; tl"."f"'l in this
equivalence class, we similarly define a'. But, taking the derivative
of the identity (o4 ) (#o+ ) = (£2#'), and using the fact that
h:ﬂ,*h];{:.';tl'.'i""]l,ﬂlhl_nthlta-l'. Thus, we obtain, from
mgmmthﬂl.:““.mum
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of chart used to define this number. This number is called the
mmu:hmmmf. Intuitively, this
ﬂni-"mmurmﬂlmthmmwmt
in M defined by § *.

n--ta!ﬂltmtmmltpi-muﬂthm“!
(to M) at p. m—tp-liluwmmmu
on this set. To this end, we first note the following fact: . §
is any tangent vecter at p, and U', ¥ is any chart with p in U',
mummmrmm:*mnﬂﬂ;u-;n-.*'::-
the equivalence class J . Indeed, for (x; U, ¥ ) any representative
u'lf,th-rmtrﬂunl.qu:‘hthtqlmhy:'lntwﬂ‘f‘bﬂlx}-
Thus, given a chart U, ¥ with p in U, we obtain a one-to-one, omnto
mapping o tmthtmtmltpmthn-uuhm! (namely,
o (f) is that x in E such that (s; U, V") is in the equivalence
class § ). This correspondence ¥ thus induces on the tangent Space
all the structure of the Banach space E (i.e., a vector-space structure
and norm structure). We are of course interested only in that part
u!ﬂlthhnmtmanth-tmtmm:hhwﬂm
cholee of chart. So, let U', 4 be another. Then we obtain immediately
(since, for any § . (¢ (£): U, ¥) = («'(£); v, #")) that
<'= D(#*4") (¥ (p))os . Clearly, then, the vector-space structure
on the tangent space is chart-independent (i.8., if d (T) = « (£) + smi¥,
then «'(¥) = &' (f) + ag'(M)). The norm structure, however, does
depend on the chart, for |¢'(§ )| = |D(H+F) (4 (p)) (% (£ )|, which
hnﬂthgﬂﬂmltﬂ‘ﬂllﬂi We have, m,thltht'{l"ll
& |De+%") (+ ()] (T )| , and similarly, eeversing the roles of «
and «'. !htthtnm.nnrhummuhtdndmthtmtm.
from two charts, are equivalent to each other: It is only the actual
miulnlunnfth-mnhhhm:hut-dnpuﬂmt. This structure
mthitmtlpuGu*lnmw.Wﬁthlmumﬂmu!
mmmunmmmm.mmmm-u
ﬂlmlﬂﬂmuﬂuthn-hullﬂn!nmhhlllpm. We can,
hmwm,wﬂmnﬂwm.nﬂm
ﬂupluu!mmtm,lmuﬂamnfmtm.
mmntwmtu1mummmmru
hwmwﬂmmmwtﬂqﬂrﬂmh We
M;mM;MﬂwmﬂIMMWIHIM
number) .




In the finite-dimensional case, there are a number of equivalent
definitions of tangent vectors. It is of some interest to see which
of these definitions agree with ours above in general (i.e., also
in infinite dimensions). We consider two.

Let M be a C¥ manifold (p21), and fix a point p of M. Given
any CP curve ¥ on M with ¥(0) = p, and any cF scalar field f on M,
denote by 8( 7 , f) the number D(fe¥ ) (0) (1) (i.e., the ordinary
derivative, at zero, of the real function fo¥ of one real variable).
[In our language, this is the directional derivative of f in the
direction of the tangent to ¥ at zerc.] One then calls two curves,
¥ and ¥', equivalent if (¥, £) = s(?', £f) for every £ (i.e., if,
in intuitive terms, the two I
curves are "tangent to each
other at p"). Tangent vectors
ara then defined as the
equivalence classes. This
definition is not, in general,
the same as ours, but for a
minor technical reason: As we
saw in the previous section, there are manifolds which admit only the
constant CP gealar fields, and for these, for example, we would obtain
only one equivalence class (since we would have s(¥, f) = 0 always).
We can avoid this difficulty, however, by considering instead cf
scalar fields defined on a sufficiently small open submanifold of M
containing p. [Choosing, e.g., this open subset to be the "U" of a
chart, we will obtain enough CP scalar fields.] With this one
modification, the two definitions will coincide. [Any tangent vector
in this sense defines one in our sense, since equivalent curves have
the same tangent. Conversaly, given a tangent vector in our sense,
one constructs a curve whose tangent at p ie that tangent vector (using
a chart), and thus obtains an egquivalence class of curves and hence
a tangent vector in this sense.)

For the second definition, again let M be a c¥ manifold (p31),
and let p be a point of M. Denote by °} the collection of all cP scalar
fields on M, so "} is a vector space with products. A derivation on
°3is a mapping § from °} to the reals, satisfying the following
eonditions: i) Por f and £' in F, 6(f + £') = §(f) + &(£'),

i) For £ a constant function, §(f) = 0, and ii1) For £ and £' in °F,
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B(ff') = £(p) S(£') + £'(p) 6§ (£f). As an example of a derivation, we
have the following: Fix a tangent vector § to M at p, and denote

by § the mapping from “§ to R with the following action: For f in
“3. %(f) is the number given by the directional derivative of f

in the f direction. Then this $ is a derivation (the three properties
above being just properties of the directional derivative). For

the second definition, tangent vwectors are defined as derivations on
®3 This definition also does not agree with ours, for the same
technical reason as above: Not enough scalar fields in general. Again,
we can avoid this difficulty by choosing for “} the scalar fields

in some small open set containing p. This having been done, does

the present coincide with our original definition? It turns out that
the answer is still no.

Example. Let the manifold M be the Banach space E itself (regarded as
a manifold), and let the point p be the zero vector in E. Then, since
M comes equipped naturally with a chart, the tangent space at p can
be identified with E. Given any scalar field f on M, denote by T
the element of J(E; R) which sends x in E to the real number the
directional derivative of f in the x direction (regarding x as a
tangent vector at 0). Then, clearly, T, = T, + T,,, for ¢
a constant scalar field, f:-u,m Teer = £00) T, + £1(0) T,
Now let o be any element of X( I (B: R); R). Then for each f
i{ffihjutnmlm. Hence, the mapping § from % to R
with §(f) = «(7,) is a derivation on % . Thus, we so far have a
construction which yields, from an element o of X (X (E; B ; R), a
derivation. In particular, every element x of E determines a certain
o in L(X(E; R); R), namely, with the following action: For ¥ im
L (EPRR Lt o (T) = ¥(x). Thus, since an element of E yields
an element of X (J (E: R); R), and since an element of JF (X (E; R); B)
yields a derivation, each element of E ylelds a derivation. This,
dmu,hjmth_hﬁmmﬂmma!thil".

Is every &8 in J(£(E; R R a ¥, for some x in E? If not,
we shall have an example of a derivation (namely, that which comes from
this o ) which arises from no tangent vector. We now find, for a
specific choice of E, such a o .

Let E be the Banach space of all sequences of real numbers which
converge to gero, with norm the lub of the absolute values of the
entries. We now claim that J (E; R) is precisely the Banach space F




of all sequences of reals the sum of the absolute values of whose
“m%ﬁﬂlm”- Indeed, mr-“'l"l""l
in ¥, let T  be the element of ltl:mmm-:-fr,:‘,...i
in E to the number Tr{:l-llrl#-irz-l-....{nﬂ.hgﬂ-tﬂ-
mmrlﬂtm.mmrimmm.u&mﬂnf
the absolute values of the s, is finite). Conversely, let 7 be an
element of £ (B; R). Sets; = T(L, 0, ...),8,= 0,120...),
ato. ﬂﬂ.iﬂtﬂr!-l!rl‘r---}in!;-ﬂlll:llthlhf'ﬂ
= 8,7, +s,r, + . . . (for the sequence in E whose nth element is
I:‘l.:':,..-.rnrﬂrﬂ--..lmtn:.mfnt“
element of this sequence must converge to T (x). But T of the nth
Ilﬂlﬂtlhﬂﬂ.l.-llrl-l-. : .-I-lnrn-l' !‘urtbnmr-,thilll, S0 + -+ -
must be such that the sum of their absolute values converges. [Proof:
Suppose not. M.H}r;nhﬁnpﬂi--..ﬁp.,[;l. "-'H-...
+ |84/ 21, etc. Let ®,, i=1,..,7 each have absolute value 1/2,
mdhtthlﬂnuftihmmuthltnfthwmm:’_:
]..t:i,'.l.llﬂ,..,!.!llﬂhhlﬁMﬂh“lﬂllf!,ﬂnhﬂthﬂll_
-.i.gtnnt.hlm:nmnﬂnqlitlh- !hnnthh{:l,rz,...luin
l.ﬂh-rnutlrl-bslriir... . fails to converge: A contradiction.])
m.jr-{-r lz;-..]lllnllﬂ!ﬂt of F. Clearly, we have
T = T_.- We heve shown, therefore, that every element of F defines
an element of J (E: [R), and conversely. That is, we have shown that
F= JER.

Now,finally, we are ready to choose our element « of
Z2(L(E; R); ). Let o have the following action on JF (E; R) = F.
For y = (8y, #3¢+ « « « ) in F, met ®(y) = s, + s, + . . . (noting
that the sum converges, since the sum of the absolute values converges).
ru;--ny:-.’rl.ri.,...Iinl,th:mm-pnndingq:hnlmum
1,[[3}--1:11--2::*. - «» We now claim, finally, that there is no
:inlnnhthltﬂ-ﬂl{thmlgruumhlamdidmhm
x= (1, 1, L, . . . ), which won't do, since this candidate ies not in E).
This completes our example.

The final topic, involving tangent vectors at a point, with which
we shall deal is the question of their behavior under mappings of
manifolds. Let M and M' be CF manifolds (p21), based on Banach spaces
E and E', respectively. ILet @ be a C® mapping from M to M'. Fix
a point pof M, set p' = P(p), and let § be a tangent vector to M
at p. Ve obtain, using the mapping @, a "corresponding” tangent



\ o3 - l—-’t ]
(@ s [

Think of § as an "infinitesimal displacement at p in M". Then takes
m-*mmrmhuuutnmmhrpnmuuu',m-ymm
a tangent vector at p' in M'".] The construction itself is this. Let
U,% be a chart on M with p in U, and U', 4' a chart on M' with p'
ian 0. mM#h:d’mhnummu!lul'.
fence, D(Yede¥) (*(p)) is in X (B:; B'). Now let x be that vector

in B such that (x; U, ) is in the eguivalence class ¥ . Then

x' = D(FYe@e¥) (P(p)) (x) is some vector in E'. We claim, first, that
this x' nm«;-intn:mnmﬂfmmtu,*. L
gi.mmnt.h-r. umltmllulxtwinnhﬂutl’?:ﬂ. )
%(x; U, 4*). That is, we have X = D(To¥ Y (P(p)) (x), which, by the
chain rule, implies immediately that x' ilmhmnld] s-nmd,

elaim that, if the chart U', +' unl'ilnhnngndtnu' ¥, then x'

{s changed to X' = D(Few~ ) (¥ (p)) (x') (again, by the chain rule and
th-ﬁuﬂn*nqm:ﬂnn!ur:}. That is to say, we have that

iﬁl": ll' +)x(x'; U, 4'). Thus, we obtain an equivalence class of
pairs for p' in M'. That is, we obtain a tangent vector f ' at p'.
[ﬂuhthntthniumlrmihn,uﬂmkﬂnfw.hm
pusiness, which one keeps using over and over.]

Example. Regard the reals as a manifold. Then, using the ocbvious
m“ﬂummu,nuqunmmtmmw-tﬂ
a real number. Consider now a CP curve ¥ in manifold M, with ¥ (0)
= p. By the construction above, this C® mapping ¥ of manifolds takes
mwm'l-qtnunummmtwnpum
m:mmh,dmu.mtﬂmplmﬂuulﬂm
tangent vector to the curve ¥ .
”“hhﬂmunﬂ“dﬂ-“m.
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Let f be a CP scalar field on manifold M, and fix a point p of M.
Given any tangent vector § at p in M, we obtain, by the construction
above, since f is a C¥ mapping of manifolds, a tangent vector at
f(p) in R. We may identify this latker with a real number. Thus,
from £ and § we obtain a real number. This numberfis of course what
we called the directional derivative on page 57.

It is clear from these two examples why we kept using the same
argument: We were doing exactly the same thing.

The final topic to be discussed in this section is that of tangent
vector fields.

Let M be a C* manifold (p31). A tangent vector field (or wector
field) on M is a mapping which assigns, to each point p of M, a
tangent vector at p in M. Thus, if T is a tangent vector field om
M, then, for each point p in M, ¥ (p) is an element of the tangent
space at p. If one represents a tangent vector at p a8 an arrow
drawn én M at p, then a tangent vector field would be a field of
arrows all over M.

As with scalar fields, the fields themselves are less interesting
than the smooth ones. Let ¥ be any tangent vector field on cf M,
and let U, 4" be any chart. Then, for any point y of the open subset
Pu) of B, * L(y) is some point
of M, whence ¥ (P *(y)) is a
tmtmtnrlt‘f"‘l{ﬂ. Let
x be that (unique) vector in E
such that (x; U, ¥ ) is in the
equivalence class F (" 1(y)).
Thus, we have constructed a
mapping K from the open subset
YUl of E to E (y goes to
x = K(y)). Our tangent vector field § on M is said to be cP ! if
this mapping K is C® 1 for every admissible chart U, ¥ on M. [That
is, we "pull the vector field back to E by a chart, where we know what
smoothness means”.]

Why do we only define CP~! yector fields on a CP manifold, and
not ¥ fields, or even CY fields for arbitrary q? One could certainly
make such a definition, but the dAifficulty would be that, unless
g4p - 1, the only thing satisfying that definition would be the zero
vector field. The reason for this difficulty is that, for a c’ manifold,




the chart-maps are only C¥ related. But the equivalence relation
which defines tangent vectors has in it a derivative. Henca, given
a vector field on cP M, and a chart U, on M such that the "pull-
back" of the field to “'[U] looks, say, CF, then, for a second chart
cP- put not cP' -related to this one, the corresponding pull-back
will not look cP., But on a C® manifold one must admit all c’-compatible
mtmmm-nmcv-hutmtcwl-rﬂMMML
Hence, given a candidate for a CP vector field on a CF manifold (i.e.,
the field looks CP in some charts), one expects to be able to find
other admissible charts in which that candidate does mot look CP,
The same question does not arise for scalar fields, for there there
is no "equivalence relation involving one derivative®™. This behavior
is perhaps not unexpected, since a tangent vector already "looks at
things to first order in M", i.e., a tangent vector has already
within it "one derivative". Of course, if § is a cP ! vector fleld
on cF M, and if q€p, then we may also regard M as a C° manifold,
whence this same § will be a ¢! field thereon.

We now have a set of things to study: The set of tangent vector
fields on M. As usual, the study consists of finding what structure
there is on this set. Let § and ¥ be C¥ ' tangent vector fields on
the CF manifold M. Then, for each point p of M, f (p) and " (p) are
tangent vectors at p, whence their sum, £ (p) + *1(p), is well-defined,
and is alsoc a tangent vector at p. Repeating for each p, we obtain
a new tangent vector field on M, which we write § + 7. We claim
that this § +7 is in fact C¥ ' (immediate, since the sum of the
pull-backs of § and *) wvia a chart is the pull-back of the sum, and
since, by the second example on page 28, the sum of C® mappings on
mmhﬂpiq !'url:hlr.!nr’flcp-lmtn:ﬂﬂdunll,
and a a real number, the vector fileld with action (a§)(p) = a ¥ (p)
is also ¢ 1. Thus, the set of CP~ 1 tangent vector fields on M has
the structure of a vector space. Next, let § be a CF ' vector field,
and £ a P! goalar field, on M. Then action (£ )(p) = £(p) § (p)
defines another vector field on M, £f. This £3 .i.ll].-ncp'l (since
mlﬂﬂiﬂﬂmafcp'lmﬂMuhmlh?cp'lfmhinﬂ
yields I:P"l mappings). That is, we can multiply vector fields by
scalar fields. It is immediate that facts true pointwise are true for
flelds, i.a., (E# £')f =£f + £'f , £(§ +M ) = £ £ . In
algebraic language, the vector fields are a module over the ring 3.
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13. fensor Products

We have now discussed two examples of fields. We shall shortly
begin our program of obtaining the most general type of tensor field
which can exist on a manifold. As a prerequisite for this program,
we need a certain construction for obtaining Banach spaces from Banach
spaces, a construction we now introduce.

Let E and E be Banach spaces. Denote by G the collection of all
mﬂma!th-hn.izlﬁil+.=::ﬂ%+...mtm
i) the expression consists of a countably infinite, or possibly finite,
umﬂizm.nﬂnﬂ“.ulmdﬁ.nr...hl
mnﬂnﬂ-r,uuhnf:l.:!....nmmﬁl,
uﬂ-.uhm!;l,i‘!,...IWMtuf!,uilﬁnrmM
1Iﬂjhﬂhathli-zjnndli-?j{thmgh of course, we could
hn“li-:j.mvund i?l.lﬂﬂ-ma!wﬂtlﬂﬂﬂm
Fihllﬁ.ll"' HHH*""W"H?’““M
which differ only in the order of terms are taken as representing the
same element of G. [We are being a bit sloppy here. More precisely:
Consider the collection of all pairs, (8,7 ), where 8§ iz a set whose
cardinality is at most countable, and ) is a mapping from 8 to

the product set RX E&E, subject to appropriate conditions. Write
El;'}.l#{l',;litm‘ﬂlulmm.mmﬂwmrhﬂ
Ehﬂ'n.nhthtﬁ#f-'l This is an equivalence relation:
set of egquivalence classes is writtem G.)

ﬁnﬂtiﬂhtﬂiﬂhﬂdﬂﬂllﬂﬂﬂtﬂt‘ﬂntﬁilﬂtﬂiﬂﬂhmlt
into a Banach space. We first define addition. !'m:nlxl':li-...

lﬂhlfl‘? #. . .in G, define their sum as follows: First,
“interlace terms®, i.e., write a, x,@%, + b, v,@¥, *+ a, "z@’:
+h=1:.? . —_— Ifthumrtmhlmhlﬁth-l-':ﬂt.i.l.-

uhuth.ili:uﬂhj:lﬂm.nﬂmth-mmhr
l;l-rhiltﬁzﬂlifih is nongero, and just remove the two terms
'.l.‘.l'li'lrh:l'ﬂ. Doing for all repetitions, we obtain finally
an element of G. [Examples: 3 x@% + (-3) x@% = 0; 2 x@%

+ 1 (-2x)®% is just itself, for there are no repetitions.] Next,
we define multiplication by real numbers as follows: a(a, ’I@'I
+n=:zﬁgz+.--J-Iﬂllxﬂlli-lllzl'::ﬁiz**..[!ﬂrlfli
if a = 0, replace the right side by 0). This set G, with these two
operations, is a vector space. [Think of the set of all expressions
of the form "x@%", with x # 0 and X ¢ 0, as a "basis for G, so every
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vector in G can be writtenm as a linear combination of these basis
vectors”. The quotes in the sentence above would be unnecessary
if we had considered only finite expressions.]

Thus, we so far have constructed a vector space G. We next
ﬁﬂulfnmﬂj‘mmnmw: ]llxﬂili-...l
= 'pil!il:il* + « » (noting condition iv) above). This is indeed
a norm on G. [Clearly, la, x,@%, + . . . | 2 0, and for equality,
by i), we must have no terms in the expression on the left. The
third condition for a norm is cbvious. For the second, note that
in the operation of addition, one only combines or eliminates terms,
and these combinations or eliminations serve only to decreasa the
norm of the sum from the sum of the norms,])

Thus, we now have a vector space with norm. We claim finally
that this is complete, i.e., that we have a Banach space. [Sketch
of proof: m:m-muinﬂ.llllﬂfl+...,

Il. lliﬂdll""ii & § ® & @& MWWIﬂim
appears in at least one of the expressions representing the elements
of this Cauchy sequemnce. Consider the sequence r,, r,, . . . of reals,

Mziilth-m!ﬂ.u!.nntn!: ﬂint]-ithmlulﬂm
if x@®%X does not appear in the i"" expression). Since our sequence
in 6 is Cauchy, this sequence of real numbers must be Cauchy, whence
it converges to some number r. Repeating for each choice (only a
countable number need be tried) of x@X, we obtain a countable
collection of x@'s, each with a number r. Forgetting the x@Xx's
whose r's are zero, put the rest together in the expression
r xX@X + r' :'@;'-l-. . « But this expression satisfies all the
conditions for membership in G. This is our candidate, then, for the
element of G to which our original Cauchy sequence converges. There
only remains, therefore, the (completely standard) check of convergence.]
S0, we obtain a Banach space G. This G, unfortunately, is not
quite the thing we are looking for. What we would really like to hawve
be true in G is that the operation @ be ddstributive, and that "numerical
factors can be brought inside and applied to the x's without changing
the element”. That is to say, we would like to have the following
four equations in G ba true:

2@ + %) - x®R - x@x' = 0
(x+ x )@ R - xgR - xpf =0
a x@% - (ax)@X = 0
& x@% - x@lad) = 0



for all choices of the symbols which appear (where, of course, "X@x"
means "1 x@%", and "- %@ %" means "(-1) x@%). But these four
equations are not true in general in G: We want, therefore, to somehow
"force” them to be true. This is accomplished as follows. First note
that the intersection of any collection of subspaces of a Banach
space is also a subspace. [Given vectors in the intersection, those
vectors are in each subspace, whence any linear combination of them
is in each spbspace, whence that linear combination is in the
intersection. So, the intersection is a vector subspace. Furthermore,
the intersection, as the intersection of closed subsets, is a closed
subset, So, the intersection is a subspace.] Now, denote by H the
intersection of all subspaces of G which contain all elements of
the form of the left sides of the four equations above, This H is
a subspace of G, and it consists precisely of "the things we would
really rather have equal to zero in G". FPinally, set G/i = EQE,
& Banach space called the temsor product of Banach spaces E and E.
We introduce the following notaticnal conventions. Any
expression satisfying the rules on page 64 defines an element of G,
hence an element of G/H, hence an element of E®E. We shall allow
mﬂlmwnfn:hmmumumd-ntqflﬂﬂ Two
alements of G whose difference is in the subspace H define the
same element of G/H, and hence the same element of EQE. We shall
represent this relationship by simply writing an equality l:l.qn between
the elements (meaning ﬂmmmﬂ“ﬂmtnuf!l!'j.
rmnlr.n-uwm-ln-mniunxgi nnmi‘ and a x®0,
thmnllhﬂu:jututhﬂmdm:!ﬂtﬂmlﬂl. With these
conventions, then, the four formulae on the previous page are just
¢rue (in E®E). The only thing one has to be careful about, with
mw.ummunﬁi It is not true, e.g., that
the norm of a x@X% + a’ :r' hl#‘*hmnﬂu 1ol b +h1hﬂn|
(for, e.g., the norm in E®E of x@% + (-x)@F is zero, since this
is the zemo element). Rather, ﬂunnnu!nuhmmluuih
greatest lower bound of all Huﬂﬂl{#...ﬂthn:ﬂ:l-l':’:'
-11:1':1+l.= :1& -I-..‘inlil m:.uh-numu_
that, l.q.,ll:@i‘-i-a' 'ﬂ:'ﬁ "ﬁﬂ] +|\|1!,t]h:| [These two
remarks are just restatements of the definition of the norm in a
guotient space of Banach spaces.]
ﬁ“mu-ﬂmmmmu



”mtmm,h-mm',mmmm
dm,quwIMum,ntnmuh'm.
H-ﬂnptthlfnuﬂlhguﬂitimlmﬂm. Iet E be a Banach
m,udxl.:z....-l—ntlntt. !h-winnzli-:l-l-...
t-ﬂlmm{ﬁnlﬁtﬂﬂ i{f the sum of real numbers,
p1‘+]:2|+...m. ﬁnth-ml.n:ﬂﬂ:n“i-
,n-:l+._.+znllcmt!ﬂ.fﬂu'?n, hn‘"’ni!'r'wﬂ.l*
...+i:‘.“.mﬂ:wtﬂlﬂl-1—ﬂtru§l. This ¥
ummm;gu:ﬂ-:'-.mmr-:l+:,++,. Note that
Mmmﬂmmmumﬂﬂmnﬂmuﬂm
infinite sums in tensor products.
ngiﬂmmmu!mﬂuduﬂllunﬂthlirmpﬂtiﬂ.

Example. Let E and % be finite-dimensional Banach spaces, of
dimensions n and ﬂ. respectively. We "f£find" their tensor product.

:.utzl, .- & @ .:nhlhuutnt‘l, -“?1' s vt %lh‘ﬂihi.
Then, q’im-!' n;enﬂhlﬁ {i- 1;--!;“] i = 1....-2’, we Can
obtain an elemant, lit l‘tﬁﬁi_‘r of lﬂ?- Conversely, given

Mtzﬂﬂﬂng,nhﬁ,m-uhnfxmﬁ?hm-l
thlhllﬂ-lnltrililnﬁ:-I?!_fi-thltﬂ‘ﬁ'inn!ﬂn!uﬂm.
with a,p = ¥, TH Hence, every element of EQE milﬂiqn!nﬂﬂn
sum is of this form. m,mhmulm‘hn!lﬂ!m:hﬁlﬂul
mtnﬂ.n!.um{-uu-nninﬂniumumlhuinnﬂi‘ntfm
m,-nﬂﬂnnliniuufnlmuﬁfth-fm Z 41 = i'}'_"m

also of this form). rlnﬂlr,nntuthnttunul-mtlﬂ!@ written

in our canonical form, znﬁ*:i';;md Z ajp x;@%p, are
qnlmnsd‘mfamym.ﬁ-uigmu1tm ., We conclude,
m.mtmil,unmw,mﬂnmm
space of nyx® matrices. In particular, E@f is ni-dimensional. ([Note
that EXE is (n+d)-dimensional.]

Example. Let E be a Banach space. We "find" the tensor product E@R.
ﬂmmﬂ-ﬂt,lizﬁhl+.ﬁzﬂh:+...nfmmm
l':-ndh'lmmh,mdm:'lml.nl},th.l.lilqultn

(a,b,) %, @1 + (azb,) ::@1+...,lndhmtnillh1:1]@1+...
mthil,mm.hmﬂhtilblll+lihh+...}@1{!:'.!“
each n, (a;b;x, + . . . + lnhnxnlﬂl - lalhlxl}ﬁ.’ul = o {.“h-gplal
Hﬂlfmill;pﬂli;ulnlﬂ.#ﬁilthtliﬂtungduhﬂhlhltﬂ
m.m“tﬂmﬂ-n-tmhmmw,l--
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Hﬁﬂ.m.‘lﬂllhl“-m*ﬂm.
ﬂ-m.mmmmﬂumm!hm.
ﬂnnh@llélﬂmdlﬂhmumiﬂﬁfmm,hrh
open mapping theorem. [In fact, @1l = Jxl.1 Thus, E@R is
isomorphic with E.
Example. Let E, B, and ¥ be Banach spaces. We find an isomorphism
erom £ (E@8: 7) to L(2,8: P). Piret, let o be in L@ .
We associate, with this « element B of X (8,B; F), with action
BixD = «(x@D (noting that this P is indeed bilinear; and
that it is bounded, since & is bounded, and since (x@R] & (x| 12D .
For the converse, let B be in (2,8 F). Then, for a, x,@%, + . . .
hlﬂf;lﬂd{-lllﬂ'x‘l-l. . -]'llpl!-l:;;}"fl F"!'Elj*' .
[!h-mnnthnr}\nt converges. 'thlﬂz'lli '.[:i.i’:n‘f :Wﬂfﬂ
= “lz pﬂ Fj.ll"l.l' while this last sum if finite by membership
in the tensor product.] Thus, we have a one-to-one, onto linear
mapping from £ (E@E: F) to F(2,E; F). Furthermore, this mapping
is norm~decreasing, for, for o and P related as above and z in
8@, we have, by our last calculation above, that |«(z)| £ Ipli=l.
whence |«| 4|l . Hence, it is an isomorphism of Banach spaces (open
mapping) .
Example. Let E, F, and G be Banach spaces. We first cbtain a mapping
from J(8; F}PGC to L(E; P@C). Let & @Dz, + A, @z, + . . . be
in the former (so the & 's are in J (E; F), the z's in G). Associate
with this the element of [ (B; F(®G) which sends x in E to
"1{”3'1"’"* (noting that this last satisfies the condition
for membership in F@G, since Z | (x)| |25 € |xIZ | 4] (24] 18 finite).
call this mapping (clearly linear) from X (E; P)PG to [ (E; F@&) V.
For o,@= +...4n f(B: F)§G, and x in B, Pl B3y + . - - )V 1x)
- [dimé:]_-i- e oo | Sty = Byl * - - S el gl . - D
m,fillwmw.ﬁthmﬂmm“mm
one. Itu-ukﬂythltthil‘fhlllnm—w,ndﬂutiﬂ
image is a closed subspace of & (E; FG).

We show that, however, “* is not onto,in general. Let F =R and
G = B, 8o * is a bounded linear mapping from [ (2; RIDE to L (B ).
chiﬁmﬂtghf[::llmhmmmn!’f.ur.m
"‘I"l'll@:l-l-..-],thunhumldhnuﬂutmﬂ_tullh
a (possibly infinite) linear combination of the x,'s. Thus, we have
m.uﬂu-_dnm-lm—m_ntm
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combinations of which give every element of E. To this end, let 8
hmﬂ.mlﬂlhﬂl“”ﬂnﬂm.m
functions on S, with norm the least upper bound of the function.
“The larger S, the larger E." Clearly, by choosing 8 to have sufficiently
large cardinality, the corresponding E will have the property above.
[In fact, 4 will not be onto for any infinite-dimensional E.]

For finite-dimensional E, F, and G, the wafof the first paragraph
of this example will be an isomorphism of Banach spaces.

We remark, finally, that there is a universal definition of
the tensor product, as follows. Let E and F be Banach spaces.
A tensor product of E and F of a Banach space G, together
with a bounded bilinear mapping,from E, F to G such that, given
qmmn-mwmumm#m:.r
uu',mulmﬂMMWtﬂ-ﬂuﬂ'
with P> K+¥. One shows, first, that, if a temsor product so
defined exists, them it is unigue. Then, one shows that what we have

constructed is it. |
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14. Tensor Spaces

Our goal is to find, and learn to manipulate, the various kinds
of fields which can exist on a manifold. Let, then, M be a manifold
based on Banach space E. We can divide our program into two parts:
i) Obtain the various Banach spaces that can be constructed from E,
and unravel their structure, ii) Obtain, from each such space, a
corresponding type of field on M, and carry over what structure one
can from the Banach spaces to the fields. The first is essentially
an algebraic problem, the second a differential one. One might suspect,
therefore, that the first will be the easier (applying here the adage
"algebraic is easier than differential"). This seems, however, not
to ba the case, and, indeed, the first problem has not, as far as I
am aware, been put into a state that I gould call totally satisfactory.
In this section, we state the first problem:; in the next, we describe
some possible lines toward its solution.

Fix, once and for all, a Banach space E. Consider i) the Banach
gpaces E and R, and ii) the constructions of multilinear mappings
".f{ pesss i )" and tensor products "(§". We consider now all
Banach spaces cbtained by applying the comnstructions ii) to the
Banach spaces i), or the constructions to the Banach spaces so
cbtained, or the constructions to the Banach spaces so obtained, etc.
For example, one such would be I{lﬂ (R@L(E: RY, [ (E: E@E);

R@L (L (L (E:R) R E))@E. We call these Banach spaces the tensor
spaces (over E), and the elements of these Banach spaces tensors
{over E). |[If we wish to give more detall, an alement of tensor apace
A will be called an A-tensor.] These definitions are inadequate for
two reasona. First, the "applying constructions" business is not
precise. BSecond, it is not made clear that, when we speak of a temsor
space, we intend to refer, not only to the Banach space itself, but
also to the sequence of constructions by which it arises from E.
Both of these inadeguacies could be resolved by proceeding as follows.
We could define a tensor space as a finite seguence of symbols
m ir_ HIH’ 'Fll !‘t H' ‘Iai' I*H‘ "I", "t'l -.-IH!- I‘I‘ -d’j_m tﬂ
certain rulea. One would then note that, if E is a Banach space,
then each finite sequence gives rise to a certain Banach space. With
thase last five sentences as an appendix to the definition, there
should be no ambiguity.

There is of course an enormous amount of structure on the tensor:
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spaces and tensors over E. For example:

1. Natural operations on tensors. The sum of two A-temsors
is well-defined (since tenmsor space A is a Banach space) as is the
limit of a seguence of A-temsors. The tensor product of an A-tensor
ﬁmdun—mpmhrmm.lnﬂdﬂpumuﬁﬂ-tm.

For & an A-temsor and 1 a JS(A; B)-tensor, 1(« ) is a B-temsor.
For 7 a J(A; B)-tensor and g a [(B; C)-tensor,s»? is a L(A; ©-
tensor. With any (A@®R)-tensor we may associate an A-tensor (last
example, page 67).

2. Preferred tensors. Some tensor spaces have preferred
elements. For example, the identity in [ (A; A) is a "preferred”
f{lr A)-tensor. So is the element of J (A,B; A §B) which takes
the tensor product; the element of J((A; B)@C; £(A; B@C)) of the
last example on page 68; the element of [ (L (R: A): A) which sends
the element of of J(R; A) to the element o (1) of A; the element
“1* of R.

3. HNaturally isomorphic tensor spaces. Some pairs of tensor
spaces are just different ways of writing essentially the same thing.
For example, for A a tensor space, [ (R; A) and A are naturally
j.mmlwltﬂlmdamumﬂlrimﬂiu. For A, B, and C
tensor spaces, J (A,B; €) and S(A@B; C) are naturally isomorphiec.

4. Tensor spaces natural subspaces of others. For A any
mm.nuummmﬂ!mm:m. Thus,
nrh-tmmllnhngMulflfﬂrmrm-m.m
not comversely. Similarly, E@[(E; R) is a natural subspace of L (E:; E).

5. Tensor spaces natural guotients of others. For example,
for A and B tensor spaces, B may be regarded as a quotient of the
tensor space A®F(A; B) (namely, the quotient by the kernel of the
natural mapping from A@®/S(A; B) to B).

Problam: Organize this situation. What temsor spaces are
available? Which are isomorphic to which? Which natural subspaces
or natural quotients? What operations are available on tensors? Which
tensor spaces have preferred elements, and what are they? One would
like to cast this subject into some manageable form, in which all
elementary facts lock elementary, in which complicated calculations can
be performed with relative ease, in which one doesn't have to contin-
uwally go back and prove new things about Banach-space operations. There
are of course two halves to the problem: i) make precise terms such as
“natural®and "preferred”, and ii) organize what is available.
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15. Natural Tensors

In the previous section we posed a rather vaguely-stated problem
{in which, indeed, part of the problem is to eliminate the vagueness).
We now sketch a few notions which, we suggest, offer a possible line
to a solution. Our basic claim is that one can make a definition
which, on the one hand, gives reasonable meaning to such words as
"natural” and "preferred”, and, on the other, encompasses everything
in which we are interested - operations, preferred elements,
isomorphic tensor spaces, etc.

We first note the following facts. Let A, A', B, and B' be
Banach spaces (not necessarily tensor spaces). Let o be an isomorphism
m;m;‘,mnuiw—!ﬂnmn'. We define a
corresponding isomorphism T from [ (A; B) to JZ(A'; B') as follows:
For K in J(A: B), T(k) is the element of [(A'; B') given by

’c:‘..d"'! That is, for x' in A', T (K)(x"') = '-'I‘tq']‘{:‘]}. Similarly,

Ilmimﬂi_fmllwnl',mwhhtuhh'.nd!ﬂ-lhl!',
we obtain an isomorphism from JS(A;,....A.; B) to LA ',....A " B').
[Note that we have no freedom in writing this definition.] Next,
again let A and B be Banach spaces, and again let « and £ be
isomorphisms from A and B to Banach spaces A' and B', respectively.
Then we can define an isomorphism from A B to A'(YB' as follows:
For xv.+ x,@¥; + - - - in A@B, Y@y, + - . . ) -d[:llﬂf{rll
-l-.ﬁ:zl.@!lrzi*r... (noting that the sum on the right converges,
by boundedness of « and P, and by the fact that the sum on the left
converges). Of course, these are all isomorphisms: Their inverses
are obtained by the same constructions from the inverses of « and £ .
Thus, we can axtend isomorphisms given on some Banach spaces to
isomorphisms on Banach spaces constructed (by our two constructions)
from these.

Now fix Banach space E. Let | be any isomorphism from B to E,
and also let ¢ be the identity isomorphism from R to R. [This use
of one letter for two things greatly conserves symbolas, and causes
no confusion.] By the paragraph above we obtain, given any Banach
space constructed from BE's and R's by taking multilinear mappings and
tensor products, an isomorphism from this Banach space to itself.
Hence, on any Banach space constructed from these by our two operations,
we obtain alsc an isomorphism. Continuing in this way, we extend
the action of |, from just E and R to all the tensor spaces over E.
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Il—l-hilll,“.t-li“hﬂfﬂlm. Lat A and B ba
tensor spaces over E, and suppose that we have obtained the action
Of L on A and B. Then the action of L on Z(A; B) is as follows:
For o in J(A; B), L(«)=zlowes” . Similarly, the action of
on A@B is: m:lgrl-l-..;.:lnlﬂn, blxlirli-.. i
-‘Ill.'ﬁlrll‘l'-. .
h“m.mﬁmwmm:muu‘utuau'
mhlmmmthmmmhl-
The key definition is this: Element o of tensor space A is
called a natural tensor (or natural A-temnsor) if L (o) =« for
every b. In other words, the natural tensors remain invariant
mwiw—uﬂwﬂhﬁmml.i.-”mum-ﬂ-
"just exist, no matter what E is doing or 1like". [Those familiar
ﬂthuhmrthnrrﬂﬂrtmpintﬁhhﬂniﬂmulm
Wmllmuflmtuutrmm.l

Example. Each real number is a natural tensor (since ¢ is the
identity on ).

Zxample. For any tensor space A, the identity in JZ(A; A) is a
natural tensor. Indeed, for T in L(A; A), and for x in A, we
have L (T) defined by L(L(T)( ¢ (x)) = T (x). But, for 7 the
identity, this is clearly satisfied by L(T) = 7.

Example. Let A and B be any tensor spaces. Then, clearly, the
Zero element of J(A; B) is a natural tenmsor.

Example. Let A be any tensor space, and let ¥ be the alement of
Z(FOR: B); A) which sends the element o of £ (R; A) to o (1).
Now, for any o in J(R: A), (&) is that element of £ (R; A) with
action | («)(a) = ¢(of(a)); for any T in f«X®: n); A, L (T)
has action L (T)(«) = L(T(4"M(&)). Now let this 7 be that
above. Then the right side of the last equation is ¢ (( b~1(« )) (1)),
which, by the action of | on L(Ry &), is ¢ (v ( (1)), which
equals o (1). Thus, ( () () = ol(1). But this right side is just
Tl ). So, b)) = P(«) for every o , fl.e., LIT) = 1=,

We have shown, therefore, that this T is a natural tensor. Similarly,
the inverse of this T, an element of 2 (a; /2 (R; A)), is a natural
tensor,

Example. Let A, B, and C be temsor spaces. Denote by T the element
Of J(L (A8 ©); [ (a; £(Br €))) which sends s in L(A,B; €) to

the element of J (A; £(B; C)) which sends x in A to the element of
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L(8: €) which sends y in B to mix, y) in C. We show that this T is
a natural tensor. First note that, for » in J(A,B; €, & (M)

has action L{pm)(x,¥) = L(A(% 2(x), 8 1(y))) (with x in A and y
in B). Also, for ¥V in J(A: £(B; €)), L(V) has action
YD N = VL v ). Finally, for any

T in (&8 0 L(a: L(B; ©))), ¢ (T) has action L (T)(m)

= L(T(s (m))). nApplying & ! to this last equation, we have
i'lul\ﬂ-ll- T t'ltpl:r. Now let T be that tensor given in the
second sentence of this example. EBEach side of this last eguation is
an element of J(A; £(B; C)): Applying each side to x in A (to cbtain
an element of X (B; C)) and then to y in B (to obtain an element of C),
we have { 2(e(TI(4N () (y) = T 1(#))(x)(y). Using the
defining equation for our particular T on the right, this right side
15 (4" Y(m))(x, y). Using now the action of & on £ (A,B; C), this
in turn is & "Y(m( b(x), L(y))). Using again the definition of T,
this is turn i3 L S(T (M) ( (2))( b(y))). Thus, we have so far
LT N @) = N P(MI (L)) (L (y))). Using now on the
left the action of b on J(A; £ (B; €)), this left side is

1 M) () Wz ( biy))). Thus, we have & L(L (T)(4) (¢ (x)
(b)) = L2 ( L)) biy))). Bince | is an isomorphism

on €, this implies () (m)( w(x)) (L (¥)) = PIM (LG ( ().
Since x and y are arbitrary, this implies { (¥)(m) = ¥T(m). Since
4 is arbitrary, this implies 4(¥) = ¥. Thus, our T is indeed

a natural tensor. Similarly, the inverse of T is a natural tensor.
gimilarly, with "A,B* replaced by more Banach spaces in & (A,B: C).
Example. Let A, B, and C be tensor spaces. Denote by T the element
of L(£(A@8; ¢, Z(A,B; C)) which sends m in JL(A@B; C) to that
element ¥ = T(») of J(A,B; C) which sends x in A and y in B to
Vix,y) = mix@y). We show that this 1" is a natural temsor. For
» in Z(A@B; C), () has action u(m)(z) = b(m(e 1))
(for, of course, z in A@B). For V in JL(A,B; C), ((V) has

action L(V)(x,y) = LIV L T(x), & T(¥))). For any T in

L2 A@B: ) £IAB; C©)), (F) has action L(T)(#) = L (F(e ")),
Applying &~ to this last equation, we have ¢ ~{ 4 (%) (4))

= T(4"2(m). Now let T be that particular tensor given above,
and apply sach side of this equation to (x,y), to obtain

¢ M (1) () () = ¥4 (M) (x,y). By definition of T , the
right side is {i_li.ﬂllh‘-‘rl- By the action of L on Z(A@®; O,
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this in turn 8 L ( p(4 (x@y))). By the action of L on temsor
products, this in turn is § T(m( L(x)@tly)). By definition of

T. this s " 2(T(M)( 4(x), b(y))). Thus, we have so far that
G HOMIT) () ) = & R(T(M)( 4(x), &(¥))). Applying the
action of & o XZ(A,B; C) to the left side, this becomes

e LTI CAEN N = 6 " T (L), ().

Since b is an isomorphism, this implies (L (¥)(m))( &(x)) (& (¥))
= T{(p)( &ix), b(y)). Bince x and y are arbitrary, this implies
L(T)(m) = T(m). Since s is arbitrary, this implies 4 (T) = 7.
Thus, T is a natural temsor. Similarly for its inverse.

These little calculations are easier than they might appear.

All one must do is i) make sure that, in each step, one does something
new, rather than retracing the previous step, and ii) be careful not
to leave out any parentheses.

We now have the notion of a natural temsor, together with some
examples. We next face two issues. First, we must make a case that
essentially all structure of interest on the tensor spaces can be
expressed in terms of these naturdl tensors. Second, we must find
some way easier than that of the examples above to check naturality
(for the situation would be hopeless if we had to go through all that
agony for each natural tensor), and we must classify them all. We
discuss these two issues in turn.

For the first issue, we begin with some definitions. For
By, + + « + A and B tensor spaces, a natural 1"'1-----%’ B) -tensor
+ will be called a patural operation. [We regard this 1 ds the
w-ﬂmﬁiuhuﬂmtuxlhll....,xnmlhthlw
ftx]_,...,znlintmmu-l.l For A and B tensor spaces, a
natural J(A; B)-tensor for which there exists a natural J(B; A)=tensor
such that these two linear mappings are each others inverses will
be called a natural isomorphism (from A to B). When such a natural
isomorphism exists, we say that A and B are naturally isomorphic.

We could, similarly, defined a preferred tensor in tensor space A

as a natural A-tensor (but we will not, since we already have the term
"natural tensor" for this purpose). Pinally, we could define natural
subspaces and natural guotients in the obvious way (but we will not,
since we will not need these terms).

0f cdurse, the mere introduction of these terms does not a case
make. What we must now do is show, by means of a large collection of
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examples, that the various things one would wish tptuitively to call
a "natural operation”, "natural isomorphism”, "preferred element”,
etc. actually arises as such from the definitions above. Further,
one would like to show that each thing named above actually has the
intuitive connotations of that name. We emphasize that there is
nothing to prove here: It is only a matter of eliciting conviction
by means of examples. We postpone, for a moment, these examples.
For the second issue, we must discover some easy way to find
all the natural tensors. To this end, we first make the following
two observations: i) For T any natural J[(A;,...,A s B)-tensor,

and *1" s 5 & 3 -rnllrumlll-. s A Lh-m. respectively,
Tldyrerorof ) is a natural B-temsor. [Indeed, we have, by the
action of ¢ on :ul“”""h' B), that 4 (T(¥ ,...,« ))

= LTI vl g)unns v(«_)). But, by na the right side is
Just 7 (&yr-v0ra )] ii) For . any natura and ¥ any
nat ¢+ Vepu is a naturalf(A; §)-tensor (since & (Vepu)

= L(V)e L{m) = Yeopt,), We wext note that we already have,

from the discussion above, the following six examples of natural
tensors: 1. For any tensor space A, the zero tensor in A is natural.
2. Any real number is a natural R-tensor. 3. For any temsor space
A, the identity in LiA; A) is a natural Z(a; A)-tensor. 4. For
any tensor space A, we have (fourth example on page 73) a natural
tensor in J( [ (R; A); A), and ite inverse, a natural tensor in
Illr.ffl.r XN). 5. rnrmybmlplﬂ-nll...”lnmdu.ﬂh-
(fifth example on page 73) a natural temsor in f{;{ll.....%:!h
‘:{"‘1""3‘1-1""11-1“""‘5' .tu.i: B)), together with its inverse.

#. For any tensor spaces A, B, and C, we have (first example on page
74) a natural J(X(A@B; C); L(A,B; C))-tensor, and its inverse.
Thus, we have already some examples of a few natural tensors, as
well as some constructions which yield natural tensors from natural
tensors. We now formulate

Conjecture. Every natural tensor is a sum of natural tensors obtained
by applying the constructions i)-ii) above to the examples 1-6 above.

If this conjecture were true, then one would have at least some control
over the natural tensors, for one would have a relatively simple
algorithm for obtaining them (rather than the more complicated
algorithm “"guess at one, and then go through all the 's to check
that guess; if it is wrong, try another guess"). As its title
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suggests, I know of neither a proof nor a counterexample (although of
course it may very well be resolved, scmewhere in the literature).

We can, however, at least support this conjecture by means of examples,
i.e., by demonstrating that various natural temnsors that come to mind
can indeed be obtained by the rules laid down in the Conjecture.
In my view, it would be of some interest to first resolve this
conjecture, and then to begin using it (or some modification, if the
conjecture should turn out to be false) to "find" all natural tensors.
Thus, we now have two issues, each of which turns to a certain
extent (although, technically, in rather different ways) on examples.
It is our intention, now, to support the discussion above by means
of various examples. In each example, we shall find a natural tensor
ueing the rules set forth in the conjecture (and thus support tha
conjecture) , while at the same time many of the natural tensoms we
find will correspond intuitively to "natural operations", "natural
isomorphisms”, etc. (thus supporting the discussion of the first issue).
In short, we intend each example below to serve two roles.

Example. Denote by T the element of [ (A, [ (A; B); B) with actionm
T(x, ®« ) = d(x). We show that this T is natural. By example 3,
the identity in Z(JL (A; B); J(A; B)) is natural. By example 5,

we have a natural element of L (Jf( L(A; B) 1 J (A; B))s J (A, 2 (A; B): B))
Applying the latter to the former, we obtain ¥ . ([Thus, "application”
is a natural operation on tensor spaces.]

Example. Denote by T the element of J(JZ(A; B), 2 (B; €)1/ (A1 ©)
with action ¥(« ,p) = Pped. We show that this T is natural.

By the example above, we have a natural element of £ (B; ' (Br C); C).
Applying to this the natural element of [ (£ (B, £ (B; C); C);

ZB; L(L(B; C); C))) (example 5), we obtain a natural element of
d(e; Yt Z£(B; C); C)). By the example above, we also have a natural
element of [(A, L(A; B); B). Composing these two, we obtain a
natural element of J(A, J(a; B): L(Z(B; ©: €)). BAgain applying the
natural tensor of example 5 to this one, we obtain a natural elament
of L(A, Z(A; B), L (B; C); C). Pinally, applying the natural tensor
of example 5 once again, we obtain a natural element of J (£ (a; B),
f[ﬂ: C)y L{Ar C)). Thie is our T . [Thus, “"composition” is a
mﬂnm-?imuqmm!

Example. mm;uﬁtﬂmumﬂtm:ilm

By example §, we have a natural element of J (A@B: A@B). Ghbmposing
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with the natural tensor of example 6, we obtain a natural element T
of f(A, B; M@PB). Hence, given natural tensors in A and B, v and
§ » respectively, T*(« ,p) is a natural tensor (application of
natural tensors to natural tensors).

Example. Dencte by T the element of 2 (R, A; A) with action
T(a,%) = ad. We show that this ¥ is natural. By example 4,
we have a natural element of J(A; £ (R; A)). By example 5, we
have a natural element of X ( f(A; Z(R; A)); [ (R, A; A)). Applying
the second to the first, we cbtain T, a natural element of 2 (R,A; A).
[Thus, "secalar multiplication" is a natural operation on tensor spaces.]
Example. Denote by T the element of J(A; R@A) with action
i) = 1@« . We show that this ¥ is natural. Applying the
natural isomorphism (example 6) from [ (R@A; R@A) to (R, A; R@A)
to the identity ingthe former, we obtain a natural element of

d (R, &; REA). Applying the natural isomorphism of example 5, we
obtain a natural element of JZ(A; X(R; R@A)). Composing this
with the natural isomorphism (example 4) from [ (R; R@A) to RPA,
we obtain a natural element of J(A; & A). This is our 7.
Example. Denote by T the element of Z(A; £ (L{A;R); R)) which
sends « in A to the element of [S(L(A; R); R) which sends m in
d (A; R) to the number u(ef ). We show that this T is natural,

By the first example on page 75, we have a natural alement of

i, f(a; R); R). Applying the natural isomorphism of example 5,
we obtain our 7. [This is the operation of "inserting A into its
double dual®.]

Example. Denote by ¥ the element of [(A@J(A; B); B) with actien
1'111'#1*---1'-"'1‘:1’*"' We show that this ¥ is natural.
Bppleddgy the natural isomorphism from J (A, J(A:; B); B) to

Lia® L(a; B); B) to the natural element of [ (A, L(a; B); B), we
obtain our T .

Example. Denote by ¥ the element of [ (A@B; B @A) which “switches
the order of factors". We show that this 1 1s natural. We have
a natural isomorphism from [ (A@B; A@B) to L(A, B; ADB), and
from this last to [(A; /(B; A@B)) (example 5), and from this last
to (B, A; A@B) (example 5), and from this last to J (B@A: A®B)
(example 6). Composing these and ing to the identity in
LA@B; A@B), we obtain 7. Simil@My, "the tensor product is
associative”.
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Example. Denote by 7 the element of J (f (A; ;@ ¢: £ (A B O))
given in the second example on page 68. We show that this 1 is
natural. Applying example 5 to the natural element of [' (B,C: B C),
we obtain a natural element of [ (B; £(C; B@®C)). Epmbwsing this
with the natural element of (A, {(A; B); B), we obtain a natural
element of [ (&, {(a; B); L(c; B@C)). But this last tensor space
is naturally isomorphic with J[(a, [(a; B), ¢; B@cC), which is
naturally isomorphic with J( Z(A; B), c; J(aA: B@C)), which is
naturally isemorphic with J(Z (A; B)@C; £(A; B@C)). Applying
these isomorphisms successively to the element of the previous
sentence, we obtain T.

It is easy to think of many other, similar, examples, with
similar proofs.

Finally, we remark that this unsettled state of the issue of
what structure there is on the tensor spaces in no way directly
affects what we shall do hereafter. We shall not, for example,
attempt to use in proofs things which have not been proven. The
one effect that we shall see is that we will not, occasionally, be
able to state our conclusions in the pretty and general way that
one might wish.
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16. Natural Tensors: Continued

This section is just an appendix to the previous one. We wish
to discuss two examples involving tensor spaces and natural tensors.
In the first, we suggest a possible answer to the question of which
tensor spaces are naturally isomorphic with which others. In the
second, we indicate what happens to all the temsor spaces and natural
tensors in the finite-dimensional case.

Fix a Banach space E. A tensor space A over E will be said to
be in canonical form if it satisfies the following conditions: i)
No "R" appears as a factor in a tensor product, or as an entry on
thh!thu'x‘,ulmutnmmlﬂthm';'ilmm
product of two other tensor spaces, and 11i) No entry on the right
in an "¢ " is of the form .fl' resssB i C)u For example, none of
the tensor spaces L(E; E@R), L(rR: E@E), L(E@E: R), or L(E: Li&:R)
are in canonical form, while J(E.E; R), .E'l J:'I.'I:lh R), and
I(E; E@E) are all in canonical form.

We now claim that every tensor space is naturally isomorphic
to a tensor space in canonical form. The procf is quite easy. Given
tensor space A, one first uses the natural isomorphism between R@B
and B to eliminate R's in tensor products. Then, using the
natural isomorphism between JL(A;,...,A ,R; B) and JL(A;,....,A: B),
one eliminates R's on the left in J 's. Then, using the isomorphism
between [ (A).,;.A ,B®C; D) and .!'ul,....).n.l,c; D), one eliminstes
tensor products on the left in J's. Finally, using example 5, one
eliminates J 's on the right in J 's. In this way, one obtains a
sequence of natural isomorphisms which carry one from A to a tansor
space in canonical form. Their composition is therefore the desired
natural isomorphism.

This notion of a canonical form would not be very useful if we
did not wish to claim some sort of converse to the result just proved.
Specifically, we have:

Conjecture. Two tensor spaces in canonical form are naturally
isomorphic if and only if they differ only in i) order of entries
on the left in Jf 's, and ii) order of, and parenthesis about, factors
in tensor products.

The "if" part is of course obvious.
It would be nice to have a proof of this conjecture. Then,
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not only would every tensor space be naturally isomorphic to one
in canonical form, but, furthermore, a given tensor space would be
naturally isomorphic to only a single tensor space in canonical
form (up to the ambiguity in the conjecture) (for, were A naturally
isomorphic to two in canonical form, these two would be naturally
isomorphic to each other). Thus, one would have a unique
representative of each tensor space. One could then, for example,
worry only about natural tensors in tensor spaces in canonical form.
Although a proof of this conjecture from scratch appears not to be
easy, there is, I should think, a reasonable chance that one could
demonstrate that it is a corollary of the conjecturea in the previous
section (since that earlier conjecture claims to give all the natural
tensors) .

In a similar way, one could try to formulate conjectures about
what natural tensors there are, what natural subspaces, etc.

We consider, finally, the special case of all this when the
Banach space E is finite-dimensional. In this case, everything is
known, and everything is relatively easy: It is just what one lsarns
in linsar algebra. We shall here attempt only to indicate how
the tensor spaces reduce to a simple form. We begin with the following
observations: If A and B are finite-dimensional, then so is AEB;

If Ays... A, and B are finite-dimensional, then so is JZ(A;,...,A ;s B).
Thus, all the tensor spaces, when F is finite-dimensional, are
finite-dimensional.

We first associate, with each tensor space, a pair of non-negative
integers, according to the following rules. With E, associate (1, 0);
with R, associate (0, 0); if with A there is assoclated (p, p'), and
with B (g, q'), associate with A@B (p+q, p'+q'); if with Aj,....Aj

there are associated “'1' Py'deeess {Fnr Pn'h and with B there
is associated (q, q'), then associate with L(A;,...,A s B)
'Iq-l-pl‘ * . . -+pl'. q'-lrpl-l-. - .+pn.'l'. Using these rules,

proceading inductively, we associate a pair of integers with sach
tensor space. The pair of integers associated with tensor space A
is called the rank of A. For example, the rank of the tensor space
given in the middle of page 70 is (4, 4).

The basic statement in the finite-dimensional case is this: Two
tengor spaces over finite-dimensional E are naturally isomorphie if
and only if they have the same rank. We shall actually prove slightly



more than this. Pirst, denote by E' the tensor space L (E; R).
This E' is called the dual of Banach space E, and has rank (0, 1).
Given any pair (p,q) of non-negative integers, the tensor space
Le,...,E,E',...,E'; B), with p E''s and g B's, has rank (p,q).
Thus, in this way we obtain a particular tensor space of sach rank.
We shall show that, in the finite-dimensional case, any tensor space
A of rank (p,q) is naturally isomorphic to the one just displayed.

We first claim the following: For A, B, and C any finite-
dimensional tensor spaces, there is a natural isomorphism from
Jin; B@c) to L(L(B; A); C). Proof: Choose bases for A, B, and
C, say KyrowosXor ¥yeoono¥po and ByrenesBo, respectively. Then an
element of BPC is defined by an n s matrix L (3= 1,eeeiniz k® ],
«+ss8). Hence, an element of J(A; B®C) is defined by a matrix
.‘ﬂk (i=l,.../m7 §J=1,.00,07 k=1,...,8), namely, such a matrix
gives the element of [(A; B C) which sends x = £ b,x, in A to
jh:l’i:lk in B@c. Similarly, an element of £ (B; A) is represanted

a matrix 4 , (i.e., sending y = hj:"j in B to ah_jd”li in A).

i

Hence, an element of J(J(B; A); ¢f 15 represented’by a matrix
dy;,- Thus, each of the tensor spaces [ (A; B@C) and (L (8; A); ©)
is represented by matrices, where these matrices are of the same
kind. We thus obtain an isomorphism between these tensor spaces
by comparing the matrix representations of their elements with respect
to our bases for A, B, and C. One easily chacks that this isomorphism
is independent of bases, and that it is natural. [It is interesting
to note that, in the infinite-dimensional case, neither of J (A; B@C)
and L(Z(B; A); C) is even a subspace of the other.]

Thus, in the finite-dimensional case, we have not only all the
natural isomorphisms of the previous section, but also this additiomal
one: J (A: B®C) is naturally isomorphic with Z (XL (B; A); €). Frem
this, we obtain the following additional natural isomorphisms.

1. The tensor space BC is naturally isomorphic with J(B'; ©)
(where prime denotes dual). Proof: Setting A = R in the iscmorphism
above, we have that 2 (R; B@EC) is naturally isemorphic with £ (£ (B; R);
€. But J(R; B®C) is naturally isomorphic with B@C, while [ (B: R)
is just B'.

2. The tensor space B is naturally isomorphic with B! (the dual
of its dual). Setting A = R and C = R im the isomorphism above,
we have that J'(R; B@R) is naturally isomorphic with Z(Z(B; R); R).



But the former is naturally isemorphic with B, and the latter is B!I.

3. The tensor space J (A; B) is naturally isomorphic with
Z(f (; M); R). Proof: Set C = R in the isomorphism above.

4. The tensor space £ (A; B) is naturally isomorphic with
L (A,B'; R). Proof: Substituting the result of (1) above in our
pasic isomorphism, we have that £ (A; £(B': C)) is naturally isomorphic
with £ (£L(B; A): C). But the first is naturally isemorphic with
Z(A,B'; C). Now set C = R. Then we have that £ (L (8; A); R) is
naturally isomorphic with & (A,B'; ). By result (3) above, therefore,
we have that o (A; B) is naturally isomorphic with XL(A,B'; R).

mm,mtmwmmm:mmm
muhuturulrtmrphiutnwn!thnfm;hmntthwﬂ
the previous page, is now immediate. Given a tensor space, we first
eliminate all tansor products by result (1) above. All Z's which
appear on the left in J 's are then eliminated by (3). Next, anything
uupt'l'lppm!ngdnthlrig‘htinln'f'illuﬂutﬂhrIH'..
l-inill!,utltiphhllim.waﬂ}. After all these
mm,mmmnmnmtﬁmummﬂ"
82. Furthermore, all of these "eliminations" preserve rank, as
one checks directly from (1)-(4). We conclude, therefore, that
every tensor space, in finite dimensions, is naturally iscmorphic
to the one of the form £(E,...,E,E',...,B'; R) of the same rank.

one could now continue in this way, finding all the natural
tensors in the finite-dimensional case, etc. However, since there
mmmm.linﬂthilmﬂmtiﬂlrmlrtuﬂmuw
ﬂntmhﬂifmlinnrﬂph&llnn:ﬂghtl?difﬁmtm.
mlhwnmmtmwruwhﬂrhtﬂutﬂlnIMum;
we go no further.



17. Sensor Pields
The examples (Sections 11 and 12} and the algabra (Sactions 13,
14, 15, and 16) out of the way, we now turn to tensor fields on manifolds.
Let M be a ¢¥ (p21) manifold based on Banach space E. Fix a

point p of M, and a tensor space A over E. Consider now pairs

(o ; O, ), where « is an element of the tensor space A, and U, P
is an admissible chart on M, with p in U. Given two such, we write
(%; U, P)=(u's 0", #) 4f ' = ¢ (&), where ¢ is the isomorphism
on tensor space A which arises (Section 15) from the isomorphism

L = D(¥ef) (P(p)) on E. This "x~* is an equivalence relation.

[The proof consists of a word-for-word repetition of the proof for
tangent vectors on page 55, together with the obwervation that
compositions and inverses of isomorphisms on E yield, when extended to
the tensor space A, the compositions and inverses of the corresponding
extensions.] An equivalence class will be called an A-tensor at p.
[Note that an A-tensor is just an element of the tensor gpace A, lL.e.,
an element of a certain Banach space constructed from E using
multilinear mappings and tensor products, while an A-tensor at p is
an equivalence class of pairs, the first entry of each of which is
an A-tensor. Sometimes, when we wish to emphasize the distinctiom,
we shall call an element of the tensor space A a free A-tensor.]

We next note the following fact. Given any A-tensor F at p,
lnﬂmrm-l.i.hlluhl:ttr,'f‘ with p in U, there is one and only
mtrnn—mlﬂthti:ﬂ.‘f'linmﬂui?ﬂmnlulf.
Indeed, letting (o ; U', 4') be any representative of the equivalence
class ;,thldllirlduniqu-il.lqh'-‘nﬂr « = " 1"y, where
the isomorphism L on A comes from D(¥#++ ) (¥T(p)) on E. This free
A-tensor o will be called the component of § with respect to the
chart U, 4 . [Motivation for the terminology: In the finite-dimensional
case, one normally chooses a basis for the tensor space A, and
thereby expressed the free A-tensor ® in terms of n real numbers.
Thus, an A-tensor at p defines, once a chart is given, n real numbers,
numbers which are normally called the components of f . We do not
choose bases, and hence replace these components by a single ® in A.)

Example. Let T be any natural tensor in tensor space A. Consider
the collection of all pairs, (¥: U, 4') whose first entry is this
natural tensor. Since T ie (-invariant, any two such pairs are
equivalent. Thus, we obtain an eguivalence class, i.e., an A-temsor at



p. This A-tensor at p has, of course, the property that its compoment
with respect to any chart is just the free A-temsor T . A-tensors at
p so obtained will be called natural A-temsors at p.

What structure is there on the set of A-tensors at p? Ficking
any chart U,"" with p in U, we obtain a one-to-one correspondence
between tha set of A-tensors at p and the tensor space A. By means
of this correspondence, the entire structure of A - i.e., its structure
as a Banach space - can be carried over to the set of A-tensors at p.
We are interested only in that part of the structure which is chart-
independent. Thus, exactly as with tangent vectors, the set of
A-tensors at p has the structure of a Banachable space (real vector
space, many equivalent norms all of which make it a Banach space).
It turns out that, in fact, there is still more structure on the
tensors at p. Let T be any natural operation, e.qg., agnatural
element of the tensor space .flll;u-rlh! B). Denote by & the
corresponding (example above) [ (Ay,...,A ; B)-tensor at p. Next,
1-1::1...., lnhal—,...rlh-mlltp.miﬂlr.
Choose a chart, and let dl,...,gnhthﬂ.rmp-ctiumu.
Then T (& ,,..., % ) is a free B-tensor. Now change the chart o, ™
to u', #'.  Then the components change to &, = L M(«&), . . .
«, = t(«!), while the component of @ does not change. We
have L4 (dyieeaid ) = (LD (L MW e e TREe )
= % («'),.e0id’)), Where the first step is the action of L on
Ja,....n; B), and the second is definitions. But this equation
is precisely the statement that (T (« ;,...,« ): U, T ) is equivalent
to (T(d'yseeo,a’y)s U',4"). Thus, we obtain a B-tensor at p.
nm.mmmmmmmm:m
operations on free tensors to operations on tensors at p. We shall
continue to use the term natural operation for these operations on
tensors at p.

Example. "Apply", "compose", and "take the temsor product” are
natural operations on tensors at p.

our M continues to be a ¢ (p2 1) manifold based on Banach space
E. We next define fields. Let A be a tensor space over E. An
A-field (on M) is a mapping which assigns, to each point p of M,
an A-tensor at p. As usual, it is the smooth ones which are of most
interest. Let f{ be an A-field on M, and let U, ¥ be any admissible



chart on M. Then, for each point x of YIU), f‘h}u-ru
M (in fact, of U), whence [ (¥ 1(x)) is an A-tensor at + "
whence its component with respect to the chart U, 4is an element
of the Banach space A. Thus, we obtain a mapping from the open subset
#[U] of E to the Banach space A. The A-field § is said to be ¢¥ '
if this mapping is C¥ ' for every admissible chart U, ¥ .

Example. Since ¢ is the identity on R, we have that, for a and a'
reals, (a; U,%) (a'; U',¥"') if and only if a = a'. Thus, R-tensors
at p can be identified with real numbers. An R-field on M is
therefors a real-valued function on M. A CP 1 p-fisld on M iz thus
ﬁlt“ﬂllﬂlcp-lﬂllrfiﬂdiﬂﬂlﬂtiﬂu.

Example. A C¥") E-field on M is what we called a c® ' tangent vector
fiald in Section 12.

Example. Let T be any natural element of the temsor space A.
Denote by @ the A-field on M such that, for each p in M, 7 (p) is
the A-tensor at p associated with this 7. This A-field is cP™!
(for the mapping above frem +{U] to A sends all of “f (U] to the
single element T of A, and this constant mapping is certainly ¢ 1),

The (pointwise) mnfmc"ll-ﬂﬂdlhucp_ln-!hld {since
sums of CP ! mappings of Banach spaces are C° ). We may alsoc extend
natural operations to the fields as follows. Let T be a natural

element of J(A,,...,A: B). Given A;-,..., A ~fialds K,, . . ., ¥,
we obtain, applying the construction of the middle of the previous page
pointwise, a B-field. If, furthermore, '1’ N #nmcp'l.

then so is this B-field (since a multilinear mapping of Banach spaces,
Wmflw-dmw.ﬂﬂhlcp'lmmﬂ.
Thus, natural operations, applisd pointwise to CP~ ) fields, yield ¢ !
fields.

Example. We have "scalar multiplication”, a natural element of

I (R,A; A). Hence, multiplication of A-fields by scalar fields yields
A-fields. The last constructions on pages 49 and 63 are special cases.
Example. The operations "application”, "composition", and "tensor
product”, applied to Pl fields, yield cP! fields.

Example. From the first example and the observation that constant
mlnrﬂﬂdl{limt.hdriﬂﬂ!ﬂ-umﬂtmﬂmcp'l.n
have that the set of A-fields form a vector space.
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mmﬂmmmulmmmmfmnmm
mmmmmi“tfmm.mmm
and algebraic, and the other more geometrical. One might even make
l-ntlutﬂ—n!thlnminthlmjmm-ltmm
interplay. We have already seen some examples of this phenomenonm,
-.g.,umwﬂmm-. In the previous section,
““‘Iﬂﬁt“ﬂﬂllﬂﬂﬂﬂgﬁtﬂﬂlpmtnm
fields. We now give the geometric one.

tet M be a CF (p2 1) manifold based on Banach space E, and fix
a tensor space A over E. Denote by B the set of all pairs, e F ).
where p is a point of M,
and f is an A-tensor at
p. Denote by T the '. — .
mapping from B to M which ey B

"ignores the second entry”,
i.e., with action W (p, § ) (7,8) { overP
= p. This B is called the

bundle space, T the pro-
jection mapping, and M the /
base space. [In the figure, A

T is the mapping which

"£inds the point of M / - A'
directly under the point of

B".] For p a point of N,

the subset T 1(p] (i.e., the set of all elements of B of the form
- 5 )N of B is called the fibre over p. This entire set-up (i.e.,
the bundle space, projection mapping, base space, fibres) is called
the A-bundle of M.

We have two goals: to find the structure and properties of the
mjmmmm,mmd—ummfm&-umnf
these objects.

Consider first the bundle space B. We introduce some charts
on this set. Let U, 4 be any chart on M. Set 0 = % "[U], i.e., the
union of the fibres over the points of U. Next, let  be the mapping
grom the subset U of B to the Banach space E¥A with the following
actdon: F(p.f) = (Pp).K), where « is the component, with
respect to the chart U, , of the A-tensor ¥ at p. We claim that
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this U, is an EXA-chart on B. [Proof: Our 4 is one-to-one, for,
if Vip, § ) = Fip', §'), then we must have +(p) = Y(p'), and hence
p=p', and also « = «', and hence § = §'. Purther, since 4 (0]
= UXA in E XA, this  [U] is open.] Now consider two of these
charts on B, U, ¥ and O, $ (from, say, U, and U', % on M).
nummmm.ncp‘-wtm- [Proof: We have
that ‘F‘lﬂﬂu‘l- 4 [UAU'] xA, whence this .i.lnp-lg‘ul;l. The
mapping #'s ¥ from F[0,0'] to EX A has action ) =
['l‘""l‘dlll. K (x)(o)), where K (x) is the isomorphism on tensor
space A arising from the isomorphism D(4%* %" )(x) on E. Since
composition, application, mmmmmme‘"‘
e st g Thus, we now have
a set B, together with a collection of CF l-compatible E x A-charts
on B. The first, second, and fourth conditions on page 38 are
immediate from those conditions for M. We obtain, therefore, a
cP"! manifold B based on ExA. [The idea is that "locally, B looks
like a product of a small region of M with A".]

Thus, the bundle space B is a manifold. The base space 1s just
M, and it starts out as a manifold. We have already investigated
the structure of the fibres: The fibre over p is the set of A-tensors
at p, which has the structure of a Banachable space. There remains,
therefore, only the projection mapping T . Note that now is a
nppinqcfﬂpplllnlfﬂldl (from B to M, which can be regarded as a
¢! manifold). It would be natural to guess, therefore, that this
mapping will be c® 1, It is. Proof: Let U, ¥ be a chart on M,
and U, ¥ the corresponding chart on B. Then e T ¢+  is the mapping
from the open subset  [U] of EXA to E with action e F  (x, « )
= x. But this mapping, "projection onto the first factor”, is certainly
¢® 1, We have shown that T, when "made a mapping of Banach spaces”
via certain charts on B and M, yields a ¢ ' mapping. But, since
these "certain charts™ cover B and M, the same holds for all charts
(since all other charts are compatible with our "certain ones"). Thus,
#illcp"lllﬁinﬂﬂfllﬂi!ﬂlﬂl-

!hmin,thm,th%millcrlmm,ﬂ_i-
space a C° manifold, and the projection mapping cP L. The fibres are
Banachable spaces.

This completes cur first goal. We now describe tensor fields in
this language. hlﬁ_ﬁﬂﬁdﬂﬂﬂth-hunﬂlﬂhﬂﬂld‘"’l




mapping K from M to B
such that Wek is the

identity on M. That is
to say, we reguire that,
for each p in M, K (p)
in B be of the form
(p, § ). Pictorially,
one reprasents a Cross-
section by drawing
KIM] in B as in the
figure. We next note
that a cross section
K of our A-bundle
defines an A-field on
M, fﬂ:l.', !nr-lchyinﬂ:
the "g " of K(p) = (p, § ) is an A-temsor at p. We claim: The A-field
mnhtm-auc!:‘. Indeed, choosing chart U, P on M, and corres-
pmd.:l.nquhartl?,"f‘ en B, we have, since Kk is EP"I, hhlti-!"\‘r" is
ncrlu;ping-!mﬂtuﬂﬁl. But the action of this mapping sends

%x in P(U] to (x, & ), where o« is the component of § in the
chart U,¥ . Hence, the mapping from ¥ (U] to A which "evaluates

£ and takes the component® is CF 1. But this is precisely the
statement that the A-field { is o1,

We next claim the converse. Let § be acP™l A-field, and let
k be the mapping from M to B with action K (p' = (p, § (p)). This
kK, we claim, is a cross section, That TWeK is the identity is
miuu,mnnn&mlyﬂhﬂcp'l-ml. But, representing the mapping
K in terms of charts as in the previous paragraph, we have, since
Foke¥™" 1s Pl (this being what it means for the A-field § to be ¢F 1),
that K is cPl (for this is what it means for a mapping of manifolds to
be cF 1),

We conclude: Cross sections of the A-bundle are precisely the
same things as [cp-ll A-fields. In this sense, then, we "represent
the fields gecmetrically". We shall see later that these bundles
alsc parmit one to draw pictures for wvarious constructions, etc.
involving tensor fields.

| \




19. Lie Derivatives

We have now completed cur discussion of three broad areas:
caleulus (Sects 2-8), manifolds (Sects 9-10), and tensor fields (Sacts
11-18). The next broad area is that of derivatives (of tensor fields,
on manifolds). That is to say, we now wish, for the first time, to
make essential use of the symbols 't:p", 'r.‘p'"l', etc., that we have
baen carrying along. The basic problem is this: Cne is given, on
a manifold, a certain tensor field, and one wishes to define a new
tensor field which can be interpreted as "the derivative"” (in some
sense, e.g., with respect to position on the manifold) of the original
tensor field.

There is a naive way in which one might attempt to define
"derivative" of a tensor field. It is of some interest, first of all,
to see why it does not work. Let M be a c¥ (p2 2) manifold based
on Banach space E, let A be a tensor space over E, and let & be a
L A-fiera. Fix a point p of M: We try to define "the derivative
of & at p" as follows. Let U, be any admissible chart on M, with
p in U, and set x = P(p). Then the component of our field with
ﬂlmttnthinmﬂ:iaaminqﬁ from the open subset “F[U] of
the Banach space E to the Banach space A. [That is to say, X is the
following. Por q any point of U, % (¥ (q)), an element of Banach
space A, is the component of the A-tensor of {g) at g with respect to
the chart U, P .] The derivative of this mapping, D« , is thus a
mapping from #°U) to the Banach space [L(B; A). Hence, D (x) is
an element of J(E; A). [That is to say, we first "pull the field
« over, using a chart, to a mapping from “¥U] to A". We then "take
the derivative of this mapping with respect to the independent variable
(point of “P[U])", and then, finally, we evaluate this derivative at
% = “A(p), the image of p by P.] Consider now the pair, (D% (x);
U, ¥ ), consisting of a free [ (E; A}-tensor and a chart U, P . This
pair certainly defines one of our equivalence classes, and hence
defines a certain  (E; A)-tensor at p. One would like to regard
this & (E; A)-tensor at p as "the derivative of the field ® on M,
evaluated at p". [Note that it is the right sort of cbject to be so
regarded. "Locally near p, M looks like E." Hence, the "derivative
of ¥ with respect to position in M" should be a linear mapping from
lMW“tMmuﬁmu&l&ﬂﬁmﬂmi&ﬁiﬂtm
might move away from p in M") to A. That is, for § any tangent
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vector at p, and denoting by B the £ (; A)-tensor at p just obtained,
then F[:}. an A-tensor at p, would be interpreted as "the derivative
of the field of , in the { -direction, at p".)

There remains only one littla check: chart-independence., If
this check should work out properly, then the entire subject "derivatives
of tensor fields" would be quite easy (consisting of this and the
previous page), we could move on to a new topic, and ¢ifferential
geometry itself would have quite a different character than it has.

Of course, it turns out that this r.'.hn-ulr. fails. The question, then,

is this: Consider a new chart, U'," , with p in U'. Then, as
above, we obtain a new point, x' = 'i'*tp!.nf A [U'] (noting that
this x' corresponds to the same p in M), a new mapping @ ' fram

T (U'] to A (noting that this & ' corresponds to the same A-field o),
and a new pair, IDQ [:r.'hr u',4~"). Is it true or false that

(DX x'); U, 4 ) ROF (x); n.’h. i.e., that we obtain the sam
L(E; A)-tensor at p via U', 4" as via U, 7 To simplify this
little calculation, set A = E. For q unr point of U, U', we have,
setting y' = ‘1"‘{-:1} and y = 4Y(q), that %'(y') = ¢ (& (y)), where

T = D(¥'s ¥ 1)(y) (the formula for how the component of an
E~-tensor at g changes under change of chart). Setting L = D “‘l"“:ﬂr"l}
we may rewrite this formala as %'s (¥'sp 1) (y) = LR (¥).

Each side of this equation is a mapping from a certain open subset

of “{U] (that is where the variable y lives) to the Banach space
L(E; E). Taking the derivative of this equation, using on the left
the chain rule and on the right the Leibnitz rule for the derivative
of the nqu:itinn of two r-mt mappings, we have that

D &P I (y))e m-r'-'r Hiy) = bty (R )+ ww (o Riy)

How set v = x (so +'od {r'.l = x"), and use the definition of v for
the second expression on the left to obtain D %'(x')e L (x) = Db (x) (& (x))
+ t(x) {p@(x)). FPinally, applying t (x)~1 to both sides, we obtain
our desired equation: u(x) T D&'(x') L(x) = & (x)7! D & (x) (¥ (x)

+ DX (x). Now, this last formula is just true. What is it that we
want to show? It is that (D&'(x'); U', %) (D WA(x); U, % ). Using
the lnt:l.m of L on f{!r E), this amounts precisely to showlng that
L0 D& (x') uL(x) = DX(x). Comparing what we have and what we
want, we see that there is an extra term in the former I.'h{::l'l nihl
(% (x))) - a term which will not in gemeral be zero. We conclude that
our check fails. 1In general, we shall not obtain, by the prescription
of the previous page, an J(E; A)-tensor at p which is independent
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of the chart used in that prescription.

All the mappings above tend to obscure what is basically a simple
idea. The problem is that the "change in component under change in
chart” mapping | in general will depend on y. To pass from our
A-field to our proposed J(E; A)-field, we must take a derivative.

Thus, although the component of ¢ behaves properly (i.e., algebraically
in L ) under chart-change, the "derivative of component” picks up

an extra term involving the derivative of + . This extra term prevents
the "derivative of component” from behaving properly under chart-
change, i.e., prevents "derivative of component" from representing

the component of some other field on M.

The problem of taking derivatives of tensor fields amounts
esgentially to the problem of finding various ways to get rid of the
"axtra term” in the little calculation above. It turns out that thare
are at least three such ways, where the corresponding derivatives
are called Lie derivatives, exterior derivatives, and derivative
oparators. Each of these types of derivative has its own advantages
and disadvantagea. In general terms, the advantage of each is that
it "locks and acts like a derivative operation", and the disadvantage
that some extra structure or restriction of the action has bheen
employed to eliminate the extra term we found above. It is our
proposal now to study thesa three kinds of derivatives, beginning with
the Lie derivative.

It will be necessary, below, to make use of the following mapping.
Let E be any Banach space, and A any tensor space over A. Denote by
L;,o(Ei E) the set of all invertible elements of .ft:; E) (an open
subset of the Banach space J (E; E), and hence a C manifold based
on {(E; E)). Wext, let  dencte the following mapping from -fh“,llr E)
AA to A: For m.rm'{rr E) and o in A, @P({ ,of) is the element
of A obtained by first extending the isomorphism L on E to A (Sect. 15),
and then applying the resulting isomorphism from A to A to the element
o of A. Thus, for example, we have ®{tet', %) = Q(L, @', X)),
QL ,«+«') = @t ) + @(L , '), and QL ,«) =u 4if o is
natural. This @ is a C" mapping of manifolds. Hence, fixing o,
the mapping @, from {mt:; E) to A with action QL) = @(¢ ,«)
is also ™. The derivative of this mapping, D @y , is therefore
a mapping fram €, (8; E) to L(L(E; B); A). Applying to the identity
I imtdnlrmumt of Immr E)), we have D @4 (I), an element
of {(Z(E; B); A). Finally, let K be the mapping from &£ (E; E)X A
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to A with action K([ ,%) =2 @ (M(]). This Kk is, clearly,
bilinear, i.e., is an element of J( L(E: E),A: A).

Example. Let A = R. Then @ has action @ (L, r) = r (action of our
Lmrpmmmth-nu-}.m#rhmmtmtuppm

1.e., qr{“ = r for every ( ). Thus, nqr-n, whence K = 0,
Example. Det A = E. Then @ has action % (¢, x) = L(x). Hence
(since @ is a linear mapping), D (L) (%) = Jix), for [ in

L(E; E). Therefore, K(T, x) = J(x).

Example. Let A = J (E; E). Then ¢ has action P(e, o) =Logor
whence D @ (L) () = Jowou"-yoxot e ", Therefore, K(3 ) «)

= fodd- oF .

Now £ix, once and for all, a C¥ (p22) manifold M based on Banach
space E. The Lie derivative will be essentially a "generalized
directional derivative" (generalized from action on scalar fields teo
all tensor fields on M). We shall need some direction in which to
take the derivative. E.nm,ln-hf hnacP-ltnnq-ntmturﬂ.nld
{E-field) on M. Finally, let A be any tensor space ovar E, and lat
o be a cP 1 A-field on M. The idea is to define, from § and ® ,

a new A-field on E.

Let U,¥ be a chart on M, and let 1 and B be the components
of § and o, respectively (so "l is acPl mapping from Y (U] to E,
while B is a c®™' mapping from Y°[U] to A). Consider now the mapping
w from ¥[U] to A with action w(x) = D Pi(x) (" (x}) - k(D J(x), 8 (x))
(noting that all this is well-defined: D B(x) is an element of I (E: A),
whence D B(x) (" (x)) is in A; D M(x) is an element of &£ (E; E) and
B(x) an element of A, whence K(D™(x), P (x)) is an element of A).
Thus, we have so far written down a mapping w from (U] to A. This
W is our candidate for the component of a certain A-field on M,
namely, the component with respect to the chart U, ¥ . To verify
that this W actually leads to an A-field, we must l:huuktnluhnw
w changes when the chart is changed. To this end, let U', + be
a different chart. Then, denoting by ' and ' the components of
€ and «, respectively, with respect to this chart, we have
that p'l:'.l = @(Lix), pP(x)) and " (x"') = Lix)( *Hx)), wheme
x' -*f‘"?‘{x} (the statement that the point x' of ' [U'] define§
the same point of M as the point x of T[U]), and L-D{"f‘*ﬂ"f"‘l
These two formulae, then, are just those for the behavior of the
component under chart-change. Rewriting the first equation in the



form @' (#'s ¥ () = W, (L (x)), taking the derivative (with
respect to x), and applying to an arbitrary element v of E, we “M
obtain D B’ (x') LUK (V) = @y ey (4 D)+ KOO L0 () Wi gt
where we used the chain rule on the left, the formula for the derivative
of the application of a bilinear mapping to x-dependent vectors on
the right, and the definition of K in the last term. Now set v =
% (x) in this equation, to obtain D 8'(x') (' (x')) = B( Llx),
DRx)(Pix))) + KDL (x) (B (x)) (x))) Mext, take the
derivative of the formula for the component change of § +to obtain
D Mx") LX) (V) = (D Lix) (W) ("(x)) + L (x)(D *x)(v)), where v is
an arbitrary element of E. Using the fact that mixed partials
mtnmth-:h-tunmth-right,nhnﬂmttultmil
(D¢ (x)({ "M(x))(v). Inserting this into the expression above, and
using the fact that v is arbitrary, we have D (x') L (x) = D L{x) (" (x))
+ ¢ (x) (DY (x)). That is to say, Dt (x) (9 (x)) ¢ " (x) = Dy 'tx")
- L (x)(D Mx)) & Y{x). Substituting this into the formula on
line seven, we obtain D f'(x*) (7' (x')) = (¢ (x), D Bx) (M (x)))
+ D7), (L), Bx)) - K(Lx) DAG) v o), 9w ix), ).
But the second term on the right is just k(D %(x'), @' (x')),
while the third is - @({ (x), k(D M(x), (x))). Substituting, we
obtain, finally, Dg'(x") (%' (x')) - KD 7' (x"), f'(x"))
= @PlLix), DA(XI(M(x)) - K(DT(x), Pi(x)). But this formula
is precisely the statement that W' (x') = @ (§ (x), ¥ (x)), i.e.,
the statement that, for each x, (W' (x'): U', ") X (Wix); U, “*).
We conclude, therefore, that our W/ indeed has the proper behavior
under changes in chart.

We now define the Lie derivative, S of , of the A-field * in
the § -direction by the formula above. ';hltiltuur, letting ",
B, and W be the components of f , « , and éﬁ.ﬂmuﬂnly,
with respect to a chart, we set wix) = DB (x) (% (x)) - K (D7 (x), B x)).

The calculation above is rather messy because of its generality,
and bacause there are so many mappings around. It is easier to see
what is going on by looking at examples.

Example. Set A = R. Thus, we wish to take the Lie derivative of
scalar field o in the ¥ -direction. In this case, [ is a mapping
frem Y*U] to R, and K is zero. Hence, the formula above becomes
wix) = D B(x) (™M (x)). But the right side will be recognized as the
foxmula for the directional derivative of ® in the direction of the
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tangent vector §(p) at p = P+ 1(x). Thus, the Lie derivative of a
scalar field is its directional derivative.

Example. Set A = E. We wish to take the Lie derivative of the
tangent vector fleld o in the [ -direction. MNow K has action

k(5 :v) = I(V), whence our formula above becomes “/(x)
=DR(x)(M(x)) -DM(x)(B(x)). This w, then, is the component

of I nuuinpuﬂ.uulu:mm-fumnmtfrf--g:rj.
@. Set A= F(B; E). Then K has action ¥ (¥ ,m) = Sop=nef,
Hence, the formula for the component uf,{s..r is Wwix) = DR (x) (" (x))
- Dx)ep(x) + Blx)eDM(x).

It is a good exercise to verify explicitdfythat the/y of each
example above has the proper bshavior under changes of chart.

We now have a thing, the Lie derivative, with a rather complicated
definition. We deal with thils situation in the usual way: We attempt
to find a list, of reasonable length, of properties of the Lie
derivative, with the goal of using in practice the properties on the
list rather than the original definition. B8uch a list follows.

Property 1. The Lie derivative of a C° ' A-field in the § -direction
(where  is a C¥ ! E-field) is a P 2 a-fleld. More generally,

if the A-field is c¥ (1€ q &(p-1), or, for A =R, 15gsp), and

¢ 48 ¢¥ (15q'¢(p-1)), then [, & is ¢ ', where q'' is the
minimum of g-1 and g'-1. [This fact is immediate from the formula,
and the fact that composition, application, etc. are C* operations.]
Property.2. For « an R-field, J; « is the directional derivative of
o« in the § -direction. (Example, page 94.)

Property 3. For of an R-field, and | and 7 E-fields, we have

..(: L) "I‘l'“rt‘” -f ¢ % - Proof: Choose a chart, and let the
components of T, T, ujt-r m"}, €, and, @, respectively. Then
the component of Ji « sends x t,D f(x) (& (x)), whence the component
of Lg ([y %) sends x to Diw(x) (" (x)) = DD B (x) (& (x), N(x)) +
DBix)[IDe(x)(M(x))]. Reversing the roles of I and 7 , the component
of Jo Lo¥ - Ly« sends x to DD B(x) (& (x), % (x)) + D f(x) (D& (x) (M (x))]
= DD g(x)(Mi{x), 6(x)) - DP(x)[DM(x) (¢(x))]. But the first and
third terms cancel, since mixed partials are symmetric, and so we
obtain D @ (x) D& (x) ( (x)) - D ™(x) (& (x))]. But this is precisely
the component of .'I'_-,-T-t . In fact, it is also true that Jg¢ fou )
- .f.,.(f!,-ra - i'érr-t for any A-field o The proof is eassentially
the same as that above: Write down both sides in terms of a chart.



Property 4. For ¢ and «' A-fields, [ (« +%') =fov +Jou! m™is

is immediate from the defining formula and the fact that K is bilinear.
5. For T a [(A; B)-field, and o anf-field, we have
Lp (e = (L 7)) +T(ly «). Proof: For ¥ in J (ar B)
and & in A we have, taking the derivative of the action of & on
L (a; B), that x{t}'.rti‘n = K3, 7R+ T(R(L,&) for every
€ in L (E; E). Denote by * and ¥ the components of T and ¥ ,
nlﬂqﬂvﬂg. Thnnu-hﬂ:thltthnlutimufﬂuwan:
Ii{‘l'h”l is wix) = D(T(R)) (%) Mix) - K (DMx), ¥ix) (¥ (x))).
Expand the first term on the right using the Leibjitz rule (for
derivatives of mappings of Banach spaces), and use the fact above
in the second. The result is the eguation claimed, written in terms
of our chart. By a similar argument one obtains: PFur % a
"ful"“"ln’ B)-field, and ®,. . . , ¥ A;~s....BA fields,
L APy rmner hp)) = (Le W V(K goeens® ) + T (L % nen W)
o0 o ¥ 1“‘11"‘**!&*131' Thus, property 5 is the Isibnitz
rule for Lie derivatives.
Property 6. For of muturllh-ﬂlld.zilt-ﬂ. Proof: For o
natural, and ¥ the component of ¥ , we have that the mappiwg w is
constant (for & (x) is this natural temsor for each x). Furhermore,
K($, &) = 0 for any § in [(E; B), Hence, for the comonent
of [, « , we have pR(x)(F (x)) - K(DL(x), «(x)) = 0 (the fyst
term vanishing since it is a derivative of a constant map). Thg,
mmmtn!.f:qt in every chart vanishes, we hm,{:'g = 0.
Property 7. The Léibnitz rule is satisfied for any natural temso:
operation. That is, for T natural in .f{nl....” i B), and wfys...,
o Ay=eeen A -tensors, Jp (T(¥y,eeeiwt)) = Tty ienr )
R T{-(l,....,fan]. Proof: Immediate from propertiec
5 and 6.
pmpntiuimﬂ?minmwuf'g'st “on o .
We next consider its dependence on § . To this end, first note tat,
for any tensor space A, the element K of .I'I.({l; E),A; A) 1s natual.
Hence we obtain, on our manifold, a corresponding natural
(L (e; B),A; A)-field, which we also denote K.
Property B. For o an A-field, and § and 3’!—1‘1:11:-, we have
‘!lt *I'l“ --(:I' +.fr|li.’ . Immediate.
9. Let  be an A-field, { an B-field, and ¥ an R-field.
Denote by § the Z(E; B)-field with action I{’} = {,f'f 1§ for
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every B-field v . Then [ oo @ = £ (Lo ) + K(5,%), Proof:
The component of 'rlfl' ]-r h’m w&h— D ¥ (x) (£ (x) ?Ml

- E(D(EEL ) (x), o (x)). Expanding tlushtm on the right using
the Leibnitz rule for derivatives, this becames w(x) = D& (x) (£ (%)
Tx)) - K(EED T, ¥(x)) - K( J(x),¥(x)). Each of the

first two terms on the right is now linear in ¥ (x), whence the £(x},
a number, can be pulled outside. The result is precisely tha component
form of the claimed equality.

This completes our list of properties.

. Por ¥ an A-field, and £ an R-field, ,E'Iu-t: - (g )¢
*f‘fi'“' Property 7.
Example. For « an A-field and B a B-field, .(;.H-ro'p] - t)."-r D
+d @ Ly g ). Property 7.
Example. For § and 7 E-fields, and £ an R-field, o ¢, =
E (L7 + (L, 2)§. Property 9, or else properties 3 and 7.

Ithminthlfuit-ﬂilnllmulﬂutuhﬂmmm
derivative, not by the chart-formula that we have usel here, but
rather by eome combination of the properties above. Tie idea is
to show that there is one and only ona "Lie derivative gpperation”
satisffing certain properties, and then establish our clart-formila
as a theorem. In more detail, one uses property 2 to ge. the action
of the Lie derivative on schlar fields, then property 3 ta get the
action on vector fields, and finally various special cases of property
7 to get the action on other tensor fields. One could certinly
mm::@umhtﬁhﬁmmm case. but,
unfortunately, a number of difficulties intervene to make this
somewhat awkward., We here just mention what these difficulties are
and how they might be surmounted. First, one's manifold may not
admit a reascnable number of fields (as we have seen in an exampls,
for scalar fields). One is thus forced,{apparently, to introduce
a "Lie derivative operation" loecally, in small open regiona, and
mﬂmww“rﬂmlmmmmﬂmmrﬂnﬁm
manifold., BSecond, one must apparently impose all the differentiabiliy
assignments (property 1) on one's Lie derivative operation (including
the exception for scalar fields). 1f one, for example, ignored the
fact that scalar fields can be C¥ (whereas others must ba O 1),
thnmmldmt,hfp:mrtra.Mncrzmmtu;ﬂm
ﬂ-ﬂlﬂl:iﬁtiwd!nmﬂim. [The same problem arises in



the finite-dimensional case. However, in finite dimensions one
often works in C®, because it seems to turn out in practice that
nothing is lost by such a restriction. Property 1 then simplifies
somewhat. However, it is not so clear that "everything c®" is a
reasonable condition in infinite-dimensions.] Third, one has to

go to charts anyway, in the use of Property 3. From this property,
murilll.nbudilndlfl.ﬂH!j,mmmmﬁu:l..vlﬁﬂln_t
scalar field. One must, however, then show that this is the directional
derivative of £ by some vector fleld (to be identified with.f""f ¥
This demonstration requires, apparently, charts. Fourth, there are
apparently some problems with tensor products. We can of course
Miufrltﬂﬁlhrthlﬂmdn-Fhmth-mlm- What,
m,l,.lth-!nmllfnr.f‘.'f when T is an arbitrary A @B-tensor?
It is not obwvious to me that every such T can be written in tha
form T = & @B, + « B, + . . . (so that we could set [y T =
;1':-:1}@;1 + dlmu}p:} +# . . . ). Purthermore, even if this were
true, we would still have to show that the second sum converges (in
the tensor product) provided that the first one does. Smoothness would
be a further problem. Finally, I am aware of no way, in this program,
to show directly (i.e., without going back to charts) that the Lie
derivative of every natural tensor vanishes. ([This problem doas not
arise in the finite-dimensional case, since there one has the complete
list of natural tensors, and simply checks them one at a time.]

It is our claim that all the various properties of the Lie
derivative give expression to the idea that "the Lie derivative is a
generalized directional derivative”. The nice thing about the Lie
derivative is that it can be applied to any tensor field, and it has
a large number of properties. The disadvantage is that it requires
mmmmiunflmfhu,f,mmmm
derivative is taken.



The definition of the previous section may be called the algabraie-
analytic approach to Lie derivatives. There is alsoc a more geometrical
approach to the same subject. It is our intention to discuss this
alternative viewpoint. We require, as a prepequisite, the notion
of an integral curve, and some properties of these. This general
subject - integral curves - has numerous applications, extending
far beyond just Lie derivatives, one of which we indicate briefly.

Fix, once and for all, a ¢¥ (p22) manifold M based on Banach
space E, and a ¥ ! g-field ¥ on M.
An integral curve of § consists
of an open interval, (a, b), of
thl!‘lll,tﬂﬂlthll‘ﬂthlﬂp
mapping ¥ from (a, b) (regarded
as a manifold) to M, such that
the following property is
satisfied: For each number | _—7 a
r in (a, b), the tangent ¥
vector to the curve ¥ at
r js precisely E (¥ (x)),
i.,e., the value of the fiald
[ at the point ¥(r) of M. Intuitively, an integral curve is "always
moving along in M tangentially to § ".

Example. Let (a, b),¥ be an integral curve, and let s be any real
number. Then (a+s, b+s), 7 ilnllnminug:ilmvl,m?hﬂ
lﬂt;l.un‘flrl-"l'lr-ﬂ. These two integral curves are said to be
related by reparameterization.

Example. Let M = E. Fix any T, in E, and let § be that vector
field on M whose component in this chart is §, for all x. Then,
in terms of this chart, a typical integral curve is given by

(a, b),¥ , where ¥(r) =%, + rf,, where X, is any fixed vector
in E.

It is our goal to decide whether or not integral curves exist,
and how unigua they are. It is convenient, for this discussion, to
have available three definitions. For (a, b),¥ an integral curve,
with 0 in (a, b), the point ¥ (0) of M is called the initial point
of the curve. Clearly, l.g.,nr-pumtqi:ntimwﬂttlrh
shift the initial point along the integral curve. WNext, let (a, b),




100.

and (a', b'), ' be two integral curves. The second is gaid to be
an extention of the first if i) a'£a and b=b' (i.e., (a', b') includes
{a, b)), and 1i) ¥(r) = ¥'(r) for r in (a, b) (i.e., wherever both
curves are defined). Thus, an extension of an integral curve
merely "makes the curve longer, on cne or both ends". Finally, an
integral curve, the only extension of which is the curve itself,

is called maximal. [So, as one might expect, "is an extension of" is
a partial ordering on integral curves.] Thus, for example, an
integral curve is maximal if and only if every reparameterization is;
the curve of the second example of page 99 is maximal provided

am - andbh=®™,

Clearly, integral curves ara only going to be unigue up to
reparameterizations and extensions. The theorem on existence and
uniqueness of integral curves is the simplest and mtrongest one could
expect in light of this observation.

Theorem. Let M be a C® (p322) manifold based on E, § a C° © E-field,
and p a point of M. Then there exists one and only one maximal
integral curve ¥ of § with initial point p.
Proof: We first make the following observation. Let U, be a
chart on M, let 0 = T'(U], let § (a mapping from O to E) be the
component of £, and let ¥ =“4%¥ (a curve on 0). Then the statement
that ¥ is an integral curve becomes, in terms of this chart,
the equation D? = fo¥ .

Uniqueness. Let Ol and § be as above, and let ¢ and 4
be numbers such that ¢ = lub |¥(x) and 4 = lub |D £(x)] . Let (a, b)
be an open interval with a< 0<b, and let 7 and 7 be mappings from
{a, B) to O satisfying DT =Fe?, 02’ = Pof’, ana Fm= 30) = x,.
Finally, let T have action T(x) = T(x) - 8(x). We have
DT(x) = DF() -DF'(x) = E(P(e)) - $(F =& 1up|pF
|ﬁﬂ- g‘lrﬂ-ﬂlftrﬂ,mvnmmmmmh
the third step and definitions in the fourth. Hence, |T(r)|
- | Tix) - Ttu:l:‘mlll_:ﬂr-lnﬂ %4 ] tr') |rl. NHow choose
pulitiﬂ:“nr.hthlt:ud £ 1/2. Then, the lub of the formula
just obtained, we nm::},g T(2)l £ a xp 2ub T (2N £ 1/2 Jub |7 (2
But this is possible if 1ub |T(x)] = 0 foe.§ if TYr)hwa0, FAF every
rin [0, r;]. That is, J(r) = P (r) for 0<r<r,.

Now consider two dmkégzhlintegral curves ¥ and ¥ with ¥(0)
= ¥'(0) = p, as in the theorem. Let s be the slalfest panttboutive



101.

How consider two maximal integral curves, (a,b), ¥ and (a',b*),
¥, with 7(0) = ¥"'(0) = p, as in the theorem. Let s be the largest
number such that s£b, s£b', and ¥(r) = ¥'(r) whenever 0fr«< s,

We claim that the assumption s< b leads to a contradiction. Indeed,
we must have, under this assumption, s<b', for otherwise the integral
curve ¥ would lead to an extension of ¥', contradicting maximality
of ¥'. Purthermore, by continuity, we must have ¥(a) = ¥'(s).
Choosing a chart U, ¥ in M, with ¥(s) = ¥'(s) in U, we have, by
the result of the previous paragraph, that ¥(r) = ¥'(r) also

for s¢rge+r,, for some positive r,. But this violates the definition
of s. This contradiction establishes that s = b, and, similarly

8 =b'. That is to say, we have b = b' and ¥(r) = ¥'(r) for™
0fr<b. In a similar way, "working in the other direction", we

have that a = a', and V¥(r) = ¥'(r) for a<r€0. That is to say,
our two maximal integral curves are identical. -

Existenca. Let O ba an open subset of Banach gpace B, T a
P! mapping from O to E, and let ¢ and d be numbers such that
e = lub |T(x)] and @ = lub |D §(x)|. Pinally, let p and P be two
pointa of 0O, '.l_".'. €& be a sufficiently small positive number, and let
o be a number with 0£« €1, Set s = |p - B|l. We now associate, with
each of p and §, a new point of
0 as follows. H:l._E.h p, associate
the point p + € T(p). With B,
associate the point obtained by
first finding B + K€ § (B), and
then D + «€T(D) + (1-%)6
T +«ef®). (mat is, the
first point is obtained by "going
amount €& along the direction of
F{Pl from p"; the second point by
'ﬂ.rltgnhwfnu:nt « £ along the -
direction of ¥ (P) from ¥ to obtain p = P +«# & § (), and then going
amounf¥ (1-=)& along the direction of flﬁ] from p".] We wish to
find the 'ﬂilt-l.'l‘llii' s' h-m-mat.h- two points so nmint-d- We
have s* = |p +€f(p) - B -~ weE®) - n-wreTFacTENL
“lp-5+EFw -€T® + 1-a)e B - (1-«¢)€ T(F+ e f BN
¢ s+elfm - T@® +la-x)efd® - a-x)1ef(F +ae FENI

L) Pl
¢ s+ Eds+ (1-2)E|TH - F(F+wef @I
£e(l + €d) + (l-a)e(@lde? B £ s(1 +8a) + (1-«w)EaxE ¢
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< s(l +£€a) + €°cd/a, where the first steplis definition of s', the
second results from rearranging terms, the third is the triangle
inequality, the fourth results from using the mean value theorem on
the second term, the fifth results from using the mean value theorem
on the third term, the sixth uses the definition of ¢, and the seventh
uses the fact that i'ﬂ-ifj 1/4. We shall use this formula,
8' £ s(l+€4d) + & WI, several times in what follows.

Next, fix a point p of 0 and a sufficiently small positive number
L. Let ry,...,r, be numbers with 0 = r < r;¢ ...<r = r, and set
£ -ll.:lrh_l-rﬂ. We construct, from this set-up, a point of 0
as fﬂ&lﬂll First find P, =P
+xr §(p), then p, = p, + (r,-r,)
{P]_J'r then F3 - Pﬂ + l’r]-i‘zl?
{pzll. etc. Continue, until one
f.l.hdlpn. Now let there be given
nuh-r:dl..-.,ﬂn, all between
zerc and one. Then we can find
a second point of O by #fusing
the « 's to subdivide as above"”.
That is, set B, = p + %, T (p)
+ Q- )r §+ ?tpn.
t.h-np:- + o ,r ’f?l+
rl-dalir:ftﬁl-f « 5,3 (By)), ete. Set s, =|p; - B:f, and write
s for 1 +&4 and ¥V for e?ed/d. M,h}ﬂﬂmm,ﬁtv.
hplﬂwmmmmmmlm,“hﬁlﬂlﬁl +V
£ M (1+M). For the third, s, .:,....z+v £ pa +pt+;3}. Continuing
in this way, *"'11*'#*--11-;& Ly's v (™ - 1)/(p- 1)
s1/4ge [(1 +60)" - 11 £ 1/4 ¢ ¢ [¢f™ - 1], where the second and
fourth steps use facts from elementary algebra, and the third is
substitution for s and V.

Mimth-itiulmn!lmtltlmrn,u”r“ulhuﬂtnhl
the number r/g n (i.e., a measure of how "nearly egqually spaced the
intervals are”, clearly always between 0 and 1). Restricting our-
selves to partitions with efficiencies at least 1/2, the formula of
the previous paragraph becomes ., 1/4 € ul‘:;d = 1]. How consider
a sequence of such partitions, each having efficiency at least 1/2,
-nhhaﬁnqnn n'tﬂﬂthatniiumlnr,uﬂﬂnhhjml
mau-mmmmﬂmmm
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Then, by this last formula, the sequence of endpoints obtained for
each by our construction will be Cauchy (since this formula requires
that the distance between two successive endpoints ie bounded by some
constant times the "€ " of the firat partition), and hence will
converge to some point of 0. Repeating for different values r of ¢
we obtain a mapping ¥ which assigns, to each sufficiently small
positive r, a point ¥ (r) of O.

We next claim that this mapping ¥ is C', and satisfies D¥ =Fo¥ .
Clearly, it n!ﬁim to check differentiability at 0. We have
7@ -p-zfml £ rete’™® - 1), since the left side asks for
the distance between the endpoints for a wery fine partition, and
the partition with just one step (i.e., uasing repeatedly the formuala
of the previcus paragraph). But, as r goes to zero, {-!"-d-li also
goesa to zero, whence the left side is tangent at 0. In other words,
¥ is diffegentiable, and D7 = fo¥ . Since in particular 7 is
continuous, the right side of this last equation is econtinuous, whanee
D¥ is continuous, whence ¥ is C', Since ¥ is C', the right side
ucl,m::f llﬂlfm 'l'illl':z. We continue in this way
until we reach the differentiability class of f. That i8; . . .
ninnl‘l'1scp_l,thutlghtliﬂ|hcp'1,m1'!.:cg.

How fix any point of our manifold M. Choosing a chart including
this point, and using the construction above, we obtain an integral
curve with this point as initial point. Extend this curve maximally
by Zorn's Lemma. The resulting curve can have no endpoints (for if
it had one, we could choose a chart including this endpoint, and use
our construction to further extend the curve). This ia our maximal
integral curve.

Thiluumlltutltlprnnfn!nurth-arﬂ.

Conceptually, the proof above is extremely simple. For unigueness,
one uses the maan value theorem twice to show that "the two curves
cannot betimuch farther apart than they had been previously®. For
axistence, one constructs "broken straight lines, each segment of
which is in the direction of the field at its initial point”, and
then takes a limit to obtain integral curves. I find it a bit strange
that such simple ideas turn out to be so complicated when written
out in detail. In the more conventional proof of this theorem, one
rewrites "is an integral curve" as an integral equation, regards one
side of that equation as a mapping from curves to curves, shows that
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the set of curves forms a complete metric space and that this mapping
is a contraction mapping, and uses the contraction lemma. This
proof is essentially the same as the one above. We have incorporated
the definitionas of "integral" and "contraction mapping®™ into the proof
without mentioning these terms, and have proved directly in context
the properties needed of integrals and contraction mappings. The
above proof, while somewhat longer than that with integrals, would
perhaps be comparable in langth if the lattar were accompanied by
the definition and properties of integrals. The above proof appeals
somewhat more to my intuition.

We first give a simple example just to illustrate how one uses
the theorem.
Example. Two integral curves on a manifold cannot cross (i.e., have
just one point in common), for, were this the case, one could
reparameterize them so that the "crossing point™ is the initial point
of each, whikh would violate uniguenass.

In the finite-dimensional case, the theorem above might be called
"the fundamental existence and uniqueness theorem for solutions of
systems of ordinary differential egquations". We give one example to
illustrate the appropriateness of this description, leaving the statement
of the general case as an (easy) exercise.

M. Consider the following system of ordinary differential
equations. We are interested in functions x, y, and z of real variable
t, satisfying the equations

:-ﬂ.-:=+;r] -l-ti

I"I-l=+x‘=+]rz+1nq{l+ll

l‘ﬂﬂl{hlt]

where "dot" means "d/4t". [NMote that this is a "reasonable aystem",

in the sense that the equations are solved for the highest derivative

of each dmpendent variable.] Denote by E the Banach space R°, so a
point of E is np:ulntd by six real numbers, (x "'“"Iﬁl‘ [Motivation:
'!hinknfll-:,:z-::. :3-‘:,:‘-1,:5-:,16-1:] Next, let

M be the (open mh—}m.l!nu (of E) consisting of {:1,....1‘1

satisfying (1 - {:51 + (x,) %) F 0 and (x, + x,) > 0. [Motivation:

We throw away precisely those points at which the right sides of

the differential equations above are not well-behaved.] WNext, let



g hhm ﬂmlﬂlmm ,!t ,...,:i}- Xy

@ - x® + =™+ xg?, - 4 T+ ()% + 205 tx, + %y,

Xgs COB {211:5!1}, I!htiﬂtim: That the second, third, and
fifth entries are what they are can be seen by looking at the right
sides of our differential equation. For the remaining three entries,
append the equations "x = X", "% = z", nnd'i-l'tnnurthru
differential equations.] This ¥ is (with respect to the natural
chart on M, the componant of) a C* vector field on M.
A curve on M maps some cpen interval la, b) of the reals to M.

Hence, for ¥ such a curve and r in (a, b), ¥ir) is a point of M,
a point which can be represented by a six-tuple. That is to say,
lmmnmbud-laﬂhdhylﬁl‘umtim,ll. « = = + %, of one
real variable r. The statement that this ¥ be an integral curve of
our vector field 1-, of mrl-, tha mt.mnt that dx fdr: =Xy

zfdr:-tl-tr.!;l**t:l} + (xg)? fdr--{::u:ﬁ
* (23) * log (x, + x;), dx /fdr = ‘5' d"s""" aon “’" .-."‘s"*
d:ifdrnl. ﬁmﬂmmtmmhhtmﬂcumqimﬂu
to a solution of our differential equation (namely, given an integral
curve, replace r by t, and identify x(t) with %, (x), y(t) with :air}.
z(t) with l‘{r.'l, and t with :E{rl. Then the first, fourth, and sixth
of the equations above identify x,(r) with X(t), xg (X) with z(t),
and x.(r) with t. 'rhinﬂntttht-lqulﬂmmﬂ-nmnhrm
original differential equations.) Conversely, any solution of our
original system of differential equations gives rise to an integral

curve, by the same identifications. Under our identification, specifying

uiﬂ&lﬂuhuhmﬂmmtlwmmmuﬂ
values for x, x, ¥, %, t,l:ﬂdt. From our theorem, we conclude,
therefore: Given initial values of x, X, y, %, 2, and t, there is
one and only one solution of the system of differential equations on

the previous page, maximally extended.

I regard it as an enormous conceptual simplification that
“everything one always wanted to know about ordinary differential

equations” is summarized so concédly by the theorem. One mitht expect

to be able to do a similar thing for (e.g., hyperbolic) partial

differential egquations, where now the manifold M is the infinite-
dimensional manifold of possible initial data for the equation. T
feel that it would be of particular interest to investigate (e.s.,

beginning with some examples) such a program.
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21. Geometry of Lie Derivatives

We now provide the promised geometrical interpretation of Lie
derivatives. It turns out that the material of this section is
normally used only to obtain a gquick general idea of what the Lie
derivative of something is or is like, rather than being used directly
in proofs. For this reason, the intuitive idea is more important
than the details. In order to save time, we shall take advantage
of this circumstance as follows: Although the claims of this sactien
will be both precise and true, we shall merely sketch the proofs.

Fix, once and for all, a C* (p22) manifold M based on Banach
space E, together uithlcp'l-n-fhld!.' on M. Fix also positive
number a and open subset U of M such that the following property
is satisfied: For each point p of U, the maximal integral curve of
€ with initial value p is defined at least on (-a, a). Thus, in
the example of the figure, the "U"
shown would do the job. However,
we could not in this example
choose U = M, for the maximal
integral curve with initial point
p shown is not defined for r-valuas
up to a. Denote by I the open
interval (-a, a). Next, denote by
¢ the following mapping from
I¥U to M: For (r, p) in INU
(s0 r i in (-a, a) and p is in U), @(r.p) is the point ¥(r) of M,
where ¥ is the maximal integral curve of [ with initial point p.
[The condition on U and a above is now seen as having been necessary
in order that this @ be well-defined.] Thus, for example, we have
@ (0, p) = p for every p in U, and Q(r, Q(zr',p)) = dr+r', p)
whenever both sides are defined.

We next note that, since both I and U are manifolds (as open
subsets of manifolds), so is IAU. Hence, 9 is a mapping from one
c® manifold (IX U) to another (M). We claim: This @ is a ¢® mapping
of manifolds. !uprmthil,m!ﬂitpllmtunuhlrtl Let O be
Inup.nlﬂblltﬂf!,I ucp_lnppianmﬂtnﬂ,umumm
dnum,,m$mmm:mnumnum. We First
show continuity. We have |r',p') - B(x,p)| *|Pte',p) - @ tx,8n)]
+{&nr'}- ﬂ-‘ set c = lub|f| and @ = 1ub | BF|. The first




107.

_nﬁ-mﬁmhlﬁr':-ﬁirﬂ,m?umm
integral curve with initial point p'. Hance, this first term is less
than or equal to ¢ |r' - r|. For the second term, set s = |p' - p|.
Partition the open interval (0, r) into n segments of maximum length
& as on page 102. Let 8,, 85, « . « , 8 and 4 and V be as on
that page. Then we have s, % us + v ,m-z_{yul-ﬁ‘u‘
4,E.+‘J{F+1],ltn., t.nln.*.'-p|+ W ( n1+* . « *1). That
is to say, 5,4 “’“d...pqmu (e nd-l.ji Letting n to infinity,
mpmmuffmimmtmuz,uum tsu r,p') - @ir.p)
L o e Thus, nhmnhtlinldh{r'.p‘l - #tr.pl}‘ elr'-rl]

+ e®¥[p'- p|, from which continuity follows immediately. We next
muffmtmuuy of @ at (0, p). Humulﬁ{r ') - @(0,p)
- '~ 9 - = T )= @, ?p'l' -9 - FNEldEp) - P
- £ (") +r'l tpl- Y | @, 6"y - p' - 2 Flp")

+ r'd |p' - p|, where we used @(0,p) = p in the first step, and
the mean value theorem in the third. But we have already shown
that the first term on the right is tangent at r' = 0, p' = p,
while the second is obviously tangent. Hence, $ is differentiable
at In.p}.mﬂnatu.pl is the mapping from R % E to E which takes
{(b,x) to x + b (p). Aloeng eimilar lines, one shows that $1l
differentiable everywhere, and then that it is cP,

The result above, smoothness of 3. is the basic result on the

dependence of solutions of differential equations on the initial point
and on the parameter. It states that "where you are in M after going
amount r along the integral curve with initial point p depends smoothly
on both r and p". Indeed, without such a result it is unlikely that
differential eguations would ba of much use in physics. Think of M
as reprasenting the "space of states of kome physical system", and of
the parameter in the integral curves as representing "time”. Then
the integral curves represent "the evolution of the system through
a succession of physical states with tima". The initial point is
"the state of the system at time zero". Now, one cannot avold some
gemall error in assigning to one's actual physical system an initial
point (for, e.g., meters can only be read to a certain accuracy).
If one is to do physics sensibly, it had better be true that these
small errors in the assignment of initial point result only in small
errors in one's prediction of what the system will be like at later
times. Mhhullrra hﬂhthrhmt:lmn
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Let M, p, B, ¥ , U, a, and ¢ be as above. Let, for each r
in (-a, a), @ be the mapping from U to M with action ¢ _(p) = @r.p).
This q‘lr, then, is the mapping which "slides each point of U an
amount r along its integral curve". Each #r is a diffeomorphism
from U to @_(U] (for @ °@ _and §_°9_are the identity wherever
defined). Now let, in addition, o be some CP ' A-field on M. Restrict-
ing o to the open submanifold U of M, we obtain an A-field g on U.
Since ¢ is a diffeomorphism from U to 4 [Ul, it takes this & to
some A-field on @ [U]. Next, f
fix a point p of U. Then for
all sufficiently small r,
p will be in q’r[ﬂ’]. In
particular, the A-field we
have defined on @rlﬂl will
determine an A-tensor at p.
That is to say, we have
obtained, for each sufficiently
small r, an A-tensor at p,
which we denote «'(r). We can regard this «', then, as a curve in
the Banachable space of A-tensors at p. A_tesors of p (Banachoble)
[Intuitively, we "drag our original - 1
A-field o along by § , continually
aevaluating at p during the dragging,

thus obtaining a one-parameter f « (o) =%(p)
family of A-tensors at p".] HNote, ":If."‘"}
e.g., that o'(0) = «(p) (since il

¢, is the identity), i.e., our f
curve has initial point which is
just the value of the original
A-field at p. Since @ is CP,
this curve is also CF,

We now claim: !hlmmtmmthiimnﬂ‘utﬁi-
pr-ﬂinlr,?;.-t , evaluated at p. 'rhnthhnur,l'sn’ at p is just
"minus the rate of change of «f as it is dragged along by §f and
evaluated at p". To prove this claim, one again passas to a chart.
l-tulm_iurllmtthltﬂp-gwldwtnﬁndgim;
containing p, in which the component § of § is constant, say I, (in E).
_.ﬁﬂmwtﬂim.t&mtd:’q at p would
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be just D « (x)(f,) (since the other term in the definitien of the
Lie derivative involves Df , which here vanishes; x is the point of
E corresponding to p via our chart). In terms of this chart,
m,mmmiz:!utmmmlhjutd'tﬂ-:l:-r&I
(for, in this chart, § is constant, whence its integral curves are
straight lines). Thus, we have in this case that the component of
the tangent to the curve -f'i-prwiulrth-mmt of J}'I at p,
i.e., we have that our claim is true.
m-:ﬂniu,thn&n.mlrm:hg_ythltthunm:un
chart containing p with respect to which § has constant component.
We proceed as follows. First, choose any chart, U, , containing
p,nndl.tfhlthlmmtnff. Next, choose a subspace F of

E um& to the vector  Anju] Y E

o= S(x). We a

mapping [ frm+ fuf' . Tg.ﬂp T .
follows: For x' in?. | a 3 h
set J(x') = y' + a f..- Fx . .

where y' is the point of ’1. 1?

] at which the integral
curve through x' meets
x + F, and a is the parameter-
difference along this curve
from y' to x'. [By choosing
U sufficiently small, this mapping will be well-defined.] Thus,
for example, J (x) = x. ﬂtllilﬂcpmhqiithcpimrﬂlh?
smoothness of @ and the inverse function theorem). Now set ¥ =

T o4 . Then we obtain a chart on M with respect to which the
component of § is constant (since, in terms of this new chart, the
integral curves of § are "straight lines", by construction).

ﬁmulm.m,tmtfsimhhwuth

operation of "taking the rate of change of the field at each point
under the 'sliding along' induced by motion along ¥ ". It is, for
example, obvious from this interpretation that the Lie derivative of
a natural tensor is zero, since natural tensors are invariant under
diffeomorphisms. The other properties of Lie derivatives can be seen
in a similar way. |

'
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22. Exterior Derivatives

We now consider the second "derivative-like notion" on a manifeld.
It turns out that the exterlor derivative is applicable to only
certain types of fields. We begin, therefore, with the study of
these fields and their algebra.

Let E be any Banach space. Let n be any non-negative integer,
and let o be the following natural element of the tensor space
LiL®E,....B;s W; L(By...,BEr B)) (with n E's on each side): For
K in L(B,...,BE; R), «(K) is that element of J(E,...,E; |R) whose
action on Xys...,X, in B 48 € (K) (X3, ...0x)) = (1/n!) T (-1)°
lq'l‘.:i,.._.:j], where the sum extends over all n! permutations of
the vectors X,,...,% , whare Xyreeoriy is that permutation, and where
8 has the value +1 if that permutation is even and -1 if that
permutation is odd. ([For n = 0, ¢~ is the identity.]

Example. Set n = 2. Then n! = 2, and there are just two permutations
of x;,X,, namely that which sends this to Xy Xy (even) , and that to
x,,%, (0dd). Hence, for K in Z(E,E; R), e(K) has action
g k”"l"!’ = (1/2)( kt:lrl:} - H(lzl :—1]}-
Example. Set n = 3. Then ¢ () (xX;,X,,X,;) = (1/6) ( K(x,,%,,x;) +
Kh:rlsrlll + H{:Illlrx:} -1 mzi!lrxa} - Hm!'::'lll - “i.lll-rl,il!’]-
This & will be called the antisymmetrizer, and its action that of
taking the antisymmetric part.
We next claim that this ¢ has the following property: o e& =&,
i.e., the antisymmetric part of the antisymmetric part is the
antisymmetric part. To prove this, let K be in JL(E,...,E: R).
Then ¢ (€ (K)) (x;,--00x ) = (1/n1) T(-1)a (k) (xyre.0xy) =

(a/nl) Ze0ra/mn ZEVE Kk g...0x50)], in an obvicus notatdion,
where we have used the definition twice. The double sum on the right
consists of (n!)” terms, sach of which is (1/n!)? times plus or minus

K applied to some permutation of KyrowasX plus if that permutation
is even, minus if odd. But there are only n! permutations of XyreessX .
Thus, each permutation occurs (nl!) times in this sum. Combining the
terms corresponding to the same permutation, we obtain (1/n!)”

Z(-1°" H'I‘.:iu--.:jl {n!), whare the sum is over permutations, and
where the last n! arises because n! terms of the original sum yield

a single term of this one. But this last is precisely "l"ilc"l[lln--ﬂl.
Thus, we have e (¢ ( Fll'lllr---;ﬂ} = ¢iK) hl“""ﬂ" whence,
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since the x's and K are arbitrary, we have e ¢gq = g . [This
argument is much easier than it looks. One should try it explicitly,
@.g9., for n = 2.]

An element of Y (E,...,E; R) (n B's), Kk , is called an n-form
if (k) = K. [A 0-form is a number.] For example, every element
of L(E; R) is a 1-form. From the result of the previous paragraph
we have: For any K in L(E,...,E: R), (k) is an n-form (for
s(e({K)) = e{K)). We also have the following property of n-forms:
For K an n-form, HKyrwoorX in E, and ::I-."'”'Ij a parmutation of
thése, thr---rxn] = [-1)8 h{lir---r }): where 8 is +1 1if !1;...'.'!’
is an even permutation of Ry pasosX g =1 if odd. ([Proof: This
is immediate from the definition of & , for precisely the same
terms appear in & (K)(xy,...,x ) as in r{h‘l[:i,....zjl; although
all the terms of the latter will differ in sigh from those of the
former if s = -1.]

Our concern, for the moment, is the algebra of these n-forms
{a subject usually called exterior algebra). We next introduce a
certain product betwean these forms. Fix non-negative integers
n and m} and let T be the following natural element of £ (& (E,....E:R),
LB, ....E: R ZeE,....Bn ®)) (with n, n', and n+n' E's, respectivaly):
For K in ZL(E,...,E; R) (n E's) and K'in Z(E,...,.E; R) (n' E's),
let (¥, K) be that element of L (B,...,E; B) (n+n' E's) with
f‘“tﬂ‘lill.n-tr!“npl‘ - ““1”"'!!1} Khﬂlr*--rxm']r Thus,

T simply "takes the product of the multilinear mappings" in the
natural way. Of course, if K and k' happen to be n- and n'-forms,
respectively, it will not in general h- true that fll'l,l'l'} is an
{n-!-n}-!u:n [For example, let K and k' be nonzero l-forms. Then
YK, K) (x),x,) = K (xy) K'(x,), which will not be equal to -T(K k')
l:zrxll. whence T(k.,K') will not be a 2-form.] We can, hnu-ﬂr.
obtain an (n+n')-form by applying ¢ . Thus; for K l.ndi: n- and
n'~forms, respectively, the (n#n')-form & (¥(K,Kk')) is written
Kak'and is called the wedge product of K and k'. [For either n or
n' zero, one multiplies the form by the number.]

We have now defined forms, together with a product operation on
them. We wish next to obtain propertiss, of which there are three.
Pirst, we have that the wedge product is linear in each factor, i.e.,
(K +E)ak’ = Kak'+ Kok' and RAIK +K') = KaK'+ K, K/, where
k and K are n-forms and k' and K'are n'-forms. These facts, together
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with the fact that the sum of two n-forms is an n-form, are all
immediate, since everything in sight is linear. Second, we have:

For K, k', and K" n-, n'-, and n''-forms, respectively, (KaK D™

= KA(K'4K") (each side an(n+n'+n''}-form). ([Proof: First note that,
for any k and K',eeT (6 (K), K') = «=T(¥,k'), for, applying

both sides to ['1‘”'":1-!11'1' the innermost "& " on the left will
antigymmetrize over the first n "x's" in each term, which is
unnecessary, since the outermost "g " already antisymmetrizes owver

all *"x's". Next, note that T(T(K.k),¥) = T(k.T (&', &),

which is immediate from the definition (applying 0 Xy,ee.sX o rpnves
kK will get the first n x's, H'thl next n', and K" the last n'',

using either side of the eguation). We now have Ik,.,ir' llﬂu:" =

E oY (CoT(K ,K), K)) = TPk, K), K" = ot (K, Yk K™

wCoT (K, Cor (k' k") = KA (KK %x", where we used definitions in

the first and fifth stepa, our first observation above in the sacond
and fourth, and our second ocbservation in the third.] Thus, the

wedge product is assocliative. Finally, we claim a sort of commutativity:
Por ¥ and K' n- and n'-forms, respectively, K k' = (-1)™' K'4K .
[Proof: We have UK K Bigre o) = Kl 0o i) ﬂ"mr"'"m"'
and T(k rH}{le-t-llmll - ultllr---rll:..} ktkﬁ'*l*“”‘l"ﬂ.’l.}

- H“ﬂ'dvl"'”:n'-m'} g*lxl,....:n.:t. The order of the x's in the
expression on the right in the second formula is an odd permutation of
that in the first formula if and only if both n and n' are odd. Hence,
CIT (K E')) = 1™ (7K, K)).)

This, then, is the seét-up: We have n-forms, and on them a
bilinear, associative, and "more or less commutative" product. This
algebra in tensor spaces goes over immediately to fields on a manifold
M. Thus, an n-form (field) on M is an J (E,...,E; R)-field whose
component with respect to any chart at any point is an n-form. Since
the wedge product is a natural operation, one can take the wedge
product of n-forms on M. Since our three properties hold pointwise,
they hold for the fields.

Let M be a Cf (p32) manifold based on Banach space E. The
exterior derivative, which we now define, will be applicable only to
(€®) forms on M. Let, then, K be a ¢® L n-form on M. Passing to
IM:HMHMMMQ&!I,MHEPHIWE from
© to the tensor space [ (E,...,E; R), where, for each x, &(§¥ (x))
-Elﬂ (i.e., where each El‘.:l is an n-form in our tensor space). Now
fix x in O, and consider D K (x), an element of X (8; £(8,....B: R).
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We naxt note that there is a natural isomorphism from
fwe: £(E,...,B: B)) (n E's on the right) to L(E,...,E; R) (n+l E's),
namely, that which sends T in the former to that element of
the latter which, acting on KoyrwonoX Ly in E, produces the real
numbear "'4’{::1} (%,00000%_,1). In what follows, action of this
isomorphism will be assumed implieitly when appropriate. Thus,
in particular, we may regard nﬁ{:l as an alement of X {E,....E; B)
(n+l E's). Hence, applying the antisymmetrizer, o (D K (x)) is
an (n+1) ~form. We now claim that, in fact, this construction yields
a tensor at the point p of M. That is, let U, T and U', %  be
two charts, with p in U4 U'. Then, denoting by E and ﬁ' the
t:.lplctiﬂ components of K, we have that, for Xy veoesXy in E,
Kl € exy) ey lx)) = KX 0X,.00,%)), where x = ¥(p), x'
= ¥{p), and where o = D(¥'s4 1)(x). Taking the derivative of each
side of this equation (with respect to %), and applying to an arbitrary
vector y in E, we have DR (x') (L (¥)) ( ¥ (%)) ,.en, Lix))
R DL Gy s b)) # o+ R (LX) s D L) ()
=D Eh_r.} (¥) (%y,0000x.). Now apply, to each side of this eguation,
the antisymmetrizer (over the (n+l) wvectors y, xl“”"&n}' Then
all the terms except the first on the left vanish (for, for, e.g., the
second term, we have DIITH!II'I = D b (x;)(y), by symmetry of mixed
partials, while, in the sum resulting from application of the
antisymmetrizer, for each term containing D & (y) l.'::]__} thare will be
another term identical except for sign but with thés replaced by
D h{xl} {y). ”ﬂm«a, the terms will all cancel in pairs.) Thus, we
obtain r[nrtﬂ’}]‘wlilﬁfﬁjr---r lr'tln,l -r{DE{IH I’I: r+-+.r.‘I-
But this is precisely the statement that {rmﬂ"t:'}}r U'.'I‘l}
% (e (@K(x));: U, V). Thus, we obtain an (n+l)-form at p.

Repeating the above at each point of M, we conclude: Given
a ¢! n-form (field) on M, we obtain as above a CP 2 (n+l)-form
(field on M). This latter is called the exterior derivative of K,
written d K.

Example. Let n = 0. The O-form K is just a scalar field. The
instructions above read in this case: The exterior derivative d

is that 1-form (i.e., JZ (E; R~ such that, passing to a chart

and letting y in E be arbitrary, d K (x) (y) = DK (x) (y) (antisymmetrization
being unnecessary for l-forms). But the right side of the above is
precisely the directional déréwative of K in the y-direction. That
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is to say, 4k is what one in elementary calculus calls the gradient.
We conclude: On O-forms, the exterior derivative is the gradient.
Example. Let n = 1. Then, for K a 1-form on M, the exterior
dlriut-iw has the i'ullming ﬂpruliun in terms of a chart:
ld'IH!Hh‘rx]_l' = DK (x) (¥) (x,) - D K (x) (x,)(¥)). That :'Ll to say,
one takes hll!thuifriﬂtinnfmnlmpnnentuf v int.hnr—
direction minus half the derivative of the y-component of K in the
xl-diru-r.i.nn . These instructions will be recognized as those

which, in elementary calculus, yield the curl. On l-forms, therefore,

the exterior derivative is the curl.

on higher forms, the exterior derivative is a sort of "generalized
curl”.

As usual, we now want to deternine the various properties of the
axterior derivative. There are four. First, we have: For K and
% n-forms, 4(¥ + 3 ) = dK +d A . Second: PFor K and K’
n- and n'-forms, respectively, d(K, K) = dr.,.,u'dr [-1}“u,d|t.'.
This is a sort of "Leibnitz rule". MNote that this equation makes
sense, each side being an (n+én'+l)-form. [Proof: In terms of a chart,
t.h- left side, applied to YoXgreoosXooos is & (D( H{:l....,:n]

o Ky )) (0D = DR Gty e ) L TR S

+ rt&{:l. oo pX Inl:{r}(zr--uxnﬁ )). But the two terms on the
right in this formula are the chart-representations of the two terms
on the right in our claimed eguation.]

Example. Let n= 0, n' = 1, Then ¥ is a scalar field, k' a 1-form,
and our property above becomes d(rkk') = dka k' +k dg' This will
be recognized as a formula from elementary vector calculus: The curl
of a function times a vector is given by the gradient of the functiom
cross the vector plus the function times the curl of the vector.

The third property is this: For any n-form K, ddk = 0. [Proof:
In tm of a chart, the left li&- applied to L 2 ST RTRTE iz &
(D H{ﬂllt]l: pevsaX ) = « (DD K (y) (2) (%y¢.00s%)), where the
antisymmetrizer is over T YRy rennrX o Since mixed partials are
symmetric, the antisymmetrizer annihilates.]

Example. Set n = 0 in the last property. Then, in elementary calculus
serminology, we have: The curl of the gradient of a scalar field

vanishes. This, of course, is true.
The final property relates Lie and exterior derivatives. FPor this
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property, we need a bit of notation. For f an E-tensor and K an
n~form, we write f{+i for the (n-1l)-form whose action on :1....,q__1
is (Sek Vlxqreenrx  4) = ROT i Xypeeeex ). Similarly for fields.
[This, of course, is the action of a natural operation.] Thus,

for example, we have £+(5+K ) = 0. The final property is this:
For § an E-field and K an n-form (field), (n#1)f+dk - J K
+nd(f+K) = 0. [Note that this is well-defined, each term on the
left being an n-form.] [Proof: P‘Ilﬂ.lqtﬂ-lmm-npplﬂﬂg

to % ri--rlnr ;' dk w rtﬁﬂ{lﬂlln.-;lnl'] “H the
antisymmetrizer is over {,:1,....%1.{"“ becomes D K(¥ ) (%xy,..0%,)
b RO Ex) e x ¥ oo+ R (Ryeen DT (x)) s and (800 )
bacomes & (D(R (£ ,x,,...,% )) (x,)), where the antisymmetrizer is
OVEr Xgseee X o Expanding ahé antisymmetrizer in all three expressions,
and the last expression using the Leibnitz rule, one sees that all
the terms in the claimed combination cancel.]

Example. E-tﬂngn-ﬂ,mliltmtrmf'iﬁnfslf =0
for K a O-form. But this formula is true, for each of the two terms
on the left has been seen to be the directiocnal derivative of K in

the £ -direction.

In the finite-dimensional case, tha last proparty above provides
a convenient way of defining the exterior derivative, without referemnce
to charts. Rewrite the formula of that property in the form
frak = 1/(n+1) g K - n/(n+l)d(2-K ). Then, for n = 0, the right
gide is known (once one has Lie derivatives), and so this formula
can ba used to define the exterior derivative of a 0-form. Once
exterior derivatives have been defined on forms up to (n-1), the
right side of this formula, for K an n-form, is known, whence this
formula can be used to define the exterior derivative of an n-form.
By induction, then, one chtains the definition of exterior derivative
on any form. A similar program could be carried out in the infinite-
dimensional case, but, as usual, additional complications arise from
the feature that manifolds may not admit non-trivial fields globally.
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23. perivative Operators

We come, finally, to the third "type of derivative”.

Fix a ¢P (p22) manifold M based on Banach space E. Fix a point
p of M. Consider now pairs, (I'; U, 4 ), where U, is a chart
containing p, and ' is an element of X (E,E; E) which is symmetrie
(i.e., which satisfies, for any v, ¥' in E, [(y,¥") = [(y',¢).
Given two such, we write (I'; ﬂ,‘!‘]t{f',r ﬂ';"‘l",l provided the
following equation holds: PFor any vectors y and z in E,
Moty , o (2)) = JL(T (y,2)) + D L (x) (y,2), where, as usual,
¢ = D('e¥ 1), and x = 4(p). Each side of this equation is an
element of E., It should be noted that this aquation is different
from the corresponding equation for an J (E,E: E) tensor at p: Indeed,
were the second term on the right above omitted, we would have
precisely the tensor relation. The things we are now defining are
"geometrical objects" which are somewhat like, but not precisely the
same as, tensors.

We claim that " +£" is an equivalence relation. Clearly, we
have (P; U, ¥ )= (["; U,% ). Suppose next that (I'; U, %)
%(Ph u',4'). Then we have T(Li(y),t(z)) = ¢ ( iy,2)) + De (x)
(y,2), from which it follows, we claim, that T (L 2(y), ¢+ 1(2))
= ¢ Y Py.2) + 00 Y (x")(y,3). [Proof: Expand D(v ) in the
second formula, and replace y by L (y) and z by L(z).] But this
second formula is precisely the statement that H": L "f:l ' u, ).
Finally, that (M; u, ¥) 2(P% v', + ) ana (M) v, # ) 2 (" v .4")
implies (J': U, 4 =(" v'', 4'") is, similarly, an easy exercise
in algebra.

An equivalence class of such pairs is called a connection at p.
A connection fiald on M is a mapping which associates with each point
p of M a connection at p. The component of a connection field with
mtmlnhutintheuurmupnndim;upplanmﬂl*{ﬂ].
an open subset of E, to £ (E,E; E). A connection field is said to
be ¢P2 if its component is CP 2 for every admissible chart. [Note
that we here go from p all the way down to (p-2). The reason is that
"De ", the second derivative of the chart-mappings, appears in the
formila for component-change under chart-change.] A € % connection
field on M is normally called a derivative operator on M.

The interest in the notion of a derivative operator stems from
the feature that such an cperator permits one to take the derivative
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of an arbitrary tensor field on M, again obtaining a tensor field.
We next see how this comes about. ILet ¥ hnucp'lh-ﬂnldnnﬂ.
fix a derivative operator on M. Choose a chart, and 1-1:# and
be the components of & and the derivative operator, respectivaly.
Now let x be any point of 0 = Y'[U], and y any wvector in E, and
consider the free A-tensor D (x) (y) - K (| (x) (y), ¥ (x)), where
K is the element of £ (JZ(E;B),A; A) defined at the top of page 93.
For each ¥ in E, the above is a free A-tensor, clearly linear in y.
Hence, the above can be regarded as a mapping from E to A, i.e.,
u.kﬁf{l:m—m. Now change the chart. We have the formulae
for how K lnllﬁ change, and so can write down how the free
Z (8; A)-tensor above changes. We claim: It behaves like a
L (E: A)-tensor at p. The cAllculation is identical with that for
Fie derivatives: One picks up a "D¢ " term from “D: ", and also
& "DL " term from ‘P'{hfthfnmllfn:thncmt-uhanqnmﬁlt
chart-change for a connection). The expression above has been
adjusted so that these terms cancel. Thus, we obtain an 2 (E; A)-tensor
at p, which we write ¥o (p). Repeating for each point of M, we
obtain a cF 2 J(E: A)-field on M, Vo . This field is called the
derivative of o (with respect to our given derivative operator).

Example. Let ® be a scalar field. Then Vo must be a £ (E; R)-field,
i.9., a 1-!&::1_:__‘11: this casa, the "k -term" above vanishes,

and we have (V¥ )(y) = na(!ﬂ- But this is precisely the formula

for the exterior derivative. Hence, the result of application of

a derivative operator to a scalar fileld is to take its exterior

derivative.

Thus, the derivative, VU« , of a ¢® ' A-field « ias a cP 2
L (E; A)-field. This is of course what one might have expected:

The "E" refers to the possible directions in M along which the
derivative might be taken.

We obtain a few properties of derivatives via derivative operators.
Clearly, V(¥ +«') =Ve + Vo' Next, let T be a natural tensor
field. Then, for its component with respect to a chart, T is a
constant mapping. Hence, DT = 0. Furthermore, as we saw in Sect. 19,
L ,F} = 0 in this case. From the formula above for the derivatiwve,
therefore, we conclude that VT = 0. The derivative of a natural
field vanishes. We next note that, for P any £ (Ay,...,A; B)-field,
and & ,ooeo sy Ai=,... A ~Tflelds, we have V(P (& ,..., %)) =




118.

S APP I i w ) + PV ) # 0 L L P, T ).
It follows immediately that the derivative satisfies the Leibnitsz
rule for any natural operation on tensor fields. Finally, we show
that "mixed derivatives commute”, at least when applied to scalar
fields. Let f be a scalar field. Then V V f is a J(E,E; R)-field.
We claim that this WV f is symmetric (i.e., VW £(% X)) =
V VPE(¥%,%,)). Indeed, choosing a chart, we have ‘i"’%[lﬂ -
pE(X,), whence ¥V 2(X,X) = DDE(X,,¥p) - DECP (X ,X)). But
the first term is symmetric in %, ¥y since mixed partials commuts,
while the second is symmetric asince is.

Again, in the finite-démensional case one normally defines
derivativesoperators by their properties, rather than via charts,
a method which seems to be more awkward in the infinite-dimensional
case.

Derivative operators are a rather "brute force" way of making
available a derivative. One simply introduces what one needs
(a connection field) to be able to eliminate "D v-terms" when taking
component-derivatives. As one might expect, then, derivative operators
will normally not be very useful unless one arises naturally from
what one has available to him already. It turns out that there is
one situation in which such an operator does appear naturally: in
the presence of a metric. Thus, it is normally when one deals with
manifolds-with-metrics, i.e., with what is called Riemannian geometry,
that derivative operators play the important role. In a similar
way, Lie derivatives are not normally very useful unless one happens
to have some natural vector fleld around.

Finally, we remark that there are numerous relationships between
Lie derivatives, exterior derivatives, and dekivatives via derivative
operators. In particular, the former two can be expressed in terms
of the latter.



24. PDerivatives: Summary
The table below summarizes selected features of the three types
of derivative we have discussed.

Name Applies to Requires Symbol Properties On Natural
'F -

Lie field B- ! o Additi Gives
Derivative ln:r‘ i 3 hthn:l.: zero
Exterior | Forms Nothing d« ndditive %
o Y—
Derivative | Any field Derivative 1y Additive Gives

= operator Leibnitz zZero
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25. Partial Differential Equations

A vector field on a manifold has unique maximal integral curves.
As we have seen in Sect. 20, this fact leads, in the finite-dimensional
case, to a simple, gecmetrical statement of the existence and
unigqueness of solutions of systems of ordinary differantial equations.
But the fact is true also in the infinite-dimensional case. It is
natural to ask, therefore, whether or not one can, in a similar way,
obtain a "geometrization" of certain partial differential ecuations.

It is our goal in this section to look briefly, by means of an
aexample, at this guestion. Our conclusion, essentially, will be that
naive ideas do not work.

We shall be concerned with mappings from B to R, L.e., with
real-valued functions of two real variables. We dencte such a function
f, and the variables t and x. The differential equation whose
solutions we wish to study is this: (9 )%f = (2 )%f, where "3 "
and " 3; denote the partial derivatives with respect &o ¢t and x,
respectively. |[This is the eguation, e.g., for the propagation of
waves on a tightly stretched string. Then "x" denotes position along
the string, "t" denotes the time, and "f(x,t)" denotes the displacement

of the string from its equilibrium ..'.I;_' % ;[I'-,ﬂ
position at location x and time

t.] This is perhaps the simplest o di = Jrte =g

partial differential equation one L T [
could invent to test our program: - x Potit iom

It is linear, hyperbolic, of second order, and in two wvariables.
One of the nice features of this particular eguation is that it is
easy to write down its general solution. Indeed, let p and g each
ba functions of one real variable. Then, clearly, the function f
with action f£(x,t) = p(x+t) is a solution of our equation, as is
the function f with action f(x.t) = qix-t). By linearity, their
sum, plx+t) + g(x-t), is also a solution. [Physically, a solution
of the form p(x+t) corresponds to

a wave pulse on the string, of — *ﬁ
shape describeda by p, which h/..\/l'\
moves to the left along the Px)
string without changing its

ghapa. Similarly, a solution of the form g(x-t) corresponds to a pulse
moving to the right.] It turns out that, in fact, the most general
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solution of our partial differential equatiom is of the form

plx+t) + g(x-t) [A statement which is true, whose proof we omit, but
which, as we shall see shortly, could very easily be proven after
mhtimnfth-pmq:uﬂmhtr-&imdnq]

The first step in the geometrization of an ordinary differential
equation was to cast it into the language of manifelds. We now wish
to do the same thing for the present equation. To this end, let
each of Ey and E, be a "space” (eventually, it is hoped, a Banach
space) of functions of one real variable, and let E denote their
product, E = E; X E,. Consider now a solution f of our partial diffeven-
tial equation. For each real number t_, let g be the function with
action gi (x) = £(x,tg), and hy the function with action he, (x)
= 13 ) (%, k). [Physically, ?t'.ﬁ describes the "shape" of the string
nttin- tye nndhtnt.hu "welocity of motion up or down of each
lngn-ntnfth--tringnttimt'] Thlpa:lrt ,ht}.thln,
as a pair of functions of one real variable, lhuu.lﬂ nh ine a point
of Ey X By, i.e., a point of E. .

Since this is the case for each - ____.,
real number t _, we obtain a DJ]

mapping ¥ from the reals to

E, with action ¥ (t,) = Iit,ﬂ;

l'ltnl'- That is, we obtain a
curve in E. Of coursa, given
this curve in E, the original
solution £ of the partial

differential eguation can be

recovered immediately, for, e.g., f(x,t) is then the first entry

of ¥(t), evaluated at x. In this wvay, then, we can describe solutions
of our partial differential equation by cartain curves. [Physically,

E is the space of "posaible physical states of the string”, and the
curve describes "the evolution of the string with time through a
succession of physical states".]

The general idea is this. We wish to introduce a certain E-field
on the (eventually, manifold) E, so constructed that its integral
curves are precisely the curves, obtained above, corresponding to
golutions of our partial differential equation. There is a simple
check one can do to see if this is even close to being possible: One
can determine whether a single (e.g., initial) point on such a curve
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determines the curve (i.e., the solution of our equation) uniquely.
That is, we ask: Is it true that, given any (g, h) in E, there is
one and only ene solution of our partial differential equatioen, £,
with g(x) = £(x,0) and h(x) = {Etﬂ (x,0). In fact, the answer is
yes, and the unigque solution is given by f(x.,t) = 1/2 (gixtt) + glx-t))
+ 1/2 (h{x+t) - hi{x-t)). [The right side is indeed a solution, as
we have already cbserved. Furthermore, as one easily checks directly,
the f defined by this equation indeed satisfies g(x) = f(x,0)
and hix) = {?tﬂ (x,0). That this is the unique f satisfying
these conditions is also clear, since every solution f is of the
form pl’:ﬂii + g(x~t).] Thus, our "solution curves" do not cross.

We now have our "space” E, and our curves, and we next wish
to find a vector field whose integral curves are these curves. But
this is quite easy: We wimply take the tangent vectors to our curves.
Thus, let f be a solution of our partial differential equation,
¥ the corresponding curve in E, and let ¥(0) = (g, h). Then
T has action ¥it) = (g .. hy ). with gt{r.l = f{x,t) and hth:}
= (7 +£) (x,t), whence the tnng-nt vector tn T at zero is (g, .,
where q{:} = (@ ,f)(x,0), and hix) = (2 ¢ 2¢ (x,0). In other
words, gthandh-q" {(whera prime dnnntnduiﬂtiwuithm
to the single variable, ¥, on which g depends) this last eguation
comes from the partial differential equation on f). This little
calculation of the tangent vector also tells us what the vector field
should be. Let [ be the mapping from E to E with action f (g,h)
= (h, g''). [Note what happened here: The tangent vector depended
only on (g, h), so it could be represented by some vector field.]
Then the integral curves of this 2 will be precisely the solution
curves of our partial differential equation.

The above discussion is essentially only motivation, for we
have omitted the "detall" of specifying precisely which functions are
permitted to be in the space E. If, however, this single point could
be cleared up, we would have a gecmetrization of this particular
(and then, presumably, also of many similar) partial differential
equations. We now concern ourselves with this issue of specifying E.

A natural choice might be this., Choose integer p2 0, and let
E, consist of CP functions g with lub|g| + lub]g'| + . . . 4 lub lo
finite, where the norm is this sum. As we have seen, tl!l.ill is
indeed a Banach space. Repeating for Eys We obtain a Banach space E.
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We first observe that, since § is to be a mapping from E to E,
and since § 1is to have action f{ (g,h) = (h,g"'), it must be true
that, for any (g,h) in E, so is (h,g''). In particular, we must
choose p22, in order that "g''" make sense. But even this is not
enough, for, having eo chosen p, each of h and g'' must be cP -

in general, the lnttﬂviuh-unlrcp‘:. One might hope to get
around this problem by, e.g., letting !1 consist of CF functions
and Ej of C°"2, Then g will be P, whence g'' will be cP?, pue
this g'' is the second entry of (h, g''), and functions there need
only be ¥ (since they are in E,). This, however, will not work
either, for now the "h" in (g, h) will only have to be cP™2,
whence "h" is not a suitable first entry in (h, g''). Wa conclude,
therefore, that there seems to be no reasonable choices for B, and
E, as spaces of functions of finite differentiability class for
which our " £ " will indead be a well-defined mapping from E to E.
The problem, of course, is that § “"takes derivatives”, which tends
to "push us out of the space in which we began".

The obvious solution is to pass to C% functions (for which
"take a derivative" does not get one out of the space). Suppose,
then, that we let E, consist of c™ functions whose value, the value
of whose derivative, etc. are all bounded. We could not choose
on this E, a norm of the form 1lub|g| + lub|g'| + . . . + lub ||,
for some fixed positive p, for then !1 would not be completa.[As a
general rule, completeness fails when restrictions are imposed on
the class of admitted functions which are not suitably incorporated
into the norm.] We could, however, set d(g) = lub |g|/(1 + lub|g])
#+ 1/2 1ub |g'| /(1 + luh[g‘l] + 1/4 lub ig"l S+ 1labjg* | ) + . . .
a measure of the "size" of g. [The idea of this expression is that
aach term, without its numerical factor, is less than one, whence
the nth term is less than l,f!“, whence the sum always converges,]
This is indeed a metric on our set of C° functions, i.e., letting
the distance between g and § be d{g - &). Furthermore, as one might
expect from the appearance of the formula abowve, our By is complete
under this metric. Our Ey how includes the derivative of each
function in it, and is complete. Unfortunately, we have also
now introduced a new problem: The "d" above is not a norm, for
it fails to be true that d{ag) = a d(g) for a a real number. [This
E, is what is called a Frechet space, about which we shall say slightly
more later.] The problam, of course, is all those "1 + lub"'s in the
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daenominators.

To summarize, we have found so far that cP functions will not
work for E, because this set of functions does not include the
darivative of each of its elements. Furthermore, C functions
with woPonorm" will not work either (although derivatives are now
included) because completeness fails. "Completeness” can be
restored for C™ functions, but the result is just a metrlc rather
than a norm.

Let us try, then, to see if we can find some norm on € functions.
A natural candidate would be |g| = a, lub lal + a, lub T
where a,, 8y, « - - is some sequence of positive numbers (zero cannot
be allowed, for then completeness would fail). We must now
soncarn ourselves with convergence of this infinite sum (a concern
that did not arise for "d"). The idea would be to choose tha a te
go to zero sufficiently quickly with n that this sum will converge
for every o g with sach term finite. Unfortunately, none exists.

gkhbple. Let b,, b;, . . . be any saquence of positive numbers.
Then there exists a C™ function g such that each of lub |g|, lub {o*l .
ete. is finite, but such that 1lub | gl 2 by, lub \al 3 b, , ete.
Indeed, the graph of such a -

g is zero axcept for a
sequence of "bumps", where, A

b

in the first bump, the -
value of ]gl exceeds hﬂ’ in ""'"""Ii'|3|-. 'iﬂ'l-"-:h. w*l‘ﬂ.
the second, the value does not Lolg') 2 ¢, 19128,
exceed b, but the value of the .E,ﬂ'ub"'}-g{h

darivative exceeds bl; in the third, the value does not exceed !:ﬂ
and the value of the derivative does not exceed 1:-1‘r but the wvalue of
the second derivative exceeds b,, etc.

Thus, at least the above method for making a Banach space out
of C™ functions seems also to fail. An alternative possibility
might be to try to use only certain c™ functions. After all, one
would normally be concerned in some application only with having
a "reasonably large collection" of solutions of one's equation (even
ﬂmmmrwkummllzﬂihmthntthnwm-mcznﬂutinﬂ.
one might, therefore, proceed as follows. Fix positive numbers
8gs 8y - - + ¢ and consider the collection of all ¢ g such that
a, lub lgl + a; 1ub \g'| + . . . is finite (this sum being the norm).
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In this case, there is a constraint on what we can choose for the
a.: It must be true that the derivative of an admissible function
(by the eriterion above) is alsc admissible. That is to say, tha
must be such that, if aj lub |g| + a; lub |g*'| + . . . is finite,
then a, lub gl + a2, 1ub\g''| + . . . is also finite. But this
in turn will be true if and only if the sequence of numbers whose
ot term is a,/a,,, is bounded. BDut now we are restricting ourselvas
essentially to analytic functions (for, given a function admissible
by our criterion, expand it in Taylor series with remainddr, and
using boundedness of ‘n"'“n-bl' show that the remainder term goes to
zero as the Taylor series is made longer). It appears, therefore,
that one can indeed find a suitable class of analytic functions.
Unfortunately, restriction to analytic functions is too severe for,
{e.g., the physical) applications of our original partial differential
equations: One wants to admit at least more ¢ functions than these,

Having now failed in several attempts to find a sultable class
of functions which will form a framework for the geometrization of
our partial differential equation, it may be worthwhile to just list
the properties we are loocking for. We seek a collection [ of mappings
from R to R such that:

1. Linear combinations of functions in E are in E.

2. There is a norm on E which makes it a Banach space.

3. The derivative of any function in E is in E, and "take the
derivative” is a continuous (linear) mapping from E to E.

4. The sat E includes a "reasonable number” of functions.
pur conclusion is, then, that we have been unsuccessful in finding
such a collection.

It seems reasonable, next, to see if one can find some theorem
which will crystallize our failure. We give one example of a result
along these lines. There exists no collection E of mappings from
the open interval (0,1) to R such that i) E is a Banach space, ii)
each function in E is differentiable, its derivative is in E, and
"sake the derivative” is a continuous mapping from E to E, iii)
there is at least one function in E which is constant on (1/2, 1),
and which is not constant on (0, 1), and iv) if g is in E and
0% a <1, then the function g, with action gat:} = g(2x - a) is in
§; furthermore, for fixed g, this mapping frem [0, 1] to E is C',
The proof is guite easy. Since "take the derivative® is a continuous
linear mapping from E to E, we obtain a corresponding vector field
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€ on the manifold E. This vectoer field has unique integral curves.
Let ¥ be such an integral curve, so, for each t, 7 (t) =g, is an
@lement of E. Then the statement that this is an integral curve is:
a/dat R -gt'. Let g be the function in iii) above. Then the ¥ with
FiE)(x) = gi{2x - 1 4+ 2t) is, by iv), an integral curve of our

Yector field. Its initial point, by 1ii), is a c-nnutmL function.

But an alternative integral curve is the constant one, ¥ (t) (x)

= g(2x - 1). By iii), these two integral curves are different.

This contradiction establishes that no such collection of functions
exists.

It seems, therefore, that either one must abandon the possibility
of expressing partial differential equations gecmetrically on
manifolds, or one must severely modify the rules. The first
alternative would, in my view, be a severe blow to the potential
applications of this subject. As to the second alternative, one could
imagine at least two possibilities. On the one hand, one might look
for something else (e.g., not even "functions") which one could still
regard as “"solutions" of our partial differential squation, and which
could be made intc a Banach space. [The situation hare iz a hit
reminiscent of that in Fourier analysis. The subject was a terrible
mass until it was realized that one must work with the "right" set
of functions - there, L°.] One possibility which comes to mind,
but which does not perhaps look too promising, is distributions.
Perhaps a less severe notion of “"derivative" needs to be incorporated.
On the other hand, one might attempt to redo the subject of manifolds,
basing them instead on topological vector spaces with less structure
than Banach spaces. One possibility would be Frechet spaces (in
which, essentially, the norm is replaced by a metric, but completeness
is maintained). For example, the C* functions with the "d" of page
123 form a Frechet space. The problem here is that it is apparently
false in Frechet spaces that vector fields have unigue integral curves
(for the result of the previous paragraph fails if i) is replaced by
“E is a Frechet space"). Perhaps there is some other kind of space
in which one can work, such that reasonable classes of functions can
be made into such a space, and such that, in this space, wector fields
do have unigque integral curves. The result of the previous paragraph,
again, puts severe limitations on the possibilities.

The fact that the program is so successful and elegant for ordinary
differential equationa, and so appealing for partial, suggests that there
should be soma way to make it work.
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26. Riemannian Geometry |

In this section, we discuss briefly which of the various notions
from Riemannian geometry in finite dimensions can be carried owver
to infinitae.

Fix a Banach space E. A metric (on E - not to be confused
with "metrie" of "metric space") is an element g of the tensor space
L (8,B; R) satisfying the following three conditions:

1. The tensor g is symmetric. That is, for any x, y in E,
g{::fi - g‘?:“—’-

2. The tensor g is positive-definite. That is, for any monyero x
in E, gix,x) > 0.

3. The gensor g is invertible. First note that ﬂu tensor
space J/(E,E; R) is naturally isomorphic with J(E; .f{l‘;;hh hence,
we may (and often shall) regard g as an element of the L;htur.

We require that there exist a g' in J (£ (E; R); E) such that g's g
and geg' are the identities én E and ’(E; R), respectively.

Example. Let E be the Banach space of sequences of real numbers,
{rl, PLAEE ), the sum of the squares of whose entries converges.
Let a,, a,, b=s. . ba a sequence of real numbers, and let g have the
following action: For x = {rl,...] and y = {ul.-..j in E, gi{x,¥y)

= a,r,s8, + a,r,8, + . . . When is this g a metric? First note that,
in order that g be well-defined, i.e., in order that the sum on the
right converge for every x and y in E, it is necessary and sufficlent
that the |a!_| be bounded. Then g is automatically symmetric. For
positive-definiteness, it is necessary and sufficient that each ay
be positive. For invertibility, first identify J(E; R) with
sequences of reals, so the action of M= :ql, Gor = = = ) in .ffﬂ-.t R
on x = [rl. rz....,\ in E is the real number M{x) = gy %y -l-qzrz . . e
Then, regarding g as in Z(E: JZ(E; R)), and applying to x, we

have g(x) = (a;r yta,rss « « « ). Clearly, then, its inverse g' must
have action g' (M) = dq,/a,, 9,/2,, . . . ). But this will only be

a bounded linear mapping, indeed, will only be well-defined, provided
the 1/a; are bounded, i.e.,, provided the a; are bounded away from
zero. This, then, is the condition for invertibility.

In the finite-dimensional case, the third condition above follows from
the first two (i.e., in matrix terms, every finite-dimensional,
symmetric, positive-definite matrix is invertible). As the example
above shows, this is not so in infinite dimensions. By the third
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condition, a metric establishes an isomorphism between E and its
dual, J (E; ). Indeed, there is a kind of symmetry hetween E and
its dual in this set-up. For example, g' can be regarded as an
element of J( J(E: ®), £(E: W R) (namely, sending (m,¥), both
in L(E; B) to (¢(V)) ). Then this element of L( F(E; R),
Z(E; R); B) is also symmetric, positive-definite, and invertible.

Let E be a Banach space with metric g. For x in E, set §x3
- [g{;,r”uz. Then this " | §" is actually a norm on E. [Proof:
All the properties are immediate except the triangle inequality.
Fix x and v in E. Then, by condition 2, we have that g(x + ay, = + ay)
= glx,x) + a gly,x) + a gi(x,y) + a? gly.¥) = gix,x) + 2a gix,y)
+ az g(y,y) must be non-negative for every number a, where we used
the first condition in the second step. But this guadratic polynomial
in a can be non-negative only if H{:.ﬂ}za gix.x)gly,y¥). Now
set a = 1 in the above, to obtain g(x+y,x+y) € g(x,x) +2 (glx,x)gly,y) /2
+ gly.,y), where we used our inegquality. Taking the sgquare root of
each side, we obtain the triangle ineguality.] We claim that in fact
this norm "{ | " is equivalent to the norm " | | " that comes with the
Banach space E. Indeed, we have Jx} = {g(x,x)*? s (|allx |x12?/?
= 1g1"?\x|. suppose next that the reverse imequality, |x| & ajx},
for some a, were false. Then we could find a seguence of vectors in
E, %+ X5, » - . , such that P‘:’I.l = 1, and such that glx;,x,) approaches
zero. Now, |x;] = |g'(g(x;))|£]9" |g(x;)| ., whence the lgtx;)| must
be bounded away from zero. By definition of the norm of an element
(such as glx,)) of JI(E; R), therefore, there exist vectors Yyr ¥ar + o
in E such that |y,| = 1 "ndlg{'tl} I?i]] is bounded away from zero.
But [glx;) (v | % = [otxg vl 24 olxgax oty v,) € Jol 1yg) 2o ey oxg)
ﬁlg‘{ g{:n‘.i.:ti! . while the last expression approaches zero as i approaches
infinity. This contradiction establishes that |x| £ ajx} for seme a.
We conclude that our two norms are egquivalent.

A Banach space possassing an egquivalent norm which arises from
a metric g as above is said to be Hilbertable. We conclude, therefere,
that a Banach space possesses a metric if and only if it is Hilbertable.
In this case, we might just as well use the norm '{i"‘, which comes
from a metric, rather than the original nmorm " || ". A Banach space,
endowed with such a norm, is called a (real) Hilbert space.

Which Banach spaces are Hilbertable, i.e., which poasess metrics?
The answer is: Very few indeed. We next amplify thie remark, and alseo

give an interesting consequence of the existence of a metriec.




129.

Let E be a Banach space with metric g. Two vectors, x and y, in
E will be said to be orthogonal if g(x,y) = 0. WNow let F be any
subspace of E. Dmm:-hrl'l['!'pm:p'} the set of all vectors in
E which are orthogonal to every vector in F. We claim, first, that
this P+ is a subspace of E. Indeed, pdis clearly a vector subspace,
for any linear combination of wvectors, each orthogonal to every vector
in F, is itself orthogonal to every vector im F, by linearlty of g.
Furthermore, FLis closed. [Proof: Let x;, X,, - . . be in P4
and let these vectors converge to x. Then, for y in F, we have,
since g(x,,y) = 0 and since lim g(x,,y) = g(lim x,;., y)}, that §(x,y) = 0.
Thus, x is also in FL] We next claim that, not only is this Fta
subspace, but that it is in fact complementary to F. Fix vector x
in E; mdma*qlh]:ﬁ:rl. whare the "glbh" is over all y in F,
and whare we use the norm which comes from g. Let ¥yv ¥ar o . be
vectors in F such that lim
Ix - ¥4| = a. Il'-l:uv-ﬂu
equality |y, - ¥yl = .
2= - yy\© + 2x - yjl .
-Alx - R * v
which follows immediately
by expanding each side
using linearity of g. For
i and j sufficiently large,
each of the first two terms
can be made as close as we
wish to 2;2. The last term, however, is greater than or egqual to
4a?, by definition of a. Thus, for i and j sufficiently large, the
right side is as kmajdk as as we wish. We cbnclude: ‘I'.'hle'fi form a
Cauchy segquence. Let y be the vector (necessarily in F, since F is
closed) mﬁiuhthtuyimrga. Then we have [:-ﬂ-a. We
next claim that x - y is in Fh Indeed, for any z in F and any
number b, we have 8%jx - y + bz|? = |x - y|% + 2 gx-y,2) + b°|z|®
= a® + 2b g(x-y,5) + b’|z|?, where the first inequality follows from
the definition of a and the fact that -y + bz is in F. Subtracting
"a’* from each side, we : 0%2b gi{x-y,z) + hz'lﬂz. But this

maguality

quadratic-polynomialtin b can hold for all b (as it must) if and
enly if g(x-y,z) = 0. Thus, x - y is in F%. But now we have
XK=y + (x - v¥), an expression for x as the sum of one vector in F
and another in F% That is, F and F*are complementary.
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(It is almost immediate from this result that, e.g., Pt = p,)

In particular, the above shows that, if a Banach space admiks
a metrie, then every subspace of that Banach space splits. Since we
have seen examples of Banach spaces having subspaces which do not
split, not every Banach space has a metric.

As usual, we now wish to pass from tensor spaces to fields.
Let M be a cP (p21l) manifold based on Banach space E. A metric
(field) on M is a c® 1 Z(E,E; R)-field which is symmetric, positive-
definita, and invertible. Then, for example, its inverse g' is
a J(Z(E; R); E)-field, Thus, a metric on M gives a sort of "local
distance between nearby points of M" (regarding the "infinitesimal
displacement between nearby points" as being represented by a tangent
vector, and the norm of this vector, defined by g, as the "distance
between these two points"). A metric, then, endows M with a "loecal
geometry”. There are also various senses in which one obtains a
"global geametry”. We give an example.

Let M be a cP (p21) manifold based on Banach space E, and let
g be a metric on M. Iet ¥ be a curve on M, and let a<b be two
numbers in the interval on which ¥ is defined. Then, for each r
in [a,b]l, ¥ir) is a point of M, and the tangent vector to ¥ at r,
fr. is a tangent wector at 2f(r). Further, g(gifdi= a 7(E,E; R)-
tensor at Th:l Hence, g( ¥i(r))( f §.) is a non-negative number.
set L= [ a(7En(s,. g2 s, the dafintte Sitagral of S
real function of a real mi..hlu. This L is called the length of
the curve ¥ from a to b. [Intuitively, one "sums the infinitesimal
distances between successive points along the curve from ¥ (a) to
¥ (b)".] This definition is a reasonable one, a remark we may
{llustrate by the following observation. Let us reparamesterize our
curve, l.e., ﬂhnuﬂ a smooth monotonic function £ of one rnl
variable, and set F= Wor. Let a = £(3) and b = £(0), so (A) = Via)
and *r{b] = "¥b). Then, uula:l.n, tlulengt.h:}f r f:um:tuhil
the same as the length of ¥ from a to b. Indeed, we have .h
- f f (where prime denotes d4/dr), whence gl F(EN (S .Iﬂ
= (£)2 gl!'l" (£))(5,.5 ). Thus, the integrals dn!:lninq t.hu length
are equal by change cf thn independent variable. Geometrically,
this is of course what one would expect.

We can now use this notion of the length of a curve to define
a "global distance function" on a manifold with metric. Let M, P,
E, and g be as usual, and mmmuilM| i.e.,
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has the property that any two of its points may be joined by some
curve. Given any two points, p and p', of M, set d(p,p') the greatest
lower bound of the lengths of curves joining p and p'. This "d",

we claim, is a metric. ([Proof: That d(p,p') 2 0, and that d(p,p")

= d(p'.p), are immediate. That d(p,p') + d(p",p'"} 2 dip,p'") is
also clear, since one curve from p to p'' is obtained by first tracing
a curve from p to p', and then from p' to p''. We have only to show,
therefore, that d(p,p') = 0 implies p = p'. Introducing a chart
containing p, it suffices to do this within the Banach space E,

fincea, furthermorea, the metric field is continuous, it suffices to
consider the case when the metric is constant (for cne can always
find a "lower bound metric" im some neighborhood of p). Thus, we
must show: For E a Banach space, g a metric on E, and p and p'
distinct points of E, d(p,p') » 0. Let f be the function on E which
assigns to x in E £(x) = {q{r.-pﬂhp}!lﬁ. Then, along any curve

from p, f increases more slowly than the length of the curve increases
{since the rate of change of f is measured by the norm of the component
of the tangent vector in the direction away from p, while the rate

of change of length is measured by the norm of the tangent vector).
Hence, d(p,p') > Igtp‘-p-p'*pnlﬂ.] Thus, a manifold-with-metric
has the structure of a metric space.

The discussion above is a brief summary of "the geometry of
manifolds-with-metrics”. We conclude this section with a discussion
of metrics from a more algebraic point of view.

One of the most important and useful properties of a metric (field)
is that it leads to a unigue derivative operator. More precisely,
we have: Let M be a C¥ (p32) banifold based on Banach space E,
with ¢! metric g. Them there is one and anly one derivative opiirstor

¥V on M satisfying Vg = 0. The proof is computational and
completely straightforward: One writes down the answer. Let U, ~f
be a chart, and‘q‘thlmtnfq* For u, v, and w in E, consider
1/2 (Dg(u) (v,w) + DG(v) (u,w) - DF(w) (u,v)). Fixing u and v, this
asaigns, to each w in E, a real number, i.e., is an element of

xﬂ!: R). Applying a" to this mapping, therefore, we obtain an
element of E, an eleament which depends, of course, on our choices
of u and v. Write this element P{u,?l, so " is an element of

L (E,E; E). We now claim: This ' is a connection. [Sketch of
proof: Change the chart. We know the change in the component of g,
and hence can compute, from the formula above, the change in /” .



The result is precisely the formula for the change in the component
of a connection under chart-change.] Thus, we obtain a derivative
operator on M. This ¥ further satisfies g = 0, for this eguation,
written in terms of a chart, is precisely the formula above used

to define .

Thus, once one has a manifold with metric, one automatically
has a derivative operator, and hence can write differential equations
on tensor fields on M.

We remark that, just as in the finite-dimensional case, one
can define the curvature tensor and obtain its symmetries (although
one has neither the Riceci tensor, the conformal tensor, nor the
scalar curvature, since these require a "contraction™ which is not
available in infinite dimensions), geodesics, etc.
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Problems

1. Find an example of Banach space E, vector subspace A of vector
space E, such that A is finite co~dimension but not closed.

2. Let E be a Banach space. Show that every finite-dimensional
subspace of vector space E is closed.

3. Find an example of a vector space, and two norms thereon
each of which makes this vector space a Banach space, such that these
norms are not eguivalent.

4. Show that a subspace of a Banach space containing a ball is
the entire Banach space.

5. Let E be a Banach space. Find all subspaces of E having a
unigque complementary subspace.

6. n:mhmmm!.nmnmﬁ;ﬁ...*
of vectors in E such that, given any vector x in E, there is one and
uhmm&,&,...n!ml“r.mnhthtﬂn
mlanMIInthtlﬂil}'n-lltl*¢+.'+lnl“““HHl.
[That is, every element of E can be written as an "infinite linear
combination® of the x,.] Show that our examples of Banach spaces
have bases. Find an example of a Banach space without basis.

7. Find a vector space having no norm which makes it a Banach space.

8. Let E and F be Banach spaces, and let T be a linear mapping
(of wector spaces) from E to F. Denote by A the subset of E XF
consisting of all elements of the form (x, T(x)), with x in E. Prove
that A is a vector subspace. Show that T is bounded if and only if
A is closed in EXF. [Hint: Open mapping theorem.]

9. Let E consist of all sequences, (x;, r,, . . . ) of real
numbers with |r, - r,| + |[r; - r |+ . . . finite. Let the norm of
Mnmhm-m;ﬂu'l:i. Prove that this E is a Banach
apace. ;

10. Show that a Banach space is finite-dimensional if and only
if every subspace is closed.

11. Define the product of an infinite number of Banach spaces.

12. Give an example to show that the open mapping theorem is
false for normed vector spaces (i.e., without unq:hmi.

13. mmwmﬂmmmli't”m
splits.

14. Prove that, if every subspace of E splits and every subspace
of F splits, then every subspace of EXF splits.



