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1. INTRODUCTION 

A number of astrophysical phenomena discovered in recent years have the char- 
acteristic feature that enormous quantities of energy are extracted from a relatively 
small system. Examples include the output of electromagnetic radiation from quasars 
and, possibly, the output of gravitational radiation from the center of our galaxy. 
Since strong gravitational fields are both an effective source of energy and an effec- 
tive means for converting energy from one form to another, it is natural t o  suppose 
that general relativity will have a significant role in the explanation of such phe- 
nomena. Thus, one is led to  ask: given a physical system, governed by the equa- 
tions of general relativity, what is the maximum energy that can be extracted from 
it? 

Of course, if one knows the detailed structure of the system, as well as  the mech- 
anism by which energy is t o  be extracted, one can, a t  least in principle, actually 
calculate the energy output. Unfortunately, it is normally the case that neither the 
structure of the system nor the extraction mechanism is known. In fact, the most 
significant piece of information about the system is often the magnitude of the energy 
output itself. Therefore, one is forced t o  guess the structure and mechanism, calcu- 
late the energy output from general relativity, and compare the result with observa- 
tions. Although this approach has certainly been valuable in the past, it does suffer 
from certain deficiencies. In particular, it introduces a bias toward conservative 
explanations : one guesses processes one has seen before. But general relativity is, 
by comparison with other theories, not well understood. It may well turn out that 
new and unexpected features of the theory will be important for the interpretation 
of astrophysical observations. 

An alternative approach is to  look for general statements within general rela- 
tivity-statements that are independent of the details of the system and which reflect 
on the possibilities for energy extraction. This alternative point of view has proved 
fruitful in the past. For example, although detailed calculations on the collapse of 
individual systems have certainly been important, the search for broad statements 
reflecting on collapse phenomena in general led t o  the singularity theorems. These 
theorems represent, of course, a n  enormous advance in our understanding of col- 
lapse. Thus, the program is to  describe the issue of energy extraction within the 
context of general relativity and to obtain what general statements one can within 
this theory. We shall here describe briefly the progress which has been made in this 
program. 

2. EXAMPLES 
We begin with two examples of the extraction of energy from a highly relativistic 

* Supported in part by NSF contract number GP-34721x1. 
'r Sloan Foundation Fellow. 

system. 

108 



Geroch: Energy Extraction 109 

The first’ involves the extraction of energy from a Kerr black hole. Recall the 
following facts: 1. The Kerr metric possesses a Killing vector field ta that, far from 
the black hole, is unit and (future-directed) timelike. (Physically, this ta generates 
the time-translation symmetry of the system.) 2. For a < m in the Kerr metric, 
there is a timelike three-surface S, the ergosurface, inside of which f a  becomes space- 
like. 3. For a free particle with (four-)momentum pa,  the quantity pata is constant 
along the particle’s path. 4. Momentum is conserved. If a particle with momentum 
pa breaks into two particles with momenta pa’ and pa”, then p a  = pa‘ + pa“. That 
energy can be extracted from the Kerr metric follows from these properties. 

It is natural to regard the quantity E = -pata,  where p a  is the momentum of a 
particle, as that particle’s energy, for this quantity is constant along the particle’s 
path, and it reduces to the special relativistic energy in the limit far from the black 
hole. Now let a particle with momentum pa emit a second particle with momentum 
pa’, so pan = pa - pa‘ is the momentum of our original particle after the emission. 
Contracting with fa, we obtain the equation of energy conservation: E” = E - E’. 
Suppose first that this emission process is carried out outside the ergosurface, where 
ta is timelike. Then E‘ = -pa’ta is positive, since both pa’ and ta are future-directed 
timelike. Thus, our original particle’s energy decreases as a result of the emission. 

However, a new possibility is available in the Kerr metric. Our original particle 
could first pass through the ergosurface, there emit the second particle, and then 
return, again through the ergosurface, to the exterior region. Since ta is spacelike 
inside the ergosurface, one could, furthermore, arrange matters so that the energy, 
E’, of the emitted particle is negative. (Given a spacelike ta, choose timelike pa’ 
so -pa‘ta < 0.) In these circumstances, the emission process is accompanied by 
our initial particle’s actually gaining energy. (The emitted particle, with negative 
energy, is captured by the black hole.) 

By this process, then, energy is, in effect, extracted from the Kerr black hole. 
(This process fails for a = 0, the Schwarzschild solution, because then the ergosur- 
face becomes null, whence the original particle is unable to return to the exterior 
region after the emission.) 

As a second example,2 consider the collision of two Schwarzschild black holes 
that, initially, had energies (masses) El and EZ and were very far apart. Let us 
suppose that these systems coalesce to form, eventually, a new Schwarzschild black 
hole with energy E. Since gravitational radiation (which carries energy away) will 
be produced during the coalescence process, one would expect to have E Q El + 
El. It turns out, however, that E ,  El, and E2 are also related by a second inequality: 
E2 >, El2 + Ez2. Thus, we have both upper and lower limits for the energy of the 
final black hole. If, for example, El = EzJ then we have 2E1 z E 2 4 E l .  The 
difference, 2E1 - E, represents energy emitted as gravitational radiation. Thus, from 
0 to 30% of the energy originally available in the two Schwarzschild solutions will, 
in this process, be extracted in the form of gravitational radiation. 

These examples illustrate the kinds of results we seek. The arguments are largely 
structure-indeperident and depend essentially on the presence of strong gravitational 
fields. 

3. FORMULATION OF THE PROBLEM 

One of the key difficulties in formulating statements in general relativity on 
energy extraction is the peculiar status of energy in this theory. Energy is not a 
particularly natural concept in general relativity. The reason, essentially, is that 
energy in special relativity is associated with the time-translation symmetries of 
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TABLE 1 
COMPARISON OF THE STATUS OF ENERGY J N  NEWTONIAN GRAVITATION 

AND GENERAL RELATIVITY 
__ - 

Kewtonian Gravitation General Relativity 

Energy Density Source P 

Energy Density Field 1 _ _  s,G(v4J). (v4J) 

Total Energy Source / P  dV 

Total Energy Field 8rG 

Total Energy I P  dV 

Tab 

None 

None 

dV None 

Well-Defined 

dV 

Minkowski space, while no such symmetries are available, in general, in curved 
space-time. Nonetheless, energy can be defined in general relativity in certain situa- 
tions. One must so formulate questions on energy extraction that the notion “energy” 
is required only in these certain situations. 

The role of energy in general relativity is compared with that in Newtonian 
gravitation in TABLE 1. In Newtonian gravitation, the energy densities of the source 
and of the field, the total energies of the source and of the field, and the total energy 
are all defined. However, three of these five quantities turn out to be undefined in 
general relativity. The stress-energy tensor, Tab, plays the role of the energy density 
of the source in Newtonian theory. There is nothing in general relativity that could 
reasonably be called the energy density of the gravitational field. (The metric g a b  

is analogous to the Newtonian potential 4. But no tensor field can be constructed 
from the first derivatives of the metric.) Similarly, neither the total energy of the 
source nor the total energy of the field is meaningful in general relativity. (The 
difficulty in defining a “total energy of the source” is that the stress-energy, T a b ,  
is second-rank, and hence cannot be integrated over a spacelike three-dimensional 
surface.) 

It turns out, however, that a quantity that can be interpreted as the “total 
energy, including the contributions from both the sources and the field” can be 
defined in general relativity-provided the space-time is asymptotically flat in a 
suitable sense. To see why this should be the case, we write Einstein’s equation, 
Rab - >iRgab = 8aGTab, symbolically in the form a2g = T + (dg)2. One can think 
of the two terms on the right as the energy density of the matter and the “energy 
density of the gravitational field”, acting as a source for the metric. Thus, if the 
space-time is asymptotically flat, one might expect to be able to define a quantity, 
to be interpreted as total energy, in terms of the rate of approach of the metric to 
flatness in the asymptotic region. The situation is somewhat analogous to that of 
the modified Newtonian theory, in which the Newtonian field energy is inserted as 
an extra source term on the right: V24 = 4sC[p - (1/8rG)(V+). (V+)]. One might 
reasonably interpret the coefficient of the l / r  term in 4 as the total energy of the 
system. 
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FIGURE 1. The Arnowitt-De- 
ser-Misner energy. The energy is 
defined in terms of asymptotic be- 
havior on a spacelike, three-dimen- 
sional surface S. Since radiation 
emitted between two such surfaces 
is incident on the second, the energy 
is invariant under translations of S. 

There are, in fact, two distinct regimes in which a total energy can be defined in 
general relativity. The first is at spatial infinity,3z4 i.e., in the limit as one approaches 
the asymptotic region along spacelike directions (FIGURE 1). More precisely, the 
Arnowitt-Deser-Misner energy is defined in terms of the behavior of initial data on a 
spacelike three-dimensional surface S, which, asymptotically, approaches the be- 
havior of a t = const. plane in Minkowski space. The Arnowitt-Deser-Misner 
energy is invariant under translations of the surface S .  This is a result one would 
have expected physically, for, if a system emits energy, say, in the form of gravita- 
tional radiation, between two such surfaces, S and S’, then the emitted radiation 
crosses S‘,  and hence makes a contribution to the Arnowitt-Deser-Misner energy of 
S’. Thus, in this rough picture, one would expect the decrease in the energy of the 
system between S and S‘ to be compensated for by the gravitational radiation that 
crosses S’ and not S .  

The second regime5.6 in which total energy can be defined is at null infinity. The 
Bondi energy is defined in terms of the rate of approach of the metric to flatness 
along a null surface that, asymptotically, looks like a null cone. Since gravitational 
radiation can escape between two such null surfaces, one would expect that the 
Bondi energy will decrease as one moves from one null surface to the next (FIGURE 
2). This has been shown to be the c a ~ e . ~ , ~  

No relation is known between the Bondi energy and the Arnowitt-Deser- 
Misner energy. However, these physical considerations suggest the following, very 
attractive, conjecture: In the limit as the null surface is moved to the distant past, 
the Bondi energy approaches the Arnowitl-Deser-Misner energy. 

A second difficulty involves the meaning of the term “extract.” Roughly speak- 
ing, one wishes to regard energy as having been extracted from a system if the energy 
is removed in the form of kinetic or potential energy, but not, for example, if it is 
removed as mass energy. For example, if a galaxy throws off entire stars, one would 
not normally regard the mass energy of these stars as energy extracted from the 
galaxy. But, as we have seen above, this Newtonian distinction between different 
types of energy is simply not available in general relativity. Apparently, the only 
possibility consistent with the constraints imposed by general relativity is to regard 
energy as having been extracted from a system if it can be converted into radiation 
that reaches null infinity. That is to say, extracted energy refers to changes in the 
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FIGURE 2. The Bondi energy. The 
energy is defined in terms of asymptotic 
behavior on a three-dimensional null 
surface. Since radiation can escape be- 
tween successive surfaces, the energy 
decreases under translation of the sur- 
face into the future. 

Bondi energy. Physically, this point of view is perhaps not unreasonable, for one 
might expect intuitively that energy extracted, e.g. as  kinetic or potential energy, 
could then be converted into gravitational radiation. 

Now consider an asymptotically flat solution of Einstein’s equation, and let E 
be its Arnowitt-Deser-Misner energy. One might imagine assigning to  this system 
a second quantity Eo \< E, called the bound energy. We require that this EO be so 
chosen that the system is incapable in principle of radiating away more energy than 
E - Eo. Thus, we would require that Eo be less than or equal to  the smallest value 
assumed by the Bondi energy. For the Schwarzschild solution, we would have, 
presumably, Eo = E, while the example of Section 2 suggests that we should choose7 
Eo < E for the Kerr solution. 

This notion of the bound energy would not be very useful unless one obtained 
a prescription for the behavior of the bound energy when two systems are combined. 
Consider two asymptotically flat solutions of Einstein’s equation, with Arnowitt- 
Deser-Misner energies E’ and E”, and with bound energies E(,’ and Ed’. It would 
presumably be possible to introduce a new asymptotically flat solution of Einstein’s 
equation in which, in the limit of the distant past, the original two systems are seen 
infinitely far apart. These systems would, in this solution, interact, and, among 
other things, emit gravitational radiation. This would be our  notion of “combining 
systems.” 

The behavior of the Arnowitt-Deser-Misner energy under this combining of 
systems would be E = E’ + E“. But how would the bound energies behave? The 
equation Eo = Eo‘ + EON would certainly not do, for, as we saw in Section 2, two 
Schwarzschild black holes can interact to  produce gravitational radiation. But this 
example also suggests a plausible equation for the addition of bound energies: 

Thus, the proposal is that asymptotically flat solutions in general relativity be 
assigned, in addition t o  a Arnowitt-Deser-Misner energy E,  a bound-energy Eo 
with the following properties: (i) Eo is less than or equal to  the smallest value as- 
sumed by the Bondi energy, and (ii) when systems are combined, the bound energies 
add by the sum of squares. It is intended that both singular (black-hole) and non- 

Eo2 = Eo” + Eo112. 
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singular solutions be included within this framework. This proposal is intended 
merely to  represent an example of the kinds of results on energy extraction that one 
might obtain from general relativity. Of course, to  state precisely and prove theorems 
along this line would be a difficult task. 

4. ULTIMATE LIMITS ON ENERGY EXTRACTION 

Is it conceivable that certain systems in general relativity have the property that 
unlimited amounts of energy can be extracted from them? (In the language of Sec- 
tion 3, this is the question of whether some systems must have a bound energy of 
minus infinity.) If, indeed, this were possible in principle, then one would face no 
difficulties, in principle, in supplying the energy needs in astrophysical applications. 
On a more practical level, the mere existence of such general relativistic systems 
would, a t  least, suggest alternative explanations for certain astrophysical observa- 
tions. 

The answer to  our question depends crucially on the ground rules. If, for ex- 
ample, matter with negative local energy density were permitted, then there would 
certainly be no limits in principle on the energy which could be extracted from a 
system. The continued extraction of energy would simply leave behind a system of 
negative total energy. However, since no matter with negative local energy density 
has ever been observed, it seems reasonable to  rule out this possibility. 

A second possibility arises when singularities are permitted. Consider the 
Schwarzschild solution with mass parameter m negative-a typical “negative energy 
singularity.” Suppose it were possible to create such a singularity, starting with a 
nonsingular space-time and using only matter with positive local energy density. 
Then, just as above, one would expect to  be able t o  extract energy from a system 
indefinitely, leaving behind a singularity whose energy becomes more and more 
negative. 

There are, however, reasons to  believe that, although negative energy singulari- 
ties exist as solutions of Einstein’s equation, such singularities cannot be created as 
described above. The Schwarzschild solution with negative total energy has the 
property that observers in the asymptotic region can see the singularity itself-it 
has what is called a naked singularity. The Schwarzschild solution with positive 
energy, on the other hand, does not have this property. But there is evidence for the 
following conjecture, called the naked-singularity conjecture : it is impossible to  ob- 
tain a naked singularity by evolution via Einstein’s equation starting with nonsingu- 
lar initial data and introducing only matter with positive local-energy density. Thus, 
should this conjecture turn out to be true, it would probably also be true that it is 
impossible to extract unlimited energy from a system, leaving behind a negative- 
energy singularity. 

There is still a third possibility. It is conceivable that, after one has extracted 
energy from a system, there remains a system without singularities in which the 
local energy density of matter is everywhere positive but whose total energy is, 
nonetheless, negative. This possibility is not so absurd as it might a t  first appear to  
be. In Newtonian gravitation, for example, the total energy (the last entry in TABLE 
1) can become negative, even for a system with positive-energy density of matter. 
Indeed, for a body of mass rn and radius r ,  the total Newtonian energy becomes 
negative for r less than the order of Gm/c2, i.e., for r less than the order of the 
Schwarzschild radius of the body. But this is precisely the regime in which New- 
tonian gravitational theory must be replaced by general relativity.8 Thus, it is cer- 
tainly conceivable that, in the presence of strong gravitational fields, nonsingular 
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systems with positive-energy density of matter have negative bound energy. One 
would like t o  know whether or not this possibility actually occurs within Einstein’s 
theory. 

There is a conjecture in general relativity that would shed considerable light on 
these possibilities, the positive-energy conjecture :9 A nonsingular, asymptotically 
flat solution of Einstein’s equation in which the local-energy density of matter is 
everywhere nonnegative has nonnegative total energy. Actually, there are two con- 
jectures, depending on whether “total energy” refers to the Bondi energy or the 
Arnowitt-Deser-Misner energy. The Bondi case is the more important, for a proof 
in this case would imply immediately that, for a system with Bondi energy E at 
some epoch, no more energy than E could be extracted without creating singulari- 
ties. On the other hand, one might expect a proof in the Arnowitl-Deser-Misner 
case t o  have essentially the same consequence. An argument in support of this 
positive-energy conjecture is given in the Appendix. Apparently, general relativity 
itself places upper limits on the energy that can be extracted from systems satisfying 
its equations. 

5. SUMMARY 

Given a physical system in general relativity, how much energy can be extracted 
from it? This question appears to be both difficult to  formulate and difficult to  
answer. It seems likely, nonetheless, that the theory will eventually yield general 
statements that bear on this question. In  fact, several recent conjectures and theorems 
in general relativity can be interpreted as giving information on the possibilities for 
energy extraction. Unfortunately, it is perhaps too early to  say whether or  not this 
information will ultimately be useful in astrophysical applications. 
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APPENDIX 

Positive-Energy Theorem 

Consider initial data for Einstein's equation. That is, consider a three-dimen- 
sional manifold S with positive-definite metric g a b  and extrinsic curvature rab, 
subject to  the constraint equations: 

Vb(aab - agab) = J a  (1) 

R = + raba,b - a2 (2) 
where J a  and p are, respectively, the momentum and the energy density of the source, 
where R is the scalar curvature and 0, the covariant derivative o n  S ,  and where we 
have set a = raa. For an asymptotically flat initial-data set: the Arnowitt-Deser- 
Misner energy E is defined in terms of the asymptotic behavior of gab. 

We shall outline briefly the steps of an argument that, if such an initial data 
set is singularity-free, and if p >/ 0 and ?r = 0,'O then E 

Introduce a function t on S such that the two-dimensional surfaces t = const. 
in S are nested topological two-spheres, with the innermost sphere, t = - 00, reduc- 
ing to  a point. Denote by h,b and pub the induced metric and extrinsic curvature, 
respectively, of these surfaces. Then we have the Gauss-Codazzi equation 

0. 

@ = p 2  - pabpab + R - 2RabEuEb (3) 
where E" is the unit normal to our family of surfaces, (R is the scalar curvature of the 
surfaces, and we have set p = paa. 

Define a scalar field 4 on S by &"Vat = 1. A dot, affixed to  a quantity, will 
denote its rate of change with respect to  t (i.e., its Lie derivative by #?). Then 

hob = 24pab (4) 

(5 )  p = -D"Du+ - 35 4 ~ '  - ?i #pabpab + ,55 +(R - ?,5 4 R  

where D ,  denotes the intrinsic derivative within our surfaces. 
For  each value o f t ,  set 

W = / (2@ - p') dA (6) 

where the integral extends over the sphere t = const. It follows from Equation 3 
that, for a small sphere about a point, W = 0. For a large, asymptotically spherical 
surface in an asymptotically flat space, W = E / r ,  where E is the Arnowitt-Deser- 
Misner energy, and r is any typical radial distance. Using Equations 4 and 5 and 
the Gauss-Bonnet equation, the rate of change of W with respect to  t is 

W = 1 [2pDaD,d + 4PPabPab - 4p@ + 4pRI dA (7) 

We now choose1] our two-dimensional surfaces so that 4 = p-'. Substituting 
into Equation 7 and integrating the first term by parts, 

w = - L/ w , 2  

(8) + 1 [ R  f (Pub - 35 phab)(pub - 35 phab) + 2+-'(Da4) (Da4)I dA 
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It follows from (2) that the integral on the right is non-negative, so (8) becomes 
lk > - j5  W. But W = 0 for t = - 03, so this equation implies W > 0 for all t .  
Hence, E > 0. 

DISCUSSION OF THE PAPER 
JOHN COCKE (University of Arizona, Tucson, Ariz.) : Could you be a bit more 

specific about the naked-singularity conjecture? We know that bodies can collapse 
asymptotically into a singularity. Doesn’t this statement depend on the coordinate 
system used? 

DR. GEROCH: Let us take a Schwarzschild collapse as an example. A system 
that has collapsed to form a Schwarzschild black hole is not a naked singularity. 
One cannot look into a Schwarzschild black hole and actually see the singularity. 
Only negative-mass Schwarzschild black holes are naked singularities. So, the con- 
jecture has a chance because, presumably, one cannot collapse a body composed of 
positive matter density to form a negative-mass Schwarzschild singularity. But 
there are other arguments. For example, the Kerr solutions are naked singularities 
when a, the angular momentum parameter, exceeds m, the mass parameter. What 
we would like to do is to start with a Kerr solution with a less than in and toss in a 
particle, like a gyroscope, or some other clever object in order to push a up above 
in. If you try to throw in such a body it will always be ejected. So, a Kerr black 
hole that is not a naked singularity will try to prevent itself from becoming one. 

UNIDENTIFIED SPEAKER: Could you explain for those of us who are not working 
in general relativity how an external observer can see a particle fall through a sur- 
face of infinite redshift that should correspond to an infinite time dilation. 

DR. GEROCH: Let us take Minkowski space, and draw a certain Killing vector, 
that is, a certain time symmetry in this space. By choosing an origin and drawing 
two null planes through it, I can generate a boost Killing vector in the xt plane. If 
you are following the symmetry of this Killing vector, then this surface is already 
a surface of infinite redshift. Yet there is nothing spectacular about this surface; it 
is just a null surface in Minkowski space. If you are located near R = 2M, the 
situation is no different from that near any null plane in the space. The Killing 
vector changes from being timelike in one region to being spacelike in other regions. 
When you say that a surface has an infinite redshift you really mean that it has an 
infinite redshift for those people who choose to move along this Killing vector. 
For those who move in other ways, there is no infinite redshift at all. 

UNIDENTIFIED SPEAKER: A particle going through the ergosphere will encounter 
matter that is already within the sphere and perhaps collide with or come into direct 
physical association with this matter. It seems peculiar that, with respect to an ex- 
ternal observer, the original particle that fell through the sphere is fundamentally 
different from those particles which were already inside. 

DR. GEROCH: . . . I t  is simply not true that one cannot go through the ergo- 
sphere. Once you go through the surface you can stay inside, or, if you choose, come 
back out again. I am not saying that you can do this with geodesics-you might 
need a rocket ship, but you can travel in and out. Usually, when Killing vectors 
change from timelike to spacelike, they create a certain null surface such that once 
you travel through the surface you cannot come back. This Killing vector, however, 
creates a timelike sufrace across which it changes from being timelike to being 
spacelike. In this case, you can go back and forth as much as you like. 

UNIDENTIFIED SPEAKER: After you return you can, presumably, relate your 
experiences. Does that not violate the basic principle that one cannot receive in- 
formation from the inside of a surface of i_nfinite redshift? 
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DR. GEROCH: Not only is that not a basic principle, it is also false. In the Kerr 
solution one can indeed go inside the ergosphere. This ergosphere is the surface of 
infinite redshift for those particles that happen to choose to travel along the time- 
like Killing vector. The reason why it is called the surface of infinite redshift is that 
it becomes impossible for a particle to continue to travel along the direction of the 
timelike Killing vector after it goes through the surface. The surface has an infinite 
redshift only for those people who choose to follow a particular trajectory. 




