
Computation — Quantum and Otherwise

Robert Geroch

April 5, 2006

Contents

1 Introduction 2

2 Characters and Strings 3

3 Problems 5

4 Computability 8

5 Turing Machines 13

6 Noncomputable Problems 21

7 Noncomputable Numbers 26

8 Formal Set Theory 28

9 Probabilistic Computing 31

10 Difficulty Functions 37

11 Difficult Problems; Best Algorithms 41

12 New Language 49

13 Improving This Language 59

1

14 Quantum Mechanics 62

15 Grover Construction 64

16 Grover Construction: Six Issues 68
16.1 Initial State . 68
16.2 Final Observation on Hin . 69
16.3 Building the Operator W . 70
16.4 Building the Operator V . 72
16.5 Errors . 79
16.6 What Is The Problem? . 80

17 Quantum-Assisted Computing 84

18 Quantum-Assisted Computability 90

19 Quantum-Assisted Difficulty Functions 97

20 Limitations on Quantum-Assisted Computing 106

21 Quantum-Assisted Efficiency 110

22 Non-Quantum Assistance 116

1 Introduction

In Sects. 2 and 3 we introduce a few preliminary notions. Sects. 4-7 comprise
a brief survey of the subject of computability. The key result is that there
exist well-posed problems that are, nevertheless, not computable. Sect. 8
may be omitted. In Sect. 9, we introduce the idea of embedding probabilities
in the computation process. Sects. 10-13 deal with computational difficulty.
One key result (Blum) is to the effect that there exist essentially arbitrarily
“hard” problems. We also address the issue of constructing a natural, general
definition of the “difficulty” of any computation.

Sect. 15 is a self-contained, four-page summary of one example of a
computation utilizing quantum mechanics. Readers wishing a quick look
at this subject might read only this section. Sect. 16 is a discussion of a

2

number of issues raised by this example. In Sects. 17-19, we introduce the
key concept — that of a quantum-assisted computation. Readers requiring
neither background nor motivation may wish to start here. With a precise
notion of a quantum-assisted program in hand, we are in a position to prove
theorems about it. In Sect. 20 we show that the efficiency-increase from
the use of quantum mechanics can never be more than exponential. In Sect.
21 we give a specific example of a problem along with a quantum-assisted
program that computes it, such that it is hard to see how to write a regular
program that can match its efficiency (although it is also hard to see how to
prove that there is none).

2 Characters and Strings

Fix a finite set, C, having at least two elements. This C will be called the
character set; and its elements the characters. We shall normally introduce
various symbols to denote the various elements of C. For example, C might
have just two elements, and these might be denoted 0, 1. Or, C might consist
of twenty-six elements, with these denoted a, b, · · · , z; or 36 elements, denoted
a, b, · · · , z, 0, 1, · · · , 9. Or, as a final example, C might consist of 256 elements,
denoted by the various ASCII characters.

The underlying choice of character set makes no significant (i.e., no in-
teresting) difference to anything that follows; although a poor choice can
turn out to be inconvenient. Eventually (but not right now) we shall allow
ourselves to be a little sloppy as to exactly what our character set is.

Fix a character set, C. By a string over C, we mean a finite, ordered list of
characters. Examples of strings, for the character sets above, are: “001010”,
“unblowupable”, “3dafrq”, and “$ = log8+} − −r&C”, respectively. The
empty list of characters, which we denote ∅, is also allowed as a string; and it
is called the empty string. [Thus, in order to avoid confusion, we shall avoid
denoting any character by “∅”.]

The set of strings, over a given character set C, will be denoted S (or SC,
if there is a chance of confusion as to what the character set is). Note that S
is an infinite set; in contrast to C, which is a finite set. A critical idea in this
subject is to pass to “the infinite” in a careful, controlled way. Here, that
passage is taking place in the construction of S from C. This is something
that we carry out directly, as opposed to letting C already be infinite on its

3

own, in any old manner that it chooses.
Part of the reason why the “choice of character set makes no significant

difference” is that it is possible to pass from one character set to another.
For example, let C = {0, 1} and C ′ the ASCII character set. Then “writing
a byte as eight bits” provides a mapping from SC′ to SC. For example,
string “ab” ∈ SC′ might be sent to the string “0000100100001010” ∈ SC.
Unfortunately, this mapping is not invertible: It is not true that every string
over C arises in this way from some string over C ′. [Indeed, a string over
C does arise in this way if and only if the number of characters of which it
consists is divisible by eight.]

Next, fix a character set, C; and fix also an ordering of the characters
in that set (i.e., a choice of a “first” character, a “second” character, etc.
through all the characters in the set). For example, C might be the lower-
case Latin letters (the set of 26 characters, {a, b, · · · , z}), and the ordering
might be alphabetical. Having made these choices, we now construct an or-
dering also of the set S of strings over C, in the following manner. First is the
empty string, ∅; then all the one-character strings, in the ordering of the char-
acters; then all two-character strings, in dictionary ordering; then all three-
character strings, etc. So, for instance, in the example above the ordering
of S is: ∅, “a”, · · · , “z”, “aa”, “ab”, · · · , “az”, “ba”, “bb”, · · · , “zz”, “aaa”, · · ·.
Now assign, to these strings so ordered, successive integers, beginning with
the integer 1. In this way, we set up a correspondence between the set S and
the set Z+ of positive integers, In short, strings are really just positive inte-
gers, in thin disguise. Indeed, we shall allow ourselves to speak of “the nth

string”, by which we shall mean the nth string in this ordering, where some
fixed ordering of the character set C is implicit (or explicit). When dealing
with mathematical issues (such as the manipulation recursive functions), it
is sometimes more convenient to stick entirely with the integers, ignoring
character sets and strings altogether. But the strings seem better adapted
to dealing with physical issues.

The reason that we required that the character set contain at least two
elements is that, for C having but a single element, the length of the nth

string grows linearly with n (rather than logarithmically, when C contains
two or more characters). This behavior would be inconvenient when we come
to discuss difficulty.

The ordering above leads to a different way to pass from strings over one
character set to those over another. First order both character sets (in any

4

way whatever); and then identify, for n = 1, 2, · · ·, the nth string over the first
character set with the nth string over the second. Consider, for example, the
character sets given by {0, 1} and {a, b, · · · , z}, in the indicated orderings.
Then the string “1101” over the first character set would be identified, in
this manner, with the string “ab” over the second character set. Note that
(in contrast with the earlier method) this really is a correspondence between
the two sets of strings, i.e., this mapping from SC to SC′ is one-to-one and
onto.

3 Problems

Fix a character set, C. A problem is a mapping S π→ S, i.e., a mapping from
strings over C to strings over C. Here is an example of a problem:

Example. Let the character set have thirteen elements, 0, 1, · · · , 9,
y, n, f , and let the mapping π be the following. If the string S ∈ S
is an integer greater than or equal to two (i.e., if it is not ∅ or
“1”, does not contain the characters “y”, “n”, or “f”, and does
not have an initial character “0”)1 then let π(S) be “y” [“yes”] if
the integer S is prime, and “n” [“no”] if that integer is not prime.
If the string S is not an integer greater than or equal to two, then
set π(S) = “f” [“forget it”]. This is indeed a mapping S π→ S,
and so is a problem.

Note that, in the example above, we are actually only interested in certain
strings (namely, those that represent integers greater than or equal to two).
But we cannot confine ourselves simply to these strings, for, by definition of
a “problem”, the mapping must apply to all strings. So we send the ones
we aren’t interested in to the trash [“f”]. It is convenient to set things up
in this way. Suppose, for example, that we had defined a problem to be a
mapping from a mere subset of S to S. Then, e.g., it would be false that
the composition of two problems is a problem. Even worse, we would have
to confront eventually the issue of how we shall determine whether or not a

1In order to avoid having to say all this repeatedly, let us agree, here and hereafter,
on the following definition: Over any character set that includes the digits, 0, 1, · · · , 9, a
string will be called an integer if it contains only those ten characters, is not ∅, and (unless
it is actually the string “0”) does not have initial character “0”.

5

given string is in the “certain subset”. The present definition — requiring
that the mapping π have domain all of S — puts the burden of sorting all
this out back on the mapping π itself (where, as we shall see, it belongs).

In the example above, the problem is really the question “Is integer S
prime, or is it not?” Note that we could ask essentially this same question
by any number of other maps (i.e., by any number of other problems). For
instance, we could eliminate “y”, “n”, and “f” from the character set, and
then encode the answer as a digit (e.g., “0” for “prime”; “1” for “integer ≥ 2
but not prime”; and “2” for “not an integer ≥ 2”). We could also modify the
input. for example, we could let the character set consist of the twenty-six
lower-case Latin letters, impose alphabetical ordering, and let π ask whether,
given string S (say, the nth string in the induced ordering on S) the integer n
is prime. Thus, we see that a given question may give rise to many problems.

We emphasize that a problem is a map, and not the process by which we
arrived at that map. Consider, for example, the following problem:

Example Let the character set again be 0, 1, · · · , 9, y, n, f , and
let π(S) be “f” if S does not represent an integer greater than or
equal to two, “y” if it does represent such an integer, and that
integer is the largest prime, and “n” if it does represent such an
integer, and that integer is not the largest prime.

This is the same problem (i.e., the same map) as that which sends string
S to “n” if S represents an integer greater than or equal to two, and “f”
otherwise. [This follows, since there is no largest prime.] But this is a very
different characterization of the problem than our earlier one. Thus, we see
that several apparently different questions may give rise to precisely the same
problem.

Think of a problem π as a “broad question”; of a particular value for the
argument S as a “specific instance” of that broad question; and of π(S) as
the answer to that question in that instance. Thus, a problem represents the
answers to an infinite number of questions (since there is an infinite number
of possible input strings). The prime problem above illustrates this point.
But it is also possible to design a problem that answers a single question.
For example, consider

Goldbach’s Conjecture: Every integer n ≥ 4 is equal to a sum
of two primes.

6

Let the character set be 0, 1, · · · , 9, y, n, f , as above, and let, for each
string S ∈ S, π(S) = “y” if Goldbach’s conjecture is true, and π(S) = “n”
if Goldbach’s conjecture is false. [Note that π doesn’t care what S is. No
law says it must.] Since the conjecture above is, presumably, either true or
false, this is indeed a problem. However, this problem is either the problem
π′(S) = “y” for all S; or the problem π′′(S) = “n” for all S. But these are
both rather uninteresting problems. Thus, even though the original question
(“Is Goldbach’s conjecture true?”) is interesting, translating it in this way
into a problem yields what is guaranteed to be a pretty boring problem. Of
course, to know whether π is π′ or π′′ would be interesting.

Here are some other candidates for problems.

1. Let the character set be {0, 1, · · · , 9, f}, and let π(S) be “f”
if S is not a positive integer, and the Sth digit in the decimal
expansion of the number π if S is a positive integer. This is a
problem.

2. Let the character set be the same, but again let π(S) “f” if S
is not a positive integer. But if S is a positive integer, let π(S)
be a string of the form {digits of a positive integer i}f{digits of
a positive integer i′}, where i/i′ is within 10−S of the number π.
This is not a problem (since the actual mapping has not been
specified). Rather, this is a description of a class of problems.
There does indeed exist a problem in this class (e.g.: expand the
number π decimally, as in the first example; stop as soon as you
reach a rational within 10−S of the number π; and finally reduce
that fraction to lowest terms).

3. Let the character set be {0, 1, · · · , 9, y, n, f}. Let π(S) be “f”
if S is not an integer ≥ 4. If S is an integer ≥ 4, let π(S) be “y”
if S is a counterexample to the Goldbach conjecture, and “n” if
it is not. This is a problem. The question of whether Goldbach’s
conjecture is true is the question of whether or not the problem π
is equal to a suitable simple problem (which always answers “f”
or “n”).

7

4. Let the character sets consist of the upper-case and lower-case
Latin letters, together with an appropriate set of punctuation
marks (period, comma, semicolon, question mark, exclamation
mark, etc). Let π(S) be “yes!” if S is the Gettysburg address,
and “no” otherwise. This is a problem.

5. Let the character set be any ordered set that includes at least
the ten digits (not necessarily in their natural order). Let π send
string S over this character set to that integer n which is such
that S is the nth string. This is a problem.

It is interesting to note that there has taken place a progression to ever
greater levels of the infinite. The character set is finite; the set of strings
over that character set is countably infinite; and, finally, the set of problems
on those strings is uncountably infinite. We pause to give a proof of this last
assertion because it illustrates a method, called a diagonal argument, that
we shall use several times later. Fix C, and suppose, for contradiction, that
we had a countable collection of problems, π1, π2, π3, · · ·, that exhausted all
problems on this character set. We now introduce a new problem, π, as fol-
lows. Say, one of the characters is “a”. On the nth string, Sn, set π(Sn) = ∅
if πn(Sn) = “a”; and π(Sn) = “a” otherwise. Then this problem π, so con-
structed, is not equal to πn for any n, since by construction π(Sn) 6= πn(Sn).
Thus, the list π1, π2, · · · could not have been exhaustive — a contradiction.

Finally, we remark that this notion of a problem is rather robust. For
virtually the entirety of the remaining discussion, we shall have before us
some problem, as here defined, or other.

4 Computability

Fix a character set, C. We next wish to introduce the notion of computability
of a problem over this character set.

Roughly speaking, a problem S π→ S is computable provided there exists
a computer that, when run with any given input string S, will ultimately
halt, displaying at that point as output precisely the string π(S). But what
is a “computer”? We cannot take this to mean a physical computer, because
no such computer is ever capable of solving any problem. My desktop, for

8

example, has a hard drive with capacity of only 10 GB. Thus, if I let the
character set be, say, ASCII, and let the input string S consist, say, of 1011

characters, then surely this computer will be unable run with this input.
More promising would be to consider, rather than a physical computer,

a computer language. Consider Fortran2. A given Fortran program has no
space limitations whatever associated with it. You begin by purchasing some
physical computer, and running the given program on it. Then if, during
the course of the calculation, it turns out that there is insufficient space to
complete that calculation, you will be politely invited to purchase a larger
computer and rerun the program on it. So, let us call a problem S π→ S
“Fortran-computable” if there exists a Fortran program with a single, initial,
“Input” instruction (allowing the user to input some string, S), a single,
final, “Print” instruction (allowing the program to display to the user some
final string), having the following property: For any choice of the input
S, the program ultimately halts (as opposed, e.g., to getting caught in an
infinite loop), having printed precisely the string π(S)3. For instance, every
example of a problem we have given so far is Fortran-computable in this
sense. Indeed, one might even imagine at this point that every problem is
Fortran-computable.

The difficulty we now face is that there are many computer languages.
That is, we also have, defined in a similar way, “C-computable”, “Applesoft-
computable”, etc. But our goal here is to capture by a general definition an
abstract notion of “computable” — i.e., to isolate the general structure of
the computing process itself. The danger we face is that the various types of
computability, as defined here, will say more about the individual languages
that gave rise to them than they do about this general structure. But anyone
who is familiar two or more languages will realize that this difficulty is more
one of principle than one of practice. Consider two languages, e.g., Fortran
and C. You can write a Fortran-emulator in C (and, indeed, this is probably
what “Fortran” really is!). That is, you can write a C program that will

2We shall not be concerned here with details of any specific computer languages. In
particular, we take “Fortran” as a generic term, which describes languages having such
commands as “Set x = ...”, “If (· · ·), go to ...”, “Do, for I = 1, n{· · ·} Next”, “Print ...”,
“Cat x, y”, etc.

3To make this idea into a proper definition, we would have to specify the details of the
language “Fortran”. We shall not do this, since this entire discussion is intended merely
as motivation for what follows.

9

accept as input lines of Fortran code: “Set x = 7”, etc. The C program
will then parse each such Fortran command, figure out what the Fortran
language would have done to implement that command, and then itself do
precisely that. From the mere existence of such a Fortran-emulator in C, it
follows that every Fortran-computable problem is also C-computable. [To
see this, consider any Fortran-computable problem π. Taking the Fortran
program that computes this π and applying to it our emulator, we obtain a
C program that computes π.] In a similar way, we can write a C-emulator
in Fortran. We conclude, then, that the Fortran-computable problems are
precisely the same as the C-computable problems. A similar argument shows
that all the standard languages of the computer world generate precisely the
same computable problems.

Exercise. Consider three languages, A, B, and C. Suppose you
were given an A-emulator in B, and a B-emulator in C. Could
you use these two to construct an A-emulator in C? As a second
question, consider two languages, A and B. Suppose that the A-
computable problems are precisely the same as the B-computable
problems. Can you exploit this fact to build an A-emulator in B?

How shall we turn this intuitive discussion into mathematics? Lest you
imagine that this will be an easy exercise, we now introduce two new “lan-
guages”.

The first, which we might call “MiniFortran”, has just two commands:
“Input”, which allows the user to input any string S; and “Print ∅”, which
causes the computer to print the empty string. There is just one MiniFortran-
computable problem, namely that with π(S) = ∅ for every input string S.
Clearly, then, there are many fewer MiniFortran-computable problems than
Fortran-computable problems. The problem with MiniFortran, of course, is
that it is absurdly barren. A language must have a certain degree of richness
[essentially, i) the ability to store plenty of intermediate data, ii) the ability to
manipulate the data, and iii) the ability to branch, in response to those data]
if it is to reach the mainstream (Fortran, C, etc) of computable problems.

Our second language, “HyperFortran”, contains all the commands of For-
tran, together with one additional command, with the following structure:
“Do, for I = 1,∞{· · ·} Next”. Here, “{· · ·}” consists of various Fortran
commands, including those that may set certain variables. The rule is that

10

the computer will always exit from such a command (i.e., it will never hang
here), and on doing so the variables will be set as follows. Consider one vari-
able, “x”. If, in the course of the execution of this Do-loop, the variable “x”
was set to some value, and did not ever change that assigned value beyond
some particular iteration (i.e., beyond some particular I-value), then on exit
from this command “x” is to be assigned that value. If, on the other hand,
“x” changed its value an infinite number of times during the course of the
Do-loop, then on exit “x” is assigned value ∅. This is, arguably, a legitimate
computer command, at least in the sense that it is completely determined
what is to be done in response to such a line of code. I grant that HyperFor-
tran seems a little strange at first sight, but, absent a careful definition of the
term “language”, a reasonable case could, perhaps, be made that it is one.
Note, incidentally, that in HyperFortran we can solve Goldbach’s conjecture.
We would use a program of the following form:

Do, for I = 1,∞
If (x == ∅ and I is a Goldbach-counterexample) set x = I
Next
Print x

If Goldbach’s conjecture is true, then there will be returned the empty string.
If it is false, then there will be returned a counterexample to that conjecture.

We all know in our hearts that HyperFortran is unacceptable, but it is
not so easy to spell out exactly why. True, you cannot run it on a physical
computer – but you can’t run Fortran, either; and in any case it is usually
a bad idea to try to base mathematics on physical implementability. What
HyperFortran does is illustrate that some care is going to be necessary in
order to formulate a suitable definition of “computable”.

So, to summarize, all “reasonable” computer languages (in some sense we
have yet to pin down) seem to produce the same computable problems. Our
challenge is to turn this intuitive idea — which is called Church’s Thesis —
into a piece of mathematics. There are at least three different strategies by
which one might imagine doing this.

The first strategy begins by producing a formal definition of ”reasonable
language”. This definition would be along the following lines. A ”reason-
able language” must have some commands. [Presumably, there would be
just a finite number of types of commands, but, since arbitrary strings can

11

normally appear in certain commands, there would be within these types an
infinite number of actual commands. Just like Fortran.] With each com-
mand there would be associated something to ”do” (such as manipulating a
string, going somewhere, etc). We would require, as part of this definition,
that these commands be rich enough to allow one to do ”the necessary things
for computing” (i.e., store arbitrary amounts of data, manipulate data, in-
put/output, branch), but not so rich that they do ”ridiculous things” (such
as ”Do, for I = 1,∞”). Note that we are not specifying any specific language
here, but rather are describing by the definition the characteristics that we
will demand of a language in order that we deem it ”reasonable”. Then
given such a language, L, we would call a problem π L-computable if there
exists a program in L that, for every input string S, eventually halts, return-
ing exactly π(S). Finally, (the crowning result of this strategy) we would
prove the following Theorem: For L and L′ any two reasonable languages
as defined above, the L-computable problems are precisely the same as the
L′-computable problems. The key to this strategy, of course, is discovering
the right definition: It has to look simple and not contrived, and at the same
time be just right so that the Theorem really is a theorem. I feel that it
might be enlightening to carry out this strategy, but it looks like a lot of
work.

The second strategy begins by noting that, since strings can be replaced
by integers, each problem thereby becomes an integer-valued function on
integers. We would now introduce some axioms that are intended to charac-
terize the ”computable functions”. There might be a few simple ones, such
as ”Every constant function is computable.”; and ”The composition of two
computable functions is computable.” But then there would be some more
complicated ones, requiring that certain constructions involving computable
functions result in computable functions. Then, a function would be deemed
computable if it arises from these axioms. This strategy has in fact been
carried out: It is the subject called recursive function theory. [Recursive
functions are precisely the computable (to be defined shortly) problems.]
This strikes me as an elegant and promising approach. Its downside is that
recursive function theory doesn’t seem especially well-matched to physics —
and, in particular, not to quantum mechanics. Furthermore, the subject of
computational difficulty doesn’t, as far as I am aware, fit in naturally with
this strategy.

The third strategy consists of inventing the “simplest possible language”

12

that is still (barely) rich enough that that it generates the same computable
problems as the real-world languages. We then take computability to mean
computability in this language. This is the strategy we shall pursue, in the
following section.

5 Turing Machines

Fix a character set, C. A Turing machine, operating with this character set,
has two parts.

First, there is the machine itself. It is capable of being in any of a finite
list of machine states, q1, q2, · · · , qn, qH . Of these (n+ 1) states, the last one,
qH , has a special role, as we shall see shortly. These machine states serve
as the RAM: The machine will store data temporarily by the choice of the
particular state in which it currently resides.

Second, there is a semi-infinite tape, divided into a succession of square
boxes. Thus, at the beginning of the tape there appears the first box, fol-
lowed, moving along the tape, by the second, then the third, etc. There
is no “final end” of the tape, i.e., there is available as much tape and as
many boxes, so arranged, as might be needed. Each of these boxes may
have printed within it a single character from the set C, or the box may be
blank (having no character). We denote this blank box-state by ∅ (not to
be confused with the empty string). This tape serves as the hard drive: The
machine will store data here on a more permanent basis for later use in the
computation.

The machine also has a read/write head, which at any one moment resides
over one of the squares of the tape. Thus, the complete state of this system
(machine, tape, and head), at any moment, is characterized by specifying
i) the internal state of the machine, ii) the characters printed on the tape,
and iii) over which square the head currently resides. For example, a typical
system-state might be: “machine state q7; tape configuration ‘3 $ v Z x ∅ ∅
∅ · · ·’; head over the fourth square”. In this configuration, the head would
be read the character “Z”; and would print to the fourth square. It will turn
out that that only tape-configurations of interest will be those in which all
squares of the tape beyond a certain one are blank.

This machine operates by going from one system-state to the next ac-
cording to certain rules that are set down in a table (the “program”). A

13

typical row in this table is given below:

Curr Curr → New New Move
State Char State Char
q7 Z q3 p L

This row demands that, if the computer finds itself in machine state q7,
with the head reading character “Z” on the tape, then the computer is to i)
change its internal state to q3, ii) erase the character “Z” from that square on
the tape and print instead character “p”, and iii) move the head one square
to the left (i.e., toward the beginning of the tape). Thus, this particular
row in the table would send the system from the system-state given in the
previous paragraph to the following system-state: “machine state q3; tape
configuration ‘3 $ v p x ∅ ∅ ∅ · · ·’; head over the third square”. The full table
for our Turing machine will contain of many such rows. In each row: The
first entry must be one of the machine states q1, · · · , qn (but not the state
qH); the second entry must be a character, or the blank, ∅; the third entry
must be a machine state (with qH allowed here); the fourth entry must be
a character or the blank; and the fifth entry must be either “R” (“right”)
or “L” (“left”). Finally, the full table must contain one and only one such
row for every possible choice of the first two entries. Thus, if there were ten
machine states (including qH), and the character set had six elements, then
the full table would have exactly 63 (= 9×7) rows. The Turing machine now
operates in the obvious way. At each stage, it looks up its current machine-
state and character-under-the-head in this table. It then reads off from the
table what should be its next machine state, what the head should print on
that square of the tape, and what movement the head should make (just one
square, either to the right or to the left). If ever the machine finds itself in
state qH , then the machine halts (stops computing). That is why we do not
allow qH-state as the first entry of any row.

The crucial features of this design are i) that the number of internal
machines states is finite, while the number of tape-squares is infinite, and ii)
what the machine will do next depends only on on the current machine-state
and the character under the head, and not on what is printed elsewhere on
the tape or whether the head resides over the fourth square or the nineteenth
square.

To run a Turing machine, select the input string S and print it, one

14

character at a time, at the beginning of the tape, leaving all the other tape-
squares blank. Begin with the head over the first square and the machine
in initial state q1. Now let the machine run, step by step, for each step
looking up in the table what to do next. If the machine, during the course of
its running, never achieves the halt-state, qH , then it will continue running
forever. Well, that’s life. If, however, it does eventually achieve qH and
halt, then we read the output string from the tape, starting from the first
square and continuing until we reach the first blank square. Note that, during
the running of every Turing machine, the tape always contains but a finite
number of non-blank characters (although, of course, the number of such
characters may, as the S runs over all possible input strings, grow without
bound). The crucial feature of this operation is that the table is to be fixed,
once and for all, before we are given the input string S.

So, a Turing machine is a sort of mini-computer — a computer reduced to
its essentials. First write the program. Then, input an initial string S. The
computer computes away. Either it eventually halts, presenting an output
string to you; or it runs forever, never presenting anything. A problem π over
a given character set is said to be Turing-computable if there exists a Turing
machine (i.e., a choice of the number of internal states and of the table) that
computes it (in particular, never halting, no matter what the input string S),
as just described. To check whether you understand how a Turing machine
works, try to convince yourself that you could write a Fortran-emulator of
Turing. Assuming you have convinced yourself, then we may conclude (from
the mere existence of such an emulator) that the Turing-computable problems
is a subset of the Fortran-computable problems.

We give just one example of a Turing-computable problem. A string
S is called a palindrome if it reads the same backwards as forwards, e.g.,
“K9s4q4s9K”. Let the character set contain “y” and “n” (to make answers
easier to express); and let the problem S π→ S be the following: π(S) is “y”
if S is a palindrome, and “n” if it is not. This problem is Turing-computable.
We will not write out the full table (which would have hundreds of rows!)
that demonstrates this, but rather merely indicate how the machine would
work.

The machine, in initial state q1, reads the first entry in the string: Say it
is a “K”. The machine then goes into a state we call pK , (whose description
is “I’ve just read character ‘K’, and I’m now going to check to see if this is
also the last character”), prints ∅, and moves one square to the right. If the

15

head now reads anything other than ∅, the head moves another square to the
right without changing anything. [That is, the table entry for “current state
pK and current character {nonblank}” requires remaining in pK , reprinting
whatever is already in that square on the tape, and then moving one square
to the right.] The head thus continues moving to the right, one step at a
time, until it encounters a blank square. On encountering a blank square, the
machine goes into a new state we call rK (whose description is “I’m now ready
to compare the last character of the string with K”), reprints ∅, and moves
one square to the left. The table entry for “current state rK , and current
character anything but K” puts the machine into a new state qn (whose
description is “This string is not a palindrome. Tough luck. I’m going to go
back to the beginning now, to report that fact.” We’ll return later to how this
is done.) The table entry for “current state rK , and current character K”
puts the machine into a state q2 (whose description is “So far so good. I’ll go
back to the beginning now and get the next character.”), prints ∅, and moves
one square to the left. As long as the head continues to encounter nonblank
squares, it continues to move leftward back over the string. [That is, the table
entry for “current state q2, current character {nonblank}” retains the state
q2, reprints whatever is already under the head, and moves one square to the
left.] However, as soon as the head meets a blank square, the machine goes
back to state q1, prints ∅, and moves one square to the right. The process
now starts over (but now with a shorter string, for we have just removed from
the original string S its first and last characters). That is, the machine reads
the current square (yielding, say, character “9”) goes into state p9, moves to
the right until it encounters a blank square, goes into state r9, carries out
a comparison of “9” with the current character, goes into either state qn or
qs, etc. Continue in this way. If, eventually, the string is exhausted, then
the machine goes into state qy (whose description is “It is a palindrome! I
can’t wait to to back to the beginning and deliver the good news”). [That
is, the table entry for “current state q1, current character blank” places the
machine in state qy, prints ∅, and moves one square to the left.]

The process above eventually places the machine in either the state qn
or the state qy. How does the reporting of the news (“y” or “n”) work? We
want the machine states qn and qy to move the head to the left, for that is
where the reporting must take place. But how will our Turing machine know
when it has reached the leftmost square? [There will just be blanks back
there, for we have now erased the initial portions of our original string S.]

16

One way to accomplish this is to move, initially, the entire string S up the
tape a little bit, to make room for a marker at square one. Here is how to
move the entire string S one square to the right. Read the first character
(say, “K”, again). Go to state sK (whose description is “I’m about to move a
‘K’ one square to the right”), and move the head one square to the right. If,
say, the next square read by the head contains the character “9” then print
the “K” in this square, go to state s9, and move another square to the right.
[That is, these are the instructions for “current machine state sK , current
character 9”.] Continue until you reach a blank square (i.e., to the end of the
string S). Then print the last character (as determined by what s-state you
happen to be in at the time), and go into a state that causes movement to
the left until you encounter a ∅. You have now moved the entire initial string
S one square to the right. In a similar way, we may move the initial string
to the right a second square, and print anything (say, “v”) in the first square
of the tape. All of this would be done before the program of the previous
paragraph. Do this, and then run that program (on the original string S,
as now displaced). We next describe is how the reporting works. The state
qy will require motion of the head to the left continue as long as that head
encounters only blank squares. But as soon as it encounters character “v”
on the tape (i.e., as soon as it reaches the first square of the tape), it will
print “y” and go to the halt state, qH . In this way there is returned that
the original string S was a palindrome. The state qn has to work a little
differently. It will cause the head to continue moving to the left as long as
there is encountered nonblank characters. But, according to qn, as soon as
the head encounters a blank, the machine goes into still another another
state, qnn (whose description is “OK. Now all I need is to is find that “v”
off to my left, to whom I must my report”). So, the table entry for “current
state qnn, current character v” is “Go to state qH , print character ‘n’, and
move one square to the right.” In this way there is reported that the original
string S was not a palindrome.

Well, that was exhausting. Suppose our initial character set contained m
characters. Then we must introduce 3m machine states, for the p’s, r’s, and
s; as well as additional nine machine states, for the various q’s, including qH .
Thus, there will be a total of (3m + 8)(m + 1) rows in the table. Even for
just ten characters, for instance, this is a total of 418 rows! You might think
it would have been easier to have the machine simply remember the string
S as it passes over it the first time, and then just make a single check for

17

palindrome-ness when it reaches the far end of the string. But that won’t
work, because the machine is allowed only a finite number of internal states,
and this number must be fixed fixed already in the original table — and there
is no adjusting that number depending on the string S.

Exercise. Let the character set be any one that includes the
ten digits together with “n”. Convince yourself that you could
build a Turing machine that returns “n” if input string S is not
an integer; and S + 1 if it is an integer. Convince yourself that
you could build a Turing machine that, whenever the string S
is two digits separated by a single “n”, returns their sum; and
otherwise returns “n”. Convince yourself that you could build
a Turing machine that no only solves the problem of the last
paragraph, but cleans up the tape (i.e., removes everything but
the answer-string) before reporting.

The next step in learning this subject is to play with Turing machines
so as to get a feeling for what they can do. Convince yourself that you
could build machines (but don’t actually do it!) to solve successively harder
problems. Start with easy problems, such as those of the exercise above.
Then try harder ones: multiplication of integers, division of integers with
remainder, deciding whether or not an integer is prime, deciding whether or
not an integer is a counterexample to the Goldbach conjecture, etc. Through
this process, you must eventually convince yourself of the following key fact:
There exists a Fortran-emulator in Turing. [See, e.g., [11] for some
details.] As a consequence of this fact, the Turing-computable problems are
the same as the Fortran-computable problems; and, by similar arguments,
with the C-computable problems, with the Applesoft-computable problems,
etc. The idea, then, is that the Turing-language is the simplest one that still
has sufficient richness that it generates the “right” computable problems.

Here is our main definition: A problem π, over a given character set C, is
said to be computable if it is Turing-computable — that is, if there exists a
Turing computer T that, run on any string S ∈ S, always eventually halts,
returning π(S). What you have done in the paragraph above should convince
you that this is a reasonable definition. What most people do in this subject,
I believe, is “talk in terms of Turing machines, but think in terms of their
favorite language”. We emphasize that, while the psychological situation

18

here is complex, the mathematical one is not: We define a Turing machine;
and, using it, we define a computable problem.

Every problem we have discussed so far is computable (including the
one that sends every string to “y” if Goldbach’s conjecture is true; and
every string to “n” if that conjecture is false). The composition of two
computable problems is computable. [This fact is useful in showing that
suitable changes in the input/output grammar do not affect computability.]
For π and π′ computable problems, the problem π′′ with π′′(S) = π(S) π′(S)
(concatenation of strings on the right) is computable.

Many constructions involving Turing machines rest on the following fact:
Every Turing machine can be represented as a string. Here is one way to do
this. Consider a Turing machine T over character set C. Let, for example,
the first few rows of the table for T be:

Curr Curr → New New Move
State Char State Char
q7 Z qH p L
q11 ∅ q7 $ R
q8 2 q8 Z R

The first step in rewriting this T as a string is to introduce the new
character set, C ′, that results from adding one additional character, say “∗”,
to C. [We are assuming here that “∗” does not denote any element of the
original character set C itself. This element “∗” will serve as a marker. More
on this later.] The next step is to choose a string over C to represent each
machine state for the Turing machine T . For example, we might represent
states q7, qH , q11, and q8 by strings “s6”, “$B4”, “uU”, and “8”, respectively.
Then the rows of the table above would be represented by a string as follows:

∗s6 ∗ Z ∗ $B4 ∗ p ∗ ∗uU ∗ ∗s6 ∗ $ ∗ ∗ ∗ 8 ∗ 2 ∗ 8 ∗ Z ∗ ∗ ∗ · · · (1)

We have simply written the entries in the table (replacing each machine state
by its string), row by row, one after another, using the “∗” to separate the
entries. The reading or writing of a blank square is indicated by placing
nothing between the two separators: “∗∗”. Movement of the head to the left
is indicated by placing nothing between the separators (“∗∗”); to the right
by a “∗” between them (“∗ ∗ ∗”).

Thus, each Turing machine over C gives rise to some string over C ′ =
C ∪ {∗}. The machine for the palindrome problem with ten characters, for

19

example, results in a string of about 4,800 characters. Note that a given Tur-
ing machine can be represented by a string in many ways — e.g., by choosing
different strings to represent the various machine states, or by changing the
order in which the rows of the table are presented.

The time has come to simplify our language a little bit. In Sect. 3, we in-
troduced a problem π, on character set {0, 1, · · · , 9, f, y, n}; with π(S) equal
to “f”, “y”, or “n” according as S is not an integer greater than equal to
two, is a prime integer, or is a nonprime integer. We shall now allow our-
selves to describe this as “the problem of deciding whether or not an integer
is prime”. Thus, in this description, it is understood that i) the character set
has sufficient characters to describe the input strings of interest (i.e., here,
the digits), ii) any strings constructed from those or other characters, that
are not the strings of interest (e.g., here, “007”), will be suitably branded
by the problem (e.g., sent to “f”), and iii) the outcomes of interest (here,
“prime” and “not prime”) will be suitably encoded as strings over our char-
acter set. We can safely ignore how such details are arranged, and thereby
avoid an unnecessary distraction. Next, recall, from the previous paragraph,
that a Turing machine over character set C can be represented as a string
over the character set C ′ = C ∪ {∗}, the extra character “∗” having been in-
troduced as a marker. Now choose an ordering for C ′, thus obtaining, as we
noted earlier, an ordering for the strings over C ′, and thereby an assignment
of an integer to each such string. Combining these two constructions, then,
we assign, to each Turing machine over C, an integer (although, of course,
not every integer arises from some Turing machine). Here is a somewhat
more useful assignment. Consider the first string over C ′ (in this ordering)
that represents a Turing machine, and call that machine number one; then
consider the second string that represents a Turing machine, and call that
machine number two; then the third; etc. In this way, we assign to each Tur-
ing machine as an integer, such that now each integer also represents some
Turing machine. Thus, we may speak of “the nth Turing machine”, implic-
itly invoking this numbering. Next, we may combine this construction with
our correspondence between strings over (the now ordered) C and integers.
There results an assignment, to each Turing machine over C, of a string over
this same character set; such that each string now represents some Turing
machine. We denote by TS the Turing machine associated with string S.
Shortly, we will want to turn a pair, such as (T, S), where T is a Turing
machine over C and S a string over C, into a single string over C. We may

20

do this, e.g., in the following manner. First take the string over C ′ = C ∪ {∗}
that represents T (as above), then append “∗ ∗ ∗ ∗ ∗” (a marker, to separate
the representation of T from S), and finally appending the string S. In this
way, we represent (T, S) as a string over C ′. But now we may convert this to
an integer — or to a string over C — using the techniques above. If you find
yourself uncomfortable with all these conventions, you might try to restore
the missing material for a short while, until you get used to them.

Exercise. Convince yourself that each of the following problems
is computable: i) that of deciding whether or not a string over
C ′ represents some Turing machine; ii) that of deciding whether
or not two strings represent the same Turing machine (where by
“same” we mean “differing only in rearrangement of the machine
states (preserving q1 and qH), and in the order in which the rows
are presented in the table”); iii) that which sends integer S to the
string for the Sth Turing machine; iv) that which sends integer S
to the string for the Sth Turing machine, eliminating repetitions
(via “same”); iv) any problem π such that π(S) = ∅ for all but
at most a finite number of strings v) the problem that assigns, to
each string S, the positive integer that is the number of steps Tur-
ing machine T takes, on string S, before it halts; where T is some
fixed Turing machine that does halt for every input string. Much
more difficult, e.g., is the problem of deciding whether two Turing
machines compute the same problem (or, indeed, whether a given
Turing machine T computes any problem at all, i.e., whether that
machine it always halts, no matter what the input string).

6 Noncomputable Problems

It is not hard to convince yourself that every problem is computable. A
problem, after all, is merely a mapping S π→ S. So, to specify a problem,
you must specify what the mapping is; i.e., specify how to determine, for any
string S ∈ S, some string, π(S); i.e., specify how to compute, given any S,
some π(S). But “compute”, we’ve come to realize, means “Turing-compute”.

But, while this intuitive argument may seem plausible, it is simply wrong:
There do indeed exist non-computable problems. The easiest way to prove

21

this is by a cardinality argument. The set of all Turing machines that com-
pute problems is countable (since it is a subset of the set of all Turing ma-
chines; which in turn can be represented as a subset of the (countable) set
of strings over some character set). But the set of all problems, as we saw in
Sect. 3, is uncountably infinite. Therefore, the mapping “send machine to
the problem it computes” from the former to the latter cannot be onto.

While the above proof is simple, it doesn’t give much insight into which
problems are noncomputable and which are not. Fortunately, it turns out
that there is an example that is both simple and illuminating.

The halting problem is that mapping S π→ S that sends Turing
machine T and string S to “halt” if the machine T , running on
input string S, eventually halts, and to “not halt” if that machine
on that string continues running indefinitely without halting.

Note that the halting problem is indeed a problem, for, given machine T
and string S, then T on S either halts, or it does not. You might imagine
that we could build a master Turing machine, H, that would compute the
halting problem, in the following manner: Given (T, S), where T is some
Turing machine and S some string, H would merely mimic the action of T
on S, doing what T would do, step by step, and ultimately reporting the
result: “halt” or “not halt”. But, unfortunately, this doesn’t work. There is
no difficulty if T , applied to S, ultimately halts. Then H will discover this
eventually, and duly report “halt”. But what if T , applied to S, never halts?
There will in this case never be a moment when H discovers this fact; and
so no moment when H will report “not halt”.

Now comes the central result of this subject:

Theorem. The halting problem is not computable.

Proof: For S any string, denote by TS the Turing machine represented by that
string, as described above. Suppose, for contradiction, that there existed a
Turing machine, H, that computes the halting problem, reporting H(T, S) =
“halt” or H(T, S) = “not halt”, according as machine T , applied to string S,
halts or not. We now construct a new Turing machine, T̃ , as follows. Given
string S, T̃ first runs machine H on (TS, S), and then proceeds as follows; If
H(TS, S) = “halt”, then T̃ continues running, without ever halting; while if

22

H(TS, S) = ”not halt”, then T̃ immediately halts. [In other words, we build
a Turing machine T̃ that, given string S, asks H about (TS, S), and then
does the opposite of what H reports.] Now, T̃ is a Turing machine, and so
it is represented by some string: T̃ = TS̃, for some S̃. We now ask: What
happens when machine T̃ is run on string S̃? Suppose, say, that it eventually
halts. But this means, from the way we defined machine T̃ , that H(TS̃, S̃) =
“not halt”. But this means, from the defining property of H that machine
TS̃ (= T̃), when run on string S̃, does not halt. This is a contradiction.
Similarly, the supposition that machine T̃ , run on string S̃, does not halt
leads to a contradiction. We thus conclude, since the assumption that there
exists a Turing machine H that computes the halting problem leads to a
contradiction, that the halting problem is not computable. \

This proof — essentially, a diagonal argument — is at the same time very
simple and very confusing. I urge you to return to it in the coming weeks,
as often as necessary, until you have mastered it. The discussion below is
intended to give you a feeling for what the theorem means.

Note that the theorem does not assert that there is a specific machine T
and string S such that we will be unable to decide whether that T , run on
that S, halts. Indeed, we expect that, given (T, S), we could, given enough
time and ingenuity, determine whether halting occurs. What the theorem
does assert is that there is no single algorithm that will correctly decide
halting in every case, i.e., for every (T, S).

Here is a more poignant restatement of the paragraph above. Imagine
having the following job: Occasionally, there is brought to you a Turing
machine, T , and string, S, and you are to determine and report to your boss
whether or not that machine, applied to that string, ever halts. In some
cases — e.g., a machine for which qH never appears in the third column of
the table; or for which all states in the third column are qH — your decision
will take but a few minutes. In other cases — e.g., that in which there is a
collection of machine states i) from which the machine cannot exit, ii) such
that qH does not appear in the third column for any of these states, and iii)
into which the machine, by virtue of the given S, will enter — it may take
take hours. More complicated cases it might take days . . . or even years.
As you continue working in this job, you will build a repertoire of arguments
for settling this question in specific cases. And you will note that you are
continually adding new, ever more clever, arguments to your collection. At
some point, you may ask yourself: “Will this job ever become routine? Will

23

I ever reach the point at which I have developed all the arguments that are
needed to solve these puzzles — the point at which no further originality
will be required for this job?” These questions are answered by the theorem
above: The answers are all “No”.

Suppose for a moment that we had felt inclined to include use of the
additional command “Do, for I = 1,∞ {· · ·} Next” (i.e., the infinite Do-
loop) in our notion of “computable”. As a result, as we have noted, there
would be more computable problems. However, we could still define the
halting problem (now referring to Turing machines in which this additional
command is allowed). But the theorem above would still hold in this case
(for its proof would go through in the same way). In other words, we would
conclude that, even in this stronger language, we cannot compute the halting
problem for that language.

Next, suppose for a moment that we had a master Turing machine H
that did compute the halting problem. Then, we claim, we could resolve the
Goldbach conjecture. We do this as follows. Construct a Turing machine T
that, applied to any string S, ignores S completely, and starts searching the
even integers (4, 6, · · ·) looking for a Goldbach-counterexample. If it finds
a counterexample, it halts, announcing this result. As long as T hasn’t yet
found a counterexample, it just keeps looking. Now, all we have to do, having
built this machine T , is run the master machine H on machine T and any
string S. If the result is H(T, S) = “halt”, then the Goldbach conjecture is
false; if “not halt”, true. Note that we settle this conjecture without doing
any real work: We don’t have to have deep thoughts about the structure of
the primes, or about any other relevant mathematics. All we need in order
to resolve the conjecture is, essentially, an understanding of what it is asking
for. In a similar way, we could use H to resolve, again without doing any real
work, many of the other open questions in mathematics. In short, a great
deal of mathematics can be encoded into the question of whether certain
Turing machines halt. Perhaps this observation makes the theorem seem less
surprising.

One occasionally reads, in the Sunday supplement, an article suggesting
that physics is dead: that we have now discovered the fundamental structure
of Nature — the “theory of everything” — and that all that is remains
is working out the details. Of course, this is a mere guess on the part of
the writer: Nobody has (or can have?) any real insight into this question.
But note that mathematics is very different from physics in this regard.

24

Mathematics isn’t dead yet; and, we suggest, never will be. Indeed, we have
a theorem to the effect that new and different insights will always be required
in the development of mathematics!

Show that the following problems are not computable: i) the
problem that asks whether a given Turing machine solves some
problem; ii) the problem that asks whether, given a Turing ma-
chine, there is some string S on which it halts; iii) the problem
of deciding whether two Turing machines (both of which do solve
some problem) solve the same problem. [Hint: Show that a Tur-
ing machine that computes these problems could be reconfigured
to give a Turing machine that computes the halting problem.]

This paragraph is mere whimsy, which you should feel free to ignore.
I’d like to suggest that the expression “X never happens” (and its various
siblings) has no real meaning whatever. Rather, it is a mere sociological
convention that, when we hear that expression, we nod our heads knowingly
(rather than, say, rolling our eyes). Wolves, for example, do not use this
expression at all, and yet they get along, in the woods, quite well. Imagine a
skeptic, who has been raised by wolves, and shares their sociology. You wish
to explain to this person that “This Turing machine, on this string, never
halts.” The skeptic replies “I have no idea what you are talking about.” You
say “Well, it doesn’t halt after 9 steps.” “Right.” ”It doesn’t halt after 137
steps.” “Right.” “And, in fact, it doesn’t halt after any number of steps.” “I
have no idea what you are talking about.” Or, you might try to argue us-
ing the structure of a particular Turing machine T . “The state qH nowhere
appears as the third entry in any row.” “Right.” “Therefore, the machine
doesn’t halt after 19 steps, because it couldn’t be in the state qH then.”
“Right.” “Similarly, it doesn’t halt after n steps, for any n = 1, 2, · · ·.” “I
have no idea what you are talking about.” Your growing sense of frustra-
tion arises from your inability to express this idea in terms of anything else.
Imagine that you were transported to another planet, the residents of which
try to explain to you their term, “swerm”. You are now on the other side of
a similar conversation. They say “Horses are brown.” “Right.” “And three
is an integer.” “Right.” “And swerm.” “I have no idea what you are talk-
ing about.” The residents of this planet study Turing machines, and they
introduce the swerm problem: Given string S it returns “swerm” or “not

25

swerm” according to whether or not that string is swerm. [You, of course,
recognize this as, not a problem at all, but just nonsense-talk.] Then, they
prove a theorem: The swerm problem is not computable. You look through
their so-called “proof”, and discover that they use the concept of swerm in
the proof itself! At worst, the residents of this planet are delusional. At
best, they have managed to discover that Turing machines cannot account
for their strange sociology. It is fun to reread the last several pages, mentally
substituting, everywhere, “swerm” for “halt”.

7 Noncomputable Numbers

As an example of an application of Turing machines, we now consider briefly
the subject of noncomputable numbers.

A positive real number x is said to be computable if there exists a Turing
machine that, when applied to any positive integer S as input, returns some
rational number, a/b such that |x − a/b| ≤ 1/S. In other words, the com-
putable numbers are those to which we may compute approximations. Note
that the two integers a and b in the fraction must be encoded into a single
string in the output (e.g., by using a separator, and then translating back to
the original character set). The reason that we approximate x by rationals
is that it is easy to express a rational number in terms of a string. Note
also that many Turing machines may compute the same number x (e.g., by
providing different rational approximations to it). And finally, note that the
function “1/S” on the right of the equation above could as well be replaced
by any (computable) function of S that decreases monotonically to zero, e.g.,
1/S7, or e−S, resulting in the same notion of computable number: You can
easily retrofit a Turing machine designed for one function on the right to
one designed for another. The problem of whether a given Turing machine
“computes” some real number x, in this sense, as well as that of deciding
whether two compute the same number, is not computable.

Exercise. Call a number x hypercomputable if there exists a Tur-
ing machine that, given integer S as input, returns a Turing ma-
chine that computes some real number y with |x − y| ≤ 1/S.
Clearly, every computable number is hypercomputable. Is every
hypercomputable number computable?

26

The number e, for example, is computable. An appropriate Turing ma-
chine might use the formula e = 1 + 1/1! + 1/2! + · · ·, keeping enough terms
and computing the terms with sufficient accuracy to determine a rational
within 1/S of e. Similarly, the number log(sin−1(.714) + sinh(e/4))/π2.7 is
computable, as is every other other number you might think of offhand. Note
that whether or not a number is computable depends only on the number
itself, and not how that number is expressed. Thus, every rational number
is computable, as is that number that is “1” if Goldbach’s conjecture is true;
and “0” if it is false. Indeed, it is tempting to imagine that every number
might be computable. But, there do indeed exist noncomputable numbers,
as follows immediately by a cardinality argument: The set of real numbers
is uncountably infinite, while the set of Turing machines is only countable
infinite.

Again, as with the case of noncomputable problems, we would like, not
merely an existence argument, but a “concrete” example. Here is one. Set

c =
∞∑

n=1

an/3
n, (2)

where an = 2 if, for the nth pair (T, S), the result of running the Turing
machine T on the string S halts; and an = 0 if that machine on that string
does not halt. Note that, since each Turing machine T on each string S
either halts or does not halt, this c is a perfectly definite number. If you
know this c to sufficient accuracy, then you know whether each of the first
n Turing machines/strings halts. Indeed, either c < 1/3 (the case in which
the first Turing machine/string does not halt), or c > 2/3 (the case in which
it does halt); so knowing c within (1/6) determines whether or not the first
machine/string halts. Similarly, knowing c to within 1/(2 ∗ 3n) determines
whether each of the first n machine/strings halt. It follows from these re-
marks that the number c is not computable. Indeed, suppose we were given
Turing machine, T̃ , that computes c, in the sense described above. Then,
we could easily rebuild that machine into one that computes the halting
problem, as follows: If you wish to know whether the nth pair (T, S) halts,
apply this T̃ to string 2 ∗ 3n (written out as its digits), and interpret the
rational number that results. But we know that the halting problem is not
computable, and so no such machine T̃ exists. Here is a curious corollary of
these observations: The number c above is not rational. Note that this is
not at all obvious from the formula (2).

27

Exercise. Show that there exists a Turing machine that accepts
as input a positive integer S, returning a rational a/b, such that
the resulting sequence of rational numbers increases monotoni-
cally and converges to c from below. Prove that if number x is
such that there exists a Turing-generated monotonic sequence of
rationals converging to it from below (in the sense of the previ-
ous sentence), and also one from above, then x is computable.
Does there exist a non-computable number such that there exists
neither such a sequence from above nor one from below?

It is interesting to speculate what might happen if ever a physical the-
ory were to predict, for the outcome of some experiment, a noncomputable
number, e.g., the c above. Then, since c really is a number, the theory
would be making a perfectly definite prediction for the outcome of the ex-
periment. However, to evaluate that predicted number, to higher and higher
precision, would require new and ever more sophisticated insights. Thus, we
might some day reach the situation in which the experimentalists, who have
carried out the experiment to, say, one part in 107, are way ahead of the
theoreticians, who have only been able to carry out the computation of what
the theory predicts to one part in 105! And there would be no guarantee that
any greater precision would be forthcoming from the theoreticians any time
soon. This speculation is not entirely idle, for there are some (very weak)
indications that noncomputable numbers may actually arise in some future
quantum theory of gravity.

8 Formal Set Theory

The most famous application of computability is to a certain program for
formalizing mathematics. We here merely touch on a few highlights of this
subject: For more details, see, e.g., ([6]). Nothing in this section will be used
later, so it may be skipped on first (in fact, on every) reading.

The key idea is to think of the expressions of set theory as mere strings
of meaningless symbols, to be manipulated according to certain rules; and
to ignore any preconceived idea that those strings have anything to do with
“Truth”. This is more easily said than done.

Fix a character set, C. We next introduce a new character set C̃, consisting
of the characters in C, together with the following ten additional characters:

28

=, ∈, ¬, ∧, ∀, }, {, :,), and (. Next, we introduce a certain collection of
strings over C̃, called the formulae. The rules are the following: i) For x and
y any nonempty strings over C, each of “x = y” and “x ∈ y” is a formula.
ii) For A and B any formulae, each of “¬A” and “(A ∧ B)” is a formula.
iii) For A any formula, and x any nonempty C-string, “∀x(A)” is a formula.
iv) The two expressions in item i) also result in formulae if either or both
of x and y is instead replaced by a C̃ string of the form “{z : A}”, where
z is any nonempty C-string and A is any formula. Using these rules, we
may generate an enormous number of formulae, e.g., “∀x((y ∈ x ∧ ¬∀s(z =
y)) ∧ z ∈ {w : x ∈ w})”. A crucial fact about this construction is that the
problem of whether or not a string is a formula is computable.

The nonempty strings over C are called classes. We also give these new
symbols suggestive names: “=” is called “equals”; “∈” is called “is an element
of”; “¬” is called “not”; “∧” is called “and”; “∀” is called “for all”; and
“{z : A}” is called “the collection of all sets z such that A”. The purpose
of these names is merely to make the strings easier to remember and think
about: The names are not to be construed as bestowing any “meaning”.

A definition merely introduces a new symbol to stand for a certain C̃-
string. Here are a few examples of useful definitions (and their names):
“A ∨ B” stands for “¬(¬A ∧ ¬B)” (“or”); “A ⇒ B” stands for “¬A ∨ B”
(“implies”); “∃x(A)” stands for “¬∀x(¬A)” (“there exists an x such that”);
“x ∪ y” stands for “{z : z ∈ x ∨ z ∈ y}” (“union”); “x ⊂ y” stands for “z ∈
x⇒ z ∈ y” (“subset”); “∅” stands for “{z : ¬z = z}” (“empty set”); “{x}”
stands for “{z : z = x}” (“set whose only element is x”); The integers are now
defined as follows: 0 = ∅, 1 = 0 ∪ {0}, 2 = 1 ∪ {1}; etc. Thus, for example,
5 is the set with precisely these five elements: 0, 1, 2, 3, and 4. There is also
a definition (which we shall not give) of a set ω which deserves to be called
the integers. Note that we cannot, e.g., merely write “ω = {0, 1, 2, · · ·}”, for
neither “,” nor “· · ·” are allowed symbols. We emphasize that these various
definitions add nothing whatever to the logical structure: Their only role is
to provide a convenient shorthand for writing long strings.

The next step is to isolate a certain collection of formula, called the
axioms. We shall not attempt to write out any axiom system (of which there
are several) in detail, but rather merely indicate what those systems look
like. Typical axioms might include “¬¬A ⇒ A” and “A ∧ B ⇒ A” (logical
axioms); “x = y ⇒ ∀z(z ∈ x ⇒ z ∈ y)” and “∀z(z ∈ {z : A} ⇒ A)” (tying
“=” and “{z : · · ·} in with “∈”); “∀x((¬x = ∅) ⇒ (∃y(y ∈ x ∧ x ∩ y = ∅)))”

29

(which will, among other things guarantee that no class is an element of
itself) and “∃x(∃y(∅ ∈ x ∧ ∀z(z ∈ x ⇒ z ∪ {z} ∈ x) ∧ x ∈ y))” (which will,
essentially, guarantee the existence of “infinite sets”). Other candidates for
axioms might include strings that reflect the axiom of choice, the axiom of
the excluded middle, the axiom that every subset of [0, 1] is measurable, etc.
the crucial thing about the axioms systems is that they are such that the
problem of deciding whether or not a formula is an axiom is computable.

A proof is a finite ordered list of formulae, each of which is either i)
an axiom, or ii) a formula A, such that both “B” and “B ⇒ A”, for some
formula B, appear earlier in that list. A formula is a theorem if it is the last
formula of some proof. Note that the proofs and theorems are both merely
meaningless strings of symbols constructed in a certain way. They are not to
be confused with the proofs the theorems of (informal) mathematics (which
we think of as saying that “something is true”). Note that the problem of
deciding whether or not a string is a proof is computable.

Let there be given some axiom system. Then there exists a Turing ma-
chine that, given any integer S as input, will write out a theorem; such that
every theorem is included in this list. [The machine simply tries strings
over C̃ one at a time, checking for those that are proofs.] That is, we can
“mechanically generate all theorems”. On the other hand, it is by no means
clear that the problem of whether or not a formula is a theorem is com-
putable (since we cannot guarantee that a Turing machine that looks for
proofs will ever halt). The Godel incompleteness theorem states that, for
every such axiom system, one of two things is true. First, the system could
be inconsistent. This means that there is some formula A such that both
“A” and “¬A” are theorems. Whenever this occurs, then every formula
becomes a theorem. Second, the system could be incomplete. This means
that there is some formula A that is closed (i.e., is such that every free
variable is subject to a “∀”), and is such that neither “A” nor “¬A” is a
theorem. When this occurs, we could, of course, always add one of these to
get a new axiom system; but then the theorem guarantees inconsistency or
incompleteness of that new system. The proof of the incompleteness theorem
is like that that the halting problem is not computable. The crucial step is
that the statements “there exists a proof of A” and “there does not exist a
proof of A” can, using the set ω of integers, be reflected as formulae in the
formal system (just as the crucial step in the halting problem is that Turing
machines can query Turing machines).

30

9 Probabilistic Computing

As a prerequisite to our study of quantum-assisted computing, we consider
here briefly the case of an ordinary computer that has access to a “random
number generator”. That is, we consider computing utilizing probabilities.
These considerations will allow us to separate effects due to the full structure
of quantum mechanics from those arising solely from its probabilistic aspects.

By a probabilistic Turing machine, we mean an ordinary Turing machine
— a finite number of internal states, including qH ; a semi-infinite tape di-
vided into squares into each of which a character may be printed; a head
that, at any stage, is over one of the squares of the tape; and a table giving,
for each current internal state and character (under the head), the new in-
ternal state, which new character to print on the tape, and whether to move
one square to the right or left — with just one modification. Whereas in the
original definition, we required that, for each current-state/current-character
combination, there be exactly one row in the table, we now require instead
that there be at least one row: There may now be more than one. Thus, for
a probabilistic Turing machine, the entries of the table for current internal
state “q7” and character “Z” might read:

Curr Curr → New New Move
State Char State Char
q7 Z qH p L
q7 Z q7 ∅ R
q7 Z q8 Z R

The machine now operates as before. We begin with the initial string, say
SΩ, written on the tape, followed by blanks; with the machine in initial state
q1; and with the head over the first square on the tape. The machine now
proceeds one step at a time, just as before: At each step, the machine looks
up its current state and current character in the table — there finding the
new state, the new character, and the required movement. But on reaching a
probabilistic step — on facing several rows in the table corresponding to the
current state and current character — the machine proceeds as follows. It
chooses a particular one from among the possible actions, assigning to them
equal probabilities. Thus for example, if the machine found itself in state q7,
with character Z under the head, then, consulting the table above, it would
either go to state qH , print p, and move one square to the left (1/3 of the

31

time); go to state q7, print ∅, and move one square to the right (1/3 of the
time); or go to state q8, print Z, and move one square to the right (1/3 of
the time). Ultimately, such a probabilistic Turing machine will either halt,
at which point we may read the output string off the tape as before; or it
will never halt. Thus, the final outcome of of running a probabilistic Turing
machine is indistinguishable from that of running a regular Turing machine.
The only difference is that, in the case of the former, which outcome will
actually occur is not “determined”.

We note that the formulation above is not absolutely “minimalist”, in the
spirit of Turing machines. For example we probably could, without loss of
computing power, get by with i) all probabilistic choices based on a simple
coin flip (i.e., on just two, equally likely, choices); and ii) requiring that the
two corresponding rows be identical but for their third entries (i.e., that
the probabilities apply only to the choice of new internal state, and not to
which character is printed nor to which way to move the head). In a similar
way, we could introduce probabilistic behavior into other languages. We do
not explore these refinements because our purpose here is not to develop
this subject fully, but rather merely to get a feeling for what happens when
“computing” meets “probability”.

Fix a character set C, and denote by S̃ the set consisting of all strings
over C, together with one additional element “∗”, which we call “not halt”.
Then the final result, of running a probabilistic Turing machine TΩ over C
with some initial string SΩ, is some element of this set S̃. But different runs,
of course, may produce different elements of S̃. There is some probability
distribution on the set S̃, giving the probabilities for the various outcomes.
That is, for each x ∈ S̃, we have a nonnegative number p(x), called the
“probability of outcome x”, and these satisfy

∑
x∈S̃ p(x) = 1. We say that

an outcome x ∈ S̃ is possible if there exists a sequence of machine-tape
configurations, through which TΩ, applied to initial string SΩ, could possibly
pass (by some choice of which action to take at each probability-step), such
that this sequence produces outcome x (printing some specific string, or not
halting, as the case may be). The following example will illustrate these
ideas.

Example. Let TΩ be the probabilistic Turing machine that, ap-
plied to initial string ∅, first flips a coin. If the coin is “heads”,
the machine reports the total number of coin-flips it has carried

32

out, and halts. If the coin is “tails”, the machine flips the coin
again, and repeats the process. The possible outcomes in this
example are the positive integers, together with “∗”. The prob-
ability distribution is: For n a positive integer, p(n) = 2−n; and
p(∗) = 0.

This example shows that “possible” is different from “having nonzero prob-
ability”, at least for the particular outcome “∗”. However, this phenomenon
occurs only for this special outcome: We claim that, for x 6= ∗, p(x) > 0 if
and only if x is possible. The “only if” is immediate. For “if”, let x 6= ∗
be a possible outcome. This means that there exists a sequence of machine-
tape configurations, for TΩ acting on initial string SΩ, that ends up with the
machine halting with “x” printed on the tape. There must be only a finite
number of configurations in this sequence (since the sequence ends up some-
where), and so a finite number of passages through probability-steps. Let r
denote the (rational) number that results from multiplying the probabilities
associated with each of these probability-steps. Then, clearly, p(x) ≥ r > 0.

Let us now consider briefly the simplest case: A probabilistic Turing
machine TΩ and initial string SΩ such that the outcome “∗” is not possible.
We claim that, in this special case, there is but a finite number of possible
outcomes. To see this, call a machine-tape configuration rich if there is
an infinite number of possible outcomes starting from that machine-tape
configuration. Suppose, for contradiction, that the initial arrangement —
TΩ beginning in its initial state q1 on initial string SΩ — were rich. Now
follow the running of the probabilistic Turing machine TΩ. As long as we
meet only non-probabilistic steps, we shall remain in a rich machine-tape
configuration. Now consider the first probabilistic step. We are already in
a rich machine-tape configuration at this point, and so at least one of the
possible actions available from this point must itself be rich. Take any rich
action. Continuing in this way (taking, at each probability-step an action
resulting in a rich machine-tape configuration) we will always remain in a rich
configuration; and therefore we can never halt (since the halt-state is hardly
rich). We conclude that “∗” must be a possible outcome — a contradiction.
This shows that our initial supposition — that there was an infinite number
of possible outcomes — must be false. A similar argument shows that, in
this situation (probabilistic Turing machine TΩ, running on initial string SΩ,
with outcome ∗ not possible), there must be an upper bound to the number

33

of machine steps that will ever be required to achieve the halt. The proof is
the same as that above, merely redefining “rich” as “having no upper bound
for the number of machine-steps required, from that point, to achieve the
halt”. These two proofs are virtually identical to that of the “tree theorem”
in mathematics.

Thus, the case of probabilistic Turing machine TΩ acting on SΩ for which
“∗” is not a possibility, things are simple. There is but a finite number
of possible outcomes, each has a rational probability (since TΩ, while so
running, can, by the paragraph above, pass through a probability-step at
most a finite number of times), and the number of steps required to run that
machine is bounded. Indeed, we could build a (regular) Turing machine T
that, given such a TΩ and SΩ, will return the list of possible outcomes for
TΩ on SΩ together with, for each such outcome, its probability. This new
machine would simply simulate the running of TΩ, keeping track, at each
probability-step, of all the separate possibilities. When all these branches
have finally ended in a “halt” (which we are guaranteed will happen in a
finite number of steps, by the paragraph above), our new machine T would
itself halt, compile the results for all the halt-branches it has followed, and
report what it has found.

What happens when we drop the assumption that ∗ is not a possible out-
come? The example above shows that there can then be an infinite number of
possible outcomes. But do the probabilities remain rational? The following
example shows that they need not even be computable!

Example. Let the probabilistic Turing machine TΩ, acting on
the empty string ∅, proceed as follows. This TΩ first simulates
the running of the first (regular) Turing machine/string combi-
nation, TS1, for one step. It then simulates the running of the
second combination, TS2 for one step, then TS1 for another step.
Then TS3 for one step, TS2 for another step, and TS1 for an-
other step. Then TS4 for one step, TS3 for another step, etc. If,
during the course of these simulations, TΩ ever finds a TSk that
halts, then TΩ itself proceeds as follows: T either halts, returning
“OK” (probability 3−k); or continues running as described above
(probability 1− 3−k). Note that our TΩ could indeed accomplish
these probabilities, by going through a loop with a three-choice
probability step. In this example, the possible outcomes, for TΩ

34

running on string ∅, are “OK” and “∗”, and the probability dis-
tribution is: p(OK) = c and p(∗) = 1− c, where c is the noncom-
putable number given in Sect. 7.

Thus, our statement of a few paragraphs ago, that “there exists a probability
distribution . . . ”, could not have been instead “we can compute a probabil-
ity distribution . . . ” Incidentally, there exist other noncomputable numbers
that are so inaccessible that they cannot even arise as such probabilities.

Fix a probabilistic Turing machine TΩ, and the initial string SΩ on which
we intend to run it, and let us now suppose that ∗ is a possible outcome.
We may again introduce a (regular) Turing machine T , that simulates the
behavior of TΩ. As this simulation of TΩ comes to each probability-step,
T keeps track of all the possible actions, and their respective probabilities.
When T discovers that one of these branches terminates by TΩ’s halting, T
simply records the string that would result, and its (rational) probability.
In this case, however — since now ∗ is a possible outcome for TΩ — T will
never discover that all branches of the TΩ-simulation halt, and so T itself will
never halt. In light of this, we proceed as follows. We modify T to accept
as input a positive integer, n. This modified T now simulates the running of
probabilistic Turing machine TΩ, on initial string SΩ, for precisely n steps. It
then halts returning the following result: the list of all possible final strings
S that TΩ could have returned after just n steps, and for each string S in
this list its (rational) probability, pn(S), as computed from TΩ-halts observed
so far. The sum of these pn(S), over all S in the list of final states, will be
less than one, the difference being the probability that TΩ, starting on SΩ,
has failed to halt at all after n steps. Note that, as the integer n increases,
the resulting list of possible final states will grow (or, at least, not shrink)
in length; and the then-probability for any given final state, pn(S), will be
non-decreasing. Furthermore, the sum of these probabilities, over all final
states in the list, will also be non-decreasing as n increases.

Let us now restrict further. We still have probabilistic Turing machine
TΩ acting on initial string SΩ, but now suppose that, while “never halting”
remains a possibility, its probability, p(∗), is zero. In this case, the simulating-
machine T of the previous paragraph will produce a sum-of-probabilities that,
as n→∞, approaches one. It follows from this, e.g., that, for every possible
final string S, the number p(S) is computable.

We say that a problem π is probabilistically computable if there exists a

35

probabilistic Turing machine, TΩ, such that, for every choice of initial string
SΩ: p(∗) = 0; and p(π(SΩ)) > p(S) for every string S 6= π(SΩ). In other
words, for every input string SΩ, TΩ must have zero probability of failing
to halt, and π(SΩ) must be the most likely single final string. This appears
to be a reasonable generalization of “computable” from the non-probabilistic
case.

We now claim: A problem is probabilistically computable if and only if it
is computable (in the regular way)4. The direction “if” is immediate, since
every regular Turing machine is also a probabilistic Turing machine (namely,
one with no probability-steps). For “only if”, let TΩ probabilistically-compute
problem π. Our new (regular) Turing machine that computes π will do so
as follows. Fix any string SΩ. Our new machine simulates, as above, the
behavior of TΩ on SΩ, for successively larger values of integer n, until such
point as, for some choice S of final string, pn(S) exceeds all the other pn(S ′)
by more than 1−∑

S′′ pn(S ′′). When this happens, we are guaranteed that,
under any further continuation of the simulation, pn(S) will always exceed all
other pn(S ′) (since there is not enough probability unaccounted for for any
pn(S ′) to catch up with pn(S)). At this point, then, our new Turing machine
halts, declaring this string S as the value of π(SΩ).

Finally, we remark briefly on what happens when you are not permitted to
“look inside” (i.e., to examine the table of) a probabilistic Turing machine.
Let probabilistic Turing machine TΩ probabilistically compute problem π.
Fix initial string SΩ. Fix some positive integer n, and run (not in simulation,
but as seen from the outside) TΩ, on initial string SΩ, n times. Now, it is
possible that, in one or another of these runs, TΩ will fail to halt. But the
probability of this is zero. Otherwise (with probability one), we shall be
able to compile a table giving the frequency of various final strings S. Find
that string S that is the most frequent outcome, and declare it the “answer”.
What is the probability that this S will be the wrong answer (i.e., not π(SΩ))?
We claim that this probability does not exceed α−n, for some α > 1 (which
depends on what the probabilities are for the various possible outcomes, and
so also on the input string SΩ). Suppose, for example, that there are two
outcomes, S (the correct answer) and S ′, with probabilities p > p′. Then,

4This result actually holds under weaker notions of “probabilistically computable”.
For example, it suffices that the p(∗) be, not necessarily zero, but merely computable in a
suitable sense.

36

after a large number n of runs, the number of returns of S will be normally

distributed, with mean np, and standard deviation
√
np(1− p). Similarly,

the difference between the number of returns of S and S ′ will have mean
n(p− p′), and standard deviation less than 2

√
np(1− p). So, the probability

of an (incorrect) report of S ′ does not exceed erf(n(p − p′)/2
√
np(1− p)),

where “erf” is the error function. Using that erf(x) ≤ exp(−x2/2), we obtain
a probability distribution of the form given above.

Thus, in the case of a probabilistic Turing machine TΩ probabilistically
computing a problem π, it is apparently not possible to design a (regular)
Turing machine to compute that same problem without opening TΩ up for
inspection. However, we can, merely by running TΩ repeatedly, do something
almost as good. Having chosen to carry out n runs of TΩ, then: we may have
nothing to report (probability zero); or we may report an incorrect string
(probability falling off exponentially with n); or we may report the correct
string (otherwise).

10 Difficulty Functions

So far, we have been interested largely in which problems can be computed
and which cannot. We now turn to a somewhat different set of issues, in-
volving what resources are required for the computation process. These “re-
sources” can be of several types, e.g., of memory space, of program length,
or of time. We shall be interested in the last of these, for the benefit of
utilizing quantum mechanics during the computation process appears to lie
in the time required for that computation. It is entirely possible that there
might be other benefits.

Let us begin with a simple example. Consider a (regular) Turing machine
T , which computes some problem, π. Then for any string S, T , when run
with S as the initial string, will eventually halt. Denote by f(S) the total
number of steps the machine T will execute before halting — a measure of
the “time” required for the computation. We call this f the step-difficulty
function of T . This function f clearly depends on the problem π itself; but
may also depend on the particular algorithm we implemented (via T) in the
computation of π. Note that every step-difficulty function satisfies f(S) ≥ 1
for every string S.

37

With this example in mind, we now introduce the following definition.
Fix a character set, C. By an difficulty function over C, we mean a function,

S f→ R, from the C-strings to the reals, which is bounded away from zero,
i.e., which, for some number b > 0, satisfies f(S) ≥ b for every string S.
Think of the number b as the time required to boot the computer: We do
not wish to address the possibility that, for a couple of very simple input
strings, the computer might be able to provide an answer in “zero time”, or
in an arbitrarily small time. The step-difficulty function of a Turing machine
that solves a problem is, of course, just one example of a difficulty function.

While the above is of course merely a definition within mathematics, it
is our intention to apply it to certain computations — both Turing and oth-
erwise. In light of this intended application, we realize that this definition
has an unfortunate feature: The difficulty functions provide too much detail.
For example, it might be argued that a Turing machine should be allotted
less time for a step in which the character under the head remains unchanged
than for a step in which the machine has to print a whole new character. Or,
we might purchase for our Turing machine a new chip, which runs twice as
quickly as the old. These changes in the computing set-up would, arguably,
require a different choice of difficulty function. But, while such technolog-
ical improvements can certainly be important, they are not the subject of
interest here. We, rather, are concerned with issues such as comparing, with
respect to their difficulty, several problems, or several algorithms for comput-
ing the same problem. These ideas motivate the following definition: Given
two difficulty functions, f and f ′, we write f ∼ f ′ provided that, for some
number a > 0, f(S) ≤ af ′(S) and f ′(S) ≤ af(S) for all strings S. We note
that this is indeed an equivalence relation on difficulty functions. It is the
equivalence classes that reflect the sense of difficulty that we are concerned
with here; and we shall always be interested in difficulty functions only up
to this equivalence.

Exercise. i) Fix a Turing machine, with step-difficulty function
f , that solves a problem. Let f ′ be the difficulty function that re-
sults if the charge is only half a unit for a Turing-step that leaves
the character on the tape unchanged, but still a full unit for a
Turing-step that prints a new character. Prove that f ∼ f ′. A
similar result holds for new allocations of units depending on the
machine internal state, on whether the head is to be moved to the

38

left or right, etc. ii) Prove that, for a any positive number, f ∼ af
and f ∼ f+a. iii) Prove that, for a < glb(f), f ∼ f−a. iv) Prove
that, if f and f ′ are equal for all but a finite number of strings S,
then f ∼ f ′. v) Prove that every difficulty function f is equiv-
alent to some integer-valued difficulty function. vi) Characterize
the functions h with the following property: Whenever f ∼ f ′,
then h(f) ∼ h(f ′). vi) Let Turing machines T and T ′ compute
problems π and π′, respectively. Then we have seen how to build
from these two a new machine, T ′′, that computes π′′ = π ◦ π′.
Show that the corresponding difficulties (up to equivalence) are
related by f ′′(S) = f ′(S) + f(π′(S)).

These examples show, among other things, that the equivalence classes
have some very desirable properties: The difficulty equivalence class does not
depend on how units are allocated for various types of Turing steps, on how
much time is required for booting, on the purchase of a better chip, on the
act of learning how to treat a few S’s very quickly, or even on whether or not
we demand that the difficulty function be integer-valued.

We next introduce two notions that compare difficulty functions.
Let f and f ′ be two difficulty functions. We write f ≤ f ′ provided that,

for some number a > 0, we have f(S) ≤ af ′(S) for every string S. We note
that: i) replacing f and f ′ by equivalent difficulty functions does not change
this relationship; ii) both f ≤ f ′ and f ′ ≤ f hold if and only if f ∼ f ′; iii)
f ≤ f ′ ≤ f ′′ implies f ≤ f ′′; and iv) for f bounded above, we have f ≤ f ′

for every f ′. That is, “≤” has the properties one would associate with “less
than or equal to”. But note that, given two difficulty functions f and f ′, it
is not necessarily the case that either f ≤ f ′ or f ′ ≤ f . For example, on the
positive integers, let f(n) =

√
n and f ′(n) = 1 + n sin2(n/20).

There is, in addition to “≤”, a second type of inequality on difficulty
functions. For f and f ′ two difficulty functions, we write f ¿ f ′ provided
that, for every number a > 0, we have f(S) ≤ af ′(S) for all but at most a
finite number of strings S. We note that: i) replacing f and f ′ by equivalent
difficulty functions does not change this relationship; ii) f ¿ f ′ and f ′ ¿ f
cannot both hold; iii) f ¿ f ′ ¿ f ′′ implies f ¿ f ′′; iv) f ¿ f ′ implies
f ≤ f ′; and iv) either of f ≤ f ′ ¿ f ′′ or f ¿ f ′ ≤ f ′′ implies f ¿ f ′′.
Again, these are precisely the properties suggested by the notation. Since
these special meanings of “≤” and “¿” relate only functions, there will be

39

no confusion with the usual meanings of these symbols, which relate only
numbers.

We think of f ≤ f ′ , with f 6∼ f ′, as meaning that “on every string, f
reflects no more difficulty than does f ′; and there is an infinite number of
strings on which f reflects strictly less difficulty”. We think of f ¿ f ′ as
meaning that “f reflects less difficulty than f ′ on every string”. The following
example will illustrate these ideas

Example. Consider the palindrome problem of Sect. 5. Denote
by f the step-difficulty function (counting steps) for the Turing
machine T described in that Section. Set L = length(S) + 1, an-
other difficulty function on S. [The “+1” in this formula merely
allows us to avoid treating the empty string separately.] Then we
have L ≤ f ≤ L2. The first follows because T must in any case
traverse the entire string S (in order to examine the last charac-
ter), and that traversal already requires L steps. The second fol-
lows because in the worst case, when S actually is a palindrome,
T must go back and forth across the string (or a substantial por-
tion thereof) a total of L times, together with a few extra steps
at the ends. Note that these relations are not approximations:
They hold exactly. Although L ¿ L2, we have neither L ¿ f
nor f ¿ L2. Here is another Turing machine, T̃ for computing
this problem. Machine T̃ works the same as T , except that, on
the first pass, it makes an extra check to see if the string S is of
the form “aaa · · · a”. If it finds that form, then T̃ immediately
returns to the beginning and reports “yes”. Denote by f̃ the
step-difficulty function of T̃ . Then, for every string S that is not
all “a”’s, f̃ requires more steps than f (since T doesn’t have to
carry out those extra checks that T̃ does), but f̃(S) and f(S) dif-
fer at most by some numerical multiple of L (since this checking
for “a”’s requires just a few extra steps for each character in S).
However, for a string S that is all “a”’s, f(S) is the order of L2

(since T will have to go through the laborious process of checking
for palindrome-ness), while f̃(S) is the order of L (since T̃ will
recognize this special form on the first pass). Note that there is an
infinite number of such strings. It follows from all this that f̃ ≤ f ,
but neither f̃ ¿ f nor f̃ ∼ f . We thus think of the computation

40

represented by machine T̃ as “definitely (but only slightly) more
efficient” than that of T . Intuitively, it seems plausible that the
following two assertions are true: i) There exists no Turing ma-
chine T ′ (step-difficulty f ′) that computes this problem and has
f ′ ¿ L2; and ii) given any Turing machine T ′ (step-difficulty f ′)
that computes this problem, there exists a Turing machine T ′′

(step-difficulty f ′′) that also computes this problem, such that
f ′′ ≤ f ′ and f ′′ 6∼ f ′. The first means that you will never be able
to compute this problem substantially more efficiently that the L2

difficulty function; the second that, no matter how efficient you
feel your present Turing machine is, there always exists one that
is a little more efficient. It would be interesting to find proofs of
these assertions, particularly i).

This example illustrates the idea that this equivalence relation and these
inequality-relations on difficulty functions are the “right” notions: They allow
us to express, in a simple way, what we want to say; and they don’t draw us
into a discussion of what we don’t want to say.

One could imagine inventing other, inequality-like, relations on difficulty
functions. For example, one could compare averages of the values of the
functions over certain strings; or consider the relative frequencies of the S’s
for which f(S) ≤ f ′(S) or f ′(S) ≤ f(S) occur. But these relations tend not
to be very interesting, probably because they typically require some choice of
an ordering for the strings, or they are are too sensitive to relatively benign
relabelings of the strings.

11 Difficult Problems; Best Algorithms

In this section, we discuss two results of Blum [2]. Both of these results are
insensitive to the particular difficulty-measure — or even language — em-
ployed; and both are proved by diagonal arguments. For ease of exposition,
we shall discuss both results for the Turing case (i.e., the “machines” will be
Turing machines, and the difficulty measures will be step-difficulty). But it
should be noted that these restrictions are not necessary.

A “difficult” problem is, intuitively, one that requires many steps for its
computation. It is easy to think of problems that appear, offhand, to be quite

41

difficult in this sense, e.g., that which sends any integer S to the integer that
is the last digit of the (10S!)!-th prime. But it is hard to be certain that
this problem really is as difficult as it appears: There might, for example, be
some marvelous theorem that asserts that this particular problem π merely
returns “7” when S is even; and “1” when S is odd. If this, or something
like it, should turn out to be the case, then this problem π would turn out
to be easy to compute.

Can we give an example of a problem π that is computable, and is such
that we can guarantee that any Turing machine that computes it has step-
difficulty, say, ≥ (10S!)!) ? The answer is yes, but for a silly reason. Let π
be the problem that, applied to positive integer S, returns the string a · · · a,
where the total number of a’s is (10S!)!. Then certainly the step-difficulty
f of any Turing machine that computes this π satisfies (10S!)! ≤ f , since
it takes this many steps for the Turing machine merely to print out (never
mind compute) the answer. This isn’t exactly what we had in mind. So,
to avoid this sort of foolishness, we introduce the following definition. A
problem π will be said to be bounded if the lengths of the strings π(S) as S
ranges through all input strings, are bounded above.

So, are there very difficult — perhaps even “arbitrarily difficult” —
bounded problems? We formulate this question precisely as follows:

Assertion. Let fo be any difficulty function. Then there exists a bounded,
computable problem π with the following property: Every Turing machine
T (step-difficulty f) that computes π has f ≥ fo.

This assertion states, in other words, that you tell me how hard (fo) you
want the problem to be, and I’ll find a problem (π) such that every method
of computing it (T) is at least fo-difficult (f ≥ fo). This assertion, as it turns
out, is false. As a preliminary step in showing this, we prove a theorem that
is of interest in its own right.

Theorem. Fix character set C. Then there exists an integer-valued problem
πo on S with the following property: For π any computable integer-valued
problem on S, π ¿ πo.

Here, the “¿” in the last sentence means in the sense of difficulty functions,
i.e., it means that, for any number a > 0, π(S) ≤ aπo(S) for all but at

42

most a finite number of S. We require in the theorem that πo and the π be
integer-valued in order to facilitate this comparison. The idea is to choose πo

so that πo(S) “grows quickly as the string S gets bigger — so quickly that
no mere computable π can keep up with it”. This growth is very fast indeed,
for we can think of some pretty fast-growing computable π’s, e.g., (for S an
integer) π(S) = 2 to the power of 2 to the power of 2 . . . S times. Well,
that particular π (being, as it is, computable) is child’s play in the hands of
the really fast-growing πo of the theorem.

Proof of the Theorem: Let π1, π2, · · · be a list of of all integer-valued, com-
putable problems; and let S1, S2, · · · be a list of all strings. Now let πo be the
following problem: For n = 1, 2, · · ·, set

πo(Sn) = n×max[π1(Sn), π2(Sn), · · · , πn(Sn)]. (3)

[In other words, the value of πo on string Sn is n times the largest of the
values taken by the first n computable problems, acting on that Sn.] Now
fix any positive integer m. Then, for any n ≥ m, we have πo(Sn) ≥ nπm(Sn)
(since, by n ≥ m, πm is included in the functions maxed-over in (3)). But
this last inequality (for all n ≥ m) implies πm ¿ πo. We conclude that
each of the πm is ¿ πo; and therefore, since the πm exhaust the computable,
integer-valued problems, that every such problem, π, satisfies π ¿ πo. \

This proof, like so many diagonal arguments, is simple, yet confusing.
The idea is that, since there is only a countable list of integer-valued, com-
putable problems, we can arrange for πo to keep an eye on these problems,
and to decide what value to assume, on successive strings, by keeping ahead
of the succession of computable problems. Of course, the problem πo, whose
existence is guaranteed by the theorem, is itself not computable. This re-
mark may seem strange at first sight, for the proof above appears to be a
simple “computation” of πo. But closer inspection reveals that we do not
actually compute πo in the proof, for we cannot Turing-construct a list of
Turing machines, T1, T2, · · · that solve the original list π1, π2, · · ·, of problems
(without, that is, computing the halting problem). Yet, although we can-
not Turing-construct this sequence, it certainly does exists, for the set of all
Turing machines is already countable, and so therefore is the set of all com-
putable problems, and so therefore is the set of all integer-valued computable
problems.

43

Exercise. Is “fast growing” the only way an integer-valued prob-
lem can be noncomputable? That is, do there exist integer-valued
problems π (computable) and π′ (not computable) with π′ ¿ π
(in the same sense as in the Theorem)?

The demonstration that the assertion above is false is now easy. Indeed,
to obtain a counterexample we merely choose, for the fo of the assertion, the
problem πo of the Theorem. That this choice works follows from:

Lemma. Let T be a Turing machine (step-difficulty function f) that com-
putes a problem. Then f , regarded as a problem, is computable.

Proof: Consider the Turing machine that merely simulates T , keeping track
of T ’s steps, and then, when that machine discovers that T would halt, itself
halts, returning the number of steps that T would have executed. This new
machine computes f . \

So, to summarize, it is possible to invent absurd levels of difficulty (such
as that described by the πo of the theorem): There exist no computable
problems that are that difficult. But what about lesser levels of difficulty?
Suppose, for example, that we modified the assertion above to require in
addition that the given degree of difficulty be computable? It turns out that,
under this modification, the assertion is true:

Theorem. (Blum) Let f̃ be any computable difficulty function. Then there
exists a bounded, computable problem π with the following property: Every
Turing machine T (step-difficulty f) that computes π satisfies f ≥ f̃ .

Proof: Let T1, T2, · · · be a list of all Turing machines (over the given character
set), and S1, S2, · · · a list of all strings. Now fix any integer n ≥ 1, and
consider the following prescription (ignoring for the moment words in braces):

Prescription(n): Attempt to run each of the first n machines,
T1, · · · , Tn, in this order, on the initial string Sn, for a total of
f̃(Sn) steps each. If none of the {uncanceled} machines, so run,
halts before reaching f̃(Sn) steps, set π(Sn) = ∅. Otherwise,
denote by Ti the first {uncanceled} machine in this list that does
halt before reaching f̃(Sn) steps. Then set π(Sn) equal to a string

44

other than Ti’s output: Set π(Sn) = “a” if Ti, on Sn, halted with
output string ∅; and π(Sn) = ∅ otherwise. {Finally, cancel that
Ti.}

This prescription, carried out for all values of n, defines a problem π
(since it prescribes what string π(S) is to be, for every S). We note that the
π, so defined, is bounded (since its only possible output strings are ∅ and
“a”). Furthermore, this π is computable. This follows because we can build
a Turing machine to i) produce the sequence T1, T2, · · · of Turing machines
and the sequence S1, S2, · · · of strings; ii) simulate the running of the first n
machines, as in the prescription; iii) find the first {uncanceled} machine that
fails to run for at least f̃(Sn) steps (here, using the fact that f̃ is computable!);
and iv) set π(Sn) accordingly.

We now reinstate the braces. We carry out the prescription above, in
turn, for successive values of n: 1, 2, · · ·. Each time this prescription (for
some n-value) is carried out, that machine Ti (if any) used to set π(Sn) is
now “canceled”, i.e., excluded from consideration in subsequent (i.e., larger-
n) applications of the prescription. Thus, the new construction is identical to
the old, except that, because of this cancellation, the list of Turing machines
included at each stage may be smaller than it was before. But in any case
the result is again some bounded, computable problem, π (different from the
old π, with which we are no longer concerned).

This π is the problem whose existence is guaranteed by the theorem. To
see that it has the required property, consider any Turing machine T (step-
difficulty function f) that computes π. Then this T must appear somewhere
in our list of machines: Say, T = T7. Consider the machines T1, · · · , T6. Let
no be an integer such that every one of these six machines either was canceled
already by the time n reached no; or never will be canceled for any n. [Such
an no exists: Indeed, each of the machines T1, · · · , T6 either i) is at some
point (i.e., for some specific n-value) canceled, or ii) is never canceled. Let
no be the largest of the specific n-values that occur in i).] Now fix n > no,
and apply the prescription above to determine π(Sn). Which, if any, machine
is canceled during this application of the prescription? It could not be any
of T1, · · · , T6 (by definition of no). Therefore, T7 is on the bubble: It will
not be saved by cancellation of any of the first six machines, and so will be
canceled if it halts before completing all f̃(Sn) steps. But T7 cannot be the
one canceled either, for, by definition of π(Sn), cancellation implies that T7

45

on Sn differs from π(Sn), while T7 was assumed to compute π. We conclude
from all this that T7, on Sn, must run for at least f̃(Sn) steps without halting.
That is, we conclude that f(Sn) ≥ f̃(Sn). Since this holds for all n > no

(i.e., for all but at most a finite number of n), we conclude that f ≥ f̃ . \
This is quite a proof. For each n, we stage a contest between the first

n Turing machines, applying each to Sn and seeing who can go at least
f̃(Sn) steps without halting. We find the first machine that fails, arrange
for π to be different from what that machine computes, remove that machine
from further competition, and then repeat the contest for the next n. Since
f̃ generally increases, the successive contests will generally get harder and
harder. In this way, π avoids the losers (the machines that halt early), and
thus emerges as a problem that can only be computed by a consistent winner
— a machine with step-difficulty satisfying the condition of the theorem.
Note that the no in the proof is not computable. Note also that computability
of f̃ is used at a critical place: To get computability of π.

Exercise. Show that the theorem above continues to hold if the
last formula in its statement is replaced by f À f̃ . Does there
exist a Turing machine that accepts as input the Turing machine
that computes f̃ , and returns a Turing machine that computes a
problem π whose existence is guaranteed by the theorem?

So, there are some pretty hard problems out there. We now turn to a
related issue. It would be of great interest to define, for any given problem,
a difficulty intrinsic to a problem itself (rather than to whatever method is
currently being used to compute that problem). A possible line for intro-
ducing such a notion would be to let the “intrinsic difficulty” of a problem
mean the minimum step-difficulty function of Turing machines that compute
that problem. But, in order to implement such an idea, we would need some
result to the effect that this minimum is actually achieved. One result that
would certainly do the trick is the following:

Conjecture. Let π be any computable problem. Then there exists a Turing
machine T (step-difficulty f) that computes this problem, with the following
property: Given any other Turing machine T ′ (step-difficulty f ′) that com-
putes this problem, we have f ′ ≥ f .

46

Then we would take the f of the conjecture to be our definition of the in-
trinsic difficulty of the problem π. Unfortunately, this conjecture is false.
Indeed, even for the case of the palindrome problem we have observed that,
for any Turing machine T (step-difficulty f) we can think of offhand to com-
pute this problem, there exists another, T ′ (step-difficulty f ′) with f ′ 6≥ f .
[Embarrassingly enough, we don’t understand even this simple little problem
well enough to generate from it an actual counterexample to this conjecture!]
Here, however, is a possible alternative conjecture — weaker than the one
above, but perhaps retaining enough strength to salvage some sort of notion
of intrinsic problem-difficulty.

Conjecture. Let π be any computable problem. Then there exists a Turing
machine T (step-difficulty f) that computes this problem, with the following
property: There is no Turing machine T ′ (step-difficulty f ′) that computes
this problem, such that f ′ ¿ f .

This conjecture, at least, does not appear to fail for π the palindrome problem
(although, alas, we also don’t even understand this problem well enough to
prove this conjecture, for that π!)

But in fact, much as we might wish it to be otherwise, this conjecture is
also false. Indeed, we have

Theorem. (Blum) There exists a computable problem π with the following
property: For any Turing machine T (step-difficulty f) that computes π,
there is another Turing machine T ′ (step-difficulty f ′) that also computes π,
such that f ′ ¿ f .

Thus, according to this theorem, for this particular problem π, no matter
how much effort you put into finding an efficient machine of computing π,
there always exists a much more efficient machine waiting in the wings. You
can, if you wish, submit that new, more efficient machine to the theorem,
and it will then go ahead and guarantee the existence of a still more efficient
machine, and so on. Thus, for the problem π of the theorem, there is an
infinite succession ever more efficient Turing machines that compute it. There
would seem to be no hope of defining an “intrinsic difficulty” for this problem,
at least.

We shall merely sketch the the proof of the theorem. First, let h be

47

the integer-valued function on nonnegative integers defined by: h(0) = 1,
and, for n > 0, h(n) = 2(h(0)+···+h(n−1)). This function is rather rapidly-
growing: h(1) = 2; h(2) = 8; h(3) = 2048; and h(4) would take about
ten lines to write out, and h(5) could not be written on all the paper ever
manufactured. We next construct the problem π of the theorem, as follows.
This construction is identical with the construction of the problem π in the
proof of the previous theorem, with just one small change. In carrying out
the prescription, for some n-value, instead of running each of the machines
T1, T2, · · · , Tn for the same number, f̃(Sn), of steps, we now run the i-th
machine in this list for h(n− i) steps. Thus (since h is rapidly growing), the
early machines in the list are run for vastly more steps (to see if they halt)
than are the later machines in the list. In any case, the result, after this one
change, is a certain computable problem π (different, of course, from the π
of the previous theorem). This π, believe it or not, has the property required
in the theorem.

To see this, let Turing machine T (step-difficulty f) compute π. Then
this T must be one of the Ti in our list, say T = T7. By construction,
using the same argument as in the previous proof, it follows that f(Sn) ≥
h(n− 7) for every n. We now introduce a new problem, π′. We set π′(S1) =
∅, · · · , π′(S7) = ∅. For n > 7, we define π′(Sn) by exactly the same prescrip-
tion that defined π above, except that we use for our list of machines, not
T1, · · · , Tn as was done above, but rather just T8, T9, · · · , Tn. This π′ is of
course also computable.

We next note that π′ and π are actually equal on all but at most a finite
number of strings. This follows because for sufficiently large n, say, n ≥ no,
each of T1, · · · , T6 that ever will be canceled in the computation of π has
already been canceled (while T7, of course, will never be canceled). Once no
more cancellation of these seven machines is possible, then π′ and π are left
to examine precisely the same machines at each step, namely, T8, · · ·Tn, and
so these two will end up with the same values.

We next introduce a Turing machine T ′ that computes π in the following
manner. For n ≤ no, T

′ simply simulates T , in this way finding out what
π(Sn) is, and returns that string. On the other hand, for n > no, T

′ computes
π′ in the manner described above (i.e., using, in the prescription at each stage,
only machines T8, · · · , Tn). Denote by f ′ the step-difficulty of this T ′.

Finally, we claim that f ′ ¿ f . It suffices to compare these two difficulty
functions on Sn with n > no (since these Sn include all but a finite number of

48

strings). Fix n > no. Then, in order to compute π′(Sn) (= π(Sn)), machine
T ′ must simulate Turing machine T8 (on Sn) for h(n− 8) steps, machine T9

for h(n− 9) steps, and so on up to machine Tn for h(0) steps. Thus, T ′ must
run a total of not more than h(0) + h(1) + · · · + h(n − 8) = log2(h(n − 7))
steps, where the last equality follows from the construction of h. Thus, we
conclude that for n > no, 2f ′(Sn) ≤ h(n − 7) ≤ f(Sn), where the last step is
the bound on f(Sn found earlier. The result follows.

The first thing to notice about this argument is that it contains a flaw:
Right at the end, we are comparing the number of steps that T actually
executes with the number that T ′ must simulate. Simulating looks like a lot
more work that merely executing. But for reasonable difficulty-measures in
reasonable languages (although not for step-difficulty in Turing) a machine
can be simulated in the same number of steps (up to equivalence) as it can be
run. In these cases, which include all those of serious interest, the argument
is complete. But for the Turing case, a further, somewhat complicated,
workaround is necessary, which we shall not discuss.

Actually, we prove more than is stated in the theorem, namely that 2f ′ ≤
f . In fact, one can obtain a similar result for other, specific, choices of an
inequality relating f and f ′, by simply changing the choice of the function h.
It is interesting to note that, although the theorem guarantees the existence
of T ′, it does not tell us how to compute it. The crucial non-computable step
is that in which no is found. In fact, there exists no Turing machine that,
with input a Turing machine T that computes the π of the theorem, returns
a Turing machine T ′ the existence of which is guaranteed by the theorem.

So, to summarize, the prospects for assigning to each problem an “intrin-
sic difficulty”, in some reasonable way, look pretty dismal. It may be possible
to do better by some appropriate restriction on the class of problems con-
sidered. Or, there may be some way to take the greatest lower bound of
the difficulty functions for machines that compute the problem, even though
that lower bound is itself not realized by any machine.

12 New Language

Clearly, Turing machines are highly inefficient. The central problem is that
storing scratch work on a single long tape requires that the machine plod,
again and again, over the same portion of tape, looking for one little piece

49

of data after another. In the case of the palindrome problem, for example,
we suspect (but, alas, cannot prove) that no Turing machine can compute
this problem in step-difficulty ¿ L(S)2; and yet we might expect a “normal”
computer to require only L(S) steps. Thus, Turing step-difficulty functions
tell us too much about Turing language and too little about the subject of
real interest: the “intrinsic difficulty” of the problem or algorithm. It is time
to upgrade.

We might do so, e.g., to Fortran. We would assign, in some “reasonable”
way, a number of steps to each Fortran command; and thereby arrive at a
Fortran-difficulty function for each Fortran-computed problem. We could, of
course, do the same for C language, etc. While these new difficulty functions
would certainly be more realistic than Turing step-difficulty, there remains
the danger that they, too, would manifest excessive language-dependence.
But it seems, intuitively, that such dependence may be small, or — if things
are set up carefully — even absent. One might imagine, for example, that
we could write a C-emulator in Fortran that is difficulty-function preserving.

This situation with respect to difficulty, then, is very like that we faced
earlier with respect to computability: There appears to be a universal notion
lurking in the background, but that notion finds expression through many
languages. We want to distill out the notion itself. The answer, in the
case of computability, was Turing machines. We find the simplest language
that is still rich enough to encompass our idea of computability, and then
define computability in terms of that language. We would now like to do
the same thing for difficulty. That is, we would like to invent a language,
with an associated difficulty function, that is as simple as possible, but not
so simple that it generates unnecessary inefficiencies. In short, we want to
find a language that is to difficulty as Turing language is to computability.
It will turn out, unfortunately, that our innate sense of what is the “correct”
difficulty function is somewhat less firm that that of what is “computable”.
But, in any case, we propose, below, a language that seems to capture a
more or less reasonable notion of “difficulty”. There may very well be better
proposals.

Fix a character set C. For S any string over C, we write L(S) for the
number of characters in the string S plus one [The “plus one” is so we don’t
have to treat S = ∅ as an exception.]

Let there be created an infinite number of storage locations, each labeled
by some string over C; and each capable of holding an arbitrary string over C.

50

Thus, we impose no upper bound on the number of storage locations being
utilized, nor on the lengths of the strings in the various locations (although
each location, at any one moment, contains merely a string, i.e., a finite
sequence of characters; and it will turn out that only a finite number of
storage locations are in play at any one moment). We write C(S) for the
string in the location labeled S. The idea here is that in this way we create
an ample amount of highly accessible storage space.

In the present language there will be commands, each of which directs
that a certain action (mostly involving what is stored in certain locations) be
taken. There is a total of five classes of commands in this language: two for
input/output; two for manipulating strings; and one for branching. Listed
below are these five classes of commands (with, for each, a brief explanation
of what is to be done; and, in braces, a number representing the “difficulty”
of the command, which we shall discuss shortly).

A command results if, in any of the five items below, “S” is
replaced by any explicit string, “x” by any explicit character,
and “n” by any (positive or negative) explicit integer:

1. input to C(S): allows the user to enter any string, which is
then placed in location S. {L(whatever string is entered)}]
2. output from C(S): allows the user to retrieve the string
stored in location S. {L(C(S))}
3. append x to C(C(S)): replace whatever string is stored
in location C(S) with that same string, but with character x
appended on the right. {L(C(S))}]
4. delete last of C(C(S)): replace whatever string is stored
in location C(S) with the string that results from deleting its
rightmost character (if any). If C(C(S)) = ∅, do nothing. {L(C(S))}
5. if (last C(C(S)) == x) skip n lines: if the last character
(if any) of the string in location C(S) is “x”, then skip forward n
program lines (if n is positive), backward |n| lines (if negative).
If C(S) = ∅ or if the last character of C(S) is other than x,
or if there are insufficient lines in the program to carry out the
indicated skip, do nothing. {L(C(S))}

51

A program is a finite ordered list of commands, with the following prop-
erty: The program contains exactly one input command, and it is the first
command of the list; and exactly one output command, and it is the last
command of the list. Here is an example of a program

input C(abc)
append d to C(C(yzr574))
if (last C(C(m)) == a) skip -1 lines
output C(yes)

To run a program, place ∅ in every storage location, begin at the first
program line (input), and enter any string. The machine then carries out the
instruction of each command in turn, then moving on to the next command in
the list (except for the case of command 5 (if), for which the next command
to be executed is the one indicated above). If and when the machine reaches
the last command (output) of the list, the machine halts, allowing the user
to read the output string.

Any program, run on any input string, either halts or does not halt. If
it halts for every input string, then that program computes some problem
π, where π(S) is the output string when string S is entered at input. The
program above, for example, indeed computes a problem, namely that with
π(S) = ∅ for every string S. Note that we have so structured the commands
that the program cannot “hang” within a single command: As long as the
command follows the grammatical rules above, then — no matter how point-
less that command might be — the machine will always do something (or
maybe nothing) and move on. Failure to halt can only occur by continuing
to execute command after command, indefinitely.

We could have modified the way the if command works, in the following
manner. We would, first, require that each command in the program be
labeled by a unique string. Then, we would rewrite if to direct, not that
some number of program lines be skipped, but rather that there be executed
next that command with some explicit string-label.

The numbers in braces, accompanying each of the five commands above,
give the number of “steps” we deem the computer to require to execute that
command. We call this number the difficulty of the command; and, for a
program that, acting on a certain string, halts, we call the total number of
steps executed the difficulty of that run of the program; and, for a program

52

that computes a problem, we call the total number of steps executed before
halting (a function now of the input string) the difficulty function of the
program. As always, we are interested in difficulty functions only up to
equivalence. There follows a discussion of the difficulties assigned, above, to
the five classes of commands.

If, in response, to an input command, there is entered a string of, say,
13 characters, then the execution of that command requires, as dictated
above, 14 steps. This surcharge for entering long strings turns out to be very
convenient (e.g., already in the following paragraph).

The number of steps assigned to the output command is L(the string
returned). This formula was chosen merely for aesthetics: Even changing
it, e.g., to “1” would result in equivalent difficulty functions. To see this,
first note that, for any program on any string that runs up to the output
command, the total difficulty up to that point will be greater than or equal
to the length of the longest string stored. [This follows since each command
adds at least as much to the cumulative difficulty as it adds to the length of
the longest string.] Thus, changing the difficulty for the output command
to “1” would, at most, reduce the total difficulty function by a factor of two.
But such a reduction results in an equivalent difficulty function.

For the append command, we append a character to the string in the
location given by the string in the location S. We have to look up location
S, to find C(S), and then look up location C(S) to find the string to be
appended. Think of the difficulty, L(C(S)), of this command as a “lookup
charge”. Why is not the formula instead L(C(S)) +L(S), i.e., why don’t we
also have a charge for “looking up” S? The reason is that this change results
in an equivalent difficulty function. Indeed, in any given program there will
be a finite number of append commands, and so a finite number of explicit
strings S in those commands. So, there will be a longest such string, say seven
characters. Thus, a change in the difficulty of append to L(C(S)) + L(S)
will add at most eight steps for this command, i.e., will increase the difficulty
for this command by a factor of at most nine. As a result, the final difficulty
function for this program will increase by at most a factor of nine. But such
an increase results in an equivalent difficulty function. Note that the same
argument does not apply to the term L(C(S)) in the difficulty of append:
This number (one more than the number of characters stored in location S)
depends on what happens to be stored in S at the time, and so cannot be
bounded a priori. Thus, this term may make a nontrivial contribution to the

53

final difficulty function. Why not include a term L(C(C(S))) in the difficulty
function of the append command? After all, we have to travel to the end
of the string C(C(S)) to append the x, and there should be some travel
allowance. This is a reasonable position, which might be worth pursuing.
But we have to make some decision here, and we have elected the viewpoint
that there has been constructed some sort of pointer that allows us to find
the end of the string easily. Similar remarks apply to the delete and if
commands.

In the if command, why not include also a term |n|, the number of
command-lines skipped? After all, skipping lines is hard work, and there
should be some compensation. But, again, a given program has but a finite
number of if commands, each with an explicit n; and so a maximum value
of |n| for all such commands in the program. Therefore, such a change in the
difficulty for the if command would always result in an equivalent difficulty
function.

We now have to deal with two matters. First, we need to show that
the computable problems in this new language are precisely the computable
problems (defined earlier, using Turing machines). And, second, we would
like to argue that the difficulty functions generated by this language are
“reasonable”, i.e., that they correctly capture our intuitive sense of what
the difficulty “should” be. We shall attempt to resolve both of these mat-
ters in one sweep, by generating a list of illustrative subroutines — i.e., of
short program-fragments. On the one hand, these subroutines will show the
richness of what can be computed in this language. On the other hand,
the difficulties of these subroutines, computed from the command-difficulties
above, will illustrate the typical difficulty functions this language generates.
In these subroutines, S, S ′, · · · stand for any explicit strings, x for any explicit
character, and n for any explicit integer.

l. append x to C(S). {1}
2. delete last of C(S). {1}
3. if (last C(S) == x) skip n lines. {1}

For subroutine 1, let, say, S = “yzr”. First, choose any string, say “h8”,
not used elsewhere in the program, so C(h8) = ∅. Then: append y to
C(C(h8)); append z to C(C(h8)); append r to C(C(h8)); append x
to C(C(∅)); delete last of C(C(h8)); delete last of C(C(h8));

54

delete last of C(C(h8)). The first three lines achieve C(∅) = “yzr”; the
last three restore C(∅) to ∅. The total difficulty, for any one instance of this
subroutine, is some fixed integer (in the example above, 10), not depending
on what is in the various memory locations at the time. But this subroutine
can appear at most a finite number of times in any program, and so the ac-
tual difficulty contributed by this subroutine, each time it is run, is bounded
above. So, we may assign this subroutine a difficulty 1, up to equivalence of
difficulty functions. Similar remarks apply to subroutines 2 and 3.

4. skip n lines. {1}
5. if (C(S) == ∅) skip n lines. {1}
6. if (C(S) == C(S ′)) skip n lines. {L(C(S)) + L(C(S ′))}
7. set C(S) = ∅. {L(C(S))}

For subroutine 4, use append a to C(∅); if (last C(∅) == a) skip n
lines; and then place delete last of C(∅) as the first command executed
after the skip. For subroutine 5, use the commands if (last C(S) == x)
skip .. as x runs over all possible characters; arranging the skips so that
we skip n lines if all the if’s fail, but merely proceed to the next line if any
succeeds. The difficulty of this subroutine, 1, results from the fact that the
total number of characters is fixed. For subroutine 7, use, repeatedly, delete
last from C(S)), in conjunction with subroutine 5 (to test whether C(S)
is empty yet). Note that subroutine 7 has a variable difficulty: Its value
depends on how many characters will have to be removed from C(S).

For the subroutines below, we suppose that we begin with C(S) = ∅. [If
this location were not empty, then it would be necessary to use subroutine 7
first, to achieve C(S) = ∅; and to adjust the difficulty appropriately.]

8. set C(S) = S ′. {1}
9. set C(S) = C(S ′). {L(C(S ′))}

For subroutine 9, we first use if (last C(S ′) == x) skip ..., skipping
to the command append x to C(h8) (where “h8” is some location with
C(h8) = ∅). Continue to test in this way each possible candidate, x, for
the last character of C(S ′). Then delete last of C(S ′), test whether
C(S ′) == ∅ (subroutine 5); and, if not, repeat. In this way, we place C(S ′),
with its characters in reverse order, into C(h8). Now do this all again, placing

55

C(h8), in reverse order, into C(S). It should be clear at this point that we
can carry out complicated string-manipulations, e.g.: Place in C(S) every
other character of C(S ′), up to the first occurrence of “a”, and with each
“c” replaced by “8k”, provided that C(S ′′) contains at least 6 characters not
including the combination “yzr”; otherwise ...

For the next three subroutines, we assume that the digits, 0, 1, · · · , 9, are
included in the character set; that strings subject to arithmetic operations
are already integers; and that, again, we begin with C(S) = ∅.

10. set C(S) = C(S ′) + C(S ′′). {L(C(S’))+L(C(S”))}
11. set C(S) = C(S ′) ∗ C(S ′′). {L(C(S’))*L(C(S”))}
12. set C(S) = L(C(S ′)). {L(C(S’))}

For subroutine 10, for example, we first use if (last C(S ′) == x) skip
... and if (last C(S ′′) == y) skip ..., for the one hundred possible com-
binations of digits substituted for x and y; placing, for each combination,
the appropriate digit in C(h8), say, as well as a marker in C(h9), which tells
whether or not we are carrying the 1. Then delete last of C(S ′); delete
last of C(S ′′), test whether either C(S ′) = ∅ or C(S ′′) = ∅, and repeat.
We will end up with the sum, with digits in reverse order, in C(h8). Now
transcribe C(h8) into C(S), reversing the order of digits. For subroutine 11,
use the usual pencil-and-paper multiplication (in the course of which each
digit of C(S ′) must be multiplied by each digit of C(S ′′)). Using similar
techniques, we can write write subroutines for loops, e.g., while and do;
and also for complicated branchings, such as if ((... and not ...) or ...)
carry out ...; else carry out

It should be clear by this point that a problem is computable in this
language if and only if it is (Turing) computable. After all, we have in
this language the ability to enter and recover strings (input, output), the
ability to manipulate strings (append, delete) freely, and the ability to
branch (if). It should also be noted that all of the subroutines 4-12 were
constructed solely from commands 1 and 2 and subroutines 1-3 (i.e., with
these three subroutines replacing commands 3-5).

The role of the “C(C(S))” in commands 3-5 is to allow indexed arrays.
Here are three subroutines that use this ability in an essential way:

13. set C(S ′1) = first character of C(S), C(S ′2) = second

56

character of C(S), etc. {L(C(S)) log(L(C(S)))}
14. set C(S) = C(C(S ′)). {L(C(S ′)) ∗ L(C(C(S ′)))}
15. set C(S) = C(C(C(S ′))). {L(C(C(S ′)))∗(L(C(S ′))+L(C(C(C(S ′)))))}

In subroutine 13, we are assuming that the character set contains the digits;
and “S ′2” means the string resulting from appending the character “2” to
the string S ′, etc. Thus, this subroutine allows us to place the individual
characters of the string C(S) in separate locations. This makes those char-
acters directly accessible (without having to go through all of C(S) each time
a character is needed). The factor “log(L(C(S))” in the difficulty reflects the
fact that the length of the locations (S ′n, for n = 1, 2, · · ·) increases loga-
rithmically as the length of C(S). Note that the base for this logarithm is
irrelevant, up to equivalence. Subroutine 15 shows that we can index arrays
with indexed arrays. This subroutine is given by set C(e8k) = C(C(S ′));
set C(S) = C(C(e8k)); and this construction yields the indicated difficulty.

Exercise. Explain how to write a subroutine skip C(S) lines
(which, say, does nothing if C(S) is not an integer). What is its
difficulty?

This completes our summary of the present language. We conclude this
discussion with a few remarks. First note that, for any program that com-
putes a problem, the difficulty function is ≥ L(S). This follows, since input
already imposes a difficulty equal to the length of the string entered plus
1. Next, consider two programs, which compute problems π and π′. Then
it is easy to write a program that computes problem π ◦ π′: Simply juxta-
pose the two programs, and remove the two lines where the output of one
abuts the input of the other (and, possibly, change a few explicit strings).
The difficulty of the new program is the sum of the difficulties of the two
components. It is easy to write short programs that change the grammar
of inputs and outputs: Encoding “yes” and “no” in different ways, changing
the number base, changing character set, using character-orderings in various
ways, rejecting uninteresting inputs, inserting and removing separators, etc.
These always have difficulty L(S), where S is the string entered. It follows
from all these remarks, taken together, that the difficulty function (up to
equivalence) is independent of the input-output grammar.

For f and f ′ difficulty functions, denote by glb(f, f ′) the function whose
value, for each string S, is the smaller of the values of f(S) and f ′(S).

57

Then glb(f, f ′) is also a difficulty function, and, up to equivalence, depends
only on the equivalence classes of f and f ′. We have: glb(f, f ′) ≤ f and
glb(f, f ′) ≤ f ′; and glb(f, f ′) ∼ f if and only if f ≤ f ′. Now let π be a
problem, and let P (difficulty function f) and P ′ (difficulty function f ′) be
programs that compute π. Then there exists a program, P ′′, that computes π,
with difficulty function glb(f, f ′). This P ′′ is constructed as follows. Program
P ′′ first makes a copy of the initial string S, then simulates the running of
P on S for ten steps; then the running of P ′ on the copy of S for ten steps;
then continues the simulation of P for ten more steps; then P ′ for ten more
steps; etc. Eventually, during these interlaced simulations, P ′′ will detect a
halt, and when it does so P ′′ itself halts, returning the appropriate output
string.

Here is a program that computes the palindrome problem. First input
C(zz) (difficulty L(S), where S is the string entered). Then dump C(zz) into
C(zzz), with the order of the characters reversed (difficulty L(S)). Then
use if (C(zz) == C(zzz)) skip ... {L(S)} to check for palindrome-ness.
This program has difficulty function L(S). So, by the discussion above, this
program is at least as efficient as every program computing this problem.
Note also that this program has difficulty function ¿ the step-difficulty for
the Turing computation.

Here is a naive program that computes whether or not a string is prime.
To compute whether integer m divides integer n (by the usual long-division
method) requires L(m)(L(n)−L(m)+1) steps (for we have to multiply m by
a digit (L(m) steps) a total number of times given by (L(n)−L(m)+1). So,
we merely check whether the integer n ≥ 2 entered is divisible, in turn, by
each of the integers 2, 3, · · · ,√n. The difficulty function of this program (at
most

√
n runs, each of difficulty not exceeding (log n)2) is ≤ √

n (log n)2 (but
is not equivalent to this function, for, e.g., the even integers will be disposed
of very quickly by this program). It is easy to write programs that are more
efficient than this naive one, e.g., by checking first to see if n is a perfect
square, and only if this fails looking for factors of n, as above. In fact, there
exist [1] [7] programs (based on very different methods) that are much more
efficient than that above.

Exercise. Find a program that computes whether or not a pos-
itive integer is a perfect square; and find its difficulty function.

Conjecture. Given any program (difficulty function f) that computes the

58

prime problem, there exists another program that computes that problem,
whose difficulty function, f ′, satisfies f ′ ≤ f and f ′ 6∼ f .

We remark that we could have introduced this language from the be-
ginning, instead of Turing language, using it right off as the definition of
“computable”. Had we done so, then the determination of what can be
computed in the language would have been simpler, if less charming.

13 Improving This Language

Recall that our goal is to obtain the simplest possible language that still
captures what we hope is a universal notion of “difficulty”. The language
constructed in the previous section is intended, as we noted, as merely a
suggestion. Here, we comment on a few possible alternatives.

What about dispensing with indexed arrays altogether, i.e., replacing
the append, delete, and if commands with subroutines 1-3? This would
simplify everything, including the difficulty functions. But, we claim, doing
so will likely result in a genuine loss of efficiency. Here is an example. Let
the input, S, be a sequence of digits, and set m = L(S). [This will be
easier to follow if you think of m as being about 1,000,000, so S is written
down, say, in book of some 200 pages.] Now set, for 1 ≤ x ≤ m, fm(x) =
xdigit(x) + 1 mod(m), where digit(x) means the xth digit of S. Thus, fm(x)
is also an integer between 1 and m. The problem is now the following. Let
there be given some input string, S. Start with x = 7: Then find fm(7),
then fm(fm(7)), etc, up to a total of m iterations. Report the result. Let us
first compute this problem without benefit of indexed arrays. To determine
fm(x), we must i) find digit(x) (m, steps, since we must search through S);
and then ii) raise x to a small power (≤ (logm)2 steps, since x contains at
most (logm) digits). So, the difficulty to compute fm(x) is ≤ m, and so the
total difficulty to compute the problem (which entails computing fm(x) m
times) is ≤ m2. But with indexed arrays, we may first dump the characters
of S into individual locations (via subroutine 13), for a one-time difficulty
of m log m. But having done this, computing fm(x) requires only (log m)2

steps (one log for locating digit(x), one log for taking the power). This
yields a final difficulty function of m(logm)2. Thus, using indexed arrays is
much more efficient than not. The idea of this example is that computing
this problem requires that we repeatedly find characters in S, and things

59

are so arranged that character is to be found is almost random, making it,
apparently, impossible to do all the “finding” on a single pass or two through
S. It thus becomes more efficient to dump the characters of S into an array,
once and for all at the beginning: The resulting easy access to the characters
of S ultimately pays off. Of course, we have not proved that there exists no
way to compute this problem, without indexed arrays, that is much more
efficient than the way above, although this looks unlikely. So, the critical
issue here is whether our intuitive sense is that the difficulty of this problem
should be m2, or m(logm)2. If it is the latter, then we must retain indexed
arrays.

Even if we begin with commands 1-2 and subroutines 1-3, we could still
recover indexed arrays in a simpler way: Introduce two additional basic com-
mands, set C(S) = C(C(S ′)) and set C(C(S ′)) = C(S). These would allow
us to transfer strings currently in indexed arrays to regular locations for fur-
ther processing, and then to transfer the results back again to the indexed
array. What difficult shall we assign to these commands? We might use
L(C(S ′)) ∗L(C(C(S ′)), the difficulty of current subroutine 14. If we do this,
then the new language will, apparently, be less efficient than the old. If, for
example, we merely want to deal with the last character of a string in an ar-
ray, C(C(S ′)), then the original language permits this in just L(C(S ′)) steps
(lookup charge only), while the new language requires that the entire string
be copied into a regular location before its last character is accessed. We
could avoid this by making the difficulty, for the two new commands above,
just L(C(S ′)). But then the new language would be more efficient than the
old, for we could copy an entire string from one regular location to another
in just 1 step — by copying to an indexed location, and then back. Again,
the issue here is what we would like our difficulty function to be.

These complications are caused by lookup charges. Then why not elimi-
nate them entirely, i.e., imagine a world in which looking something up is free,
but charges are still made for printing and erasing? This could be achieved,
e.g., by retaining the present five classes of commands, but changing the diffi-
culties for each of the last three classes to one. Consider, in this version, sub-
routine 15. Its difficulty will now be L(C(C(S ′))) ∗ L(C(C(C(S ′)))). Thus,
a lookup charge has crept back in: It is reflected in the factor L(C(C(S ′))),
which arises from the necessity to store the string C(C(S ′)) in order to im-
plement this subroutine. It seems unnatural to have a lookup charge in this
case but not in others. We could eliminate that charge here with a new basic

60

command: set C(S) = C(C(C(S’))). {L(C(C(C(S ′))))}. But then how
will we deal with set C(S) = C(C(C(C(S ′))))? Again, there will arise a
lookup charge if this is made a subroutine, rather than an additional basic
command. Are there examples in which such exotic indexed arrays actually
impact the final difficulty functions?

Here is a more systematic method by which we might find a natural lan-
guage with a natural efficiency function. We introduce machine language(2),
as follows. Storage locations are labeled by strings of exactly two charac-
ters, and each such location always contains exactly one character. Thus,
“C(h8)” denotes the character in location h8; while “C(C(h8)C(21))” de-
notes the character in the location described by the two-character string
whose first character is C(h8) and whose second character is C(21). In this
machine language(2) there are (in addition to input, output, with which
we are not concerned right now) four commands:

1. set C(xy) = z.

2. set C(C(xy)C(zw)) = C(pq)

3. set C(pq) = C(C(xy)C(zw))

4. if (C(xy) == z) skip n lines

where x, y, z, w, p, and q are to be replaced by arbitrary explicit characters,
and n by an arbitrary (positive or negative) explicit integer. You can convince
yourself that this is enough to carry out simple computations: manipulate
strings (whose characters are now stored in individual locations), utilize in-
dexed arrays, branch, count, etc. Indeed, machine language(2) is the actual
machine language of my old Apple II+. There are 256 characters; and, thus,
the total RAM of the computer is just over 65 KB! The good news about
machine language(2) is that there is an obvious choice of what difficulty to as-
sign to each command: One step. The bad news is that machine language(2)
cannot compute any problem at all (as we have defined those terms), for it
utilizes a finite total memory. You can make available more memory by pass-
ing to machine language(3) — the same as that above, except that now three
characters are needed to describe a location, with the obvious modifications
of the basic commands above — or, if still more space is needed, to machine
language(4), etc.

The idea, now, is the following. We would introduce a certain basic lan-
guage, much like that of the previous section; together with a compiler, which

61

would compile programs written in that language into machine language(n)
for some n. [Indeed, this is what the Apple II+ does: Here, n = 2, and
the basic language is Basic.] Given an input string S, the program that is
actually run would be the compiled one, written in machine language(n).
In this way, we obtain an unambiguous count of steps. If, in the course
of that run, it emerged that more memory was needed, then the compiler
would kick in again, to recompile the basic-language program in machine
language(n′) for some n′ > n. Computation in machine language would then
continue. Best if these recompilations could take place seamlessly, e.g., if
the machine-language commands could be adjusted so as to be n-universal.
Thus, we are free to introduce any sorts of exotic commands we wish in our
basic language — the only burden being that these be compiled into machine
language. And, we needn’t make hard choices as to what the difficulties of
these commands are to be: They are whatever follows from their execution
in machine language. Thus, since it is the machine language that assigns the
difficulties, we might hope that those assignments will be the natural ones.
Of course, it would still be required that we decide how to compare number
of steps as carried out by machine language(n) with number as carried out
by machine language(n′), for n′ 6= n. It might be interesting to see if this
scheme could be implemented.

14 Quantum Mechanics

This section is a very short course in quantum mechanics — for people who
already know quantum mechanics.

A Hilbert space is a complex vector space, equipped with an inner product
that is antilinear in the first factor and linear in the second, such that the
associated norm is positive-definite5. Vectors in Hilbert spaces are usually
written, e.g., as |α〉, where α is some symbol or word that describes the
vector; and the inner product of vectors |α〉 and |β〉 is usually written 〈α|β〉.
The states of a quantum system are described by nonzero vectors in a suitable
Hilbert space.

Let H and H ′ be Hilbert spaces. The tensor product of H and H ′ is

5The full definition of a Hilbert space includes an additional condition of completeness,
but all our Hilbert spaces will be finite-dimensional, and in that case completeness follows
automatically

62

a certain Hilbert space obtained by taking linear combinations of formal
products, where each product is of one vector in H with one vector in H ′.
The tensor product is writtenH⊗H ′, and has dimension given by the product
of the dimensions of H and H ′. For |α〉 ∈ H and |α′〉 ∈ H ′, the corresponding
formal product, in H ⊗ H ′, is written |α〉|α′〉. Now consider two quantum
systems, whose states are described by respective Hilbert spaces H and H ′.
Regard these two separate systems as one. Then the Hilbert space of states
of the combined system is H ⊗ H ′. Indeed, |α〉|α′〉 represents that state of
the combined system with the H-system in state |α〉 and the H ′-system in
state |α′〉. Since the Hilbert space H⊗H ′ allows linear combinations of these
simple products, not every state of the combined system is one in which each
of the original systems is in a particular state.

An operator on a (finite-dimensional) Hilbert space H is a linear mapping
from H to itself. For example, the identity, I, is an operator, as is, for any
|α〉 ∈ H, the map, written |α〉〈α|, with action |α〉〈α| (|β〉) = |α〉 (〈α|β〉).
For A an operator and |α〉 a vector in the Hilbert space, we sometimes
write |Aα〉 for A(|α〉). For A and A′ operators on Hilbert spaces H and
H ′, respectively, we write A ⊗ A′ for the operator on H ⊗ H ′ with action
(A⊗A′)(|α〉|α′〉) = |Aα〉|A′α′〉 (extended to all of H ⊗H ′ by linearity). We
shall sometimes not distinguish between an operator A′ acting on H ′ and the
operator I ⊗ A′ acting on H ⊗H ′.

An operator U on a Hilbert space is called unitary if it is inner-product
preserving, i.e., if 〈Uα|Uβ〉 = 〈α|β〉 for every α, β. For example, if |α〉 is unit,
then I−2|α〉〈α| is unitary. The evolution of a quantum system through time
is described by a unitary operator U : Initial state |ψ〉 evolves to |Uψ〉.

An operator on a Hilbert space is called Hermitian if it satisfies 〈Aα|β〉 =
〈α|Aβ〉 for every α, β. For example, I and |γ〉〈γ| are Hermitian. In the finite-
dimensional case, every Hermitian operator has a finite number of eigenval-
ues, all real, and the corresponding eigenspaces span the entire Hilbert space.
Observations on quantum systems are described by Hermitian operators. Let
a system, initially in state given by unit |ψ〉, be observed via Hermitian A.
Then the “result” of the observation is one of the eigenvalues of A; the state
of the system after the observation is the projection of |ψ〉 into the corre-
sponding eigenspace; and the probability of that result is the squared-norm
of that projection. Given a basis for H, by an observation via that basis we
mean an observation via a Hermitian operator whose eigenspaces are those
generated by the individual basis vectors.

63

15 Grover Construction

We now begin a new subject: quantum-assisted computing. Our strategy
will be first to consider, in some detail, one particular example. We shall
then generalize. We choose for our example what is called the Grover con-
struction [3][8][9], for it has a number of attractive features: It is very simple;
it illustrates most of the constructs and ideas of quantum-assisted comput-
ing; and it holds out realistic hope of generating an example in which the
quantum-assist provides a genuine reduction in difficulty.

Consider the challenge of finding a needle in a haystack. Fix an integer
N (which you should think of as containing, say, 100 digits). The haystack
is the N integers 0, 1, · · · , (N − 1); and the needle is a specific one of those
integers, say ko. We suppose that we have a computer that allows us to search
for the needle in the following manner. The computer accepts as input any
integer k with 0 ≤ k ≤ (N − 1), and returns either “no” (if k 6= ko) or “yes”
(if k = ko). We wish to find the needle. The obvious way to do this is to run
the computer for various k-values as input. Thus, to be certain of finding ko

we would have to run the computer a total of N times; while a mere 50%
chance would require only N/2 runs. The issue is whether we can discover a
way to find the needle in substantially fewer runs.

Here is a corresponding quantum system. Let there be given an N -
dimensional Hilbert space, Hin, with orthonormal basis |0〉, |1〉, · · · |N − 1〉:
This is the quantum system in which the input will be registered. And, simi-
larly, let there be given 2-dimensional Hilbert space, Hout, with orthonormal
basis |no〉, |yes〉, to register the output. Then the Hilbert space with which
the computer (and we) interact is Hin⊗Hout. We represent the action of the
computer by the following unitary operator6 on this Hilbert space:

V (|k〉|no〉) = |k〉|no〉 (k 6= ko) V (|ko〉|no〉) = |ko〉|yes〉, (4)

V (|k〉|yes〉) = |k〉|yes〉 (k 6= ko) V (|ko〉|yes〉) = |ko〉|no〉. (5)

That is, if the input register is in any state other than |ko〉, then V does
nothing; while if it is in state |ko〉, then V flips the output state. This unitary
operator V is a reasonable rendition of what the computer might do. Indeed,
suppose we have agreed to start the system with the output register in state

6The action of V on the linear combinations of these simple product states is, of course,
fixed by linearity.

64

|no〉. Then Eqn. (4) above specifies that V records the correct answer (for
the given |k〉) in Hout. And (5) is the simplest way to extend this V , as a
unitary operator, to all of Hin ⊗Hout.

Let us pause at this point to see how we might search for the needle under
this setup. First select any candidate k, then begin with the registers in the
corresponding initial state, |k〉|no〉, and then run the computer (i.e., apply
V). When the computer is finished (with final register-state that given in
(4)-(5)), make an observation, on Hout, via the basis |no〉, |yes〉. If the result
is “no” (which it will be, with probability (N − 1)/N), then we know that
our trial k was not the needle; while if it is “yes” (probability 1/N) then we
have found our ko. This will be recognized as just the original search, cloaked
in a thin veneer of quantum mechanics.

Let us now change things slightly. Set |φ〉 = 1√
N

(|0〉+ |1〉+ · · ·+ |N−1〉),
a unit vector in Hin. This is a state which combines all possible inputs,
equally weighted. Let us now begin with state |φ〉|no〉. Then the running of
the computer produces

V (|φ〉|no〉) =
1√
N
{|0〉+ · · ·+ |ko − 1〉+ |ko + 1〉+ · · ·+ |N − 1〉} |no〉

+
1√
N
|ko〉|yes〉.

Again, let us see what we can learn from this final state. We first make an
observation on Hout via its basis. With probability (N −1)/N we will obtain
“no”, in which case we have learned nothing whatever (not even, as in the
previous paragraph, a k known not to be the needle). But, one time out of
N , we will get lucky and obtain “yes”. In this case, we proceed to make
an observation on Hin via its basis |0〉, |1〉, · · · , |N − 1〉. The result (since
now the Hin-state is simply |ko〉) will tell us what ko is. But note that even
this procedure, using the state |φ〉 ∈ Hin, hasn’t gained us anything: This is
still basically the original search, the only essential difference being that now
quantum mechanics is “choosing” our trial k’s for us.

Let us now make still another change, this time to the output register.
Let us now choose as our initial state |φ〉 1√

2
{|no〉 − |yes〉}. In this case, the

running of the computer produces

V (|φ〉 1√
2
{|no〉 − |yes〉})

65

=
1√
N
{|0〉+ · · ·+ |ko−1〉− |ko〉+ |ko +1〉+ · · ·+ |N −1〉} 1√

2
{|no〉− |yes〉}.

That is, the output register is now always in the state 1√
2
{|no〉 − |yes〉} —

both before and after the running of the computer. All the computer does,
now, is reverse of the sign of the |ko〉-term in the input register. What
can we learn by making our observations on this final state? Absolutely
nothing. An observation on Hout, via its basis, will give equal probability
for “no” and “yes”; and an observation on Hin, via its basis, will return each
k = 0, 1, · · · , (N −1) with equal probability. It looks as though we have gone
backward.

Undaunted, we set Vin = I − 2|ko〉〈ko|, a unitary operator (reflection
across the plane orthogonal to |ko〉) on Hin. Then the result of the previous
paragraph can be summarized as follows: For any |ψ〉 ∈ Hin,

V (|ψ〉 1√
2
{|no〉 − |yes〉}) = |Vinψ〉 1√

2
{|no〉 − |yes〉}.

That is, provided the Hout-state is set to 1√
2
{|no〉 − |yes〉}, the action of V

(the run-the-computer operator) on Hin ⊗Hout is represented by the action
of this Vin on Hin, the Hout-state never changing. Next, set W = I − 2|φ〉〈φ|,
another unitary operator (reflection across the plane orthogonal to |φ〉) on
Hin. Note that W does not involve knowing which |k〉 is the needle in the
haystack. We now have, by an easy calculation,

−WVin|φ〉 =
N − 4

N
|φ〉+

2√
N
|ko〉. (6)

Thus, we are now working solely inHin, for we begin withHout-state 1√
2
{|no〉−

|yes〉}, and this state never changes. Eqn. (6) gives the result of starting with
state |φ〉 ∈ Hin, then running the computer (i.e., applying unitary Vin), and
then applying unitary W .

Again, let us pause to interpret this equation. Let us make an observation,
on the state given by the right side of (6), via our basis, |0〉, |1〉, · · · , |N − 1〉,
for Hin. We find (taking the inner product of that right side with |ko〉 and
squaring the result) that the probability of obtaining ko is (3N−4)2/N3 (the
rest of the probability being distributed equally over the other k’s). For large
N , this probability is about 9/N . After observing via this basis (obtaining a
k-value), we may of course check directly, by running our classical computer,

66

whether that k is actually the needle. Nine times out of N , we will in this
way find the needle. Note that this is nine times the a priori probability
of finding ko by merely guessing a k-value. It may look as though we are
making some real progress here, but this appearance is misleading. Even
a factor of nine in the probability for success still means that, in order to
find the needle, we must carry out a number of runs proportional to N . But
suppose that, instead of observing the state (6) immediately, we repeat the
operation: Apply −WVin again, and only then observe via the |k〉-basis and
check the k-value that results? Our probability of success will then turn out
to be twenty-five times the a priori probability. These remarks motivate what
follows.

Now comes the key step: To look, from a geometrical viewpoint, at what
we have just done. Consider the 2-plane in Hin spanned by |ko〉 and |φ〉. Each
of the operators of interest, Vin and W , when acting on any vector orthogonal
to this 2-plane, is the identity. Thus, all the action is taking place within
this 2-plane. Let us choose an orthonormal basis for this 2-plane consisting
of |ko〉 and |ko〉⊥, where the latter is that linear combination of |ko〉 and |φ〉
that is unit and orthogonal to |ko〉. Denote by θ the angle that |φ〉 makes
with |ko〉⊥. Then sin θ = 〈ko|φ〉 = 1√

N
.

Now, each of Vin and −W is a certain reflection within this plane (about
vectors |ko〉⊥ and |φ〉, respectively). But the composition of two reflections
in a plane is a rotation. The angle of rotation is given by cos(angle) =
〈ψ|(−WVin)ψ〉, where |ψ〉 is any unit vector in our 2-plane. Choosing |ψ〉 =
|φ〉 (or |ko〉, if you prefer), we find that this angle is precisely 2θ.

So, vector |φ〉 starts out making angle θ with |ko〉⊥; and each application
of −WVin increases that angle by 2θ. So, if we apply −WVin to |φ〉 a total of
s times, the resulting vector will make angle (2s+1)θ with |ko〉⊥. Now apply
the operator−WVin to |φ〉 that number s of times such that (2s+1)θ is closest
to π/2. Then this number of times will satisfy s ≤ π/(4θ) ≤ (π/4)

√
N , where

in the second inequality we used θ ≥ sin θ = 1√
N

. Having applied −WVin to

|φ〉 this many times, the resulting vector in this plane will be within angle θ
of |ko〉. Let us now make an observation on this final vector, via the |k〉-basis
for Hin. The probability that this observation results in ko, by what we just
observed, is ≥ cos2 θ = 1 − 1

N
. That is, our chances are excellent that this

single observation on Hin will find the needle.
So, to summarize, if we apply, to initial state |φ〉 1√

2
{|no〉 − |yes〉} in

67

Hin ⊗Hout, the operator −WV a number of times not exceeding π
4

√
N , and

then observe the resulting state via the |k〉-basis, we will, with probability
at least 1 − 1

N
, obtain the needle, ko. Note that we only have to run the

computer (i.e., apply V) a number of times proportional to
√
N — not to

N itself. It does indeed appear that there has been a significant gain in
efficiency. This is an example of a quantum-assisted computation.

Note that if you are impatient — insisting on making |k〉-basis observa-
tions between the computer runs (“just to see how things are going”), then
you will destroy this effect. This is similar to the familiar “watched pot never
boils” parable in quantum mechanics.

16 Grover Construction: Six Issues

In the previous section, we gave an example of a construction that appears
to show quantum mechanics providing a clear gain in efficiency over a non-
quantum computation. We here discuss six issues pertaining to that con-
struction.

16.1 Initial State

The construction requires that the registers be placed, initially, in state
|φ〉 1√

2
{|no〉 − |yes〉}. Is it feasible to build this state?

The state of Hout would not seem to be much of a problem: After all, this
is merely a 2-dimensional Hilbert space. So, for example, we could represent
this space physically as the spin-states of a spin-1/2 particle, designating |no〉
and |yes〉 as the states corresponding to the spin aligned or anti-aligned in a
given direction. Then 1√

2
{|no〉− |yes〉} would be the state in which the spin

is aligned in a certain orthogonal direction.
But the state |φ〉 ∈ Hin is more complicated. After all, this is a superposi-

tion of N states. To construct these states one at a time, and then “superpose
them” (whatever that means) is a job that threatens to have difficulty N ,
i.e., to overwhelm the difficulty of running the computer

√
N times. Here is

a device — common in this subject — to avoid this problem. Fix, once and
for all, a 2-dimensional Hilbert space, with basis |0〉, |1〉 (not to be confused
with the vectors of the same name in Hin). So, e.g., this H might be the
spin-states of a spin-1/2 system. Let N = 2n for some positive integer n. [To

68

achieve this — at most a doubling of the number of input states — should
not cause too much additional complication.] Now set

Hin = H ⊗H ⊗ · · · ⊗H, (7)

where a total of n copies of H appear on the right7. Note that this gives the
correct dimension forHin. Now consider a typical state, e.g., |0〉|1〉|1〉|0〉 · · · |0〉|1〉
(total of n factors) in the Hilbert space on the right. We identify this with
the state |k〉 of Hin, where k = 0110 · · · 01 in base 2. The k’s that result in
this way range from 0 (for 00 · · · 0) up 2n− 1 (for 11 · · · 1); and so we indeed
obtain in this way the basis we want for Hin. Under this identification, the
construction of the state |φ〉 ∈ Hin is quite easy: It is a simple product

|φ〉 =
1√
2
(|0〉+ |1〉) 1√

2
(|0〉+ |1〉) · · · 1√

2
(|0〉+ |1〉)

of the states 1√
2

(|0〉+ |1〉) for each of the H-factors. This follows, expanding

the right side, and using the definitions of |k〉 and |φ〉. Thus, with this choice
of how Hin is to be structured, the construction of the state |φ〉 should be
relatively easy. We note that this construction could have been carried out8

with any fixed dimension for the factor-Hilbert spaces H.

16.2 Final Observation on Hin

The construction requires that, at the end of the computer-runs, an obser-
vation be made on Hin via the |k〉-basis. Is it feasible to make such an
observation?

Yes, it is. Denote by A the Hermitian operator |0〉0〈0|+ |1〉1〈1| on H (so
observation of A is observation of H via its natural basis). For example, if
H is spin-states, and the basis is spin-component in a certain direction, then

7Note that we could not, e.g., let the H’s be simply the spin-states for n identical spin-
1/2 particles, because the states on the right in (7) are not in general antisymmetric under
particle-interchange. However, we could, e.g., have a system of n electrons occupying
n energy levels (say, in an atom); where each H, referring some energy level, gives the
spin-state of the occupant of that level.

8In fact, the different H’s in the product could, if we so desired, be assigned different
dimensions. Exercise. Set up a system of arithmetic in which each of the various digits
of an integer refers to different number-system base. Figure out how to add in this system
(which turns out to be quite simple!).

69

A would be the observation of spin-component in that direction, plus 1/2.
Now consider the following Hermitian operator on H ⊗ · · · ⊗ H: Operator
(2n−1A) applied to the first H-factor, plus operator (2n−2A) applied to the
second H-factor, and so on, until reaching finally operator (1 A) applied to
the last H-factor. [Here, we are regarding these operators on the H-factors
as operators on the tensor product in the manner described in Sect. 14.] The
resulting sum can, via (7), be regarded as an operator on Hin; and we note
that it does indeed have the |k〉 as its eigenstates. [In physical terms, observe
the first H-component and multiply by 2n−1; the second, by 2n−2; etc., and
add. The result will be precisely the k-value of that state.] We would expect
to have no difficulty in making an observation of H via this operator A; and,
therefore, no difficulty in making an observation of Hin, so constructed, via
its |k〉-basis.

16.3 Building the Operator W

The construction requires that we apply unitary operator W = I − 2|φ〉〈φ|
to Hin. Is it feasible to build and apply such an operator?

Note that this by no means follows immediately from the prior point:
The mere fact that we feel capable to placing Hin in state |φ〉 does not lead
directly to an interaction on Hin that shifts each state |ψ〉 ∈ Hin to state
W |ψ〉 ∈ Hin. In order to build the operator W , we proceed as follows.

We first require a few preliminaries. We introduce a more convenient basis
for H: |α〉 = 1√

2
(|1〉 + |0〉), |β〉 = 1√

2
(|1〉 − |0〉). In terms of this basis, we

have W = I − 2|α〉 · · · |α〉〈α| · · · 〈α|. Next, we introduce a unitary operator
T on H ⊗ H ⊗ H, with the following action: T (|α〉|α〉|α〉) = |α〉|α〉|β〉,
T (|α〉|α〉|β〉) = |α〉|α〉|α〉, while T the identity on the other six basis elements
of H ⊗ H ⊗ H. That is, this operator T , which is called the Toffoli gate,
flips the third H-state if and only if the first two H-states are9 both |α〉;
and so, e.g., we have T 2 = I. Let us denote by H1, H2, · · · , Hn the n H’s in
the tensor product that is Hin. We now introduce a second Hilbert space,

9The general state in H ⊗H ⊗H is, of course, not one in which each of the H’s is in a
particular state (|α〉 or |β〉), but rather is a superposition of all eight possible combinations
of individual H-states. We often describe operators, such as this T , by giving their actions
on each of the combinations that appear in this superposition. Thus, when we say, e.g.,
“the first two H-states are ...”, we really mean “that term, in the superposition, in which
the first two H-states are ...”

70

Hscratch = H̃3 ⊗ H̃4 ⊗ · · · ⊗ H̃n+1, where each of the H̃ in this tensor product
is also a copy of our basic Hilbert space H. This is the Hilbert space in
which we shall carry out scratch work. Thus, our full Hilbert space is now
Hin ⊗ Hscratch, a tensor product of 2n − 1 copies of H. Now consider the
following operator on this tensor product:

W = T (Hn, H̃n, H̃n+1)T (Hn−1, H̃n−1, H̃n) · · ·T (H3, H̃3, H̃4)

×T (H1, H2, H̃3). (8)

We note that this operator, as a composition of unitary operators, is unitary.
Let us now begin with an arbitrary state in Hin, but with Hscratch in the state
|τ〉 = |β〉|β〉 · · · |β〉 1√

2
(|α〉− |β〉). Let us apply to this state the operator (8),

and see what happens. The rightmost operator T in this composition will
place H̃3 (which began in state |β〉) in state |α〉 if and only if the H1- and
H2-states are both |α〉. The next T , reading from right to left, will place H̃4

in state |α〉 if and only if H3 and H̃3 are both in state |α〉, i.e., if and only
if H1, H2, and H3 are all in state |α〉. And, similarly, the next T will place
H̃5 in state |α〉 if and only if all four of H1, H2, H3 and H4 are in state |α〉.
Continue in this way, working from right to left in (8). Recall that the last
H̃, H̃n+1 begins in state 1√

2
(|α〉−|β〉) rather than |α〉. Thus, in the last step,

an attempt to “flip” the Hn+1-state will merely introduce a minus sign. We
conclude: The operator W of (8), acting on a state |ψ〉|τ〉 ∈ Hin ⊗ Hscratch,
where |ψ〉 is any state in Hin, and |τ〉 is the state in Hscratch given above,
indeed generates a sign change if all the H’s are in state |α〉, and no sign
change otherwise.

The operator W , so constructed, is our candidate for W . Of course,
it acts, not merely on the Hilbert space Hin (as W does), but rather on
Hin ⊗ Hscratch Nevertheless, it does seem to have the right action and so, it
appears, would seem to suffice for the Grover construction.

But this appearance is misleading: The above candidate, W , will not
work as a proxy for W , for the following reason. Some scratch work for this
calculation was left in the auxiliary Hilbert space Hscratch. That is, the final
state, after application of W is an entanglement of Hin-states and Hscratch-
states. Consider, for example, n = 4. Then if the initial state of Hin was
|α〉|α〉|β〉|α〉, say, then the final state of Hscratch will be |α〉|β〉 1√

2
(|α〉 − |β〉);

while if the initial state of of Hin was |α〉|β〉|β〉|α〉, then the final state of
Hscratch will be |β〉|β〉 1√

2
(|α〉−|β〉). This entanglement, we claim, will destroy

71

the working of the Grover construction. To see this, consider Eqn. (6), which
gives the result of the first application of−WVin to |φ〉: a rotation |φ〉 through
angle 2θ. The key to the construction is that the next application of −WVin

(as well as each successive application) must rotate through an additional
angle 2θ. But, in order for this to happen, there must occur cancellation
between the |φ〉’s and |ko〉’s that arise from application of −WVin to the two
terms on the right in (6). Now consider what happens if the W on the left in
(6) is replaced by W . Then the terms on the right side of this equation will
become entangled with various elements of Hscratch. Therefore, on the next
application of −WVin the necessary cancellations on the right will not take
place. The Grover construction will thus fail.

In order to obtain an effective W , we proceed as follows. Set

W ′ = T (H3, H̃3, H̃4) · · ·T (Hn−1, H̃n−1, H̃n) W . (9)

That is, W ′ first applies W , and then applies all the operators of W , save the
leftmost, in reverse order. It is easy to check that this procedure undoes the
entanglement. That is, we have W ′(|ψ〉|τ〉) = |Wψ〉|τ〉 for any |ψ〉 ∈ Hin,
where |τ〉 ∈ Hscratch is the initial state given above. This W ′, then, can be
used in place of W in the Grover construction.

We conclude, then, that the operatorW onHin in the Grover construction
can indeed be built, by introducing an auxiliary Hilbert space Hscratch, and
applying the Toffoli gate (an operator on H⊗H⊗H) a total of 2n−3 times.
So, it would seem that the operator W is feasible — provided the operator
T is feasible. We shall return to this last issue shortly.

16.4 Building the Operator V

No real computer, it might be argued, operates by applying some unitary
operator V to Hin ⊗ Hout, as in the Grover construction. After all, real
computers use irreversible operations (such as placing bits in locations). How,
then, are we to construct and interpret the operator V ?

Here is a model for how a computer might operate. We introduce an
additional Hilbert space, Hcom, to represent the computer states. Then the
total Hilbert space is Hin ⊗Hout ⊗Hcomp. The running of the computer will
then be represented by some unitary operator, V , on this Hilbert space. Let
us fix a vector |ψinit〉 ∈ Hcomp, to represent the initial state of the computer.

72

Then, in the Grover case (i.e., with Hin spanned by |0〉 · · · |N − 1〉 and Hout

by |no〉, |yes〉)), the action of a suitable V would be as follows:

V(|k〉|no/yes〉|ψinit〉) = |k〉|no/yes〉|ψk〉, (10)

where the Hout-state on the right is |no〉 or |yes〉 depending on whether the
Hout-state on the left is |no〉 or |yes〉, and also on whether or not k = ko. The
|ψk〉 ∈ Hcomp on the right in (10) is the final state in which the computer
finds itself, depending on the k-value on the left (and also on the choice of
initial state in Hout, which we suppress). This operator V is unitary, and
so invertible. Thus, we are suggesting, the operation of any computer must
always be reversible. [Indeed, in a world governed by quantum mechanics,
this is necessary, for dynamics therein is described by an (invertible) unitary
operator.] Things don’t appear to be this way in practice only because we
fail to take into account how large and complicated Hcomp can be. It includes
not only the states of the chips, wires, fan, etc within the box, but also (if,
say, the computer is plugged in) the states of the electric company, and then
of its employees, etc. By the time all this dust settles, things look pretty
irreversible.

Unfortunately, the operator V of (10) will not serve as a proxy for the
operator V of the Grover construction. The problem is that V introduces
entanglements between Hin ⊗Hout on the one hand and Hcomp on the other,
as reflected in the dependence of the final computer state, |ψk〉, in (10) on k.
These entanglements, in the same manner as for W in the discussion above,
will interfere with the cancellation that must take place in Eqn. (6), and
will thereby cause the Grover construction to fail. In order to avoid these
entanglements, we must, e.g., so design our computer that the final computer
state, say |ψfinal〉, is independent of |k〉. Then, when it comes time to repeat
the computation, we could either apply some special treatment to the com-
puter to restore its initial state to |ψinit〉, or discard that computer entirely,
bringing in another with the initial state |ψinit〉 already preinstalled10. Best

10Why not get rid of these awkward entanglements, not by searching for a clever V,
but rather by simply discarding the computer after each run, bringing in a new computer,
with |ψinit〉 preinstalled, for the next run? The problem with this maneuver is that the act
of discarding a system entangled with another places the latter system in a mixed state,
as described by a density operator. But a mixed state for Hin destroys the cancellation,
and so the Grover construction, as surely as does entanglement

73

would be if we could arrange that V automatically, at the end of each run,
returns the computer to state |ψinit〉, ready for the next run.

So, in any case, in order to carry out the computation implicit in the
Grover construction, we shall have to produce a computer that does not
introduce entanglements between computer states and in-out states. This
is definitely not the computer on your desk! We shall have to build our
computer anew. The danger we face is that the building and operating of
such computers consumes resources — in particular, time — and we must be
careful that this consumption does not overwhelm the apparent savings we
derive from using quantum mechanics.

Recall that the Hilbert space Hin = H ⊗ · · ·⊗H, in the Grover construc-
tion, has large dimension, 2n. Our computer must interact with this large
Hilbert space, but do so relatively efficiently. It would be of great help if we
could design our computer to interact, not with all n of the H’s at once, but
rather with only a few at a time. Does this restriction entail a restriction on
the possible unitary operators we can generate on Hin⊗Hout? The following
shows that it does not.

Theorem. Let H be a finite-dimensional Hilbert space. Then any unitary
operator on H⊗H⊗· · ·⊗H is equal to a product of unitary operators, each
of which acts on at most two of the H-factors in this tensor product.

Of course, different combinations of the two H-factors are allowed for the
different unitary operators in this product. Our proof of the theorem will
make use of three facts.

Lemma 1. Every Hermitian operator on H⊗· · ·⊗H is a linear combination
of operators of the form A⊗· · ·⊗B, where A, · · · , B are Hermitian operators
on H.
Lemma 2. Every Hermitian operator on a Hilbert space is a linear combi-
nation of commutators of Hermitian operators, and the identity I.
Lemma 3. Fix a connected Lie group G, and a collection of one-parameter
subgroups of G. If the generators of these subgroups generate the entire Lie
algebra of G, then the subgroups themselves generate the entirety of G.

Lemma 1 is easy to prove by a dimensional argument, using that the
dimension of the (real) vector space of Hermitian operators on a Hilbert

74

space is equal to the square of the dimension of that (complex) space. Let
there be n H’s in the tensor product, each of dimension m. Then the Hilbert
space H ⊗ · · · ⊗H has dimension mn, and so the vector space of Hermitian
operators on this space has dimension (nm)2. The Hermitian operators of the
form given in the Lemma form a subspace of this space, and it has dimension
(dimension of Hermitian operators on H)m = (n2)m. These dimensions are
equal, and so the subspace is the entire vector space11. Lemma 2 (which,
apparently, has little independent interest) follows by direct construction.
For m = 2, for example, it is the statement that any linear combination of
spin-operators is a commutator of two such linear combinations. In Lemma
3, the Lie algebra of a Lie group is the tangent space at its identity element.
The “generator” of a one-parameter subgroup is that element of the Lie
algebra given by the tangent to that curve at the identity. The Lie algebra
“generated” by these generators is the collection of all elements that can
be obtained by using linear combinations and brackets on the generators
of the one-parameter subgroups. And, finally, that the elements of these
subgroups “generate” the entirety of G means that every element of G can
be written as a (finite) product of such subgroup-elements. This Lemma, in
other words, states that if you can get the entire group from the subgroups
“infinitesimally close to the identity”, then you can indeed get the entire
group from the subgroups “everywhere”12. [This is the sort of thing that
would normally be used, without mention, in a physics course.]

The theorem is very easy to prove from the three Lemmas. Consider, say,
n = 3. We have, for A,B,C, and D any Hermitian operators on H, and a
any real number

[A⊗ I ⊗ C, I ⊗B ⊗D] + a A⊗B ⊗ I = A⊗B ⊗ ([C,D] + aI). (11)

where “[,]” denotes i times the commutator. Each of the operators that
appears on the left contains an “I”, and so is a generator of unitary operators

11Lemma 1 is not quite as empty as it may appear at first sight. To see this, you might
try to write the Hermitian operator that switches the two H-states in H ⊗H in the form
guaranteed by the Lemma.

12As an example, let G be the rotation group, let one one-parameter subgroup be the
rotations about some vector ~s, and let the another be rotations about some other, inde-
pendent, vector ~t. Then, since the Lie bracket of the corresponding infinitesimal rotations
is simply an infinitesimal rotation about ~s×~t, the hypothesis of Lemma 3 is satisfied. The
Lemma asserts in this case that every rotation can be written as a some product of various
rotations about ~s and ~t. This fact is the basis of Euler angles.

75

on H ⊗ H ⊗ H that act on only two factors. By Lemma 2, the right side
of (11) includes the general tensor product of three Hermitian operators on
H ⊗ H ⊗ H; and, by Lemma 1, these span all Hermitian operators on the
tensor product. The result (for n = 3) now follows from Lemma 3. The case
of general n is by induction on n, repeating the construction of (11) at each
step.

It seems likely that the product (whose existence is guaranteed by the
Theorem) involves no more than 5n−2 factors (perhaps substantially fewer),
by an argument that traces the mechanism of Lemma 3. Unfortunately, this
number grows quickly with n. The Theorem is also true (suitably modifying
Lemma 1) when the H’s in the tensor product have different dimensions.

So, we may expect to build our computer out of operators that act on
H-factors two at a time. But is it feasible to construct even these operators?
Let us take, as an example, the case in whichH is 2-dimensional, representing
the spin-states of an electron. Then the general Hermitian operator on H
is ~s · ~σ + b I, where ~s is any vector in 3-space, ~σ is the vector (Pauli) spin
operator, and b is any real number. [Note that these form a 4-dimensional
vector space, as required.] The Hermitian operator ~s ·~σ generates the family
of unitary operators, written ei ~s·~σ, that correspond to rotations in space
about the vector ~s as axis; while b I generates the family, written eib, that
correspond to overall phase-changes (which have no physical significance).

The unitary operators on a single H can be constructed physically as
follows. The unitary operators corresponding to rotations about ~s result
from applying to the electron a magnetic field in the ~s-direction, for such a
field causes the electron, by virtue of its angular momentum and magnetic
moment, to precess about the magnetic-field direction. The product of the
field-strength and the time for which the interaction is turned on determine
the magnitude of this rotation.

But, in order to invoke the Theorem, we must also construct the unitary
operators on H ⊗ H, i.e., on the two-electron system. It should be clear
that merely subjecting the two electrons, each to its own magnetic field,
will not suffice. We must introduce some sort of direct interaction between
the two electrons. One such is what is called the spin-spin interaction. The
corresponding Hermitian operator on H⊗H is ~σ1 · ~σ2 where ~σ1 and ~σ2 denote
the spin operator acting on the first and second factor in H⊗H, respectively.
[Strictly speaking, we should include a “⊗” between the two σ’s in this
expression; but the dot gets in the way.] This particular interaction actually

76

occurs in nature: If the two electrons are merely brought close together13,
then, by virtue of the electromagnetic interaction between their magnetic
moments, the electrons interact in just the manner we have described. The
corresponding unitary operator may be written eia ~σ1· ~σ2 , where the number
a is determined by how close together the electrons are placed, and for how
long.

That these two physical operations — placing one or both electrons in a
magnetic field, and allowing the electrons to interact electromagnetically —
suffice to generate all possible two-electron interactions now follows from:

Theorem. Let H be a 2-dimensional Hilbert space. Then every unitary
operator on H ⊗ H is equal to some (finite) product of the operators eib,
I⊗ ei ~s· ~σ1 , I⊗ ei ~s· ~σ2 , and eia ~σ1· ~σ2 , where ~s is any vector in 3-space and a and
b are any real numbers.

The proof is virtually identically to that of the earlier Theorem, using the
Lemmas in the same way. In this case, Eqn. (11) is replaced by

−[~t · ~σ1 ⊗ I, [~s · ~σ1 ⊗ I, ~σ1 · ~σ2]] + (~s · ~t) ~σ1 · ~σ2 = (~s · ~σ1)⊗ (~t · ~σ2), (12)

where we have used the fact that [~s · ~σ, ~t · ~σ] = i(~s × ~t) · ~σ. Taking linear
combinations involving the right side of (12) and the Hermitian operators
~s · ~σ1 ⊗ I, I ⊗ ~s · ~σ2, and I ⊗ I reproduce the entire Lie algebra of H ⊗ H;
which is just what we need to complete the proof.

Here are a couple of examples. Consider the operator W on Hin =
H ⊗ · · · ⊗ H, where H is taken as the two-dimensional Hilbert space of
spin-1/2 states. It follows, from the two theorems above, that this W is
equal to a composition of our basic unitary operators: That (on a single H)
generated by a magnetic field, and that (on two H’s) generated by the spin-
spin interaction. It seems likely that the number of such basic operators that
must be composed to construct W in this manner increases exponentially in
n. Note that this construction of W is different from that of Sect. 16.3, for
there we made use of an auxiliary Hilbert space Hscratch, whereas here there
is none. Next, note, again from the two theorems above, that the Toffoli

13This could be done, for example, by keeping the electrons in boxes, withH representing
the spin-state of the occupant of a given box; and then moving the boxes into close
proximity.

77

operator, T , on H ⊗H ⊗H is also equal to a product of the basic operators
on H. Having constructed T from the basic operators, we may then proceed
to construct W from the basic operators, using the strategy of Sect. 16.3.
While this alternative construction of W requires an auxiliary Hilbert space
Hscratch, it does have the advantage that the number of basic operators re-
quired grows only linearly with n. We may, in addition to W , also construct
Vin, in the following manner. Denote by U the unitary operator on H with
action U |0〉 = |1〉, U |1〉 = |0〉. Suppose that the needle, written in base 2, is,
say, ko = 01001 · · · 01. Then set U = U ⊗ I ⊗ U ⊗ U ⊗ I · · · ⊗ U ⊗ I, where
the U ’s and I’s on the right correspond to the digits in this expression for
ko. We then claim that Vin = UWU . This is easy to check: U sends |ko〉
to |1〉|1〉 · · · |1〉 (but other |k〉’s to something else); and then W produces a
minus sign (but, for other |k〉’s, a plus sign); and then the final U restores
the original state. Note that, in this construction of Vin, the number of a
number of operators that must be composed grows only linear in n.

The discussion above shows that there will in general be a variety of ways
to construct a given unitary operator out of some set of basic operators. Some
ways may involve an auxiliary Hilbert space (in which case we must avoid
entanglement) and some not; some may involve the composition of a large
number of basic operators and some a smaller number. But, unfortunately,
none of this is what we really want for the Grover construction. The Vin

above, for example, is completely useless for our purposes, because it requires
that you already “know” ko, and this is exactly what you are not supposed
to know. What we need is, not a variety of ways to construct some “given”
unitary operator on a Hilbert space out of basic operators, but rather a way
to convert programs into operators. In the Grover case, for example, we
begin with a computer program that checks whether or not a given k is the
needle; and we wish to convert that program to a suitable unitary operator
Vin. Here is a general summary of what we are looking for.

Let there be given a program P that accepts as input nonneg-
ative integers, and returns nonnegative integers. We may regis-
ter the inputs and outputs in Hilbert spaces Hin and Hout, each
of which is a (finite) tensor product of some finite-dimensional
Hilbert space H with itself. We wish to convert the program P
into a unitary operator on Hin ⊗ Hout, such that this operator
“computes” the output from the input in the manner of P , and

78

does so with substantially the same difficulty function as that
of P . This unitary operator may require an auxiliary Hilbert
space Hscratch, but if it does then the operator must be such that
the Hin ⊗ Hout-part of the final state is not entangled with the
Hscratch-part.

It is not clear how to make this summary into a precise statement. What,
for example, does “... in the manner of ...” mean; and what is the “difficulty
function” of a unitary operator? We have in mind some sort of compiler,
which turns command-lines in the program into compositions of some basic
unitary operators on the Hilbert spaces. But it is not clear how this is
to work. What, for example, are the operator-equivalents of append and
delete? Even more difficult would be to find an operator-equivalent of if
(last C(S) == x) then skip n lines. In any case, having constructed
such a compiler, then we might be able to define a suitable difficulty function
in terms of the number of basic operators in the composition. And even after
all this, we would have to contend with the fact that programs accept as input
arbitrary integers, while our operators act on just finite tensor products. All
this is somewhat reminiscent of the issue, discussed in Sect. 13, of compiling
programs in machine language. It might be worthwhile to try to resolve that
issue first, as a prerequisite to this one.

There seems to be a sense, in this field, that there may exist some sort of
construction along the lines outlined above.

16.5 Errors

Errors abound in the Grover construction. They can appear in the setting
up of the initial state, in the application of the operators W and V , and in
the observation on the final state. Errors could arise, for example, from im-
perfections in the apparatus; or from quantum tunneling causing interactions
between the H-states and the thermal fluctuations in the outside world. How
shall we take such errors into account?

Of course, errors abound everywhere in physics. But here, because of
the kinds of questions we are asking, this issue seems particular compelling.
Consider a computation, and suppose that, on the initial run, the input string
S is such that we require just 10 steps. Then we can afford, for this run, to
be relatively cavalier about errors. But the next run, for another S, might

79

involve 1,000 steps, requiring, in order to keep the effects of errors in check,
that we purchase new and better equipment. And still another run might
involve 1,000,000,000 steps, requiring that we cool the entire Earth down to
0.03o K and move the Sun over to another part of the Galaxy. All of these
extra precautions take time and effort, and so should be taken into account in
the difficulty function. But how will we be able ever to include such things?
How, for example, does the difficulty of these various precautions scale with
the number of steps in the computation? Similar issues arise already in
ordinary computing: Bits are sometimes recorded incorrectly; and the longer
the calculation the greater the care that must be exercised in this regard.

We shall simply ignore the effects of errors, not out of any conviction these
effects are likely to be unimportant, but rather because we do not know how
to do anything else.

16.6 What Is The Problem?

The Grover construction, as you have undoubtedly noticed, does not compute
any problem, as we have defined that term. A “problem” entails an output
for every possible input string; while the Grover construction searches for
the needle in a finite haystack. Finite input sets are not very interesting: All
problems based on them are computable, and all difficulty functions on them
are equivalent.

The obvious way to respond to this situation would be to modify the
construction to apply to a variety of haystacks. Given n, we first construct the
Hilbert space Hin (as a tensor product of n copies of a 2-dimensional H), then
build our computer (i.e, construct our operator V). We are now prepared to
apply the Grover construction to find the needle. Of course, the building of
the computer (i.e., of the operator V) is an additional burden, which would,
presumably, be included in the difficulty function for this computation.

So let us suppose, then, that we have suitably modified the Grover con-
struction along these lines. We would then be in a position to ask the key
question: Is there any problem for which the Grover construction, so con-
figured, is more efficient than any computation-method not using quantum
mechanics? Here is a precise mathematical assertion that reflects these ideas.

Assertion. Let P be a program (written, say, in the language of Sect. 12)
that accepts as input a pair, (n, k), where n is a positive integer and k is

80

an integer with 0 ≤ k ≤ N − 1 (where we have set N = 2n); and returns
either “yes” or “no”. Let this P have the following property: For each n,
there is one and only one k-value (say, ko) for which P returns “yes”. De-
note the difficulty function of P by f(n, k); and set h(n) = maxk f(n, k) .
Then there exists a program P ′ that accepts as input any positive integer n,
and returns, for each n, precisely that ko; and whose difficulty function, f ′,
satisfies f ′(n) ≤ √

Nh(n) (where “≤” is in the sense of difficulty functions).

The idea of this assertion is the following. We imagine that we have a
family of needle-in-the-haystack challenges, one for each value of n. The
program P answers this challenge in the following manner. For each fixed n,
P will check whether or not a given k, with 0 ≤ k ≤ N − 1 is the needle.
So, for fixed n, P is prepared to run a total of N = 2n checks on needle-
candidates, in order to find this needle. The function h gives the difficulty
of the hardest of those N checks. The hardest check could be the successful
one (i.e., that for k = ko), or it could be an unsuccessful one. Now, the
program P ′ represents a shortcut for finding the needle. It accepts as input n
(i.e.,which haystack-challenge is under consideration), and returns the needle
(ko) directly (not necessarily by doing the sort of exhaustive search of which
P is so fond).

Let a program P , as in the assertion, be given. Here is one way to build
a program P ′. Given any n, let P ′ simply simulate the running of P on
input (n, k), for all N possible values of k. Eventually, P ′ will find the k
for which P returns “yes”, and will report that k-value. This is the most
naive possible P ′, for it merely piggybacks on P , using trial-and-error. Let
us now determine the difficulty function, f ′, of this naive program P ′. Fix
n. Then the simulation of P on a candidate, (n, k) will require no more than
h(n) steps, and so, since P ′ must simulate P on a total of at most N such
candidates, we shall have f ′(n) ≤ Nh(n).

We conclude: If the inequality at the end of the assertion above were
changed to “f ′(n) ≤ Nh(n)”, then that assertion would be true (since the
naive P ′ of the previous paragraph would do the trick). The assertion as it
stands, then, says that there exists a shortcut P ′ that is better, in a suitable
sense, than this naive P ′. It says that you can always discover some way of
finding the needle with difficulty not exceeding the maximum P -difficulty to
check one candidate, multiplied by the square root of the number of candi-
dates that P ′ would have to check. The assertion asserts, in other words, that

81

given any family of needle-challenges, and a way to meet those challenges by
trial-and-error, then there exists a way to meet those challenges that is more
efficient than trial-and-error, by a factor of

√
N .

Why this
√
N? It comes from the Grover construction! Imagine that we

had somehow come up with a counterexample to the assertion above. That
is, we have a program P of the indicated type, and there does not exists (or
at least, there has not been found) any shortcut program P ′, in the sense of
the assertion. Fix n, and consider the action of P on (n, k), for that n. Let
us next imagine that we were able to simulate this action of P by a suitable
unitary operator, V , on H⊗· · ·⊗H (n times), and that the total “difficulty”
required to apply this operator was just h(n), i.e., the maximal difficulty that
the ordinary program P encounters for the various (n, k), with this fixed n.
And finally, let us suppose further that the additional difficulty of building
the quantum system is sufficiently small that it may be disregarded. Then
the Grover construction would find the needle (with very large probability)
with a total difficulty of

√
Nh(n) (since, as we saw in Sect. 15, the computer

would have to be run only
√
N times). But we began with the assumption

that this P is a counterexample to the assertion, i.e., that it is is such such
that exists no shortcut P ′ with f ′(n) ≤ √

Nh(n). What this means, in other
words, is that there is no regular program that solves this problem more
efficiently than does the Grover construction.

We conclude: A counterexample to the assertion above would provide a
road map for finding (via Grover) an example in which a quantum-assisted
computation is more efficient than any computation of the same problem
without a quantum-assist. If the assertion were true, on the other hand, then
this result would considerably diminish the prospects for using the Grover
construction in this way.

We emphasize that the assertion above is a statement in mathematics:
It does not involve quantum mechanics, nor vague idea about computation.
It is either true or false. I have neither a proof nor a counterexample to
this assertion. Below are three examples of (failed) attempts to construct
a counterexample, which are intended to give a sense of how the assertion
works.

For the first example, let, given n, the needle be ko = N/2. Thus, program
P would, on receiving (n, k), multiply k by 2, and see if the result is 2n. The
difficulty function is n (independent of k); and so we have h(n) = n. This
program P is not a counterexample. Let P ′ be the program that accepts

82

positive integer n, computes N/2 = (2n)/2, and returns that integer. The
difficulty function for this P ′ is f ′(n) = n, and so we certainly have f ′(n) ≤√
Nh(n). This candidate for a counterexample was hopeless right from the

beginning. Anytime the structure of P is “do some computation involving
n, and then check to see if the result matches k”, then you will never end up
with a counterexample. Program P ′ will overhear this strategy, and proceed
to compute the needle ko directly from n in the same manner, ending up with
difficulty function given by f ′(n) = h(n), and thus satisfying the inequality
of the assertion.

For the second example, let, given n, the needle ko be the largest prime
≤ (N − 1). Thus, program P would, on receiving (n, k), first check to see if
k is prime (reporting “no” if it is not), then check the integers from k + 1
to to N − 1 for primeness (reporting “no” if any is prime), and otherwise
reporting “yes”. The difficulty function, f(n, k), of this program has com-
plicated k-dependence. But in any case, denote by h(n) be the greatest
difficulty encountered as k ranges from 0 to (N − 1). This program P is
not a counterexample. Let P ′ be the program that works downward from
N − 1, checking each integer for primeness, and reporting the first prime
it finds. The number of steps required by P ′ will be the same as for P to
check candidate ko, i.e., we have f ′(n) = f(n, ko). Hence, f ′ ≤ h, and so
certainly the inequality of the assertion will be satisfied. This candidate for
a counterexample was not much more promising. Any time the structure of
P is “check to see if k is the largest integer ≤ (N − 1) such that . . . ”,
then P ′ will overhear this strategy, and proceed to find the needle directly
by starting at (N − 1) and working down. Similarly for “smallest”; and any
other “-est” that P ′ can figure out how to exploit.

The third example is the following. For n any positive integer, denote
by pn the integer obtained by writing out the digits of π (314159265...), and
stopping as soon as you arrive at the largest integer less than N2. [For
example, p5 = 314.] Now let the needle, for this haystack n, be the following.
If pn is not a product of two primes, then ko = 0. But if pn is a product of
two primes, then ko is the smaller prime factor. [The idea here is that the
digits of π are “pretty random”; and that it is (or at least, used to be) hard
to find prime factors other than by trial-and-error.] Now, most of the time
(i.e., for most n) pn will have many factors, and in these cases it will be easy
to find the needle. Program P ′ will have a field day in these cases, easily
achieving f ′(n) ≤ √

Nh(n). But every so often (at least, we hope so — we,

83

of course, have no theorem to this effect) pn will turn out to be a product
of two primes, and now the needle is harder to find. In this case, program
P will have a relatively easy job of it: Given candidate k, P need only test
to see whether or not k divides pn. The shortcut program P ′, by contrast,
has the duty to find the needle for this n — and it is hard to see how P ′ is
going to do this other than testing various k to see if they divide pn. So, here
is an example in which (at least, sometimes) there doesn’t appear a viable
shortcut over the method of trial-and-error. So, is this a counterexample to
the assertion? Probably not. The problem is that P must do more than
merely check whether k divides pn — it must also check whether or not pn

is a product of two primes (in order to know whether or not ko = 0). The
difficulty (for P) of doing this is comparable to the difficulty P ′ experiences
in finding the needle in this case.

Either the assertion above is true; or it is false. It would be of great help
in thinking about this subject, in my opinion, if we knew which.

17 Quantum-Assisted Computing

The discussion of the previous two sections suggests that the use of quantum
mechanics may indeed gain efficiency for certain computations. But there
remain at least three issues. First, as discussed in Sect. 16.4, our ability to
apply quantum mechanics to specific problems appears to depend on finding a
suitable technique for converting conventional computer programs to unitary
operators. By “suitable”, we mean a technique that results in no substantial
loss of efficiency, and is such that no entanglements are created with any
scratch Hilbert spaces that must be introduced. Second, we must make
allowance for the fact that, while programs act on arbitrary strings (and
thus are suitable for computing real problems), our unitary operators always
act on finite tensor products of H’s. And, finally, we must find a suitable
definition of “difficulty” for unitary operators. We now introduce a general
framework for computations using quantum mechanics, a scheme that, among
other things, addresses these three issues.

Fix, once and for all, the following objects: i) a finite-dimensional Hilbert
space H, ii) a unit vector |ψo〉 in H, iii) a finite list of unitary operators, each
of which acts on some finite tensor product, H ⊗ · · · ⊗H, of H’s, and iv) a

84

finite list of projection operators14, each of which acts on some finite tensor
product of H’s. The individual unitary and projection operators in these
lists may operate on tensor products with different numbers of H-factors,
e.g., some may act on a single H, some on H⊗H, etc. We label each unitary
operator of ii) and each projection operator of iii) by a nonempty string (e.g.,
as US and PS′ , respectively); and, for later convenience, we do not use the
same string to label both a unitary and a projection operator. [We shall
later impose a further condition on this arrangement; but for the moment it
is convenient to keep things general.]

We now introduce some terminology. First, we introduce a separator-
character, ∗, in the manner we have done, occasionally, before. Next, we
call a string S̃ a unitary operation if it is of the form Š ∗ S1 ∗ · · · ∗ Sk,
i.e., consists of (k+1) strings (each nonempty and containing no ∗; and with
S1 · · ·Sk distinct), such that: The first of these strings, Š, labels some unitary
operator, UŠ, in our list, and that UŠ acts on a tensor product of precisely k
factors of H. Thus, beyond the first string, it is only the number of additional
strings, and not what those strings are, that counts. For example, if, among
the unitary operators, there is one labeled U8k, and if it acts on H ⊗ H,
then “8k ∗ yzr ∗ 8$9Q” would be a unitary operation; whereas “8k ∗ yzr”
would not. And, similarly, we call string S̃ a projection operation if it is
again of the above form, S̃ = Š ∗ S1 ∗ · · · ∗ Sk, such that PŠ appears on our
list of projection operators, and it acts on the tensor product of exactly k
factors of H. Note that no string is both a unitary operation and a projection
operation; and that the problem of deciding whether a string S̃ is a unitary
operation, a projection operation, or neither is computable and has difficulty
function L(S̃).

We now introduce a new computer language. As before, we have storage
locations, each of which is labeled by a string and contains a string (where,
as before, C(S) denotes the string contained in location S). There is a total
of seven commands in this language, consisting of the five we introduced in
Sect. 12 — input, output, append, delete, and if — together with two
new ones:

6. apply C(S).

7. observe C(S), append result to C(S ′).

14A projection operator, P , is self-adjoint operator satisfying P ◦ P = P , i.e., a self-
adjoint operator having no eigenvalues other than 0 and 1.

85

where, as before, S and S ′ denote arbitrary strings. Here is what these
commands “do”. In addition to the storage locations, there will now be a
separate quantum system. The Hilbert space, H, of states of this system will
be, at any one moment during the operation of the computer, some tensor
product of H’s, where each factor of H is this tensor product is labeled by
a string. Thus, we might have, at one moment, H = H8 ⊗ Habc ⊗ HQ3, a
tensor product of three copies of H. The state of this quantum system, at
that moment, will be given by some vector, say |Ψ〉, in the Hilbert space H.
Now, here is what is to be done in response to the command apply C(S)):

1. If C(S) is not a unitary operation, then do nothing.
2. If C(S) (= Š ∗ S1 ∗ · · · ∗ Sk, say) is a unitary operation, and each

of the strings S1, · · · , Sk is already represented by an H-factor in the tensor
product that is H, then apply to the state |Ψ〉 ∈ H the unitary operator UŠ

on HS1 ⊗ · · · ⊗ HSk
. [That is, the unitary operator that is applied to H is

the operator UŠ applied to the factors HS1 ⊗ · · · ⊗HSk
, and “I” applied to

the remaining factors.]
3. If C(S) (= Š ∗S1 ∗ · · ·∗Sk, say) is a unitary operation, and some of the

strings S1, · · · , Sk are not represented by H-factors in the tensor product that
is H, then proceed as follows. First, enlarge H to include those H-factors
(i.e., replace H by its tensor product with the missing HS). Next, replace
the state |Ψ〉 by the result of taking the tensor product of this state with one
copy of |ψo〉 for each new H-factor introduced. And finally, apply UŠ to this
state in H (so enlarged) as in instruction 2.

Here is an example of these rules. Let, at some moment, H = H19⊗Hyzr,
let the state be |Ψ〉 ∈ H, let our list of unitary operators include an operator
U8k that acts on H ⊗H, and let C(S) = 8k ∗ yzr ∗ Q9. Then apply C(S)
would replace this H by H19 ⊗ Hyzr ⊗ HQ9 and state |Ψ〉 by |Ψ〉|ψo〉; and
would then apply I ⊗ U8k to this state. Similar rules apply to observe
C(S), append result to C(S ′). If C(S) is not a projection operation, do
nothing. Otherwise, proceed as follows. First, enlarge H by including, as
necessary, additional H-factors, labeled by any strings in C(S) (other than
the first) not already so represented. Next, replace the state |Ψ〉 by that
state in this enlarged Hilbert space obtained by taking one tensor product
with a |ψo〉 for each new factor of H. Then, make an observation on this
new state of this expanded Hilbert space, via the self-adjoint operator PŠ.

86

The result of this observation must be either 0 or 1, since PŠ is a projection.
Append this result (suitably encoded, if necessary) to the string in location
C(S ′). [Usually, we would have previously set C(S ′) = ∅, to avoid clutter.]
After this observation, the state of our quantum system will, of course,
be replaced by its projection into the appropriate eigenspace, i.e., by either
PŠ or (I − PŠ) applied to that state, according to whether the observation
resulted in 1 or 0, respectively.

In physical terms, what we are doing here is quite simple. We have
some basic quantum system, described by Hilbert space H. What we call
a projection operation, for example, is a string that describes which pro-
jection operator is to be applied, and to which combination of copies the
basic system. If any of the required copies are missing, we simply supply
them, by ordering new copies of that system (which come with state |ψo〉
preinstalled) through the catalog, and placing those new system-copies next
to the old system-copies. When all the necessary copies of our basic system
have been assembled, we observe via the appropriate (projection) operator,
and append the result to location S ′. We remark that no generality has been
lost by our making all observations via projection operators (rather than the
more general self-adjoint operators). This is a consequence of the following
fact: Every self-adjoint operator A on a finite-dimensional Hilbert space can
be written as a sum, a1P1 + · · · + asPs, where the ai are the eigenvalues of
A, and the Pi project into the corresponding eigenspaces (so, in particular,
the various Pi commute with each other). By virtue of this fact, we may,
instead of observing via self-adjoint A, observe via each the Pi, noting that,
by commutativity, the order of the latter observations is irrelevant. These
two operations will always produce the same result, in terms of the outcomes
and their probabilities as well as the final state of the system.

A quantum-assisted program is a finite, ordered list of commands, the first
command of which is input and the last of which is output, each of these
appearing nowhere else in the program. We run a program just as before,
starting with each storage location containing the empty string; and with H
the (one-dimensional Hilbert space of) the complexes. We then execute the
commands in order, except as directed by if. The various commands will
then manipulate strings; or operate on, expand, or observe H. So, for exam-
ple, the first apply or observe command will require that H be expanded
to include the appropriate copies of H as a tensor product. If and when the
program reaches output, it halts, allowing us to read the output string.

87

When a given quantum-assisted program is run with a given input string,
it must either halt, with some output string returned, or never halt (which
we denote, as before, by “∗”). From the laws of quantum mechanics, there
will be probabilities for these various outcomes, i.e., we will have a proba-
bility distribution, p, on S ∪ {∗}. We say that a quantum-assisted program
computes problem π if, for every input string S, the program, run on that
string, has p(∗) = 0, and p(π(S)) > p(S ′) for every S ′ 6= π(S). That is, the
probability of not halting must be zero (although, as we have already seen,
it may still be possible that the program fail to halt), and the probability of
the “correct answer”, π(S), must exceed that of every other possible output.

As an example of all this, let us consider the Grover construction. Let
H be the two-dimensional Hilbert space of spin states of an electron, and
let |ψo〉 be the state we earlier designated |1〉. Let U1 act on H by U1|1〉 =
1√
2
{|1〉+ |0〉}, U1|0〉 = 1√

2
{|1〉− |0〉}; U2 by U2|1〉 = −|1〉, U2|0〉 = |0〉; and U3

by U3|1〉 = i|1〉, U3|0〉 = |0〉. [A few more U ’s on H might also be required.]
Let U4 act on H⊗H by U4 = exp(i(π/2) ~σ1 · ~σ2). Finally, let there be a single
projection operator, P5, acting on a single H via P5|1〉 = |1〉, P5|0〉 = 0.

The program will accept as input a positive integer n. It will then place,
in location S, the string “1∗1”, execute apply C(S), then place “1∗2” there,
then execute apply C(S) again, etc, a total of n times. This will set up our
Hilbert space, Hin = H1⊗· · ·⊗Hn, with each Hi-state given by 1√

2
{|1〉+ |0〉}.

[Note how we set up initial states, by starting with |ψo〉 = |1〉 and applying
the appropriate operator.] We next introduce three subroutines. The first
applies to this Hin the operator Vin (possibly by introducing, into H, an
auxiliary Hilbert space for scratch work). The second subroutine applies
W : We use our U ’s to construct the Toffoli operator, and then we apply
it to suitable combinations of H-factors, introducing the auxiliary Hilbert
space of Sect. 16.2. And finally, we introduce a subroutine that observes
Hin via the k-basis. This will, e.g., set C(S) = 5 ∗ 1, execute observe
C(S), append result to C(S ′) and multiply the result (in C(S ′)) by
2n−1; then set C(S) = 5 ∗ 2, execute observe C(S), append result to
C(S ′), multiply the result (in C(S ′)) by 2n−2 and add to the previous result;
and so on, for n times around. This subroutine, then, will end up producing
some k-value, where 0 ≤ k ≤ N − 1, stored in some memory location.

There are at least three different programs that could be constructed
from these pieces. First, we could simply apply the Vin subroutine, then

88

the W subroutine, and finally the observation subroutine, storing the result
in location S ′. Then execute output C(S ′). For this program, we would
have p(∗) = 0 (and, in fact, outcome ∗ would be impossible), p(ko) = 9/N
(for large N), with the probabilities for the other k-values correspondingly
reduced. This quantum-assisted program indeed computes our problem. For
the second program, we would run −WVin the correct number (which is
within one or two of (π/4)

√
N) of times (where the regular commands and

storage locations are used to keep track of these numbers), then run the
observation subroutine once, and finally execute output to return whatever
k that results. For this program, we would again have p(∗) = 0 (and, again,
outcome ∗ would be impossible). Now, however, p(ko) > 1 − 1/N , with the
remaining k taking up the rest of the probabilities. This quantum-assisted
program also computes our problem. For our final program, we first do the
computation of the previous program, but instead of reporting the k that
results from the observation subroutine, we instead run the non-quantum
check program on that k, to find out if if is indeed the needle. If it is, we
report it. Otherwise, go through the entire procedure again, finding a new k
and checking that one. Continue in this way until we find the k that checks
out as the needle. For this program, we again have p(∗) = 0, but now the
outcome ∗ is possible (for we could to go on indefinitely, being unlucky time
after time). We also have p(ko) = 1; and p(k) = 0 for all other k. Thus, this
quantum-assisted program also computes our problem.

Thus, we have three separate quantum-assisted programs, each of which
computes the problem (whatever it is). In these examples, the observe
commands generally come after the apply commands have already been ex-
ecuted. But that, of course, needn’t be the case in general: These commands
could very well be intermingled. Note that the brain of this program is the
original five commands and the storage locations with which they interact:
These keep track of what is going on, decide when apply and observe are
to be carried out, decide what to do with the results, handle the input and
output, etc. The Hilbert space of the quantum system serves as a glorified
storage register, into which we may place data (via apply), within which we
may manipulate data (via apply), and from which we may extract data (via
observe). We could also arrange, in effect, for there to be several different
Hilbert spaces to handle data. These would be represented by different parts
of the tensor product that is H, and we would simply manipulate and access
whatever part we wish to use at any one time, ignoring (i.e., applying the

89

identity to, and not observing) the other parts. At any one moment in the
program, the Hilbert space of states of the quantum system, H is a finite
tensor product of H’s; although, of course, the number of H’s in this prod-
uct is not limited. Had we, for example, replaced each “C(S)” in the apply
and observe commands with “S”, then there would, for any given program,
be a limit (independent of the input string) on this number. Replacing each
“C(S)” in these commands by “C(C(S))” would not make any difference,
since we have a subroutine set C(S ′) = C(C(S)). Note that the structure of
quantum-assisted programs does not require, necessarily, that entanglements
be avoided or undone. We simply apply certain unitary operators and ob-
serve certain projection operators; and whatever follows follows, whether
there is entanglement or not. [Of course, it may be necessary to avoid entan-
glement in order that the program compute what we want it to compute.]

18 Quantum-Assisted Computability

We introduced, in the previous section, the notion of a problem being com-
putable by a quantum-assisted computer; and we already have, from Sect. 6,
the notion of a problem being computable by a regular computer. Clearly,
every regular-computable problem is quantum-assisted-computable (since ev-
ery regular program is a quantum-assisted program, just one happening to
have no apply or observe commands). Is the converse true? That is, is
it true that every problem that is computable with quantum-assist is also
computable in the regular sense?

This converse, as stated, is false. Here is an example. Let the Hilbert
space H be 2-dimensional, with basis |ψo〉 (the initial state) and |ψo〉⊥. Let
there be just one unitary operator in the list, acting on a single copy of H
by Uθ|ψ〉 = |ψo〉 cos θ+ |ψo〉⊥ sin θ, Uθ|ψo〉⊥ = |ψo〉⊥ cos θ−|ψo〉 sin θ, where
θ is some fixed number. Let there be just one projection operator in the
list, also acting on a single copy of H, by P |ψo〉 = |ψo〉, P |ψo〉⊥ = 0. [You
will note that this is a pretty poor excuse for quantum-assistance: There
are no operators in our lists that act on two or more H’s, and so we will
never produce, by means of these operators, interestingly entangled tensor-
product states.] The program accepts as input a positive integer n, and
proceeds as follows. It first executes apply Uθ to H1; observe P on H1,
and accumulate the result (0 or 1) in C(a). It then repeats this subroutine,

90

with “H1” replaced by “H2”, and so on, all the way up to “Hn4”. At this
point, C(a) will contain an integer (the number of times “1” was returned
by observe during all n4 runs of the subroutine). Finally, the program
returns, via output, the rational number C(a)/n4. What is this program
doing? Well, on each run through the subroutine, either 1 will be added
to the integer in C(a) (probability cos2 θ), or it will not (probability sin2 θ).
Thus, what the program returns at the end is a Monte-Carlo estimate of the
value of cos2 θ, based on these n4 runs. But the fractional error in such an
estimate goes down, as the number of runs increases, as the reciprocal of
the square root of that number. Hence, the estimate this program produces
will have an error of the order of 1/n2. So, except possibly for the first few
n-values, we have a high probability that our estimate will be within 1/n of
the actual value of cos2 θ.

What this program above does, in other words, is compute the number
cos2 θ, in the sense of Sect. 7. What we have shown, then, is that for any
number θ we can write a quantum-assisted program that computes cos2 θ.
Now choose for θ that value such that cos2 θ = c, where c denotes the non-
computable number given by Eqn. (2) of Sect. 7. Thus, we have produced a
quantum-assisted program that computes a number that is not computable
with any regular program.

The discussion of the previous two paragraphs will fool nobody. It is
absurd to take seriously a unitary operator Uθ that claims to carry out a
rotation through a noncomputable angle: We would not expect to be able
to buy and operate a machine that would apply any such Uθ to any real
quantum system. Suppose, for example, that we acquire a machine that is
capable of carrying out a rotation in the |ψo〉 − |ψo〉⊥ plane through any
angle θ, where the value of θ is set by adjusting a knob. Then, as we fine-
tune this machine, we shall be called upon to determine, more and more
precisely, what the number θ is; i.e., we will have to decide whether or not
more and more complicated Turing machines will halt. One of these, for
example, is the machine that searches for a counterexample to the Goldbach
conjecture — and so, at this point, the proper adjustment of the knob will
require that we settle this conjecture, one way or the other. And, as soon as
we are finished with this one, we will be asked to resolve some other, even
harder, conjecture in mathematics. How, in this atmosphere, are ever going
to get this experiment finished? It is silly to call this quandary a “piece of
laboratory equipment”. Note that the fact that there are rational numbers

91

arbitrarily close to the noncomputable number c is of no help to us here.
The issue is one of determining what c is (in practice, in the lab), not one of
approximating c (in principle, in mathematics-land). To know c within 1%,
let us say, will tell us whether or not the Goldbach conjecture is true. How
helpful, in this circumstance, is it to be reassured that there does indeed
exist a rational number within one-tenth of 1% of c?

Exercise. Consider the unitary operator Uθ above, but let us
select the angle θ “randomly, by spinning, and then stopping
the wheel”. Then the probability is one that we shall end up
with a noncomputable number (since the computable numbers in
[0, 2π] are measurable, with measure zero). So here is an example
in which a quantum-assisted computer computes a (regularly-)
noncomputable number. Respond.

So, we might ask, which unitary operators are, and which are not, “phys-
ically realistic”? In fact, the problem goes a little deeper than even this
question suggests. Consider, for example, two unitary operators, U and U ′,
each of which carries out a 90o rotation in the (3-dimensional, say) Hilbert
space H, but such that the planes in which these rotations take place make
angle c with each other. Although each of these two unitary operators, by
itself, is quite innocent-looking, together they allow, in the same manner as
above, a computation of c. The lesson here is that we cannot look at the
state |ψo〉, the unitary operators that appear on our list, and the projection
operators that appear on our list, in isolation. It is the entire list — con-
sisting of |ψo〉, the U ’s and the P ’s; all taken together — that must rise or
fall. So, we might ask, how do we identify which such lists are, and which
are not, physically realistic?

Here is a possible answer to this question. Let us imagine that the box in
which the Hilbert space H is shipped has printed on it a standard basis for
this Hilbert space, to be used for reference purposes. Then from this basis we
acquire a standard basis for each tensor product, H ⊗ · · · ⊗H. Now, before
purchasing a unitary operator U (on some tensor product of H’s), we want to
know what it is we are buying. This is to be provided by the manufacturer, in
the form of a program, printed in the owner’s manual, that accepts as input
any positive integer n, and returns rational numbers each within 1/n of the
respective matrix element of U in this standard basis. We call this a program

92

that computes U . Without such a program, we simply don’t know what U
“is”. We have, similarly, the notion of a program that computes a projection
operator (on a tensor product of H’s), and of a program that computes the
initial state |ψo〉. We now regard H, state |ψo〉, and the lists of unitary and
projection operators as “physically realistic” if, for some H-basis, there exist
programs that compute all these objects. This appears to be a rather mild
condition.

Some terminology will allow us to formulate the idea of the previous
paragraph more neatly. Fix, as before, i) a finite-dimensional Hilbert space
H, ii) a unit vector |ψo〉 therein, iii) a finite list of unitary operators (labeled
by strings) on various H-tensor products, and iv) a finite list of projection
operators (labeled by strings) on various H-tensor products. We call a string
S a history if it is of the form S1 ∗ ∗S2 ∗ ∗ · · · ∗ ∗Sk, where each of the
strings S1, · · · , Sk is either i) a unitary operation (string), or ii) a projection
operation (string) to which either “∗0” or “∗1” has been appended. Thus, a
typical history string might be “k9∗yzr ∗0∗∗B ∗xx∗ABC”: The rightmost
entry represents the unitary operator UB applied to Hxx ⊗HABC ; the other
entry the projection operator Pk9 applied to Hyzr; with “∗0” appended.

Now consider the running of some quantum-assisted program. Each time
an apply command is executed, some things will be done with respect to
the Hilbert space H: This Hilbert space will be expanded (if necessary)
by taking additional tensor products with H-copies; the state |Ψ〉 will be
adjusted (if necessary) with ⊗|ψo〉’s to lie in this expanded Hilbert space; and
a certain unitary operator will be applied to this state. The same goes for an
observe command, except that in this case either the projection operator
P (from the list) is applied to the state (the case in which the observation
yielded “1”), or the projection operator (I−P) is applied (observation yielded
“0”). The other commands, input, output, delete, append, and if,
do nothing with respect to H. Thus, as of any one moment during the
running of the program, H will have been subjected to some finite number
of such operations, in some order. But this is precisely the information
contained in a history. In other words, a history string provides a complete
summary of what has happened with respect to H as of a certain moment.
Perhaps “virtual history” would be a better term, for we admit as histories all
strings formed by the rules of the previous paragraph, whether or not they
happen to represent what has actually occurred. From the history string
we may determine what the Hilbert space H is at that moment, what state

93

(in H) the quantum system is in, and what information (0’s and 1’s) has
been passed so far from the quantum system to storage locations. From the
history “S = k9 ∗ yzr ∗ 0 ∗ ∗B ∗ xx ∗ ABC” of the previous paragraph, for
example, we would determine that H = Hyzr⊗Hxx⊗HABC , that the state is
((I −Pk9)⊗ I ⊗ I)((I ⊗UB)(|ψo〉|ψo〉|ψo〉)), and that value “0” was returned
on the execution of the one observe command. The idea, in short, is to
reflect the entirety of the quantum part of quantum-assisted computing by a
string, something we can easily dissect.

For S any history, denote by γ(S) the squared norm of the state (as
determined by S) in the Hilbert space (as determined by S). Thus, for
example, we have γ(S) = 1 if the history S contains no projection operations
(since |ψo〉 is unit, and unitary operators are norm-preserving); and, for a
general history S, 0 ≤ γ(S) ≤ 1. This real-valued function γ on histories
carries all the relevant information about the workings of quantum mechanics
within our quantum-assisted language, in a sense that will become clear
shortly.

Now suppose that, with respect to some standard basis for H, there
exist a program that computes the initial state |ψo〉, as well as ones that
compute each of the unitary and projection operators in our lists, in the
sense described above. Then we may combine these to produce a program
that, given any history S, will compute the components, in terms of this
standard basis, of the state determined by this S. It is now a simple matter
to write a program that computes the function γ, in the following sense. This
program accepts as input any history S and positive integer n, and returns
some rational number within 1/n of γ(S). The existence of such a program
implies, of course, that each number γ(S) is computable, but it also implies
somewhat more: It means that there is a single rule that suffices to provide
an approximation for every γ(S).

We now return to the issue raised at the beginning of this section. We
claim: Any number that is computable by a quantum-assisted program, us-
ing computable initial state and operators, is also computable by a regular
program. The proof, much like that of the similar result for probabilistic
programs, is by simulation.

Fix H, and let |ψo〉 and the labeled unitary and projection operators be
computable, in the sense above. Now fix a quantum-assisted program Pquant,
together with the input string, Sin, on which this program is to be run. We are
going to construct a regular program, Preg, that will simulate the running of

94

Pquant on Sin. Suppose that Pquant has been run for a few steps, encountering
an apply command or two, but no observe command. Then the entire
state of the computer (including the quantum system) can be expressed, as
of this moment, by giving three pieces of information: i) which command
in the list Pquant is slated to be executed next; ii) which string is stored in
each (nonempty) storage location; and iii) the history, S, of the quantum
system. Let us now carry Pquant through the next step (say, a non-observe
one). To simulate this step, we update the three pieces of information in the
obvious way: For i), we now indicate what is the new next command; for ii)
we make an adjustment (required only if that step was append or delete;
and then to only one of the stored strings) to reflect the new string-storage;
and for iii) we add an entry (required only if that step was apply) to the
history. In this way, we continue our simulation of Pquant, step by (non-
observe) step. What happens when we reach an observe command? Now
there will be two possible outcomes, depending on whether the observation
returns 1 or 0. We reflect this state of affairs by splitting our description into
two branches, each of which carries three pieces of information as above. In
one branch, corresponding to the observation returning “1”, the three pieces
of information read: for i), the next command to be executed; for ii), the
same stored strings, but with “1” appended to one particular string; and,
for iii) the same history string, but with the addition a certain projection
operation and “ ∗1”. In the other branch, we enter, similarly, the three
pieces of information appropriate to the case in which observation returns
“0”. We now continue to simulate the behavior of Pquant in each of these
two branches separately. As more observe commands are executed, the
number of branches will grow, as will the burden of separately simulating
what happens within each branch. But at every stage in this simulation, we
shall have a finite number of branches, each described by just these three
pieces of information.

So, Preg simulates Pquant, in this way. Every so often, one of the branches
being simulated by Preg will reach an output command (after which there
is nothing more to simulate). When that occurs, the program Preg reads the
output string S and the final history S for that branch, stores this information
in a special section, and drops that branch from further consideration. [We,
of course, know that γ(S) is the probability that the actual program Pquant

will take this branch, reaching this output and returning this S.] Thus, as
the simulation by Preg continues, the list of string-history pairs in this special

95

section will grow. Our program Preg will include, furthermore, a subroutine,
which accepts as input a positive integer n, and operates as follows. The
subroutine goes to this special section, takes each of the history strings in
that section, and computes γ of that history, within error 1/n (here using
the program that we constructed from the reference manuals). It then totals
these numbers, for each output string listed in that section. Finally, the
subroutine checks to see if any one output string, say S, has emerged as
a clear winner (i.e., is such that no other string S ′ will ever be able to
achieve a total exceeding that for S, even if we allocate to S ′ all the so-far
unallocated probability, and even if we assume that all the 1/n-errors in these
probabilities are resolved in S ′’s favor). If the subroutine finds such a clear
winner S, then it causes Preg to halt immediately, giving that S as output.
If there is no clear winner, then the subroutine returns Preg to its simulation.

The full program Preg now operates as follows: Every so often (say, after
every hundred steps of simulation), Preg runs the subroutine, using an n-
value one higher than that for the previous run. So, this program Preg will
continue to run in this way: continuing to carry out the simulation of Pquant,
continuing to store the results for halted branches in the special section, and
continuing to make ever-finer checks on the status of that special section.
Now suppose that the program Pquant computes a problem π, i.e., that, for
every input string Sin, Pquant has probability zero of failing to halt, and has
probability of halting with output π(Sin) that exceeds that of every other
possible output. In this case, our simulation Preg must eventually halt, for
eventually it will have accounted for sufficient probability to identify π(Sin)
as the clear winner. At this point, Preg will return π(Sin).

What we have shown, then, is that, given any quantum-assisted program
that computes a problem, we can, by simulating it in this manner, build a reg-
ular program that computes the same problem. Note that Preg always halts,
giving the correct answer, π(Sin). The quantum-assisted program Pquant, by
contrast, gives this answer only probabilistically. Note also that this argu-
ment makes essential use of the program that computes the function γ. In
any case, we conclude that any problem that is computable by a quantum-
assisted program, with computable |ψo〉 and operators, is also computable
by a regular program.

The result of this section is of perhaps only mild interest. What is impor-
tant, and what we shall use extensively in the what follows, is three notions:
that of a history; that of the function γ; and the present strategy for simu-

96

lating a quantum assisted computation.

19 Quantum-Assisted Difficulty Functions

In Sect. 10, we defined a difficulty function for any program that computes
some problem, π. This positive, real-valued function represents the amount
of “computer time”, as a function of the input string Sin, required to compute
π(Sin). We now wish to do the same thing for any quantum-assisted program
that computes a problem. We shall do so in two steps. First, we assign a dif-
ficulty to each individual command in our quantum-assisted language. This
will entail a certain restriction on the unitary and projection operators that
go into the language. Second, we adapt the notion of a difficulty function to
take into account the fact that quantum-assisted computing provides answers
only probabilistically.

There are seven types of commands that may appear in a quantum-
assisted program. Five of these — input, output, append, delete,
and if — are the original commands we introduced in Sect. 12; and it is
natural to assign to these commands the difficulties we already chose earlier.
But what of the two new commands — apply and observe? Note that we
have finite lists of the unitary and projection operators that are permitted
to appear in these commands. So, in effect, each of apply and observe
represents a finite number of physical operations. A natural choice would
thus seem to be: Assign, to each apply and observe command, difficulty
one. But, unfortunately, things are not that simple, as the following example
illustrates.

Consider a problem, π, that accepts as input a positive integer n, return-
ing either 0 or 2; and is such that every program that computes this π has
difficulty function f that grows very quickly with n (say, faster than 2 to
the power of 2 to the power of 2, etc, for n iterations). We have seen in
Sect. 11 that there does indeed exist such a (computable) problem. Now set
c′ =

∑
n π(n)/3n, a certain real number. Thus, this c′ is constructed in the

same manner as the noncomputable number c of Sect 6, but, in contrast to
that c, is a computable number (since the problem π is). The point, how-
ever, is that c′ is hard to compute: The number of computer-steps required
to approximate c′ within 1/n grows very quickly with n. Let us now consider
a quantum-assisted language in which the Hilbert space H is 2-dimensional,

97

and the list of unitary operators includes a Uθ that applies a rotation, to a
single H, through angle θ, just as in the previous section. Now, however,
we choose cos2 θ = c′. We next write a quantum-assisted program in this
language similar to that of the previous section. That is, this program re-
peatedly applies Uθ and makes an observation, resulting in a Monte-Carlo
estimate of cos2 θ. In order to compute π(n), we must estimate the value of
c′ to within 1/(2 ∗ 3n). But the error in a Monte-Carlo estimate decreases as
the reciprocal of the square root of the number of runs. Thus, we need about
(2∗3n)2 = 4∗9n applications of Uθ to have a reasonable chance of recovering
the value of π(n). For given n, carry out 10n+1 applications (just to be on
the safe side): Then we shall have a probability of correctly determining π(n)
that is high and increasing with n. Thus, we have written a quantum-assisted
program that computes this problem π with, presumably, difficulty function
10n+1 — much less than the difficulty function of any regular program that
computes π.

This was a foolish argument in the previous section, and it is no better this
time around. What this argument does show, however, is that we must be
prepared to exercise some care as to which unitary (and projection) operators
will be allowed in quantum-assisted programs, and as to what their difficulties
are to be.

It is tempting to take the position that, since this Uθ is apparently such
a terribly difficult operator, we can make things right by merely assigning
a large difficulty to to the corresponding apply command. But this isn’t
going to work: There is just one of these Uθ’s, and just one corresponding
apply command, and so there is just a one number for us to assign. Chang-
ing the difficulty of this single command from 1 to 1000, for example, will
not undermine the above argument. In fact, it appears that any attempt to
preserve this particular Uθ in our list of unitary operators will return us to
the issue of how we take into account errors. What is problematic about this
operator Uθ appears only in attempts to “approximate” it. Imagine a new
kind of quantum-assisted program that, when commanded to apply this Uθ,
actually applies an operator that is only a rough approximation to Uθ, but
which (by virtue of the roughness of the approximation) is also low in diffi-
culty. If and when, as the running of the program proceeds, a more accurate
application of Uθ becomes necessary, then our program would go back and
redo the original apply command, but this time applying something that is
closer to the actual Uθ (and carries a larger difficulty).

98

So, it appears that the only way we can avoid a very complicated program-
ming environment, in which errors must constantly be taken into account, is
to banish this Uθ from out list of unitary operators. But this is a slippery
slope: Will there be allowed other unitary operators, based on numbers that
are a little easier to compute, but still pretty hard? Where do we draw the
line? Our approach will be to go ahead and slide down the slope, i.e., to rule
out all but the “simplest” U ’s.

Fix an m-dimensional Hilbert space H, a unit vector |ψo〉 in H, and finite
lists of unitary and of projection operators, each acting on on some finite
tensor product of H’s. We say that this arrangement is simple if, for every
history string S, the number γ(S) is rational; and furthermore there exists a
(regular) program that computes this γ, with difficulty function f satisfying

f(S) ≤ Nop(S) mNH(S). (13)

Here, Nop(S) denotes the total number of (unitary or projection) operations
represented by the history string S, NH denotes the total number of copies
of the Hilbert space H that appear in the final tensor product (within which
γ(S) is computed), and m is the dimension of H. Note that simplicity implies
immediately that γ is computable, in the sense of the previous section.

Here is why this definition is what it is. Fix some basis for H, say
|α1〉, |α2〉, · · · , |αm〉. Then, as we have seen, we may construct from this
H-basis a basis for every tensor product, H⊗H⊗· · ·⊗H, of H’s. For n H’s
in the tensor product, this basis will contain mn vectors, each of which is a
product of some n vectors in our H-basis, e.g., |αi〉|αj〉 · · · |αk〉. Now suppose
that, with respect to this basis, the components of |ψo〉 and of all the unitary
and projection operators in our list are rational numbers. This is about as
simple as |ψo〉 and the U ’s and P ’s could possibly be. Now, in this case
each value of γ will certainly be rational. Furthermore, we can easily write
a program that computes γ. This program would take the history S and
express explicitly, in terms of our basis, the result of applying in succession
each operation contained in S. The program then takes the resulting final
state, again expressed in terms of components in this basis, and computes
its squared norm.

What is the difficulty function of this program? Consider one of the
operations — say, application of some unitary U — in the history string S,
and suppose that, at the point at which this U is applied, the Hilbert space is

99

a tensor product of n copies of H. Then, at that point, the dimension of this
Hilbert space will be mn, and so the current state will have mn components,
and so the record of this state in our program will require that mn entries
be stored. To apply the operator U to this state will entail replacing each
of these entries by a linear combination of other entries. That is, in order to
compute the effect of this U we shall have to carry out a number of arithmetic
operations given by a small multiple of mn. Note — and this is a key point
— that there is no savings from the fact that U actually operates on a small
number of H’s in that tensor product. For example, say that H has basis
|0〉, |1〉, and let U act on a single H, by U |1〉 = 4

5
|1〉+ 3

5
|0〉, U |0〉 = 4

5
|0〉− 3

5
|1〉.

Let the current tensor product consist of a large number n ofH’s, and suppose
that this U is acting on the 73rd one. Consider any two basis-elements,

|0〉|1〉|1〉|0〉 · · · |1〉 · · · |0〉|1〉,

|0〉|1〉|1〉|0〉 · · · |0〉 · · · |0〉|1〉.
differing only in their entry for the 73rd copy of H. Now, the action of U
will mix these two elements. Thus, to compute how this U acts, we will have
to carry out a small arithmetic computation involving the component-values
stored in these two locations. But the same is true for all mn component-
values stored. So, the order of mn arithmetic operations must be carried out.
And, apparently, there is available no shortcut, by which multiple entries
can be calculated or stored all in one shot. The next application of a U may
involve the 194th H in the tensor product, and to compute its action will
again involve the entries in all the mn locations, grouping those entries in a
different way from that of the previous application of U .

So, under the assumption of rational components in a certain basis, the
difficulty required to compute the effect of application of one U or P in our
list is a small multiple of mn. So, the total difficulty to compute the rational
number γ(S) is a sum of terms, one for each operation in the history S and
each of the form mn, where “n” is the then-number of H’s in the Hilbert
space. Eqn. (13) is a simpler, and somewhat weaker, expression of this
bound. We conclude: In the case in which |ψo〉 and the U ’s and P ’s have
rational coefficients in some H-basis, that arrangement is simple as defined
above. In fact, a few other cases are also allowed by the definition, e.g., that
in which U is of the form U |1〉 = 1√

2
{|1〉 + |0〉}, U |0〉 = 1√

2
{|1〉 − |0〉}. The

100

definition of “simple” as given has the advantage that it allows these other
cases, and also that it makes no reference to any basis.

So, in short, a system — of |ψo〉, some unitary U ’s and some projection P ’s
— is simple if the only thing that counts in computing γ(S) is the number of
operations represented by S and the size of the Hilbert spaces on which these
operations act. There is no factor to represent “how hard” the arithmetic
manipulations are. Simplicity means, in effect, that the operators require
only “easy” arithmetic.

We are now in a position to appreciate the key difference between a
quantum-assisted program and a regular program. The quantum-assisted
program can apply one of its unitary or projection operators in a single step.
This is because the operators themselves are rather simple, and each of them
applies to only a few H’s. The quantum-assisted computer simply assembles
the appropriate two or threeH’s, and applies the operator — all without even
knowing about any other H’s that may be involved in the tensor product.
But, in order for a regular program to see what is happening, it is necessary
for that program to consider all the H’s in the tensor product: It cannot
simply ignore those H’s to which the operator does not apply. In short,
quantum mechanics is able to do (easily; probabilistically) what non-quantum
mechanics can only compute (with much more difficulty; numerically). This
state of affairs is reflected by the fact that the regular program ends up
with a difficulty function for γ satisfying Eqn. (13), whereas the analogous
inequality for a quantum-assisted program would read: fquant(S) ≤ Nops(S).
What quantum mechanics has going for it, in short, is the tensor product.

So, we have decided what combinations of H, |ψo〉, U ’s, and P ’s (namely
the simple ones) to allow in our quantum-assisted programs; and what dif-
ficulty (namely, one each) to assign to the new commands, apply and ob-
serve, in that language. We must now contend with the probabilistic aspect
of quantum-assisted computing.

Fix a quantum-assisted program, Pquant, that computes some problem,
π, in the sense of Sect. 17. Thus, for every input string, Sin, we have a
probability distribution p on the possible outcomes with this Sin; and these
satisfy p(∗) = 0, and p(π(Sin)) > p(S ′) for every S ′ 6= π(Sin). We wish to
assign a difficulty function to this entire program.

Fix an input string, Sin, and run Pquant for that string. Then during
this run, various commands will be executed, and to each of these we have
assigned a difficulty. Let us keep track of the cumulative total difficulty

101

during the running of the program. Now should it happen, on this particular
run of Pquant, that the program fails to halt, then the cumulative difficulty
will, of course, grow without bound. But if Pquant does halt, then there will
be some total cumulated difficulty, ν, as of that halt. We shall have some
probability distribution on the possible cumulated difficulties, i.e., for each
ν, we have a number p(ν) ≥ 0, such that

∑
ν p(ν) = 1. Denote by D the

mean total difficulty: D(Sin) =
∑

ν ν p(ν). This is the difficulty that would
be experienced “on the average” in one run of Pquant with input string Sin.
Of course, it is only an average: On any given run, it is entirely possible that
the actual cumulated difficulty turn out to be much greater than D(Sin) —
or much less. Note that the sum defining D(Sin) need not converge: The
difficulty ν could grow very much more quickly than p(ν) approaches zero.
[Exercise: Find an example.] If this should occur, then we assign Pquant

infinite difficulty for the input string Sin, and give up on further efforts to
find a difficulty function for this program. Note that, by simulating, as in the
previous section, the running of Pquant on input string Sin, we could compute
an increasing sequence of rational numbers that converges to D(Sin) (or,
in the case in which D(Sin) = ∞, that grows without bound). It seems
unlikely, nevertheless, that D is always computable, in the sense that there
always exists a (regular) program that, given Pquant, Sin, and positive integer
n, returns a rational within 1/n of D(Sin). Indeed, even the problem of
whether or not D(Sin) is finite is probably also not computable.

In any case, we have the notion of the mean difficulty, D(Sin), for one
run of Pquant with input string Sin. But, unfortunately, a single run doesn’t
give us the answer, but only a probability distribution on possible outputs.
The “real” answer, of course, is buried in there, in the form of the most
likely output; and in order to figure out what that answer is, we must run
Pquant repeatedly. What me must determine, then, by what factor to multiply
the mean difficulty, D(Sin), to correct for this probabilistic character. To this
end, let us run this program a total of r times, keeping a record of the various
outputs that result. At the end of all these runs, we announce as the answer
that output that occurred most frequently. Sometimes we will announce the
correct answer, π(Sin), and sometimes the wrong answer. Denote by κ(r) the
probability that our announcement is wrong. The following Lemma states,
roughly speaking, that, as the number r of runs increases, this probability
κ(r) goes to zero as e−Kr, for a certain number K:

102

Lemma. Consider a collection of positive numbers, with sum one. Denote
the largest by p and the next largest by p′, with p > p′. Carry out r runs in
the corresponding probability distribution, and denote by κ(r) the probabil-
ity that the most frequent single outcome is not the most probable outcome
(i.e., not the p-outcome). Then the limit of − log κ(r)/r, as r → ∞, exists,
and has value K = (p− p′)2/2[(p+ p′)− (p− p′)2].

The proof uses two facts. First, for large r, any other outcome, say with
probability p′′ < p′ has negligible probability, compared with that of p′, of
being the most frequent outcome. And, second, the difference between the
numbers of p-outcomes and p′-outcomes is, for large r, normally distributed,
with mean r(p− p′) and variance (r[(p+ p′)− (p− p′)2])1/2. For the present
application, the p of the Lemma is p(π(Sin)), and the p′ is the probability of
the next-most-likely outcome. Note that the number K of the Lemma here
depends on the input string Sin (through the dependence of the probabilities
p, p′ on Sin).

Now fix a small number po > 0, which we shall interpret as the “largest
probability of error that we are willing to tolerate”, i.e., as a confidence limit.
Let us run our program a number r = ro of times, such that the probability
of an erroneous announcement is within our tolerance, i.e., ro is the smallest
positive integer such that κ(ro) ≤ po. The mean total difficulty, for these
ro runs, is given by fpo(Sin) = roD(Sin). The limit of small po is the limit
of large ro, i.e., the limit described in the Lemma. We thus conclude from
the Lemma that fpo(Sin) is approximated by [D(Sin)/K(Sin)] (− log po) in
this limit. Note that the probability po appears in this formula only in a
common overall factor. But a common overall factor is precisely what our
equivalence relation on difficulty functions is designed to ignore. Thus, up to
equivalence, po (in the limit of small po) drops out! It makes no difference,
up to equivalence, how small is the probability of error that you are willing
to tolerate. In the argument above, we (for simplicity) ignored the fact that
there must always be executed at least one run of Pcomp. To take this fact into
account, we may simply add the difficulty function for a single run, D(Sin),
to the difficulty function, D(Sin)/K(Sin), that results from this argument.
But D(Sin)/K(Sin) +D(Sin) is equivalent to D(Sin)(p+ p′)/(p− p′)2, where
we have substituted for K from the Lemma. We summarize this discussion
as follows:

103

Let Pquant be a quantum-assisted program that computes some
problem, π. Then we shall assign to this program the difficulty
function given by fquant(Sin) = D(Sin)(p + p′)/(p − p′)2, where
D(Sin) is the mean difficulty for running Pquant on input string
Sin, p is the probability that that run results in output π(Sin),
and p′ < p is the probability of the next most probable output.

The factor, (p + p′)/(p − p′)2, by which D(Sin) is multiplied reflects the
increase in difficulty due to the fact that Pquant computes our problem only
probabilistically. This factor is always at least one, and for p = 1 (and so
p′ = 0) this factor is exactly one, as expected. When p and p′ are very
close, the factor is large, reflecting the fact that there must be carried out
many runs of Pquant, on the given input string Sin, in order to have a decent
chance of announcing the correct value of π(Sin). In most cases of interest,
the probability for the correct outcome dominates the other probabilities,
in the following sense: There exists a positive number, independent of Sin,
such that p(π(Sin)) exceeds the next-highest probability by at least that
number. [This condition is always satisfied, e.g., if p(π(Sin)) ≥ 3/4. Indeed,
one would perhaps not even regard Pquant as “really computing” the problem
if this condition were not satisfied.] In any case, whenever this condition
is satisfied, then the factor (p + p′)/(p − p′)2 is bounded above, and so in
this case the difficulty function, up to equivalence, is given simply by D(Sin).
That is: Under this rather weak condition, we may assign to a program Pquant

that solves a problem the difficulty function whose value on any input string
is the mean difficulty of running that program on that input string.

Exercise. Let Pquant and P ′quant, with respective difficulty func-
tions fquant and f ′quant, both compute the same problem. Is there
a way to alternate between these two programs, constructing a
program P ′′quant that also computes this problem, with difficulty
function given by f ′′quant(Sin) = min(fquant, f

′
quant)?

As an example of these ideas, consider again the Grover construction, as
reflected by the three distinct quantum-assisted programs introduced in Sect.
17. We now determine the difficulty function for each of these programs. For
input n, a positive integer, denote by h(n) the difficulty encountered by
a quantum-assisted subroutine in applying the entire operator WV to the

104

tensor product, H⊗· · ·⊗H, of n H’s, so h(n) ≥ n. Then, as part of the lore
of this construction, this same h(n) will be the largest difficulty encountered
by a regular program making a check to see whether a single k is the needle
in the n-haystack. Thus, a regular program can compute this problem with
difficulty function freg(n) = Nh(n), where N = 2n is the total number of
needles in the haystack.

In the first quantum-assisted program, there is made a single iteration of
WV , followed by a series of n observations. There results a candidate k for
the needle, which is then immediately reported using output. The proba-
bility (p) that this k is the actual needle is about 9/N ; while the remaining
k-values share the rest of the probabilities (so each p′ is about 1/N). The
mean difficulty in this case is D(n) = h(n) + n (since there is performed a
single iteration followed by n observations). Substituting into our formula,
we obtain a difficulty function (for large N) fquant(n) = (10/64)(h(n)+n)N ,
which is equivalent to the difficulty function, above, of the regular program.
It should come as no surprise that this strategy for a quantum-assisted com-
putation brings no advantage.

In the second program, there is made a total of
√
N (give or take a

couple) iterations of WV , again followed by a series of n observations, and
the reporting of a needle-candidate. Here, the mean difficulty is D(n) =√
Nh(n) + n. The probability that the reported k is the actual needle is

now about p = 1 − 1
N

, while the remaining k-values share the rest of the
probabilities (so p′ is approximately 1

N2). Substituting into our formula,

we obtain difficulty function fquant(n) = (
√
Nh(n) + n)(1 − 1

N
+ 1

N2)/(1 −
1
N
− 1

N2)
2. This function, for large N , is equivalent to

√
Nh(n). Note that

the difficulty function for this program is ¿ than the difficulty function for
the regular program, reflecting a potential advantage for the quantum-assist
(which would, perhaps, be a real advantage, if only we had a good candidate
for what problem is being computed here).

In the third program, we begin, just as above, with a total of
√
N it-

erations of WV , followed by a series of n observation. But in this case
we check, using the regular program, whether or not the k that results is
indeed the needle. If it is, report that k (thus incurring total difficulty√
Nh(n) + n + h(n)); but if it is not, go back to the beginning, carrying

out the iterations and the observations again. Repeat until you find the
needle. In this case p = 1, p′ = 0 (since we will either find the needle, or

105

(with probability zero) continue trying forever). But now the mean difficulty
(which really is a mean in this case, for now there is a nontrivial probability
distribution on difficulties) is more complicated. The probability that we
carry out just one group of

√
N iterations of WV is 1− 1

N
(approximately);

that we carry out two is 1
N

(1− 1
N

); etc. So, the mean difficulty is given by

D(n) = (
√
Nh(n)+n+h(n))[1(1− 1

N
)+2

1

N
(1− 1

N
)+3

1

N2
(1− 1

N
)+· · ·]. (14)

The sum on the right is (N
N−1

). Substituting these into our formula, we
obtain, for large N and up to equivalence, the difficulty function of this
program: fquant(n) =

√
Nh(n). This is identical to the difficulty function of

the previous program.
These are precisely the results that we expect. The first program is not

really exploiting the potential advantages of quantum mechanics, and its dif-
ficulty function shows it. The last two are essentially the same program. The
only difference is that the first program has a fixed difficulty per run (as op-
posed to a probability distribution in difficulties), but leaves some unfinished
business in form of the output-probabilities; while the second yields certainty
for the correct output, at the cost of possibly requiring several repetitions.
Our definition of the difficulty function of a quantum-assisted program is so
constructed to ignore such window-dressing.

20 Limitations on Quantum-Assisted Com-

puting

This completes our formulation of quantum-assisted computing. This for-
mulation begins by fixing a character set; together with a finite-dimensional
Hilbert space H, a state in that Hilbert space, and finite lists of unitary
and projection operators, each acting on some finite tensor product of H’s.
On these objects we impose the condition of simplicity. We then introduce
a quantum-assisted programming language, consisting of some seven com-
mands. We introduce the notion of a program’s computing a problem; as
well as the difficulty function associated with such a program. These are the
building blocks of quantum-assisted computing. In this section and the next,
we compare quantum-assisted programs and regular programs with respect

106

to their difficulty functions. Here, we obtain a result to the effect that the
maximum reduction in difficulty that can be achieved by quantum-assist is
logarithmic.

Fix a quantum-assisted program, Pquant, that computes some problem π,
and denote its difficulty function by fquant. We construct a regular program,
Preg, that simulates Pquant, in the following manner. Fix the input string,
Sin. Then Preg simulates the running of Pquant, on this input string, in the
same manner as in Sect. 18. That is, at any one moment Preg is following a
number of “branches” of Pquant (each spawned by the simulated execution of
an observe command); and for each of these branches Preg keeps track of
three pieces of information: i) what is the next command, in the list Pquant, to
be executed; ii) what is stored, by Pquant, in all nonempty storage locations;
and iii) what is the history string S, representing interactions Pquant has
initiated with the quantum system. We now modify that earlier simulation,
in two ways.

First, the earlier simulation (implicitly) proceeded along each branch at
the same command-rate. That is, one additional command was executed
in every branch; then one more command in every branch, etc. Now, how-
ever, we proceed along each branch at the same difficulty-rate. That is, we
carry out one unit of Pquant-difficulty in each branch; then one more unit in
each branch, etc. Thus, branches that involve a great deal of difficulty per
command are simulated more slowly than those that involve less.

For the second modification, recall that in the earlier simulation Preg

maintained in its memory a special section, which was added to each time a
branch under simulation reached a “halt”, i.e., a Pquant-output command.
When this occurred, the program Preg stored in this section the current his-
tory string S, as of that halt, as well as the string S that would have then
been returned by Pquant. A branch, once reported in this way, was then
abandoned by Preg. The present simulation is a little different. The special
section now contains a certain list of strings and, for each such string S,
a corresponding rational number. When a branch, while under simulation,
reaches a halt, Preg immediately computes the rational number γ(S) (where S
is the current history string), adds this number to the number already stored
for string S (where S is the string that Pquant would have returned), and then
again abandons that branch. Thus, the various strings listed in this special
section are, as before, the possible outputs from Pquant up to this point. But
now the (rational) number stored for each string gives the total probability

107

that Pquant would, by this point, have returned that string. In addition, Preg

contains a subroutine, which operates as follows: It goes through the list
of strings and (rational) probabilities in the special section, and determines
whether any output string in that list can be declared a clear winner (i.e.,
has a total that is greater than that which could be achieved by any other
string, even if that string were allocated all so-far unallocated probability).
If the subroutine finds a clear winner, then Preg itself halts, returning the
winning string. This subroutine is run each time Preg finds itself making an
addition to the special section.

So, given the program Pquant, we may write this program Preg, which,
for every input string, simulates the behavior of Pquant, as described above.
Clearly, this Preg always halts, and computes the same problem as Pquant

does. Denote by freg the difficulty function of Preg. The plan is to use (13)
to find an inequality that bounds freg in terms of fquant.

Fix the input string Sin, and denote by p the probability that Pquant will
return π(Sin), and by p′ the probability of the next-most-likely output, so
p > p′. Then Preg will be able to declare a clear winner, and so will halt, at

least by the time it has accounted for an amount 1− p−p′
2

of probability. [To
see this, denote by x the amount of probability that Preg has accounted for
up to some point. In the worst-case scenario, an amount 1−p (the maximum
possible) would have been used on the non-p outcomes (including amount p′

on the p′-outcome), leaving just x − 1 + p for the p-outcome. So, in order
that there be declared a clear winner at this point, p’s amount (x − 1 + p)
must exceed p′’s amount (p′) plus the so-far unallocated probability (1−x).]
Denote by N the total amount of Pquant-difficulty that Preg has simulated (in
each branch) at the point at which Preg halts. Then we have

fquant(Sin) = D(Sin)
p+ p′

(p− p′)2
≥ {N p− p′

2
} p+ p′

(p− p′)2
≥ 1

2
N . (15)

The first step in (15) is the definition of fquant. The second step uses the fact
that Preg has already gone through amount N of Pquant-difficulty, and yet

there still remains probability at least p−p′
2

that Pquant has not halted. This
fact alone contributes to the mean total difficulty of Pquant an amount equal
to the product of these two numbers.

We must now relate freg to this N . To this end, denote by Mop the
maximum number of operators that can be applied, in our language, per unit

108

difficulty; and by MH the maximum number of additional H’s that can be
introduced into the tensor product per unit difficulty. For example, if each of
apply and observe is assigned difficulty one, and if no unitary or projection
operator in these lists requires a tensor product of more than three H’s, then
we would have Mop = 1,MH = 3. Note that Mop and MH depend only on the
our quantum-assisted language and its difficulty-assignments, and not on the
particular program under consideration. Returning now to our simulation,
since Preg has traversed total Pquant-difficulty N in each branch, the total
number of operators that have been applied in each branch is bounded by
MopN ; while the total number of H’s that can occur in the tensor product
in each branch is bounded by MHN . We have

freg ≤ {2Mop N} {N + (MopN)2 mMHN}. (16)

The first factor on the right is an upper bound on the total number of
branches, where we are using the fact that each observe command spawns
the splitting of one branch into two. The second factor on the right in (16)
is an upper bound on the total Preg-difficulty of each branch. The first term
therein covers the case in which the Pquant-command simulated is input,
output, append, delete, if, or apply. The second term covers the sim-
ulation of an observe command: The bound in this case is the product of
our bound (MopN) on the number of observe commands in a branch and
the difficulty (from (13)) required to compute, for each observe command,
the rational number to include in the special section. Combining (15) and
(16), we obtain

freg ≤ afquant , (17)

where we have chosen any a > 22Mopm2MH . [The little extra in this a takes
care of the sums, extraneous factors of N , etc.]

We conclude: Given any quantum-assisted program, there exists a regular
program that computes exactly the same problem, and has difficulty function
satisfying (17). The benefit in efficiency from the quantum-assist cannot be
more than exponential. There is a more elegant, if slightly less informative,
way of putting this. First note that if f is any difficulty function that is
bounded away from one, then log f is also a difficulty function; and that
if f ∼ f ′, then log f ∼ log f ′ also15. In light of this observation, we may

15There is actually a check to be done here. For example, the same assertion, with
“exp” replacing “log”, is false.

109

take the log of (17), to obtain a formula free of constants: log freg ≤ fquant.
Of course, these general inequalities are rather coarse. If, in a particular
example, a finer inequality is wanted, it usually can be obtained by applying
(13) directly.

As an example of these ideas, let us return to the Grover construction.
Here m = 2. Let us assign to each apply and observe command difficulty
one; and suppose that none of these operators require a tensor product of
more than two H’s. Then Mop = 1 and MH = 2. Choose, for a > 22Mopm2MH ,
the value a = 65.

Our quantum-assisted program computes this problem with difficulty
function fquant(n) =

√
Nh(n), where N = 2n. The inequality (17) now

implies the existence of a regular program to compute this problem, with
difficulty function freg(n) ≤ (65)

√
Nh(n). We can find a much better bound

than this. This particular program requires, for given n, just n H’s in
the tensor product, and it applies to this Hilbert space just h(n) opera-
tors. Thus, to simulate a single observe requires of Preg difficulty h(n)2n.
There is a total of n such observe commands to be executed, and so we
obtain freg(n) ≤ nNh(n). Recall, by contrast, that the actual regular pro-
gram for this construction has an even smaller difficulty function, namely
freg(n) = Nh(n). The extra factor of n in the former reflects the fact that
our simulation recomputes γ(S), from scratch, for each observation, whereas
it is more efficient to carry out these n computations together.

21 Quantum-Assisted Efficiency

This subject cries out for an example — for one clear-cut instance in which
the promise of greater efficiency through quantum-assistance is fulfilled.

Challenge. Find an example of a problem π together with a quantum-
assisted program, Pquant (with difficulty function fquant) having the following
property: There exists no regular program, Preg, that computes this same
problem and whose difficulty function freg satisfies freg ≤ fquant.

To meet this challenge requires, in other words, that there be produced
a problem and a quantum-assisted computation thereof; together with a
proof that there exists no regular program does the computation at least

110

as efficiently16. As far as I am aware, this challenge remains open. The basic
impediment seems to be, not any defect in the idea of quantum-assisted com-
puting, but rather the fact that we simply do not have good lower bounds
on difficulty functions for regular programs.

The obvious way to meet this challenge would be to construct π by a diag-
onal argument. That is, we would introduce the list of all quantum-assisted
programs that compute problems, the list of all regular programs that com-
pute problems, and the list of all input strings. In order to choose what π
is on the first string, S1, we would try a few quantum-assisted programs on
this string, as well as a few regular programs, determining what final strings
result, and what difficulties are encountered. Then, we would select π(S1)
so as to to eliminate the “faster” regular programs as well as the “slower”
quantum-assisted programs. Continuing in this way through the list of input
strings, we would hope to design a π on which quantum-assisted programs
are more efficient. But this line, apparently, has so far not met with success.

Lacking an example of a quantum-assisted program for which we can
prove that there exists no regular program of comparable (or lower) diffi-
culty, we might try for the next best thing: an example of a problem and a
quantum-assisted program that computes it, such that no regular program
of comparable difficulty is known; and such that it is very hard to see how
any such program would be written. We sketch one candidate for such an
example below. There may very well be much better examples.

The plan is to come up with a problem for which quantum-assisted pro-
grams are well-suited, but regular programs are not. Consider, for instance,
the following: Let π accept as input a pair (Pquant, Sin), where Pquant is a
string representing a quantum assisted program, and Sin is any string; and
let π, on such input, return the string that is determined by running program
Pquant on input string Sin. Quantum-assisted programs are certainly well set

16It is tempting to pose a stronger challenge, namely, that which results from replacing
the last part of the sentence with “. . . every regular program Preg that computes this
same problem has difficulty function satisfying fquant ¿ freg.” But this challenge is too
strong: It is unlikely that it could ever be met. The reason is that there can usually be
found a regular program that has greater difficulty than Pquant for most input strings, but
much less difficulty for just a few. The corresponding freg will not satisfy freg ¿ fquant.
[We saw an example of this in Sect. 12, in which we introduced the method of determining
primeness of a given integer by looking for factors in the usual manner, but first checking
whether or not the given integer is a perfect square.]

111

up for this π! But, unfortunately, this π is not even a problem, for Pquant,
applied to Sin, need not determine any string at all: The program may fail to
halt altogether; or, even if it does halt, it may do so such that no one output
has a probability strictly greater than that of every other possible output
string17.

A possible line to avoid the difficulty of the previous paragraph would
be to focus on the essence of quantum-assisted computing: the function γ.
For example, fix the quantum-assisted language, and let the problem be the
following: For S any history string, π(S) = γ(S). This is indeed a problem;
and, indeed, any regular program apparently would require a relatively large
difficulty function to compute it. But this example does not work either,
for no quantum-assisted program can (at least, not in any obvious way) do
any better! Quantum-assisted programs are very good at taking actions in
response to probability γ(S), but are not so adept at actually determining
the integers in the numerator and denominator of this fraction.

With these comments as motivation, we now give our example. Let H be
2-dimensional, with basis |ψo〉, |ψo〉⊥, where |ψo〉 is our initial (unit) state.
Let there be two unitary operators in our list. Operator Urot acts on a
single H by Urot|ψo〉 = 1√

2
{|ψo〉+ |ψo〉⊥}, Urot|ψo〉⊥ = 1√

2
{|ψo〉⊥ − |ψo〉}; and

operator UTof acts on H ⊗H ⊗H, by UTof |ψo〉|ψo〉|ψo〉 = |ψo〉|ψo〉|ψo〉⊥ and
UTof |ψo〉|ψo〉|ψo〉⊥ = |ψo〉|ψo〉|ψo〉, with UTof the identity on the remaining
basis states. Let there be just one projection operator on our list, namely
P = |ψo〉〈ψo|, the projection, on a single H, onto state |ψo〉.

Now let S be any history string, composed of these three operations,
having the following property: The projection operation P appears once and
only once in the string, as the last operation to be applied, and this P is
paired with outcome “1”. Given any such history string S, set Π(S) = 1
if γ(S) ≥ 1/2; and Π(S) = 0 if γ(S) < 1/2. This is indeed a problem. In
essence, Π asks: “Is it at least a 50-50 chance that, if you apply the unitary
operators in S and then observe via P , you will obtain result ‘1’?”

We next construct a quantum-assisted program, Pquant, that computes
this problem. Let Pquant first parse the string S, to extract the individual

17It would not help to modify this example to read: π(Pquant, Sin) is the empty string
in case Pquant, applied to Sin fails to compute any string; and otherwise is whatever string
it does compute. Now we do indeed have a problem π but, unfortunately, it is not a
computable one. Indeed, there exists no program that will even decide whether or not a
given regular program and input string results in a halt.

112

operations that it contains; and then apply those operations (building, in the
process, the appropriate tensor product of H’s). The final operation to be
applied will be P (on one of the H’s in the tensor product); and let Pquant

store the result of this observation in some location. If Pquant now simply
reported that result, it would “practically” compute Π, but for one little
thing: It is possible that γ(S) might turn out to be exactly 1/2, and in this
case our Pquant computes nothing at all (since in this case no single output
will have probability strictly greater than all others). We therefore modify
our program Pquant, to take this into account, in the following way. First
note that the number γ(S) can be written as a fraction whose denominator is
given by L(S) = 2Nrot(S), where Nrot(S) is the number of Urot-operations that
appear in S. [This follows, since each application of Urot introduces a factor
of 1√

2
in the components of the state, while each UTof has, with respect to this

basis, integral coefficients.] Therefore, it is only necessary, in order to handle
the case in which γ(S) = 1/2, to modify Pquant so that it generates a small
extra probability, between 0 and 1

L
, of returning “1”. To accomplish this,

we have our program Pquant carry out the following subroutine: Construct
a tensor product of Nrot(S) + 1 H’s, with state |ψo〉 · · · |ψo〉 (Nrot(S) + 1
times); then apply Urot ⊗ · · · ⊗ Urot (Nrot(S) + 1 times) to this state; and
finally observe P ⊗ · · · ⊗ P (Nrot(S) + 1 times). If this observation returns
(1, 1, · · · , 1) (which will occur with probability 1

2L
) then Pquant halts, returning

1; otherwise (probability (1 − 1
2L

)), Pquant returns the result of its original
implementation of the input string S. This quantum-assisted program does
indeed compute our problem Π. It always returns either “1” (with probability
γ(S)(1− 1

2L
) + 1

2L
) or “0”.

Let us now determine the difficulty function of this program. The original
run, implementing S, contributes difficulty Nop(S); while the second run,
implementing the additional probability 1

2L
, contributes difficulty Nrot(S) ≤

Nop(S). Thus, the mean difficulty of each run is simply Nop(S). Using the
probabilities p and p′ = 1 − p of the previous paragraph and the formula
from Sect. 19, we obtain the difficulty function of Pquant:

fquant(S) = Nop(S) [γ(S)(2− 1

L(S)
) +

1

L(S)
− 1]−2. (18)

Note that the second factor on the right in (18) is bounded provided γ(S) is
bounded away from 1/2. [For instance, for γ(S) ≤ 1/4 or γ(S) ≥ 3/4, say,
this factor is always ≤ 16.] But when γ(S) gets close to 1/2, this factor can

113

become very large. It reaches its maximum, 4L(S)2, when γ(S) is exactly
1/2. This reflects the fact that, when γ(S) is close to 1/2, many repetitions
of Pquant will be necessary in order finally to determine whether the more
probable output is “1” or “0”.

So, we have now introduced a problem Π, together with a quantum-
assisted program, Pquant that computes it; and we have determined the dif-
ficulty function, fquant, of that program. Does there exist a regular program
that computes this same problem, with difficulty function ≤ fquant?

We first notice that there does indeed exist a regular program Preg that
computes the problem Π, simply by computing γ(S). The difficulty function,
freg, of this program is rather complicated: Its value on some given input
string S depends on the details of at what point in that string the various
H’s are inserted into the tensor product. But Eqn. (13) gives an upper
bound for freg which is the order of the correct answer. Note that this
regular program is actually more efficient than Pquant when γ(S) is close to
1/2, but is considerably less efficient otherwise18. This reflects the fact that
Monte-Carlo is a poor way to estimate a probability close to 1/2. But there
exist of course many strings S for which γ(S) is, say, greater than 3/4 or less
than 1/4; and for these freg(S) will be much larger than fquant(S). Thus, this
particular regular program does not satisfy freg ≤ fquant.

The question, then, is whether we can find any regular program at all
satisfying freg ≤ fquant. We have neither an example of such a program Preg,
nor a proof that none exists. Below, we a plausibility argument that there
exists no such regular program.

We begin by introducing a new problem. Fix an integer n ≥ 3, and
denote by Zn the collection of all strings, composed exclusively of “0” and
“1”, having length exactly n. So, for instance, one element of Z5 is “10110”.
This set Zn thus has precisely N = 2n elements. Denote by Cn ⊂ Zn the
collection of all strings in Zn whose first character is “1”, so Cn consists of
exactly half the elements of Zn. Now let A be any permutation on the set Zn,

i.e., let Zn
A→ Zn be one-to-one and onto. Then this permutation A sends Cn

to some subset, A[Cn], of Zn; and this subset again consists of exactly half
the elements of Zn. Denote by Γ(A) the fraction of all elements of Cn that
arose from applying this A to Cn. That is, Γ(A) is the number of elements

18We could, if we wished, modify Pquant so that it is always more efficient than this Preg,
by having Pquant alternate its own steps with those of this Preg.

114

of Cn ∪ A[Cn] divided by the number (namely, N
2
) of elements of Cn itself.

This Γ(A) must be between 0 and 1. For example, for A the permutation
that reverses the third and fifth entries of the string, Γ(A) = 1 (since this
A leaves Cn invariant; while for A the permutation that reverses the first
and fifth entries of the string, Γ(A) = 1

2
. [Can you think of an A for which

Γ(A) = 0?] For n large, and A “random”, Γ(A) will be fairly close to 1
2
,

although there will always exist A for which Γ(A) is close to zero or close to
one.

Next, we consider a special class of permutations on the set Zn. Fix
three distinct positive integers, (a, b, c), none of which exceed n. Let Aa,b,c

have the following action on strings in Zn: If the ath and bth entries of the
string are both “1”, then Aa,b,c reverses the cth character of the string (i.e.,
sends 1 → 0 and 0 → 1); and otherwise Aa,b,c does nothing. Thus, in Z5,
A4,2,1(10110) = 10110; while A4,2,1(11010) = 01010. Each of these Aa,b,c is,
of course, a permutation on the set Zn. Note that each permutation Aa,b,c

leaves unchanged exactly 3
4

of the elements of Zn, while permuting the other
1
4

among themselves. By applying a number of these A-permutations in
succession, one can generate rather complicated permutations on this set Zn

(but not every permutation. For example, Aa,b,c(00 · · · 0) = 00 · · · 0 for every
(a, b, c).)

Here, finally, is the problem. Let string Sin represent some integer n ≥ 3,
together with some finite list of A-permutations on Zn. Then set π(Sin) = 1
of Γ(A) ≥ 1

2
; and π(Sin) = 0 if Γ(A) < 1

2
, where A denotes the permutation

that results from applying the A-permutations in succession. Thus, if Sin

represents the integer 5 together with the single permutation A3,2,1, then
π(Sin) = 0 (since Γ(A3,2,1) = 1

4
), while if Sin represents the list A2,3,4, A1,2,3,

then π(Sin) = 1.
Here is a regular program that computes this problem (by brute force).

It introduces N = 2n storage locations, and simply follows explicitly what
each Aa,b,c does to each element of Zn. Then, after the A’s have all been
applied, it computes Γ(A), and then π(Sin). The difficulty function of this
program is given by

freg(Sin) = N(Sin)NA(Sin), (19)

where N(Sin) = 2n is the number of elements of Zn, and NA(Sin) is the
number of A-permutations represented in the string Sin.

Does there exist a regular program more efficient than this one? Well,

115

there certainly are special combinations of A-permutations that are easy to
handle directly, without recourse to all this storage and calculation. For
example, if Sin consists simply of a single Aa,b,c, repeated any even number
of times, then Γ(A) = 1, and so π(Sin) = 1. But in general the different
A-permutations feed on each other — what a given A will do depends on
what has already been done before — and it is very difficult to think of any
substantial shortcuts. Even in cases for which Γ is ≥ 3

4
or ≤ 1

4
(i.e., in which

there is a substantial overlap or underlap between Cn and A[Cn]) is hard to
see how to determine π without resorting to this brute-force method.

This problem π is, of course, a mere subproblem of the problem Π intro-
duced earlier. Let the history string S first use operations involving Urot to
construct the tensor product, H ⊗H ⊗ · · · ⊗H, of n H’s, placing the quan-
tum system in the state with the first H-state |ψo〉, the remaining H-states
1√
2
{|ψo〉 + |ψo〉⊥}. Then apply UTof-operations, corresponding to the Aa,b,c

that appear in Sin. And, finally, make an observation associated with P ,
applied to the first H in the tensor product. What Π returns for this history
string is what π returns for this Sin. Thus, the quantum-assisted program
Pquant we gave earlier to compute Π also computes this subproblem π. From
(18), the difficulty function of this program is

fquant(Sin) = N(Sin) [Γ(NA(Sin))(2− 2

N(Sin)
) +

2

N(Sin)
− 1]−2. (20)

This fquant(Sin) is far less than the freg(Sin) given in (19) when, e.g., Γ(NA(Sin))
is less than 1

4
or greater than 3

4
. They differ in this case by a factor of

N(Si) = 2n. Thus, our problem Π is a candidate for meeting the Challenge
issued at the beginning of this section. In order to defeat this candidate, it is
necessary to find a much more efficient regular program for computing this
problem. It seems unlikely that there exists any such regular program — but
it also seems difficult to prove it.

22 Non-Quantum Assistance

Quantum mechanics clearly has a potential advantage in the battle for ef-
ficient computing — the tensor product. This construction allows one to
manipulate just n physical systems, thereby carrying out operations on mn

states. Can other physical theories partake of this advantage? That is, can

116

we, in any other physical theory, carry out a “tensor-product-like” construc-
tion?

Consider electromagnetism. Suppose that we were capable of manufactur-
ing small boxes, in which there could be stimulated a total of three possible
electromagnetic modes. Thus, the electromagnetic states within each box
form a 3-dimensional (real) vector space, V . Now take two such boxes, place
them side by side, and regard these two as a single system. What is the
space of states of this combination? Well, each of the two boxes carries a
field, in some state in V , and so the state of the total system is described
by simply specifying these two elements of V . That is, the vector space of
states is V ⊕V , the direct sum of V and V (with dimension 6 = 3 + 3). Had
this instead been V ⊗ V , the tensor product (with dimension 9 = 3 × 3),
then we would have the beginnings of electromagnetic-assisted computing:
We would then proceed to introduce various interactions between the boxes,
various observations on the boxes, etc.

But tensor products, it appears, do not routinely make an appearance
outside of quantum mechanics. Is there some general principle of non-
quantum physics that rules out the tensor product, once and for all? Here
is an example suggesting that there is no such principle. Consider a one-
dimensional “box”, of length L, in which the vector space V of allowed
states is those resulting from exciting three modes of a field, given, say,
by (sin πx/L, sin 2πx/L, sin 3πx/L). To take the “product” of two such
boxes, we consider fields in the square of side L. The corresponding modes
are arbitrary linear combinations of products, sin aπx/L sin bπy/L, where
a, b = 1, 2, 3. That is, the vector space of such solutions is V ⊗ V , the (9-
dimensional) tensor product of V with itself. And, passing to a cubic box,
we obtain a space of states given by V ⊗ V ⊗ V .

But, alas, we all too soon run out of dimensions.

References

[1] Agrawal, M, Neerja, K, Nitin, S, “Primes is in P”, Annals of Mathemat-
ics 160, 781 (2004). At
http://www.math.princeton.edu/ ãnnals/issues/2004/Sept2004/Agrawal.pdf
Shows that there exists a program that computes the problem of decid-

117

ing whether or not an integer n is prime, with difficulty function given
by ≤ (log n)s, for every s > 15/2.

[2] Blum, Manuel, “A Machine-Independent Theory of the Complexity
of Recursive Functions”, J. Assoc for Comp Mach 14, 322 (1967).
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=321395
Deals with properties of difficulty that rely only on some general features
of the difficulty-measure. There are two very nice results here!

[3] Grover, L, “A Fast Quantum-Mechanical Algorithm for Database
Search”, in Proc. 28th Annual ACM Symposium on Theory of Com-
puting, ACM, New York (1996).

[4] Hartmanis, J, Hopcroft J.E., “An Overview of the Theory of Computa-
tional Complexity”, J. Assoc for Comp Mach 18, 444 (1971).

[5] Hennie, F.C., “One-Tape Off-Line Turing Machine Computations”, In-
formation and Control 8, 553 (1965). It is alleged that these techniques
can be used to show that no Turing machine can compute the palin-
drome problem with difficulty function ¿ L(S)2.

[6] Kelly, John, “General Topology”, Springer-Verlag (New York), 1975. An
appendix contains the best treatment of axiomatic set theory I have ever
seen.

[7] Lenstra, A.K., Lenstra, H.W, eds, in “The Development of the Number-
Field Sieve”, Lecture Notes in Mathematics 1554, pp 11-42, Springer-
Verlag (1993). The sieve method for computing the prime problem.

[8] Mermin, David, “Quantum Computation”, Lecture Notes, at
http://people.ccmr.cornell.edu/˜mermin/qcomp/CS483.html. A beau-
tifully done introduction of this subject. See especially Sect IV. These
notes should be a relatively quick read (since they are intended for un-
dergraduates).

[9] Pittenger, Arthur, “An Introduction to Quantum Computing Algo-
rithms”, Progress in Computer Science and Applied Logic, Vol 19,
Birkhauser. Gives some detail how to do real-world computations with
c-not gates.

118

[10] Unruh, W.G., “Maintaining Coherence in Quantum Computers”, Phys
Rev A 51, 992 (1995).

[11] Yasuhara, Ann, “Recursive Function Theory and Logic”, Academic
Press, 1971. This is my favorite book on Turing machines, unsolvable
problems, etc.

119

