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Preface

In his Principia Mathematica, Isaac Newton formalized
the notions of space and time, thereby laying the foun-
dations of a new, revolutionary science. The sweeping
success of celestial mechanics firmly established the
power of Newton’s spacetime paradigm. Soon it be-
came firmly rooted in scientific thought and it gradually
came to be an integral part of human consciousness
itself. It became commonplace to assume that space
is a three-dimensional Euclidean continuum and time
flows eternally and uniformly, indifferent to everything
else. This view reigned for over 200 years.

However, it was dramatically toppled at the be-
ginning of the twentieth century by the even more
revolutionary theories of special and general relativity.
First, Albert Einstein taught us that the flow of time is
not so indifferent after all; time intervals depend on the
state of motion of the observer. Hermann Minkowski
completed this scenario by showing us that space and
time, in fact, fuse together to form a genuinely four-
dimensional spacetime continuum. As he put it,

the whole world presents itself as resolved into such
worldlines, and I want to say in advance, that in
my understanding the laws of physics can find their
most complete expression as interrelations between
these worldlines.

This fusion served as the point of departure for Ein-
stein’s discovery of general relativity. In this theory,
spacetime geometry is no longer flat. Its curvature en-
codes the gravitational field. Spatial distances and time
intervals between events are replaced by the proper time
elapsed between them along worldlines of observers.
This duration is sensitive not only to the motion of those
observers but also to the gravitational field in the re-
gion. Space and time are no longer inert, background
entities, a canvas on which the dynamics of particles
and fields is painted. Spacetime itself is now dynami-
cal, an active player in the drama of evolution. This new
conceptual framework is truly compelling. As Hermann
Weyl said,

It is as if a wall that separated us from truth has col-
lapsed. Wider expanses and greater truths are now
exposed to the searching eye of knowledge, regions
of which we had not even a pre-sentiment.

Soon after his discovery of general relativity, Einstein
wrote to Arnold Sommerfield:

Of the general theory of relativity, you will be con-
vinced, once you have studied it. Therefore, I am not
going to defend it with a single word.

This Springer Handbook of Spacetime is dedicated
to the ground-breaking paradigm shifts embodied in
the two relativity theories and describes in detail the
profound reshaping of the physical sciences that they
ushered in. In a single volume it includes chapters on
the foundations, the underlying mathematics, physical
and astrophysical implications, experimental evidence
and cosmological predictions, as well as chapters on ef-
forts to unify general relativity and quantum physics.
The presentation is at an introductory level in that each
chapter provides a bird’s-eye view of a sub-area in
which notable advances have occurred, especially in the
past 30 years. Therefore, the Handbook can be used
as a ready reference by researchers in a wide vari-
ety of fields, not only by specialists in relativity but
also by researchers in related areas that either grew
out of, or are deeply influenced by, the two relativ-
ity theories: cosmology, astronomy and astrophysics,
high-energy physics, quantum field theory, mathemat-
ics, and the philosophy of science. It should also serve
as a valuable resource for graduate students and young
researchers entering these areas, and for instructors who
teach courses on these subjects.

The Springer Handbook of Spacetime is divided
into six parts. The first part deals with the historical
origins of the spacetime notion that emerged from spe-
cial relativity and introduces the basic ideas of special
and general relativity. It ends with an emphasis on the
intrinsic link between physics and spacetime geome-
try revealed by the two relativity theories. The second
part is devoted to a number of foundational issues, most
of which are concerned with the nature of time and
gravity. This part also discusses some subtle issues in
special and general relativity. The third part introduces
the reader to mathematical structures that have served
as powerful tools to unravel numerous implications of
the two relativity theories. Here, the emphasis is on
theoretical frameworks that are widely used in the con-
temporary research on spacetime structures, and on the
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qualitatively new results that have emerged naturally.
Because they are unrelated to the initial motivations
used by Einstein, these unexpected advances bring out
the amazing depth of general relativity and, more gen-
erally, the richness of the interplay between physics and
mathematics. The fourth and the fifth parts summarize
the observational status of the two relativity theories
and the deep influence general relativity has had on
our understanding of the cosmos as a whole. Here, one
finds another amazing synergy, namely that between ad-
vanced technology and predictions of general relativity.
One cannot be but deeply impressed by the fact that not
only is the theory exceptional in its aesthetic beauty –
its supreme conceptual economy and mathematical el-
egance – but it has also withstood some of the most
stringent and imaginative observational tests to which
any physical theory has been subjected. The sixth and
final part illustrates various approaches to the unifica-
tion of general relativity and quantum physics. They
provide a flavor of the new science that could lead us

to the next paradigm shift, taking us well beyond our
present notion of spacetime.

This Springer Handbook is the outcome of the
dedicated effort and commitment of many individu-
als. Authors accepted the difficult task of pitching
their chapters at a level that is suitable for beginning
researchers in the field and readily incorporated sugges-
tions for improvements made by the referees. Numer-
ous referees sent very detailed and helpful comments
on manuscripts. Angela Lahee coordinated a smooth
and delightful collaboration with Springer. This project
could never have been completed without the generous
support of all these individuals. We are grateful to them
all. This work was supported in part by the NSF grant
PHY-1205388 and the Eberly Research Funds of Penn
State.

June 2013
Abhay Ashtekar University Park, PA, USA
Vesselin Petkov Montreal, Quebec, Canada
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1. From Æther Theory to Special Relativity

Rafael Ferraro

At the end of the nineteenth century light was
regarded as an electromagnetic wave propagating
in a material medium called ether. The speed c
appearing in Maxwell’s wave equations was the
speed of light with respect to the ether. Therefore,
according to the Galilean addition of velocities, the
speed of light in the laboratory would differ from c.
The measure of such a difference would reveal the
motion of the laboratory (the Earth) relative to the
ether (a sort of absolute motion). However, the
Earth’s absolute motion was never evidenced.

Galilean addition of velocities is based on the
assumption that lengths and time intervals are in-
variant (independent of the state of motion). This
way of thinking about the spacetime emanates
from our daily experience and lies at the heart
of Newton’s classical mechanics. Nevertheless, in
1905 Einstein defied Galilean addition of veloci-
ties by postulating that light travels at the same
speed c in any inertial frame. In doing so, Einstein
extended the principle of relativity to the elec-
tromagnetic phenomena described by Maxwell’s
laws. In Einstein’s special relativity ether does not
exist and absolute motion is devoid of mean-
ing. The invariance of the speed of light forced
the replacement of Galilean transformations with
Lorentz transformations. Thus, relativistic length
contractions and time dilations entered into our
understanding of spacetime. Newtonian mechan-
ics had to be reformulated, which led to the
discovery of the mass-energy equivalence.
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4 Part A Introduction to Spacetime Structure

1.1 Space and Time in Classical Mechanics
Until 1915, when Einstein’s general relativity radically
changed our way of thinking, spacetime was regarded
as the immutable scenery where physical phenomena
take place. The laws of mechanics, which describe the
motion of a particle subject to interactions, were writ-
ten to work in this immutable scenery. The form of these
laws strongly depends on the properties attributed to the
spacetime. Classical mechanics relies on the assump-
tion that distances and time intervals are invariant. This
assumption, which seems to be in agreement with our
daily experience, leads to the Galilean addition of ve-
locities, which prevents invariant velocities in classical
mechanics.

1.1.1 Invariance of Distances
and Time Intervals

Classical mechanics – the science of mechanics
founded by Newton – considered that space is properly
described by Euclid’s plane geometry. Then there exist
the Cartesian coordinates (x, y, z), so the distance d be-
tween two points placed at (x1,y1,z1) and (x2,y2,z2) can
be computed by means of the Pythagorean formula

d2 D .x2 � x1/
2C .y2 � y1/

2C .z2 � z1/
2 : (1.1)

In addition, classical mechanics regards distances and
time intervals as invariant quantities. Let us explain the
meaning of this property with an example from daily
life concerning the invariance of time intervals. Mario
frequently flies from Buenos Aires to Madrid; he knows
that the journey lasts 12 h as measured by his watch.
This time, Mario wants his friend Manuel to pick him
up at Madrid airport. When the flight is about to depart,
Mario calls Manuel, who tells him that it is 9 a.m. in
Madrid. Then Mario asks Manuel to wait for him at
9 p.m. at Madrid airport, just when the plane will land.
This way of arranging a meeting assumes that the time
elapses in the same way both in the plane and on Earth.
Of course, it seems to be a good assumption because
it works effectively in our daily life. We call a mag-
nitude “invariant” if it has the same value in different
frames in relative motion (as the plane and the Earth in
the previous example). Classical mechanics considers
that not only time intervals are invariant but distances
too. In particular, the length of a body is assumed to
be independent of its state of motion. We can verify
this assumption in our daily life. For instance, we can
measure a train by spreading a tape measure along the

train. The so obtained length will seem to agree with
a measure performed along the rail while the train is
traveling. Notice that measuring the length of a moving
body requires some care; the length is the distance be-
tween simultaneous positions of the ends of the body. In
the case of the train, we can imagine that the rail is pro-
vided with sensors detecting the stretch of rail that the
train takes up at each instant. We can then determine
the length of such a stretch of rail by means of a tape
measure identical to the one used on the train.

The invariance of distances and time intervals is
a property that is supported by our daily experience.
It could be said that space and time look like sep-
arated concepts to us, and this separation seems not
to be affected by the choice of frame. This somehow
naive way of regarding space and time is a key piece
in the construction of classical mechanics. However, to
what extent should we be confident of our daily ex-
perience? Does our daily experience cover the entire
range of phenomena, or it is rather limited? Let us
use a familiar example to explain what we mean: we
could well believe that the Earth’s surface is flat if just
a little portion of it were accessible to us. However,
we realize that the Earth’s surface is nearly spherical
by considering it at larger scales. In this example, the
scale should be comparable to the radius of the globe.
In the case of the behavior of distances and time in-
tervals under changes of frame, the scale in question
is the relative velocity V between the frames. How
can we be sure that the invariance of distances and
time intervals is nothing but an appearance caused by
the narrow range of relative velocities V covered by
our daily experience? As we will explain in Sect. 1.4,
Einstein’s special relativity of 1905 abolished the in-
variance of distances and time intervals on the basis of
new physics developed in the second half of the nine-
teenth century.

1.1.2 Addition of Velocities

Velocities are not invariant in classical mechanics. Let
us consider the motion of a passenger along a train trav-
eling on the rails at 100 m s�1. The train and the Earth
are two possible frames to describe the motion of the
passenger; they are in relative motion at V D 100 m s�1.
It is evident that the velocity of the passenger is dif-
ferent in each frame. For instance, the passenger could
be at rest on the train, and thus moving at 100 m s�1

with respect to the Earth. If the passenger walks for-
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ward at a velocity of u0 D 1 m s�1, then he/she advances
1 m on the train (as measured by a tape measure fixed
to the train) each 1 s (as measured by a clock fixed to
the train). Now, how fast does he/she move with re-
spect to the Earth? The answer to this simple question
depends on the properties of distances and time inter-
vals under change of frame. Since classical mechanics
assumes that distances and time intervals are invari-
ant, we can state that the passenger advances 1 m on
the train each 1 s as measured by a clock and a tape
measure fixed to the Earth (but otherwise identical to
those fixed to the train). Besides, in this frame also
the train advances at the rate of 100 m each second.
Then, the passenger displaces 101 m each second. Thus
his/her velocity in the frame fixed to the Earth is uD
101 m s�1 D u0CV. This addition of velocities is a di-
rect consequence of the classical invariance of distances
and time intervals. It means that velocities are not in-
variant in classical mechanics; they always change by
the addition of V. On the contrary, Einstein’s special
relativity will rebuild our way of regarding space and
time by postulating an invariant velocity: the speed of
light c (cD 299 792 458 m s�1). The postulate of in-
variance of the speed of light implies the abandonment
of our belief in the invariance of distances and time
intervals, so strongly rooted in our daily experience.
Therefore, deep theoretical and experimental reasons
should be alleged to propose such a drastic change of
mind. In fact, the idea of invariance of the speed of light
is theoretically linked to Maxwell’s electromagnetism
and the principle of relativity, as will be analyzed in
Sect. 1.3. Besides, at the end of the nineteenth century
there was enough experimental evidence about the in-
variance of c. However, those experimental results were
not correctly interpreted until special relativity came on
stage.

The existence of an invariant speed provides us with
a scale of reference to understand why distances and
time intervals seem to be invariant in our daily life: ac-
cording to special relativity, distances and time intervals
behave as if they were invariant when the compared
frames (the train, the plane, the Earth, etc.) move with
a relative velocity V� c. So, it is just an appearance;
like the Earth’s surface, which seems to be flat if it is
only explored in distances much smaller than the radius
of the globe.

1.1.3 Coordinate Transformations

An event is a point in the spacetime. It represents
a place in space and an instant of time; it is a “here and

P
x'

V
O'

x
O

Fig. 1.1 Frames S and S0 moving at the relative velocity V

now”. An event is characterized by four coordinates;
we will use three Cartesian coordinates x, y, z to local-
ize the place of the event plus its corresponding time
coordinate t. Cartesian coordinates are distances mea-
sured with rules along the Cartesian axes of the frame.
The coordinate t is measured by clocks counting the
time from an instant conventionally chosen as the time
origin.

Figure 1.1 shows two frames S and S0 in relative mo-
tion; the x and x0 axes have the direction of the relative
velocity V. By comparing distances in the frame S, we
can state

dOPjS D dOO0 jSC dO0PjS : (1.2)

In the frame S, the distance between O – the coordinate
origin of S – and the place P is the x coordinate of P:
dOPjS D x. On the other hand, the distance between the
origins O and O0 increases with time; if Vis constant
and the time t in S is chosen to be zero when both ori-
gins coincide, then dOO0 jS D Vt. Thus

dO0PjS D x�Vt : (1.3)

We are not allowed to replace the left member with
x0, since x0 D dO0PjS0 . Classical mechanics, however, as-
sumes that distances have the same value in all the
frames. Thus, we obtain the Galilean transformations.

Galilean Transformations

x0 D x�Vt ; (1.4a)

y0 D y; (1.4b)

z0 D z: (1.4c)

We have added the transformations of the Cartesian co-
ordinates y, z transversal to the relative motion of the
frames. These are distances between a given place and
the straight line shared by the x and x0 axes; according
to the classical invariance of distances, they are equal
in S and S0.

The classical transformations of the coordinates of
an event is completed by considering the invariance
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of time intervals; so we state that t0 D t (we choose
a common time origin for S and S0). Remarkably,
the relation t0 D t also results from the transformation
(1.4a) with the help of a simple physical argument: as
frames S and S0 are on an equal footing, the respective
inverse transformation should look like (1.4a) except
for the sign of V (if S0 moves towards increasing val-
ues of x in S, then S moves towards decreasing values
of x0 in S0; thus the relative velocity changes sign).
Therefore,

xD x0CVt0 : (1.5)

Then, by adding (1.4a) and (1.5) one obtains

t0 D t : (1.6)

Galilean Addition of Velocities
A moving particle traces a succession of events in
spacetime. This world-line can be described by equa-
tions x.t/, y.t/, z.t/, which are summarized in a sole
vector equation for the position vector r.t/. According
to Galilean transformations (1.4), the position vector

transforms as

r0.t/D r.t/�Vt ; (1.7)

where the invariance of time, t0 D t, has also been used.
Differentiating (1.7) results in the Galilean addition of
velocities, i. e., the relation between the velocities of the
particle in two different frames due to the movement
composition with the relative translation between both
frames

u0.t/D u.t/�V : (1.8)

Velocities are not invariant under Galilean transfor-
mations. However, the relative velocity between two
particles is invariant

u02.t/� u01.t/D u2.t/�u1.t/ : (1.9)

Galilean Invariance of the Acceleration
Since V is uniform, the differentiation of (1.8) yields
the Galilean invariance of the acceleration

a0.t/D a.t/ : (1.10)

1.2 Relativity in Classical Mechanics

Mechanics describes the motion of interacting par-
ticles by means of equations governing the particle
world-lines. These equations of motion, together with
the initial conditions, yield the coordinates of parti-
cles as functions of time: x.t/, y.t/, and z.t/. To write
the equations of motion we combine the laws of dy-
namics with the laws of the interactions. Both types
of laws must have the same form in all the inertial
frames. This is the principle of relativity in mechan-
ics, which expresses that all the inertial frames are
on an equal footing. However, whether or not a given
law consummates the principle of relativity is a mat-
ter depending on the properties attributed to space and
time.

1.2.1 Newton’s Laws of Dynamics

Newton constructed the dynamics on the basis of three
laws [1.1]:

� First law (principle of inertia): free particles move
with constant velocity (they describe straight world-
lines in spacetime).

� Second law: a particle acted by a force acquires an
acceleration that is proportional to the force

FD ma : (1.11)

The proportionality constant m is a property of the
particle called mass. In terms of the momentum p�
mu, the law reads FD dp=dt.

� Third law (action-reaction principle): two particles
interact by simultaneously exerting each other equal
and opposite forces.

The first law is a particular case of the second law
(the case FD 0); it establishes the tendency to perdura-
bility as the main feature of motion (as was envisaged
by Galileo [1.2], Gassendi [1.3], and Descartes [1.4], in
opposition to Aristotelian thought). On the other hand,
the second law becomes the particle equation of motion,
once the force is given as a function of r, u, t, etc. Then,
a law for the involved interaction is also required (which
can be gravitational, electromagnetic, etc.). The third
law implies the conservation of the total momentum of
an isolated system of interacting particles. In fact, the
reciprocal forces F12 and F21 between two particles m1
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and m2 satisfies F12CF21 D 0, since they are equal and
opposite. If these are the only forces on each particle,
we can use the second law to obtain d.p1Cp2/=dtD 0.
Thus p1Cp2 is a conserved quantity. This argument can
be extended to prove the conservation of the total mo-
mentum of any isolated system of particles.

Classical mechanics allows for interacting forces at
a distance. They are derived from potential energies
depending on the distances between particles, which
automatically provide interaction forces accomplishing
Newton’s third law.

1.2.2 Newton’s Absolute Space

Newton’s fundamental laws of dynamics are not for-
mulated to be used in any frame. In fact, it is evident
that the first law cannot be valid in any frame, since
a constant velocity u in a frame S does not imply a con-
stant velocity u0 in another frame S0. This can be easily
understood by considering cases where S0 rotates or ac-
celerates with respect to S. However, if S0 translates
uniformly with respect to S, either the particle has con-
stant velocities u, u0 in both frames or in neither of
them. Galilean addition of velocities (1.8) is a partic-
ular example of this general statement. In fact, Galilean
transformations (1.4) were obtained for two equally
oriented moving frames; thus, they are in relative trans-
lation (absence of relative rotation). Moreover, the
translation is uniform, since the velocity V is constant.
Thus u0 is constant in (1.8) if and only if u is constant.

Although the principle of inertia cannot be valid
in any frame, at least it is true that if it is valid in
a frame S, then it will be valid in any other frame S0 uni-
formly translating with respect to S. Can we extend this
statement to the second law? The second law involves
particle acceleration. In Galilean transformations, the
acceleration is invariant. Besides, the forces in classi-
cal mechanics depend on distances (like gravitational
and elastic forces) or relative velocities (like the viscous
force on a particle moving in a fluid, which depends on
the velocity of the particle relative to the fluid). Both
the distances and the relative velocities are invariant
under Galilean transformations. In this way, each side
of the second law (1.11) is invariant under changes of
frames in relative uniform translation. Therefore, the in-
variance of distances and time intervals, which leads to
Galilean transformations, is a key piece in the Newto-
nian construction because it allows the second law to be
valid in a family of frames in relative uniform transla-
tion. This is the family of inertial frames, and this is the
content of the principle of relativity.

Principle of Relativity
The fundamental laws of physics have the same form in
any inertial frame.

For instance, the same physical laws describe a free
falling body both in a plane and at the Earth’s surface.
The principle of relativity in classical mechanics tells us
that the state of motion of the frame cannot be revealed
by a mechanical experiment: the result of the experi-
ment will not depend on the motion of the frame because
it is ruled by the same laws in all the inertial frames.

But how can we recognize whether a frame is iner-
tial or not? We could effectively recognize a particle in
rectilinear uniform motion; if we were sure that the par-
ticle is free of forces, then we would conclude that the
frame is inertial. However, mechanics allows not only
for contact forces but for forces at a distance. So how
can we be sure that a particle is free of forces? Newton
was aware of this annoying weakness of the formu-
lation; he then considered that the laws of mechanics
described the particle motion in the absolute space.
Thus, the inertial frames are those fixed or uniformly
translating with respect to Newton’s absolute space.

While the inertial frames are defined by their states
of motion with respect to Newton’s absolute space, this
(absolute) motion is not detectable, since the princi-
ple of relativity puts all the inertial frames on an equal
footing; actually, only relative motions are detectable.
Absolute space in classical mechanics plays the essen-
tial role of selecting the privileged family of inertial
frames where the fundamental laws of physics are valid;
but, surprisingly, it is not detectable. In some sense,
absolute space acts, because it determines the inertial
trajectories of particles, but it does not receive any re-
action because it is immutable. Leibniz [1.5] criticized
this feature of the Newtonian construction, by demand-
ing that mechanics were aimed to describe relations
among particles instead of particle motions in the ab-
solute space. In practice, however, Newton’s mechanics
is successful because we can choose frames where the
non-inertial effects are weak or can be understood in
terms of inertial forces that result from referring the
frame motion to another more inertial frame.

As advanced in Sect. 1.1.2, special relativity will
abandon the invariance of distances and time intervals.
Then, Galilean transformations will also be abandoned.
This means that Newton’s second law (1.11) and the
character of fundamental forces will suffer a relativis-
tic reformulation. However the inertial frames will still
keep their privileged status devoid of a sound physical
basis; this issue will be only re-elaborated in general
relativity.
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1.3 The Theory of Light and Absolute Motion
In the second half of the nineteenth century light was re-
garded as electromagnetic mechanical waves governed
by Maxwell’s laws. These waves were perturbations of
a medium called ether; they propagate at the speed c
relative to the ether. However, the ether could not be
evidenced, neither directly nor indirectly. Several exper-
iments did not succeed in revealing the Earth’s motion
relative to the ether (a sort of absolute motion), and
some forced hypotheses about the interaction between
matter and ether were introduced to give account of
these null results.

1.3.1 The Finiteness of the Speed of Light

As mentioned in Sect. 1.1.2, velocities are not invariant
in classical mechanics. Actually, only an infinite ve-
locity would remain invariant under Galilean addition
of velocities (1.8). Are there infinite speeds in nature?
Many philosophers (Aristotle among them) thought that
the speed of light was infinite. The issue of whether the
speed of light was finite or infinite had been the ob-
ject of debate since ancient times. In the seventeenth
century, the question was still open. While Kepler and
Descartes argued in favor of an infinite speed of light,
Galileo proposed a terrestrial test that, however, was not
suitable to determine such a large speed. However, at
the end of the seventeenth century, contemporarily to
Newton’s development of mechanics, an answer came
from the side of astronomy.

In 1676 Rømer [1.6] noted that the time elapsed be-
tween the observations of successive eclipses of Io –
the innermost of Jupiter’s great moons – was greater
when the Earth traveled its solar orbit moving away
from Jupiter and shorter when the Earth moved towards
Jupiter. Rømer realized that such deviations in this oth-
erwise periodical phenomenon were the sign of a finite
speed of light. In fact, if the Earth were at rest, then
we would observe one eclipse each 42:5 h (the orbital
period of Io). However, if the Earth moves away from
Jupiter, the time between two successive observations
of the emersions of Io from the shadow cone will be en-
larged; this happens because the light coming from the
second emersion travels a longer distance at a finite ve-
locity to reach the Earth. This delay, together with the
length traveled by the Earth in 42:5 h, led to the first
determination of the speed of light. By recording the
accumulative delay of many successive eclipses, Rømer
found that the light traveled the diameter of the Earth’s
orbit in 22 min (the actual value is 16 min) [1.7].

50 years later, Bradley [1.8] discovered the aberra-
tion of starlight. Bradley observed that the light coming
from a star suffers annual changes of direction in the
frame translating with the Earth. The nature of these
changes highly disturbed Bradley because they un-
expectedly differed from the stellar parallax he was
looking for (a tiny effect only measured 100 years
later). Eventually, Bradley concluded that the stellar
aberration discovered by him was a consequence of
the vector composition (1.8) between the speed of light
and the Earth’s motion around the Sun at 30 km s�1.
By measuring the aberration angle, Bradley obtained
the speed of light within an error of 1% [1.9]. In 1849
Fizeau [1.10] carried out the first terrestrial measure-
ment of the speed of light. Like any finite velocity, the
speed of light is not a Galilean invariant.

1.3.2 The Wave Equation

At the middle of the nineteenth century the dispute
about the corpuscular or undulatory character of light
seemed to be settled in favor of the wave theory of
light. The corpuscular model sustained by Newton and
many other scientists could not explain the totality of
the luminous phenomena. In 1821 Fresnel [1.11] com-
pleted his wave theory of light, so giving a finished
mathematical form to the undulatory model proposed
by Huygens in 1678 [1.12]. This theory included the
concepts of amplitude and phase to describe interfer-
ence and diffraction; besides, light was presented as
a transversal wave to explain the phenomena concern-
ing polarization. In 1850 Foucault [1.13] measured the
speed of light in water and verified the value c=n (n is
the refractive index) as predicted by wave theory in op-
position to the corpuscular model.

At that time, light waves were considered matter
waves like sound or the waves on the water surface of
a lake. Physics and mechanics were synonymous; so,
any phenomenon was regarded as a mechanical phe-
nomenon, and light did not escape the rule. Matter
waves propagate in a material medium; they are but
medium oscillations carrying energy. In the simplest
cases, they are governed by the wave equation

1

c2
w

@2 

@t2
�r2 D 0 ; (1.12)

where  .t, r) represents the perturbation of the medium
(for instance the longitudinal oscillations of density
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and pressure when sound propagates in a gas, or the
transversal displacement of a string in a musical instru-
ment). Any function D  .x˙cwt/ is a solution of the
wave equation (1.12); it represents a perturbation that
travels in the x-direction, without changing its form, at
the constant speed˙cw. The general solution is a com-
bination of solutions traveling in all directions.

The wave equation (1.12) was not written to be used
in any inertial frame. It only describes the wave propa-
gation in a frame fixed to the medium. In fact, the wave
equation changes form under Galilean transformations.
Let us take the x-sector of the Laplacian r2 and write

1

c2
w
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@x2
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(1.13)

where � � cwt�x, �� cwtCx (or cwtD .�C�/=2, xD
.�� �/=2). This shows that the wave equation would
keep its form in different inertial frames moving along
the x-axis if cwt˙ x were proportional to cwt0˙ x0; but
this is not true in Galilean transformations (1.4), (1.6).
The fact that the equation governing mechanical waves
is fulfilled just in the frame where the medium is at
rest does not imply the violation of the principle of
relativity. The medium is a physical reason for priv-
ileging an inertial frame; furthermore, (1.12) will be
accomplished whatever be the inertial frame where the
medium is at rest. Actually, the wave equation for me-
chanical waves can be obtained from the fundamental
laws of mechanics – which certainly accomplish the
principle of relativity – under some assumptions valid
in the frame fixed to the medium. In this derivation, the
propagation velocity cw results from the properties of
the propagating media.

1.3.3 The Æther Theory

In Fresnel’s theory, light was a mechanical wave that
propagates in a medium called the ether luminiferous,
and  was the velocity of the ethereal molecules. The
speed of light c was a property of the ether. To be the
seat of transversal waves, the ether had to be an elastic
material; it was strange that no longitudinal waves ex-
isted in this elastic medium. Besides, to produce such
enormous propagation velocity, the ether had to be ex-
tremely rigid. The ether had to fill the universe, because
light propagates everywhere. It was logical to consider
the ether as being at rest in Newton’s absolute space;

the ether became a sort of materialization of Newton’s
absolute space.

However, such an omnipresent substance should
produce other mechanical effects, apart from the lumi-
nous phenomena. How can planets move through the
ether without losing energy? Would the ether penetrate
through the moving bodies without disturbing them or
it would be dragged by them? If air is pumped out of
a bottle, then the sound will cease to propagate inside
the bottle; however, the light will still propagate, mean-
ing that the ether was not evacuated together with the
air (why?). The ether looked like an elusive intangible
substance without any other effect than being the seat
of the luminous phenomena.

1.3.4 Maxwell’s Electromagnetism

In 1873 Maxwell [1.14] published his Treatise on elec-
tricity and magnetism, where electricity and magnetism
appeared as two parts of a sole entity: the electro-
magnetic field. Maxwell’s laws for the electromagnetic
field contained as particular cases the well-known elec-
trostatic interactions between charges and magneto-
static interactions between steady currents. However,
Maxwell’s very achievement was to discover that vari-
able electric and magnetic fields – E and B – create
each other. This mutual feedback between electricity
and magnetism generates electromagnetic waves. In
fact, in the absence of charges Maxwell’s equations
lead to wave equations (1.12), with the Cartesian com-
ponents of E and B playing the role of  . In the
electromagnetic wave equations the propagation ve-
locity is c D .�o"o/

�1=2. In SI units, �o is chosen to
define the unit of electric current, and "o is experimen-
tally determined through electrostatic interactions; their
values are �o D 4��10�7 N A�2, "o D 8:854187817�
10�12 N�1 A2 m�2s2. To Maxwell’s surprise, the value
of c coincided with the already measured speed of light;
so Maxwell concluded that light was an electromag-
netic wave.

Maxwell conceived electromagnetic waves as a me-
chanical phenomenon in a propagating medium. There-
fore, he believed that his equations were valid in a frame
fixed to the medium. The recognition of light as an elec-
tromagnetic wave then identified the electromagnetic
medium with the luminiferous ether. On the other hand,
the action of the field on a charge q – the Lorentz force
FD q.EC u�B/ – depended on the velocity u of the
charge. This velocity was regarded as the velocity of
the charge with respect to the ether (the charge absolute
velocity).
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Differing from classical mechanics, Maxwell’s
electromagnetism will fit special relativity without
changes. Einstein will defy the classical viewpoint by
considering that Maxwell’s equations should be valid in
any inertial frame. If so, the speed of light would be in-
variant (i. e., it would have the same value in any inertial
frame). To sustain this idea, Galilean transformations
should be replaced with transformations leaving invari-
ant the speed of light; this implies the abandonment of
the classical invariance of distances and time intervals.
In special relativity, Maxwell’s electromagnetism will
become a paradigmatic theory.

1.3.5 The Search for Absolute Motion

Although ether resisted a direct detection, at least it
could be indirectly tested. In the second half of the
nineteenth century, several experiments were aimed at
testing the Earth’s motion with respect to ether (the
Earth’s absolute motion). While c was considered the
speed of light in the frame fixed to the ether, the speed
of light in the Earth’s frame should result from com-
posing c with the Earth’s absolute motion V, according
to the Galilean addition of velocities (1.8). Therefore,
some of these experiments were based on the time that
the light takes to travel a round-trip along a straight path
(the light comes back after being reflected by a mirror).
To exemplify the idea, we will choose the path to be
parallel to the (unknown) Earth’s absolute motion. Ac-
cording to Galilean addition of velocities, the speed of
light in the Earth’s frame is c�V when light leaves, and
cCV when light comes back. If l is the length the light
covers in each journey, then the total time of the round-
trip is

tD
l

c�V
C

l

cCV
D

2l=c

1� V2

c2

: (1.14)

As can be seen, the Earth’s absolute motion V enters
the result as a correction of the second order in V=c.
A correction of even order is expectable because the
traveling time of a round trip (1.14) should not change
if the Earth’s motion were reversed. To be conclusive,
the experiments should be able to detect at least a value
V=c� 10�4. This is because the Earth orbits the Sun at
30 km s�1 Š 10�4c; then, even if the Earth were at rest
in the ether when the experiment is performed, it would
move at 60 km s�1 6 months later. Therefore, any exper-
imental array based on the traveling time (1.14) should
reach a sensitivity of 10�8. Such a strong constraint
could be circumvented by experimental arrays sensitive
to the change V!�V; if so, the result could be of the

first order in V=c. This the case of the experiment per-
formed by Hoek [1.15] in 1868, where the symmetry
V$�V is broken because one of the stretches of the
round-trip was not in air but in water; in this stretch, the
speed c=n replaces c in (1.14). However, Hoek’s inter-
ferometric device was not effective for determining the
Earth’s absolute motion.

There were also two experiments, sensitive to the
first order in V=c, that involved Snell’s law. In 1871
Airy [1.16] measured Bradley’s stellar aberration with
a vertical telescope filled with water. Bradley had
measured the annual variation of the aberration angle
produced by the Earth’s orbit around the Sun. This vari-
ation did not reveal the Earth’s absolute motion V but
just the changes of V. Airy’s experiment, instead, took
into account that the aberration implied that the tele-
scope was not oriented along the direction the light ray
had in the ether’s frame. If Snell’s law were valid in
the ether frame, then an additional refraction would take
place when the light entered the water in the telescope.
This additional refraction would change the view angle
to the star by a quantity of the first order in V=c. Nev-
ertheless, Airy’s experiment did not reveal the Earth’s
absolute motion. Much earlier, in 1810, Arago [1.17]
covered half of the objective of his telescope with
a prism, to obtain a second image of the stars. To see
the image through the prism, the telescope direction had
to be corrected in an angle equal to the deviation angle
of the prism. Arago believed that the light refraction in
the prism could depend on the velocity of light relative
to the prism, which results from the vector composi-
tion (1.8) of the speed of light with the absolute motion
of the prism (i. e., the Earth’s absolute motion). This
effect could be revealed by observing stars in several di-
rections to get different vector compositions. However,
Arago did not notice any change in the deviation angle.

Fresnel [1.18] searched reasons for Arago’s null re-
sult. In the context of the ether theory, he found that
the null result could be explained, at the first order in
V=c, by advancing a curious hypothesis: an (absolute)
moving transparent substance partially drags the ether
contained in its interior. The partial dragging is such
that the phase velocity of light – the displacement per
unit of time of the wave fronts –, as measured in the
frame fixed to the universal ether (rather than the ether
inside the substance) is not c=n but

uD
c

n
C .1� n�2/V � On ; (1.15)

where On is the propagation direction, V is the absolute
motion of the transparent substance and n is its refrac-
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tive index. In practice, Fresnel’s dragging coefficient
f D 1� n�2 caused the fulfillment of Snell’s law in the
frame fixed to the transparent substance (at the first or-
der in V=c). Fresnel’s hypothesis explained why Arago
did not succeed in his endeavor: the deviation angle
of the prism was always the one predicted by Snell’s
law, irrespective of the absolute motion of the prism.
Besides, it also explained the null result in Airy’s exper-
iment because no additional refraction will be produced
if Snell’s law is valid in the frame fixed to the tele-
scope (in this frame the ray of light and the telescope are
equally oriented). Moreover, the partial dragging (1.15)
cancels out the first order effects in the time (1.14) when
one of the stretches is not in air but in another transpar-
ent substance; so, it also explained Hoek’s null result
(Hoek’s device was not sensitive enough to test second
order effects).

Fresnel’s partial dragging of ether was measured by
Fizeau [1.19] in 1851. Since special relativity will re-
ject the existence of the ether, Fizeau’s measurement
will require a relativistic interpretation. On the other
hand, the fulfillment of Snell’s law in the frame fixed
to the transparent substance is completely satisfactory
in special relativity, because that is the only physically
privileged frame. For a detailed analysis of the experi-
ments pursuing the absolute motion in connection with
Fresnel’s hypothesis, see [1.20, 21].

1.3.6 Michelson–Morley Experiment

In 1881 Michelson designed an interferometer aimed to
detect the Earth’s absolute motion. In Michelson’s in-
terferometer the light traveled round-trips completely
in air. So, the challenge was to achieve sensitivity of

Ray 2L

l

Ray 1

Telescope

Half-silvered glass

Mirror

Mirror
Light beam

Fig. 1.2 Scheme of Michelson’s interferometer

10�8. Figure 1.2 shows the scheme of Michelson’s in-
terferometer. The beam of light emitted by an extensive
source is split into two parts by a half-silvered glass
plate. After traveling mutually perpendicular round-
trips, both parts join again to be collected by a tele-
scope where interference fringes are observed (Fizeau’s
fringes [1.22]). The fringes are caused by a slight mis-
alignment of the mirrors; this implies that the images of
the mirrors at the telescope form a wedge. The wedge
causes that rays 1 and 2 arrive at the telescope with
a phase-shift that changes according to the thickness
of the wedge at the place where the rays bounced. So,
the phase-shift will be different for each one of the rays
in the beam; therefore, bright and dark fringes will be
observed at the telescope. Notice that l and L do not
need to be equal, but 2.l�L/ should be smaller than the
coherence length of light to preserve the interference
pattern.

For each ray in the beam, the phase-shift between
parts 1 and 2 determines whether they produce a bright
or a dark fringe. This phase-shift results from the times
t1, t2 the rays 1 and 2 employ to cover their respective
round-trips; these times depend on the distances l, L and
the velocities u01, u02 of the rays in the laboratory. u01, u02
are the result of the vector composition (1.8) between
the speed c in the ether frame and the Earth’s absolute
motion V; u01, u02 are clearly different, since the vec-
tor composition depends on the direction of each ray.
Moreover, if the interferometer were gradually rotated
then the velocities u01, u02 would gradually change. In
this way, the rotation of the interferometer would af-
fect the fringes: the position of the bright fringes would
gradually displace. Instead, if the interferometer were
at rest in the ether, then the fringes would not displace
because rays 1 and 2 would travel at the speed c irre-
spective of the orientation of the interferometer. Thus,
the displacement of the fringes would be the indication
of the Earth’s absolute motion.

Let us compute the times t1, t2 when the arm l is
oriented along the still unknown absolute motion V. In
such a case, the ray 1 has speeds c�V, cCV, and the
time t1 is given by (1.14). On the other hand, the ray 2
is orthogonal to V in the laboratory frame; so the vector
composition to obtain the value of u02 is the one shown
in Fig. 1.3. As can be seen, the ray 2 goes to the mirror
and comes back with a speed u02 D

p
c2 �V2. Then, the

round-trip along the arm L takes a time

t2 D
2L=cq
1� V2

c2

: (1.16)
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V

u'2c

V

u'2 c

Fig. 1.3 Galilean composition of velocities for ray 2

The phase-shift is ruled by the time difference

�t0ı D t1 � t2 D
2l=c

1� V2

c2

�
2L=cq
1� V2

c2

: (1.17)

If the interferometer is rotated 90ı, then the arm L cor-
responding to ray 2, will be aligned with V; so the result
will be

�t90ı D t1 � t2 D
2l=cq
1� V2

c2

�
2L=c

1� V2

c2

: (1.18)

Although the Earth’s absolute motion V is unknown,
a gradual rotation will make the interferometer pass
through these two extreme values separated by a right
angle. Thus a displacement of the fringes will be ob-
served, in connection with the change of t1 � t2 given
by

�t90ı ��t0ı D
2

c
.lCL/

2
64 1q

1� V2

c2

�
1

1� V2

c2

3
75

D�
lC L

c

V2

c2
CO.V4c�4/ :

(1.19)

This change is equivalent to the displacement of N D
cj�t90ı��t0ı j=	D .lCL/=	�V2=c2 fringes (	 is the
light wavelength).

After a failed attempt in 1881, Michelson joined
Morley to improve the experimental sensitivity. In 1887
they possessed an interferometer whose arms were 11 m
long (this was achieved by means of multiple reflec-
tions in a set of mirrors). Then, at least a result of
N Š 0:4 was expected. However, no displacement of

fringes was observed [1.23–25]. Michelson was con-
vinced that the null result meant that the Earth carried
a layer of ether stuck to its surface. If so, the exper-
iment would have been performed at rest in the local
ether, which would explain the null result. Lodge [1.26]
tried to confirm this hypothesis by unsuccessfully look-
ing for effects due to the ether stuck to a fast rotating
wheel. In a revival of the corpuscular model, Ritz [1.27]
then proposed that light propagates with speed c rela-
tive to the source. This hypothesis combined with other
assumptions about the behavior of light when reflected
by a mirror (emission theories) would explain the null
result of Michelson–Morley’s experiment with a source
at rest in the laboratory, but is refuted by a varied body
of experimental evidence [1.28–30].

1.3.7 FitzGerald–Lorentz Length Contraction

Lorentz thought that Michelson–Morley’s null result
could be understood in a very different way. He consid-
ered that a body moving in the ether suffered a length
contraction due to its interaction with the ether. The in-
teraction would contract the body along the direction
of its absolute motion V, but the transversal dimen-
sions would not undergo any change. In fact, if the
contraction factor

p
1�V2c�2 is applied to l in (1.17)

and L in (1.18) (i. e., the dimensions along the absolute
motion direction in each case), then both time differ-
ences will result to be equal, and the expression (1.19)
will vanish. Lorentz’s proposal of 1892 [1.31] had been
independently advanced by FitzGerald [1.32] 3 years
before. This proposal did not mean the abandonment
of the belief in the invariance of lengths. The contrac-
tion was a dynamical effect; it depended on an objective
phenomena: the interaction between two material sub-
stances. The contraction had to be observed in any
frame, and all the frames had to agree about the value
of the contracted length.

The idea that light was a material wave (i. e., the
idea that Maxwell’s laws were written to be used only
in the ether frame) and the belief in the invariance of
distances and time intervals led physics to a blind alley.
While complicated dynamical explanations were elab-
orated to interpret experimental results, like Fresnel’s
partial dragging of ether and FitzGerald–Lorentz length
contraction caused by the ether, the experimental re-
sults were not so complicated; they just said that the
absolute motion cannot be detected. However, unless
physics were to get rid of some classical misconcep-
tions, such a reasonable conclusion would not fit with
its theoretical body.



From Æther Theory to Special Relativity 1.4 Einstein’s Special Relativity 13
Part

A
|1.4

1.4 Einstein’s Special Relativity
In 1905 Einstein postulated that [1.33]

the same laws of electrodynamics and optics will
be valid for all frames of reference for which the
equations of mechanics hold good.

In this way, Einstein proclaimed that Maxwell’s elec-
tromagnetism does not possess a privileged system;
Maxwell’s laws can be used in any inertial frame. Thus,
Einstein raised Maxwell’s laws to the status of fun-
damental laws satisfying the principle of relativity (as
stated in Sect. 1.2.2). In doing so, Einstein closed the
possibility of detecting the state of motion of an inertial
frame by electromagnetic means. The ether does not ex-
ist; the electromagnetic waves are not material waves.
The inertial frames are not endowed with a property V
(its absolute motion or the ether wind); only the velocity
describing the relative motion between inertial frames
makes physical sense. Besides, the Snell’s law is valid
in the frame where the refracting substance is at rest,
whatever this frame is.

An immediate consequence of the use of Maxwell’s
laws in any inertial frame is that light in vacuum prop-
agates at the speed c in any inertial frame; c is an
invariant velocity (light is always propagated in empty
space with a definite velocity c which is independent
of the state of motion of the emitting body [1.33]). The
existence of an invariant velocity implies that Galilean
addition of velocities is a classical misconception to be
got rid of; such a step entails the revision of the classical
belief in the invariance of distances and time intervals.

1.4.1 Relativistic Length Contractions
and Time Dilations

We will re-elaborate the transformations of spacetime
coordinates without prejudging about the behavior of
distances and time intervals, but subordinating them to
the invariance of the speed of light. Figure 1.4 shows
a particle traveling between the ends of a bar, as seen
in the frame where the bar is fixed and the frame where
the particle is fixed. The relative motion bar-particle is
characterized by the sole velocity V. It is useful to call
proper length Lo the length of the bar at rest. Notice
that, since all inertial frames are on an equal footing, the
length of the bar will be Lo in any inertial frame where
the bar is at rest. Instead, we could expect a different
length L.V/ in a frame where the bar moves lengthways
at a relative velocity V. For this reason, in Fig. 1.4 the
bar is represented with different lengths in each frame.

In the frame fixed to the bar (proper frame of the bar)
the particle takes a time�t to cover the length Lo; then,
it is V D Lo=�t. On the other hand, in the frame fixed
to the particle, the ends of the bar take a time�
 to pass
in front of the particle; then V D L=�
 . We should not
prejudge the nature of time; then, we are opening the
possibility that the time interval between the same pair
of events be different in each frame. It is also useful to
call proper time �
 the time between events as mea-
sured in the frame where the events occur at the same
place (if such a frame exists). In our case, the events are
the passing of each end of the bar in front of the parti-
cle; they occur at the same place in the frame where the
particle is fixed. So, we have computed the same value
of V with lengths and times measured in two frames that
relatively moves at a velocity V. Thus, we conclude that

Lo

L
D
�t

�

: (1.20)

Each side of (1.20) can only depend on the relative ve-
locity between the considered frames. Then, (1.20) says
that each side is the same function of V

Lo

L
D �.V/ ;

�t

�

D �.V/ : (1.21)

In classical physics �.V/ is assumed to be 1. On the
contrary, in special relativity the value of �.V/ will be
subordinated to the invariance of the speed of light. It
should be remarked that (1.21) is not deprived of as-
sumptions about the nature of spacetime. In fact, the
quotients Lo=L and �t=�
 can also depend on the
event of the spacetime where the measurements take
place and the orientation of the bar. Equation (1.21)
actually assumes that spacetime is homogeneous and
isotropic; these assumptions will be revised in general
relativity.

On the one hand, (1.21) expresses the relation be-
tween the length L of a bar moving at a velocity V and
its proper length Lo. On the other hand, (1.21) expresses
the relation between the times elapsed between two

Lo L

V

–V

Fig. 1.4 Relative motion bar-particle in the proper frames of the bar
(left) and the particle (right)
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LV Δtgoing

V

Mirror

Pulse of light

Fig. 1.5 A light pulse traveling a round trip between the
ends of a bar, as regarded in the frame where the bar moves
with velocity V

events as measured in the frame where they occur at the
same place (proper time�
) and another frame moving
at a velocity V relative to the former one (�t). As (1.21)
shows, both ratios are strongly interconnected.

The relations (1.21) are independent of the particu-
lar case examined in Fig. 1.4. To obtain �.V/ we will
now study a case involving the speed of light, where
the relations (1.21) will also enter into play. Figure 1.5
shows a bar of proper length Lo supporting a source of
light and a mirror at its ends. Let us consider the time
elapsed between the emission of a pulse of light from
the source and its return to the source. Both events oc-
cur at the same place in the proper frame of the bar;
then, the proper time �
 is the time the light takes to
cover the distance 2Lo at the speed c

c�
 D 2Lo : (1.22)

In another frame where the bar moves at a velocity V
(but light still propagates at the speed c), we will de-
compose the time between events as �tD�tgoingC

�treturning. When light goes towards the mirror at the
speed c it covers the distance L plus the displacement
of the mirror V�tgoing. Instead, when light returns to
the source it covers the distance L�V�treturning due to
the displacement of the source. Therefore,

c�tgoing D LCV�tgoing ;

c�treturning D L�V�treturning :
(1.23)

Solving these equations for c�tgoing, c�treturning one ob-
tains

c�tD c�tgoingC c�treturning D
cL

c�V
C

cL

cCV

D
2L

1� V2

c2

:

(1.24)

We divide (1.22) and (1.24) and use (1.21) to obtain the
function �.V/

�.V/D
1q

1� V2

c2

: (1.25)

Then, replacing in (1.21) we obtain the expressions for
the relativistic length contraction and time dilation

L.V/D Lo

s
1�

V2

c2
;

�tV D
�
q
1� V2

c2

:

(1.26)

Noticeably, the relativistic length contraction has the
same form as that proposed by FitzGerald and Lorentz
to explain the null result of the Michelson–Morley ex-
periment. However, its meaning is completely different.
Lorentz considered that the contraction was a dynami-
cal effect produced by the interaction between a body
and the ether. For Lorentz, V in (1.26) was the velocity
of the body with respect to the ether, and the contraction
was measured in all the frames. In relativity, instead, the
length contraction is a kinematical effect. The bar looks
contracted whatever the frame be where it moves at the
velocity V; moreover, it has its proper length Lo what-
ever the frame be where the bar is at rest.

Length contractions and time dilations are not per-
ceptible in our daily life because we compare frames
moving at relative velocities V� c. One of the first
direct evidences of this phenomenon came from mea-
suring the length traveled by decaying particles moving
at a speed close to c, as compared to their half-life mea-
sured at rest [1.34].

1.4.2 Lengths Transversal
to the Relative Motion

The device of Fig. 1.5 is also useful to explore the
behavior of the dimensions transversal to the relative
motion. Figure 1.6 shows the device put in a direc-
tion orthogonal to the relative motion. Equation (1.22)
is still valid in the proper frame of the bar. In a frame
where the bar transversally displaces at the velocity V,
the ray of light will travel along an oblique direction
(this is nothing but the aberration due to the composi-
tion of motions). When the pulse of light goes towards
the mirror, it covers in a time �tgoing the hypotenuse
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Fig. 1.6 Round trip of light between the ends of a bar, as
regarded in a frame where the bar displaces transversally
at velocity V

of a right triangle whose legs are V�tgoing and L0.
Since the light travels at the speed c in any frame, we
obtain

.c�tgoing/
2 D L02C .V�tgoing/

2 : (1.27)

Notice the use of Pythagoras’ theorem in this expres-
sion. This means that we assume the space is endowed
with a flat geometry; this assumption will be revised in
general relativity. Due to the symmetry of the path trav-
eled by the light, it is �tD 2�tgoing, and then

c�tD
2L0q
1� V2

c2

D �.V/2L0 : (1.28)

We divide (1.22) and (1.28) and use (1.21) to obtain that
transversal lengths are invariant

L0 D Lo : (1.29)

1.4.3 Lorentz Transformations

We are now in a position to reanalyze the transfor-
mation of the Cartesian coordinates of an event. Let
us come back to (1.3) where the relation between
dO0PjS and x0 is pending. By definition, the coordi-
nate x0 is the distance measured by a rule fixed to
the frame S0: x0 D dO0PjS0 . This rule looks contracted
in the frame S; according to (1.26) it is dO0PjS Dp

1�V2c�2x0. Therefore,

x0 D � .x�Vt/ (1.30)

is the transformation that replaces (1.4a). We can now
reproduce the argument of Sect. 1.1.3 to obtain the
transformation of the time coordinate of an event. Since
frames S and S0 are on an equal footing, the inverse
transformations have the same form, except for the
change V!�V. In particular, the inverse transforma-
tion of (1.30) is

xD �
�
x0CVt0

�
: (1.31)

Equation (1.30) can be replaced in (1.31) to solve t0

as a function of t, x. Moreover, due to the relativistic
invariance of the transversal lengths (1.29), the transfor-
mations (1.4b), (1.4c) remain valid. Finally, we obtain
the Lorentz transformations

ct0 D � .ct�ˇx/ ; (1.32a)

x0 D � .x�ˇct/ ; (1.32b)

y0 D y ; (1.32c)

z0 D z ; (1.32d)

where ˇ � V=c, � D
�
1�ˇ2

�
�1=2

. Lorentz transfor-
mations (1.32) express the relativistic transformation of
the coordinates of an event, when the inertial frame S
is changed for an equally oriented inertial frame S0 that
moves along the (shared) x-axis at the relative veloc-
ity V. Notice that, since the transformation (1.32) is
homogeneous, the same event is the coordinate origin
for S and S0. Figure 1.7 shows the lines t0 D constant
(i. e., ctD ˇxC const) and x0 D constant (i. e., ctD
x=ˇC const) in the plane ct versus x. Figure 1.7 also

ct ct'

x

Ray
 of

 li
gh

t

x'
 =

 c
on

st
an

t

ct' = constant

x'

arctan �

ar
ct

an
 �

Fig. 1.7 Coordinate lines of S0 in the plane ct versus x
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displays a ray of light passing the coordinate origin and
traveling in the x-direction; its world-line is a straight
line at 45ı because�xD c�t. Galilean transformations
(1.4) are the limit c!1 of Lorentz transformations
(1.32).

The transformations (1.32) were independently ob-
tained by Lorentz [1.35, 36] and Larmor [1.37] as the
linear coordinate changes leaving the form of Maxwell’s
wave equations invariant (see also Voigt [1.38]). In fact,
the null coordinates � � ct� x, �� ctC x transform as
� 0 D �.1Cˇ/� , �0 D �.1�ˇ/�, thus leaving invariant
the form of the wave equation (1.13) for cw D c. In other
words, the d’Alembertian operator

�� 1

c2

@2

@t2
�r2 (1.33)

is invariant under transformations (1.32). In 1905
Poincaré [1.39] underlined the group properties of re-
lations (1.32) and called them Lorentz transformations.

In 1905 Einstein re-derived the Lorentz transfor-
mations and gave to t0 the rank of real time measured
by clocks at rest in S0. In Einstein’s special relativity
the physical equivalence of the inertial frames, which
is the content of the principle of relativity, means that
the fundamental laws of physics keep their form under
Lorentz transformations rather than Galilean transfor-
mations. Maxwell’s laws accomplish this relativistic
version of the principle of relativity, once the trans-
formations of the fields are properly defined. Actually,
Maxwell’s electromagnetism is the paradigm of a rel-
ativistic theory. The electromagnetic Lorentz force is
a typical relativistic force; its magnetic part depends on
the charge velocity relative to the inertial frame. How-
ever, which part of the field is electric and which one
is magnetic depends on the frame as well; even if the
force is entirely electric in a given frame, it will have
a magnetic part in another frame. On the contrary, clas-
sical mechanics fulfilled the principle of relativity under
Galilean transformations; then, mechanics needed a re-
formulation to accommodate to the relativistic meaning
of the principle of relativity.

1.4.4 Relativistic Composition of Motions

The composition of motions that replaces the Galilean
addition of velocities is obtained by differentiating
(1.32) and taking quotients. Notice that

dt0 D �.dt�ˇc�1 dx/D �
�
1�ˇc�1ux

�
dt :

(1.34)

Therefore,

u0x D
dx0

dt0
D �

�
dx

dt0
�V

dt

dt0

�

D
ux �V

1�ˇc�1ux
;

(1.35a)

u0y D
dy0

dt0
D

p
1�ˇ2uy

1�ˇc�1ux
;

u0z D
dz0

dt0
D

p
1�ˇ2uz

1�ˇc�1ux
:

(1.35b)

The procedure can be repeated to transform the acceler-
ations. Contrasting with Galilean transformations, the
acceleration is far from being invariant under Lorentz
transformations.

Equations (1.35a) and (1.35b) can be combined to
obtain u02 D u02x C u02y C u02z ; it is easy to verify that

1�
u02

c2
D

1�ˇ2

.1�ˇc�1ux/2

�
1�

u2

c2

�
: (1.36)

Since ˇ < 1 (otherwise Lorentz transformations would
be ill-defined), both hand sides of (1.36) have the same
sign. Therefore u and u0 are both lower, equal to, or
bigger than c; this is an invariant property of speed.

As an application of transformations (1.35a) and
(1.35b), let us compute the speed of light when light
propagates in a transparent substance that moves at the
velocity V; then, u0x D c=n, where n is the refractive in-
dex. We will use the inverse transformations to obtain
ux (i. e., we change Vfor �V in (1.35a))

ux D
c

n

1C nV
c

1C V
nc

�
c

n

�
1C

nV

c

��
1�

V

nc

�

�
c

n
C .1� n�2/V : (1.37)

This result has the same form as Fresnel’s partial drag-
ging. However, V in (1.37) is not the velocity of the
transparent substance with respect to the ether; it is the
motion of the transparent substance relative to an arbi-
trary inertial frame. What Fizeau measured in 1851 was
a relativistic composition of motions.

1.4.5 Relativity of Simultaneity. Causality

Two events 1 and 2 (two points in the spacetime) are
simultaneous if they have the same time coordinate:
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Fig. 1.8 (a) In the proper frame of the bar, the pulses of light arrive at the ends of the bar at the same time. (b) In a frame
where the bar is moving, the light arrives at the rear end before than the front end. In both frames the speed of light is c
(the rays of light are lines at 45ı)

t1 D t2. In classical physics time is invariant, so the si-
multaneity of events possesses an absolute meaning.
However, in special relativity t1 D t2 does not imply
t01 D t02. Then the simultaneity acquires a relative mean-
ing; it is frame-dependent. In fact, the pairs of events
that are simultaneous in the frame S lie on horizon-
tal lines (tD constant) in Fig. 1.7; these lines cross the
t0 D constant lines. Therefore, simultaneous events in S
have different time coordinates t0 in S0.

To understand why simultaneity is relative in spe-
cial relativity, let us consider a bar of proper length Lo

that is equipped with a source of light at its center. In
the proper frame of the bar, a pulse of light will arrive
simultaneously at both ends of the bar, because it cov-
ers the same distance Lo=2 at the same speed c in both
directions. In another frame the bar is moving but light
still propagates at the speed c in any direction. Thus,
the pulse will arrive first at the rear end of the bar be-
cause this end moves towards the pulse of light. Then,
the same pair of events (the arrival of the light to the
ends of the bar) is not simultaneous in a frame where
the bar is moving. Moreover, since which end is at rear
depends on the direction of the motion (i. e., it depends
on the frame), the temporal order of this kind of events
can be inverted by changing the frame.

Figure 1.8 shows the world-lines of the ends of
the bar and the pulses of light both in the bar proper
frame S and a frame S0 where the bar moves to the
left (then S0 moves to the right relative to S, so it is
ˇ > 0). In Fig. 1.8a the ends of the bar are described by

vertical world-lines because the positions x are fixed.
In Fig. 1.8b the world-lines have a slope correspond-
ing to the velocity �V that the bar has in the frame
S0. In both frames the light travels at the speed c.
Events R and F are simultaneous in the proper frame
of the bar (Fig. 1.8a) and they occur at a distance Lo.
Then, �tD 0, �xD�Lo (�tD tF � tR, etc.). The time
elapsed between R and F in the frame S0 can be obtained
by means of Lorentz transformations. Since Lorentz
transformations are linear, they are equally valid for
the differences of coordinates of a pair of events. So,
(1.32a) also means

c�t0 D �.c�t�ˇ�x/ : (1.38)

Then it is c�t0 D �ˇLo in Fig. 1.8b. This result can be
also achieved by applying elementary kinematics in the
frame S0 and using the length contraction LD ��1Lo.

In any case, (1.38) says that�t and�t0 cannot both
be zero (apart from the case where the events are coin-
cident). Moreover, �t and �t0 in (1.38) can even have
opposite signs, which would amount to the inversion
of the temporal order of events. This alteration of the
temporal order in Lorentz transformations would be ac-
ceptable only for pairs of events without causal relation;
otherwise it would constitute a violation of causality.
Remarkably, the violation of causality is prevented be-
cause the speed of light cannot be exceeded in special
relativity. As it will be shown in Sect. 1.5, c is an
unreachable limit velocity for massive particles. Con-
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sistently, it is V=cD ˇ < 1 in Lorentz transformations.
Therefore, those pairs of events such that j�rj> cj�tj
cannot be in causal relation because neither particles
nor rays of light can connect them. For instance, in
Fig. 1.8 the events R and F cannot be in causal re-
lation because their spatial separation is larger than
their temporal separation. This property does not de-
pend on the chosen frame, as can be checked in the
transformations (1.32) or inferred from (1.36). On the
contrary, pairs of events having j�rj 	 cj�tj can be
causally connected. However, in this case, it results
that jˇ�xj< j�j 	 c�t. Thus jˇ�xj is not large enough
to invert the temporal order in (1.38); so causality is
preserved.

The relativity of simultaneity is usually the ex-
planation to some paradoxes in special relativity. For
instance, let us consider two bars having the same
length if compared at relative rest. Then, if they are in
relative motion, each one will appear shorter when re-
garded from the proper frame of the other one. How can
this make sense? It makes sense because the length of
a bar results from comparing the simultaneous positions
of its ends. Since the simultaneity is not absolute in spe-
cial relativity, a length measurement performed in S is
not consistent in S0.

1.4.6 Proper Time of a Particle

While those events having j�rj> cj�tj admit a frame
where they occur at the same time (or, moreover, frames
where their temporal order is inverted), those events
having j�rj< c�t admit a frame where they occur at
the same place. This is a consequence of the symmet-
ric form of (1.32a) and (1.32b). From a more physical
standpoint, the events having j�rj< c�t can be joined
by a uniformly moving particle. The proper frame of
the particle effectively realizes the inertial frame where
both events occur at the same place: the events occur
at the (fixed) position of the particle. These observa-
tions show that the concept of proper time, as defined
in Sect. 1.4.1, applies to pairs of events whose spatial
separation is smaller than the temporal separation.

In general, any moving particle causally connects
events. Figure 1.9 shows the world-line of a particle that
moves nonuniformly. Since the world-line cannot ex-
ceed the angle of 45ı characterizing the speed of light,
any pair of events on the world-line of the particle will
satisfy j�rj 	 c�t. Let us consider two infinitesimally
closed events, like those shown in Fig. 1.9 correspond-
ing to the times t and tC dt. The frame where these two
events occur at the same place is the proper frame of the

y

ct

dr

x

ct + c dt
ct

Fig. 1.9 Two infinitesimally closed events belonging to the
world-line of a nonuniformly moving particle. They are
causally connected: jdrj< cdt

particle moving at the speed u.t/. Let us rewrite (1.36)
with the help of (1.34) to obtain

s
1�

u02

c2
dt0 D

s
1�

u2

c2
dt : (1.39)

As can be seen, this is a combination of speed and
time of travel, which has the same value in any frame:
it is invariant. By comparing this with (1.26) one
realizes that the invariant (1.39) is nothing but the
proper time elapsed between the infinitesimally closed
events. In other words, (1.39) is the time measured by
a clock fixed to the particle; it is the proper time of the
particle

d
 D

s
1�

u2

c2
dtD �.u/�1 dt : (1.40)

This expression can be integrated along the world-line
to obtain the total time measured by a clock that moves
between a given pair of causally-connectable events.
Clearly, the integral depends on the world-line the clock
uses to join the initial and final events (it depends on the
function u.t/). It is easy to prove that the total proper
time is maximized along an inertial world-line. This
result is related to the so-called twin paradox. The para-
dox refers to twin brothers who separate because one
of them has a space voyage. When they meet again,
the inertial brother who remained at the Earth is older
than the astronaut. Actually this result is not paradox-
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ical; the brothers are not on an equal footing because
special relativity confers a privileged status to inertial
frames.

1.4.7 Transformations of Rays of Light

Let us consider a monochromatic plane solution of
(1.12) for waves traveling at the speed of light

 / exp

�
i
2��

c
.ct� On � r/

�
; (1.41)

where the unitary vector On is the propagation direction,
and � is the frequency. Let us use the inverse Lorentz
transformations to rewrite the phase of the wave in
terms of coordinates in S0

�.ct� On � r/D �
�
�.ct0Cˇx0/

� nx�.x
0Cˇct0/

�nyy
0 � nzz

0

�
D �.1� On �Vc�1/�ct0

� �
�
�.nx �ˇ/x

0C nyy
0

Cnzz
0

�
: (1.42)

Since the d’Alembertian operator (1.33) keeps the same
form if rewritten in coordinates of S0, the result (1.42)
should be reinterpreted as �0.ct0 � On0 � r0/. Therefore,
one obtains the relativistic Doppler effect and light
aberration.

Doppler Effect for Light
The frequency in the frame S0 is

�0 D �.1� On �Vc�1/� : (1.43)

Factor � is absent in the classical Doppler effect. It
implies that the frequency shift exists even if the propa-
gation direction is orthogonal to V (transversal Doppler
effect) due to time dilation. The first verification of
the relativistic Doppler frequency shift was made in
1938 [1.40].

Light Aberration
Moreover, it is n0x D .�=�

0/�.nx�ˇ/D .nx�ˇ/=.1�
ˇnx/. If  is the angle between the ray of light and
the x-axis, then it is nx D cos  . Thus, the propagation
direction transforms as

cos  0 D
cos  �ˇ

1�ˇ cos 
: (1.44)

The aberration angle is ˛ �  0 �  ; ˛ is very small
whenever it is ˇ� 1. So, we can approach cos  0 D
cos. C ˛/� cos  �˛ sin  . Moreover, the right-hand
side of (1.44) can be approached by cos  �ˇ sin2  .
Therefore,

˛ � ˇ sin  ; (1.45)

which is the Galilean approach Bradley used to ob-
tain the speed of light from the annual variation of the
starlight aberration.

1.5 Relativistic Mechanics

While the principle of inertia remains valid in special
relativity, Newton’s second law has to be reformulated
because it does not satisfy the principle of relativity un-
der Lorentz transformations (forces behave differently
than accelerations under Lorentz transformations). Rel-
ativistic mechanics can be constructed from a Lorentz-
invariant variational principle whose functional action
reproduces Newtonian behavior at low velocities. In
special relativity, energy and momentum are strongly
related. Momentum is conserved in any frame if and
only if the energy is also conserved. When particles
collide, the conservation of the relativistic energy takes
the role of classical mass conservation. However, the
relativistic energy is a combination of mass and ki-
netic energy; so, mass can be converted in kinetic

energy (or other energies, like the electromagnetic en-
ergy associated with photons) and vice versa. Classical
interactions at a distance are excluded because the
relativity of simultaneity prevents nonlocal conserva-
tions of energy–momentum. Instead, the interactions at
a distance are realized through mediating fields car-
rying energy–momentum that locally interact with the
particles.

1.5.1 Momentum and Energy of a Particle

Variational principles are an outstanding tool to build
dynamical theories in Physics. They rest on the sta-
tionarity of a functional action. The resulting Lagrange
dynamical equations will fulfill the principle of relativ-
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ity under Lorentz transformations whenever the action
is Lorentz-invariant. This feature guarantees that differ-
ent inertial frames will agree about the stationarity of
the action. Thus, the same set of equations of motion
will be valid in all the inertial frames.

Let us start by building the action of a free parti-
cle. This action not only has to be Lorentz invariant but
must be equivalent to the classical action when juj � c.
The (invariant) proper time along the particle world-line
(1.40) is the right choice for the functional action of the
free particle

SfreeŒr.t/�D�mc2
Z

d


D�mc2
Z s

1�
juj2

c2
dt

D�mc2
Z
�.u/�1 dt :

(1.46)

When juj � c the Lagrangian LD�mc2.1� u2=c2/1=2

goes to L��mc2C .1=2/mu2. By differentiating the
Lagrangian L with respect to u one obtains the con-
jugate momentum m�.u/u of a free particle. One then
defines the momentum of the particle as

p� m�.u/uD m�.u/
dr
dt
D m

dr
d


(1.47)

(the last step results from (1.40)), which goes to the
classical momentum mu when juj � c.

Since d
 is invariant (1.39), the change of p under
Lorentz transformations emanates from the behavior of
dr. A Lorentz transformation mixes dr with cdt. Then
p will be mixed with mcdt=d
 , which is a quantity in-
timately related to the energy. In fact, the Hamiltonian
of the free particle is

H D u � p� LD m�.u/u2Cmc2�.u/�1

Dmc2�.u/

�
u2

c2
C �.u/�2

�
D mc2�.u/ :

(1.48)

Then, we define the energy of the particle as

E� m�.u/c2 : (1.49)

The energy E is a combination of energy at rest mc2 and
kinetic energy. In fact, by Taylor expanding (1.49) we
obtain

ED mc2C
1

2
mu2C � � � � mc2CT ; (1.50)

where T is the kinetic energy of the particle in special
relativity (at low velocities, it coincides with the clas-

sical kinetic energy). Notice that the combination of
(1.47) and (1.49) yields

pD c�2Eu ; (1.51)

which says that the momentum is a flux of energy (as
in electromagnetism, where the density of momentum
is proportional to the Poynting vector).

Equation (1.40) can be used to replace �.u/ in the
energy (1.49); it yields

E

c
D mc

dt

d

: (1.52)

Then E is proportional to the ratio of the time dt mea-
sured by frame clocks to the respective proper time of
the particle. As stated above, the invariance of d
 in
(1.47) and (1.52) implies that (E=c, p) transforms like
(cdt, dr) under Lorentz transformations, i. e.,

E0 D �.V/.E� cˇpx/

D �.V/.E�V � p/;
(1.53a)

p0x D �.V/.px�ˇc�1E/ ; (1.53b)

p0y D py; (1.53c)

p0z D pz: (1.53d)

E2 and c2jpj2 combine to yield the square particle
mass, an invariant result called the energy–momentum
invariant

E2 � c2jpj2 D m2c4�.u/2�m2c2u2�.u/2

D m2c4

�
1�

u2

c2

�
�.u/2 D m2c4 :

(1.54)

Let us differentiate (1.54) to obtain

E dED c2p � dp ; (1.55)

or, replacing p with (1.51)

dED u � dpD dr �
dp
dt
; (1.56)

which suggests that the force is associated with dp=dt.
If so, (1.56) would express the equality between the
work of the force and the variation of the energy. Notice
that FD dp=dt implies that the force is not parallel to
the acceleration in general, due to the term containing
the derivative of �.u/. Remarkably, if the work goes to
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infinity, then the energy diverges and the velocity u in
(1.49) goes to c. In this way, the speed of light is an
unreachable limit for the particle.

In electromagnetism, the interaction of a charge
with a given external field is described by adding the ac-
tion (1.46) with the term Sint D�q

R
.'�u �A/dt, where

' and A are the scalar and vector potentials evaluated at
the position of the charge. It can be proven that the in-
teraction action Sint is Lorentz-invariant, as required in
special relativity. The variation of the action SfreeC Sint

leads to the equation of motion

q.ECu�B/D
d

dt
.m�.u/u/ ; (1.57)

where ED�r' � @A=@t and BDr �A. In (1.57) we
recognize the Lorentz force on the left-hand side and
the derivative of the relativistic momentum (1.47) on
the right-hand side. In 1908 Bucherer [1.41] observed
the movement of an electron in an electrostatic field and
obtained an incontestable evidence of the validity of the
relativistic dynamics expressed in (1.57). If the charge
is initially at rest in a uniform static field E, then we
integrate (1.57) to obtain (q=m) EtD �.u/u. So, u goes
to c when t goes to infinity.

1.5.2 Photons

In 1905 Einstein [1.42] stated that the photoelectric
effect could be better understood by proposing that
light interacts with individual electrons by exchang-
ing packets of energy h� (h is Planck’s constant and
� is the frequency of light). In this way, the under-
standing of light–matter interactions required a new
concept where light shared characteristics of both wave
and corpuscle. In 1917 Einstein [1.43] convinced him-
self that the quantum of light should be also endowed
with directed momentum, like any particle. The reality
of the photon was confirmed by Compton’s experiment
in 1923 [1.44], where the energy–momentum exchange
between a photon and a free electron was measured.
The energy and momentum of photons traveling along
the On direction,

Ephoton D h� ; pphoton D
h�

c
On ; (1.58)

are those of a particle having zero mass (1.54) and the
speed of light (1.51). Lorentz transformations (1.53) for
the energy and the momentum (1.58) become the trans-
formations (1.43) and (1.44) for the frequency and the
propagation direction of a ray of light [1.45].

1.5.3 Mass–Energy Equivalence

In relativity, the conservations of momentum and en-
ergy cannot be dissociated. While the conservation
of momentum comes from the symmetry of the La-
grangian under spatial translations, the conservation of
energy results from the symmetry under time trans-
lation. However space and time are frame-dependent
projections of spacetime. Space and time intermingle
under Lorentz transformations. Consequently, the con-
servation of momentum in all inertial frames requires
the conservation of energy and vice versa. This con-
clusion is evident in the transformations (1.53), where
energy and momentum mix under a change of frame;
so, the momentum would not be conserved in frame
S0 if the energy were not conserved in S. In sum, the
conserved quantity associated to the symmetry of the
Lagrangian under spacetime translations is the total
energy–momentum.

In classical mechanics, instead, the transformation
of the momentum of the particle does not involve its en-
ergy. In fact, if (1.8) is multiplied by the mass, then the
transformation p0 D p�mV is obtained. Thus, an iso-
lated system of interacting particles conserves the total
momenta in all the inertial frames irrespective of what
happens with the classical energy. Noticeably, †p0 is
conserved whenever †p is conserved because the to-
tal mass †m is assumed to be a conserved quantity
(the classical principle of conservation of mass). This
is no longer true in special relativity. For instance, let
us consider the plastic collision between two isolated
particles of equal mass m. In the center-of-momentum
frame the (conserved) total momentum vanishes; so the
particles have equal and opposite velocities u before the
collision. In the collision, the masses stick together and
remain at rest. If no energy is released, then the conser-
vation of energy implies

2m�.u/c2 DMc2 ; (1.59)

where M is the mass of the resulting body. Since �.u/ >
1, then M > 2m; in fact, the resulting body contains
the masses of the colliding particles and their kinetic
energies. In Einstein’s words, the mass of a body is
a measure of its energy-content [1.46].

In general, the mass (energy at rest) of a composed
system includes not only the masses of its constituents
but any other internal energy as measured in the center-
of-momentum frame. For instance, a deuteron D is con-
stituted by a proton and a neutron. The deuteron mass
is lower than the addition of the masses of a free proton



Part
A

|1.5

22 Part A Introduction to Spacetime Structure

and a free neutron; this evidences a negative binding
energy between the constituents. The mass defect is
(mD�mp�mn/c2 D�2:22 MeV. In general, when light
nuclides merge into a heavier nuclide (nuclear fusion)
some energy must be released to conserve the total en-
ergy. On the contrary, the mass of a heavy nucleus is
larger than the sum of the masses of its constituents.
Therefore, also there is a released energy in the nu-
clear fission of heavy nuclei. This dissimilar behavior
comes from the fact that the (negative) binding energy
per nucleon increases with the mass number for light
nuclei but decreases for heavy nuclei (the inversion of
the slope happens at a mass number around 60).

The kinetic energy can be used to create parti-
cles. For instance, a neutral pion �0 can be created in
a high energy collision between protons p; the reaction
is pC p! pC pC�0. This reaction can only occur if
a threshold energy is reached to give account of the par-
ticle created. The neutral pion has energy at rest (mass)
of 134:98 MeV; then, in the center-of-momentum frame
the pion is created if each colliding proton reaches the
kinetic energy of 67:49 MeV. In such a case, all the ki-
netic energy is used to create the pion; the products
remain at rest, since no kinetic energy is left for the
products, and the total momentum is conserved. There-
fore, the threshold energy of the reaction in the center-
of-momentum frame is equal to the energy at rest of the
products: Ethreshold D 2mpc2Cm0

�c2 D 1876:54 MeVC
134:98 MeV. In this case, the energy balance is (the
particles are approximately free before and after the
reaction)

2mp�.up/c
2 D 2mpc2Cm�0 c2

) �.up/D 1C
m�0

2mp
D 1C

134:98

1876:54

D 1:072 ; (1.60)

which means that the velocity of the colliding pro-
tons in the center-of-momentum frame is up D 0:36c.
In another frame, the threshold energy is higher be-
cause the products must keep some kinetic energy to
conserve the (non-null) total momentum. We can use
(1.53) to transform the total energy-momentum of the
system (since the transformations are linear, they can
be used to transform a sum of energies and momenta).
In the center-of-momentum frame the total momentum
is zero; then (1.53a) says that E0threshold D �.V/Ethreshold.
For instance, in the laboratory frame where one of the
colliding protons is at rest (i. e., �.V/D �.up// it is
E0threshold D 1:072Ethreshold; deducting the masses of pro-
jectile and target, we obtain that the reaction is feasible

if the projectile reaches the kinetic energy of T 0threshold D

E0threshold � 2mpc2 D 279:67 MeV.
The previous example is a case of inelastic collision.

A collision is called elastic if the particles keep their
identities. Thus, the masses (energies at rest) before and
after the collision are the same; so, the conservation of
the energy of the colliding free particles is equivalent to
the conservation of the total kinetic energy.

The interaction among charged particles can re-
sult in the release of electromagnetic radiation. In
such cases the radiation enters the energy-momentum
balance in the form of photons. For instance, a pair
electron-positron annihilates to give two photons (the
positron is the anti-particle of the electron; they have
equal mass but opposite charge). In the center-of-mo-
mentum frame, the photons have equal frequency and
opposite directions to conserve the total momentum
(notice that two photons at least are needed to conserve
the momentum). If ue is the velocity of both particles
in the center-of-momentum frame, then the energy bal-
ance is

2me�.ue/c
2 D 2h� : (1.61)

Conversely, two photons can create a pair electron–
positron. In this case, the threshold energy is equal to
the mass of two electrons. So the minimum frequency
to create the pair in the center-of-momentum frame is
given by

2h�min D 2mec2

) �min D
mec2

h
D

0:511 MeV

4:14�10�21 MeV s
D 1:23�1020 s�1 ;

(1.62)

which is a frequency in the gamma-ray range of the
electromagnetic spectrum.

Compton Effect
In 1923 Compton measured the scattering of x-rays by
electrons in graphite. x-ray photons have energies much
larger than the electron bound energies. So, the phe-
nomenon can be studied as the elastic collision between
a photon and a free electron. In the frame where the
electron is initially at rest, its final momentum and en-
ergy are

Ee D h�i � h�fCmec2 ;

pe D h�ic
�1 Oni � h�fc

�1 Onf ;
(1.63)
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as results from compensating the changes of momen-
tum and energy suffered by photon and electron (in
(1.63) the labels i and f allude to the initial and final
states of the photon). The replacement of these values in
the electron energy–momentum invariant (1.54) yields

m2
ec4 D E2

e � p2
ec2

D m2
ec4C 2h

�
�imec2 � h�i�f �mec2�f

C h�i�f Oni � Onf
�
:

(1.64)

Equation (1.64) contains the relation between the in-
going and outgoing photons. Let us call ' the angle
between the initial and final directions of propagation:
Oni � Onf D cos'. Then

1

h�f
�

1

h�i
D

1

mec2
.1� cos'/ or 	f �	i

D
h

mec
.1� cos'/ :

(1.65)

The quantity 	C � h=.mec/D 0:00243 nm is the Comp-
ton wavelength of the electron. Equation (1.65) says
that the photon suffers a significant change only if
its wavelength is comparable to or smaller than the
electron Compton wavelength (i. e., its energy is com-
parable to or larger than mec2/.

1.5.4 Interactions at a Distance

Interactions at a distance are allowed in classical me-
chanics; they are described by potential energies de-

pending on the distances between particles, which au-
tomatically give equal and opposite interaction forces
accomplishing Newton’s third law. Thus, although the
interaction forces change the momenta of the particles,
these changes cancel out by pairs at each instant; so
the total momentum of an isolated system of interact-
ing particles is conserved. Noticeably, the statement
of Newton’s third law cannot be translated to special
relativity, because the simultaneous cancelation at a dis-
tance does not have an absolute meaning. In particular,
an interaction potential energy depending on the (non-
Lorentz-invariant) distance between particles makes no
sense in relativity. Remarkably, in electromagnetism the
charges do not interact through such a potential (apart
from the static case). Instead, the interaction at a dis-
tance is substituted for the local interaction between
a charge and the surrounding electromagnetic field.
This local interaction entails the exchange of energy
and momentum between charge and field. The electro-
magnetic field carries momentum and energy, which
can be (partially) transferred to another charge at an-
other place. So, the isolated system conserving the total
momentum and energy is composed by the charges and
the electromagnetic field. Conservation laws are local
in relativity. The action governing an isolated system
of charges and electromagnetic field is the sum of the
actions Sfree of the charges, the actions Sint describing
the local interaction of each charge with the field at
the place of the charge (Sect. 1.5.1), and the invariant
action of the electromagnetic field Sfield D "o=2

R
.E2 �

c2B2/d3xdt.

1.6 Conclusion

As a theory about the structure of the spacetime, special
relativity is a framework to build theories in physics: the
laws governing any physical phenomenon must be de-
rived from Lorentz invariant functional actions. In this
way, the dynamical equations will accomplish the prin-
ciple of relativity under Lorentz transformations.

This requirement is enlightened in the covariant
formulation to be developed in the next chapters. Cer-
tainly, Maxwell’s electromagnetism is a theory that
has the proper behavior under Lorentz transformations.
Also the field theories describing subatomic interac-
tions are built under relativistic criteria. What about
the theory of gravity? In classical physics, gravity is
a universal force proportional to the mass. The identity

between the gravitational mass – the mass that mea-
sures the strength of the gravitational interaction – and
the inertial mass – the mass in (1.11) – causes the mo-
tion of a freely-gravitating particle to be independent
of its mass; it just depends on the initial conditions.
Einstein realized that this fact opened up the possi-
bility of considering gravity not as a force but as the
geometry of spacetime: the motion of a freely gravitat-
ing particle would be the consequence of the geometry
of the spacetime. Special relativity had revised the be-
lief in the invariance of lengths and times, but it still
assumed that the space was endowed with a frozen
Euclid’s flat geometry (which leads to the Pythago-
ras’ theorem we used in (1.27)). Einstein took a big
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step ahead to think that geometry could be a dynam-
ical variable determined by the distribution of matter
and energy. Thus, Newton’s thought that matter is the
origin of gravitational forces was replaced by Einstein’s
idea that the energy–momentum distribution determines
the way of measuring spacetime. In general relativ-
ity, geometry is governed by dynamical equations –
the Einstein equations – fed by the energy and mo-
mentum located in the spacetime; special relativity’s
geometry is just the geometry of an empty spacetime.
In general relativity, the freely gravitating test parti-
cles describe geodesics of the spacetime geometry; this
is what a planet does when orbiting a star. Moreover,
when a photon ascends a gravitational field, its fre-
quency diminishes because clocks go faster when the

gravitational potential increases ((1.40) is no longer
valid). The GPS system takes into account this effect
of gravity on the running of clocks to reach its highest
performance. So, the photon loses energy while as-
cending a gravitational potential. This implies that its
capacity of creating mass decreases; but the so cre-
ated mass is compensated for by a larger potential
energy. In general relativity the spacetime geometry
can evolve; thus we can interpret the cosmological
data in the context of an expanding universe. In sum,
10 years after the birth of special relativity, the con-
cepts of space and time underwent a new fundamental
revision to tackle the relativistic formulation of grav-
itational phenomena: Einstein’s general relativity was
born.

References

1.1 I. Newton: Philosophiæ Naturalis Principia Mathe-
matica (Joseph Streater, London 1687)

1.2 G. Galilei: Discorsi e Dimostrazioni Matematiche, in-
torno à due nuove scienze (Elsevirii, Leiden 1638),
Third Day, Section 243

1.3 P. Gassendi: De motu impresso a motore translato
(Louis de Heuqueville, Paris 1642)

1.4 R. Descartes: Principia Philosophiae (Louis Elzevir,
Amsterdam 1644), Part II, Section 37

1.5 H.G. Alexander (Ed.): The Leibniz–Clarke Correspon-
dence Together with Extracts from Newton’s Prin-
cipia and Opticks (Manchester Univ. Press, Manch-
ester 1998)

1.6 O.C. Rømer: Démonstration touchant le mouve-
ment de la lumière trouvé par M. Römer de
l’Académie Royale des Sciences, J. Sçavans, 233-236
(1676)

1.7 L. Bobis, J. Lequeux: Cassini, Rømer and the velocity
of light, J. Astron. Hist. Herit. 11(2), 97–105 (2008)

1.8 J. Bradley: A letter from the Reverend Mr. James
Bradley . . . to Dr. Edmond Halley . . . giving an ac-
count of a new discovered motion of the fixed stars,
Philos. Trans. R. Soc. 35, 637–661 (1728)

1.9 A.B. Stewart: The discovery of stellar aberration, Sci.
Am. 210(3), 100–108 (1964)

1.10 H.L. Fizeau: Sur une expérience relative à la vitesse
de propagation de la lumière, C. R. Acad. Sci. Paris
29, 90–92 (1849)

1.11 A.J. Fresnel: Mémoire sur la diffraction de la lumière,
Mém. Acad. Sci. 5, 339–475 (1821), 1822

1.12 C. Huygens: Traité de la Lumière (Pierre van der Aa,
Leiden 1690)

1.13 L. Foucault: Méthode générale pour mesurer la
vitesse de la lumière dans l’air et les milieux trans-
parents. Vitesses relatives de la lumière dans l’air
et dans l’eau. Projet d’expérience sur la vitesse de

propagation du calorique rayonnant, C. R. Acad. Sci.
Paris 30(18), 551–560 (1850)

1.14 J.C. Maxwell: A Treatise on Electricity and Magnetism
(Clarendon, Oxford 1873)

1.15 M. Hoek: Détermination de la vitesse avec laquelle
est entraîné une onde lumineuse traversant un mi-
lieu en movement, Arch. Néerl. Sci. 3, 180–185 (1868)

1.16 G.B. Airy: On a supposed alteration in the amount
of astronomical aberration of light, produced by the
passage of the light trough a considerable thickness
of refracting medium, Proc. R. Soc. 20, 35–39 (1871)

1.17 D.F.J. Arago: Mémoire sur la vitesse de la lumière,
lu à la première Classe de l’Institut, le 10 décembre
1810, C. R. Acad. Sci. Paris 36(2), 38–49 (1853)

1.18 A.J. Fresnel: Lettre de M Fresnel à M Arago, sur
l’influence du mouvement terrestre dans quelques
phénomènes d’optique, Ann. Chim. Phys. 9, 57–66
(1818)

1.19 H.L. Fizeau: Sur les hypotheses relatives à l’éther lu-
mineux, et sur une expérience qui paraît démontrer
que le mouvement des corps change la vitesse avec
laquelle la lumière se propage dans leur intérieur, C.
R. Acad. Sci. Paris 33(15), 349–355 (1851)

1.20 R. Ferraro: Einstein’s Space-Time: An Introduction to
Special and General Relativity (Springer, New York
2007)

1.21 R. Ferraro, D.M. Sforza: Arago (1810): the first exper-
imental result against the ether, Eur. J. Phys. 26,
195–204 (2005)

1.22 E. Hecht: Optics (Addison-Wesley, Reading 2002)
1.23 A.A. Michelson, E.W. Morley: On the relative motion

of the Earth and the luminiferous ether, Am. J. Sci.
34, 333–345 (1887)

1.24 A.A. Michelson, E.W. Morley: On the relative motion
of the Earth and the luminiferous ether, Philos. Mag.
24, 449–463 (1887)



From Æther Theory to Special Relativity References 25
Part

A
|1.6

1.25 L.S. Swenson: The Michelson–Morley–Miller experi-
ments before and after 1905, J. Hist. Astron. 1, 56–78
(1970)

1.26 O.J. Lodge: Aberration problems. A Discussion con-
cerning the motion of the ether near the earth, and
concerning the connexion between ether and gross
matter; with some new experiments, Philos. Trans.
R. Soc. A 184, 727–804 (1893)

1.27 W. Ritz: Recherches Critiques sur l’Électrodynamique
Générale, Ann. Chim. Phys. 13, 145–275 (1908)

1.28 G.C. Babcock, T.G. Bergman: Determination of the
constancy of the speed of light, J. Opt. Soc. Am. 54,
147–150 (1964)

1.29 J.G. Fox: Evidence against emission theories, Am.
J. Phys. 33, 1–17 (1965)

1.30 A.A. Martínez: Ritz, Einstein, and the emission hy-
pothesis, Phys. Perspect. 6, 4–28 (2004)

1.31 H.A. Lorentz: De relatieve beweging van de Aarde en
den Aether, Verh. K. Akad. Wet. 1, 74–79 (1892)

1.32 G.F. FitzGerald: The ether and the Earth’s atmo-
sphere, Science 13, 390 (1889)

1.33 A. Einstein: Zur Elektrodynamik bewegter Körper,
Ann. Phys. 17, 891–921 (1905)

1.34 B. Rossi, D.B. Hall: Variation of the rate of decay of
mesotrons with momentum, Phys. Rev. 59, 223–228
(1941)

1.35 H.A. Lorentz: Versuch einer Theorie der electrischen
und optischen Erscheinungen in bewegten Körpern,
Verh. K. Akad. Wet. 7, 507–522 (1899), translation:
Théorie simplifieé des phénomènes electriques et

optiques dans les corps en movement, Proc. Sect. Sci.
K. Akad. Wet. Amst. 1, 427-442

1.36 H.A. Lorentz: K. Akad. Wet. 12, 986 (1904)
1.37 J. Larmor: Æther and Matter (Cambridge Univ. Press,

Cambridge 1900)
1.38 W. Voigt: Ueber das Doppler’sche Princip, Goett. Ges.

Wiss. Nachr. 2, 41–51 (1887)
1.39 J.H. Poincaré: Sur la dynamique de l’électron, C. R.

Acad. Sci. Paris 140, 1504–1508 (1905)
1.40 H.E. Ives, G.R. Stilwell: An experimental study of the

rate of a moving atomic clock, J. Opt. Soc. Am. 28,
215–219 (1938)

1.41 A.H. Bucherer: Messungen an Becquerelstrahlen.
Die experimentelle Bestätigung der Lorentz-
Einsteinschen Theorie, Phys. Z. 9, 755–762 (1908)

1.42 A. Einstein: Über einen die Erzeugung und Verwand-
lung des Lichtes betreffenden heuristischen Gesicht-
spunkt, Ann. Phys. 17, 132–148 (1905)

1.43 A. Einstein: Zur Quantentheorie der Strahlung, Phys.
Z. 18, 121–128 (1917)

1.44 A.H. Compton: A quantum theory of the scattering
of x-rays by light elements, Phys. Rev. 21, 483–502
(1923)

1.45 A. Cassini, M.L. Levinas: La hipótesis del cuanto
de luz y la relatividad especial ¿Por qué Einstein
no las relacionó en 1905?, Sci. Stud. 5(4), 425–452
(2007)

1.46 A. Einstein: Ist die Trägheit eines Körpers von seinem
Energieinhalt abhängig?, Ann. Phys. 18, 639–641
(1905)



The Historica
27

Part
A

|2.1

2. The Historical Origins of Spacetime

Scott Walter

The idea of spacetime investigated in this chapter,
with a view toward understanding its immediate
sources and development, is the one formulated
and proposed by Hermann Minkowski in 1908.
Until recently, the principle source used to form
historical narratives of Minkowski’s discovery of
spacetime has been Minkowski’s own discovery
account, outlined in the lecture he delivered in
Cologne, entitled Space and time [2.1]. Minkowski’s
lecture is usually considered as a bona fide first-
person narrative of lived events. According to this
received view, spacetime was a natural outgrowth
of Felix Klein’s successful project to promote the
study of geometries via their characteristic groups
of transformations. Or as Minkowski expressed the
same basic thought himself, the theory of relativity
discovered by physicists in 1905 could just as well
have been proposed by some late-nineteenth-
century mathematician, by simply reflecting upon
the groups of transformations that left invariant
the form of the equation of a propagating light
wave. Minkowski’s publications and research notes
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provide a contrasting picture of the discovery of
spacetime, in which group theory plays no direct
part. In order to relate the steps of Minkowski’s
discovery, we begin with an account of Poincaré’s
theory of gravitation, where Minkowski found
some of the germs of spacetime. Poincaré’s geo-
metric interpretation of the Lorentz transformation
is examined, along with his reasons for not
pursuing a four-dimensional vector calculus. In
the second section, Minkowski’s discovery and
presentation of the notion of a world line in
spacetime is presented. In the third and final sec-
tion, Poincaré’s and Minkowski’s diagrammatic
interpretations of the Lorentz transformation are
compared.

2.1 Poincaré’s Theory of Gravitation

In the month of May, 1905, Henri Poincaré (1854–
1912) wrote to his Dutch colleague H. A. Lorentz
(1853–1928) to apologize for missing the latter’s lec-
ture in Paris, and also to communicate his latest discov-
ery, which was related to Lorentz’s recent paper [2.2]
on electromagnetic phenomena in frames moving with
sublight velocity [2.3, §38.3]. In [2.2], Lorentz had
shown that the form of the fundamental equations of
his theory of electrons is invariant with respect to the
coordinate transformations

x0 D �`x ; y0 D `y ; z0 D `z ;

t0 D
`

�
t�ˇ`

v

c2
x ;

(2.1)

where

� D 1=
p

1� v2=c2 ;

`D f .v/; `D 1 for vD 0 ;

cD vacuum speed of light :

The latter transformation was understood to compose
with a transformation later known as a Galilei transfor-
mation: x00 D x0�vt0, t00 D t0. (Both here and elsewhere
in this chapter, original notation is modified for ease of
reading.)

The essence of Poincaré’s discovery in May 1905,
communicated in subsequent letters to Lorentz, was that
the coordinate transformations employed by Lorentz
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form a group, provided that the factor ` is set to unity.
Poincaré performed the composition of the two trans-
formations to obtain a single transformation, which he
called the Lorentz transformation

x0 D �.x� vt/ ; y0 D y ; z0 D z ;

t0 D �
�

t� v
x

c2

	
:

(2.2)

In his letters to Lorentz, Poincaré noted that while he
had concocted an electron model that was both stable
and relativistic, in the new theory he was unable to pre-
serve the unity of time, i. e., a definition of duration valid
in both the ether and in moving frames.

The details of Poincaré’s theory [2.4] were pub-
lished in January, 1906, by which time Einstein had
published his own theory of relativity [2.5], which em-
ployed the unified form of the Lorentz transformation
(2.2) and vigorously embraced the relativity of space
and time with respect to inertial frames of motion. The
final section of Poincaré’s memoir is devoted to a topic
he had neglected to broach with Lorentz, and that Ein-
stein had neglected altogether: gravitation.

If the principle of relativity was to be universally
valid, Poincaré reasoned, then Newton’s law of grav-
itation would have to be modified. An adept of the
group-theoretical understanding of geometry since his
discovery of what he called Fuchsian functions in
1880 [2.6], Poincaré realized that a Lorentz transfor-
mation may be construed as a rotation about the origin
of coordinates in a four-dimensional vector space with
three real axes and one imaginary axis, preserving the
sum of squares

x02C y02C z02 � t02 D x2C y2C z2 � t2 ; (2.3)

where Poincaré set cD 1. Employing the substitution
uD t
p
�1, and drawing on a method promoted by Lie

and Scheffers in the early 1890s [2.7], Poincaré identi-
fied a series of quantities that are invariant with respect
to the Lorentz group. These quantities were meant
to be the fundamental building blocks of a Lorentz-
covariant family of laws of gravitational attraction.
Neglecting a possible dependence on acceleration,
and assuming that the propagation velocity of grav-
itation is the same as that of light in empty space,
Poincaré identified a pair of laws, one vaguely New-
tonian, the other vaguely Maxwellian, which he ex-
pressed in the form of what would later be called
four-vectors.

In the course of his work on Lorentz-covariant
gravitation, Poincaré defined several quadruples for-

mally equivalent to four-vectors, including definitions
of radius, velocity, force, and force density. The signs
of Poincaré’s invariants suggest that when he formed
them, he did not consider them to be scalar products
of four-vectors. This state of affairs led at least one
contemporary observer to conclude – in the wake of
Minkowski’s contributions – that Poincaré had sim-
ply miscalculated one of his Lorentz invariants [2.8,
pp. 203; 238].

Poincaré’s four-dimensional vector space attracted
little attention at first, except from the vectorist Roberto
Marcolongo (1862–1945), Professor of Mathematical
Physics in Messina. Redefining Poincaré’s temporal co-
ordinate as uD�t

p
�1, Marcolongo introduced four-

vector definitions of current and potential, which en-
abled him to express the Lorentz-covariance of the
equations of electrodynamics in matricial form [2.9].
Largely ignored at the time, Marcolongo’s paper
nonetheless broke new ground in applying Poincaré’s
four-dimensional approach to the laws of electrody-
namics.

Marcolongo was one of many ardent vectorists ac-
tive in the first decade of the twentieth century, when
vector methods effectively sidelined the rival quater-
nionic approaches [2.10, p. 259]. More and more the-
orists recognized the advantages of vector analysis
and also of a unified vector notation for mathematical
physics. The pages of the leading journal of theoret-
ical physics, the Annalen der Physik, edited by Paul
Drude until his suicide in 1906, then by Max Planck
and Willy Wien, bear witness to this evolution. Even
in the pages of the Annalen der Physik, however,
notation was far from standardized, leading several
theorists to deplore the field’s babel of symbolic expres-
sions.

Among the theorists who regretted the multiplica-
tion of systems of notation was Poincaré, who em-
ployed ordinary vectors in his own teaching and pub-
lications on electrodynamics, while ignoring the nota-
tional innovations of Lorentz and others. In particular,
Poincaré saw no future for a four-dimensional vector
calculus. Expressing physical laws by means of such
a calculus, he wrote in 1907, would entail much trouble
for little profit [2.11, p. 438].

This was not a dogmatic view, and in fact, some
years later he acknowledged the value of a four-
dimensional approach in theoretical physics [2.12,
p. 210]. He was already convinced that there was a place
for .3Cn/-dimensional geometries at the university. As
Poincaré observed in the paper Gaston Darboux read in
his stead at the International Congress of Mathemati-
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Fig. 2.1 Poincaré’s light ellipse, after Henri Vergne, 1906–
1907. Labels H and A are added for clarity

cians in Rome, in April, 1908, university students were
no longer taken aback by geometries with more than
three dimensions [2.13, p. 938].

Relativity theory, however, was another matter for
Poincaré. Recently-rediscovered manuscript notes by
Henri Vergne of Poincaré’s lectures on relativity the-
ory in 1906–1907 reveal that Poincaré introduced his
students to the Lorentz group and taught them how to
form Lorentz-invariant quantities with real coordinates.
He also taught his students that the sum of squares
(2.3) is invariant with respect to the transformations of
the Lorentz group. Curiously, Poincaré did not teach
his students that a Lorentz transformation corresponded
to a rotation about the origin in a four-dimensional
vector space with one imaginary coordinate. He also ne-
glected to show his students the handful of four-vectors
he had defined in the summer of 1905. Apparently for
Poincaré, knowledge of the Lorentz group and the for-
mation of Lorentz-invariant quantities was all that was
needed for the physics of relativity. In other words,
Poincaré acted as if one could do without an interpreta-
tion of the Lorentz transformation in four-dimensional
geometry.

If four-dimensional geometry was superfluous to in-
terpretation of the Lorentz transformation, the same was
not true for plane geometry. Evidence of this view is
found in Vergne’s notes, which feature a curious fig-

ure that we will call a light ellipse, redrawn here as
Fig. 2.1. Poincaré’s light ellipse is given to be the merid-
ional section of an ellipsoid of rotation representing the
locus of a spherical light pulse at an instant of time.
It works as follows: an observer at rest with respect
to the ether measures the radius of a spherical light
pulse at an instant of absolute time t (as determined
by clocks at rest with respect to the ether). The ob-
server measures the light pulse radius with measuring
rods in uniform motion of velocity v. These flying rods
are Lorentz-contracted, while the light wave is assumed
to propagate spherically in the ether. Consequently, for
Poincaré, the form of a spherical light pulse measured
in this fashion is that of an ellipsoid of rotation, elon-
gated in the direction of motion of the flying rods.
(A derivation of the equation of Poincaré’s light ellipse
is provided along these lines in [2.14].)

The light ellipse originally concerned ether-fixed
observers measuring a locus of light with clocks at ab-
solute rest, and rods in motion. Notably, in his first
discussion of the light ellipse, Poincaré neglected to
consider the point of view of observers in motion with
respect to the ether. In particular, Poincaré’s graphical
model of light propagation does not display relativity
of simultaneity for inertial observers, since it represents
a single frame of motion. Nonetheless, Poincaré’s light
ellipse was applicable to the case of observers in uni-
form motion, as he showed himself in 1909. In this
case, the radius vector of the light ellipse represents
the light-pulse radius at an instant of apparent time t0,
as determined by comoving, light-synchronized clocks,
and comoving rods corrected for Lorentz-contraction.
Such an interpretation implies that clock rates depend
on frame velocity, as Einstein recognized in 1905 in
consequence of his kinematic assumptions about ideal
rods and clocks [2.5, p. 904], and which Poincaré ac-
knowledged in a lecture in Göttingen on 28 April, 1909,
as an effect epistemically akin to Lorentz-contraction,
induced by clock motion with respect to the ether [2.15,
p. 55].

Beginning in August 1909, Poincaré repurposed his
light ellipse diagram to account for the dilation of peri-
ods of ideal clocks in motion with respect to the ether
[2.16, p. 174]. This sequence of events raises the ques-
tion of what led Poincaré to embrace the notion of time
deformation in moving frames, and to repurpose his
light ellipse? He did not say, but there is a plausible
explanation at hand, which we will return to later, as it
rests on events in the history of relativity from 1907 to
1908 to be discussed in the next section.
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2.2 Minkowski’s Path to Spacetime

From the summer of 1905 to the fall of 1908, the the-
ory of relativity was reputed to be inconsistent with
the observed deflection of ˇ-rays by electric and mag-
netic fields. In view of experimental results published
by Walter Kaufmann (1871–1947), Lorentz wrote in de-
spair to Poincaré on 8 March, 1906 in hopes that the
Frenchman would find a way to save his theory. As far
as Lorentz was concerned, he was at the end of [his]
Latin [2.17, p. 334].

Apparently, Poincaré saw no way around Kauf-
mann’s results, either. However, by the end of 1908,
the outlook for relativity theory had changed for the
better, due in part to new experiments performed by
A. H. Bucherer (1863–1927), which tended to confirm
the predictions of relativity theory. The outlook for the
latter theory was also enhanced by the contributions
of a mathematician in Göttingen, Hermann Minkowski
(1864–1909).

Minkowski’s path to theoretical physics was a me-
andering one, that began in earnest during his student
days in Berlin, where he heard lectures by Hermann
Helmholtz, Gustav Kirchhoff, Carl Runge, and Wolde-
mar Voigt. There followed a dissertation in Königs-
berg on quadratic forms, and Habilitation in Bonn
on a related topic in 1887 [2.18]. While in Bonn,
Minkowski frequented Heinrich Hertz’s laboratory be-
ginning in December, 1890, when it was teeming with
young physicists eager to master techniques for the
study of electromagnetic wave phenomena. Minkowski
left Bonn for a position at the University of Königs-
berg, where he taught mathematics until 1896, and
then moved to Switzerland, where he joined his for-
mer teacher Adolf Hurwitz (1859–1919) on the faculty
of Zürich Polytechnic. In Zürich he taught courses
in mathematics and mathematical physics to under-
graduates including Walther Ritz (1878–1909), Marcel
Grossmann (1878–1936), and Albert Einstein (1879–
1955). In 1902, Minkowski accepted the offer to take
up a new chair in mathematics created for him in Göt-
tingen at the request of his good friend, David Hilbert
(1862–1943) [2.19, p. 436].

Minkowski’s arrival in Göttingen comforted the
university’s premier position in mathematical research
in Germany. His mathematical credentials were well-
established following the publication, in 1896, of the
seminal Geometry of numbers [2.20]. During his first
2 years in Göttingen, Minkowski continued to publish
in number theory and to teach pure mathematics. With
Hilbert, who had taken an interest in questions of math-

ematical physics in the 1890s, Minkowski codirected
a pair of seminars on stability and mechanics [2.21].

It was quite unusual at the time for Continen-
tal mathematicians to pursue research in theoretical
physics. Arguably, Poincaré was the exception that
proved the rule, in that no other scientist displayed com-
parable mastery of research in both mathematics and
theoretical physics. In Germany, apart from Carl Neu-
mann, mathematicians left physics to the physicists.
With the construction in Germany of 12 new physi-
cal institutes between 1870 and 1899, there emerged
a professional niche for individuals trained in both
mathematical physics and experimental physics, which
very few mathematicians chose to enter. This institu-
tional revolution in German physics [2.22] gave rise
to a new breed of physicist: the theoretical physi-
cist [2.23].

In the summer of 1905, Minkowski and Hilbert
codirected a third seminar in mathematical physics,
convinced that only higher mathematics could solve the
problems then facing physicists, and with Poincaré’s 14
volumes of Sorbonne lectures on mathematical physics
serving as an example. This time they delved into
a branch of physics new to both of them: electron the-
ory. Their seminar was an occasion for them to acquaint
themselves, their colleagues Emil Wiechert and Gustav
Herglotz, and students including Max Laue and Max
Born, with recent research in electron theory. From
all accounts, the seminar succeeded in familiarizing its
participants with the state of the art in electron the-
ory, although the syllabus did not feature the most
recent contributions from Lorentz and Poincaré [2.24].
In particular, according to Born’s distant recollections
of the seminar, Minkowski occasionally hinted of his
engagement with the Lorentz transformation and he
conveyed an inkling of the results he would publish in
1908 [2.25].

The immediate consequence of the electron-theory
seminar for Minkowski was a new interest in a related,
and quite-puzzling topic in theoretical physics: black-
body radiation. Minkowski gave two lectures on heat
radiation in 1906 and offered a lecture course in this
subject during the summer semester of 1907. According
to Minkowski’s class notes, he referred to Max Planck’s
contribution to the foundations of relativistic thermody-
namics [2.26], which praised Einstein’s formulation of
a general approach to the principle of relativity for pon-
derable systems. In fact, Minkowski had little time to
assimilate Planck’s findings (communicated on 13 June,
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1907) and communicate them to his students. This may
explain why his lecture notes cover only nonrelativistic
approaches to heat radiation.

By the fall of 1907, Minkowski had come to realize
some important consequences of relativity theory not
only for thermodynamics, but for all of physics. On 9
October, he wrote to Einstein, requesting an offprint of
his first paper on relativity, which was the one cited by
Planck [2.27, Doc. 62]. Less than a month later, on 5
November, 1907, Minkowski delivered a lecture to the
Göttingen Mathematical Society, the subject of which
was described succinctly as On the principle of relativ-
ity in electrodynamics: a new form of the equations of
electrodynamics [2.25].

The lecture before the mathematical society was
the occasion for Minkowski to unveil a new research
program: to reformulate the laws of physics in four-
dimensional terms, based on the Lorentz-invariance
of the quadratic form x2C y2C z2 � c2t2, where x, y,
z, are rectangular space coordinates, fixed in ether,
t is time, and c is the vacuum speed of light [2.28,
p. 374]. Progress toward the achievement of such a re-
formulation had been realized by Poincaré’s relativistic
reformulation of the law of gravitation in terms of
Lorentz-invariant quantities expressed in the form of
four-vectors, as mentioned above.

Poincaré’s formal contribution was duly acknowl-
edged by Minkowski, who intended to go beyond what
the Frenchman had accomplished in 1905. He also in-
tended to go beyond what Poincaré had considered to
be desirable, with respect to the application of geo-
metric reasoning in the physical sciences. Poincaré, we
recall, had famously predicted that Euclidean geome-
try would forever remain the most convenient one for
physics [2.11, p. 45]. Poincaré’s prediction stemmed
in part from his doctrine of physical space, according
to which the question of the geometry of phenomenal
space cannot be decided on empirical grounds. In fact,
few of Poincaré’s contemporaries in the physical and
mathematical sciences agreed with his doctrine [2.29].

Euclidean geometry was to be discarded in favor of
a certain four-dimensional manifold, and not just any
manifold, but a non-Euclidean manifold. The reason for
this was metaphysical, in that for Minkowski, the phe-
nomenal world was not Euclidean, but non-Euclidean
and four-dimensional [2.28, p. 372]:

The world in space and time is, in a certain sense,
a four-dimensional non-Euclidean manifold.

Explaining this enigmatic proposition would take up the
rest of Minkowski’s lecture.

To begin with, Minkowski discussed neither space,
time, manifolds, or non-Euclidean geometry, but vec-
tors. Borrowing Poincaré’s definitions of radius and
force density, and adding (like Marcolongo before
him) expressions for four-current density, %, and four-
potential,  , Minkowski expressed Maxwell’s vacuum
equations in the compact form

� j D�%j .jD 1; 2; 3; 4/ ; (2.4)

where � is the d’Alembertian operator. According to
Minkowski, no one had realized before that the equa-
tions of electrodynamics could be written so succinctly,
not even Poincaré (cf. [2.30]). Apparently, Minkowski
had not noticed Marcolongo’s paper, mentioned above.

The next mathematical object that Minkowski intro-
duced was a real step forward and was soon acknowl-
edged as such by physicists. This is what Minkowski
called a Traktor: a six-component object later called
a six-vector, and more recently, an antisymmetric rank-
2 tensor. Minkowski defined the Traktor’s six compo-
nents via his four-vector potential, using a two-index
notation:  jk D @ k=@xj � @ j=@xk, noting the antisym-
metry relation  kj D� jk, and zeros along the diagonal
 jj D 0, such that the components  14,  24,  34,  23,
 31,  12 match the field quantities �iEx, �iEy, �iEz,
Bx, By, Bz. To express the source equations, Minkowski
introduced a Polarisationstraktor p

@p1j

@x1
C
@p2j

@x2
C
@p3j

@x3
C
@p4j

@x4
D �j �%j ; (2.5)

where � is the four-current density for matter.
Up to this point in his lecture, Minkowski had pre-

sented a new and valuable mathematical object, the
antisymmetric rank-2 tensor. He had yet to reveal the
sense in which the world is a four-dimensional non-
Euclidean manifold. His argument proceeded as fol-
lows. The tip of a four-dimensional velocity vector w1,
w2, w3, w4, Minkowski explained [2.28, p. 373],

is always a point on the surface

w2
1Cw2

2Cw2
3Cw2

4 D�1 ; (2.6)

or if you prefer, on

t2 � x2 � y2 � z2 D 1 ; (2.7)

and represents both the four-dimensional vector
from the origin to this point, and null velocity,
or rest, being a genuine vector of this sort. Non-
Euclidean geometry, of which I spoke earlier in an
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imprecise fashion, now unfolds for these velocity
vectors.

These two surfaces, a pseudo-hypersphere of unit imag-
inary radius (2.6), and its real counterpart, the two-
sheeted unit hyperboloid (2.7), give rise to well-known
models of hyperbolic space, popularized by Helmholtz
in the late nineteenth century [2.31, Vol. 2]. The upper
sheet (t > 0) of the unit hyperboloid (2.7) models hy-
perbolic geometry; for details, see [2.32].

The conjugate diameters of the hyperboloid (2.7)
give rise to a geometric image of the Lorentz transfor-
mation. Any point on (2.7) can be considered to be at
rest, i. e., it may be taken to lie on a t-diameter, as shown
in Fig. 2.2. This change of axes corresponds to an
orthogonal transformation of the time and space coordi-
nates, which is a Lorentz transformation (letting cD 1).
In other words, the three-dimensional hyperboloid (2.7)
embedded in four-dimensional pseudo-Euclidean space
affords an interpretation of the Lorentz transformation.

Although Minkowski did not spell out his geometric
interpretation, he probably recognized that a displace-
ment on the hypersurface (2.7) corresponds to a rotation
 about the origin, such that frame velocity v is de-
scribed by a hyperbolic function, vD tanh . However,
he did not yet realize that his hypersurfaces repre-
sent the set of events occurring at coordinate time t0 D
1 of all inertial observers, the world lines of whom
pass through the origin of coordinates (with a com-
mon origin of time). According to (2.7), this time is
imaginary, a fact which may have obscured the latter
interpretation.

How do we know that Minkowski was still unaware
of world lines in spacetime? Inspection of Minkow-

t
t'

x

Fig. 2.2 A reconstruction of Minkowski’s 5 November,
1907 presentation of relativistic velocity space, with a pair
of temporal axes, one spatial axis, a unit hyperbola and its
asymptotes

ski’s definition of four-velocity vectors reveals an error,
which is both trivial and interesting: trivial from a math-
ematical standpoint, and interesting for what it says
about his knowledge of the structure of spacetime, and
the progress he had realized toward his goal of re-
placing the Euclidean geometry of phenomenal space
with the geometry of a four-dimensional non-Euclidean
manifold.

When faced with the question of how to define
a four-velocity vector, Minkowski had the option of
adopting the definition given by Poincaré in 1905.
Instead, he rederived his own version, by following
a simple rule. Minkowski defined a four-vector poten-
tial, four-current density, and four-force density, all by
simply generalizing ordinary three-component vectors
to their four-component counterparts. When he came
to define four-velocity, he took over the components
of the ordinary velocity vector w for the spatial part
of four-velocity and added an imaginary fourth com-
ponent, i

p
1�w2. This resulted in four components of

four-velocity, w1, w2, w3, w4

wx ; wy ; wz ; i
p

1�w2 : (2.8)

Since the components of Minkowski’s quadruplet do
not transform like the coordinates of his vector space
x1, x2, x3, x4, they lack what he knew to be a four-vector
property.

Minkowski’s error in defining four-velocity indi-
cates that he did not yet grasp the notion of four-
velocity as a four-vector tangent to the world line of
a particle [2.8]. If we grant ourselves the latter notion,
then we can let the square of the differential parameter
d
 of a given world line be d
2 D�.dx2

1C dx2
2C dx2

3C

dx2
4/, such that the four-velocity w� may be defined

as the first derivative with respect to 
 , w� D dx�=d

(�D 1; 2; 3; 4). In addition to a valid four-velocity vec-
tor, Minkowski was missing a four-force vector, and
a notion of proper time. In light of these significant
lacunæ in his knowledge of the basic mathematical
objects of four-dimensional physics, Minkowski’s tri-
umphant description of his four-dimensional formalism
as virtually the greatest triumph ever shown by the
application of mathematics [2.28, p. 373] is all the
more remarkable, and bears witness to the depth of
Minkowski’s conviction that he was on the right track.

Sometime after Minkowski spoke to the Göttin-
gen Mathematical Society, he repaired his definition
of four-velocity, and perhaps in connection with this,
he came up with the constitutive elements of his the-
ory of spacetime. In particular, he formulated the idea
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of proper time as the parameter of a hyperline in
spacetime, the light-hypercone structure of spacetime,
and the spacetime equations of motion of a material
particle. He expressed his new theory in a 60-page
memoir [2.33] published in the Göttinger Nachrichten
on 5 April, 1908.

His memoir, entitled The basic equations for elec-
tromagnetic processes in moving bodies made for chal-
lenging reading. It was packed with new notation,
terminology, and calculation rules, it made scant refer-
ence to the scientific literature, and offered no figures
or diagrams. Minkowski defined a single differential
operator, named lor in honor of Lorentz, which stream-
lined his expressions, while rendering them all the more
unfamiliar to physicists used to the three-dimensional
operators of ordinary vector analysis.

Along the same lines, Minkowski rewrote velocity,
denoted q, in terms of the tangent of an imaginary an-
gle i 

qD�i tan i ; (2.9)

where q < 1. From his earlier geometric interpreta-
tion of hyperbolic velocity space, Minkowski kept the
idea that every rotation of a t-diameter corresponds to
a Lorentz transformation, which he now expressed in
terms of i 

x01 D x1; x03 D x3 cos i C x4 sin i ;

x02 D x2; x04 D�x3 sin i C x4 cos i :
(2.10)

Minkowski was undoubtedly aware of the connection
between the composition of Lorentz transformations
and velocity composition, but he did not mention it. In
fact, Minkowski neither mentioned Einstein’s law of ve-
locity addition, nor expressed it mathematically.

While Minkowski made no appeal in The basic
equations to the hyperbolic geometry of velocity vec-
tors, he retained the hypersurface (2.7) on which it was
based and provided a new interpretation of its physical
significance. This interpretation represents an important
clue to understanding how Minkowski discovered the
world line structure of spacetime. The appendix to The
basic equations rehearses the argument according to
which one may choose any point on (2.7) such that the
line from this point to the origin forms a new time axis,
and corresponds to a Lorentz transformation. He further
defined a spacetime line to be the totality of spacetime
points corresponding to any particular point of matter
for all time t.

With respect to the new concept of a spacetime line,
Minkowski noted that its direction is determined at ev-
ery spacetime point. Here Minkowski introduced the
notion of proper time (Eigenzeit), 
 , expressing the in-
crease of coordinate time dt for a point of matter with
respect to d


d
 D
p

dt2 � dx2 � dy2 � dz2 D dt
p

1�w2

D
dx4

w4
;

(2.11)

where w2 is the square of ordinary velocity, dx4 D idt,
and w4 D i=

p
1�w2, which silently corrects the flawed

definition of this fourth component of four-velocity
(2.8) delivered by Minkowski in his November 5 lec-
ture.

Although Minkowski did not connect four-velocity
to Einstein’s law of velocity addition, others did this
for him, beginning with Sommerfeld, who expressed
parallel velocity addition as the sum of tangents of
an imaginary angle [2.34]. Minkowski’s former stu-
dent Philipp Frank reexpressed both velocity and the
Lorentz transformation as hyperbolic functions of a real
angle [2.35]. The Serbian mathematician Vladimir Var-
ičak found relativity theory to be ripe for application
of hyperbolic geometry, and recapitulated several rel-
ativistic formulæ in terms of hyperbolic functions of
a real angle [2.36]. A small group of mathemati-
cians and physicists pursued this non-Euclidean style
of Minkowskian relativity, including Varičak, Alfred
Robb, Émile Borel, Gilbert Newton Lewis, and Edwin
Bidwell Wilson [2.37].

The definition of four-velocity was formally linked
by Minkowski to the hyperbolic space of velocity
vectors in The basic equations, and thereby to the
light-cone structure of spacetime. Some time before
Minkowski came to study the Lorentz transformation
in earnest, both Einstein and Poincaré understood light
waves in empty space to be the only physical objects
immune to Lorentz contraction. Minkowski noticed that
when light rays are considered as world lines, they di-
vide spacetime into three regions, corresponding to the
spacetime region inside a future-directed (t > 0) hy-
percone (Nachkegel), the region inside a past-directed
(t < 0) hypercone (Vorkegel), and the region outside
any such hypercone pair. The propagation in space
and time of a spherical light wave is described by
a hypercone, or what Minkowski called a light cone
(Lichtkegel).
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One immediate consequence for Minkowski of the
light-cone structure of spacetime concerned the relativ-
ity of simultaneity. In a section of The basic equations
entitled The concept of time, Minkowski [2.33, § 6]
showed that Einstein’s relativity of simultaneity is not
absolute. While the relativity of simultaneity is indeed
valid for two or three simultaneous events (Ereignisse),
the simultaneity of four events is absolute, so long as
the four spacetime points do not lie on the same spa-
tial plane. Minkowski’s demonstration relied on the
Einstein simultaneity convention, and employed both
light signals and spacetime geometry. His result showed
the advantage of employing his spacetime geometry in
physics, and later writers – including Poincaré – appear
to have agreed with him, by attributing to spacetime
geometry the discovery of the existence of a class of
events for a given observer that can be the cause of no
other events for the same observer [2.12, p. 210].

Another signature result of Minkowski’s spacetime
geometry was the geometric derivation of a Lorentz-
covariant law of gravitation. Like Poincaré, Minkowski
proposed two four-vector laws of gravitation, exploit-
ing analogies to Newtonian gravitation and Maxwellian
electrodynamics, respectively. Minkowski presented
only the Newtonian version of the law of gravitation in
The basic equations, relating the states of two massive
particles in arbitrary motion and obtaining an expres-
sion for the spacelike component of the four-force of
gravitation. Although his derivation involved a new
spacetime geometry, Minkowski did not illustrate his
new law graphically, a decision which led some physi-
cists to describe his theory as unintelligible. According
to Minkowski, however, his achievement was a formal
one, inasmuch as Poincaré had formulated his theory

of gravitation by proceeding in what he described as
a completely different way [2.8, p. 225].

Few were impressed at first by Minkowski’s inno-
vations in spacetime geometry and four-dimensional
vector calculus. Shortly after The basic equations ap-
peared in print, two of Minkowski’s former students,
Einstein and Laub, discovered what they believed to be
an infelicity in Minkowski’s definition of ponderomo-
tive force density [2.38]. These two young physicists
were more impressed by Minkowski’s electrodynamics
of moving media than by the novel four-dimensional
formalism in which it was couched, which seemed far
too laborious. Ostensibly as a service to the community,
Einstein and Laub reexpressed Minkowski’s theory in
terms of ordinary vector analysis [2.39, Doc. 51].

Minkowski’s reaction to the latter work is unknown,
but it must have come to him as a disappointment. Ac-
cording to Max Born, Minkowski always aspired [2.40]:

. . . to find the form for the presentation of his
thoughts that corresponded best to the subject
matter.

The form Minkowski gave to his theory of moving me-
dia in The basic equations had been judged unwieldy by
a founder of relativity theory, and in the circumstances,
decisive action was called for if his formalism was not
to be ignored. In September 1908, during the annual
meeting of the German Association of Scientists and
Physicians in Cologne, Minkowski took action, by af-
firming the reality of the four-dimensional world and
its necessity for physics [2.41]. The next section focuses
on the use to which Minkowski put spacetime diagrams
in his Cologne lecture, and how these diagrams relate
to Poincaré’s light ellipse.

2.3 Spacetime Diagrams

One way for Minkowski to persuade physicists of
the value of his spacetime approach to understand-
ing physical interactions was to appeal to their vi-
sual intuition [2.30]. From the standpoint of visual
aids, the contrast between Minkowski’s two publi-
cations on spacetime is remarkable: where The ba-
sic equations is bereft of diagrams and illustrations,
Minkowski’s Cologne lecture makes effective use of
diagrams in two and three dimensions. For instance,
Minkowski employed two-dimensional spacetime dia-
grams to illustrate FitzGerald–Lorentz contraction of
an electron and the light-cone structure of spacetime
(Fig. 2.3).

Minkowski’s lecture in Cologne, entitled Space and
time, offered two diagrammatic readings of the Lorentz
transformation, one of his own creation, the other he
attributed to Lorentz and Einstein. One of these read-
ings was supposed to represent the kinematics of the
theory of relativity of Lorentz and Einstein. In fact,
Minkowski’s reading captured Lorentzian kinematics,
but distorted those of Einstein, and prompted correc-
tive action from Philipp Frank, Guido Castelnuovo, and
Max Born [2.42]. The idea stressed by Minkowski was
that in the (Galilean) kinematics employed in Lorentz’s
electron theory, time being absolute, the temporal axis
on a space-time diagram may be rotated freely about
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Fig. 2.3 The light-cone structure of spacetime (after [2.1])

t t'

x

P

x'

Fig. 2.4 A reconstruction of Minkowski’s depiction of the
kinematics of Lorentz and Einstein

the coordinate origin in the upper half-plane (t > 0), as
shown in Fig. 2.4. The location of a point P may be de-
scribed with respect to frames S and S0, corresponding
to axes .x; t/ and .x0; t0/, respectively, according to the
transformation: x0 D x� vt, t0 D t.

In contradistinction to the latter view, the theory
proposed by Minkowski required a certain symme-
try between the spatial and temporal axes. This con-
straint on symmetry sufficed for a geometric derivation
of the Lorentz transformation. Minkowski described
his spacetime diagram (Fig. 2.5) as an illustration of
the Lorentz transformation, and provided an idea of
a demonstration in Space and time. A demonstration
was later supplied by Sommerfeld, in an editorial note
to his friend’s lecture [2.43, p. 37], which appeared in
an anthology of papers on the theory of relativity edited
by Otto Blumenthal [2.44].

Minkowski’s spacetime map was not the only illus-
tration of relativistic kinematics available to scientists
in the first decade of the twentieth century. Theorists
pursuing the non-Euclidean style of Minkowskian rel-
ativity had recourse to models of hyperbolic geometry
on occasion. The Poincaré half-plane and disk models
of hyperbolic geometry were favored by Varičak in this
context, for example. Poincaré himself did not employ

t
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Fig. 2.5 Minkowski’s spacetime diagram (after [2.1])

such models in his investigations of the principle of rel-
ativity, preferring his light ellipse.

Of these three types of diagram, the light ellipse,
spacetime map, and hyperbolic map, only the spacetime
map attracted a significant scientific following. The re-
lation between the spacetime map and the hyperbolic
maps was underlined by Minkowski, as shown above
in relation to surfaces (2.6) and (2.7). There is also
a relation between the light ellipse and the spacetime
map, although this may not have been apparent to either
Poincaré or Minkowski. Their published appreciations
of each other’s contributions to relativity field the barest
of acknowledgments, suggesting no substantial intellec-
tual indebtedness on either side.

The diagrams employed in the field of relativity by
Poincaré and Minkowski differ in several respects, but
one difference in particular stands out. On the one hand,
the light ellipse represents spatial relations in a plane
defined as a meridional section of an ellipsoid of rota-
tion. A Minkowski diagram, on the other hand, involves
a temporal axis in addition to a spatial axis (or two,
for a three-dimensional spacetime map). This differ-
ence does not preclude representation of a light ellipse
on a Minkowski diagram, as shown in Figs. 2.6 and 2.7,
corresponding, respectively, to the two interpretations
of the Lorentz transformation offered by Poincaré be-
fore and after 1909.

In Poincaré’s pre-1909 interpretation of the Lorentz
transformation, the radius vector of the light ellipse cor-
responds to light points at an instant of time t as read by
clocks at rest in the ether frame. The representation of
this situation on a Minkowski diagram is that of an el-
lipse contained in a spacelike plane of constant time t
(Fig. 2.6). The ellipse center coincides with spacetime
point BD .vt; 0; t/, and the points E, B, F, and A lie on
the major axis, such that BH is a semi-minor axis of
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Fig. 2.6 Spacetime model of Poincaré’s light ellipse (1906) in
a spacelike plane (tD const.)
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Fig. 2.7 Spacetime model of Poincaré’s light ellipse (1909) in
a spacelike plane (t0 D const.)

length ct. The light ellipse intersects the light cone in
two points, corresponding to the endpoints of the minor
axis, H and I. There are no moving clocks in this read-
ing, only measuring rods in motion with respect to the
ether. (The t0-axis is suppressed in Fig. 2.6 for clarity.)
The abstract nature of Poincaré’s early interpretation of
the light ellipse is apparent in the Minkowskian repre-
sentation, in that there are points on the light ellipse that
lie outside the light cone, and are physically inaccessi-
ble to an observer at rest in the ether.

In Poincaré’s post-1909 repurposing of the light el-
lipse, the light pulse is measured with comoving clocks,
such that the corresponding figure on a Minkowski di-
agram is an ellipse in a plane of constant time t0. The
latter x0y0-plane intersects the light cone at an oblique
angle, as shown in Fig. 2.7, such that their intersection
is a Poincaré light ellipse. (The y-axis and the y0-axis
are suppressed for clarity.)

Both before and after 1909, Poincaré found that
a spherical light pulse in the ether would be described
as a prolate ellipsoid in inertial frames. Meanwhile, for
Einstein and others who admitted the spatio-temporal
relativity of inertial frames, the form of a spherical
light pulse remained spherical in all inertial frames. In
Poincaré’s scheme of things, the light pulse is a sphere
only for ether-fixed observers measuring wavefronts
with clocks and rods at rest; in all other inertial frames
the light pulse is necessarily shaped like a prolate
ellipsoid.

Comparison of Poincaré’s pre-1909 and post-
1909 readings of the light ellipse shows the ellipse
dimensions to be unchanged. What differs in the
Minkowskian representations of these two readings is
the angle of the spacelike plane containing the light el-
lipse with respect to the light cone. The complementary
representation is obtained in either case by rotating the
light ellipse through an angle  D tanh�1 v about the
line parallel to the y-axis passing through point B.

We are now in a position to answer the question
raised above, concerning the reasons for Poincaré’s em-
brace of time deformation in 1909. From the standpoint
of experiment, there was no pressing need to recognize
time deformation in 1909, although in 1907 Einstein
figured it would be seen as a transverse Doppler ef-
fect in the spectrum of canal rays [2.45]. On the
theoretical side, Minkowski’s spacetime theory was in-
strumental in convincing leading ether-theorists like
Sommerfeld and Max Abraham of the advantages of
Einstein’s theory. Taken in historical context, Poincaré’s
poignant acknowledgment in Göttingen of time de-
formation (and subsequent repurposing of his light
ellipse) reflects the growing appreciation among scien-
tists, circa 1909, of the Einstein–Minkowski theory of
relativity [2.46].
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3. Relativity Today

Nick M. J. Woodhouse

This chapter outlines the special theory of relativity
from a modern as opposed to historical perspec-
tive. It follows the approach promoted by Hermann
Bondi, in which measuring rods and rigid frames
of reference take second place to an exploration
of the geometry of spacetime through thought
experiments involving light signals and clocks in
uniform motion. The theory is developed up to
the point of demonstrating that Maxwell’s equa-
tions and the principle of relativity are compatible
within the framework of Minkowski space.
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Special relativity had a difficult beginning, growing as it
did out of the wreckage of the ether theory. The physics
community was slow to accept Einstein’s radical insight
for reasons that are now hard to appreciate. The con-
fused and confusing challenges over the twin paradox
and other misunderstandings were slow to fade.
Today the ideas are not at the frontier of understand-
ing, thinly supported by a few delicate and subtle

experiments, but rather the stuff of engineering: global
positioning system (GPS) devices, particle accelerators,
and other modern machines, simply would not work if
their designs were not based on relativistic calculations.

Nonetheless relativity still challenges intuition. It is
not the primacy of the principle of relativity that does
that. The idea that the behavior of dynamical systems
is the same in all inertial frames of frames of refer-
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ence goes back to Newton, and before him to Galileo.
Nor is it that special relativity introduces any unfamiliar
persona into the play: space, time, mass, momentum,
charge and so on all appear in the classical story. The
difficulty is in letting go of concepts that seem to be
integral to our understanding of the world, notably ab-
solute space and universal time.

An approach to the theory that follows the histori-
cal development of the ideas or builds bridges from the
classical ideas of space and time is likely to generate
the same resistance to the unfamiliar, and the same con-
fusions in which the new worldview is overlayed by an
imperfectly excluded classical picture. For this reason,
this chapter follows the approach principally promoted
by Hermann Bondi, in which measuring rods and rigid
frames of reference take second place to an exploration
of the geometry of spacetime through thought exper-
iments involving light signals and clocks in uniform
motion. It is modern in the sense that the development is
not historical. A more extended version of the material
in this chapter is given in [3.1].

The starting point is an extended form of the princi-
ple of relativity that Newton would have recognized in
the narrower context of classical mechanics:

The observed behavior of all physical systems, in-
cluding electromagnetic fields, is the same for all
observers in uniform motion.

This is distilled from the work that culminated in Ein-
stein’s 1905 paper. It hides some assumptions that
should be made explicit. First, there is no medium for
electromagnetic waves, no ether: such a medium would
determine a preferred standard of rest, in the way that
the air does for sound waves. Second, the notion of uni-
form motion makes sense. In other words an observer
can identify the absence of acceleration. Here the as-
sumption is that there is no gravity, so any apparent
gravitational force can be understood simply as the con-
sequence of acceleration. Third, the behavior of clocks
is not affected by nonaccelerating motion. So it makes
sense to picture each observer in uniform motion as be-
ing equipped with a standard clock, which measures
time at the observer’s location.

We shall build special relativity on this principle as
a theory of the geometry of spacetime rather than as

theory of the transformations between inertial coordi-
nate systems. Coordinates are of course important, and
come later. Without them one cannot make quantitative
predictions. But the central point is that the intuitive
picture that should replace absolute space and universal
time should be of a four-dimensional space of events,
the spacetime of the title, in which inertial coordinates
are convenient labels, just as Cartesian coordinates are
convenient labels for points rather than intrinsic struc-
tures in Euclidean geometry.

It is worth noting two points. First, that a part of the
difficulty is in the tendency to cling to intuitive ideas
of space that should be abolished even within the the-
oretical framework that Newton and Galileo knew. If
one takes seriously that all inertial frames in classi-
cal physics are on an equal footing, then there is no
absolute notion of location: the statement that two non-
simultaneous events happened in the same place can be
true for one observer, but untrue for another. Colocation
in classical physics is relative. If one understands why
that is so, then it is easier to accept, in special relativity,
that simultaneity is also relative.

Beyond that, our intuition even for three-dimen-
sional geometry is limited. Astronauts notoriously lose
their way in the weightless environment of the In-
ternational Space Station (ISS) without the familiar
prompt of up and down. It is therefore understand-
able that building an intuitive picture of the four-
dimensional spacetime in which we live is challeng-
ing.

Second, much of this handbook is concerned with
gravity, in which context our assumptions are not valid.
So it is tempting to regard special relativity as an ob-
solete theory, to be superseded by the general theory,
and to take the view that in developing the modern view
of fundamental physics, we should first understand the
general theory, and then let special relativity emerge as
an approximation, applicable in a limiting sense when
the effects of gravity are negligible, but ultimately mis-
leading as a picture of the world.

There is some force in this, but the counter is that
special relativity is incorporated into general relativity
not only in this limiting sense, but also in another, as the
model of spacetime experienced by an observer in free
fall, over short times and distances.

3.1 Operational Definitions

The task is to build a picture of spacetime from the
principle of relativity without importing ideas about

the measurement of space and time based on limited
classical intuition. It requires us to go back to first prin-
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ciples, beginning with the measurement of distance:
distance cannot be taken as a self-evident concept,
which requires no closer examination. It must be given
an operational definition – a definition in terms of the
operations required to measure it.

Before tackling distance, however, it is necessary
first to give an operational definition of simultaneity,
because even in the classical view of space and time,
distance is defined independently of the motion of the
observer only between simultaneous events. Here we
use definitions due to Milne [3.2] and Bondi [3.3].

In Milne’s approach, one takes clocks and light sig-
nals as fundamental. Every observer carries a clock
with which he can measure the time of events in his im-
mediate vicinity and observers can send out and receive
light signals, which are carried by photons (particles of
light).

Because Maxwell’s equations are to hold in every
frame, the definitions of distance and simultaneity must
be such that the following is true:

The velocity of photons is the same irrespective of
the motion of their source or of the observer.

A nonaccelerating observer moving along a straight line
can use his clock and light signals to assign coordi-
nates t and x to distant events on the line, as follows.
Suppose that he sends out a light signal at time t1 (mea-
sured on his clock). This is received at an event A on the
line and immediately transmitted back to the observer,
arriving at time t2 (again measured on the observer’s
clock).

If the velocity of photons is assumed to be constant,
then the journeys of the outgoing and returning photons
will be reckoned by the observer to have equal duration,
and so the observer will take the event B that happens at
his location at time 1

2 .t1C t2/ to be simultaneous with A
and he will assign this value of t to A. This is the radar
definition of simultaneity. It is illustrated in the space-

AB

t2

t1

Fig. 3.1 Milne’s definitions

time diagram (Fig. 3.1), in which each point represents
an event and time increases up the page. The vertical
line is the history or worldline of the observer and the
lines at 45ı are the worldlines of the outgoing and re-
turning photons.

The observer defines A to be simultaneous with
the event B on his worldline that happens at time
1
2 .t1C t2/ and assigns a distance 1

2 c.t2 � t1/ to the
separation of B from A.

Here c is a constant that is chosen arbitrarily accord-
ing to the system units employed, but is given the same
value by all observers. By defining distance and simul-
taneity in this way, a nonaccelerating observer can, in
principle, set up a coordinate system to label each event
by its radar distance x from his own location, and the
time t at which it happens, according to the radar defini-
tion. These labels are the inertial coordinates of special
relativity.

3.1.1 Relativity of Simultaneity

With these definitions, the velocity of light is inde-
pendent of the observer, but simultaneity is relative.
Two events that are reckoned to be simultaneous by
one observer O may not be simultaneous according to
a second observer O0 moving relative to O. If O sets up
the inertial coordinate system x; t so that O0 passes O
at tD 0, then the worldline of O0 is given by xD ut for
some constant u, which O will interpret as the velocity
of O0 (Fig. 3.2).

Consider the event A with coordinates

tD 0 ; xD�D .D> 0/ :

A photon that reaches xD�D at tD 0 must have left O
at time tD�D=c (measured on the clock carried by O).

x

SA

O'

Q
O

t

P

Photon

Photon

Fig. 3.2 Simultaneity
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This photon passes O0 at the event P with coordinates
xP; tP, where xP D utP D�D� ctP. Thus P has coordi-
nates

xP D�
uD

uC c
; tP D�

D

uC c
:

Similarly, a photon emitted at A and traveling with
the speed c in the positive x-direction reaches O at the
event with coordinates .x; t/D .0;D=c/ and reaches O0

at the event Q with coordinates

xQ D
uD

c� u
; tQ D

D

c� u
:

As one would expect, O thinks that A is simulta-
neous with the origin .0;0/ of the inertial coordinates,
since this is the event at his own location that happens
at time

tD 1
2

�
D

c
�

D

c

�
D 0 :

On the other hand, O0 thinks that A happens simulta-
neously with the event at his location which happens
midway between P and Q. That is, he reckons A is si-
multaneous with the event S with coordinates

xS D
1
2 .xPC xQ/D

u2D

c2 � u2
;

tS D
1
2 .tPC tQ/D

uD

c2 � u2
:

Since xS D utS, this event is indeed on the worldline of
O0. However, tS is nonzero unless either D or u van-
ishes, so S is not simultaneous with A according to O.
Our two observers O and O0 have different notions of
simultaneity.

If D is 10 m and u is 10 m=s, then with cD 3� 108,
we get tS � 10�15 s, that is, a femtosecond. To get
something more easily observable, either u must be
a substantial fraction of the velocity of light or D must
be large. If, for example, D is 10 million light years
and u is again 10 m=s, then tS is about 4 months. So
even if the two observers have a relative speed as low
as 10 m=s, their notions of simultaneity over intergalac-
tic distances are significantly different.

3.1.2 Bondi’s k-Factor

Consider two observers O and O0 traveling along the
line with constant speeds (Fig. 3.3). Also suppose that
they pass each other at the event E and then move di-
rectly away from each other. Suppose also that they
both set their clocks to zero at E.

By using the radar definitions, they both set up iner-
tial coordinate systems on two-dimensional spacetime:
O will label the events on the line by their distance x
along the line, and by the time at which they happen,
according to his measurements; and likewise O0 will la-
bel them by x0 and t0.

We shall derive the relationship between .x; t/ and
.x0; t0/ by making two assumptions, that both observers
reckon that the velocity of light is c, and that only their
relative motion is observable.

We begin by considering a photon emitted by O to-
ward O0 at time t (measured on the clock that O carries).
Suppose that it is received by O0 at time t0 D kt (mea-
sured on the clock carried by O0). The quantity k is
called Bondi’s k-factor. Since neither observer is ac-
celerating, k is constant and, as a consequence of the
second assumption, k depends only on the relative ve-
locity of O and O0. It is in this last innocuous looking
statement that we depart from classical ideas.

3.1.3 Time Dilation

Because k depends only on the relative motion, we have
the following:

� A photon sent by O toward O0 at time t (measured
on the clock carried by O) arrives at O0 at time t0 D
kt (measured on the clock carried by O0).

� A photon sent by O0 toward O at time t0 (measured
on the clock carried by O0) arrives at O at time tD
kt0 (measured on the clock carried by O).

Now consider the spacetime diagram in Fig. 3.3.
Here a photon sent by O at time t measured on the

clock carried by O arrives at O0 at event B, which hap-
pens at time kt measured on the clock carried by O0; it is
then sent back to O, arriving at time k2t, as measured on

t' = kt

E

B

O'O

t

kt'

Fig. 3.3 The k-factor
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the clock carried by O. Hence O measures the distance
from his location to B and the time of B to be

dB D
1
2 c.k2 � 1/t ; tB D

1
2 .1C k2/t :

Thus O reckons that the speed of O0 is

uD
dB

tB
D

c.k2 � 1/

k2C 1
:

Solving for k, we have

kD

r
cC u

c� u
> 1 :

It follows that

time E to B measured by O

time E to B measured by O0
D

tB
kt
D
.k2C 1/t

2kt

D �.u/ ;

where the gamma factor �.u/ is defined by

�.u/D
1q

1� u2

c2

:

This is the time dilation effect; the time between the two
events depends on the observer. It is paradoxical only if
one insists on thinking about time independently of the
process of measurement of time.

3.2 Lorentz Transformations in Two Dimensions

For simplicity, we shall assume that both observers set
their clocks to zero at the event E at which they pass.
Then E will be the common origin of the two coordinate
systems.

Proposition 3.1
The inertial coordinate systems set up by O and O0 are
related by�

ct
x

�
D �.u/

�
1 u

c
u
c 1

��
ct0

x0

�
; (3.1)

where u is the relative velocity and �.u/D
1=
p

1� u2=c2.

This is the (two-dimensional) Lorentz transformation.

Proof: Let k denote Bondi’s factor. Consider the space-
time diagram in Fig. 3.4. A photon is sent out from O
at time T measured on the clock carried by O, passes
O0 at time kT measured on the clock carried by O0, is
reflected at the event B, passes O0 again at time T 0 mea-
sured on the clock carried by O0, and returns to O at
time kT 0 measured on the clock carried by O.

In the inertial coordinate system of observer O, the
coordinates of B are

tD 1
2 .kT 0CT/ ; xD 1

2 c.kT 0 �T/ :

While in the inertial coordinate system of observer O0,
the coordinates of B are

t0 D 1
2 .T
0C kT/ ; x0 D 1

2 c.T 0 � kT/ :

Hence we have�
ct
x

�
D

c

2

�
1 k
�1 k

��
T
T 0

�
;

�
ct0

x0

�
D

c

2

�
k 1
�k 1

��
T
T 0

�
;

and therefore
�

ct
x

�
D 1

2

�
kC k�1 k� k�1

k� k�1 kC k�1

��
ct0

x0

�
:

But we showed above that kD
p
.cC u/=.c� u/.

Therefore,

kC k�1 D
2c

p
c2 � u2

; k� k�1 D
2u

p
c2 � u2

;

kT

T'

E

B

T

kT'

Fig. 3.4 The derivation of the coordinate transformation
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and the result follows. Some sign choices have been
made in relating x and x0, which can be positive or
negative, to the distances from O or O0, which are nec-
essarily positive. �

The relationship between the two coordinate sys-
tems is shown in Fig. 3.5. If we put x0 D 0, then xD ut.

With the sign choices we have made, O0 is moving
relative to O in the positive x direction with speed u.
We also have tD �.u/t0 when x0 D 0, which is the time
dilation formula for events on the worldline of O0. The
inverse transformation is

�
ct0

x0

�
D �.u/

�
1 � u

c
� u

c 1

��
ct
x

�
;

so O is moving relative to O0 in the negative x0 direction
with the same speed u.

The transformation reduces to the Galilean transfor-
mation when u� c, since we have

�
t
x

�
D �.u/

�
1 u

c2

u 1

��
t0

x0

�
!

�
1 0
u 1

��
t0

x0

�

as c!1.

3.2.1 Transformation of Velocity

Consider a nonaccelerating particle moving with
speed v relative to O in the negative x direction, so that
xD�vtC a for some constant a. In classical theory, its
speed relative to O0 would be uCv. In special relativity,
we have

�
ct0

x0

�
D �.u/

�
1 � u

c
� u

c 1

��
ct

�vtC a

�
;

so in the x0; t0 coordinate system set up by O0, the events
in the history of the particle are given by

t0 D �.u/
h�

1C
uv

c2

	
t�

au

c2

i

x0 D �.u/ Œ�.uC v/tC a� :

Therefore, the speed w of the particle relative to O0 is

wD�
dx0

dt0
D

vC u

1C uv
c2

:

This is the velocity addition formula. Note that if juj< c
and jvj< c then jwj< c and that the formula reduces to
wD vC u when juj; jvj � c.

t'

x

x'

t

O O'

Fig. 3.5 The two-dimensional Lorentz transformation

3.2.2 Lorentz Contraction

Consider two observers O and O0 whose inertial coor-
dinate systems are related by (3.1). Suppose that a rod
lies along the x0-axis between x0 D 0 and x0 D L and is
at rest relative to O0. Then according to O0, its length
is L. What is its length as measured by O?

We must first be clear about what the question
means. In the inertial coordinate system of O0, the
worldlines of the ends of the rod are given by x0 D 0
and by x0 D L. In the inertial coordinate system of O,
therefore, the two worldlines are given parametrically
(with t0 as parameter) by�

ct
x

�
D �.u/

�
1 u

c
u
c 1

��
ct0

0

�

D �.u/

�
ct0

ut0

�
;

(3.2)

�
ct
x

�
D �.u/

�
1 u

c
u
c 1

��
ct0

L

�

D �.u/

�
ct0C Lu

c
ut0CL

�
:

(3.3)

The question is: What is the distance measured by O
between two events E and B, one on the first worldline,
one on the second, which are simultaneous according
to O? If we take E to be the event tD 0, xD 0, then B
must be as in (3.3), with t0 chosen so that tD 0. That is
t0 D�Lu=c2, which implies that B is the event

tD 0 ;

xD �.u/

�
�

Lu2

c2
CL

�
D L

s
1�

u2

c2
:

(3.4)

So according to O, the rod is shorter by a factorp
1� u2=c2.
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t'

x

x'

t

O

BE

A

O'

Fig. 3.6 The Lorentz contraction

3.2.3 Composition of Lorentz
Transformations

The composition of two Lorentz transformations with
velocities u and v is a Lorentz transformation with ve-
locity w, where

�.w/

�
1 w

c
w
c 1

�

D �.u/�.v/

�
1 v

c
v
c 1

��
1 u

c
u
c 1

�
;

with

�.w/D �.u/�.v/
�

1C
uv

c2

	
: (3.5)

However,

w2

c2
D
�.w/2� 1

�.w/2
:

After substituting from (3.5), and doing a little algebra,
we find that

w2 D
.uC v/2�
1C uv

c2

�2
;

which again gives the velocity addition formula.

3.2.4 Rapidity

The Lorentz transformation and velocity addition for-
mula take on a more familiar look if we put �.u/D

log kD tanh�1.u=c/. Then

�
ct
x

�
D

�
cosh� sinh�
sinh� cosh�

��
ct0

x0

�
;

so a Lorentz transformation is a hyperbolic rotation.
The quantity � is called the rapidity or pseudo-velocity
of the transformation. It is analogous to the angle of
a rotation in the plane.

In terms of rapidity, the velocity addition formula
takes the more suggestive form

�.w/D �.u/C �.v/ :

3.2.5 Lorentz and Poincaré Groups

The Lorentz transformations in two-dimensional space-
time form a group, called the Lorentz group (in two di-
mensions). Rapidity determines an isomorphism with R
(under addition). More precisely, this group is the
proper orthochronous Lorentz group: the full group
is obtained by composing Lorentz transformations
with:

� The space reflection

�
ct
x

�
7!

�
ct0

x0

�
D

�
ct
�x

�

which reverse the orientation of the line
� The time reversal

�
ct
x

�
7!

�
ct0

x0

�
D

�
�ct

x

�
:

This gives a Lie group with four connected com-
ponents, each homeomorphic to the real line. Which
component a transformation lies in is determined by
whether it reverses time, or spatial orientation, or both,
or neither. The analogous group in Euclidean geometry
is O.2/, but this has only two components.

The full Lorentz group is extended to give the
Poincaré group, which is generated by (proper, or-
thochronous) Lorentz transformations, space reflec-
tions, time reversals, and translations. In the following,
all Lorentz transformations will be proper and or-
thochronous, unless we explicitly allow otherwise.
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3.3 Inertial Coordinates in Four Dimensions
An observer traveling in a straight line at constant speed
can determine the coordinates t; x of events that happen
along the line by the radar method. In order to assign co-
ordinates to events that happen elsewhere in space, an
observer needs, in addition to a clock, a device to mea-
sure the direction from which light signals arrive. He
can then assign spherical polar coordinates to an event;
the distance r from his own location and the time of
the event are defined by the radar method; and the two
polar angular coordinates  and � are given by the di-
rection of the returning light signal. From r; ; � he can
recover the Cartesian coordinates x; y; z of the event by
using the standard transformation.

The result is an inertial frame of reference or iner-
tial coordinate system t; x; y; z on spacetime, in which
the observer’s own worldline is given by

xD yD zD 0 :

Implicit in this operational definition is the assumption
that the observer knows how to compare the direc-
tions from which light signals arrive at different times;
in other words it makes sense to say that the angle-
measuring device is carried without rotation. An iner-
tial observer is an observer who is neither accelerating
nor rotating.

3.3.1 Four-Dimensional Coordinate
Transformations

In order to derive the relationship between the coor-
dinate systems t; x; y; z and t0; x0; y0; z0 set up by two
inertial observers O and O0, we have to make some as-
sumptions.

� The transformation is affine linear. That is, it is of
the form0

BB@
ct
x
y
z

1
CCAD L

0
BB@

ct0

x0

y0

z0

1
CCACC ; (3.6)

where L is a nonsingular 4�4 matrix and C is a col-
umn vector.

� Photons travel in straight lines with velocity c rel-
ative to any inertial coordinate system. That is,
photon worldlines are of the form

xD u1tC a1 ; yD u2tC a2 ; zD u3tC a3 ;

where u1, u2, u3, a1, a2, a3 are constants and u2
1C

u2
2C u2

3 D c2.
� No physical effect is transmitted faster than light.
� The principle of relativity applies to all physical

phenomena – only the relative motion of nonac-
celerating observers can be detected by physical
experiments.

The first assumption is equivalent to the asser-
tion that if Newton’s first law holds in one coordinate
system, then it also holds in the other; in both, the
worldlines of free particles – particles not acted on by
any force – are straight lines in spacetime, given by lin-
ear equations. The second incorporates the assumption
that the velocity of light should be independent of the
observer. It must hold if light propagates by Maxwell’s
equations in an inertial coordinate system. The third as-
sumption is needed for consistency, as we shall see.

We denote the top left entry in L by � . This is the
time dilation factor for the motion of O0 relative to O.
Along the worldline of O0, which is given by x0 D y0 D
z0 D 0, we have

tD � t0C const.

So � relates the time measurements of events on the
worldline of O0 in the two coordinate systems. Simi-
larly, if � 0 is the top left entry in L�1, then along the
worldline of O (xD yD zD 0) we have

t0 D � 0tC const.

Hence � 0 is the time dilation factor for the motion of O
relative to O0. It follows from the fourth assumption, the
relativity assumption, that the time dilation factor de-
pends only on the relative motion of the two observers,
and hence that � D � 0.

It follows from the second assumption that the
worldlines of photons through an event A form a cone
in spacetime. This is called the light cone of the event.

If A is the event tD xD yD zD 0, then the light
cone of A has the following equation

c2t2 � x2 � y2 � z2 D 0 ; (3.7)

which is the condition that the time t elapsed from A
at light speed should be related to the distance DDp

x2C y2C z2 from A by DD ct. The light cone con-
sists of the event A itself, together with the future light
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A

Wavefront

Particle
worldline

Fig. 3.7 The future light cone of A

cone, made up of the events that happen after A that can
be reached from A by traveling at the speed of light; and
the past light cone, made up of events that happen be-
fore A, from which A can be reached by traveling at the
speed of light.

The future light cone of A is illustrated in the space-
time diagram (Fig. 3.7), where, as always, time runs up
the page. The sections of the cone on which t is a posi-
tive constant are the spherical wavefronts, spreading out
from the origin with speed c. By the third assumption,
all particle worldlines through A must lie inside the light
cone. We shall always draw spacetime diagrams so that
the generators of the light cone are at 45ı to the vertical.

All observers agree on the position in spacetime of
the light cone of an event, so the cones determine an
invariant structure on spacetime – a structure that was
first made explicit by Minkowski. Thus the spacetime
of special relativity is called Minkowski space.

3.3.2 Lorentz Transformation
in Four Dimensions

Consider two events E1 and E2 with coordinates
t1; x1; y1; z1 and t2; x2; y2; z2 in the first coordinate sys-
tem set up by O; and with coordinates t01; x

0

1; y
0

1; z
0

1 and
t02; x
0

2; y
0

2; z
0

2 in the second coordinate system set up by
O0.

The two events lie on the worldline of a photon if
and only if

c2.t2� t1/
2� .x2 � x1/

2

� .y2� y1/
2� .z2� z1/

2 D 0 ;
(3.8)

since this is the same as the condition DD cT , where

DD
p
.x2� x1/2 � .y2 � y1/2 � .z2 � z1/2

is the distance between them and T D t2 � t1 is time
interval between them. Now lying on the worldline of
a photon is a property that makes sense independently
of any choice of coordinate system on spacetime. Hence
if DD cT according to one observer, then it must also
be true according to the other. Therefore, (3.8) holds if
and only if

c2.t02 � t01/
2 � .x02 � x01/

2

� .y02 � y01/
2 � .z02 � z01/

2 D 0 :
(3.9)

This statement can be written in a more compact form
by putting

X D

0
BB@

ct2
x2

y2

z2

1
CCA�

0
BB@

ct1
x1

y1

z1

1
CCA and

X0 D

0
BB@

ct02
x02
y02
z02

1
CCA�

0
BB@

ct01
x01
y01
z01

1
CCA

and by defining g to be the 4� 4 diagonal matrix

gD

0
BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCA ;

then (3.8) and (3.9) become, respectively,

XTgX D 0 and XTgX0 D 0 ;

where T denotes matrix transpose. Since the coordi-
nates of the two events are related by (3.6), we have

X D LX0 :

Therefore, the equivalence of (3.8) and (3.9) can be
stated as follows. For X 2 R4 (with the prime dropped),

XTgX D 0 if and only if XTLTgLX D 0 :

It follows that LTgLD ˛g for some ˛ 2R, which must
be nonzero because the coordinate transformation must
be nonsingular. Hence

L�1 D ˛�1gLTg ;

since g�1 D g. Therefore, the top left entry in L�1

is �=˛, where � is the top left entry in L. But we de-
duced from our relativity assumption that the top left
entries in L and L�1 are equal, so ˛ D 1 and therefore
LgLT D g.
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3.3.3 Standard Lorentz Transformation

Suppose that O is moving along the x0-axis in the co-
ordinates of O0 and that O0 is moving along the x-axis
in the coordinates of O; also suppose further that they
both take the origin of their coordinate systems to be
the event at which they pass each other. Then C D 0
and the t; x and t0; x0 coordinates are related by (3.1),
with � D �.u/. Hence

LD

0
BB@
� � u

c p q
� u

c � r s
P Q a b
R S c d

1
CCA :

From LTgLD g, we obtain

�2� �2 u2

c2
�P2 �R2 D 1 ;

�2 u2

c2
� �2�Q2 � S2 D�1 :

But �2��2u2=c2 D 1. Hence P, Q, R, and S are all zero.
Similarly, from LTgLD g, we get that p, q, r, and s are
also zero, and then that

AD

�
a b
c d

�

is an orthogonal matrix.
Although the direction of the x-axis in the coordi-

nate system set up by O is fixed by the condition that
O0 should be traveling along the x-axis, O is still free to
make rotations about the x-axis. By making an orthog-
onal transformation of the y and z coordinates by A�1,
it can be arranged without loss of generality that AD 1.
We then have

0
BB@

ct
x
y
z

1
CCAD

0
BB@
� � u

c 0 0
� u

c � 0 0
0 0 1 0
0 0 0 1

1
CCA

0
BB@

ct0

x0

y0

z0

1
CCA ; (3.10)

where � D �.u/D 1=
p

1� u2=c2. This is the standard
Lorentz transformation or boost with velocity u.

3.3.4 General Lorentz Transformation

In deriving the standard Lorentz transformation, we
made assumptions about the relative orientations of the

spatial axes of the two-coordinate systems. If we drop
these, but still assume that O0 is moving directly away
from O, then we must combine (3.10) with an orthog-
onal transformation of the x; y; z coordinates and an
orthogonal transformation of the x0; y0; z0 coordinates.
The result is

0
BB@

ct
x
y
z

1
CCAD L

0
BB@

ct0

x0

y0

z0

1
CCA (3.11)

with

LD

�
1 0
0 H

�
Lu

�
1 0
0 KT

�
; (3.12)

where H and K are 3� 3 proper orthogonal matrices,
and Lu is the standard Lorentz transformation matrix
with velocity u, for some u < c. A transformation of the
form (3.11) is called a proper orthochronous Lorentz
transformation. Such transformations are characterized
by the following three properties:

1. The matrix L is pseudo-orthogonal. That is L�1 D

gLTg.
2. The top left entry in L is positive.
3. det.L/D 1.

A general Lorentz transformation is required to sat-
isfy only (1). The second condition characterizes the
transformation as orthochronous; that is, t is an increas-
ing function of t0. If the third also holds, then L is proper
and the handedness of the two sets of spatial axes is the
same.

Finally, if we drop the condition that O0 should be
moving directly away from O, then we can combine
(3.11) with a spatial translation and a change in the ori-
gin of the time coordinate. The result is

0
BB@

ct
x
y
z

1
CCAD L

0
BB@

ct0

x0

y0

z0

1
CCACC ; (3.13)

where L is a proper orthochronous Lorentz transforma-
tion matrix and C is a constant column vector. Equation
(3.13) is an inhomogeneous Lorentz transformation or,
alternatively, a Poincaré transformation.

In dealing with relativistic fields, it is conventional
to put x0 D ct, x1 D x, x2 D y, x3 D z, and so on, and to
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write (3.13) as

xa D

3X
bD0

La
bx0bCCa .aD 0;1; 2; 3/ (3.14)

or, with a summation convention for the repeated in-
dex b

xa D La
bx0bCCa :

3.4 Vectors

In three-dimensional Euclidean space, a vector (or
three-vector) X has three components that transform
under rotation by

0
@X1

X2

X3

1
AD H

0
@X01

X02
X03

1
A ;

where X1;X2;X3 are the components in the x; y; z coor-
dinate system and X01;X

0

2;X
0

3 are the components in the
x0; y0; z0 coordinate system. A four-vector is similarly
an object X that associates an element .X0;X1;X2;X3/
of R4 with each inertial coordinate system.

The Xas (aD 0; 1; 2; 3) are called the components
of X. They are required to have the property that if two
inertial coordinate systems are related by (3.13) then
the components Xa in the first (unprimed) system are
related to components X0a in the second (primed) by

0
BB@

X0

X1

X2

X3

1
CCAD L

0
BB@

X00

X01

X02

X03

1
CCA : (3.15)

This rather awkward definition says no more than that
a four-vector is an object with four components X0,
X1, X2, X3 and that the components transform under an
inhomogeneous Lorentz transformation of the coordi-
nates by the associated linear transformation – the same
transformation as the coordinates, but without the con-
stant column vector. As with three-vectors, one can add
four-vectors and take scalar multiples.

A key example is the displacement vector X from
an event E1 to an event E2. If the events have respective
coordinates t1; x1; y1; z1, and t2; x2; y2; z2 in some iner-
tial coordinate system, then the displacement vector X
from E1 to E2 has components

X0 D ct2 � ct1 ; X1 D x2 � x1 ;

X2 D y2 � y1 ; X3 D z2� z1 :
(3.16)

This can be turned around into a more geometric defini-
tion of a four-vector, as an equivalence class of pairs of

events, with two pairs equivalent whenever the quanti-
ties Xa in (3.16) are the same, in one and hence in every
inertial coordinate system.

3.4.1 Temporal and Spatial Parts

If two inertial observers O and O0 are at rest relative
to each other, then their time axes in spacetime will be
aligned and their inertial coordinate systems will be re-
lated by

0
BB@

ct
x
y
z

1
CCAD

�
1 0
0 H

�0BB@
ct0

x0

y0

z0

1
CCACC ; (3.17)

where H is a 3� 3 proper orthogonal matrix and C is
a column vector – that is, by a rotation of the x; y; z axes,
combined with a translation in space and time. In this
special case, the components of a four-vector X in the
two systems are related by

X0 D X00 ;

0
@X1

X2

X3

1
AD H

0
@X01

X02

X03

1
A : (3.18)

The time component is the same, while the three spa-
tial components X1;X2;X3 behave as the components
of a three-vector x. So we can decompose X into a tem-
poral part X0 and a spatial part x in a way that depends
only on the velocity of the observer and not on the par-
ticular choice of origin and orientation of the spatial
coordinate axes. The decomposition will be unchanged
by the transformation between the coordinate systems
of two observers at rest relative to each other. By
contrast, under a general transformation between the in-
ertial coordinate systems of two observers in relative
motion, the direction of the time axis changes and the
temporal and spatial parts are mixed up.

We shall write

X D .X0;X1;X2;X3/
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as shorthand for X has components X0;X1;X2;X3 in
a particular inertial coordinate system and

X D .�; x/

for X has temporal part � and spatial part x relative
to a particular choice for direction in spacetime of the
t-axis.

3.4.2 Inner Product

In Euclidean geometry, the distance between two points
is determined by the dot product, which is an inner
product on the space of three-vectors. If A;B are points
in space and if x is the vector from A to B, then the dis-
tance from A to B is

p
x:x. The pseudo-orthogonality

of Lorentz transformations leads to an analogous indef-
inite inner product on the space of four-vectors. That is,
it has all the properties of an inner product, except that
it is not positive definite.

The inner product g.X;Y/ of two four vectors X
and Y is the real number

g.X;Y/D X0Y0 �X1Y1 �X2Y2 �X3Y3 ;

where Xa, Ya, aD 0;1; 2; 3, are the components
of X and Y in an inertial coordinate system.

It follows from the first defining property of a Lorentz
transformation that the definition does not depend on
the choice of inertial coordinates.

The inner product is a symmetric bilinear form of
the space of four-vectors. It can be written as

g.X;Y/D gabXa Yb ; (3.19)

where the gabs are the entries in the matrix g. That is

g00 D 1 ; g11 D g22 D g33 D�1 ;

and gab D 0 when a¤ b. In (3.19), there are two sum-
mations over the repeated indices a; bD 0; 1; 2; 3.

A further notational device is to put Xa D gabXb,
again with a summation over b. Then X0 D X0, X1 D

�X1, X2 D�X2, X3 D�X3 and

g.X; Y/D XaYa

D X0Y0CX1Y1CX2Y2CX3Y3 :
(3.20)

The operation of forming the Xas from the components
Xa of X is called lowering the index. The conventions
for the positioning of indices are such that summations
are always over one lower index and one upper index.

3.4.3 Classification of Four-Vectors

The fact that the inner product on four-vectors is not
positive definite means that it is possible to distinguish
between different types of four-vector according to the
sign of the invariant g.X;X/. A four-vector X is said to
be timelike, spacelike, or null as g.X;X/ > 0, g.X;X/ <
0, or g.X;X/D 0. Two four-vectors X and Y are orthog-
onal if g.X; Y/D 0.

A four-vector whose spatial part vanishes in some
inertial coordinate system must be timelike; and a four-
vector whose temporal part vanishes in some inertial
coordinate system must be spacelike. Conversely, if X
is timelike, then there exists an inertial coordinate sys-
tem in which X1 D X2 D X3 D 0. If X is spacelike, then
there exists and inertial coordinate system in which
X0 D 0. The null vectors lie on the cone

.X0/2� .X1/2 � .X2/2 � .X3/2 D 0 : (3.21)

In the case of timelike and null vectors (but not
spacelike vectors), the sign of the time component X0

is invariant. A timelike or null vector X is said to be
future-pointing if X0 > 0 in some (and hence every) in-
ertial coordinate system, and past-pointing if X0 < 0.
See Fig. 3.8, where the time axis is vertical and one spa-
tial dimension is suppressed, and where FPTL denotes
future-pointing timelike, and so on.

3.4.4 Causal Structure of Minkowski Space

In the case of displacement four-vectors, the classifi-
cation has a direct interpretation in terms of the causal
structure of Minkowski space. Suppose that E and F are
events and that X is the displacement four-vector from E
to F. In studying the causal relationship between E
and F, we are interested in whether it is possible for

PPTL

SL

FPTL FPN

PPN

Fig. 3.8 The space of four-vectors
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some physical process that happens at E to influence
what happens at F, or the other way around.

The temporal part of X in an inertial coordinate sys-
tem is the time from E to F multiplied by c; the spatial
part is the three-vector from the point where E hap-
pens to the point where F happens. There are various
possibilities.

Displacement X is Spacelike
In this case, it is impossible to get from E to F with-
out traveling faster than light, so F lies outside the light
cone of E, and vice versa. There exists an inertial coor-
dinate system in which X0 D 0; that is, in which E and F
are simultaneous. If s denotes the distance from E to F
in such coordinates, then

g.X;X/D�s2 :

There also exist inertial coordinate systems in which E
happens before F, and inertial coordinate systems in
which E happens after F. It is for this reason that the
prohibition on faster-than-light transmission is required
for the consistency of the theory with commonsense
ideas about causality.

Displacement X is Timelike
In this case there exists an inertial coordinate system
in which X1 D X2 D X3 D 0; that is in which E and F
happen at the same place. If 
 denotes the time from E
to F in such coordinates, then

g.X;X/D c2
2 :

If X is future-pointing, then 
 > 0 and F happens after E
in every inertial coordinate system. If X is past-pointing,
then 
 < 0 and F happen before E in every inertial co-
ordinate system.

Displacement X is Null
Then E and F lie on the worldline of a photon. If X
is future-pointing (past-pointing), then F happens after
(before) E in every inertial coordinate system.

3.4.5 Invariant Operators

In Euclidean space, the three partial derivatives with
respect to Cartesian coordinates transform as the com-
ponents of a vector operator r . By making r act on
a scalar field or a vector field, we can form the familiar
invariant differential operators grad, div and curl.

There is an analogous four-gradient, which sends
a function on spacetime to a four-vector field – a four-

vector that varies from event to event – and four-
divergence, which sends a four-vector field to a scalar
function. To define them, put

@D .@0; @1; @2; @3/ ;

where @a D @=@xa; aD 0; 1; 2; 3. Now consider an in-
homogeneous Lorentz transformation xa D La

bx0bCCa.
By the chain rule

@

@x0b
D

@

@xa
La

b ;

which, in matrix notation, is @0 D @L.
This is very close to the transformation rule for

a four-vector. By using the pseudo-orthogonality rela-
tion L�1 D gLTg, we can rewrite it in the form

0
BB@
@0

�@1

�@2

�@3

1
CCAD L

0
BB@
@00
�@01
�@02
�@03

1
CCA ; (3.22)

where @0a D @=@x0a. Now the operator on the right
transforms as a four-vector, which is called the four-
gradient. It will be denoted by Grad.

Given a function f on spacetime, Grad f is an in-
trinsically defined four-vector field. Similarly, given
a four-vector field X, we can form an invariant scalar
field Div X by taking the inner product of the four-
vector operator with X. The result is the four-divergence
of a four-vector field X, defined by

Div X D
1

c

@X0

@t
C
@X1

@x
C
@X2

@y
C
@X3

@z
:

By combining these operations, we define the
d’Alembertian, or wave operator, �, which acts on
a function u by

�uD
1

c2

@2u

@t2
�
@2u

@x2
�
@2u

@y2
�
@2u

@z2
D Div.Grad u/ :

The d’Alembertian is an invariant operator. The result
of applying it to a function is independent of the choice
of inertial coordinates.

3.4.6 Frequency Four-Vector

The wave equation is the invariant condition �uD 0.
A real harmonic wave is the real part of a complex so-
lution of the form

 D A exp.�i˝/ ; (3.23)
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where AD ˛Ciˇ is constant and˝ is a real linear func-
tion of the inertial coordinates. Such complex solutions
are characterized by the condition that

K D
ic Grad 

 

should be a constant real null four-vector. It is called the
frequency four-vector, and it has temporal and spatial
parts

K D !.1; e/ ;

where ! is the frequency and e is the unit vector in the
direction of propagation.

There is one subtlety here that is worth noting. If
uD Re , then also uD Re . Thus a real harmonic
wave can be written in two distinct ways as the real part
of a complex harmonic wave. In one case K is future-
pointing, and in the other it is past-pointing. This is
an important point in quantum field theory, where it is
related to the distinction between particles and antipar-
ticles. But in our classical context we shall avoid it by
making the convention that  should always be chosen
so that K is future-pointing.

3.5 Proper Time

The history or worldline of a particle in general mo-
tion is a curve in spacetime. If the particle is moving
uniformly at constant speed, then its worldline � is
a straight line which lies inside the light cone of any
event on � .

We can label the events along such a straight world-
line by using proper time, which is defined to be the
time 
 shown on a clock carried by the particle; 
 is
also the time coordinate in an inertial coordinate system
set up by an observer moving with the particle, relative
to whom the particle is at rest. It is a natural parame-
ter, analogous to the distance along a line in Euclidean
space. It is well-defined up to the addition of a constant,
which is determined by the choice of the event 
 D 0.

If the particle is at rest in the inertial coordinate sys-
tem Qt; Qx; Qy; Qz then its worldline is given by QtD 
 , with Qx,
Qy, Qz constant. If t; x; y; z is a second inertial coordinate
system related to Qt; Qx; Qy; Qz by the standard Lorentz trans-
formation with velocity v, then

tD �.v/
 C const. (3.24)

along � . Since the coordinate time is unchanged by ro-
tation or translation, it follows that in a general inertial
coordinate system t; x; y; z

dt

d

D �.v/D

1q
1� v2

c2

; (3.25)

where v is the speed of the particle. We see again the
time dilation effect; when v¤ 0, a clock carried by the
particle, which shows proper time, runs slow relative to
the coordinate time t.

Along the particle worldline, the inertial coordi-
nates are functions of 
 . We put Va D dxa=d
 . Then the

Vas are the components of a four-vector V, called the
four-velocity of the particle.

Suppose that the particle has velocity v relative to
the inertial coordinate system t; x; y; z. Then dt=d
 D
�.v/, where vD jvj, and

dx

d

D

dt

d


dx

dt
D �.v/v1 ; (3.26)

and similarly for the other components. So V decom-
poses into temporal and spatial parts as

V D �.v/ .c; v/ : (3.27)

It follows that g.V;V/D c2. Thus, the four-velocity is
a timelike four-vector. It is also future-pointing because
V0 D c�.v/ > 0.

3.5.1 Addition of Velocities

Suppose that an observer has velocity u and a particle
has velocity v in some inertial coordinate system. And
let w denote the speed of the particle relative to the ob-
server.

If U and V denote the respective four-velocities of
the observer and the particle, then in the given inertial
coordinate system

U D �.u/.c;u/ and V D �.v/.c; v/ :

Hence

g.U;V/D �.u/�.v/.c2�u:v/ :

On the other hand, in an inertial coordinate system
in which the observer is at rest, U D .c; 0/ and V D
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�.w/.c;w/, where w:wD w2. Hence

g.U;V/D �.w/ :

Therefore, c2�.w/D �.u/�.v/.c2�u:v/. On solving
for w, we find that

wD
c
p

c2.u� v/:.u� v/� u2v2C .u:v/2

c2 �u:v

which reduces to the classical formula wD ju�vjwhen
u; v� c.

3.5.2 Lorentz Contraction

Suppose that a rod is of length L0 in its rest frame and
that in a second inertial frame, it is oriented in the direc-
tion of the unit vector e and is moving with velocity v.

Let V denote the four-velocity of the rod. Let A be
an event at one end of the rod, and let B and C be events
at the other end such that B is simultaneous with A in the
frame in which the rod is moving and C is simultaneous
with A in the rest frame of the rod. The problem is to
find the distance L between A and B, measured in the
frame in which the rod is moving.

Let X be the displacement four-vector from A to B
and let Y be the displacement four-vector from A to C.

Then Y D XC 
V for some scalar 
 and

L2 D�g.X;X/ ; L2
0 D�g.Y;Y/ :

Also g.V;Y/D 0 since A and C are simultaneous in the
rest frame of the rod.

We find 
 by calculating g.X;V/ in two different
ways. In the frame in which the rod is moving, we have
X D .0;Le/ and V D �.v/.c; v/, so

g.X;V/D�L�.v/e:vD�Lv�.v/ cos  :

We also have g.X;V/D g.Y � 
V;V/D�
c2. Hence

 D Lv�.v/ cos =c2 and therefore

L2 D�g.Y � 
V; Y � 
V/

D L2
0 � 


2c2

D L2
0 � c�2L2�.v/2v2 cos2  :

After a little algebra, therefore, the length of the rod in
the second frame is

LD
L0

p
c2 � v2

p
c2 � v2 sin2 

;

where  is the angle between e and v. This is the general
formula for the Lorentz contraction.

3.6 Four-Acceleration

The worldline of an accelerating particle can be repre-
sented in inertial coordinates by equations of the form

xD x.t/ ; yD y.t/ ; zD z.t/ ;

where t; x; y; z are inertial coordinates. Let E at time t
and E0 at time tCıt be two nearby events on the world-
line. In this general case, we define the proper time
from E to E0 to be the time ı
 measured in a second
inertial coordinate system in which the particle is in-
stantaneously at rest at the event E.

In the t; x; y; z coordinate system, the displacement
four-vector X from E to E0 is X D .c; v/ıt where v
is the velocity of the particle. From the discussion in
Sect. 3.4.4

c2ı
2 D g.X;X/D .c2 � v:v/ıt2 : (3.28)

As in the case of a nonaccelerating particle, therefore,
we define the proper time along the worldline up to
an additive constant by d
=dtD 1=�.v/ where v is the
speed of the particle. The Clock Hypothesis asserts that
proper time is the time measured by an ideal clock

traveling with the particle, that is by a clock that is un-
affected by the acceleration.

The four-velocity V is defined in the same way as
for uniform motion, with the components Va D dxa=d
 .
Again V D �.v/.c; v/; where v is the velocity measured
in an inertial coordinate system and vD jvj. But now V
now depends on 
 , and its derivative A with respect to 

is also a four-vector, called the. four-acceleration. In
components, Aa D dVa=d
 .

In a general inertial coordinate system, A has spatial
and temporal parts

AD �.v/
d

dt
.�.v/.c; v//

D
v�.v/4

c2

dv

dt
.c; v/C �.v/2

�
0;

dv
dt

�
:

(3.29)

If the particle is instantaneously rest, then V D .c; 0/
and AD .0;a/ where aD dv=dt is the ordinary acceler-
ation. It follows that

g.A;V/D 0 ; g.V;V/D c2 ; g.A;A/D�a2 ;
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A

ct
B

x

Fig. 3.9 A constant acceleration worldline

where a is the magnitude of the acceleration measured
in the instantaneous rest frame; that is, the acceleration
felt by an observer moving with the particle. A little
further work establishes that aD cd�=d
 , where � is
the rapidity determined by v.

3.6.1 Constant Acceleration

Suppose that yD zD 0 along the worldline in some
fixed inertial coordinate system, and that a is constant.
The components of V and A in the fixed coordinate
system are .cPt; Px; 0; 0/ and .cRt; Rx; 0; 0/ where the dot de-
notes d=d
 , differentiation with respect to proper time.
Hence

c2Pt2 � Px2 D c2 and c2Rt2 � Rx2 D�a2 :

With a suitable choice of origin for the coordinates, and
of the zero for 
 , these integrate to give

tD
c

a
sinh

�a


c

	
and xD

c2

a
cosh

�a


c

	
:

So the worldline is a hyperbola with asymptotes ctD
˙x (Fig. 3.9). Although at each event the acceleration
measured in an inertial coordinate system in which the
particle is instantaneously at rest is always the same, the
velocity of the particle never exceeds c.

The coordinate time and the coordinate distance be-
tween the events at which 
 D 0 and at which 
 takes
some general value is

tD
c

a
sinh

�a


c

	
and xD

c2

a

�
cosh

�a


c

	
� 1

	
:

By fixing 
 and choosing a large value of a, we can
make x as large as we please. Therefore, the prohibition
on faster than light travel does not preclude travel over
an arbitrarily large distance in a given interval of time.
But the distance must be measured in the rest frame
at 
 D 0, and time measured along the worldline. The
catch is that if this is exploited for interstellar travel,
starting and ending on earth, then the time that passes
on earth before the completion of the journey is at least
D=c, where D is the total distance traveled, as measured
from earth. A traveler can complete a round trip journey
of thousands of light years in a few years, as measured
on the his own clock, but on his return thousands of
years will have passed on earth.

There is an asymmetry between the traveler and
the earth because the traveler is accelerating, while the
earth is not, at least not significantly. It is sometimes
said incorrectly that there is a paradox here (the twin
paradox, since it is stated in terms of two twins, one in
a spaceship, the other on earth). But the result is only
paradoxical if one forgets that although uniform motion
has only a relative meaning in special relativity, accel-
eration is absolute.

3.7 Visual Observation

The language of special relativity can sometimes mis-
lead. For example, the statement a measuring rod ap-
pears to an observer moving in the direction of the rod
to have contracted is true only if the phrase appears
. . . to an observer is interpreted in terms of a particular
measuring procedure; the observer must set up inertial
coordinates and then determine the distance between
the worldlines of the two ends of the rod. It is tempting
to make the erroneous assumption that other classically
equivalent measurements will give the same result – for
example, a measurement of the angle subtended by the

two ends of the rod at known distance. In fact it does
not because it involves visual observation; the motion
of the observer also affects the measured angle between
the trajectories of the photons arriving at the observer
from the two ends of the rod. In fact, a moving rod does
not even appear to be straight when observed visually.

To understand what an inertial observer actually
sees at a particular event E on his worldline, we must
consider the photon worldlines that pass through E.
These are the generators of the light cone of E. An
event A is on the past light cone of E if the displacement
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four-vector K from A to E is null and future-pointing. In
the observer’s inertial frame, it has temporal and spatial
parts

K D .�; k/ ;

where � D
p

k:k> 0. Light emitted at A arrives at the
observer from the direction of the unit vector �k=�.

Suppose that B is a second event on the past light
cone of E and that the displacement vector from B to E
is the null four-vector LD .	;`/. If the angle between
the directions from which light from A and B arrives at
the observer is  , then

cos  D
k:`
�	
D 1�

c2g.K;L/

g.K;V/g.L;V/
; (3.30)

where V is the four-velocity of the observer. The sec-
ond equality follows from the fact that V D .c; 0/ in the
observer’s frame. Therefore,

g.V;K/D c� ;

g.V;L/D c	 ;

g.K;L/D �	� k:` :

3.7.1 Stellar Aberration

An application is the formula for stellar aberration. Sup-
pose that an observer measures the angle subtended by
two distant stars to be  . Then a second observer mov-
ing relative to the first with speed v directly away from
one of the stars measures the angle to be  0, where

cos  0 D
c cos  � v

c� v cos 
:

To show this, we take A and B to be events at which
light from the stars is emitted, and we suppose that the
second observer moves relative to the first directly away
from the star at A. Then we have

g.K;L/D �	.1� cos / ;

where K D .�; k/, LD .	;`/ in the first observer’s
frame, and the second observer has velocity vk=� rel-
ative to the first.

In the first observer’s frame, the four-velocity of the
second observer is given by

V D �.v/.c; vk=�/ :

Hence,

g.K;V/D �.v/

�
c� �

vk:k
�

�
D ��.v/.c� v/

and

g.L;V/D �.v/

�
c	�

vk:`
�

�

D 	�.v/.c� v cos / :

From above, therefore

cos  0 D 1�
c2g.K;L/

g.K;V/g.L;V/
D

c cos  � v

c� v cos 
; (3.31)

after a little algebra. If  ¤ 0, so that the stars are sep-
arated in the sky, then cos  0!�1 as v! c. So as the
second observer looks in the direction of his motion rel-
ative to the first and accelerates toward the velocity of
light, all stars appear to move across the sky to positions
directly ahead. This includes the stars that were initially
behind him, but not directly behind him.

3.7.2 Appearance of a Moving Sphere

A striking example of the distinction between visual ob-
servation and coordinate measurement is provided by
a moving sphere. Whatever the speed of the sphere,
the visually observed outline is always circular, despite
the fact that, according to coordinate measurements, it
is squashed along the direction of its motion by the
Lorentz contraction. (This was first pointed out, surpris-
ingly late in the development of relativity, by Penrose in
1959 [3.4].)

To see this, consider the light rays reaching an ob-
server at the origin from the visually observed outline
of a stationary sphere. If the three-vector from the cen-
ter of the sphere to the observer is x and if the sphere
subtends an angle 2˛ at the observer, then light reaching
the observer from the outline of the sphere will travel in
the direction of one of the unit vectors e that satisfies

e:xD jxj cos˛ : (3.32)

Consider a photon emitted from the sphere at the
event A that reaches the observer at the event E at which
tD xD yD zD 0. Suppose that the displacement four-
vector K from A to E has temporal and spatial parts
.�; k/ in the observer’s frame. Then � D

p
k:k since K

is future-pointing and null. If the photon appears to the
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observer to come from the outline of the sphere, then
eD k=� satisfies (3.32). So we can characterize the out-
line events E by the condition

�jxj cos˛� k:xD 0 :

That is, g.K;X/D 0, where X is the spacelike four-
vector with temporal and spatial parts .jxj cos˛; x/ in
the observer’s frame.

In the frame of another inertial observer at E, X D
.� 0; x0/ and K D .�0; k0/, with �0 D jk0j. Since g.K;X/
is invariant, we shall have for the outline events

�0� 0 � k:x0 D 0 ;

and hence the photons reaching the second observer
from the visually observed outline of the sphere travel
in the directions eD k0=�0 that satisfy

e:x0 D jx0j cos˛0 ;

where cos˛0 D � 0=jx0j. Therefore, they appear to the
second observer to come from a sphere with center in
the direction of �x0, with outline subtending an angle
2˛0. To a moving observer, a sphere still has the visual
appearance of a sphere, but of a different size. It still
has a circular outline, and does not look squashed. If
the second observer moves with speed v parallel to x,
then

cot˛0 D �.v/
�

cot˛�
v

c
cosec˛

	
;

so ˛0! � as v! c. As the observer accelerates away
from the sphere, the outline grows until it fills the whole
sky, apart from a small hole directly ahead.

3.7.3 Möbius Transformations

Another way to derive this result is to identify the
sphere of null lines through the origin (the sky) with
the Riemann sphere. The Möbius group, or projec-
tive general linear group PGL.2;C/, acts this sphere,
by identifying it with the extendedcomplex plane by

stereographic projection. We write eD .x; y; z/, with
x2C y2C z2 D 1, and put

�.e/D
xC iy

1� z

for z¤ 1, and �.e/D1 when zD 1. The Möbius
group M then becomes the group of transformations of
the sphere given by

� 7!
aC b�

cC d�
; (3.33)

where a; b; c; d 2C, with ad� bc¤ 0. Two such trans-
formations with parameters a; b; c; d and a0; b0; c0; d0

are the same whenever
�

a b
c d

�
D �

�
a0 b0

c0 d0

�
; �¤ 0 2 C :

Lorentz transformations also act on the sphere by
mapping null lines through the origin to null lines.
These maps coincide with Möbius transformations and
indeed we obtain in this way an isomorphism of the
proper orthochronous Lorentz group with the group of
Möbius transformations. A rotation through  about
the z-axis coincides with the Möbius transformation
� 7! ei��. The permutation of the spatial coordinates
.x; y; z/ 7! .z; x; y/ coincides with

� 7!
�C i

� � i
:

Finally, a Lorentz transformation with rapidity � in the
t; z-plane becomes, after stereographic projection from
.0; 0; 1/, the dilation � 7! e��. These transformations
generate the whole proper orthochronous component of
the Lorentz group. The correspondence between the ac-
tions on the sphere gives an homomorphism, which can
easily be seen to be an isomorphism.

Because Möbius transformations map circles to
circles, Lorentz transformations also map a circular out-
line on the sky to circular outlines.

3.8 Operational Definition of Mass

A central prediction of special relativity is the equiva-
lence of mass and energy. The energy content of a body
is determined by its dynamical mass, and the total
amount of energy that can be released from a body is

limited by the celebrated formula ED mc2. By contrast,
in classical physics there is in principle no limit to the
amount of energy that can be stored in a body of given
mass.
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As with other relativistic predictions, the terms must
be given operational definition. Mass and energy are
quantities defined by the thought experiments used to
measure them. They are not quantities with self-evident
meaning taken over from classical theory.

Mass enters Newtonian mechanics in two ways, as
inertial mass, in the second law F D ma, and as gravi-
tational mass, in the inverse-square law F D Gmm0=r2.
It is the latter that one measures by weighing a body.
But this is not a good starting point for our operational
definition since there is no sensible way to include grav-
itational interactions in special relativity. Instead we
begin with a direct dynamical measurement of mass in
collisions.

The starting point is that the Newtonian conserva-
tion laws hold to a high degree of accuracy in collisions
in which velocities of particles are much less than the
velocity of light. Given a standard mass M, therefore,
an observer can assign a mass m to any other particle
by colliding it at low speed with the standard mass,
measuring the resulting velocities, and applying the
Newtonian law of conservation of momentum. Since
this becomes exact as the velocities go to zero, the
observer can in principle use a limiting procedure to
measure m when the particle is at rest.

The rest mass of a particle is the mass measured by
low-speed collisions in an inertial coordinate sys-
tem in which the particle is at rest.

Rest mass is an intrinsic quantity associated with a par-
ticle.

3.8.1 Conservation of Four-Momentum

Each particle in a collision has a rest mass m (a scalar)
and a four-velocity V (a four-vector). The four-vector
PDmV is called the four-momentum of the particle. It
has temporal and spatial parts

PD .m�.v/c;m�.v/v/ ;

where v is the three-velocity. As v! 0, �.v/D 1C
O.v2=c2/ and

PD .mc;mv/CO

�
v2

c2

�
:

So if all the velocities are so small that terms in v2=c2

can be neglected, then the Newtonian laws of conser-
vation of mass and momentum are equivalent to the
conservation of the temporal and spatial parts of four-
momentum.

We need to replace the Newtonian laws by state-
ments that are equivalent when v2=c2 can be neglected,
but which are otherwise compatible with Lorentz trans-
formations. A very straightforward possibility is to
adopt the hypothesis that four-momentum is always
conserved.

Four-Momentum Hypothesis. If the incom-
ing particles in a collision have four-momenta
P1;P2; : : : ;Pk and the outgoing particles have
four-momenta PkC1;PkC2; : : : ;Pn ; then

kX
1

Pi D

nX
kC1

Pi : (3.34)

The justification for this is, first, that it is equivalent to
the Newtonian laws of conservation of mass and mo-
mentum for low-speed collisions and, second, since it
is a relationship between four-vectors, it is compatible
with Lorentz transformations; if it holds in one inertial
frame, then it holds without approximation in every in-
ertial frame.

Whatever the velocities of the particles, we can still
take the temporal and spatial parts of (3.34) to obtain

kX
1

mi�.vi/D

nX
kC1

mi�.vi/ ;

kX
1

mi�.vi/vi D

nX
kC1

mi�.vi/vi ;

where the mi’s are the rest masses of the particles. These
take the same form as the Newtonian laws of mass and
momentum conservation when we identify m�.v/ with
inertial mass and m�.v/v with three-momentum.

Four-momentum conservation is equivalent to con-
servation of inertial mass and of three-momentum (in
every inertial coordinate system). The new feature of
the relativistic theory is that the inertial mass of a parti-
cle increases with its velocity, albeit only very slightly
for velocities much less than that of light.

Rest mass is a scalar – by its operational definition,
it is an intrinsic quantity. But inertial mass is different
in different inertial coordinate systems. Rest mass and
inertial mass are equal for a particle at rest.

3.8.2 Photons

Alternative operational definitions of mass and en-
ergy start from the quantum mechanical principle that
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a photon with (angular) frequency ! carries momen-
tum „!=c in the direction of its motion. So if a particle
at rest acquires small velocity v through the absorption
of a low-energy photon at some event, then we can use

mvD
„!

c

to determine its rest mass m after the event. If we look
at this in a frame in which the particle is at rest after the
event, then we have a particle with low speed v being
brought to rest by absorbing a photon with small mo-
mentum „�.v/.1� v=c/=c. So, because � � 1 for low
speeds, the rest mass of the particle before the collision
is given by

m0vD
„!.c� v/

c2
:

The absorption of the photon has increased the rest
mass of the particle. By putting the two equations to-
gether, we have

m0.c; 0/C
„!

c
.1;1/D m.c; v/ :

Again using the approximation �.v/� 1, this is the
four-vector equation

m0V0C
„

c
K D mV;

where K is the frequency four-vector of the photon.
Thus we again have the four-momentum conservation
law, provided that we assign four-momentum „K=c to
the photon. It must hold for small!. But by additivity, it

must also hold for arbitrary !, if we assume that n pho-
tons with frequency ! traveling in the same direction
have the same total energy and momentum as a single
photon of frequency n!.

3.8.3 Equivalence of Mass and Energy

In a general collision, it is not rest mass that is con-
served, but the temporal part

P0 D m�.v/

of the four-momentum. Now

�.v/D 1C
v2

2c2
CO

�
v4

c4

�
:

So if we neglect terms of order v4=c4, but keep terms of
order v2=c2, then

P0 D
1

c

�
mc2C 1

2 mv2
�
;

where m is the rest mass. Thus cP0 is the sum of the
Newtonian kinetic energy and a much larger term mc2,
which also has the dimensions of energy.

For a particle of rest mass m, the quantity E Dmc2

is the rest energy of the particle.

Any collision that involves a gain or loss of kinetic en-
ergy, such as an explosion or an inelastic collision, must
involve a corresponding loss or gain in the total rest en-
ergies of the particles; kinetic energy can be traded for
rest mass, and vice versa.

3.9 Maxwell’s Equations

The requirement that Maxwell’s equations should be
consistent with the principle of relativity implies that
the velocity of photons must be independent of the
motion of their source and of the observer. That, in
conjunction with other plausible assumptions leads to
the conclusion that inertial coordinate systems must be
related by Lorentz transformations. It is not immedi-
ately obvious, however, that this chain of reasoning is
reversible, and that Maxwell’s equations are in fact in-
variant. To show that, we must find the transformation
rule for the components of the electric and magnetic
fields. We must address the question: if an observer

moves with velocity v through a given electromag-
netic field, what electric and magnetic fields will he
observe and do the observed fields satisfy Maxwell’s
equations?

We answer the first part of the question by consid-
ering observations of the motion of a charged particle
relative to an inertial frame. The path of a particle mov-
ing slowly through an electric field E and magnetic
field B is determined by the Lorentz force law. If the
particle has velocity v, momentum p, and charge e, then

dp
dt
D e.EC v^B/ : (3.35)
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By measuring the trajectory for different velocities, an
observer can in principle determine E and B at each
point. Knowing how to apply an arbitrary Lorentz trans-
formation to E and B is equivalent to knowing how
to extend the equation of motion (3.35) to any v with
jvj < c. For if we know how to do the former, then we
can transform to a frame in which the particle is mov-
ing slowly, find its trajectory, and then transform back
to the original coordinates.

The transformation law for E and B must correctly
encode the behavior of particles moving at high speed
through electric and magnetic fields. This has two fea-
tures (amply verified in particle accelerators). First, the
rest mass m and charge e of a particle are unchanged by
interaction with the fields; and, second, if we take p to
be the spatial part of the four-momentum, then (3.35)
holds for any v with jvj < c. That is, the motion of
a charged particle at any velocity is governed by

dp
dt
D e.ECv^B/ ; where pD m�.v/v : (3.36)

These can be recast in terms of the temporal and spatial
parts of the four-acceleration AD .˛; a/ as

mc˛ D e�.v/E:v ; maD e�.v/.EC v^B/ :

Since m is constant and pDm�.v/v, the second equa-
tion follows from (3.36), together with

aD �.v/
d

dt
.�.v/v/ :

The first follows from the orthogonality of the four-
acceleration AD .˛;a/ and the four-velocity V D
�.v/.c; v/, which implies that c˛ D a:v.

The transformation of the fields now follows by
introducing the electromagnetic field tensor, which is
represented by the 4� 4 matrix

FD

0
BB@

0 E1 E2 E3

�E1 0 �cB3 cB2

�E2 cB3 0 �cB1

�E3 �cB2 cB1 0

1
CCA : (3.37)

The entries in F are denoted by Fab, a;bD 0; 1; 2; 3.
They are determined by measuring the acceleration of
a charged particle.

The term tensor refers to the behavior of F under
Lorentz transformations: if the inertial coordinate sys-
tems of two inertial observers are related by (3.13),
then the electromagnetic fields measured by the two

observers at an event are related by F0 D LTFL. This
follows by writing the equation of motion in the matrix
notation as

cmAD egFV :

where, as usual, g is the diagonal matrix with diago-
nal entries 1;�1;�1;�1. But four-velocity and four-
acceleration transform as four-vectors, so V D LV0 and
AD LA0I and by the pseudo-orthogonality property, we
have L�1 D gLTg. Hence

cmLA0 D egFLV0

and therefore

cmA0 D egLTFLV0

since g2 is the identity. But in the second coordinate
system

cmA0 D eF0gV0 :

Since both equations for A0 hold whatever the four-
velocity, we conclude that F0 D LTFL.

Note that the transformation preserves the skew-
symmetry of F. It should also be remarked that it is
assumed implicitly that the charge of a particle is the
same in all inertial coordinate systems. One piece of
physical evidence for this is the overall neutrality of
matter. When at rest, electrons and protons have equal
and opposite charges. In an atom the electrons are mov-
ing much faster than the protons in the nucleus. If
the charge of a particle depended on its velocity, then
there could not be an exact balance between the electric
charges of the electrons and the protons.

More generally, a tensor of type .p;q/ is an object
that associates components Ta:::c

e:::f (p upper indices,
q lower indices) with each inertial coordinate system,
subject to the transformation rule

Ta:::c
e:::f L

e
p : : :L

f
r D La

s : : : L
c
uT 0s:::up:::r

under (3.13). An electromagnetic field is a tensor of
type .0; 2/; a four-vector is a tensor of type .1;0/. The
coefficients gab in the definition of the inner product are
also the components of a tensor of type .0; 2/, but one
that is exceptional in having the same components in
every inertial coordinate system. It is called the metric
tensor.
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3.9.1 Transformations of E and B

In the case of the standard Lorentz transformation,

LD

0
BB@
� � u

c 0 0
� u

c � 0 0
0 0 1 0
0 0 0 1

1
CCA ;

where � D �.u/, the tensor property F0 D LTFL gives

E01 D E1 ; E02 D �.E2 � uB3/ ;

E03 D �.E3C uB2/
(3.38)

and

B01 D B1 ;

B02 D �.B2C uE3=c2/ ;

B03 D �.B3 � uE2=c2/

(3.39)

so the transformation mixes electric and magnetic
fields. If u� c, then

E0 D ECu^B ;

where uD ui. Thus an observer moving slowly with ve-
locity u through a pure magnetic field B with ED 0 sees
an electric field u^B.

It follows from (3.38) and (3.39) that E0 �B0 D E �B.
Hence E:B is invariant under standard Lorentz trans-
formations. Clearly it is also invariant under rotations.
Hence it is an invariant of the electromagnetic field –

it is the same in every inertial coordinate system. An-
other invariant is E �E�c2B �B. It follows, for example,
that if E and B are not orthogonal in some inertial co-
ordinate system, then E¤ 0 and B¤ 0 in every inertial
coordinate system.

3.9.2 Invariance of Maxwell’s Equations

In terms of the electromagnetic field, Maxwell’s equa-
tions are

@aFbcC @bFcaC @cFab D 0 ;

@aFab D
1

�0c
Jb ;

where @a D @=@xa, the @as are the components of the
four-gradient

GradD .@0; @1; @2; @3/D .@0;�@1;�@2;�@3/ ;
and the Jas are defined in terms of the charge and cur-
rent density by

J D .J0; J1; J2; J3/D .c�;�j1;�j2;�j3/ :

If the Jas transform by J0b D JaLa
b, with summation,

or J0 D JL in matrix notation, then it follows from the
transformation rules for the components of Grad and F
that Maxwell’s equations are invariant. In fact the trans-
formation law for charge and current density follows
from the invariance of charge and the transformation of
volumes.

In the language of tensor calculus, F is a skew-
symmetric second-rank covariant tensor, or 2-form,
and J is a covector field, or 1-form.
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4.1 Prologue
The success of special relativity demonstrated that there
is no such thing as absolute velocity; all velocities
are relative. And coupled with the observation that the
speed of light is absolute, Einstein showed that this
implies that time, like space, is relative, and indeed
that they are merely the three- and one-dimensional
components of what we now call spacetime, the four-
dimensional continuum introduced by Minkowski. Ein-
stein then asked himself: Can there be any sense in
which acceleration is relative? Can the laws of physics
retain their form, or something like their form, if we
pass from one (say, inertial) frame of reference to an-
other one accelerating with respect to it? He noted that
in an accelerating frame time is indeed affected, so
that accelerating clocks go slower, but he also noted
that, by virtue of Galileo’s observation that falling bod-

ies in a gravitational field all fall at the same rate, the
same phenomenon (of clocks going slower) should be
expected in a gravitational field. The clocks in a gravi-
tational field will go slower than clocks in empty space,
which implies a gravitational redshift. The equivalence
of a gravitational field to an accelerating frame of ref-
erence is what is known as the equivalence principle.
The above line of reasoning, however, also marked
the beginning of general relativity: by generalizing the
Lorentz transformations (which are linear) to nonlinear
ones (like a transformation to an accelerating frame),
we automatically bring in gravity, so a theory of gen-
eral relativity is a theory of gravity. This is the vision,
very broadly stated, though it turns out that there are
many observations and qualifications to be made. Some
of these are spelled out below.

4.2 The Role of the Equivalence Principle in General Relativity

Einstein was a master of the thought experiment and
what he described as the happiest thought of his life is
a most beautiful and arresting insight. In a letter to R.W.
Lawson, 22 January 1920 (quoted in [4.1, p. 178]), he
writes:

When, in 1907, I was working on a comprehen-
sive paper on the special theory of relativity for the

Jahrbuch der Radioaktivität und Elektronik, I had
also to attempt to modify the Newtonian theory of
gravitation in such a way that its laws would fit in
the [special relativity] theory. Attempts in this di-
rection did show that this could be done, but did
not satisfy me because they were based on physi-
cally unfounded hypotheses . . . Then there occurred
to me the glücklichste Gedanke meines Lebens, the
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happiest thought of my life, in the following form.
The gravitational field has only a relative existence
in a way similar to the electric field generated by
magnetoelectric induction. Because for an observer
falling freely from the roof of a house there exists –
at least in his immediate surroundings – no grav-
itational field [Einstein’s emphasis]. Indeed, if the
observer drops some bodies then these remain in
a state of rest or of uniform motion, independent
of their particular chemical or physical nature (in
this consideration the air resistance is, of course,
ignored). The observer therefore has the right to
interpret his state as at rest. Because of this idea,
the uncommonly peculiar experimental law that in
a gravitational field all bodies fall with the same
acceleration attained at once a deep physical mean-
ing. Namely, if there were to exist just one single
object that falls in a gravitational field in a way
different from all others, then with its help the ob-
server could realise that he is in a gravitational field
and is falling in it. If such an object does not exist,
however – as experience has shown with great ac-
curacy – then the observer lacks any independent
means of perceiving himself as falling in a gravita-
tional field. Rather he has the right to consider his
state as one of rest and his environment as field-free
relative to gravitation.

The experimentally known matter independence
of the acceleration of fall is therefore a powerful ar-
gument for the fact that the relativity postulate has
to be extended to coordinate systems which, relative
to each other, are in nonuniform motion.

Imagine, then, an observer standing on the floor of
a closed box with no windows, who, releasing objects
of different weights and made of different materials, ob-
serves that they fall at the same rate. He will conclude
either that he is in a gravitational field (for instance
that of the earth) or that the box is in no gravitational
field, but somewhere in space, far from heavy plan-
ets or stars, and is being accelerated. In this last case,
when objects are released, they fall to the ground with
the same acceleration since it is the floor that acceler-
ates up to meet them. A gravitational field is therefore
indistinguishable from an accelerating frame. Einstein
concluded from this observation, making at the same
time a bold generalization, that no experiment in me-
chanics could distinguish a gravitational field from an
accelerating frame. And of course, precisely because of
this equivalence, a gravitational field may be annulled
by acceleration – exactly Einstein’s happiest thought,

recalled above. In the case of the lift, free fall results
if the suspending cable is severed. But now note that
if the lift shaft were extremely deep, extending a sig-
nificant distance into the earth’s interior, then objects
at different places in the lift would move toward each
other, since they each are traveling along a radius vector
toward the center of the earth. In this case the cancela-
tion of the gravitational field by an accelerating frame is
not complete. Differently stated, a uniform gravitational
field would indeed be indistinguishable from an accel-
erating frame, but a realistic, physical one, such as that
of the earth or the sun, would not. The equivalence prin-
ciple is therefore a local principle, which may be stated
by saying that a uniform gravitational field is indistin-
guishable from an accelerating frame. This formulation
is all right as far as it goes, but of course in nature
there is no such thing as a uniform gravitational field.
Most gravitational fields are, in some approximation,
radial. To retain a point of contact with the real world,
then, let us simply consider actual gravitational fields
(for example that of the earth), but limit our attention
to a region small enough that the field is approximately
uniform. Finally, to this restriction to locality may be
added another consideration, which is to generalize the
equivalence we are thinking about from mechanics to
all the laws of physics; and the equivalence principle
may then be stated:

In a freely falling (nonrotating) laboratory occupy-
ing a small region of spacetime, the local reference
frames are inertial and the laws of physics are con-
sistent with special relativity.

Some writers distinguish two versions of the equiva-
lence principle: the weak equivalence principle, which
refers only to free fall in a gravitational field and is
stated in [4.2, p. 1050] as The worldline of a freely
falling test body is independent of its composition or
structure; and the strong equivalence principle, accord-
ing to which no experiment in any area of physics
should be able, locally, to distinguish a gravitational
field from an accelerating frame. This distinction has
its origin in the generalization considered above, but it
is not clear that it is a helpful, or even a valid distinc-
tion. Bodies in free fall are, after all, made of atoms,
assembled as some sort of condensed matter, in which
electrodynamic and nuclear forces, together with their
relevant binding energies, are inevitably involved. And
indeed, on top of this, quantum mechanical, and even
quantum field theoretic, considerations will come into
play, so it would seem that it is difficult to escape from
a situation in which many, or most, of the laws of
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physics are being investigated, when we are investigat-
ing how bodies behave in a gravitational field. For this
reason I prefer to view the equivalence principle sim-
ply as the statement above, and not distinguish a weak
equivalence principle from a strong one.

It is helpful to make the ideas above more precise. In
Einstein’s 1907 review of relativity, referred to above,
Einstein was considering the nature of space and time
in a uniformly accelerated system, and noted that in
this system the time parameter � (Einstein’s notation)
is related to the time parameter 
 in an inertial frame
by [4.3]

� D 

�

1C
ax

c2

	
; (4.1)

where a is the acceleration (denoted by � by Einstein),
along the x-axis. Einstein noted that this relation is
only approximate, holding only if x is below a certain
limit. He then noted that if the accelerated system were
placed, instead, in a gravitational field with potential
� D gx, with g the acceleration due to gravity (the same
for all bodies, à la Galileo), we should therefore expect
the same equation to hold,

� D 


�
1C

�

c2

�
: (4.2)

A clock in a gravitational field would then show a read-
ing

�
1C �

c2

�
times what it would show in no field.

By 1911, Einstein had developed this idea: defining
a system K at rest in a homogeneous gravitational field,
and an accelerated system K0, he writes [4.4]:

But we arrive at a very satisfactory interpretation
of the empirical law if we assume that the sys-
tems K and K0 are, physically, perfectly equivalent,
i. e. if we assume that the system K could likewise be
conceived as occurring in a space free of a gravita-
tional field; but in that case, we must consider K as
uniformly accelerated. Given this conception, one
can no more speak of the absolute acceleration of
the reference system than one can speak of a sys-
tem’s absolute velocity in the ordinary theory of
relativity. With this conception, the equal falling of
all bodies in a gravitational field is self-evident.

By 1916, this equivalence principle, between a homoge-
neous gravitational field and an accelerating frame, had
become a corner stone of the fully fledged General The-
ory of Relativity [4.5]. This theory was cast, however,
in an almost unimaginably different language, based on

the idea that spacetime is a pseudo-Riemannian mani-
fold, whose curvature manifests itself as gravitation. In
this same year, Schwarzschild published his (vacuum)
solution to the Einstein field equations, which showed
g00, the time–time component of the metric tensor, to
have a form consistent with (4.2) above. With the square
of the invariant spacetime separation between events, in
spherical polar coordinates, written as

ds2 D g�� dx� dx�

D g00c2 dt2C g11 dr2C g22r2 d2

C g33r2 sin2  C g01cdt drC : : : :

(4.3)

Schwarzschild found

g00 D�

�
1C

2�

c2

�
: (4.4)

This solution is, however, as noted, exact, and more-
over makes no appeal to the equivalence principle.
From a logical point of view, therefore, the equivalence
principle is dispensible; the general theory may be ob-
tained simply by enlarging the hypothesis of special rel-
ativity, that spacetime is of the Minkowski form, to the
hypothesis that it is (pseudo-)Riemannian. The Einstein
field equations, which are differential equations for the
metric tensor g�� , then enable this tensor to be found.
The equivalence principle has nothing to add to this.

Let us take stock of the situation. Einstein’s happy
thought suggested to him that nature does not distin-
guish between a gravitational field and an accelerating
reference frame. This implied in turn that time goes
slower in a gravitational field. In fact, there are imme-
diately three types of experimental tests to verify the
equivalence principle, and these will be considered in
the next section. On the other hand, the equivalence
principle is local, for, as we have noted, over longer
distances, objects in free fall in a realistic gravitational
field move toward each other, and this does not happen
in an accelerating frame. This effect is called a tidal
effect, and it turns out that it is accounted for in general
relativity as being a consequence of the curvature of
spacetime; this is something which goes beyond the
equivalence principle. The equivalence principle might
well have been (in fact, was!) a source of direct inspi-
ration to Einstein en route to discovering a new theory
of gravity, but this new theory – general relativity –
was mathematically much more sophisticated than the
equivalence principle; and, as far as we know, is an
exact and complete theory of gravity, at least at the
classical level.
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From a fundamental point of view, therefore, and
with the hindsight of general relativity, the equivalence
principle may be regarded as irrelevant. One of the most
ardent proponents of this view is Synge, who states in
the introduction to his book [4.6]:

. . . I have never been able to understand this
[Equivalence] Principle. Does it mean that the sig-
nature of the spacetime metric is C2 (or �2 if you

prefer the other convention)? If so, it is important,
but hardly a Principle. Does it mean that the ef-
fects of a gravitational field are indistinguishable
from the effects of an observer’s acceleration? If
so, it is false. In Einstein’s theory, either there is
a gravitational field or there is none, according as
the Riemann tensor does or does not vanish. This is
an absolute property; it has nothing to do with any
observer’s worldline.

4.3 Experimental Tests

Consider once more a test body in free fall in the earth’s
gravitational field. Newton’s law states that it is subject
to a force

F D
mgMG

R2
D mgg ;

where mg is the gravitational mass of the test body, M
and R are the mass and radius of the earth, and g the
acceleration due to gravity. Newton’s second law of mo-
tion, on the other hand, says that a body subjected to
a force F will move with an acceleration a given by

F Dmia ;

where mi is the inertial mass of a body (considered
a constant). It is clear that the concepts of gravitational
and inertial mass are independent. Equating these ex-
pressions gives

aD
mg

mi
g :

The observation that all bodies fall at the same rate then
implies that mg=mi is the same for all bodies. In fact, the
definition of G is chosen so that mg D mi, and the first
test of the equivalence principle is to verify this equal-
ity. Accurate experiments were performed by Eötvös in
1889 and 1908. He made a torsion balance, from which
two masses, of (in his case) gold and aluminum were
suspended. If mg=mi is not the same for the two met-
als the sun will exert a torque on the balance, and 12 h
later, with the sun in the opposite direction, the torque
will likewise act oppositely, thus causing an oscilla-
tion of the balance with a period of 24 h. This was not
observed, and Eötvös concluded that the ratio of grav-
itational to inertial masses for gold and aluminum did
not differ from unity by more than five parts in 109.

A more recent investigation, using beryllium and cop-
per, gives [4.7]

�D .�0:2˙ 2:8/� 10�12 ;

where

�D
˛1 �˛2

.˛1C˛2/=2
;

and

˛ D
mg

mi
;

and the subscripts 1 and 2 refer to beryllium and cop-
per, respectively. For more information on experiments
testing the equality of gravitational and inertial masses,
see [4.2, 8–10].

The other tests for the equivalence principle are
based on (4.2) or (4.4) – that time goes slower (and
therefore clocks go slower) in a gravitational field. The
traditional test for this is the gravitational frequency
shift, and the most convincing demonstration of this
is the Pound–Rebka observation of a blue-shift of ra-
diation travelling vertically downward in the earth’s
gravitational field. The effect is tiny but the observa-
tions are extremely accurate: the prediction is a frac-
tional shift of 2:46� 10�15, against an observed value
of .2:57˙ 0:26/� 10�15.

In more recent years, this type of test, based on
clocks going slower in a gravitational field, has been
tested at the atomic level. A recent paper, A preci-
sion measurement of the gravitational redshift by the
interference of matter waves, claims, on the basis of lab-
oratory experiments involving quantum interference of
atoms, to have increased the accuracy from 7� 10�5,
for the tower-based experiment described above, to
7�10�9 [4.11]. This finding, or rather its interpretation,
has been challenged, however; [4.12] and the original
authors have replied to this challenge [4.13]. For a good
review of these matters see [4.14].
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A remarkable verification of the reality of time dila-
tion in a gravitational field is, however, the operation of
the global positioning system (GPS). This is an array of
24 satellites, each in a 12 h orbit round the earth. Each
satellite carries an atomic clock, and the purpose is to
locate, to an accuracy of about 10 m, any point on the
earth’s surface. This is done by sending radio signals be-
tween the satellites and the receiver on the earth, with the
times of transmission and reception recorded; it is then
trivial to calculate the distances involved – and of course
only three satellites are in principle needed to pinpoint
the position of the receiver on the earth. The interesting
and relevant point is that the relative nature of time must
be taken into account – arising both from special relativ-
ity (the satellites are moving) and from the equivalence
principle (clocks on the earth go slower than those in the
satellites). If these factors are not taken into account, the
system breaks down in a matter of hours.

It is useful to illustrate this with some figures. The
24 satellites describe an orbit of radius 27 000 km and
so are 7000 km apart, and by virtue of orbiting every
12 h travel at about 4 km s�1 – fast enough for special
relativity to be relevant. Clocks register proper time,
and for a moving clock this is � t,

� D

�
1�

v2

c2

�
�1=2

� 1C
v2

2c2
:

For a clock in an orbit of radius R, a Newtonian cal-
culation gives v2 DMG=R so the special relativistic
correction is of order

MG

2Rc2
� 0:8� 10�10 :

The gravitational time correction is, from (4.2),

�

c2
D

GM

Rc2
� 1:6� 10�10 ;

twice as large as the velocity correction factor. Hence
in every second the clocks need to be adjusted by

about 10�10 s. This might not seem much, but is cer-
tainly relevant for the accuracy needed – and is well
within the workings of atomic clocks. To achieve a po-
sition accuracy of 10 m requires a clock accuracy of
about 3�10�8 s, so that after less than an hour an un-
corrected GPS will cease to function. The successful
operation of the GPS is therefore a practical demonstra-
tion of both special and general relativity, in the shape
of the equivalence principle. For more details on GPS,
see [4.8, 15–17].

In an extraordinary final section to his paper, Ein-
stein [4.4] stated that we may easily infer, by means
of Huyghen’s principle, that light rays will be deflected
in a gravitational field. He calculates the deflection of
light grazing the sun and gets the answer 2MG=.Rc2/D
0:83 arcsec. This is exactly half the amount predicted
by his later theory of general relativity, and observa-
tions show general relativity to be correct. This is the
first example of a discrepancy between the equivalence
principle and the fully developed theory of general rela-
tivity, and invites the following thoughts. The geometry
of spacetime is described by the quadratic form ds2 –
see (4.3) above. The equivalence principle enables us to
find g00 – just one component of the metric tensor g�� .
All ten components can be found, however (at least in
principle), from the Einstein field equations. Test par-
ticles (like planets) and light then, in this completely
geometric account, simply move along geodesics of the
spacetime manifold. In the case of the Sun, Einstein’s
field equations were solved by Schwarzschild and the
bending of light in the sun’s filed is found by writing
down the null geodesics for this solution – a procedure
very different from the one used by Einstein in his pa-
per [4.4]!

In the remaining sections of this review, we improve
the original formulation of the equivalence principle by,
firstly, making the definition of acceleration consistent
with special relativity and then, in the spirit of general
relativity, by finding a spacetime metric which is appro-
priate to an accelerating frame.

4.4 Relativistic Definition of Acceleration

From his account in [4.3], it is clear that Einstein
understood (4.2) (and therefore (4.4)) as being an ap-
proximation. In fact, in a correction to [4.3], Einstein
states [4.18],

A letter by Mr Planck induced me to add the follow-
ing supplementary remark so as to prevent a mis-

understanding that could easily arise: in the section
Principle of relativity and gravitation a reference
system at rest in a temporally constant, homoge-
neous gravitational field is treated as physically
equivalent to a uniformly accelerated, gravitation-
free reference system. The concept uniformly accel-
erated needs further clarification.
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If – as in our case – one considers a rectilinear
motion (of the system ˙), the acceleration is given
by the expression dv=dt, where v denotes the veloc-
ity. According to the kinematics in use up to now,
dv=dt is independent of the state of motion of the
(unaccelerated) reference system, so that one might
speak directly of (instantaneous) acceleration when
the motion in a certain time element is given. Ac-
cording to the kinematics used by us, dv=dt does
depend on the state of motion of the (unaccelerated)
reference system. But among all the values of the
acceleration that can be so obtained for a certain
motion epoch, that one is distinguished which cor-
responds to a reference system with respect to which
the body considered has the velocity vD 0. It is this
value of acceleration which has to remain constant
in our ’uniformly accelerated’ system. The relation
vD � t [� is the acceleration] . . . thus holds only in
first approximation; however, this is sufficient, be-
cause only terms linear in t and 
 , respectively, have
to be taken into account in these considerations.

An obvious and necessary step toward clarification
of this problem is to treat acceleration as a 4-vector in
Minkowski spacetime, defined as dU�=d
 , where U�

is the 4-velocity and 
 the proper time. It then becomes
clear that the (scalar) magnitude of this 4-vector is in-
deed not constant; it is different in different reference
frames. This is shown below.

One occasionally hears it said that special relativ-
ity has nothing to say about acceleration, since it is
concerned with transformations (Lorentz transforma-
tions) which connect one inertial frame with another
one. Accelerated frames are noninertial, and therefore
beyond the reach of Lorentz transformations. Indeed,
the argument would continue, because of the equiva-
lence principle, a passage to an accelerating frame is
equivalent to the introduction of a gravitational field,
and therefore a passage from special to general rela-
tivity. This argument is faulty, however. Gravitational
fields are only produced by heavy bodies, whereas we
are enquiring into the motion of test particles. A discus-
sion of acceleration in the context of special relativity
is a discussion that of an accelerating test particle in
Minkowski spacetime: a test particle will not cause the
space to deviate from its Minkowski nature – from
flatness.

If the acceleration is in the x direction, we may con-
fine ourselves to the xt plane, so the spacetime position
vector in Minkowski space is

x� D .x0; x1/D .ct; x/ (4.5)

and the velocity 4-vector is

U� D
dx�

d

D

�
c

dt

d

;

dx

dt

dt

d


�
: (4.6)

Denoting, as usual

dt

d

D � ;

dx

dt
D u ; � D

�
1�

u2

c2

�
�1=2

; (4.7)

then

U� D �.c; u/ ; (4.8)

and the square of its magnitude is (with metric –CCC)

U�U� D �
2.�c2C u2/D�c2 ; (4.9)

a constant. The acceleration 4-vector A� is defined to
be

A� D PU� D
dU�

d

D �

dU�

dt
D �

d

dt
.c�; �u/ :

(4.10)

Now uD u.t/ so � depends on t. It is straightforward to
verify that

d�

dt
D

u

c2
�3a ; aD

du

dt
D

d2x

dt2
; (4.11)

and hence the acceleration 4-vector is

A� D
�au

c
�4; a�4

	
; (4.12)

whose square magnitude is

A�A� D ˛
2 D a2�6 (4.13)

or

˛ D ˛.u/D �3aD �.u/3
du

dt
: (4.14)

It is interesting (and not particularly surprising) that
this quantity is not Lorentz invariant. Let us recall that
an accelerating particle will possess an instantaneous
4-velocity with respect to an inertial frame. In the in-
stantaneous rest frame uD 0; hence

˛.0/D
du

dt
: (4.15)

In a frame moving with respect to this one with a (con-
stant) velocity v, the particle velocity is u0, given by

u0 D
uC v

1C uv
c2

D v
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and

du0

dt
D

�
1�

v2

c2

�
du

dt
D �.v/�2 du

dt
:

Hence

˛.v/D �.v/
du

dt
: (4.16)

These considerations must be relevant to the query
posed by Planck and mentioned by Einstein.

We end this section by noting that the equations
(with A� D PU�;U� D Px�)

A�U� D 0IA�A� D ˛
2IU�U� D�c2 (4.17)

can, in the case of constant acceleration, be integrated
to give [4.9]

xD
c2

˛
cosh

�˛

c

	
; tD

c

˛
sinh

�˛

c

	
; (4.18)

which lie on the hyperbola

x2 � c2t2 D
c4

˛2
: (4.19)

In the limit ˛
=c� 1 these give

tD 
; xD
c2

˛
C

1

2
˛t2 D x0C

1

2
˛t2 ; (4.20)

which describe acceleration in the Newtonian limit.

4.5 Accelerating Frame in Minkowski Spacetime

To begin, consider a simple Newtonian calculation.
A particle is projected from a height yD h in the earth’s
gravitational field, with initial velocity v in the x (hori-
zontal) direction. Newton’s laws give

d2x

dt2
D 0 ;

d2y

dt2
D�g ; (4.21)

where g is the acceleration due to gravity. On integra-
tion these yield

yD h�
g

2v2
x2 ; (4.22)

a parabola in the xy plane. Our task is to replicate this
result (in the nonrelativistic limit) in an account of the
motion of particles in an accelerating frame. For this
we need to deduce the metric tensor. The motion of
particles – and of light – then follows from the geodesic
equation.

The relativistic equations for a particle accelerating
in the x direction with acceleration a are (4.18) above
(with ˛ changed into a)

xD
c2

a
cosh

�a


c

	
; ctD

c2

a
sinh

�a


c

	
: (4.23)

One may describe this motion by a curve given by the
vector-valued function of 
 ,

P.
/D .ct.
/; x.
//D
c2

a

�
sinh

a


c
; cosh

a


c

	
:

(4.24)

The tangent vector to this curve is

T.
/D P0.
/D c
�

cosh
a


c
; sinh

a


c

	
: (4.25)

In this (two-dimensional subspace of) Minkowski space
these two vectors are orthogonal

P �T D ���P�T� D 0 ;

and P is spacelike, and T timelike.
The accelerating observer moves along a timelike

worldline (not a geodesic). It is natural for him to use
a coordinate system in which he is at rest, in other
words, in which his 4-velocity is timelike, as is T above.
We may therefore write the four components of the
tetrad as�

1

c
T D

�
e0 D

�
cosh

a


c
; sinh

a


c
; 0; 0

	
;

� a

c2
PD

	
e1 D

�
sinh

a


c
; cosh

a


c
; 0; 0

	
;

e2 D .0; 0; 1; 0/ ;

e3 D .0; 0; 0; 1/ :

(4.26)

In order for the 4-velocity e0 to remain identified with
the tangent vector T as the particle moves along its
worldline it must be Fermi–Walker transported, as is
well known for accelerated motion. We want to describe
the metric tensor at a point P near the timelike world-
line. The nontrivial part of this line, the .ct; x/ plane, is
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P

xm
µ e1

e0

Fig. 4.1 World-line of a particle. P is a nearby point

shown in Fig. 4.1. Suppose the coordinates of a point
on the worldline are denoted as x�m . Then we reach the
nearby point P by traveling along the spacelike vec-
tor e1 for a parameter distance x. The so-called Fermi
normal coordinates of P, denoted as T , X, are then given
by (see, for example, [4.19])

cT D
c2

a
sinh

at

c
C x sinh

at

c

X D
c2

a
cosh

at

c
C x cosh

at

c
;

(4.27)

where we have replaced 
 in (4.24) by t. Then

cdT D
�

1C
ax

c2

	
cosh

at

c
cdtC sinh

at

c
dx

dX D
�

1C
ax

c2

	
sinh

at

c
cdtC cosh

at

c
dx ;

and

�c2 dT2C dX2 D�
�

1C
ax

c2

	2
c2 dt2C dx2 :

(4.28)

The metric tensor at P is then

g�� D

 
�
�
1C ax

c2

�2
0

0 1

!
: (4.29)

This is the metric for an accelerating particle in
Minkowski space. Other derivations of this metric may
be found in [4.2, 20, 21]. It is straightforward to check
that (4.29) describes a flat space, as of course it should.
It is also interesting to check that, in the nonrelativistic
limit, it describes a parabolic path, (4.22), for the mo-
tion of particles in the plane. To see this, consider the
.2C 1/ space .x; y; t/, with acceleration in the y direc-

tion (vertical). The metric tensor is

g�� D

0
@�

�
1C ay

c2

�2
0 0

0 1 0
0 0 1

1
A : (4.30)

With ay=c2� 1 we may put

g�� D ��� C h��

and to lowest order

h00 D�
2ay

c2
; other h�� D 0 :

The connection coefficients are, to lowest order, given
by

� ��� D
1

2
��� .h��;� C h��;� � h��;�/ ;

yielding

� 2
00 D

a

c2
; other � ��� D 0 :

The geodesic equation

d2x�

ds2
C�

�

��

dx�

ds

dx�

ds
D 0

then gives, for �D 1; 2,

d2x

dt2
D 0 ;

d2y

dt2
D�a ;

exactly as in (4.21) above, with solution (4.22) –
parabolic motion – thereby confirming the equivalence
principle for free fall with metric (4.30).

Let us finally consider the propagation of light in an
accelerating frame. Light obeys ds2 D 0, and the metric
(4.30) then gives, to leading order in ay=c2,

�
dx

dt

�2

C

�
dy

dt

�2

� c2

�
1C

2ay

c2

�
D 0 :

This is solved by xD ct, yD 1
2a t2, i. e. yD a

2c2 x2 –
the equation of a parabola (to lowest order), exactly
as deduced from very simple arguments. Hence light,
as viewed in an accelerating frame, does not travel in
a straight line in a flat space – just as, of course, it does
not in a curved spacetime.
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4.6 Concluding Remarks
There is one more topic often raised in connection
with the equivalence principle, which is the fact that
a charged particle will emit electromagnetic radiation
when accelerated, so the equivalence principle would
imply that it should do so also in a static gravitational
field, but that is not observed. Does this count as a vi-
olation of the equivalence principle? This question has
been around for a long time; it has proved somewhat
contentious and attempts to resolve it involve rather
nontrivial considerations. This is not the place to at-
tempt any kind of summary, but highly readable recent
accounts may be found in [4.22, 23].

We may conclude in the following way. Einstein’s
insight, that a gravitational field is locally equivalent
to an accelerating frame, was a major step toward
his formulation of general relativity in 1916. Gen-

eral relativity, however, contained one crucial ingre-
dient, the curvature of spacetime, which is missing
from the equivalence principle. It is this notion which
gives general relativity its distinctive character, and the
(slowly increasing number of) tests which verify this
theory, for example the Gravity Probe B experiment,
all rely on spacetime curvature. Minkowski space-
time, even when viewed from an accelerating frame,
is flat, so the equivalence principle cannot be taken
seriously as a theory of gravity. Its real concern is
the similarity of inertial forces and gravitational ones.
These are different physical phenomena, but the equiv-
alence principle dramatically highlights a similarity
between them. The relation between gravity and in-
ertia is a subject that needs to be understood more
deeply.
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5. The Geometry of Newton’s and Einstein’s Theories

Graham S. Hall

The aim of this paper is to present a simple, brief,
mathematical discussion of the interplay between
geometry and physics in the theories of New-
ton and Einstein. The reader will be assumed to
have some familiarity with classical Newtonian
theory, the ideas of special and general relativ-
ity theory (and differential geometry), and the
axiomatic formulation of Euclidean geometry. An
attempt will be made to describe the relationship
between Galileo’s law of inertia (Newton’s first
law) and Euclid’s geometry, which is based on the
idea of Newtonian absolute time. Newton’s sec-
ond law and classical gravitation theory will then
be introduced through the elegant idea of Cartan
and his space-time connection and space metric.
This space metric will then be used to introduce
Minkowski’s metric in special relativity and its
subsequent generalization, by Einstein, to incor-
porate relativistic gravitational theory. The role of
the principles of equivalence and covariance will
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also be discussed. Finally, a brief discussion of
cosmology will be given. Stress will be laid on
the (geometrical) concepts involved rather than
the details of the mathematics, in so far as this is
possible.

5.1 Guide to Chapter

The object of this paper is to give an elementary concep-
tual introduction to the geometry of classical Newtonian
theory and Einstein’s special and general theories of
relativity. It is assumed that the reader has a knowl-
edge of elementary geometry including that of Euclid
and also some differential geometry, but it is also in-
tended that nothing of a really technical nature will be
involved in the paper. It begins with a brief discus-
sion of Euclidean geometry and its relationship to the
so-called non-Euclidean geometry of Lobachevski and
Bolyai, the axiomatization of Euclidean geometry by
Hilbert and the extension of geometry to the concept of
the metric and to what would now be called manifold
theory, by Riemann. Next, the formalism of Newton’s
theory and the ideas of Newtonian gravitational theory
are introduced together with the relationship between

Newton’s ideas and Euclidean geometry. This is fol-
lowed, in Sect. 5.4, by a statement of the Newtonian
principle of equivalence in gravitation theory and a dis-
cussion of Cartan’s development of Newtonian gravity
by his introduction of a connection on Newtonian space
and time, whose geodesics are the paths of freely falling
particles under the action of a gravitational force. Al-
though Cartan’s ideas came some years after Einstein’s
work on general relativity, it so clearly expresses Ein-
stein’s ideas, and in a more elementary way, that its
inclusion can be justified as an introduction to certain
techniques of general relativity theory. In Sect. 5.5,
special relativity is introduced and compared with clas-
sical space-time theory. Here, the introduction of the
null cone structure and the Minkowski metric is dis-
cussed together with its place in the development of



Part
A

|5.2

72 Part A Introduction to Spacetime Structure

general relativity theory. In Sect. 5.6, a brief discus-
sion of the principle of covariance in physics and its
relation to the distinction between absolute and dynam-
ical variables is presented, again in preparation for the
work on general relativity. In Sect. 5.7, general relativ-
ity theory is introduced and Einstein’s field equations
are briefly explained. No attempt is made to enter into

the details of these equations. Rather, this section will
be simply a discussion regarding the justification for
and the nature of them and, in particular, their geo-
metric content. In the final section a brief geometrical
introduction to cosmology is presented with emphasis
on the (physical) symmetry assumptions made in such
a study.

5.2 Geometry

Over 2000 years have elapsed between Euclid’s el-
ements and the modern developments in axiomatic
geometry initiated by David Hilbert [5.1]. In that pe-
riod, Euclidean geometry was essentially believed to
apply to space and, as such, was the backbone of the
physical sciences and, in a sense, a branch of applied
mathematics. Its origins, as the name suggests, were in
land measurement, and it was the subject of experimen-
tal tests to verify its accuracy (although, in fact, such
tests could obviously only refute its accuracy and not
confirm it). Since it was seen as a visual science, theo-
retical work in geometry was hampered by imprecisions
in its (intuitive) foundations. Euclid, in writing the ele-
ments, laid the foundations not only of geometry but
also of a (limited type of) axiomatic method. He started
with certain unquestioned assumptions and used them
(sometimes not entirely faithfully) to derive the theo-
rems of this subject. As a body of knowledge it stood
supreme for over 2000 years with the only dispute of
a fundamental nature being that over whether the par-
allel postulate, introduced as an axiom by Euclid (albeit
in a different form than usually understood now), could
be derived from his other axioms and hence reduced to
a theorem. This dispute was settled by the independent
work of the Russian, Lobachevski, and the Hungarian,
Bolyai, and their discovery of what is called non-
Euclidean or hyperbolic geometry. (Lobachevski was
the first to announce his work when he presented it to
the physical-mathematical division of the University of
Kazan in 1826 and published it in the Kazan Messenger
in 1829. Bolyai first published his work as an appendix
to his father’s mathematics book in 1831. An earlier an-
nouncement of this geometry was claimed by Gauss.
An excellent history of such things can be found in
the books by Bonola [5.2] and Meschkowski [5.3].) The
geometry of Lobachevski and Bolyai satisfied all the
axioms of Euclid except his parallel postulate and thus
showed that this latter postulate could not be derived
as a theorem from the remaining axioms. However, it

is not clear that this non-Euclidean geometry was re-
ceived with anything more than theoretical interest and
Euclid’s geometry was still the means of navigating
space. In the middle of the nineteenth century geom-
etry took a different turn through the work of Bernhard
Riemann [5.4] and the initial ideas concerning mani-
folds and metrics on them and the curvature that they
generated. Riemann’s geometry essentially reduced Eu-
clidean and non-Euclidean geometry to the status of
special cases, his concept of (a possibly varying) cur-
vature giving greater flexibility to the choice of model.
His work not only inspired many new developments in
the analytical nature of geometry but was fundamental
in Einstein’s general theory of relativity. This will be
discussed further later.

At the beginning of the twentieth century much
energy in mathematical research was expended in ex-
ploring the foundations of mathematics after the latter
had been damaged by the Russell paradox (for a re-
view of this history, see [5.5]). This led Hilbert to
fortify Euclidean geometry by establishing a modern
axiomatic foundation for it. This had an impact in two
directions; firstly, it directed attention to the concept
of a formal axiomatic system for geometry where the
objects (points, lines, planes) to which the axioms ap-
plied were undefined (primitive) elements and could
be interpreted in any desired way which was consis-
tent with the axioms. This removed the problem over
arguments about what a point, a line, or a plane was
in Euclid’s scheme since, in Hilbert’s formulation, all
that mattered was whether members of the (nonempty)
sets P (of points), L (of lines), and ˘ (of planes) to-
gether satisfied certain imposed conditions such as an
incidence relation I 
 P�L on the set P�L for which
.p;L/ 2 I (p 2 P, L 2 L) could be (but need not be) in-
terpreted as saying that the point p was incident with
the line L. Thus Hilbert placed geometry in the realms
of pure mathematics where it could be inspected log-
ically, rather than a form of space science bedevilled
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by pointless controversy. Secondly, Hilbert’s work laid
down the foundations for the various axiomatic systems
that dominate modern mathematics. Modern formula-
tions of Hilbert’s work can be found in [5.6–9].

To understand Hilbert’s ideas it is sufficient to study
them in two-dimensional form where only the sets P
and L and the incidence relation given above are rel-
evant. Hilbert’s axioms controlling them come in five
groups which, in a modern formulation and ordering,
are:

i) Axioms of incidence
ii) Axioms of betweenness
iii) Axioms of congruence
iv) The completeness axiom
v) The Euclidean parallel axiom.

These axioms, with the possible exception of (iv),
are beautifully intuitive and collectively categorical in
the sense that there is only one model (up to an obvious
geometrical isomorphism) satisfying them, namely, the
Euclidean plane R2 with its usual straight line struc-
ture. These axioms leave sufficient room for a unit of
length and angular measure to be chosen. Further, by
using the obvious definition of parallel and replacing
the Euclidean parallel axiom (v) above by (v0) for any
given p 2 P and L 2 L with .p;L/ not in I there ex-
ist at least two distinct members of L with which p
is incident and which are parallel to L, one achieves
a categorical axiomatization of the Lobachevski–Bolyai
geometry. Granted the axioms (i)–(iv) these two geome-
tries are the only options since the existence of one
such parallel line is guaranteed by axioms (i)–(iv) (and,
in fact, it then follows that if more than one such line
exists then infinitely many do, and all models thus aris-
ing are geometrically isomorphic to the geometry of
Lobachevski and Bolyai). Since the work of Hilbert,
many other axiom systems for Euclidean geometry have
appeared, including one which explores the metrical
properties of this geometry [5.6] and is based on the
idea of a metric space and, again, is easily modified
to categorize Lobachevski–Bolyai geometry. Other ap-
proaches have been taken, some of which are based on
the idea of symmetry, others purely on arithmetic, and
others on the idea of testing how far one can go without
the (somewhat different and ungeometrical) complete-
ness axiom and introducing, for example, a circle–circle
intersection property [5.9]. The axiomatization given

here may be extended to the usual three-dimensional
Euclidean space R3 by the introduction of the set ˘
of planes together with some appropriate modifications
to the axioms, which are also categorical. It is this
three-dimensional geometrical structure that will be im-
portant in what is to follow.

What is the role of geometry in physics? Is it a mere
convenience for the description of phenomena, set in
stone, whilst the laws of physics are modified to fit
it, or is it a part of physics, flexible enough to be
modified by the presence of bodies etc., and forming
a coalition with physics, allowing its canonical struc-
tures (lines etc.) to be the descriptors of fundamental
physical laws? (For different viewpoints on this see
[5.10] and [5.11].) If space is Euclidean, as Kant would
have us believe is the only real possibility, then it seems
that we would want to say something along the follow-
ing lines. Three-dimensional Euclidean space (regarded
as R3 with Hilbert’s axioms suitably imposed on it,
with lines and planes represented by the usual linear
relationships between coordinates and including a mea-
sure of length and angle consistent with Pythagoras’
theorem) can now be regarded as a three-dimensional
real vector space and admits a group of transforma-
tions, the Euclidean group, which is a group of global
maps R3!R3 consisting of (combinations of) linear
orthogonal transformations and translations. With this
given definition of length and angle in R3, such maps
preserve angles and lengths, and hence shape. Suppose
one speaks (loosely) of a body being moved from one
point in space to another without change of shape. If
this means anything at all it presumably means that
it may be moved pointwise by means of one of these
maps. Thus one has the concept of a rigid body. In this
way, one has made the assumption that R3 has a geome-
try which, in some sense, reacts with its contents rather
than just being a convenient arena for the description of
events. Then one can devise a physical measuring rod
which may be constructed so as to be brought into coin-
cidence with part of any of the straight lines defined by
the geometry and can be used as a means of consistently
transporting a measure of length around space which
coincides everywhere with the length prescribed geo-
metrically on R3. Similar devices may be constructed
for the measurement of angles. Another way of express-
ing this is to say that the usual methods of physical
measurement on our space are found to be consistent
with a Euclidean structure on that space.
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5.3 Newtonian Mechanics I
In this section the coordinatization of the universe of
events E and the introduction of Galileo’s law of iner-
tia will be undertaken. It is based, in part, on the work
in [5.12, 13]. In Newtonian theory it is customary to
view the universe of events E as controlled by New-
ton’s absolute time. Absolute time is taken as a function
T W E! R and, in tandem with it, E is equipped with
the usual (sufficient) collection of good clocks such that
any good clock used at any event e 2 E would mea-
sure the time T.e/. This is, of course, independent of
the clock’s motion; in fact motion has not yet been
defined. The instantaneous or simultaneity spaces of
constant absolute time, St � T�1ftg for each t 2 R, are
each assumed to be of the same cardinality as R3 and
to carry a three-dimensional Euclidean structure as de-
scribed in the previous section. One may then choose,
in infinitely many ways, Cartesian coordinates x; y; z on
each set St such that the latter’s lines and planes within
this Euclidean structure are described, as usual, by lin-
ear relations between the coordinates x; y; z, the units
of the latter equalling the unit of length chosen. Any
two of these coordinate systems are then connected by
a member of the Euclidean group mentioned earlier. An
observer will then be thought of as a coordinate sys-
tem consisting of a choice of such coordinates in each
St together with the absolute time coordinate t, so that
each e 2 E has coordinates of the form .x; y; z; t/. (In
preparation for what is to come, it is noted that, by their
very definition, each set of events St is independent of
the observer and that this fact is a consequence of the
definition of absolute time.)

However, no control has been placed on the way
the spaces St are related to each other for different val-
ues of t. For example, if a particle P moves through E
one might wish, intuitively, to express the continuity
of its motion with respect to some observer by stipu-
lating that its path, as a function of (absolute) time t
with t drawn from some open interval I 
 R and given
by t! .x.t/; y.t/; z.t//, yields three continuous func-
tions x, y, and z from I to R when the usual topologies
are placed on R and I.

One way of relating the spaces St can now be
described. First, one recalls that Newtonian theory es-
sentially claims to recognize the existence of a situation
free of real forces (gravitational, electromagnetic, etc.)
and the existence of free particles. Then one assumes
the existence of a collection of observers called inertial
observers for each of whom the Cartesian coordinates
described above on each St may be chosen so that

the path of any free particle is given by a map t!
.x.t/; y.t/; z.t// with x.t/; y.t/ and z.t/ linear functions
of t. It is also assumed that any such triple of linear
functions is the (potential) path of some free particle.
Thus, each inertial observer gives rise to a map E!R4

by attaching to an event e 2 E the 4-tuple .x; y; z; t/
where tD T.e/ and .x; y; z/ are the (projected) coor-
dinates of e 2 S.t/ and this provides a global chart for
a four-dimensional manifold structure on E. The path
of any free particle is then a (smooth) linear map I!
E. Any other inertial observer similarly gives rise to
a global chart with coordinates .x0; y0; z0; t/, and it is as-
sumed that the collection of global coordinate systems
obtained in this way gives rise to a smooth atlas on E.
Then the coordinate transformation between any two of
them is one of the usual Galilean transformations. For
any given inertial observer O a particle whose path is
given by t! .x.t/; y.t/; z.t// with x; y and z constant
(hence linear) functions is then said to be at rest in O
and gives rise, in an obvious way, to a fixed point in O.

Finally, for a fixed inertial observer O and for any
fixed t0 2R let ft W S.t/! S.t0/ be the identity map in
(the restrictions to S.t0/ and S.t/ of) the coordinates
of O. This map preserves the distance and angle con-
structions placed initially on S.t0/ and S.t/ for each t
and each inertial observer O. Then the path of any free
particle can be projected, using this map, onto S.t0/,
giving the more usual particle path t! .x.t/; y.t/; z.t//
in the fixed Euclidean space S.t0/ for linear functions
x.t/; y.t/ and z.t/ of the parameter t so that, effectively,
the fixed particles are acting as coordinate reference
points. Using the projection map ft, one has a measure
of spatial distance in O’s frame, between any two events
in E by projecting each of these events onto S.t0/ and
computing the distance between them there in O. In this
sense the link between the Euclidean geometry of space
and Galileo’s law of inertia (Newton’s first law) is dis-
played. One can think of the triple .E;T;R/ as a bundle
with smooth projection map T which, although diffeo-
morphic to R4 and possessing a product structure for
each inertial observer, has no natural preferred product
structure (that is, no preferred inertial observer). If, on
the other hand, one introduces a strictly absolute space
(Aristotelian spacetime) with its preferred observer at
rest (as opposed to a collection of absolute spaces, one
for each inertial observer) or classical Maxwell elec-
trodynamics with its preferred ether frame (an inertial
frame in which the (rigid) ether is at rest and hence in
which the speed of light is independent of its direction)
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then a natural product structure is singled out. On the
philosophical problems of any form of absolute space
the critique by Mach [5.14] is illuminating.

In classical theory, it was also an experimental result
that, in vacuo, light travels in straight lines in the sense

that the projected paths of light photons onto S.t0/,
as above, also satisfy linear equations in t. Thus, both
Galilean–Newtonian mechanics and Maxwell’s elec-
tromagnetic theory determine, in this sense, the same
family of lines in each S.t/.

5.4 Newtonian Mechanics II

When considering the motion of a particle P in New-
tonian theory under the action of a force, it is usual
to attribute to P a mass m which is assumed constant.
When Newton’s second law is introduced, m assumes
the role of a coupling constant and the force vector act-
ing on P in some inertial frame is then the product of m
and the acceleration vector of P in that frame. In this
sense, m is the inertial mass of P, that is, a measure
of P’s resistance (inertia) to being accelerated. If this
were simply the definition of force, little would have
been achieved. The real content of Newton’s second law
emerges when this force is independently specified, as
it is, for example, during a (Newtonian) gravitational
interaction using the inverse square law. To see this
in more detail consider two particles A and B attract-
ing each other gravitationally and upon which no other
forces act. Suppose that in some inertial frame and at
absolute time t, A and B have position vectors rA.t/
and rB.t/, respectively. Suppose now that one attaches
three (constant) mass parameters to each particle; its ac-
tive gravitational mass (its ability to attract a particle,
gravitationally) denoted by a subscript AG, its passive
gravitational mass (its susceptibility to being gravita-
tionally attracted) denoted by a subscript PG), and its
inertial mass (its resistance to being accelerated with
respect to an inertial frame) denoted by the subscript I).
Then with MAG, MPG, and MI denoting these respective
mass parameters for particle A and similarly, using the
symbol m for B, Newton’s third law together with his
second law augmented by his inverse square law gravi-
tational hypothesis, give

GMAGmPG

r2
D

GMPGmAG

r2
;

mIRrB D
GMAGmPG

r2
;

(5.1)

where r.t/ is the distance between A and B at time t,
G is the Newtonian gravitational constant, and a dot de-
notes d=dt. The first of these shows that MAG=.MPG/D
mAG=mPG and so, by assuming that this is true for all

particles and at all points of space and time, one may
choose units of active and passive gravitational mass so
that the active and passive gravitational masses are the
same for every particle. Calling this common mass pa-
rameter the gravitational mass and denoting it MG (and
mG) the second equation in (5.1) reads mI=.mGRrB/D
.GMG/=r2. Since the right-hand side of this equation
depends only on the body A and the position of B,
one makes the assumption that at each event in the
universe E, for a fixed gravitational field, the quan-
tity mI=.mGRrB/ is independent of B. The experiments
of Eötvös, Dicke, and others (see, for example, [5.15,
Chap. 38]) provide strong evidence that the (gravita-
tional) acceleration of B, RrB, is separately fixed under
such circumstances and hence one makes the assump-
tion that mI=mG is the same for all particles at all events.
Units may then be chosen so that mG D mI.Dm/, giv-
ing a single mass parameter m for every particle. In this
sense one has the classical result that the equality of
the inertial and gravitational masses is equivalent to the
fact that, in a given gravitational field, a well-defined
gravitational acceleration exists. This is one form of
the Newtonian principle of equivalence. (The fact that
the behavior of a simple pendulum of fixed length at
a fixed place on the Earth’s surface is independent of
the mass of the pendulum bob is another consequence
of the equality of the inertial and gravitational masses
of the bob.) Such a result arises as a consequence of
Newton’s laws and reveals the indiscriminate nature of
the gravitational force, caring nothing for the mass or
make-up of the body on which it acts, but imparting to
it a certain acceleration with respect to an inertial frame
and which is independent of its mass. This result thus
appears as a theorem in Newtonian theory (and was well
known to Galileo and Newton).

Conventional Newtonian theory thus declares the
path of a particle in a given gravitational field to be
(at least locally) determined if its velocity is specified
at some event in E, since then the fixing of the ac-
celeration and Newton’s second law combine to give
a second-order differential equation complete with ini-
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tial conditions. This leads to an alternative viewpoint
on Newton’s equations. Since the force-free situation in
Newtonian theory has already been described geomet-
rically by a Euclidean structure in each of the spaces
S.t/ and in keeping with the discussion of general rel-
ativity to come, one asks if some other geometrical
structure can be put on E which for some gravitational
field in E, in some sense, itself yields a family of curves
in E such that for each e 2 E and potential particle ve-
locity v at e, exactly one such curve passes through e
with tangent vector v at e, and which would represent
the path of a particle under the influence of the grav-
itational field without the need of forces. Then pure
gravitational fields would have been geometrized, that
is, no force is explicitly given but rather a geometry de-
termined, say, by the sources of the gravitational field
and for which certain canonical paths will then de-
cide the motion of particles under the influence of such
sources.

Such a program was initiated by Cartan ([5.16], see
also [5.12, 13, 15]) some years after Einstein published
his general theory of relativity. This involved introduc-
ing a gravitational field and starting, say, with a certain
special observer O. One of the consequences of this
work was that it revealed the difficulties with the con-
cept of an inertial observer. Consider the set E described
in Sect. 5.3 and let O be this observer with coordinates
.x; y; z; t/� .x˛; t/, with Greek letters taking the values
1, 2, and 3 (and x1 D x; x2 D y; x3 D z). When the grav-
itational field is introduced into E and described in O’s
frame by a gravitational potential˚ W E!R let a tenta-
tive definition that O is an inertial observer be that O is
such that the path t! .x˛.t/; t/ of a freely falling par-
ticle P in this gravitational field and in O’s coordinate
system satisfies

d2x˛

dt2
D
@˚

@x˛
: (5.2)

It can then be noticed that P’s path, with absolute time
as parameter and x0 D t, satisfies (using the usual Ein-
stein summation convention)

d2xa

dt2
D � a

bc

dxb

dt

dxc

dt
; (5.3)

where Latin letters take the values 1, 2, 3, 4, and � a
bc

represent certain functions defined on E and determined
entirely by the gradient of the potential ˚ as

� ˛00 D
@˚

@x˛
; (5.4)

with all other � a
bc D 0. Thus, � a

bc D �
a

cb. The general
idea is to use this information to define a symmetric
connection � on E by stipulating that the functions
� a

bc are the connection coefficients of � in this coor-
dinate system (and thus they transform according to the
standard law for such coefficients under a change of co-
ordinates in E). Then (5.3) reveals that the motion of P
is a geodesic of � with t as an affine parameter. The
standard result is noted at this point that such a geodesic
is uniquely determined by a point through which it
passes together with its tangent direction spanned by
dxa

dt D .u; 1/ at that point and is thus fixed by that point
and the particle velocity u at that point.

Now suppose that O0 is another observer describ-
ing the (geodesic) motion of P. Then O0’s coordinates
.x0; y0; z0; t/, assumed to be in the atlas placed on E and
with x0; y0; z0 Cartesian coordinates in each section S.t/,
are related to those of O by a space rotation, represented
by an orthogonal 3�3 matrix A.t/ and a translation, rep-
resented by a three-vector a.t/ where each entry in A.t/
and each component of a.t/ are smooth and so

x0˛ D A˛ˇ.t/x
ˇC a˛.t/ ;

t0 D t :
(5.5)

One now asks how O0 would view the motion of P
not forgetting that he must also regard it as a geodesic
with respect to � with affine parameter t. Naively, one
might say that the forces that O0 regards as acting on P
consist of pure gravitational forces similar to those de-
scribed by the right-hand side of (5.2) together with
inertial type forces reflecting, in some sense, O0’s mo-
tion with respect to O. Suppose, in an attempt to be able
to call O0 inertial also, one assumes that these latter (in-
ertial) forces are absent and insists that O0’s description
of the motion of P is as in (5.2), so that .d2x0˛/=dt2 D

@˚ 0=@x0˛ , where˚ 0 W E!R is the gravitational poten-
tial in O0. Since the motion of P is a geodesic of� with t
as an affine parameter, (5.3) and (5.4) must hold with
primes in the appropriate places. Then, on transforming
the functions � a

bc under (5.5) in the usual way for such
connection coefficients, one finds that the stipulated
conditions are satisfied if and only if A is a constant
(orthogonal) matrix and (up to an arbitrary constant)
˚ 0 D ˚ C Ra˛x0˛ for a time-dependent vector a.t/, and
where a dot denotes d=dt (see, e.g., [5.12, 15]). The
conclusion is that the space coordinates of O and O0

are related by a rotation which is the same in each
space S.t/ together with a time-dependent translation.
An important conclusion is that the potential function
is not well defined on E since ˚ and ˚ 0 are differ-
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ent, in general (and by more than an arbitrary constant).
Thus ˚ depends on a coordinate system for its value
and cannot be measured in a coordinate-free way. One
may view the inability to determine the potential func-
tion as the inability to determine the term Ra˛x0˛ and
hence the inability to determine the difference between
the connection components � 0abc and � a

bc. The difference
between these components then gives rise to a flat con-
nection on E since its components can be transformed
to zero. Thus the above inability to determine the poten-
tial function now reappears as the inability to determine
this flat connection. (One may object to this by saying
that since O is assumed inertial, O0 is not inertial unless
Pa.t/ is identically zero, from (5.5), and then ˚ 0 D ˚ .
But the point being made is that one cannot distinguish
between O and O0 given that one wishes to retain the
features that the gravitational potential is a real-valued
function on E and that (5.2) holds for O and O0. This
reflects the fact that a linear acceleration represented by
a.t/ with Pa.t/ not the zero function would not change
the form of (5.2) in the passage from O to O0 and that
the inertial forces so generated are, like gravitational
forces, indiscriminate in their accelerative effect on par-
ticles (and simulate a homogeneous gravitational field).)
Of course, if one could (using the freedom of the choice
of arbitrary constant in ˚ and ˚ 0) say that ˚ and ˚ 0

each tend to zero as one moved out to large distances
(as, for example, would be the case if P were under the
influence of an isolated island universe of gravitational
sources) then one does achieve the condition that Pa.t/
is a constant function, but modern cosmological obser-
vations suggest that such a physical situation is not the
case.

In summary, one can say that, given that a certain
observer O in the usual force-free case of Sect. 5.3 is
designated inertial, all other inertial observers are found
by applying the Galilean group of transformations to O,
whereas if a gravitational field is introduced and O is
an inertial observer such that (5.2) holds, then for O0 to
get a similar equation for the particle P’s equation of
motion the transformations linking O and O0 constitute
a larger group and are given by (5.5). In this sense, in
a gravitational field, the concept of an inertial observer
is lost and this because of the inability to distinguish in-
ertial forces (brought about in this case through the term
a.t/) from gravitational ones. To put it another way,
having combined the inertial forces due to a.t/ with
those from ˚ in some coordinate system, they cannot
be unambiguously recovered from it. In short, all that
can be determined are the geodesics (5.3) and hence the
connection � , and so the gravitational field has been

geometrized by imposing the connection � in E. (In
a strictly Newtonian theory such a separation of grav-
itational and inertial forces, and hence inertial frames,
would be assumed possible.)

The elementary geometrical properties of the sym-
metric connection � are easily explored. It is clear
from the definition (5.4) in the coordinate system of O
that the global vector fields X D @=@x, Y D @=@y and
Z D @=@z, the global 1-form dt and the global, second-
order, symmetric, everywhere rank three tensor h�
X˝XCY˝YCZ˝Z (with components diag.1; 1; 1/)
are � -covariantly constant. Thus the three-dimensional
hypersurfaces of constant t (space sections) are invari-
ant under parallel transport in the sense that any vector
v 2 TeE, where TeE denotes the tangent space to E at e,
which is tangent to these hypersurfaces, remains so af-
ter parallel transport along any closed curve at e. In fact,
v will return exactly to v under such circumstances. It
follows that � induces a connection in these hypersur-
faces, which is flat and that one may take h as a flat
metric in these hypersurfaces compatible with the in-
duced connection. Thus the Euclidean structure of the
space sections is recovered. From (5.4) one can com-
pute the curvature tensor Riem associated with � in the
coordinates of O to get [5.15]

R˛0ˇ0 D
@2˚

@x˛
@xˇ ; (5.6)

with all other components of Riem not contained in
(5.6) zero. From this it can be concluded that � is not
a metric connection unless it is a flat connection (and
then, from (5.6), the components of the gravitational
force, r˚ , are independent of the space variables). (To
see this, suppose r is a metric connection with com-
patible metric g. Then with Rabcd � gaeRe

bcd, one has,
from the covariant constancy of X, Y and Z and the
Ricci identity, Ra

bcdkd D 0 for kD X, Y , and Z, and
hence six independent solutions at each e 2 E to the
equation RabcdFcd D 0 for the contravariant (simple) 2-
form F, namely, X ^Y , X ^Z, Y ^Z, X ^T , Y ^T , and
Z ^ T , where T is the global vector field @=@t. From
this, it follows that Riem vanishes everywhere on E.)
Thus, the vanishing of Riem on E is equivalent, in
any of the allowable coordinate systems, to the condi-
tion that the gravitational force, r˚ , may be simulated
by the inertial force arising from a linear acceleration
transformation (that is, ˚ may be incorporated into
the a.t/ term) or, in other words, that the force r˚
may be transformed away by a time-dependent trans-
lation. It is remarked, further, that the global vector
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field @=@t on E is not invariant under parallel trans-
port around closed curves at e unless � is flat and
that, given that � is not flat, no meaning can be at-
tached to the question of whether this vector field is
orthogonal to the space sections. It is finally remarked
that the Ricci tensor associated with Riem and with
components Rab � Rc

acb can, from (5.6), be seen to sat-

isfy [5.15]

R00 Dr
2˚ D K� ; (5.7)

with all other components zero, where � denotes the
matter density responsible for the gravitational field
and K is a constant.

5.5 Special Relativity

In this section the move will be made from classical
Newtonian theory to the special theory of relativity,
which was first put forward in its complete form by
Einstein in [5.17] (although one must not forget the
contributions of Poincaré and Lorentz; useful reviews
of these may be found in [5.18, 19]). As a preliminary
remark it may be pointed out that classical Newto-
nian theory (as discussed in Sect. 5.3 and in the first
part of Sect. 5.4) as applied to mechanical forces and
the Galilean transformations which link the inertial
observers collectively satisfy the well-known classical
Newtonian principle of relativity. However, classical
Newtonian theory combined with Maxwell’s electro-
magnetic theory does not satisfy this principle since,
as pointed out at the end of Sect. 5.3, the rigid ether
determines a unique rest frame in which the speed of
light is independent of direction. If one wishes to retain
a similar collection of inertial frames which are indistin-
guishable electromagnetically as well as mechanically,
one requires different velocity addition laws between
such frames and hence the Galilean transformations
must be rejected. A different approach to the kinemat-
ics is thus required in which, amongst other things,
this Newtonian principle of relativity is replaced by the
more general Einstein principle of relativity, which says
that inertial observers cannot be distinguished by any
experiment, mechanical or electromagnetic.

This necessitates a change in the setting up of
coordinates. One no longer accepts the Newtonian con-
cept of absolute time but rather introduces a family of
inertial observers, each of which has its own time coor-
dinate. To do this one first denotes the universe of events
by E as before and assumes that for such an inertial ob-
server O a time coordinate is given as a map TO W E!
R. Thus, for such an observer one can still define, in an
obvious way, the instantaneous space sections SO.t/�
T�1

O ftg as before but which now may (and, in fact, do)
depend on O. Each such section is assumed to admit
a Euclidean structure and hence a Cartesian coordinate

system x; y; z consistent with that structure, just as in
the Newtonian case already considered. Thus O may
coordinatize E by associating the coordinates x; y; z; t
to an event e 2 E where TO.e/D t. The ability to distin-
guish between real and inertial forces, and the concept
of a free particle, as in Newtonian theory, are retained
and then the spaces SO.t/ are related to each other by
assuming, as before, that free particles have paths given
by a map of the form t! .x.t/; y.t/; z.t// with x.t/; y.t/
and z.t/ linear functions of the time coordinate t ob-
tained from the function TO with t in some open interval
of R. It is also assumed that any such triple of linear
functions is the (potential) path of some free particle.
Thus each inertial observer O gives rise to a map E!
R4 by attaching to an event e 2 E the 4-tuple .x; y; z; t/,
where tD TO.e/ and .x; y; z/ are the projected Carte-
sian coordinates of e 2 SO.t/ and provide a global chart
for a four-dimensional manifold structure on E. It is as-
sumed that the collection of all charts for all inertial
observers gives a smooth atlas for E. Further, one can
again define particles at rest (fixed points) in O and
for any fixed t0 2R one may project in O, as in the
Newtonian case, from any SO.t/ onto SO.t0/ to achieve
a definition of spatial distance between any two events
in E as measured in O.

In special relativity, however, two extra assumptions
(in addition to the principle of relativity stated above)
will be introduced. The first assumption is that if a clock
is a fixed particle in O, it may be synchronized so that its
time reading always coincides with the t coordinate in O
of the event at which it is read, and that two clocks, one
at rest in one inertial frame and one at rest in another,
will, on being brought to rest in either of these frames,
agree as to the unit (but not necessarily the actual value)
of time used. Thus one has the concept of a good clock
with clocks at rest in O being consistent with the time
coordinate in O. The second assumption arises from
the celebrated results of the Michelson–Morley experi-
ment (see, for example, [5.20]). It is assumed that the
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above coordinates can be chosen in such a way that
if O is any inertial observer and if p and q are events
in E with time coordinates tp and tq in O and are such
that the spatial distance between them, in O, is d.p;q/
then the condition that a photon may pass through the
events p and q is that d.p;q/D c.tp � tq/ for some con-
stant c and that this constant c is the same constant
for every inertial observer O performing the experi-
ment. This second assumption, regarding the photon,
shows that the constant c above is to be regarded as
the speed of light in the units chosen and that this
speed is the same for all inertial observers. Thus ab-
solute time is abandoned and each observer sets up his
own time coordinate as above. The difference between
this time coordinate in O and absolute time is that, in
general, if O and O0 are inertial observers with time
coordinate functions TO and T 0O and e is some event,
TO.e/¤ T 0O.e/, and that if a clock is not at rest in O it
will, in general, not agree with the coordinate function
T0 on the set of events through which it passes. The ex-
act role played by the Michelson–Morley experiment
in Einstein’s original development of special relativity
is not entirely clear (see [5.19] for a full discussion).
However, one of the main points of the assumptions of
special relativity is that the ether is now abandoned as
no longer being part of physics.

Continuing with the hypothesis regarding the pho-
ton, let e 2 E and suppose that O and O0 are iner-
tial observers such that each allocates the coordinates
.0;0; 0; 0/ to e. Let p 2 E be any other event with coor-
dinates .x; y; z; t/ in O and .x0; y0; z0; t0/ in O0. Suppose
that x2Cy2Cz2�c2t2 D 0. Then, by the photon hypoth-
esis, a photon could pass through e and p from O’s
viewpoint, since the spatial distance traveled by it
equals jctj. Then it would also pass through e and p
from O0’s viewpoint and so x02C y02C z02 � c2t02 D 0.
Now E is the manifold R4 so consider the tangent space
TeE to E at e 2 E and the bijective map f W TeE! E
obtained by mapping v 2 TeE to a point of E whose
coordinates are the components va of v in the basis
@=@xa .aD 1; 2; 3; 4/ for TeE obtained from O’s co-
ordinates x1 D x, x2 D y x3 D z x4 D ct (essentially the
exponential map associated with the symmetric connec-
tion on E whose Christoffel symbols in this coordinate
system all vanish). Then one can define a metric � on
TeE by �.u; v/D �abuavb, where �ab D diag.1;1; 1;�1/
and ua are the components of u in the above basis for
TeE. One can similarly set up a metric �0 at e for the
observer O0. The above remarks about photons then
show that the two quadratic forms � and �0 share their
zeros and, since they are of indefinite signature, they

are proportional. One may now appeal to the principle
of relativity in this theory to show that this constant
of proportionality is unity. It follows that the subset
fw 2 TeE W �.w;w/D 0g of TeE is independent of the
observer. Denoting this subset by Ne (the null cone at e),
one has an extra structure introduced into E at each
event in E for special relativity. This structure gives
rise to the Minkowski metric tensor and associated inner
product. Thus special relativity is based on the uni-
verse E taken as the manifold R4 with a global metric
tensor of signature .1;1; 1;�1/ and with components
�ab D diag.1;1; 1;�1/ in the global coordinate system
xa on R4. The transformations which now play the role
of the Galilean transformations in Newtonian theory
are the Lorentz transformations; they preserve the null
cone Ne at each e 2 E in the sense that, regarded as bi-
jective maps R4!R4, any such map  is linear and
satisfies �. .u/; .v//D �.u; v/ for each u; v 2R4. In
matrix form they constitute the (Lorentz) group fA 2
GL.4;R/ W A�At D �g, where the superscript t denotes
a matrix transpose. Much of modern special relativity,
including its nomenclature, stems from the beautiful
work of Minkowski; more details, including a new
translation into English of one of his major works in
this area, can be found in [5.21].

One of the main changes this brings to the geometry
of classical physics is the fact that in Newtonian theory
(Sect. 5.4), one has (except in the trivial case when the
connection � introduced there is flat) a metric h on the
space sections but no metrical link between these space
sections and the time axis. This is essentially forced
upon the situation by the imposition of the absolute
time concept. In special relativity, however, the absolute
time concept is rejected and each inertial observer has
his own time coordinate, which is assumed to satisfy
a certain property with respect to photon behavior. Thus
there are no longer observer-independent space sections
but rather a splitting of E into space and time in a way
which is observer dependent but in which the time co-
ordinate is now metrically (in fact, orthogonally) linked
to the space sections for a given observer through the
Minkowski metric. The way this split differs between
observers is determined by the Lorentz transformations
which, essentially, map one splitting (say of O) into that
of O0 in such a way as to preserve the null cone. This
leads to a well-defined (observer-independent) mathe-
matical structure (the null cone) at each point e 2 E and
hence to the metric � on E (rather than just to a metric
on the space sections), which is of fundamental impor-
tance not only for special relativity but also for general
relativity.
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5.6 Absolute and Dynamical Variables; Covariance
Consider the situation in Newtonian theory when one
is describing a situation in an inertial frame. The usual
Newton equation relating, say, a gravitational force F
on a particle of mass m to its acceleration a is FDma.
In a noninertial frame, one would have to rewrite this
equation to incorporate the inertial forces that arise.
However, this may be done more elegantly by writing
Newton’s equation in Lagrangian form and the result-
ing equations hold in any coordinate system. As the
first step in this most elementary reformulation of the
problem, and before any constraints are eliminated, the
usual Cartesian coordinate system is introduced into
the 3n-dimensional configuration space (where n is the
number of particles considered) and a positive definite
metric is introduced on the configuration space through
the kinetic energy of the system. One then proceeds
in the usual fashion by the techniques of differential
geometry. One achieves from the Euler–Lagrange equa-
tions an equation of motion consisting of the geodesic
expression for the Levi-Civita connection of this met-
ric augmented by the (generalized) force term. This
equation reverts back to the usual Newtonian form
on returning to the original inertial coordinate system
where the Christoffel symbols vanish. If (holonomic)
constraints are involved one may represent such con-
straints as a submanifold of the configuration space and
rewrite the equations of motion in the (not necessar-
ily flat) submanifold geometry. But, again, the safety
of the original (Euclidean) space is still there. Standard
coordinate techniques such as, for example, the relat-
ing of ignorable coordinates to conservation laws and
the consequent reduction of the Lagrangian, introduced
by Routh (see, for example, [5.22]), can be replaced
by the covariant technique of seeking certain types of
Killing vector fields (with respect to the above metric)
on the configuration space. Everything appears covari-
ant but one inevitably asks if anything significant is
achieved by this. Of course, it has an aesthetic appeal
and it is very useful in calculations. However, the co-
variance that seems to have been obtained is, in a sense,
illusory because one can, by a definite coordinate trans-
formation, return to the original inertial frame and the
usual Newton equations. The penalty for the covariance
achieved appears in the form of yet more variables (the
configuration space metric) which are not dynamic in
that they do not satisfy any field equations.

As another example, consider Maxwell’s (source-
free for simplicity) equations in an inertial frame in
special relativity where the Maxwell–Minkowski ten-

sor F, which incorporates the (observer-dependent)
electric and magnetic fields, satisfies (in a standard no-
tation; see, for example, [5.23])

@Fab

@xb
D 0 ;

@Fbc

@xa
C
@Fca

@xb
C
@Fab

@xc
D 0 :

(5.8)

Again, these equations hold in an inertial frame but
can be made covariant by the simple trick of changing
the partial derivative to a covariant derivative with re-
spect to the (flat) Levi-Civita connection arising from
the Minkowski metric tensor. (In fact, this change is
only needed in the first equation in (5.8).) The resulting
equations then hold in any coordinate system but extra
variables (the metric components and Christoffel sym-
bols in arbitrary coordinates) have been introduced into
the equations. As another example, in the Cartan ver-
sion of Newtonian theory (Sect. 5.4), the metric h in the
space-sections but now with general components g˛ˇ
rather than diag.1; 1; 1/ similarly enters the equations.
In these last two examples, one can always revert back
to the original metrics represented by the Minkowski
metric tensor � and h, respectively, by a coordinate
change and the general metric components do not sat-
isfy any field equations having been imposed from the
beginning and being uninfluenced by what is going on
(that is, by the physics). Newton’s absolute space influ-
ences physics by imposing inertial forces on anything
that dares to accelerate with respect to it, and yet is it-
self uninfluenced by physics. This failure of reciprocity
has led to these extra quantities (in these cases, met-
rics) being called absolute variables [5.12, 24, 25]. It
seems that most theories can be made covariant by
including such variables into them and which, whilst
useful in many ways, does not change anything signifi-
cant in the theory itself. It is in this sense that the term
covariant has little meaning. The position vector(s) of
the particle(s) in Newtonian theory which are to be de-
termined and the tensor F in (5.8) have been called
dynamical variables [5.24] and play a different kind
of role in the theory from the absolute ones. It is these
variables which satisfy field equations and in an inertial
frame of reference they are the only variables which en-
ter these equations. The Galilean transformations and
those of Lorentz then preserve, respectively, the exact
form of Newton’s equations and the Maxwell equa-
tions (5.8) in an inertial frame, that is, they preserve the
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form of the absolute variables. In the Cartan approach to
Newtonian mechanics in Sect. 5.4, a Newtonian would
claim to be able to identify inertial frames and thus
to be able to identify a unique flat connection. In this
sense, this connection is to be regarded as an abso-
lute variable. In the Cartan interpretation the collection
of frames obtained from the original one by transfor-

mations of the form (5.5) is, in this sense, absolute.
In Newtonian–Aristotelian theory with a strict (Newto-
nian absolute) rest frame or Newtonian-electromagnetic
theory together with a (rigid) ether (see the end of
Sect. 5.3) more absolute variables are introduced, since
now one has a preferred (rest frame) observer whose
(space-time) velocity is absolute.

5.7 General Relativity

Some important points may now be drawn from the pre-
vious sections. First, it has been seen that in both New-
tonian theory and in special relativity the universe of
events can be regarded profitably as a four-dimensional
manifold admitting special coordinate systems in which
three of the coordinates take advantage of the Euclidean
nature of the space sections (Cartesian coordinates) and
the fourth one usefully uses a natural time coordinate.

Second, in discussing Newtonian gravitational the-
ory in Sect. 5.4, it was seen how Newton’s laws,
together with his gravitational hypothesis and the ex-
periments of Eötvös and Dicke, etc., showed that the
path of a particle falling under the sole action of a grav-
itational field depended only on the initial position and
velocity of the particle and not on the particle itself and
that this was related to the fact that the particle’s grav-
itational and inertial masses could be chosen equal by
a simple choice of units. The equality of these mass pa-
rameters manifested itself in the fact that a gravitational
field gives rise to a well defined acceleration field and
not to a well-defined force field. The force field depends
on the particle experiencing it at the event in question,
with its common mass parameter acting as a coupling
constant. Thus gravitational fields act indiscriminately
on particles irrespective of their mass and make up.
Now suppose that O is an inertial observer (in the sense
of Sect. 5.3) and O0 another observer whose motion
with respect to O is, say, one of constant acceleration
in a straight line. Any free particle in O’s frame will
now appear to have the same constant acceleration with
respect to O0, and the observer O0 could interpret this as
due to the existence of a certain (homogeneous) gravita-
tional field (Sect. 5.4). This ambiguity in the description
of particle motion is due to the fact that inertial forces
impart the same acceleration to all particles, that is,
they have the same indiscriminate action on particles as
a gravitational field does. It was seen in the discussion
of the Cartan connection in Sect. 5.4, that the gravi-
tational potential was not well defined due to the fact
that the inertial force arising from a translational ac-

celeration could not be unambiguously separated from
the gravitational field. Quite generally this ambiguity
calls into question the concept of an inertial frame when
gravitational fields are present, since it seems that one
cannot separate the inertial from the gravitational forces
in a satisfactory way.

Third, the questioning of the inertial frame (and ob-
server) concept and the idea of the universe E being
described by a four-dimensional manifold suggest that
all observers (that is, coordinate systems) rather than
those chosen for convenience (as described in the first
point above) must be considered equivalent and that
these can naturally be accommodated within some man-
ifold structure on E. Thus, the difficulties of defining an
inertial frame would lead to the concept of an inertial
frame being discarded (as the ether was) because it is no
longer part of physics. Similarly, the difficulty in distin-
guishing inertial and gravitational forces suggests that
one should no longer try to do so, and thus one is led
to the Einstein principle of equivalence of inertial and
gravitational forces. This is consistent with the plan to
treat all coordinate systems equally, since the (original
Newtonian) differentiation between inertial frames and
noninertial frames was made on the basis of the identi-
fication of inertial forces. This, in turn, suggests that the
equations that determine a gravitational field, whatever
they may be, should be written in such a way that they
also do not discriminate between the different observers
(that is, coordinate systems) and hence that they should
be formally the same in each admissible coordinate sys-
tem. Recalling the discussion of Sect. 5.6 one sees that,
whereas covariance could be imposed in a somewhat
ad hoc way if inertial frames are assumed to exist, one
now has a case for covariance out of necessity. But if
this covariance is achieved without the need to intro-
duce absolute variables of the type described in that
section (and which are essentially leftovers from iner-
tial frames or other absolute objects such as the ether),
it acquires a deeper meaning. Such is the principle of
covariance in general relativity theory.
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Fourth, and returning to the second point above, the
gravitational field was seen to be able to be transformed
away in a region if it is homogeneous. Continuing this
idea (and recalling Einstein’s lift experiment) the grav-
itational force experienced by a particle in a general
gravitational field can be similarly transformed away at
a point by an appropriate accelerative transformation.
In some sense it may be, somewhat intuitively, regarded
as a change of metric from the Minkowski metric at the
point in question, but a change which will, in general,
require a different coordinate transformation from point
to point and not one which can be simulated by a single
coordinate transformation over a region. This suggests
that if a metric represents the gravitational field it may
not, in general, be flat.

Fifth, one might expect that, when the gravitational
field is in some sense weak, and given the success of
the special theory of relativity, whatever theory of grav-
itation is adopted, it should reduce to special relativity
(in some sensible way) in such circumstances. One of
the main mathematical ingredients of special relativ-
ity is the null cone structure and the Minkowski metric
to which it leads. Since Riemann had shown how one
may describe various geometries on a manifold using
metrics more general than Euclid’s or Minkowski’s, the
suggestion is that one might incorporate the gravita-
tional field in the geometry, that is, that the geometry
itself should reflect or even be the gravitational field,
relegating Minkowski’s metric to the special case when
the gravitational field is absent. This was the think-
ing behind Einstein’s general theory of relativity. (It is
remarkable that, at the time when theoretical physics
entered a period of crisis at the beginning of the twenti-
eth century, Riemann’s work, only half a century earlier,
was available in almost exactly the form that Einstein
wanted it.)

Finally, given the success of Newton’s gravitational
theory, Einstein wanted to preserve the fact that the (dif-
ferential) equations controlling the dynamical variables
in general relativity theory, whatever these variables
may be, should be of second order in them, as is
the Poisson equation in Newton’s theory. (The original
work of Einstein can be found in [5.26, 27]).

To get some idea of how Einstein arrived at the
general theory of relativity, let us return to the ideas
given at the end of Sect. 5.3. Here the space slices, S.t/,
were taken to be Euclidean. However, this choice of
geometry is linked with physics only by virtue of the
fact that it was assumed possible to take the preferred
(straight) lines of Euclid’s geometry on each S.t/ to be
in agreement with the paths of free particles. This rela-

tion between geometry and physics depends, of course,
on the concept and choice of a free particle. Given this,
such an arrangement can be viewed as a convenient
choice of straight line structure to fit such free particles.
(It must not be forgotten that by choosing some bijec-
tive map f WR3!R3 one can, in an obvious way, map
Hilbert’s undefined notions of point, line, and plane,
and his other concepts (incidence, betweenness, con-
gruence, length, and angle) from one copy of R3 to
the other, using f , to obtain a perfectly consistent geo-
metrically isomorphic Euclidean geometry with a line
structure which is not consistent with Galileo’s law
of inertia and hence not convenient [5.28].) However,
as a serious step to some geometrization of physics it
has the immediate disadvantage that Euclid’s is a ho-
mogeneous geometry, that is, it can be represented by
a manifold structure on R4 on which, in the sense of
Riemann, a global metric is defined whose geodesics,
through its Levi-Civita connection, are complete and
define its straight lines and which is of constant (zero)
curvature. Then, geometrically, any sufficiently small
region of it looks the same as any other sufficiently
small region. (If, for some reason, one decided to adopt
the geometry of Lobachevski and Bolyai for the sec-
tions S.t/, similar remarks about homogeneity would
still apply.) If physics and geometry interact in any way
at all then, apart from the example of a rather approx-
imate, smeared out homogenized physical effect of the
type usually envisaged in cosmology (and which will be
mentioned later) such geometries are of little value for
such a geometrization. The observation that the general
physical situation (usually) varies from region to region
in the universe suggests that, given a wish for some
interaction between physics and geometry, a more flex-
ible form of geometry is needed than one which rests
on somewhat rigid global axioms. (One should here,
perhaps, mention the brief but penetrating remarks of
Clifford made many years before the advent of gen-
eral relativity theory [5.29].) In any case, the geometries
of Sect. 5.3 are in the space sections, not on the uni-
verse E, and are thus inappropriate given Minkowski’s
four-dimensional work on special relativity theory and
the observer-dependent nature of the time coordinate in
this theory.

The type of geometry envisaged by Riemann was
essentially of this more desirable form, being defined
by certain functions (from the metric g and its space
and time derivatives leading to its Levi-Civita connec-
tion and associated curvature) on a four-dimensional
manifold M (the universe), which were sufficiently flex-
ible to accommodate the changing physics. The local
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observational physics was then described by the local
metric properties of g. However, it must not be for-
gotten that this is a natural extension of Minkowski’s
four-dimensional space-time geometry and not of the
three-dimensional Euclidean geometry on the space
sections described in Sect. 5.4. This, together with
the change in the signature of the metric from the
three-dimensional Euclidean .C;C;C/ to the four-
dimensional Lorentzian .C;C;C;�/ signature em-
ployed by Minkowski is not to be taken lightly as is
sometimes suggested in popular works. In general rel-
ativity theory, Einstein assumed that the universe was
a four-dimensional manifold of events M admitting
a Lorentz metric g of signature .C;C;C;�/ whose
Levi-Civita connection is denoted by D and the lat-
ter’s associated curvature tensor denoted by Riem.
This metric is an inner product on each tangent space
to M, these inner products then joining together to give
a smooth metric tensor on M. (It is not some infinites-
imal distance function represented by the traditional
ds2 although this approach has some intuitive, if in-
definable, charm!) Should a change of coordinates be
made in a neighborhood U of some point m of M,
the components gab of g representing the metric in
the original coordinates xa change to the representa-
tive matrix g0ab in the new coordinates x0a according
to the (matrix) scheme g0 D StgS, where Sab is the
nonsingular matrix @xa=@x0b representing the coordi-
nate transformation. Thus, according to the well-known
Sylvester law of inertia, this metric may always, by
some coordinate change, be transformed to its appro-
priate (Sylvester canonical) form for this (Lorentz)
signature, that is, the Minkowski form �ab at a point,
and, in this sense, Minkowski space is recovered (in the
tangent space to M) at m. However, the Lorentz sig-
nature and four-dimensionality causes certain intuitive
problems. Consider, for example, the case when the
four-dimensional manifold M �R4 is given the usual
positive definite Euclidean metric Ng with global compo-
nents given by the matrix diag.1; 1; 1; 1/. A (topological
metric) distance function d WM�M!R arises on M in
a natural way from Ng through Pythagoras’ theorem and
the (natural metric) topology associated with d is the
usual manifold topology on M. The usual orthogonal
group of transformations R4!R4 preserves Ng and d
in a natural way. If, however, M is now given the usual
global Minkowski metric, the usual manifold topology
on M cannot possibly arise from a (topological met-
ric) distance function on M which is naturally preserved
by the Lorentz group. To see this one simply considers
m 2M, assumes that such a distance function d0 exists

on M, and then notes that the whole of the surface of the
null cone through m must be contained in any neighbor-
hood of m.

In some sense, the geometry represented by g, D,
and Riem is taken as the gravitational field and Ein-
stein formulated field equations for the determination of
these quantities. Such equations should be expressed in
such a way as to be coordinate independent and this was
taken to mean that they should be expressed in terms
of tensors on M (the principle of covariance). In this
sense, there should be no preferred observers and so
one of the main problems in Newtonian classical theory
was removed. However, a little more is involved here
since Einstein’s equations will be seen to be differential
equations for certain variables (the metric components)
which are entirely dynamical and these variables will
be the only variables entering the field equations. Thus,
recalling the work in Sect. 5.6, no absolute variables are
required and, in this sense, Einstein’s theory is covari-
ant in a much deeper way. As for the field equations
themselves, Einstein apparently toiled long and hard
to find them. Although no strictly deductive reasons
can be given for them, some suggestions can be made
which, if not compelling, are perhaps sufficient reasons
for adopting them in the first instance. After this, exper-
iment must decide and, almost a century later, general
relativity is still the most successful theory of gravity
available. A few guidelines can be given. Because of
the success of Newtonian gravitational theory where
the field variable is the gravitational potential ˚ and
the field equation is Poisson’s second-order differential
equation r2˚ D K� for some constant K and matter
density �, one supposes that Einstein’s equations should
also be second-order differential equations for the com-
ponents of the metric tensor. In addition, the equation
of motion in classical Newtonian theory of a particle
of mass m and path r.t/ in some inertial frame is then
given by mRrDr˚ , where a dot denotes a (Newtonian
absolute) time derivative. Again recalling the success of
Newtonian theory, it may be reasonably expected that,
in the event of a weak gravitational field, whichever
field equations are chosen for the metric tensor should
give similar results to those derived from the Newtonian
viewpoint. This is justified by the remarkable success of
Newtonian gravitational theory in the period between
Newton and Einstein (and, in fact, after Einstein).

Recalling the discussion in Sects. 5.3 and 5.4, New-
tonian theory and the principle of equivalence suggest
abandoning the concept of a gravitational force in favor
of well-defined gravitational acceleration at each space-
time event. This defines a collection of space-time paths
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for particles in a pure gravitational field, each deter-
mined by any event on it and the particle’s velocity at
that event. Thus, Einstein made the assumption that the
equations of motion for a particle in his theory should
lead them to follow (timelike) geodesics with respect to
the connection D and with arc length with respect to g
as an affine parameter. Similarly he assumed photons
would follow null geodesics. The choice of a geodesic
path (Einstein’s principle of equivalence) reflects the re-
sults of the experiments of Eötvös and others, which
suggest that the path of a particle in a pure gravitational
field is determined by its initial position and initial ve-
locity. In four-dimensional language this means that
its path is determined by the particle’s position on the
space-time manifold and its (four-dimensional, time-
like) direction in the tangent space at that point. Given
that Einstein’s theory is based on a metric, the geodesic
is a rather natural path determined by the metric’s as-
sociated Levi-Civita connection and which satisfies the
conditions of the last sentence. Thus this principle of
equivalence, which appears as a theorem in Newto-
nian theory, is now given the status of a postulate. In
summary, the transmission of information in general
relativity theory is along paths whose tangent vector is
either timelike or null and are thus confined to lie on, or
inside, the null cone at each point. This leads to a causal
structure in general relativity theory, that is, an algo-
rithm to determine how one event in space-time may
influence another.

Consider now a weak gravitational field in some co-
ordinate neighborhood U of some event m 2M with
coordinates x; y; z; t and, in addition, assume that it is
slowly changing (or even constant) in time. Then one
tentatively assumes that coordinates can be chosen so
that the components gab of the metric g in U are very
close to the values that would be obtained in an inertial
frame in Minkowski space-time with metric compo-
nents �ab D diag.1;1; 1;�1/, that is, gab D �abC �ab

where the components �ab are small compared with
those of �, max j�abj � 1. If one computes the geodesic
equation for a particle P using the metric g and assumes
that the components of its speed, computed from the
rates of change of the coordinates x; y and z with re-
spect to the proper time, are small compared with the
speed of light (here unity) one obtains, by a standard
calculation, the equation of motion given above in the
Newtonian case but with ˚ replaced (up to a multi-
plicative constant) by �00. Thus one might expect the
field equations sought to be such that, at least under
the present special restrictions, �00 is constrained by an
equation like the Poisson equation mentioned above for

classical theory. In particular, one might ask about such
a gravitational field in a region of space which itself
contains no matter but which is in the vicinity of mat-
ter which is creating a gravitational field (the vacuum
field equations). In the classical case, the Poisson equa-
tion then gives way to the Laplace equation r2˚ D 0.
Recalling what was said about the field equations be-
ing of second order in the metric tensor, Eddington
[5.30] offered an argument that the only such tensor
quantities must be constructed from the metric g and
the Ricci tensor, Ricc, arising from Riem. Further, and
regarding the possibility of a Lagrangian formulation,
it is known [5.31] that the only possible second-order
field equations which could arise as the Euler–Lagrange
equations from some Lagrangian constructed from the
metric and its partial derivatives up to any order are
of the form a RiccCbgD 0 for real numbers a and b
(and a nice form for this Lagrangian can be written
down). These Euler–Lagrange equations are equiva-
lent to cGC dgD 0 for constants c and d, where G is
the Einstein tensor, G� Ricc� 1

2 Rg, with R the Ricci
scalar. Einstein chose as his pure gravitational (vac-
uum) field equations the statement that the Ricci (or,
equivalently, the Einstein) tensor vanishes. Thus one
has Einstein’s vacuum field equations

RiccD 0 .,GD 0/ : (5.9)

On substituting the above metric gD �C � into the
expression for the Ricci tensor one finds that the
quantity �00 satisfies the Laplace equation as required
in Newtonian theory for the potential function ˚ .
Should matter be present these equations are modi-
fied to GD �T , where � is a constant and T is the
second-order symmetric energy-momentum tensor rep-
resentative of the matter content of the universe. In
the above approximated metric example an appropri-
ate energy-momentum tensor could be that of a perfect
fluid with zero pressure. In this case, a similar (stan-
dard) substitution into the above Einstein nonvacuum
field equations reveals the Poisson equation (5.7) for˚ .
The energy-momentum tensor was presumably inspired
by Minkowski’s writing down of the four-dimensional
form of the Maxwell three-dimensional energy tensor
in special relativity theory. From this Minkowski was
able to unify the separate conservation laws of energy
and momentum in Maxwell’s theory in a single equiva-
lent four-dimensional conservation law, which involved
the divergence of this latter tensor. Since the energy-
momentum tensor T above describes, in some sense, all
matter sources creating the gravitational field, it should
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satisfy the divergence-free (conservation law) condi-
tion Ta

bIa D 0, where a semi-colon denotes a covariant
derivative with respect to D. Thus, from the nonva-
cuum field equations, the tensor G must satisfy this
divergence-free property identically, which it does. It
is reassuring to note that this property of G strongly re-
stricts it as a potential choice for the left-hand side of
Einstein’s equations [5.31].

Some further remarks are added here regarding
these field equations and the space-time .M; g/. First,
the metric g determines, at each point m 2M, the null
cone of null members of the tangent space at m, and
thus the possible space-times directions of photons at m
is fixed. Second, since the transmission of information
is taken to be along piecewise (differentiable) time-
like or null paths in M then, for physics to be possible
in M, one should take the manifold topology of M to
be path connected (which for a manifold, is equiva-
lent to it being connected). Third, the field equations
are regarded as equations for the metric tensor g. One
may then ask what actually represents the gravitational
field, if indeed such a question makes sense. Is it the
metric, the connection, or the curvature or even the sec-
tional curvature (since it was in the latter form that
Riemann first introduced curvature)? It turns out [5.28]
that, in the general situation (and up to units of mea-
surement), each of these quantities uniquely determines
the other and so, in this sense, they are equivalent. Fi-
nally, one may ask the following question. Given that
we have a space-time .M; g/ are there any uniqueness
theorems applying to g or D and stemming from the
Einstein principle of equivalence? The answer may be
given in the following way [5.32] (for an improved ver-
sion see [5.33]). Suppose g and g0 are smooth metrics
on M with g being the original Lorentz metric on M and
g0 an arbitrary smooth metric on M such that the Levi-
Civita connections D and D0 from g and g0, respectively,

have the property that, for each m 2M and through each
member of an open subset of g- and g0-timelike di-
rections at m, they lead to the same unparametrized,
timelike geodesics on M (that is, to the same time-
like geodesic particle paths in M, paying no attention
to the nature of the parameters on these paths). Then
if g is a vacuum metric which is not flat, it can be
shown that g0 is also a vacuum metric which is not flat
and DD D0. This last equation shows that the space-
times .M; g/ and .M; g0/ agree as to what constitutes an
affine parameter and hence proper time. Further, with
the so-called pp wave metrics excepted, g0 D cg for
0¤ c 2R, that is, g and g0 are the same up to units
of measurement. An immediate consequence of these
results is as follows; it has been seen (Sect. 5.3) that
the behavior of free particles in a force-free situation in
Newtonian theory can be characterized by the straight
lines of the Euclidean structures on each copy of St. In
a similar way the behavior of free particles in a force-
free situation in special relativity theory is characterized
by timelike geodesics with respect to the Minkowski
metric in Minkowski space-time. It can now be seen
that for a vacuum space-time in general relativity the-
ory which is not flat, the (unparametrized, timelike)
geodesic structure, that is, the paths of freely falling free
particles according to Einstein’s assumption, is in this
sense characteristic of the metric. This allows a visual
description of such a situation, locally, by noting that
one may, about each point of M, choose a convex neigh-
borhood U which has the property that any two points
of U are connected by exactly one geodesic lying in U
[5.34]. Thus the local geometry in U provides a sys-
tem of straight lines analogous to the (local) Euclidean
straight lines in Newtonian theory and special relativ-
ity theory and whose resulting normal coordinates may
be useful for constructing solutions of the vacuum field
equations.

5.8 Cosmology

The first attempt at a relativistic cosmology, that is,
a mathematical description of the whole of the known
universe within the general theory of relativity, was
made by Einstein in 1917 when the universe was be-
lieved to be (in some approximately smoothed out way)
in a static state [5.35]. (A Newtonian cosmology does
exist [5.36, 37] but has interpretational difficulties and,
in the context discussed here, the relativistic version is
the significant one.) This Einstein static universe laid
the general foundations of (mathematical) relativistic

cosmology and introduced the cosmological constant.
The static solution of Einstein was shown to be phys-
ically untenable by the later discovery of the Hubble
expansion of the universe but ultimately led to the
discovery of more realistic cosmological solutions of
the Einstein field equations and finally to the general
form of the cosmological space-time metrics which are
collectively associated with the names of Friedmann,
Robertson, Walker, and Lemaître; the FRWL models.
For a full discussion see [5.23, 36–40]. To see how these
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models arose consider the extra assumptions that are in-
troduced into general relativity theory for the purposes
of cosmology. First, one needs some geometrical as-
sumptions expressing certain symmetries that it is felt
the universe possesses on the large scale and second,
one must decide how to model the actual large scale
physics of the universe, that is, what the smoothed out
form for the energy-momentum tensor is to be. Then,
finally, one imposes the Einstein field equations. In-
tuitively, for the geometrical (symmetry) assumptions,
one takes the attitude that the vastness of the known
universe (not to mention insurmountable mathemati-
cal difficulties) allows one to ignore local irregularities
and to require the universe to be homogeneous and
isotropic. By homogeneous one intuitively means that
at any given time the universe looks essentially the
same at any point in space and by isotropic that, at
each event, there is a special fundamental observer for
which the universe looks essentially the same in any
space direction. However, there are obvious difficulties
here because one must first decide, for homogeneity,
whether any such cosmic time needed for its definition
actually exists. In a cosmology based on Newtonian
thinking [5.36, 37] absolute time would be automati-
cally in place but there is no such equivalent in relativity
theory. As for isotropy, one has the problem of saying
exactly what these fundamental observers and indistin-
guishable space directions are. For example, it makes
little sense to take these latter directions as spacelike
since, according to the causality assumption associated
with the null cone structure, information cannot travel
to any observer in such a fashion.

Fortunately one can avoid these problems in the fol-
lowing way (see, for example, [5.41]). Assume that, for
the isotropy condition, one means that the observational
information that any observer uses in his formulation
of extra (cosmological) assumptions is received in the
form of photons and hence along the observer’s past
null cone. Then assume the existence at any point m
of the space-time manifold M of an observer who can-
not distinguish such directions. Now reformulate this in
terms of space-time symmetries, that is, as the state-
ment that the space-time, .M; g/, in question admits
a Lie algebra, K.M/, of global smooth Killing vector
fields on M which is such that the isotropy algebra of
K.M/ at m (the subalgebra of members of K.M/ which
vanish at m and hence whose associated local transfor-
mations (local flows) fix m) is transitive on the null cone
of null directions at m. Now each such isotropy alge-
bra is a subalgebra of the Lie algebra L of the Lorentz
group L and it turns out from a consideration of the

subalgebras of L and of the possible orbit dimensions
for K.M/ that this implies that this isotropy algebra is
either so.3/ at every point of M or L itself at every point
of M. Whichever is the case for the isotropy subalgebra
at m 2M, such isotropy applies also to the Weyl ten-
sor and easily shows that it must vanish at m. It follows
that for each of the FRWL models .M; g/ is conformally
flat. These isotropies have necessary algebraic conse-
quences for the energy-momentum tensor at m. First
consider the case when the isotropy at each m 2M is
o.3/. There are infinitely many choices for this isotropy
at each m and each such choice determines (and is de-
termined by) a timelike direction tm at m (the timelike
axis of rotation). The physics, through the observations
of the cosmic microwave background radiation or Hub-
ble expansion, is assumed to determine each tm and,
once chosen, the assumption that cosmological symme-
try arises through a smooth Killing action ensures that
there exists a local, unit, timelike, smooth vector field
defined on some neighborhood U of m for each m 2M,
which spans the axis at each point of U. These local
vector fields are then taken as the four-velocity fields
of the fundamental observers. The three-dimensional
subspace Om of the tangent space TmM to M at m and
which is orthogonal to tm at m is then the observer’s
instantaneous three-space at m. Now regard the energy-
momentum tensor T as a linear map on TmM in the
usual way. It turns out that this isotropy forces Om and
tm to be eigenspaces of T (with respect to the metric
g.m/). Thus T takes the algebraic perfect fluid form and
two (possibly equal) eigenvalues emerge at each m 2M,
which together can be shown to give rise to two smooth
functions on M. These functions are, from the physical
interpretation of T , (combinations of) the mass-energy
density � and pressure p of the perfect fluid represented
by T and whose particles are the galaxies (or galac-
tic clusters). Einstein’s equations, with or without the
cosmological constant, then provide information about
the relations between the functions � and p. In the case
when the isotropy at m is L, no such unique timelike
direction tm is determined and the whole of Tm is an
eigenspace of T at m. Thus there is a unique eigenvalue
of T at m and, when the physical interpretation of this
eigenvalue is introduced, it is not possible to have the
mass-energy density and pressure of the perfect fluid
satisfying � � 0 and p� 0 at m unless the Riemann ten-
sor vanishes at m. Since the isotropy would then be L
at each point of M, one has, in fact, Minkowski space
and a contradiction. Thus if one requires, on physical
grounds, � � 0 and p� 0 and not Minkowski space, the
isotropy must be o.3/ at each point of M. (If one re-
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quires the isotropy to be L at some and hence any point
of M, the space-time .M; g/ is of constant curvature and
is (locally) the de-Sitter space-time if this constant cur-
vature is positive, the anti de-Sitter space-time if it is
negative, and Minkowski space if it is zero. The Killing
algebra, K.M/, then turns out to have dimension 10.)

Given that one takes the isotropy as o.3/ at one
and hence each point of M, a consideration of the
orbits of K.M/ allows one to show that either there
is a single four-dimensional orbit, dim K.M/D 7 and
.M; g/ is either of constant curvature or locally of the
(original) Einstein static type, or that each orbit is
three-dimensional and spacelike, dim K.M/D 6 and,
over some open dense subset of M, .M; g/ is locally of
constant curvature or locally of the generic FRWL type.
However, there is one further point here that arises in
these constant curvature situations. For these cases, and
although the isotropy is o.3/ at each m 2M, extra local
symmetries may arise over certain subsets of M, which
are not accounted for in the global Killing algebra
K.M/ and hence not in o.3/ but which have the effect
of giving an isotropy isomorphic to L over this subset.
This leads to the unphysical conditions described in
the previous paragraph. If such an undesirable subset
is removed the situation is much simpler and one has
either a single four-dimensional orbit, dim K.M/D 7
and .M; g/ is locally of the (original) Einstein static
type, or each orbit is three-dimensional and spacelike,
and dim K.M/D 6 and .M; g/ is locally of the generic
FRWL type.

For the generic FRWL case, K.M/ induces in the
orbits a six-dimensional Lie algebra of smooth Killing
vector fields with respect to the induced metric in these
orbits. Thus each such orbit is itself a three-dimensional
space of constant curvature in its induced positive def-
inite metric and is thus either of the hyperbolic geom-
etry (negative curvature), spherical geometry (positive
curvature), or Euclidean (zero curvature) type. The nor-
mals to these orbits are geodesic timelike vector fields
and span tm at each m 2M, and their affine parame-
ters then naturally give rise to a cosmic time function.
With this cosmic time these orbits become naturally
defined instantaneous spaces (hypersurfaces of homo-
geneity), and the subspaces Om mentioned earlier are
tangent to them. The fact that they are orbits of the full
Killing algebra K.M/ ensures a well-defined cosmolog-
ical homogeneity. The observers who move along the
geodesics orthogonal to these hypersurfaces are the fun-
damental observers (mentioned earlier and originally
suggested by Weyl). These observers see strict cosmo-
logical symmetry and are taken, in the physical picture,

as the world lines of the galaxies (or galactic clusters).
(In this sense, the fact that these spaces are orbits of
the full Killing algebra K.M/ on M, rather than simply
admitting a transitive Killing algebra in their (induced
hypersurface) geometry from the space-time metric g is
the reason for the claim that they ensure full cosmologi-
cal homogeneity. Models with hypersurfaces admitting
such symmetry with respect to their (hypersurface) ge-
ometry but which are not orbits of the full Killing
algebra (and hence not cosmological in the sense meant
here) can be constructed.)

For the generic FRWL space-times one may choose
local coordinates t; r; ; � in which the metric takes the
form

ds2 D�dt2CR.t/2
�

dr2C f 2.r/

�.d2C sin2  d�2/
�
;

(5.10)

where t is cosmic time, R is a function of t only, and
the function f depends on the sign of the curvature of
the (constant curvature) hypersurfaces of constant t,
equalling sin r; sinh r or r according, as this hypersur-
face has positive, negative, or zero constant curvature.
There is a remark to be made here. The cosmological
assumption employed here rests on a global Lie algebra
of Killing vector fields and leads to the metric (5.10)
in local coordinates. One could, from perhaps a more
physical (observational) viewpoint, have changed
the cosmological assumption to a more local one by
demanding that, for each m 2M there exists a neigh-
borhood U 
M of m and a Killing algebra K.U/ on U
leading to the isotropy condition given earlier. One
then arrives at (5.10) for some coordinate domain on U
and one has been true to the observational physics by
claiming such symmetry (represented by Killing vector
fields) exists only locally. Whilst the earlier cosmologi-
cal assumption certainly implies this local cosmological
one, the converse is not true because the local Killing
vector fields guaranteed here by this weaker assumption
may not be the restrictions to each U of a global Killing
algebra on M. If, however, M is simply connected, this
converse is, in fact, true [5.42, 43].

The fundamental observers in cosmology see an
isotropic Hubble expansion and cosmic microwave
background radiation. How do these compare with the
preferred (inertial) observers in Newtonian theory dis-
cussed in Sect. 5.3? In one sense the cosmological fun-
damental observers are more tightly determined than in
Newton’s theory since, because their velocity is fixed at
any space-time point by the forced orthogonality to the
hypersurfaces of homogeneity, they do not admit any
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boost symmetry. But they do admit a physical defini-
tion since any deviation from this fixed velocity would
be observable through an anisotropy in the Hubble ex-
pansion or in the temperature of the cosmic microwave
background radiation. They are thus part of physics in
a way that Newton’s absolute time and space are not.

Current thinking in cosmology suggests that the
metric of the universe satisfies local equations like
(5.10) with a cosmological constant included in the field
equations and with the hypersurfaces of homogeneity

being Euclidean (the f .r/D r case). (One thus has, at
least, a local situation bearing some similarity to that
in Sect. 5.3 with cosmic time identified with Newton’s
absolute time.) The not uncommon terminology flat
universe to describe this model is potentially mislead-
ing! The cosmological constant is currently regarded
as potentially representative of the so-called dark en-
ergy and the consequent force of repulsion between the
fundamental particles. More information can be found
in [5.44].
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6. Time in Special Relativity

Dennis Dieks

We compare and contrast special relativistic time
with time in prerelativistic physics. In relativity
there are no unique time intervals between events,
and there is no unique simultaneity relation. We
discuss consequences of this situation for the phi-
losophy of time. Although we do not subscribe to
the thesis that relativistic simultaneity is purely
conventional, we argue that this simultaneity is
unrelated to a flow of time.
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In this chapter we shall analyze the role and status of
time in special relativity. In order to bring into relief
the new features of special relativistic time, we shall
first take a look at the spatiotemporal structure of clas-
sical (i. e., prerelativistic) physics. The characteristic
aspects of prerelativistic time are that it is both abso-
lute and globally unique. Classical time is absolute in
the sense that time intervals between events do not de-
pend in any way on the processes that connect these
events; nor do such time intervals depend on a point of
view or a frame of reference. Classical time is globally
unique because whether or not any two given distant
events occur at the same time is a simple matter of phys-
ical fact, according to classical physics, regardless of
how far apart these events are. Classical simultaneity,
thus, is a physical relation that extends over the whole
of three-dimensional space and slices up four-dimen-
sional spacetime: classical spacetime is a stack of three-
dimensional spaces at-a-time. This makes it possible to
speak about instantaneous states of the universe. This
uniqueness of the global simultaneity relation in clas-
sical physics fits in with the intuitive notion that time

flows via a global now that is continually shifting to-
wards the future.
Special relativity does away with time’s absoluteness
and also calls into question the global character of time.
The new spatiotemporal structure that replaces the clas-
sical one reflects the way time functions in relativistic
physical theories: relativistic laws do not need absolute
time or a unique global now, and the concept of simul-
taneity plays a role in relativistic physics that is much
less prominent than in classical physics.

It is first of all this changed status of time that
gives rise to foundational and philosophical questions
in special relativity. Most importantly, relativistic si-
multaneity is difficult to combine with our intuitions
about time flow. In the part of this chapter devoted to
such issues we shall pay special attention to the rela-
tion between special relativity and the so-called block
universe (the universe as one four-dimensional entity
without a privileged now) and to the significance of spe-
cial relativistic simultaneity, in particular the question
of whether, or to what extent, this relativistic simultane-
ity relation can be said to be conventional.
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6.1 The Spacetime of Prerelativistic Physics
In Newtonian physics space and time constitute a fixed
arena in which physical processes take place [6.1]. This
arena, Newtonian spacetime, is a manifold of space-
time points with definite spatiotemporal geometrical
properties: any two spacetime points in it possess both
a well-defined spatial and a well-defined temporal dis-
tance between them. However, this spacetime structure,
introduced by Newton in his Principia, is richer than ac-
tually needed for classical mechanics. Since all inertial
frames are equivalent for the formulation of classical
mechanics, the spatial distance between events that hap-
pen at different times does not play the role of an
invariant quantity in the theory (since this distance is
judged differently from different inertial systems). In-
deed, we can replace Newtonian spacetime by a leaner
structure and still do classical mechanics by going over
to neo-Newtonian spacetime. However, with respect to
time this change does not make a difference: time re-
mains absolute and global. The classical conception of
time, characterized by these two features – which are
close to everyday intuition – can serve as a foil to the
special relativistic notion of time.

6.1.1 Newtonian Spacetime

When Newton formulated his mechanical laws of mo-
tion he assumed a spacetime background with a well-
defined geometrical structure: Newtonian spacetime.
The mechanical laws depend heavily on this definite
spacetime structure. Consider, for example, the law
of inertia: a body on which no forces are exerted
moves uniformly in a straight line or remains at rest.
For this statement to possess physical content it must
be understood as to what distinguishes a straight line
from a curve. Newton makes this distinction by intro-
ducing a spatial distance function between spacetime
points (a straight line is the shortest connection between
points, so with the help of distances curves and straight
lines can be distinguished). Further, to give meaning to
the notion of uniform motion it must not only be clear
what equal distances are: a definition of equal periods of
time (congruence of temporal intervals) must be avail-
able as well.

Newton posited that his spacetime is a stack of
three-dimensional spaces-at-a-time, each one equipped
with Euclidean spatial geometry. In addition, whether
or not the temporal distance between any two pairs of
instants (and, therefore, spaces at these instants) is equal
is an objective feature of Newtonian spacetime. This

defines a notion of temporal congruence. When spatial
and temporal units have been chosen we thus have both
a definite spatial and a definite temporal distance be-
tween any two spacetime points (events).

To make sense of the notion of rest (according to
the law of inertia a body may remain at rest if no forces
act on it), Newtonian spacetime must also supply a no-
tion of sameness of spatial position across time. In
other words, the spaces-at-a-time of which Newtonian
spacetime consists must be interconnected – we can
represent this by having the same spatial points, at dif-
ferent times, on top of each other in the stack of spaces
that constitutes spacetime. In this pictorial representa-
tion Newtonian spacetime is a collection of spacetime
points with a vertical rigging; vertical lines that connect
the same spatial positions at different times (Fig. 6.1).
The question of whether events at different instants oc-
cur at the same place can now be sensibly raised and
answered, as can the more general question of at which
spatial distance events that happen at different times
occur. Because the position at which a later event oc-
curs has a unique spatial counterpart at the instant of
the earlier event, and as this counterpart has a well-de-
fined distance to the position of the earlier event (in the
Euclidean space of simultaneous events), we can define
this latter simultaneous distance as being also the spa-
tial distance between the two nonsimultaneous events
we started with. With these concepts in place, a body
can now be assigned an absolute velocity as the quotient
of the traversed distance and the time interval during
which this distance is covered. Absolute acceleration is
similarly defined as the rate of change of absolute ve-
locity and, finally, an inertial motion is one which does
not accelerate, i. e., has constant absolute velocity.

Newton has had many critics who distrusted his
notions of absolute rest and absolute motion, since
these concepts did not seem to correspond to anything
that is observable (interestingly, Newton’s absolute time
received much less criticism before the advent of rela-
tivity theory). The critics of Newton’s absolute space
(Leibniz, Huygens, and Mach among them) thought
that it should be possible to do without such suspect
notions, but they were unable to develop an alternative
mechanics achieving the same successes as Newton’s
theory. Moreover, Newton argued that absolute space
was observable after all, albeit indirectly, by means of
the inertial effects that occur in motions that are acceler-
ated with respect to absolute space – the famous bucket
thought experiment furnishes a prime example of this
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indirect observability. We now know that Newton was
too quick with his conclusions: these experiments ver-
ify only a part of the structure of Newtonian spacetime.
However, the task of giving an explanation of iner-
tial effects in classical mechanics without invoking the
complete structure of Newtonian spacetime was only
accomplished rather recently, in the twentieth century,
by the introduction of neo-Newtonian spacetime [6.2].

6.1.2 Neo-Newtonian Spacetime

Neo-Newtonian spacetime (also called Galilean space-
time) is similar to Newtonian spacetime in that the
spacetime points come as a collection of instants, three-
dimensional spaces-at-a-time: both Newtonian and neo-
Newtonian spacetime incorporate absolute simultane-
ity. As has already been pointed out, this temporal
ordering accords well with everyday intuitions (but is in
stark contrast to what special relativity teaches us about
time, as we shall see shortly). Both Newtonian and neo-
Newtonian spacetime provide a temporal metric (time–
distance function) that pronounces on the separation
between the instants, and a spatial metric which pro-
nounces on the separation of points within each instant
and assigns them the structure of three-dimensional Eu-
clidean spaces.

Newtonian and Neo-Newtonian spacetime differ,
however, concerning what notions they supply for judg-
ing how the points belonging to distinct instants relate.
Neo-Newtonian spacetime incorporates no notion of
sameness of place across time and so supports no notion
of absolute velocity. However, it does support a notion
of absolute acceleration. Neo-Newtonian spacetime is
equipped with an affine structure, i. e., a criterion that
judges lines through the spacetime as being straight
or bent, and assigns a measure of being bent. Straight
lines in spacetime represent inertial motions; bent ones
noninertial, absolutely accelerating motions. In neo-
Newtonian spacetime, then, inertial notions are primi-
tive, unlike in Newtonian spacetime, where they derive
from the spatial and temporal metric and the preferred
direction in spacetime defined by the vertical rigging
(the notion of absolute rest) (Fig. 6.1).

The Symmetries of Neo-Newtonian Spacetime
Newtonian spacetime has spatial translations and rota-
tions and time translations as symmetries. Neo-Newto-
nian spacetime, being a weaker structure, has all these
symmetries plus more. Consider its depiction in the
right-hand diagram of Fig. 6.1. The spacetime appears
as a stack of instants which are not rigidly pinned to-

Newtonian spacetime neo-Newtonian spacetime

placea) b) straight bent

instant
instant

Fig. 6.1 (a) Newtonian and (b) neo-Newtonian spacetimes (one
spatial dimension suppressed)

gether by a relation of absolute rest, like a loose deck of
playing cards. If we displace the cards in the deck uni-
formly with respect to each other, straight lines piercing
the deck will be mapped to new straight lines. These
transformations, therefore, represent symmetries of the
spacetime. Their physical interpretation is that they
represent Galilean boosts, transformations that impart
a constant velocity to everything in the universe.

6.1.3 Classical, Absolute Time

Neo-Newtonian spacetime is the most economic spa-
tiotemporal structure that is able to serve as a basis for
classical mechanics. It does not specify a definite spatial
distance between events that occur at different instants,
and in this respect it is similar to Minkowski spacetime
(to be discussed shortly). In order to assign a spatial
distance to two nonsimultaneous events, we need to in-
voke something external to neo-Newtonian spacetime,
namely a frame of reference (which can be represented
by parallel inertial worldlines that define the state of
rest in this frame of reference). Any spatial distance be-
tween two given events may result, depending on which
frame of reference we choose. This is in accordance
with the fact that the spatial distances between nonsi-
multaneous events are not invariant under the symmetry
transformations of neo-Newtonian spacetime; from this
it follows that these distances cannot be definable in
terms of the structural properties of this spacetime alone
(all these structural properties are invariant under the
symmetry transformations). This relation between sym-
metry and definability (if something is definable within
a certain structure, it should be invariant under the sym-
metries of this same structure) is helpful in judging
definability questions (for example in Malament’s proof
about the definability of relativistic simultaneity, to be
discussed later).
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In contrast to the spatial distance between nonsi-
multaneous events, the simultaneity relation, the tempo-
ral metric and the spatial metric at-an-instant are invari-
ant under the symmetries of neo-Newtonian spacetime.
These invariant properties are the defining, essential
features of neo-Newtonian spacetime, and therefore of
time and space in classical physics. In particular, clas-
sical time is absolute both with respect to its simultane-
ity relation and its temporal metric. Which spacetime
points can be taken to be at the same instant, and what
the temporal distance is between any two events (ex-
cept for the arbitrary choice of a unit) is fixed by the
classical spacetime structure itself, independent of the
physical processes that may be taking place in it, inde-
pendent of whether or not we have introduced a frame
of reference, and independent of the way in which we
connect the two spacetime points. The absoluteness of
these properties of time represents a core feature of
classical physics.

That absolute time with these properties is essen-
tially incorporated in classical physics can be seen from
the way it occurs in the equations determining dynam-
ical processes. Whatever path in spacetime between
a given pair of spacetime points is traveled by a clock
(or, more generally, by a periodic process), the equa-
tions tell us that the clock will register the time interval
corresponding to the absolute temporal metric.

A caveat is needed here: if the clock follows an ar-
bitrarily accelerated path, it will undergo shocks and
(inertial) forces and may become distorted or damaged,
maybe even to such an extent that it no longer ticks and
does not register any time lapse at all. What is meant
with the above statements is that absolute time is the
only temporal parameter occurring in the laws of mo-
tion – a good clock by definition must be such that it
registers this parameter. Possible distortions as a con-
sequence of acceleration will depend on the specific
design of the clock and should be corrected for (or the
clock should be made more robust in order to resist the
effects of acceleration). That such corrections are pos-
sible in principle is shown by the very fact that there
is only one time interval that occurs in the evolution
equations, regardless of the nature of the clock – this
time interval corresponds to a universal feature that is
independent of details about construction and materi-
als. Therefore, all clock indications that deviate from

this true time can be explained from the specifics of the
clock, and can be corrected for. This motivates the defi-
nition of an ideal clock as a clock that measures exactly
the absolute time intervals. This caveat is also impor-
tant for our later discussion of time in special relativity:
also in that case real (nonideal) clocks will generally
be subject to clock-specific effects of motion, which
should be corrected for (however, as we shall see, in
relativity there is no unique time interval between given
events even if we make such corrections).

The temporal metric of classical spacetime is thus
reflected in how fast physical processes evolve accord-
ing to the classical dynamics and is thus empirically
accessible. Consequently, we can provide direct phys-
ical implementations of the temporal notions that are
built into spacetime. For example, let us take a fiducial
spacetime point and consider all possible spacetime tra-
jectories of ideal clocks (in the sense just discussed) that
have their first tick at this spacetime point. The set of
spacetime points at which the clocks tick for a second
time is the three-dimensional space that is one unit of
time later than the starting event at which the first tick
took place. All events in this three-dimensional space
are simultaneous, so that we here have a direct and sim-
ple physical construction of a simultaneity hyperplane.
Events simultaneous with any given event can also
be constructed directly, according to classical physics,
by invoking instantaneous signals (gravitational sig-
nalling).

In conclusion, classical time is characterized by
a global simultaneity relation that slices up spacetime
in a unique way, forming a stack of three-dimensional
spaces-at-an-instant. Furthermore, the temporal dis-
tance between these instantaneous spaces is given as an
objective part of the classical time structure. The tempo-
ral distance between two events is absolute in the sense
that it does not depend on anything but the positions of
the events in spacetime. In particular, it does not make
a difference along which path in spacetime the time
interval between the two events is measured (this will
be different in special relativity). The link between the
temporal properties built into classical spacetime and
classical dynamics is immediate according to classical
physics: time intervals and the simultaneity relation reg-
ulate physical evolution, and in turn physical processes
feel and reflect the temporal structure.
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6.2 The Spacetime Structure of Special Relativity
The special theory of relativity originated in the most
famous of Einstein’s 1905 annus mirabilis papers, On
the electrodynamics of moving bodies [6.3–5]. In this
paper Einstein set out to persuade his readers that the
classical spacetime structure was not the only conceiv-
able one, nor necessarily the one required by physics.
To make his point Einstein paid close attention to how
spatial and temporal intervals can actually be deter-
mined with rigid rods and clocks. He demonstrated that
if his two basic postulates of special relativity are ac-
cepted, the results of such measurements necessarily
deviate from what is expected in classical spacetime.
Because of this emphasis on measurement, special rela-
tivity has appeared to some commentators as a theory
with an outspoken operationalist flavor: a theory in
which statements about space and time are reduced
to statements about the behavior of rods and clocks.
However, Minkowski showed in 1908 [6.5, 6] that the
theory can also be formulated after the model of New-
tonian or neo-Newtonian spacetime, namely as the
specification of an independent spacetime background
against which physical processes develop. But in the
new, special relativistic spacetime the spatiotemporal
geometric properties are different from those in clas-
sical spacetime: in Minkowski spacetime there exists
a four-dimensional distance function between space-
time points, instead of one spatial distance plus one
time difference as in Newtonian spacetime. In this new
structure there is no longer one unique time interval be-
tween any two given events. This already suggests that
the physical significance of the notion of simultaneity
will be less immediate than in classical physics: there
is no simple physically realizable locus of simultaneous
events one time unit later than a given event. In fact, rel-
ativistic simultaneity becomes a relative notion, defined
with respect to worldlines. Only in highly symmetrical
configurations of worldlines (the prime example being
congruences of parallel inertial worldlines, which rep-
resent inertial frames) does this lead to a global notion
of simultaneity. In the case of accelerated frames of ref-
erence it is generally not possible to define a physically
meaningful global simultaneity relation that is adapted
to the frame.

6.2.1 Time in Einstein’s 1905 Paper

At the end of the introductory section of his On
the electrodynamics of moving bodies [6.3–5] Ein-

stein famously declared (English translation from
[6.5]):

The theory to be developed is based – like all
electrodynamics – on the kinematics of the rigid
body, since the assertions of any such theory have
to do with the relationships between rigid bodies
(systems of coordinates), clocks, and electromag-
netic processes. Insufficient consideration of this
circumstance lies at the root of the difficulties which
the electrodynamics of moving bodies at present
encounters.

When Einstein subsequently starts discussing the no-
tion of time he elaborates on the same point and
warns us that a purely theoretical, mathematical de-
scription [6.5]

has no physical meaning unless we are quite clear
as to what we understand by time.

He goes on to explain that for the case of time at
one spatial position the sought physical definition (Ein-
stein’s term) can simply be given as the position of the
hands of my watch (located at the position in question).
However, time thus defined is a purely local concept,
and we need something more if we wish to compare
times at different positions, namely a notion of distant
simultaneity. In the 1905 paper Einstein briefly consid-
ers the possibility of assigning to distant events the time
indicated by one fixed clock at the moment a light sig-
nal from the events reaches this clock, but immediately
rejects this possibility because the time thus assigned
would depend on the position of the standard clock
(which would have the consequence that physical laws
would become position-dependent). This consideration
finally leads Einstein to the introduction of a much more
practical procedure for synchronizing clocks. Suppose
we have two clocks of the same construction, both
stationary in the same inertial frame and at a certain
distance from each other. Now send a light signal from
clock 1 at time t1 (as measured on clock 1), so that
it reaches clock 2 at t2 (as indicated by clock 2) after
which it is immediately reflected back to arrive at clock
1 again at t3. The two clocks can now be defined to be
in synchrony if t2 D 1=2.t1C t3/ . This is equivalent to
saying that synchronicity is achieved when clocks are
set such that the velocity of light, measured with their
help, is the same in the direction from 1 to 2 as in the
reverse direction from 2 to 1.
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The frame of reference in which the clocks are sta-
tionary can in this way be provided with a global notion
of time. In Einstein’s words [6.5]:

The time of an event is the indication which is given
simultaneously with the event by a stationary clock
located at the place of the event, where this clock
should be synchronous for all time determinations
with a specified stationary clock.

These and similar passages in the 1905 paper appear
to be based on, and to propose, an operationalist con-
ception of spatial and temporal notions. According to
such a conception coordinates are identified with marks
on material axes, distances are what is measured by
rigid measuring rods, and – most importantly for our
purposes – time is what is indicated by the hands
of synchronized clocks. Indeed, Einstein’s statements
in these pages, and the empiricist/operationalist ideas
that seem to lie behind them, have had a great influ-
ence in twentieth century philosophy of science [6.7–9].
Among the early logical positivists they constituted
one of the motivations for developing the doctrine of
coordinative definitions, according to which physical
concepts (like time) should be coordinated, through def-
initions, to concrete physical things and procedures.
In particular Reichenbach, in his famous book The
Philosophy of Space and Time [6.10] (first published
in German in 1928), emphasized that these coordina-
tive definitions of physical concepts are fundamentally
conventional. He elaborated this idea in detail in his
analysis of simultaneity (about which more later). Percy
Bridgman, the founder of operationalism, also took im-
portant inspiration from Einstein’s 1905 paper. In his
contribution to Albert Einstein: Philosopher-Scientist,
Bridgman wrote [6.11]:

Let us examine what Einstein did in his special
theory. In the first place, he recognized that the
meaning of a term is to be sought in the operations
employed in making application of the term. If the
term is one which is applicable to concrete physical
situations, as length or simultaneity, then the mean-
ing is to be sought in the operations by which the
length of concrete physical objects is determined, or
in the operations by which one determines whether
two concrete physical events are simultaneous or
not.

However, in his Remarks to the Essays Appearing
in This Collective Volume [6.12], Einstein decidedly
rejected this operationalist interpretation of special rela-
tivity and took the stance that relativistic space and time

are entities in their own right, with spatiotemporal geo-
metric properties that are independent of whether or not
they are being measured. Although Einstein made these
remarks more than four decades after his 1905 paper,
they are probably not too far removed from the attitude
that was in the background of his early work [6.8]. In-
deed, to mention just one consideration that explicitly
occurs in Einstein’s later work but appears so phys-
ically plausible that it can hardly be assumed that
Einstein thought differently in 1905: rods and clocks,
and macroscopic measuring devices in general, cannot
be considered as fundamental – rather, their behavior
should be explained on the basis of microscopic funda-
mental laws.

However this may be, the situation was much clar-
ified by Minkowski’s famous 1908 lecture Space and
Time (Raum und Zeit) [6.5, 6], which originated the
study of special relativity as a geometrical theory of
a four-dimensional spacetime manifold. According to
this approach, which has now become standard, relativ-
ity theory is about an independent spacetime manifold
with an in-built geometrical structure that exists even
if there are no rods and clocks at all. However, before
turning to this modern four-dimensional viewpoint, let
us look at the characteristics of special relativistic time
as they are already developed in Einstein’s 1905 paper.

Einstein starts from two postulates, the relativity
postulate and the light postulate. The relativity postu-
late asserts that all inertial systems are equivalent with
respect to the form of the physical laws: in all frames
of reference in which the mechanical laws hold in their
standard form (without centrifugal and Coriolis forces)
all other physical laws (e.g., those of electrodynam-
ics and optics) take their standard forms as well. The
light postulate says that light in empty space always
propagates with the same definite velocity, indepen-
dently of the state of motion of the source that has
emitted the light. It is remarkable that the combina-
tion of these prima facie innocent postulates (the first
says something very similar to the equivalence of iner-
tial frames that is well-known from classical mechanics,
the second is familiar from the ether theory of elec-
tromagnetism and optics) leads to conclusions that are
quite staggering from a classical point of view. As far
as time is concerned, the essential new conclusions are
that simultaneity becomes relative, i. e., dependent on
the frame of reference, and that moving clocks run slow
with respect to stationary clocks. Both consequences
follow immediately from the two postulates together
with considerations about how time can actually be
measured.
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The relativity of simultaneity is discussed by Ein-
stein right in the beginning of his 1905 paper, in Sect. 2
(On the relativity of lengths and time). Einstein asks
us to imagine a rigid rod that moves uniformly, with
velocity v, with respect to a given inertial system (the
stationary system). At the two ends of the rod (A and B,
respectively) there are clocks that are in synchrony with
the clocks in the stationary system (i. e., they indicate
the same time as the stationary clocks in whose imme-
diate proximity they find themselves). So these clocks
are synchronous from the point of view of the station-
ary system. Now, imagine further that an observer who
is moving along with the rod performs an experiment
to check whether the simultaneity condition explained
above is fulfilled. That is, he sends a light signal from A
to B that departs from A at time t1 (as indicated by the
clock at A). We can now calculate what time t2 will
be indicated by clock B at the instant the signal arrives
there. Since clocks A and B indicate stationary time, the
easiest way to do this is to describe the signal from the
stationary frame in order to find out how much station-
ary time it uses to go from A to B. The light postulate
tells us that the velocity of the light signal, as measured
in the stationary frame, has its standard value c (that
the light source is moving along with the moving rod
plays no role by virtue of the light postulate); but of
course B is moving with velocity v with respect to the
stationary frame. Therefore, it takes the light a time in-
terval l=.c� v/ to reach B, where l is the length of the
moving rod as measured in the stationary frame. Analo-
gously, the time interval needed by the light to go back
to A is l=.cC v/. So we find that t2 D t1C l=.c� v/, and
t3 D t1C l=.c� v/C l=.cC v/. Consequently, it is not
true that t2 D 1=2.t1C t3/; this means that the comoving
observer reaches the conclusion that clocks A and B are
not synchronized.

In other words, two clocks A and B that have been
verified to be synchronous with the help of the synchro-
nization procedure in one frame (in the above example:
the stationary frame), turn out to be not in synchrony
when we apply the same synchronization procedure in
another frame of reference. Therefore, two events that
take place simultaneously in one frame of reference (as
judged with clocks that are synchronous in that frame)
do not take place at the same instant according to the
way time is reckoned in other frames of reference. This
is the famous relativity of simultaneity that figures cen-
trally in special relativity theory.

That moving clocks must run slow is also an imme-
diate consequence of the two postulates. Suppose that
we send a light signal along the y-axis in an inertial

frame of reference (the stationary frame) and that this
signal takes one unit of time (as measured by clocks
in our stationary frame) to go from start (let us say in
the origin of our coordinate system, .0; 0; 0/) to fin-
ish .0; c; 0/. Now consider a second inertial system,
whose origin and directions of the axes at the instant of
emission of the signal coincides with those the station-
ary system, and moves with velocity v along the x-axis
(from the viewpoint of this second frame of reference,
the stationary system moves with velocity �v along the
axis of x). In this second frame of reference exactly the
same experiment can be done: so also here a light sig-
nal is sent off from the origin in the y-direction and
is made to traverse a distance c in the y-direction. By
virtue of the relativity postulates, the laws governing the
signals are exactly the same in the two frames (in partic-
ular, in both cases the velocity of light is c). Therefore,
also the light signal in the moving frame takes exactly
one unit of time, as measured by clocks that are at rest
in this moving frame (comoving clocks). However, as
seen from the stationary frame, the light signal in the
moving frame does not go in the y-direction: its desti-
nation moves in the x-direction, so that the light must
follow a slanted path to reach it (as seen from the sta-
tionary frame). Therefore, as judged from the stationary
frame the light signal in the moving frame does not
take one unit of time, but an interval T that follows
from application of the Pythagorean theorem to trian-
gle ABC (Fig. 6.2). We find .Tc/2 D .Tv/2C c2, so that
T D 1=

p
1� v2=c2. So according to the time measure-

ments in the stationary system the unit of time of the
moving system is not 1 but 1=

p
1� v2=c2, a number

greater than 1. Clocks in the moving system must run
slow by the factor

p
1� v2=c2 in order to make this

consistent. Indeed, good clocks in the moving system

A Tv C x

y

Tc c

B

Fig. 6.2 A light signal takes longer as judged from another
inertial system
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all measure that it takes one time unit for the light to
go up the y-axis, in the same way that good clocks of
the same constitution in our stationary system tell us
that the similar process in our system takes one unit of
time (this is the relativity postulate) – this means that
whatever their constitution, moving clocks must all run
slower, by the same factor, than their stationary coun-
terparts.

Of course, all inertial frames of reference are equiv-
alent in relativity theory, so that there cannot be frames
that are objectively stationary. Consequently, the clocks
in the stationary system of the above argument must
also run slow with respect to the clocks of the moving
system: the retardation effect has to be symmetric. This
is possible without contradiction because from each
stationary inertial system moving clocks are compared
with stationary clocks via the simultaneity relation that
is defined within the stationary inertial system. That is,
events in the life of a moving clock are compared with
simultaneous events in the life of a stationary clock,
using the simultaneity relation of the stationary frame.
When we switch to a frame that is comoving with the
moving clock (so that this frame becomes our new
stationary frame), and want to compare our clock (at
rest in our new frame) with the original stationary one
(which is now moving with respect to us), we have
to use the simultaneity relation of our new stationary
frame of reference. As we have seen, simultaneity is
judged differently from these different frames of ref-
erence, and this change in simultaneity perspective is
exactly what is needed to make the retardation effect
symmetric (Fig. 6.3).

The slowing down of moving clocks was just ex-
plained for the case of clocks that move uniformly
with respect to each other, so that they are all in iner-
tial motion. However, the effect also applies to clocks
that are in nonuniform motion. The retardation for-
mula

p
1� v2=c2 and the above argument show that

the slowing down does not depend on peculiarities of
the construction of the clock, but is quite general in
nature – in this sense, it may be considered a character-
istic of special relativistic time itself. If a clock moves
nonuniformly, small sections of its trajectory can be ap-
proximated by motion with constant velocity, and for
all these (very) small parts the above retardation factor
applies, when for v we take the value of the instanta-
neous velocity. The total retardation then follows from
integration of all these local effects over the trajectory
of the clock.

It is important here to remember the caveat of
Sect. 6.1.3 about the definition of good clocks. The out-
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Fig. 6.3 The relativity of simultaneity makes reciprocity
of the relativistic retardation consistent: a stationary clock
ticks in A, which is earlier than the tick of a moving
clock in B. However, the simultaneity of this moving clock
makes C simultaneous with B, which is earlier than A

lined calculation pertains to what an ideal clock will
indicate. An ideal clock is a clock that has been cor-
rected for discrepancies that depend on the specific
construction of the clock. In this case, we should correct
for effects of the acceleration. Accelerations will only
affect clocks in specific construction-dependent ways –
acceleration effects are not universal, in contradistinc-
tion to the relativistic retardation that only depends on v.
Because of their dependence on the mechanism of the
clock, on the properties of the materials that were used,
and so on, the effects of acceleration can be made ar-
bitrarily small. We can make our clocks more robust
and acceleration-resistant; or we can correct their time
indications for acceleration effects by means of calcu-
lations.

An immediate consequence of this slowing down of
clocks also if accelerations play a role is the notorious
twin effect. It is sometimes erroneously thought that the
twin effect belongs to the domain of general relativity
(since the twin case involves acceleration), but in reality
it is typical of special relativistic time: given a pair of
events P and Q, there does not exist one unique time
interval between them. The amount of time that passes
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between P and Q depends on the physical process that
connects these two events. After having discussed the
retardation effect in his 1905 paper, Einstein made the
point in the following way (Sect. 4, Physical meaning
of the equations obtained with respect to moving rigid
bodies and moving clocks):

From this (i. e., the retardation) there follows the
following peculiar consequence. If at the points A
and B of K (i. e., the stationary system) there are sta-
tionary clocks which, viewed in the stationary sys-
tem, are synchronous; and if the clock at A is moved
with the velocity v along the line AB to B, then on
its arrival at B the two clocks no longer synchro-
nize, but the clock moved from A to B lags behind
the other which has remained at B by 1=2t.v2=c2/
(up to magnitudes of fourth and higher order), t be-
ing the time needed by the clock to go from A to B. It
is at once clear that this result still holds if the clock
moves from A to B in any polygonal line, and also
when the points A and B coincide. If we assume that
the result proved for a polygonal line is also valid
for a continuously curved line, we arrive at this re-
sult: if one of two synchronous clocks at A is moved
in a closed curve with constant velocity until it re-
turns to A, the journey lasting t seconds, then on its
arrival at A this traveling clock is 1=2tv2=c2 behind
the clock that stayed at rest. From this, it follows
that a balance-clock at the equator must go more
slowly, by a very small amount, than a precisely
similar clock situated at one of the poles under oth-
erwise identical conditions.

It immediately follows that different paths between any
two given events, traversed with different speeds, cor-
respond to different lapses of time.

6.2.2 Minkowski Spacetime

From the relativity postulate in combination with the
light postulate it follows that the description of a propa-
gating light wave should look the same in every inertial
frame. Therefore, the equation for an outgoing spher-
ical light wave front emitted from the origin in space
and time .0; 0;0; 0/, .�x/2C .�y/2C .�z/2 D c2.�t/2

, must hold in all inertial frames whose spatial origins
coincided at the instant of the emission of the light.
This mathematical expression should, therefore, be in-
variant in the transition from one inertial system to
another. The quantities �x, �y and �z stand for the
distances traveled by the light in the directions x, y
and z, respectively, in a time interval �t. In effect, Ein-

stein used this requirement of invariance in his 1905
paper to derive the equations that connect the coordi-
nate systems of different inertial systems, the Lorentz
transformations. The Lorentz transformations thus ap-
pear as the group of (linear) transformations leaving
the equation .�x/2C .�y/2C .�z/2� c2.�t/2 D 0 in-
variant. However, it turns out that these same Lorentz
transformations have a more general property: they
leave the form .�x/2C.�y/2C.�z/2�c2.�t/2 invari-
ant even if its numerical value does not vanish. This
property of the transformation group connecting coor-
dinate systems of different inertial frames of reference
reminds one of a very similar property of the transfor-
mations in Euclidean three-dimensional geometry that
connect different Cartesian coordinate systems: these
transformations leave .�x/2C .�y/2C .�z/2 invariant.
The interpretation of the latter invariance is of course
that .�x/2C .�y/2C .�z/2 represents an objectively
existing spatial distance between points, which can be
represented in whatever coordinate system we wish, but
whose value is independent of the choice of coordi-
nates.

This analogy lies at the basis of Minkowski’s pro-
posal [6.5, 6] to interpret c2.�ct/2 � .�x/2� .�y/2�
.�z/2 as a four-dimensional distance between points
(i. e., events) in the space–time continuum. Different in-
ertial frames of reference, with their standard spatial
and temporal coordinates, thus become similar to dif-
ferent Cartesian coordinate systems in Euclidean spatial
geometry. Moreover, just as the coordinates of different
Cartesian systems sharing the same origin are linked by
spatial rotations, the coordinates associated with the dif-
ferent inertial systems of the above wave front example
are connected by Lorentz transformations representing
the effects of boosts. (In fact, if we introduce the imag-
inary time coordinate it, with iD

p
�1, the distance

function assumes the form of a four-dimensional Eu-
clidean distance and the Lorentz transformations appear
as four-dimensional Euclidean rotations.)

In this way special relativity theory becomes a the-
ory that places all events in the history of the uni-
verse in a four-dimensional manifold of spacetime
points, Minkowski spacetime, that possesses a definite
spatiotemporal geometry. This geometry derives from
a distance ds between neighboring spacetime points:
ds2 D c2 dt2 � dx2 � dy2 � dz2, where x, y, z and t are
inertial coordinates (this is the infinitesimal form of the
distance just discussed – considering this infinitesimal
form makes it possible to compute distances along ar-
bitrary curves in spacetime). The distance ds is well-
defined in Minkowski spacetime regardless of whether
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or not material things – particles and/or fields – are
present; even in empty Minkowski spacetime there thus
exists a definite spatiotemporal geometry.

Like in ordinary Euclidean geometry, also in
Minkowski spacetime the comparison of distances
makes it possible to distinguish between curved and
straight worldlines in the four-dimensional manifold.
There is an important difference with the Euclidean
case, though: whereas straight lines in Euclidean geom-
etry realize the shortest distance between points lying
on them, time-like straight worldlines in Minkowski
spacetime (time-like means that ds > 0 along these
worldlines) realize the longest distance between events.
Straight time-like worldlines in Minkowski spacetime
represent uniform inertial motion of material bodies.
Straight worldlines that realize null-intervals repre-
sent rays of light (light-like worldlines). Curved (i. e.,
not straight) time-like worldlines correspond to ac-
celerated motions of particles. Given any point in
Minkowski spacetime, the light-like worldlines going
through it form two cones, the future and past light
cones, respectively.

Consider a pair of events that lie on a straight time-
like worldline. Then there is an inertial coordinate sys-
tem according to which these events occur at the same
spatial position; in this coordinate system the four-di-
mensional distance �s between the points is exactly
c�t. In other words, apart from a factor c,�s is the time
interval between the two events in question, as mea-
sured by a clock in inertial motion in whose life the
events happen. This physical interpretation of �s can
be generalized (reminding ourselves again of the caveat
about accelerating clocks): 1=c

R
ds along a time-like

curve connecting two events represents the time that
lapses between these two events as measured by an
ideal clock whose journey between the events is rep-
resented by the curve in question. The time interval
that is thus defined depends on the curve along which
it is calculated. This is the general expression of what
we already mentioned, namely that there does not ex-
ist one unique time interval between given events, as
illustrated by the twin effect. The elapsed time 1=c

R
ds

between events, which depends on the worldline con-
necting these events that is considered, is called the
proper time between the events, along the connecting
worldline in question.

It is an essential characteristic of the thus emerging
special relativistic spacetime structure that no global
time function is defined in it. This is quite different from
the situation in Newtonian or neo-Newtonian space-
time. According to classical physics, once we have

O x

t

t2– x2 = 1

Fig. 6.4 Events one time unit later than event O fill the
shaded area inside the hyperbola

chosen any particular event as our time origin, and have
decided on a time unit, each event in the history of the
universe can be assigned one definite time, namely the
time that passes during any process that starts in the
time origin and ends in the event in question. This pro-
cedure defines a time function on all spacetime points
in classical spacetime. However, in relativity theory
this recipe for defining global time does not work: be-
tween two events infinitely many connecting worldlines
can be drawn, and the time lapse between our events
depends on the worldline that is considered. The great-
est lapse of time T is realized by a straight, inertial
worldline; but any other value between 0 and T can
be found by considering curved time-like worldlines.
This, of course, is just the twin effect in a more abstract
setting.

The lack of a global time in Minkowski spacetime
does not lead to a problem for the formulation of phys-
ical laws. Indeed, time is still there in the form of the
duration of processes: the time 1=c

R
ds taken up by

a process between two events occurring during its ex-
istence. It is only this time that occurs in the physical
equations and is relevant for the evolution of physical
systems.

This nonglobal character of relativistic time has
an immediate consequence for the status of simultane-
ity in relativity theory. Suppose we choose an event
and ask for all events that happen one unit of time
later. In Newtonian or neo-Newtonian spacetime the
answer is given by a three-dimensional space at-an-in-
stant, consisting of simultaneous events all of which
are one time unit later than the original event. These
events cannot be mutually connected by ordinary sig-
nals with finite velocity (their propagation takes time,
which would make one event later than another) but
can only be linked via infinitely fast processes. In rel-
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ativity theory the situation is very different, however,
as we can see by considering the twin case again. By
traveling fast enough (with a speed arbitrarily close to
the speed of light) along a noninertial path we can push
the event at which one time unit has passed arbitrar-
ily far into the future. So the locus of events one time
unit later than a given event does not define a sensi-
ble notion of simultaneity. Actually, these events fill the
greater part of the future light cone of the originally
given event. As can be easily verified, they constitute
the set of events that are contained within the interior
of the hyperbola with Minkowski distance 1 from the
origin, c2.�t/2� .�x/2� .�y/2� .�z/2 D 1 (Fig. 6.4).
Between events in this set there is generally a time-like
distance, which implies that the events in question stand
in the earlier–later relation to each other and cannot be
simultaneous.

So the most direct and seemingly natural physical
interpretation of simultaneity fails in special relativity.
In fact, more generally there is a reason to doubt the
physical relevance of any relativistic notion of simul-
taneity: it should not be expected that simultaneity plays
a significant role in determining the evolution of physi-
cal processes. Indeed, any two events that can be called
simultaneous should not be connectible by a causal sig-
nal (signals cannot have infinite speeds in relativity: the
maximum signal speed is the speed of light – causally
connected events, therefore, stand in the earlier–later
relation to each other). This means that in relativity the-
ory simultaneous events are necessarily unable to have
direct physical contact: any viable notion of simultane-
ity can only group together events that are causally cut
off from each other. These events consequently can-
not work together and will not function as a physically
coherent whole (more precisely, they cannot do so by
virtue of being simultaneous; it could be, of course,
that there are relations between them because of com-
mon causes in the past). A more rigorous formulation
of this same idea is provided by the observation that
all physical interactions in relativistic physics are lo-
cal. According to the relativistic equations of motion,
material bodies and fields can only feel and influence
each other at the spacetime points at which they are co-
present. The physical changes that are brought about
by interactions at a spacetime point are independent of
what goes on elsewhere and only depend on the lo-
cal situation. From this it follows that how one groups
distant events together under the denominator simul-
taneous is immaterial for what happens in physical
processes; the only thing that counts for those processes
is the causal structure of spacetime. This causal struc-

ture tells us how signals propagate; propagation is local,
within the future light cone of the source of the signals.
On the basis of this argument one would not expect any
causal role of the notion of simultaneity in the laws of
relativistic physics.

Nevertheless, as we have seen, it is possible and
usual to define a simultaneity relation within relativistic
inertial frames of reference – Einstein’s synchroniza-
tion procedure does exactly this. To represent Einstein
simultaneity in Minkowski spacetime, we have to re-
alize that any inertial system can be represented by
an infinite set of parallel straight time-like worldlines
that correspond to being at the same spatial position
in this inertial system. Given an inertial system and its
associated notion of Einstein simultaneity, we can split
up four-dimensional Minkowski spacetime as a stack
of three-dimensional spaces (so that we obtain a so-
called foliation of Minkowski spacetime); these three-
dimensional spaces represent the universe at different
instants according to the given simultaneity relation.
Now, there are infinitely many possible inertial systems
(each one represented by parallel inertial worldlines –
a congruence of parallel worldlines – in a particular
direction), and each of them has its own Einstein si-
multaneity relation. This is exactly the relativity of
simultaneity that we encountered in Einstein’s article.
In inertial coordinates adapted to a given frame of ref-
erence the equation for space at one instant t0 is simply
tD t0, so that any vector connecting two events in this
space at t0 is perpendicular to the time axis, in the fol-
lowing sense. Any four-vector in the space-at-a-time
has the form aD .0;�x; �y;�z/, and any four-vector
along the time axis has the form bD .�t; 0; 0; 0/, so
that a:bD 0 if we define the Minkowski inner prod-
uct a:b by a:bD ca1b1 � a2b2 � a3b3� a4b4. Since the
value of this Minkowski inner product is invariant un-
der Lorentz transformations, we find that in arbitrary
coordinates a:bD 0 if a points in the direction of the
simultaneity hyperplane and b points in the direction of
the congruence of inertial worldlines that represents the
frame of reference. In other words, Einstein simultane-
ity in a frame of reference corresponds to Minkowski
orthogonality with respect to the inertial worldlines
characterizing rest in this frame of reference.

Since Einstein simultaneity is relative (it corre-
sponds to Minkowski orthogonality with respect to cho-
sen worldlines), it is obviously nonunique. Minkowski
spacetime can be foliated in infinitely many ways using
simultaneity relations adapted to different frames of ref-
erence. This is completely different from the situation
in prerelativistic spacetimes: both Newtonian and neo-
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Newtonian spacetime possess an in-built and unique fo-
liation as a stack of spaces-at-an-instant, provided by
absolute simultaneity. As we have seen, this foliation
is physically significant according to classical physics:
a clock traveling at arbitrary velocity and acceleration
will register the number of simultaneity hyperplanes its
worldline crosses: the next tick will occur at the event
at which its world line pierces the simultaneity hyper-
plane that lies one time unit to the future. There is no
corresponding general physical significance, for clocks
in arbitrary states of motion, of the simultaneity hyper-
planes in special relativity.

6.2.3 Simultaneity in Noninertial Frames
of Reference

We have emphasized two key features of time in spe-
cial relativity: first, time intervals between events are no
longer unique but have become relative to the processes
connecting the events; and second, the simultaneity
relation introduced by Einstein is relative to inertial
frames. One may wonder what the special role of in-
ertial frames in this context is. Would it be possible
to generalize the considerations about simultaneity to
noninertial frames? If not, what distinguishes inertial
frames from other frames with respect to the role of
time?

To investigate this question it is useful to look at
the situation in a rotating frame of reference [6.13].
In terms of polar coordinates attached to a frame that
rotates in the x� y plane of an inertial system, with an-
gular velocity !, the Minkowski distance ds assumes
the form (we suppress the z coordinate)

ds2 D .c2 � r2!2/dt2 � dr2 � r2 d'2

� 2!r2 d' dt ;
(6.1)

with t the time coordinate of the inertial system. As
we know, ds=c represents the time measured by an
ideal clock whose worldline connects the events be-
tween which ds is calculated. This entails that a clock
at rest in the rotating frame will indicate the time

ds

c
D

s�
1�

r2!2

c2

�
dt : (6.2)

Equation (6.2) implies that clocks at rest in the rotating
frame run slow compared to clocks in the inertial frame,
as expected (r! is the velocity of the clock with respect
to the inertial frame).

When we now turn to simultaneity we find, also
as expected, that dtD 0 does not correspond to (local)
Einstein synchrony as judged from the rotating frame.
Remember that the definition of Einstein synchrony of
two clocks A and B is that a light signal sent from A
to B and immediately reflected to A, reaches B when B
indicates a time that is halfway between the instants of
emission and reception, respectively, as measured by A.
Suppose that A and B, both at rest in the rotating frame,
have positions with coordinate differences dr and d'.
A light signal between A and B follows a null worldline

.c2� r2!2/dt2 � dr2 � r2 d'2 � 2!r2 d' dtD 0 :

(6.3)

This equation gives the following solutions for dt when
it is applied to the signals from A to B and back, respec-
tively,

dt1;2 D
˙!r2 d'C

p
.c2 �!2r2/dr2C c2r2 d'2

c2 �!2r2
:

(6.4)

If t0 is the time coordinate of the emission event at A,
the event at A with time coordinate t0C1=2.dt1C dt2/
is Einstein simultaneous with the event at B with time
coordinate t0C dt1. It follows that Einstein synchrony
between infinitesimally close events corresponds to the
following difference in the t-coordinate

dtD
!r2 d'

c2 �!2r2
: (6.5)

Therefore, for events that differ in their '-coordinates
dtD 0 is not equivalent to Einstein simultaneity. This
was to be expected because of the motion in the tangen-
tial direction with respect to the inertial system.

The important thing is that expression (6.5) demon-
strates that Einstein simultaneity between neighboring
events in the rotating frame cannot be extended to
a global notion. Indeed, if we go along a circle with
radius r, in the positive �-direction, while establishing
Einstein simultaneity along the way, we create a time
gap �tD 2�!r2=.c2�!2r2/ upon completion of the
circle. Doing the same thing in the opposite direction
results in a time gap of the same absolute value but with
opposite sign. So the total time difference generated by
synchronizing over a complete circle in one direction,
and comparing the result with doing the same thing in
the other direction is �tD 4�!r2=.c2�!2r2/.
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Now suppose that two light signals are emitted from
a source fixed in the rotating frame and that they start
traveling in opposite directions along the same circle
of constant r. Suppose further that we follow the two
signals while locally using standard synchrony; this im-
plies that locally the standard constant velocity c can
be attributed to the signals. We therefore conclude that
the two signals use the same amount of time in order to
complete their circles and return to their source, as cal-
culated by integrating the elapsed time intervals mea-
sured in the successive local comoving inertial frames
(the signals cover the same distances, with the same
velocity of light, as judged from these frames). How-
ever, because of the just-mentioned time gaps the two
signals do not complete their circles simultaneously, in
one event. There is a time difference�tD 4�!r2=.c2�

!2r2/ between their arrival times, as measured in the
coordinate t. This is the celebrated Sagnac effect.

The (experimentally confirmed) occurrence of this
Sagnac effect is the empirical counterpart of what we
just derived, namely that the locally defined Einstein

simultaneities on the rotating disc do not mesh; they
cannot be combined into one global Einstein simultane-
ity that is everywhere adapted to the rotating system.
This purely local significance of Einstein simultaneity
is a quite general feature of accelerated frames of ref-
erence (although there are exceptions, like the case of
hyperbolic motion – but even here Einstein simultane-
ity cannot be made to extend over the whole of space).
Inertial frames stand out by their symmetry: they are
characterized by parallel straight time-like worldlines,
so that the spatiotemporal homogeneity and symmetry
of Minkowski spacetime is respected in them. This is
responsible for the fact that no Sagnac time gap exists
in inertial frames. The symmetry (homogeneity and
isotropy) of inertial frames makes Einstein simultaneity
into a global notion in these frames. By the same token,
the resulting global simultaneity hyperplanes supply
symmetrical ways of foliating Minkowski spacetime,
but do not possess an obvious significance in terms of
a dynamically progressing now, causality, or a flow of
time.

6.3 Philosophical Issues

Minkowski’s four-dimensional world is a representa-
tion of the whole of history at once, in one picture.
This block seems to do away with traditional concep-
tions about temporal becoming. In the four-dimensional
block universe all events, past, present and future, are
where they are and cannot change; they are fixed, and
this may suggest a form of determinism.

In this section we shall address these and sim-
ilar philosophical issues relating to relativity theory.
Another important group of questions concerns the sta-
tus of relativistic simultaneity. As we have seen, in
Minkowski spacetime simultaneity becomes a relative
notion since it is defined relative to worldlines: there is
consequently no unique global simultaneity relation in
Minkowski spacetime. Each inertial system possesses
its own Einstein simultaneity. If we attempt to define
Einstein simultaneity with respect to a collection of
noninertial worldlines it is even generally impossible to
arrive at a global relation at all. Moreover, there is a fur-
ther issue: even in a given inertial frame of reference
one may doubt the uniqueness of simultaneity. This
is because simultaneity was introduced via a defini-
tion that stipulated a synchronization procedure (think
back of Einstein’s proposal for synchronizing clocks) –
and one definition or stipulation may be replaced by

another. This line of thought leads to the notorious
conventionality of simultaneity thesis, which has been
debated ever since Einstein’s 1905 paper.

6.3.1 Relativity and the Block Universe

In Minkowski’s version of special relativity center stage
is taken by the four-dimensional spacetime manifold
and its geometry. In so-called Minkowski diagrams
events are represented as points, in the same way as
spatial points in three-dimensional analytical geome-
try – the only difference being that now a time axis
has been added to the three spatial axes. In a complete
Minkowski diagram of the universe every event in the
universe’s history is included, each at its own spatial
position and time of occurrence. Of course we cannot
actually draw and specify this diagram representing all
of history, since we know only a very tiny fraction of it.
However, this epistemological consideration does not
provide a valid argument against the existence of the
complete four-dimensional picture. Indeed, the diagram
exists by virtue of the fact that past, present, and future
exist in the harmless sense that all past events took place
at their places and times in history where they actually
took place, present events are now taking place at their
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individual positions, and future events (whatever they
will be) will take place at their own positions and in-
stants. The history of the universe is this collection of
all events in past, present, and future, and the four-di-
mensional Minkowski picture is defined as their one-
to-one representation. Assuming that this picture exists
is equivalent to assuming that the universe has a unique
history. So the only supposition made in asserting the
existence of the complete Minkowski diagram is that
the universe possesses an actual and well-defined his-
tory. In what follows we shall accept this premise.

The four-dimensional picture is one entity, it is there
at once: we could imagine it as being before our eyes at
one particular time, as one block, the block universe.

This four-dimensional block is usually introduced
in the context of relativity theory, like we just did. How-
ever, it should be noted that the possibility of four-
dimensional representations is independent of the va-
lidity of relativity theory, and that these or similar
representations are, in fact, widely used also outside
of physics. Any history book specifies events at dif-
ferent places and times – such a historical account
is presented to us as one whole. It is wholly present
to us at one instant, and its truth, in the sense of its
one-to-one correspondence with what actually has hap-
pened, is independent of what time it is now. The same
applies to television guides or railway timetables. Ob-
viously, the possibility of these and similar examples
is independent of the validity of relativity theory and
the appropriateness of Minkowski spacetime; it only
depends on the localizability of events by means of
three spatial coordinates and one time coordinate (in
any given global coordinate system). In classical New-
tonian physics (parts of) the history of the universe can
also be represented in a four-dimensional picture, in this
case by means of events placed in Newtonian space-
time. Therefore, block universe representations are not
confined to relativity theory or even to physics in gen-
eral. Still, relativity theory, with its nonuniqueness of
time, adds new and significant elements and is often
adduced as strong support for the idea that the entire
history of the world should be seen as one thing, wholly
present at once. That is, relativity theory is often put
forward as providing physical support for the philo-
sophical doctrine of eternalism [6.2, 14–17].

Eternalism is the position, in the philosophy of time,
according to which all events in history are equally real:
they all exist, at their own positions and times, with-
out there being an absolute distinction between past,
present, and future. Any such distinction should ac-
cording to the eternalist be interpreted as relative and

indexical: what is past, present, and future depends on
the position in spacetime at which the statements in-
volving these temporal distinctions are made. So for
Aristotle we are in the future, whereas Aristotle is in the
past for us; but according to eternalism there is no ab-
solute past, nor an absolute future. Accordingly, it does
not make sense to say that Aristotle is in the past tout
court, without the specification of a point of reference.

The position opposite to eternalism is that of pre-
sentism [6.2, 14, 16, 18], which says that there are
objective distinctions between the modes of being of
events in the history of the universe: the present – the
now – is real in a way that is objectively different from
the way the past and the future exist. Usually presentists
argue that the future does not (yet) exist at all, and that
the past has ceased to exist, so that reality is confined to
the present.

Besides eternalism, another conclusion that is
sometimes drawn from the use of the four-dimensional
representation is that it implies the absence of change:
the block is static, one changeless entity. The entire his-
tory of the universe is included in it, and there is no
possibility of making it different from what it is.

This fixedness has also given rise to the notion that
the four-dimensional block picture leads to determin-
ism (see [6.15] for a discussion and [6.19] for a defense
of this idea). The background of using the term deter-
minism is that events are completely determined by how
they are included in the block; e.g., it is impossible to
change the future, since it is already indicated in the
Minkowski diagram what it will be. All events in his-
tory are completely fixed in this same way, and this can
only be so if there is determinism (according to those
who defend this idea).

It should be noted, however, that ambiguities have
crept in, both in the use of determinism and of static.
Determinism in the sense in which the term is used
in physics is about whether the equations of motion
have unique solutions once boundary and initial con-
ditions have been specified. In a deterministic universe,
according to this definition, data on a Cauchy hyper-
surface (a set of points from which predictions can
be made, like three-dimensional space at one instant)
completely fix events elsewhere in the universe via
the laws of motion. Therefore, physical determinism is
a doctrine about the relation, specified by the physical
evolution equations, between what happens at different
times. However, in the block determinism that was just
explained there was no mention at all of evolution equa-
tions or even of physical theory. This block determinism
is consequently completely different from physical de-
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terminism. It is not about physical relations between
events, like physical determinism is; but it is about the
relation between events in the history of the universe
on one hand, and their representation in the block uni-
verse on the other. If the four-dimensional Minkowski
picture of the world is accurate and faithful, history can-
not be different from what the representation says it is.
The cannot here expresses logical necessity; it is the
definition of faithfulness of a representation that is re-
sponsible for the fact that there cannot be discrepancies
between a faithful representation and what is repre-
sented. There is no connection at all here with physical
determinism or causality. The future, and the past, are
fixed and determined in the block determinism sense
because they cannot be different from what they will
actually be (in the case of the future) or from what they
actually were (in the case of the past). This is tauto-
logical. In accordance with this diagnosis, it makes no
difference for representability in the form of a four-
dimensional block whether the history of the world is
governed by deterministic equations or is subject to
stochastic evolution. In both cases, there will be exactly
one future, although this future is not fixed by present
conditions and physical laws in the case of stochastic
evolution. This is immaterial in the present context; the
existence of one actual future is enough to determine
the block.

In the case of the use of static as a characterization
of the block universe more confusion is lurking. The
block universe as an entity in itself evidently cannot
change; this, again, is a logical necessity. Indeed, the
history of the universe cannot be different from what it
is, nor can its faithful representation be different from
what a faithful representation of the actual history is, so
the four-dimensional block comprising the total history
cannot change in any way. But this does not exclude
the existence of change within the universe. The events
represented in the block are, generally speaking, part
of dynamic processes, e.g., the motion of objects. The
change that is inherent in such processes is fully in-
cluded in the block, in the case of an object’s motion by
the direction of its worldline, and more generally by the
attribution of different properties at different instants.
So although it is true that the block per se is changeless,
by definition, this implies nothing about the presence
or absence of physical change in the universe. So it
seems a non sequitur to conclude from the existence of
the block representation that there is no change in the
world. However, we have not yet gone to the heart of
the matter and should pay more attention to the role of
relativity theory in this debate.

As we have already noted, four-dimensional rep-
resentations are possible even in the case of Newto-
nian physics. However, in that context comments about
a lack of change or the future being fixed are never
heard. This is because in the prerelativistic case the
block universe as one whole can be considered a kind of
summarizing overview of history that leaves out impor-
tant structural details. To have a full view of history,
according to classical physics, one should include in
the picture that there is an absolute, unique, and global
simultaneity relation that slices up the block. The clas-
sical block can, therefore, be thought of as a continuous
stack of spaces-at-an-instant, and this makes it possible
to combine this block with traditional and intuitively
appealing notions about time. In particular, we may
think of the classical block as growing by adding lay-
ers of new history [6.14, 16, 20], if we subscribe to the
so-called A theory of time.

According to this A theory time is dynamic, in the
sense that it flows, with a present that moves from past to
future [6.21]. This is to be contrasted with the B theory
of time according to which a complete description of
the temporal evolution of the world can be given while
using only relational terms like earlier than and later
than. The A theory is closer to our direct experience of
time and our intuitions, but it faces severe difficulties
in giving clear meaning to the concept of motion of the
now (ordinarily, when we speak of flow or motion we
mean change of position in time; what, then could mo-
tion of time itself mean?).

It would be beyond the scope of this chapter to dis-
cuss the pros and cons of the A and B theories of time –
for our purposes here it suffices to notice that the A the-
ory fits the classical block, corresponding to Newtonian
or neo-Newtonian spacetime, much better than the rel-
ativistic block. This is because Minkowski spacetime
does not possess a unique global simultaneity structure.
So even if clear sense could be made of the notion that
the now progresses, application of the A theory to rela-
tivistic spacetime still faces the difficulty of deciding on
which of the infinitely many Einstein simultaneity hy-
perplanes the now has to be located. Special relativity
denies that one of these simultaneity hyperplanes can
be considered as privileged; this is exactly what is said
by the relativity postulate (according to which all iner-
tial systems are equivalent).

An alternate way of showing the difficulty of com-
bining the A theory of time and presentism with rela-
tivistic simultaneity makes use of the observation that
relativistic simultaneity is not transitive, in the follow-
ing sense. If event A is simultaneous with event B
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according to the simultaneity of frame K, and B is si-
multaneous with C according to the simultaneity of K0,
A will generally not be simultaneous with C, neither ac-
cording to K nor according to K0. This is no problem,
and even natural, within special relativity itself. How-
ever, if we want to say that simultaneity hyperplanes
represent what is present or what is real, in an absolute
sense (i. e., without relativizing to a frame of reference)
we obviously run into trouble [6.19, 22]. These abso-
lute notions of presentness and reality are meant to be
transitive: e.g., if B is equally real as A, and also equally
real as C, then A and C must also be equally real. The
interpretation of relativistic simultaneity in terms of an
absolute present that represents reality, therefore, leads
to contradictions.

So there is a fundamental tension between relativ-
ity theory and traditional A conceptions of time. This is
the real background of the intuitive complaint that the
block universe is static. Philosophers who subscribe to
this complaint do not say that there literally is no mo-
tion or change in the universe; they admit, for example,
that a particle can be at different positions at different
instants of time. However, they do maintain that there
is no real change in the block, in the sense of an ob-
jectively moving dynamic now that separates past from
future.

One natural way of responding to this is to accept
a B theory of time and to deny that there exists real
change in the sense just explained. We then can accept
the block universe, with all the temporal relations be-
tween events built into it, as a complete description of
the universe’s history. This implies eternalism and re-
jection of presentism. We have to be careful, however,
about how we characterize this eternalist position. It
would be very misleading to say, e.g., that according
to eternalism the future already exists. The future, as
judged from our position in spacetime, is not now but at
later times, also according to the eternalist. So the use of
already in its ordinary temporal sense is inappropriate.
What can be said, however, is that in eternalism there
is no absolute distinction in terms of past, present, and
future between events. According to the eternalist all
events occur at their own places and times, and there are
temporal relations of earlier and later between them,
but the block universe does not contain any structure
on the basis of which it would make sense to say the
universe is now at this or that stage of its evolution. In
other words, all references to past, present, and future
become indexical: they need a point of reference rela-
tive to which they can be evaluated and become definite.
A task for the block view, with this B theory of time,

is to explain our immediate experience of time includ-
ing our feeling that the present is continually slipping
away [6.23].

Another way of dealing with the lack of a unique
global present is to add to the block a set of privileged
simultaneity hyperplanes by hand, perhaps motivated
by the expectation that this will be justified by a more
general physical theory (like general relativity or a fu-
ture successor of it). It may then be hoped that these
added simultaneity hyperplanes can play the role of
nows in an A theory of time [6.24–26]. Within the do-
main of special relativity itself this manoeuver is clearly
ad hoc, however. In the wider context of general relativ-
ity the situation is controversial: the general relativistic
field equations do not contain any reference to a no-
tion of global simultaneity, but it is true that certain
cosmological solutions of the field equations, with sym-
metrical distributions of matter and energy, do allow for
a natural foliation and an associated notion of global si-
multaneity. It remains unclear, however, whether these
foliations singled out by material symmetries can be
said to have any conceptual connection with the flow
of time [6.27] (compare our later discussion about the
relation between simultaneity and symmetry).

Finally, one may attempt to adapt A notions of time
to make them compatible with special relativity. One
way of doing this is to relativize the notion of the
flow of time and the idea of presentism, by making
the now frame dependent. In its application to presen-
tism this approach leads to the consequence that what
is real (namely the present) itself becomes frame de-
pendent [6.2]. This would circumvent the transitivity
argument that we encountered above. However, a rel-
ativity of reality is so far removed from the intuitive
background of presentism that this manoeuvre does not
seem very attractive to many presentists.

This relativizing of A concepts keeps in place the
idea that the now is spatially extended, and that the uni-
verse can be seen as a continuous succession of global
nows. A more radical idea for modifying A concepts
is to do without distant simultaneity at all, and thus to
break loose from the problematic characteristics of this
concept in relativity theory. This can be done by think-
ing of the present not as spatially extended, but as point-
like; in this case each event defines its own present,
and does not share this present with any other point-
presents [6.27]. The flow of time may then be construed
as taking place along causal processes, like the world-
lines of particles [6.28]. This localized notion of time
flow seems the most promising if we wish to combine
A type notions of time with special relativity. However,
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it does not unambiguously define a global present and
is rather distant from the original A intuitions, just like
the previous proposal. Moreover, the problem of giving
meaning to the motion of the present remains undimin-
ished in this version of the A theory (as in all other
versions of it).

6.3.2 The Conventionality of Simultaneity

In Sect. 1 of his 1905 paper Einstein discusses the defi-
nition of time. He describes a situation in which we have
two clocks of identical construction, both at rest in the
same inertial system, the first at position A and the sec-
ond at position B. Einstein comments that observers at A
or B, or observers located in the immediate vicinity of
these points, would have no problem in assigning a time
to events occurring in their neighborhoods; they can
simply tell the time by looking at their nearby clocks.
However, Einstein continues, this way [6.5]:

We have only defined an A-time and a B-time, but
no time that is common to A and B. This latter time
can now be defined if we stipulate by definition that
the time needed by light to go from A to B is equal
to the time needed to go from B to A.

The emphasis here of by definition is Einstein’s own,
in the original paper. Einstein clearly wants to draw
attention to the fact that the temporal notions that he
has introduced thus far (the A-time and the B-time) do
not suffice to compare times at different locations – for
this temporal coordination we need a relation of simul-
taneity that relates the instants of events taking place at
a distance from each other. Of course, it is exactly this
simultaneity relation that will turn out, a little later in
Einstein’s article, to be necessarily different from the
classical one – this result holds the key to relativity the-
ory.

If we only have local A and B-times we cannot de-
termine the speed of any signal, because we are not able
to compare its time of departure with its time of arrival.
If we did know the speed of some signal, for example
that of light, the problem would disappear because we
could simply synchronize clocks by sending a light sig-
nal from one clock to another and by taking into account
that this signal takes a time L=c to reach its destina-
tion (with L the distance between the clocks and c the
speed of light). However, given that we cannot yet de-
termine signal velocities without being able to ascertain
simultaneity, we end up in a circular argument unless
we brake the impasse by deciding on a concrete pro-
cedure for synchronizing clocks. We need a definition

of how to proceed, and this definition will determine
both simultaneity and the speed of light and other sig-
nals. This is what is achieved by Einstein’s stipulation
about the equal velocities to and fro between A and B.
Note that the round trip velocity of the light, between A
and B and back again, can already be measured with one
clock, without simultaneity. Adding Einstein’s rule now
fixes the one-way velocities, namely as being equal to
the round trip velocity. This, in turn, completes the def-
inition of simultaneity, for we can set the clock at B at
t1C L=c when the light arrives at B, given that it de-
parted from A at time t1 (as indicated by the clock at A)
and given that the one-way velocity between A and B
is c.

The just-discussed passage in Einstein’s 1905 paper
has given rise to a notorious philosophical debate [6.29,
30]: is simultaneity in special relativity factual or rather
conventional? The immediate reason for this debate is
Einstein’s use of the expression stipulate by definition
(festsetzen durch Definition). Stipulations and defini-
tions cannot be true or false, but rather are the results
of our decisions; they are conventions. Einstein’s proce-
dure, therefore, appears to determine both simultaneity
and the value of the speed of light on the basis of a con-
vention and not on the basis of physical facts. Even after
we have made our (conventional) choices for units of
time and length it is according to the conventionality
thesis a matter of our decision, and not something al-
ready decided by nature, what the speed of light in any
given direction is. Only the round-trip velocity has an
objective status, since it can be determined without in-
voking simultaneity.

Reichenbach has given a systematic and influential
further elaboration and explanation of this convention-
alist position [6.9, 10]. Reichenbach’s core argument is
epistemological in character: we do not have immediate
empirical access to distant simultaneity. Because of the
distance between the events that we wish to compare,
and the fact that we can only make local observations
in a direct way, we need a stipulation of the sort that
Einstein made in addition to our direct observations.
According to Reichenbach, local clock indications are
factual, since they consist in spatial coincidences of ma-
terial objects, like the coincidence of a pointer with
a mark on a dial, and these are things that are open to
immediate observation if we find ourselves at the posi-
tions in question. These observations do not depend on
conventions (except in the trivial sense that we think
up words to describe them, choose units in order to
number the marks on the dial, and decide to focus our
attention on these things in the first place). Whether or
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not the hands of a clock touch a certain mark on the
clock’s dial is not stipulated by us but is given to us by
nature. In contrast, simultaneity cannot be perceived:
it has to do with a comparison between distant loca-
tions and we cannot be at two positions at once. We
accordingly need some rule to tell us how to establish
simultaneity on the basis of facts that are observable,
and it is this rule that gives empirical content to state-
ments about simultaneity.

A refinement of this theme, immediately given by
Reichenbach in his discussion of relativistic simultane-
ity [6.10], is the so-called causal theory of time. Here
it is added that it is factual that along a causal chain
time progresses, with the consequence that the time of
arrival of a signal is objectively later than its departure.
This addition is in the same epistemological spirit we
just explained: in principle we could travel along with
the signal and observe directly that time passes.

The causal theory of time makes earlier–later re-
lations between events that are causally connected, or
could be causally connected, factual. However, this
earlier–later structure does not determine a unique si-
multaneity relation. From this Reichenbach concludes
that simultaneity is not factual but conventional. Ac-
cordingly, it is up to us to choose a simultaneity def-
inition, and this can be done in many different ways.
These choices give rise to descriptions that look differ-
ent, but actually are equivalent: they all possess exactly
the same empirical content.

Consider the situation with one clock at A and one
clock at B again. Suppose we send a light signal from A
to B at A-time t1, and after the signal has arrived at B,
at B-time t2 say, we reflect it immediately to A where
it is subsequently received at A-time t3. Einstein’s si-
multaneity definition is equivalent to saying that the
clocks at A and B are in synchrony if t2 D 1=2.t1C t3/.
However, says Reichenbach, we also could use the
synchronization rule that stipulates that the clocks are
synchronous if t2 D t1C�.t3� t1/, with � any real num-
ber between 0 and 1. According to this alternative rule
the to and fro velocities of light between A and B are no
longer equal; they are c=2� and c=2.1��/, respectively.
Simultaneity is now clearly judged differently than in
Einstein’s proposal, and the one-way velocities of light
have also become different, but the description is em-
pirically equivalent to Einstein’s because the round trip
velocity of the light, measured with one clock, is still
2L=c. This is the only quantity that is directly accessi-
ble to observation.

Some of these empirically equivalent descriptions
are simpler than others. However, according to Re-

ichenbach this descriptive simplicity only yields a prag-
matic argument for preferring one definition of simul-
taneity over another – pragmatic arguments relate to
our interests and preferences, but not to truth. Thus,
Reichenbach admits that the definition of simultaneity
that makes the speed of light the same in all directions
is simpler for us, easier to remember, and more read-
ily applicable than alternatives. However, this does not
mean that alternatives have a lesser claim to being true.
As long as they leave the local facts and later-than rela-
tions along causal chains the same, all these theoretical
schemes are equally true or false.

Reichenbach does note, however, that it is an objec-
tive fact – independent of our decisions – that a choice
of simultaneity that leads to equal one-way speeds of
light, and isotropy in general, is possible. He maintains
that it is our conventional choice to make use of this
circumstance and set � D 1=2.

The conventionalist thesis is thus dependent on the
notion that only certain local states of affairs, by virtue
of being directly observable, are factual and objective.
For the logical empiricists, the philosophical school of
thought to which Reichenbach belonged, this was a very
natural position to take. Broadly speaking, the logical
empiricists defended the viewpoint that in the analysis
of what scientific theories tell us a distinction must be
made between observation terms and theoretical terms.
The former define the objective empirical content of
a theory, which can be formulated by referring to ob-
servable things, the latter serve first of all as mental
tools that enable us to make predictions (again about
observable things) – they are intermediaries that help
us make connections between statements describing ob-
servable initial conditions and statements describing
future states of affairs (predictions). These theoretical
terms are introduced by us via definitions that link them
to observation terms. Local facts, like the positions of
the hands of a clock, are paradigmatic for what can
be described by observation terms. In contrast, simul-
taneity is a theoretical notion that can be introduced
in a variety of ways without doing harm to the empiri-
cal content of the theory. In fact, the logical empiricists
were inspired by Einstein’s presentation of special rela-
tivity and his introduction of simultaneity by definition
and thought to capture the spirit of Einstein’s example
in their general analysis of scientific theories.

However, commenting on this with hindsight and
from a modern point of view, we can safely say that
it is far-fetched to suppose that Einstein was implicitly
proposing a general scheme for an empiricist philoso-
phy of science in his 1905 paper – we have already
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commented on this before. Einstein’s aim was obvi-
ously to convince his readers that the temporal structure
assumed by classical mechanics is not sacrosanct – this
is the key to special relativity. In order to make his point
it was essential for Einstein to discuss how simultaneity
can actually be established and to show that the most
direct facts about which everyone agrees – the readings
of the individual clocks – do not suffice to fix which
events are simultaneous. This is something quite differ-
ent from arguing that there is no objective simultaneity
relation at all. Einstein’s target was not the uniqueness
of the synchronization rule in relativity theory (there is
no mention of alternative synchronization procedures in
Einstein’s 1905 paper, nor in his later work), but rather
the in his days universally assumed uniqueness of the
classical conception of time. His goals in the paper
were physical, not philosophical. In fact, as we have
already pointed out, in later philosophical statements
Einstein explicitly distanced himself from logical em-
piricist and operationalist claims.

More important than the question of what exactly
were Einstein’s own intentions and views is that the re-
striction of objectivity to directly observable states of
affairs has long disappeared from the philosophy of sci-
ence and the philosophy of physics. That something
cannot be observed by humans in an immediate way
would today no longer be accepted as conclusive ev-
idence that it does not constitute an objective feature
of reality, not even by empiricist philosophers. Present-
day physics is, of course, full of not-directly observ-
able entities, and these theoretical entities are at least
candidates for being really existing things out there in
the physical world. It would be beyond the scope of
the present chapter to go into the debates surrounding
scientific realism and empiricism in the philosophy of
science, but it can safely be said that it is now generally
accepted that there may be good reasons for accepting
descriptions as candidates for being (approximately)
true of reality, even if these descriptions partly refer to
unobservable features.

In general, unobservability will diminish the epis-
temological warrant for accepting existence claims; for
example, since we cannot directly observe subatomic
particles, we are less certain about their existence than
about the existence of tables and chairs. Similarly, the
fact that we cannot observe simultaneity directly should
give us some pause in making firm statements about its
existence and character. In the case of simultaneity the
lack of direct observability is not due to smallness of
dimensions, but purely to the nonlocal character of the
simultaneity relation. However, this nonlocality implies

only a relatively mild lack of observability; after all, it
is possible to go from one place to another and to list
and compare all the directly observable local results we
find on our way. It is, therefore, possible to say some-
thing, on the basis of direct local observations, about the
relations between distant events. It is true that the ob-
servability of simultaneity itself may remain moot, but
the question of whether all values of � between 0 and 1
in Reichenbach’s formula correspond to equally viable
descriptions of nature can, nevertheless, be subjected to
empirical investigation. Since the value of � has impli-
cations for the symmetry properties of the description,
considerations about the symmetries in the pattern of
local observations appear to be especially relevant.

The original formulation of Einstein’s synchroniza-
tion procedure already shows that it makes use of
a symmetry property of spacetime. It is not something
certain a priori that the one-way velocity of light can
be taken to be the same in all directions (in a given
inertial frame of reference); but in fact this is possi-
ble without contradiction in Minkowski spacetime, in
any inertial frame. The consistency of Einstein simul-
taneity thus expresses a physical fact about Minkowski
spacetime: Minkowski spacetime is homogeneous and
isotropic. Actually, in his 1905 paper Einstein uses
this homogeneity and isotropy explicitly, as a premise
in his derivation of the Lorentz transformations. Also
Minkowski, in his seminal 1908 paper, pays explicit
attention to the role of global symmetries in the for-
mulation of relativity theory. He introduces standard
coordinates x, y, z, and t in terms of which the mechani-
cal and electromagnetic equations assume a preferred
form (namely the standard one, which among other
things makes the speed of light isotropic). He assigns
these preferred coordinates a status like that of the
privileged Cartesian coordinates in Euclidean geome-
try, which also latch onto a symmetry of the geometry.
In his description of the procedure Minkowski explains
that physical equations must be distilled from regular-
ities in observed phenomena – although it is true that
the building blocks of our knowledge come from lo-
cal observations, the regularities only become visible if
we compare, relate, and order these local data. Global
aspects of the situation are, therefore, automatically rel-
evant, and in particular the isotropy and homogeneity
of spacetime stand out through the possibility of giv-
ing the physical laws completely symmetrical forms.
Even Reichenbach, as we have already noted, considers
this isotropy and homogeneity as objective and factual
since it is an empirical result that a unique consistent
description is possible in which the laws display identi-
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cal properties at all points in space and time, and in all
directions (namely, the description with � D 1=2). We
may add that this existence claim is actually false in
most general relativistic spacetimes, so that its truth in
special relativity tells us something physically distinc-
tive about Minkowski spacetime.

This emphasis on the relation between simultaneity
and spacetime symmetry is in agreement with Mala-
ment’s well-known result [6.31] that Einstein simul-
taneity is the only nontrivial equivalence relation that
can be defined (in the mathematical sense) from the re-
lation of causal connectibility. Malament demonstrates
two things: first, given an inertial worldline and a space-
time point on it, the hyperplane that is Minkowski-
orthogonal to the worldline through the given point on it
can be constructed using null lines (light signals) – this
construction is similar to the construction of the nor-
mal to a line in one of its points in Euclidean geometry.
Second, he proves a uniqueness result: this orthogo-
nal hyperplane is the only locus of points that does
not coincide with the whole of Minkowski spacetime,
implements an equivalence relation, and is invariant un-
der all causal automorphisms (mappings of Minkowski
spacetime in itself that preserve the causal structure)
that leave the given worldline invariant. This latter
result can be made plausible by visualization: think
of four-dimensional rotations around the given world-
line as an axis – only hyperplanes orthogonal to the
worldline will be transformed into themselves by these
transformations.

Now, if the causal theory of time is read as say-
ing that a temporal relation is factual if and only if
it can be defined in terms of the causal structure of
Minkowski spacetime, Malament’s theorem shows that
Minkowski-orthogonality is the only nontrivial factual
equivalence relation with respect to an inertial frame
(represented by an inertial worldline, the time axis
of the inertial system). If we accept that simultaneity
should be an equivalence relation (i. e., symmetrical,
reflexive, and transitive), it follows that � D 1=2 simul-
taneity (in Reichenbach’s terminology) is factual and,
moreover, unique (and, therefore, not conventional).

Reichenbach would not have accepted the conclu-
sion that this result settles the conventionality debate,
for he formulated his causal theory of time in terms
of a constraint (along a causal chain events cannot
be simultaneous but must stand in the earlier–later
relation – beyond this anything goes) rather than com-
mitting himself to the position that simultaneity would
be factual if it were a causally defined equivalence
relation. He would, of course, admit that Minkowski or-

thogonality can be defined in the way we have sketched,
but he would not automatically be forced to accept this
Minkowski orthogonality as implementing simultane-
ity. In fact, Reichenbach explicitly denied one of the
premises of Malament’s proof, namely that simultane-
ity has to be an equivalence relation with the same
definition in all directions [6.10]. This needs some
explanation; of course, if events E1 and E2 are simul-
taneous, in this order, they also possess equal time
coordinates in their reverse order, so that the relation is
automatically symmetrical. However, Reichenbach did
not require or accept that the mathematical form of the
relation has to be the same in both directions. Indeed, in
Reichenbach’s formula � ¤ 1=2 in one direction, from
E1 to E2, implies 1� �, with � ¤ .1� �/, in the other
direction so that the procedure of synchronizing must
be different in the two directions. In fact, if Reichen-
bach had demanded that simultaneity is an equivalence
relation according to the same rule in all directions, he
would have immediately found � D 1=2.

Modern conventionalists respond to Malament’s re-
sult in a similar way, by denying that simultaneity must
be an equivalence relation; or they relax other condi-
tions of Malament’s proof in order to create room for
alternative simultaneity relations [6.29, 32]. For exam-
ple, if invariance under all causal automorphisms is no
longer required, Malament’s proof need not go through.

However, Malament’s result does show uncontro-
versially that in Minkowski spacetime there exists
a candidate simultaneity relation that is unique in being
maximally adapted to the symmetry of the causal struc-
ture, namely the orthogonality relation with respect
to the parallel inertial worldlines. This orthogonality
relation is invariant under those symmetry transforma-
tions of Minkowski spacetime (elements of the Poincaré
group) that leave invariant a given congruence of iner-
tial worldlines. It is adapted to Minkowski geometry in
a way that is very similar to the way Cartesian coordi-
nate axes are adapted to the spatial Euclidean geometry.
Its global existence is characteristic of the (flat) space-
time geometry of Minkowski spacetime, just as the
global existence of Cartesian coordinates is character-
istic of Euclidean geometry.

The debate about conventionality thus boils down
to the question of whether or not using these privileged
coordinates is conventional; their privileged status it-
self, of being adapted to the geometry and bringing
out a symmetry in spacetime, is uncontested. Now it
is certainly true that there is no compulsion for any-
one to use Einstein simultaneity for the construction
of time coordinates and that one may freely decide
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to employ a conventionally chosen other time coordi-
nate – the choice of coordinates is free, in relativity
theory as well as in any other physical theory. There
may even be particular contexts in which the use of
nonstandard time coordinates recommends itself, for in-
stance for the purposes of calculations. However, this
seems a pragmatic point, of secondary importance in
the discussion about the status of Einstein simultane-
ity as representing an objective physical feature of
spacetime.

6.3.3 Simultaneity, Slow Clocks,
and Conventionality
in Noninertial Systems

In Sect. 6.2.3 we considered rotating frames of refer-
ence and encountered the Sagnac effect: there is a gap
between the round trip arrival times of signals propa-
gating along with the rotation and signals going in the
opposite direction. As we have seen, this time gap is in-
dependent of the nature of the signals. So if we transport
two clocks along a circle with radius r around the center
of a rotating disk, one clockwise and one counter-
clockwise, while keeping their velocities constant with
respect to their local comoving inertial frames, there
will be a difference �tD 4�!r2=.c2�!2r2/ between
their return times (measured in the laboratory time t).
Now, it is well known that the indications of traveling
clocks conform to standard simultaneity in an inertial
frame in the limiting case in which the clocks move
very slowly (with respect to the given inertial frame).
This, in fact, is one way in which the physical sig-
nificance of Einstein simultaneity shows itself [6.33]:
Einstein simultaneity approximates classical simultane-
ity in the classical limit. That is, in the classical limit
of processes in which only very low velocities occur
(relative to the velocity of light) within an inertial sys-
tem, classical mechanics will become applicable in very
good approximation, and in the equations Einstein si-
multaneity will coalesce with the classical simultaneity
relation. It has to be noted that this will be so in every
inertial system, each one with its own relativistic simul-
taneity, so that here there is no question of going back to
the full classical time structure in a classical limit. Still,
per inertial system, Einstein simultaneity is the natural
generalization of classical simultaneity and in the limit
of very low velocities it relates to physical processes
formally in the same way Newtonian simultaneity re-
lates to them in classical mechanics – in particular, very
slowly moving clocks remain synchronized with resting
laboratory clocks.

Taking our minds back to the rotating disc, we see
that if the two clocks are transported very slowly with
respect to the disc, they will remain synchronized ac-
cording to standard simultaneity in their comoving local
inertial frames. The Sagnac effect now tells us that this
slow clock transport cannot be used to define an un-
ambiguous global time coordinate on the rotating disc;
the result will depend on whether a clockwise or coun-
terclockwise path is chosen. In general, the result of
synchronization by slow clock transport will be path
dependent. Neither the Einstein light signal procedure,
nor the slow transport of clocks can, therefore, be used
to establish a global notion of simultaneity on the rotat-
ing disc. This is a result that can be generalized and is
typical of accelerated frames of reference.

6.3.4 Simultaneity, Symmetry,
and Time Flow

So again, we have found that global Einstein simultane-
ity reflects the symmetry embodied in inertial systems;
in inertial systems this � D 1=2 simultaneity allows
a simple, adapted, formulation of the laws, conforms
to slow clock transport and many other almost-classical
processes, and agrees with global Minkowski-orthog-
onality with respect to the worldlines representing the
state of rest. In noninertial frames all such arguments
apply only locally. The rotating system illustrates the
situation very well: in each point on the disc standard
simultaneity can be established just as in an inertial sys-
tem, but these local simultaneities do not combine into
a physically meaningful global time coordinate.

Summing up, Einstein simultaneity has a special
status because it leads to global foliations of Minkowski
spacetime that respect the physical symmetries. Iner-
tial reference frames, characterized by congruences of
parallel straight worldlines, bring out the homogeneity
and isotropy that is present in Minkowski spacetime
if they are equipped with Einstein simultaneity. In
other words, in inertial systems Einstein simultaneity
is clearly a physically significant global relation, repre-
senting a physical fact.

However, this physical significance relates to sym-
metry properties of spacetime rather than to a causal
interconnection; as we have noted before, the relativis-
tic physical evolution equations do not need simultane-
ity for their formulation, because all interactions are
local. Slicing up spacetime according to the Einstein
simultaneity associated with an inertial system does
not correspond to a grouping together of events that
belong together in a way that is causally or dynami-
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cally significant. Moreover, the relativity and, therefore,
nonuniqueness of simultaneity precludes an interpreta-
tion of Einstein simultaneity hyperplanes in terms of
a progressing universal now. This break between in-
tuitive features of simultaneity (according to everyday
intuition we are in direct causal contact with simul-
taneous events at a distance and time flows because
the universal now shifts to the future) and the signif-
icance of relativistic simultaneity probably constitute
a major part of the motivation behind the doctrine that
simultaneity in relativity is conventional. Indeed, an
important connection between simultaneity and intu-
itions about time is severed once Einstein simultaneity
is accepted as the simultaneity relation in Minkowski
spacetime, and this may seem to make the notion of
relativistic simultaneity insignificant and conventional.
However, as we have seen, there are nevertheless good
reasons to assign Einstein simultaneity a factual status
in relativity theory.

In noninertial, accelerating frames of reference the
spacetime symmetry of Minkowski spacetime will, in
general, be broken or rather masked, because the defin-
ing congruences of worldlines will not be parallel. In
such cases it cannot be expected that a physically signif-
icant global simultaneity relation, adapted to the frames
in question, will exist. A global time coordinate can
in these circumstances still be introduced, and simul-
taneity can be defined via sameness of value of this
time coordinate. However, now this becomes a mat-
ter of pragmatic choice and, therefore, of convention.
This is true in noninertial frames of reference, like the
rotating disc, and also in generally relativistic space-
times in which there are no global symmetries. These
noninertial frames of reference and general relativis-
tic spacetimes, rather than the inertial frames of special
relativity, constitute the arena in which the thesis that
distant relativistic simultaneity is conventional finds its
natural habitat and justification.
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7. Rigid Motion and Adapted Frames

Stephen N. Lyle

The aim here is to describe the rigid motion of
a continuous medium in special and general rel-
ativity. Section 7.1 defines a rigid rod in special
relativity, and Sect. 7.2 shows the link with the
space coordinates of a certain kind of acceler-
ating frame in flat spacetimes. Section 7.3 then
sets up a notation for describing the arbitrary
smooth motion of a continuous medium in gen-
eral curved spacetimes, defining the proper metric
of such a medium. Section 7.4 singles out rigid
motions and shows that the rod in Sect. 7.1 under-
goes rigid motion in the more generally defined
sense. Section 7.5 defines a rate of strain tensor
for a continuous medium in general relativity and
reformulates the rigidity criterion. Section 7.6 aims
to classify all possible rigid motions in special rela-
tivity, reemphasizing the link with semi-Euclidean
frames adapted to accelerating observers in spe-
cial relativity. Then, Sects. 7.7 and 7.8 describe rigid
motion without rotation and rigid rotation, re-
spectively. Along the way we introduce the notion
of Fermi–Walker transport and discuss its rele-
vance for rigid motions. Section 7.9 brings together
all the above themes in an account of a recent
generalization of the notion of uniform accelera-
tion, thereby characterizing a wide class of rigid
motions.
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7.1 Rigid Rod in Special Relativity

Of course, we know what happens to a rigid rod when
it has uniform motion relative to an inertial frame I . In
other words, we know what we want rigidity to mean
in that context. But can we say how a rigid rod should
behave when it accelerates? Can we still have some kind
of rigidity?

Let A and B be the left- and right-hand ends of the
rod, respectively, and consider motion xA.t/ and xB.t/
along the axis from A to B (Fig. 7.1). Let us first la-
bel the particles in the rod by their distance s to the

right of A when the system is stationary in some in-
ertial frame (Fig. 7.2). This idea of labeling particles
will prove extremely useful when considering continu-
ous media later on. In this case, we imagine the rod as
a strictly one-dimensional, continuous row of particles.

Now let A have motion xA.t/ relative to an inertial
frame I (Fig. 7.3) and let X.s; t/ be a function giving
the position of particle s at time t as

xs.t/D xA.t/CX.s; t/ ;
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B (t) – 

BA

υB (t)υA (t)

A (t) 

Fig. 7.1 Material rod in motion along its axis in an inertial
frame I . The position of the left-hand end A is given by
xA.t/ at time t, and the position of the right-hand end B is
given by xB.t/

where in fact we require

X.0; t/D 0 ; X.D; t/D xB.t/� xA.t/ :

Let us require the element between s and sC •s to have
coordinate length

�
1�

v.s; t/2

c2

�1=2

•s ; (7.1)

where v.s; t/ is its instantaneous coordinate velocity,
with v.0; t/D vA.t/. This is precisely the criterion sug-
gested by Rindler [7.1, pp. 39–40]. We can integrate to
find

X.s; t/D

sZ
0

�
1�

v.s0; t/2

c2

�1=2

ds0 : (7.2)

This implies that

XB D

DZ
0

�
1�

v.s0; t/2

c2

�1=2

ds0 : (7.3)

Note the highly complex equation this gives for the
speed function v.s; t/, namely,

v.s; t/D vA.t/C
@X.s; t/

@t
: (7.4)

Label s

BA

s

Fig. 7.2 Stationary material rod in an inertial frame I . La-
beling the particles in the rod by their distance s from A, so
that s 2 Œ0;D�

s

BA

υA (t) υB (t)υs (t)

Fig. 7.3 Material rod with arbitrary motion in an inertial
frame I

Let us observe carefully that we are not assuming any
simple Galilean addition law for velocities here. This is
a straightforward differentiation with respect to t of the
formula for the coordinate position of atom s at time t,
namely, xA.t/CX.s; t/. The partial time derivative of X
is not the velocity of s relative to A, that is, it is not the
velocity of s measured in a frame moving with A.

Now (7.2) seems to embody the idea of the rod be-
ing rigid. In fact this rod could no longer be elastic, in
the sense that (7.1) only allows the element •s to rel-
ativistically contract for the value of its instantaneous
speed, forbidding any other contortions. One could well
imagine the rod undergoing a very complex deforma-
tion along its length, in which relativistic contraction
effects were quite negligible compared with a certain
looseness in the molecular bonding, but we are not talk-
ing about this. In fact we are seeking a definition of
rigidity that does not refer to the microscopic structure.

7.1.1 Equation of Motion
for Points on the Rod

So far the main equations for the atom labeled s on the
rod are (7.2) and (7.4), namely,

X.s; t/D

sZ
0

�
1�

v.s0; t/2

c2

�1=2

ds0 (7.5)

and

v.s; t/D vA.t/C
@X.s; t/

@t
: (7.6)

The first implies that

@X.s; t/

@s
D

�
1�

v.s; t/2

c2

�1=2

: (7.7)

We can write one nonlinear partial differential equation
for X.s; t/ by eliminating v.s; t/ to give

c2

�
@X

@s

�2

C

�
@X

@t
C vA.t/

�2

D c2 : (7.8)
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This is effectively the equation that we have to solve
to find the length of our rod. It is important to see that
there is a boundary condition too, namely,

0D
@X.s; t/

@t

ˇ̌̌
ˇ
sD0

; (7.9)

because we do require v.0; t/D vA.t/ in conjunction
with (7.6).

We shall find a solution to this problem, although
not by solving (7.8) directly. Instead we shall follow
a circuitous but instructive route and end up guessing
the relevant solution.

7.2 Frame for an Accelerating Observer

We remain for the moment in the context of special rela-
tivity. Let AO be the name for an observer moving with
the left-hand end A of the proposed rod. AO is an ac-
celerating observer and it is well known [7.2] that such
a person can find well-adapted coordinates y� with the
following properties (where the Latin index runs over
f1; 2;3g):

� First of all, any curve with all three yi constant is
timelike and any curve with y0 constant is spacelike.

� At any point along the worldline of AO, the zero
coordinate y0 equals the proper time along that
worldline.

� At each point of the worldline of AO, curves with
constant y0 which intersect it are orthogonal to it
where they intersect it.

� The metric has the Minkowski form along the
worldline of AO.

� The coordinates yi are Cartesian on every hypersur-
face of constant y0.

� The equation for the worldline of AO has the form
yi D 0 for iD 1; 2;3.

Such coordinates could be called semi-Euclidean
(SE). They are often called Rindler coordinates.

Let us consider a one-dimensional (1-D) accel-
eration and temporarily drop the subscript A on the
functions xA.t/ and vA.t/ describing the motion of AO
in the inertial frame I . The worldline of the accelerat-
ing observer is given in inertial coordinates by

tD � ; xD x.�/ ;
dx

d�
D v.�/ ; (7.10)

d2x

d�2
D a.�/ ; y.�/D 0D z.�/ ; (7.11)

using the time t in I to parameterize. The proper
time 
.�/ of AO is given by

d


d�
D

�
1�

v2

c2

�1=2

: (7.12)

The coordinates y� are constructed on an open neigh-
borhood of the AO worldline as follows (Fig. 7.4). For
an event .t; x; y; z/ not too far from the worldline, there
is a unique value of 
 and hence also the parameter �
such that the point lies in the hyperplane of simultane-
ity (HOS) of AO when its proper time is 
 . This HOS is
given by

t��.
/D
v .�.
//

c2
Œx� x .�.
//� ; (7.13)

which solves, for any x and t, to give �.
/.x; t/.
The semi-Euclidean coordinates attributed to the

event .t; x; y; z/ are, for the time coordinate y0, (c times)
the proper time 
 found from (7.13) and, for the spa-
tial coordinates, the spatial coordinates of this event in
an instantaneously comoving inertial frame (ICIF) at
proper time 
 of AO. In fact, every other event in this
instantaneously comoving inertial frame is attributed
to the same time coordinate y0 D c
 and the appropri-
ate spatial coordinates borrowed from this frame. Of
course, the HOS of AO at time 
 is also the one bor-
rowed from the ICIF.

There is just one detail to get out of the way: there
are many different ICIFs for a given 
 , and there are
even many different ways to choose these frames as
a smooth function of 
 as one moves along the AO
worldline, rotating back and forth around various axes
in the original inertial frame I as 
 progresses. For
the present purposes, we choose a sequence with no
rotation about any space axis in the instantaneous lo-
cal rest frame. It can always be done by solving the
Fermi–Walker (FW) transport equations (Sect. 7.7).
The semi-Euclidean coordinates are then given by

8̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂:

y0 D c
 ;

y1 D
Œx� x.�/�� v.�/.t��/q

1� v2

c2

;

y2 D y ;

y3 D z ;

(7.14)
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HOS(τ3)

HOS(τ2)

t

τ3

y2

y1

HOS(τ1)

τ1

y2

y1

τ2

y2

y1

Fig. 7.4 Constructing an SE frame for an accelerating ob-
server. View from an inertial frame with time coordinate t.
The curve is the observer worldline given by (7.10). Three
HOS are shown at three successive proper times 
1, 
2,
and 
3 of the observer. These hyperplanes of simultaneity
are borrowed from the instantaneously comoving inertial
observer, as are the coordinates y1, y2, and y3 used to co-
ordinatize them. Only two of the latter coordinates can be
shown in the spacetime diagram

where � D �.t; x/ as found from (7.13). The inverse
transformation, from semi-Euclidean coordinates to in-
ertial coordinates, is given by

8̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
:

tD �.y0/C
v.y0/

c2
y1

�
1�

v.y0/2

c2

�
�1=2

;

xD x.y0/C y1

�
1�

v.y0/2

c2

�
�1=2

;

yD y2 ;

zD y3 ;

(7.15)

where the function �.y0/ is just the expression relating
inertial time to proper time for the accelerating ob-
server, and the functions x.y0/ and v.y0/ should really
be written x.�.y0// and v.�.y0//, respectively.

The above relations are not very enlightening. They
are only displayed to show that the idea of such coor-
dinates can be made perfectly concrete. One calculates

the metric components in this frame, namely,

g00 D
1

g00
D

"
1C

a.	/Œx�x.	/

c2

1� v.	/2

c2

#2

; (7.16)

where � D �.t; x/ as found from (7.13), and

gi0 D 0D g0i ; gij D�ıij ; i; j 2 f1; 2; 3g ;

(7.17)

and checks the list of requirements for the coordinates
to be suitably adapted to the accelerating observer.

Although perfectly concrete, the coordinates are
not perfectly explicit: the component g00 of the semi-
Euclidean metric has been expressed in terms of the
original inertial coordinates! This can be remedied as
follows. One observes that, with the help of (7.13),

y1 D Œx� x.�/�

s
1�

v2

c2
: (7.18)

One calculates the 4-acceleration in the inertial frame
to be

a� WD
d2x�

d
2
D a

�
1�

v2

c2

�
�2 �v

c
; 1; 0; 0

	
; (7.19)

and transforms this by Lorentz transformation to the
inertial frame instantaneously comoving with the ob-
server to find only one nonzero 4-acceleration com-
ponent in that frame, which is called the absolute
acceleration of the observer

a01 WD absolute accelerationD a

�
1�

v2

c2

�
�3=2

:

(7.20)

The notation a01 for the 1-component of the absolute
acceleration will appear again in (7.52). One now has
the more comforting formula

g00 D
1

g00
D

�
1C

a01.�/y1

c2

�2

: (7.21)

To obtain still more explicit formulas, one needs to con-
sider a specific motion x.�/ of AO, the classic example
being uniform acceleration

x.�/D
c2

g

"�
1C

g2�2

c2

�1=2

� 1

#
; tD � ;

(7.22)
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where g is some constant with units of acceleration.
This does not look like a constant acceleration in the
inertial frame

dx

d�
D

g��
1C g2	2

c2

	1=2
;

d2x

d�2
D

g�
1C g2	2

c2

	3=2
:

(7.23)

However, the 4-acceleration defined in the inertial
frame I by

a� D
d2x�

d
2
; (7.24)

where 
 is the proper time, has constant magnitude. It
turns out that

a2 WD a�a� D�g2 ;

with a suitable convention for the signature of the met-
ric.

In this case, the transformation from inertial to
semi-Euclidean coordinates is

y0 D
c2

g
tanh�1 ct

xC c2

g

; (7.25)

y1 D

"�
xC

c2

g

�2

� c2t2

#1=2

�
c2

g
;

y2 D y ; y3 D z ;

(7.26)

and the inverse transformation is

tD
c

g
sinh

gy0

c2
C

y1

c
sinh

gy0

c2
; (7.27)

xD
c2

g

�
cosh

gy0

c2
� 1

�
C y1 cosh

gy0

c2
;

yD y2 ; zD y3 :

(7.28)

One finds the metric components to be

g00 D

�
1C

gy1

c2

�2

; g0i D 0D gi0 ;

gij D�ıij ;

(7.29)

for i; j 2 f1; 2; 3g, in the semi-Euclidean frame. Interest-
ingly, this metric is static, i. e., g00 is independent of y0.
It is the only semi-Euclidean metric that is [7.3].

It is worth pausing to wonder why AO should adopt
such coordinates. It must be comforting to attribute
one’s own proper time to events that appear simultane-
ous. But what events are simultaneous with AO? In the
above construction, AO borrows the hyperplane of si-
multaneity of an inertially moving observer, who does
not have the same motion at all. AO also borrows the
lengths of this inertially moving observer.

But if AO were carrying a rigid measuring rod, what
lengths would be measured with it? In fact the rigid
rod of Sect. 7.1 measures the spatial coordinates of AO
when this observer uses semi-Euclidean coordinates.
Let us prove this for the case of a uniform accelera-
tion g, where formulas are explicit.

We write down the path of a point with some
fixed spatial coordinate s along the axis of acceleration
(putting the other spatial coordinates equal to zero). The
formula we have for the path of the origin of the SE
frame as expressed in Minkowski coordinates is

xA.t/D
c2

g

0
@
s

1C
g2t2

c2
� 1

1
A ; (7.30)

giving a coordinate velocity

vA.t/D
gtr

1C
g2t2

c2

: (7.31)

The formula for the path of the point at fixed SE spatial
coordinate s from the origin as expressed in Minkowski
coordinates is

xs.t/D X.s; t/C xA.t/

D
c2

g

2
4
s�

1C
gs

c2

	2
C

g2t2

c2
� 1

3
5 :

(7.32)

We are going to show that the function X.s; t/ defined
by the last relation actually satisfies our equation of mo-
tion (7.8) in the case where the function xA.t/ gives the
path of the left-hand end A of the rod, i. e., when the
point A is uniformly accelerated by g.

Proof that (7.32) is a solution for (7.8): We begin with
the partial derivatives

@X

@t
D

gtq�
1C gs

c2

�2
C

g2t2

c2

� vA.t/ ; (7.33)

@X

@s
D

1C gs=c2q�
1C gs

c2

�2
C

g2t2

c2

: (7.34)
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Hence,

�
@X

@t
C vA.t/

�2

D
g2t2

�
1C gs

c2

�2
C

g2t2

c2

(7.35)

and

c2

�
@X

@s

�2

D
c2
�
1C gs

c2

�2

�
1C gs

c2

�2
C

g2t2

c2

: (7.36)

Adding the last two equations together, it is clear that
we just get c2, as required by (7.8). The boundary con-
dition (7.9) is obviously satisfied too. �

For a rod with arbitrary 1-D acceleration, the for-
mulas are much more involved, due to the lack of
explicitness, but the proof is nevertheless straightfor-
ward. So not only have we found the length of our rigid
rod when it is accelerating along its own axis, but also
we discover that any AO with 1-D motion could use

it to measure semi-Euclidean coordinates along the di-
rection of acceleration. This means that the rigid rod
automatically satisfies what is sometimes called the
ruler hypothesis, namely, it is at any instant of time
ready to measure lengths in an instantaneously comov-
ing inertial frame, since this is precisely the length
system used by the semi-Euclidean coordinates.

The accelerating observer would not necessarily
have to be holding one end of the rod. It could be ly-
ing with one end held fixed at some semi-Euclidean
coordinate value y1 D s1 and the other end would then
remain at a constant coordinate value y1 D s2 > s1. This
is shown by exactly the same kind of analysis as above.
In other words, if the rod always manages to occupy
precisely this interval on the axis of the SE coordi-
nate system, its length as viewed in the original inertial
frame I will satisfy the rigidity equation (7.8). Hence,
a rigid rod whose left-hand end is compelled to follow
the worldline y1 D s1 will always appear to have the
same length s2� s1 to the SE observer.

7.3 General Motion of a Continuous Medium

The component particles of the medium are labeled
by three parameters � i, iD 1; 2; 3, and the worldline
of particle � is given by four functions x�.�; 
/, �D
0; 1; 2; 3, where 
 is its proper time. In general relativity,
the x� may be arbitrary coordinates in curved space-
time.

If � iC •� i are the labels of a neighboring particle,
its worldline is given by the functions

x�.�C •�; 
/D x�.�; 
/C x�;i.�; 
/•�
i ;

where the comma followed by a Latin index denotes
partial differentiation with respect to the correspond-
ing � . Note that the quantity x�;i.�; 
/•�

i, representing
the difference between the two sets of worldline func-
tions, is formally a 4-vector, being basically an infinites-
imal coordinate difference. However, it is not generally
orthogonal to the worldline of � . In other words, it does
not lie in the HOS of either particle.

To get such a vector we apply the projection tensor
onto the instantaneous HOS. In inertial coordinates in
a flat spacetime,

P�� D ��� � Px� Px� ;

where ��� is the Minkowski metric and the dot denotes
partial differentiation with respect to 
 . In general rela-

tivity, the projection tensor takes the form

P�� D g�� � Px� Px� ;

with g�� the metric tensor of the curved spacetime. The
result is

•x� WD P��x�;i.�; 
/•�
i

D x�;i•�
i� Px� Px�x�;i•�

i : (7.37)

One finds that application of the projection tensor cor-
responds to a simple proper-time shift of amount

•
 D�g�� Px
� Px�;i•�

i ;

so that

•x� D x�.�C •�; 
 C •
/� x�.�; 
/ :

Indeed,

x�.�C •�; 
 C •
/D x�.�; 
/C x�;i•�
iC Px�•
 ;

and feeding in the proposed expression for •
 , we do
obtain precisely •x� as defined above, since

•x� D x�.�; 
/C x�;i•�
iC Px�•
 � x�.�; 
/

D x�;i•�
i� g�	 Px

� Px	 ;i•�
i Px� :
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What can we conclude from this analysis? The two
particles � and �C •� appear, in the instantaneous rest
frame of either, to be separated by a distance •s given
by

.•s/2 D�•x � •xD��ij•�
i•� j ; (7.38)

where

�ij D P��x�;ix
�
;j : (7.39)

The quantity �ij is called the proper metric of the
medium [7.4].

7.4 Rigid Motion of a Continuous Medium
At this point, one can introduce a notion of rigidity. One
says that the medium undergoes rigid motion if and only
if its proper metric is independent of 
 . This is therefore
expressed by

P�ij D 0 : (7.40)

Under rigid motion the instantaneous separation dis-
tance between any pair of neighboring particles is
constant in time, as they would see it. Note that this cri-
terion is independent of the coordinates used because �ij

is a scalar under coordinate transformation.
Let us see whether this coincides with the notion of

rigidity discussed earlier, i. e., whether the rigid rod of
Sect. 7.1 is rigid according to the new criterion, or put
differently, whether the rod described in Sect. 7.1 is un-
dergoing rigid motion according to the criterion (7.40).
The labels � correspond to s in Sect. 7.1 (Fig. 7.2). In
a given inertial frame, particle s has motion described
by X.s; t/, where

@X

@s
D

1

�
; � D � .v.s; t// ;

and

v.s; t/D vA.t/C
@X

@t
;

where vA.t/ is the speed of the end of the rod. Suppose
we now change to a frame moving instantaneously at
speed v.s; t/ and measure the distance between parti-
cle s and particle sC •s as viewed in this frame. Will it
be constant in this model, as required for rigid motion?
In the original frame where both particles are moving,
we have separation

X.sC •s; t/�X.s; t/D
@X

@s
•sD

•s

�
:

In the new frame moving at speed v.s; t/, this has
length

�
•s

�
D •sD constant :

This is what rigid motion requires.

7.5 Rate of Strain Tensor

The aim here is to express the rigid motion condi-
tion P�ij D 0 in terms of derivatives with respect to
the coordinates x� by introducing the relativistic ana-
log of the rate of strain tensor in ordinary continuum
mechanics.

The nonrelativistic strain tensor can be defined by

eij WD
1

2

�
@uj

@xi
C
@ui

@xj

�
;

where ui.x/ are the components of the displacement
vector of the medium, describing the motion of the
point originally at x when the material is deformed. One

also defines the antisymmetric tensor

!ij WD
1

2

�
@uj

@xi
�
@ui

@xj

�
;

which describes the rotation occurring when the mate-
rial is deformed. Clearly,

eij �!ij D
@ui

@xj
;

and hence, if all distortions are small,

�ui D .eij �!ij/�xj :
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We can consider that eij describes nonrotational distor-
tions, i. e., stretching, compression, and shear.

In the present discussion, ui is replaced by a velocity
field vi and we have a rate of strain tensor. The nonrela-
tivistic rate of strain tensor is

rij D vi;jC vj;i ; (7.41)

where vi is the 3-velocity field and the differentiation
is with respect to ordinary Cartesian coordinates. Let
us look for a moment at this tensor. The nonrelativistic
condition for rigid motion is

rij D 0 everywhere :

This equation implies

0D rij;k D vi;jkC vj;ik ; (7.42)

0D rjk;i D vj;kiC vk;ji : (7.43)

Subtracting (7.43) from (7.42) and commuting the par-
tial derivatives, we find

vi;jk � vk;ji D 0 ; (7.44)

which, upon permutation of the indices j and k, yields
also

vi;kj � vj;ki D 0 : (7.45)

Adding (7.42) and (7.45), we obtain

vi;jk D 0 ;

which has the general solution

vi D�!ijxjCˇi ; (7.46)

where !ij and ˇi are functions of time only. The condi-
tion rij D 0 constrains !ij to be antisymmetric, i. e.,

!ij D�!ji ;

and nonrelativistic rigid motion is seen to be, at each
instant, a uniform rotation with angular velocity

!i D
1

2
"ijk!jk

about the coordinate origin, superimposed upon a uni-
form translation with velocity ˇi. Because the coordi-
nate origin may be located arbitrarily at each instant,
rigid motion may alternatively be described as one in
which an arbitrary particle in the medium moves in an
arbitrary way while at the same time the medium as
a whole rotates about this point in an arbitrary (but uni-
form) way. Such a motion has six degrees of freedom.

Note that when rij is zero, we can also deduce that
vi;i D 0, i. e., div vD 0, which is the condition for an in-
compressible fluid. This is evidently a weaker condition
than rigidity.

Let us see how this generalizes to special relativity.
We return to the continuous medium in which particles
are labeled by � i, iD 1; 2; 3. Just as the coordinates x�

are functions of the � i and 
 , so the � i and 
 can be
regarded as functions of the x�, at least in the region
of spacetime occupied by the medium. Following [7.4],
we write

u� WD Px� ; u2 D 1 ; P�� D ��� � u�u� :

If f is an arbitrary function in the region occupied by
the medium then

f;� D f;i�
i
;�C

Pf 
;� ;

where the comma followed by a Greek index � denotes
partial differentiation with respect to the coordinate x�.
We also have

Px � RxD 0 or u � PuD 0 ;

since u2 D 1, and

u�u�;� D 0 ; Pu� D u�;�u� ; u�u�;i D 0 ;

x�;i�
i
;� C Px

�
;� D ı
�
� ;

� i
;�x�;j D ı

i
j ; � i

;� Px
� D 0 ;


;�x�;i D 0 ; 
;� Px
� D 1 ;

P�� Px
�
;i D P��u�;i D u�;i :

We now define the rate of strain tensor for the medium

r�� WD P�ij�
i
;��

j
;�

D
�
PP	�x	;ix

�
;jCP	� Px

	
;ix
�
;j

CP	�x	;i Px
�
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�
� i
;��

j
;�

D�.Pu	u� C u	 Pu�/.ı
	
� � u	
;�/

� .ı�� � u�
;�/

C u�;i�
i
;�.ı

�
� � u�
;�/

C .ı	�� u	
;�/u	;j�
j
;�

D� .Pu�u�C u� Pu� � Pu�
;� � 
;� Pu�/

C u�;�� Pu�
;�C u�;� � Pu�
;�
D�u�;	u	u� � u�u	u�;	 C u�;�C u�;�
D P 	

� P �
� .u	;� C u�;	 / :
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This is to be compared with (7.41) to justify calling it
the rate of strain tensor. At any event x�, it lies entirely
in the instantaneous HOS of the particle � i that happens
to coincide with that event.

Note in passing that this generalizes to curved
spacetimes. We define

r�� WD P�ij�
i
;��

j
;� ; (7.47)

as before, noting that it is a tensor, since �ij, P�ij, � i,
and � j are scalars under change of coordinates. At any x,
there are coordinates such that g��;	 jx D 0, whence
covariant derivatives with respect to the Levi-Civita
connection are just coordinate derivatives at x, and it
follows immediately that

r�� D P 	
� P �

� .u	I� C u�I	 / ; (7.48)

where semicolons denote covariant derivatives and P��

is given by

P�� D g�� � Px� Px� ;

for metric g�� .
So in either special or general relativity, the result

r�� WD P�ij�
i
;��

j
;�

D P 	
� P �

� .u	I� C u�I	 / (7.49)

expresses the rate of strain tensor in terms of covariant
derivatives of the 4-velocity field of the medium. We
now characterise relativistic rigid motion by

r�� D 0 ; P�ij D 0 : (7.50)

Once again, we observe that the criterion for rigid
motion, namely, r�� D 0, is independent of the co-
ordinates, because r�� is a tensor, even in a curved
spacetime.

7.6 Examples of Rigid Motion

The next problem is to find some examples, restrict-
ing to the flat spacetime of special relativity now. We
choose an arbitrary particle in the medium and let it be
the origin of the labels � i. The problem here is to choose
these labels smoothly throughout the medium. Let the
worldline x�.0; 
/ of the point � i D 0 be arbitrary (but
timelike). We introduce a local rest frame for the parti-
cle, characterized by an orthonormal triad n �i .
/

ni � nj D�ıij ; ni � u0 D 0 ;

u2
0 D 1 ; u �0 WD Px

�.0; 
/ :

We now assume that the worldlines of all the other par-
ticles of the medium can be given by

x�.�; 
/D x�.0; �/C � in �i .�/ ; (7.51)

where � is a certain function of the � i and 
 to be deter-
mined. On the left, 
 is the proper time of the particle
labeled by � . To achieve a relation of this type, given 

and � , we must find the unique proper time � of the par-
ticle � D 0 such that the point x�.�; 
/ is simultaneous
with the event x�.0; �/ in the instantaneous rest frame
of the particle � D 0. Then the label � i for our parti-
cle is defined by the above relation. There is indeed an
assumption here, namely that these � i really do label
particles. That is, if we look at events with the same � i

but varying 
 , we are assuming that we do follow a sin-
gle particle. It is unlikely that all motions of the medium
could be expressed like this, but we can obtain some
rigid motions, as we shall discover.

To determine the function �.� i; 
/, write

u� D Px�.�; 
/D
�

u �0 C �
i Pn �i

	
P� ;

all arguments being suppressed in the final expression.
Here and in what follows, it is to be understood that dots
over u0 and the ni denote differentiation with respect
to � , while the dot over � denotes differentiation with
respect to 
 .

In order to proceed further, one must expand Pni in
terms of the orthonormal tetrad u0; ni

Pn �i D a0iu
�

0 C�ijn
�

j : (7.52)

The coefficients a0i are determined, from the identity

Pni � u0C ni � Pu0 D 0 ;

to be just the components of the absolute acceleration of
the particle � D 0 in its local rest frame (see an example
in (7.20))

a0i D�ni � Pu0 ; (7.53)
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and the identity

Pni � njC ni � Pnj D 0

tells us that �ij is antisymmetric

�ij D��ji :

We now have

u� D
h�

1C � ia0i
�

u �0 C �
i�ijn

�
j

i
P� : (7.54)

But

1D u2 D
h�

1C � ia0i
�2
� � i� j�ik�jk

i
P�2 ;

whence

P� D
h�

1C � ia0i
�2
� � i� j�ik�jk

i
�1=2

: (7.55)

The right-hand side of this equation is a function solely
of � and the � i. Therefore the equation may be inte-
grated along each worldline � D const., subject to the
boundary condition

�.�; 0/D 0 :

We shall, in particular, have the necessary condition

�.0; 
/D 
 :

Note that the medium must be confined to regions
where

�
1C � ia0i

�2
> � i�ik�

j�jk .� 0/ ; (7.56)

otherwise some of its component particles will be mov-
ing faster than light.

We also note that .�; � i/ are semi-Euclidean coordi-
nates for an observer with worldline x�.0; �/, moving
with the base particle � D 0. This generalizes the con-
struction of Sect. 7.2 to the case of a general 3-D
acceleration. Indeed, the .�; � i/ satisfy the conditions
laid down at the beginning of Sect. 7.2.

What we are doing here is to label the particle � i

by its spatial coordinates � i in the semi-Euclidean sys-
tem moving with the particle � D 0. Geometrically, we

have the worldline of the arbitrarily chosen particle O
at the origin, namely, x�.0; �/, with � its proper time.
We have another worldline x�.� i; 
/ of a particle P la-
beled by � , with proper time 
 . For given 
 , we seek �
such that x�.� i; 
/ is in the hyperplane of simultaneity
of O at its proper time � . Then .� i/ is the position of P
in the tetrad moving with O. Indeed, f� ig are the space
coordinates of P relative to O in that frame.

We can now calculate the proper metric of the
medium. We have

ni � uD�ij�
j P� ; (7.57)

x�;i D n �i C .u
�

0 C �
j Pn �j /�;i D n �i C u� P��1�;i ;

and hence,

u�x�;i D�ij�
j P� C P��1�;i ;

whereupon we have the following deduction:

�ij D P��x�;ix
�
;j

D�ıijC�ik�
k�;jC�jk�

k�;iC P�
�2�;i�;j

�
�
�ik�

k P� C P��1�;i
� �
�jl�

l P� C P��1�;j
�

D�ıij � P�
2�ik�jl�

k� l

D�ıij �
�ik�jl�

k� l

.1C �ma0m/
2 � �n�r�ns�rs

;

(7.58)

using the above expression (7.55) for P� .
From this expression we see that there are two ways

in which the motion of the medium can be rigid:

� All the�ij are zero.
� All the�ij and all the a0i are constants, independent

of � .

In the second case the motion is one of a six-parameter
family, with the �ij and the a0i as parameters. These
special motions are sometimes called superhelical mo-
tions. One example, constant rotation about a fixed axis,
is discussed in Sect. 7.8, while all superhelical motions
will be characterized in Sect. 7.9. But first we consider
the case where all the �ij are zero.
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7.7 Rigid Motion Without Rotation
Saying that the �ij are all zero amounts to saying that
the triad n �i is Fermi–Walker (FW) transported along
the worldline of the particle � D 0. Let us see briefly
what this means.

If u0.�/ is the 4-velocity of the worldline, the equa-
tion for FW transport of a contravector A� along the
worldline is

PAD�.A � Pu0/u0C .A � u0/Pu0 : (7.59)

This preserves inner products, i. e., if A and B are FW
transported along the worldline, then A �B is constant
along the worldline. Furthermore, the tangent vector
u0 to the worldline is itself FW transported along the
worldline, and if the worldline is a spacetime geodesic
(a straight line in Minkowski coordinates), then FW
transport is the same as parallel transport.

Now recall that the�ij were defined by

Pn �i D a0iu
�

0 C�ijn
�

j : (7.60)

When�ij D 0, this becomes

Pn �i D a0iu
�

0 : (7.61)

This is indeed the FW transport equation for n �i , found
by inserting AD ni into (7.59), because we insist on
ni � u0 D 0 and we have a0i D�ni � Pu0 (7.53).

In fact, the orientation in spacetime of the local rest
frame triad n �i cannot be kept constant along a world-
line unless that worldline is straight (we are referring
to flat spacetimes here). Under FW transport, however,
the triad remains as constantly oriented, or as rotation-
less, as possible, in the following sense: at each instant
of time � , the triad is subjected to a pure Lorentz boost
without rotation in the instantaneous hyperplane of si-
multaneity. (On a closed orbit, this process can still
lead to spatial rotation of axes upon return to the same
space coordinates, an effect known as Thomas pre-
cession.) For a general non-Fermi–Walker transported
triad, the�ij are the components of the angular velocity
tensor that describes the instantaneous rate of rotation
of the triad in the instantaneous HOS.

Of course, given any triad n �i at one point on the
worldline, it is always possible to FW transport it to
other points by solving (7.59). We are then saying that
motions that can be given by (7.51), namely,

x�.�; 
/D x�.0; �/C � in �i .�/ ; (7.62)

where the � i are assumed to label material particles
in the medium, are rigid in the sense of the criterion

given above. Furthermore, the proper geometry of the
medium given by the proper metric �ij in (7.39) is then
flat, i. e.,

�ij D�ıij :

As attested by (7.57), we also have

ni � uD 0 ; (7.63)

so that the instantaneous HOS of the particle at � D 0
is an instantaneous HOS for all the other particles of
the medium as well, and the triad n �i serves to define
a rotationless rest frame for the whole medium. In other
words, the coordinate system defined by the particle la-
bels � i may itself be regarded as being FW transported,
and all the particles of the medium have a common
designator of simultaneity in the parameter � . In the
semi-Euclidean system, � is taken to be the time coor-
dinate.

Put another way, (7.63) says that the ni.�/ are in
fact orthogonal to the worldline of the particle labeled
by � i at the value of 
 corresponding to � . This happens
because u.�; 
/D u0.0; �/. In words, the 4-velocity of
particle � at its proper time 
 is the same as the 4-
velocity of the base particle when it is simultaneous
with the latter in the reckoning of the base particle
(quite a remarkable thing).

Because � is not generally equal to 
 , however, it
is not possible for the particles to have a common syn-
chronization of standard clocks. The relation between �
and 
 is given by (7.55) as

P� D
�
1C � ia0i

�
�1

:

We can thus find the absolute acceleration ai of an arbi-
trary particle in terms of a0i and the � i

ai D�ni � PuD�ni �
@u

@�
P�

D�P�ni �
@

@�


�
1C � ja0j

�
u0 P�

�
D�P�ni � Pu0

D
a0i

1C � ja0j
:

(7.64)

Here we have used the fact that uD
�
1C � ja0j

�
u0 P� D

u0. We see that, although the motion is rigid and rota-
tionless in the sense described above, not all parts of the
medium are subject to the same acceleration.
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It is important to note that, when we find � i and � ,
they constitute semi-Euclidean coordinates (adapted
to � D 0) for the point x�.�; 
/ whether or not that
point follows a particle for fixed � . What we have here
are material particles that follow all these points with
fixed � , for a whole 3-D range of values of � .

In these coordinates, the metric tensor takes the
form

g00 D
@x�

@�

ˇ̌̌
ˇ
�

@x�

@�

ˇ̌̌
ˇ
�

��� D u2 P��2 D
�
1C � ia0i

�2
;

gi0 D g0i D
@x�

@� i

ˇ̌̌
ˇ
	

@x�

@�

ˇ̌̌
ˇ
�

��� D .ni � u/ P�
�1 D 0 ;

gij D
@x�

@� i

ˇ̌̌
ˇ
	

@x�

@� j

ˇ̌̌
ˇ
	

��� D ni � nj D�ıij ;

which has a simple diagonal structure. We note that
this metric becomes static, i. e., time-independent, with
the parameter � playing the role of time, in the special
case in which the absolute acceleration of each particle
is constant. This should be compared with (7.16) and
(7.17), and also (7.21).

We conclude that this rigid motion possesses only
the three degrees of freedom that the particle � D 0 it-
self possesses. The base particle � D 0 can move any
way it wants, but the rest of the medium must then fol-
low in a well defined way.

7.8 Rigid Rotation

The simplest example of a medium undergoing rigid ro-
tation is obtained by choosing

a0i D 0 ; �12 D ! ; �23 D 0D�31 :

The worldline of the particle at � D 0 is then straight,
but the worldlines of all the other particles are helices
of constant pitch. We have

P� D
˚
1�!2



.�1/2C .�2/2

��
�1=2

and the proper metric of the medium takes the form

.�ij/D

0
@�1� . P�!�2/2 C. P�!/2�1�2 0
C. P�!/2�1�2 �1� . P�!�1/2 0

0 0 �1

1
A :

Relabeling the particles by means of three new coordi-
nates r; ; z given by

�1 D r cos  ; �2 D r sin  ; �3 D z ; (7.65)

the proper metric of the rotating medium takes the form

� diag
�

1;
r2

1�!2r2
; 1
�
:

Indeed, we have

P�2 D
1

1�!2r2
;

whence

��rr D�
@� i

@r

@� j

@r
�ij

D cos2 


1C . P�!r/2 sin2 

�
� 2. P�!r/2 sin2  cos2 

C sin2 


1C . P�!r/2 cos2 

�
D 1 ;

��r� D���r D�
@� i

@r

@� j

@
�ij

D�r sin  cos 


1C . P�!r/2 sin2 

�
� r. P�!r/2 sin  cos3 

C r. P�!r/2 sin3  cos 

C r sin  cos 


1C . P�!r/2 cos2 

�
D 0 ;

�rz D �zr D
@� i

@r

@� j

@z
�ij D 0 ;

���� D�
@� i

@

@� j

@
�ij

D r2 sin2 


1C . P�!r/2 sin2 

�
C 2r2. P�!r/2 sin2  cos2 

C r2 cos2 


1C . P�!r/2 cos2 

�
D r2



1C . P�!r/2

�

D r2

�
1C

!2r2

1�!2r2

�
D

r2

1�!2r2
;
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��z D �z� D
@� i

@

@� j

@z
�ij D 0 ;

�zz D
@� i

@z

@� j

@z
�ij D�1 :

In terms of these coordinates the proper distance •s be-
tween two particles separated by displacements •r, • ,
and •z therefore takes the form

•s2 D .•r/2C
r2

1�!2r2
.•/2C .•z/2 :

We are merely applying (7.38) for the new particle la-
bels. This gives the distance of one particle as reckoned
in the instantaneous rest frame of the neighboring par-
ticle. The second term on the right of this equation may
be understood as arising from relativistic contraction.

At first sight, it may look odd to find that, when
a disc of radius r is set spinning with angular fre-
quency ! about its axis, so that radial distances are
unaffected by relativistic contraction, distances in the
direction of rotation contract in such a way that the
circumference of the disc gets reduced to the value
2�R
p

1�!2R2. It appears to contradict the Euclidean
nature of the ordinary 3-space that the disc inhabits!

This can be clarified as follows. Suppose A and B
are two neighboring particles at distance R from the
center and with labels  and  C • . When the disk is

not rotating, the proper distance between them as reck-
oned by either in its ICIF is R• . When the disk is
rotating, the expression for �ij tells us that the proper
distance between them in the new ICIF will increase to
R•=.1�!2R2/1=2. Seen by an inertial observer mov-
ing with the center of the disk, this separation will thus
be R• , as before, and there will be no contradiction
with the edicts of Euclidean geometry. This shows that
the matter between A and B is stretched in the sense
of occupying a greater proper distance as judged in an
ICIF moving with either A or B.

The above discussion does assume that  labels the
material particles! And this follows from the relations
in (7.65) and the fact that �1; �2; �3 label the parti-
cles. It would be easy to miss this point. There remains
therefore the question as to whether any association of
material particles could have, or is likely to have this
motion.

We note that the medium must be confined to re-
gions where r < !�1 and that its motion will not be
rigid if ! varies with time. There are no degrees of
freedom in this kind of (superhelical) motion: once the
medium gets into superhelical motion, it must remain
frozen into it if it wants to stay rigid. We also note
that the proper geometry of the medium is not flat, i. e.,
�ij ¤�ıij.

7.9 Generalized Uniform Acceleration and Superhelical Motions

The notion of uniform acceleration, previously limited
to straight line motion, has recently been elegantly gen-
eralized by Friedman and Scarr in a way that allows us
to identify all superhelical motions [7.5]. Let us briefly
discuss the key points in the context of what has come
before.

It will be useful first to review the big picture. If we
consider an arbitrary timelike worldline in special rela-
tivity, we have seen that we can always find coordinate
systems f� i; 
g adapted to that worldline in the follow-
ing sense:

� The worldline is given by � i D 0, iD 1; 2; 3.
� The coordinate 
 is equal to the proper time � along

the worldline.
� It is easily shown that the metric is given at any

event .� i; 
/ by

g00 D
�
1C � ia0i

�2
� � i� j�ik�jk ;

g0i D �
j�ji D gi0 ; gij D�ıij ;

(7.66)

where �ij.�/ is an antisymmetric 3� 3 matrix de-
scribing the rotation of the spatial coordinate axes
as one moves along the worldline (see (7.52)) and
a0i.�/ are the three nonzero components of the ac-
celeration 4-vector in the ICIF.

� The metric reduces to the standard form ��� of
the Minkowski metric on the worldline and in-
duces the Euclidean metric on the spacelike hy-
persurfaces of simultaneity 
 D constant for these
coordinates.

� One can also easily show that the connection is
given on the worldline itself by

� i
00 D �

0
0i D �

0
i0 D a0i ; iD 1; 2; 3 ; (7.67)

�
�

ij D 0 ; �D 0; 1; 2; 3; iD 1; 2; 3 ;

(7.68)

� i
0j D �

i
j0 D�ij ; i; jD 1; 2; 3 ; (7.69)
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and hence encodes the acceleration of the worldline
and the rotation of the spatial coordinate axes.

Choosing spatial coordinate axes such that
�ij.�/D 0 for all proper times � along the worldline
amounts to selecting a spacelike triad orthogonal to
the unit tangent to the worldline, which is just its
4-velocity, at some point, and then FW transporting
that triad along the worldline to specify the spatial
coordinate axes at other points along the worldline.

This also achieves rigidity of the coordinate system
in the following sense. Any two observers sitting at two
fixed neighboring space coordinates � and �C •� are
always the same proper distance apart as measured by
either in an ICIF. This in turn means that a ruler satisfy-
ing the ruler hypothesis would always correctly indicate
spatial coordinate separations when made to sit at fixed
spatial coordinates in this system.

In the case of nonrotating spatial coordinate axes,
the metric has the form

.g��/D

0
BB@
�
1C � ja0j

�2
0 0 0

0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCA ;

which is static if and only if the absolute acceleration
components a0i are constants (independent of proper
time along the worldline), a motion generally known
as (translational) uniform acceleration.

Let us now see how we can generalize the notion
of uniform acceleration and obtain a rigid coordinate
system without the need to FW transport the initial ICIF
along the worldline.

7.9.1 Definition

Here we closely follow the discussion by Friedman and
Scarr [7.5]. We work in an inertial (laboratory) frame
denoted by K. For any timelike worldline, we take the
4-velocity to be the dimensionless unit 4-vector

uD .u0; u1; u2; u3/ WD
1

c

dx�

d

;

where 
 is the proper time, and hence define the 4-
acceleration to be

a� WD c
du�

d

;

which has units of acceleration.

We define a uniformly accelerating worldline to be
one that satisfies

c
du�

d

D A��u� ; (7.70)

with some specified initial value u.0/D u0, where A��
is a tensor under Lorentz transformations and indepen-
dent of 
 . We also require that the type (2,0) form NA of
this tensor, with components A�� WD ��	A	� , should
be antisymmetric, for the following reason. Since u2 D

1 is constant, we must have a �uD 0, whence we require

0D ���a�u� D ���A�	u	u� D u�A�	u	 ;

a sufficient condition for which is that the type (2,0)
tensor A�� should be antisymmetric, i. e.,

A�� D�A�� : (7.71)

Equation (7.70) has a unique solution

u.
/D exp

�
A


c

�
u0 D

 
1X

nD0

An

nŠcn

n

!
u0 ;

(7.72)

where A is type (1,1) tensor. A key motivation for the
above definition is that this kind of motion is covari-
ant in the sense that uniformly accelerated motion in
one inertial frame is uniformly accelerated motion in
every inertial frame. This in turn follows straight from
the definition because proper time is an invariant, u is
a 4-vector, A�� is a tensor (see below), and A�� will
be antisymmetric in every inertial frame if it is so in
one.

7.9.2 Tensorial Nature of A and NA

The equation of motion (7.70) has been expressed rel-
ative to some arbitrarily chosen inertial frame K. But
how would we transform this equation of motion in or-
der to describe the worldline relative to a new inertial
frame?

The answer is that we will get the same equation
expressed relative to the new frame if we transform the
object so suggestively written as A�� as a type (1,1)
tensor. Indeed, if we are to obtain the same equation
expressed relative to the new frame, it has to transform
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like this because the left-hand side of (7.70) transforms
as a contravector, and so does u.

Relative to any other choice of laboratory inertial
frame K1 related to K by a homogeneous Lorentz trans-
formation, the acceleration matrix will have the form

A1 D L�1AL ; (7.73)

where L is the homogeneous Lorentz transformation
from K to K1.

Naturally then, the object NA with components
A�� WD ��	A	� must transform as a type (2,0) tensor
when we rewrite the equation of motion relative to some
other inertial frame. Relative to any other choice of lab-
oratory inertial frame K1 related to K by a homogeneous
Lorentz transformation L, type (2,0) acceleration ma-
trix NA will have the form

NA1 D LT NAL : (7.74)

Note that NA is antisymmetric if and only if LT NAL is anti-
symmetric.

7.9.3 Nature of Generalization

Let us see how the above extends the usual definition
of uniform acceleration. The first thing is to write down
the most general possible matrix versions of A�� and
A�� in the chosen laboratory inertial frame K, bearing
in mind the antisymmetry of the former

A��.g;!/D
�

0 gT

�g �c�.!/

�
;

A��.g;!/D
�

0 gT

g c�.!/

�
:

(7.75)

Here we have used the notation introduced in [7.5]: g
is a 3-component object with units of acceleration
and transpose gT, and !D .!1; !2; !3/ is another
3-component object but this time with units of 1=time,
and

�.!/ WD "ijk!
k ; (7.76)

with "ijk the completely antisymmetric Levi-Civita
symbol. The factor of c with �.!/ just ensures that this
entry has units of acceleration. Since A�� is indepen-
dent of 
 , the same goes for g and !.

Now when !D 0, the above definition of uniform
acceleration reduces to the usual definition of uniform

acceleration in a straight line. Indeed, we then have

c
du�

d

D A��u� D

�
0 gT

g 0

��
u0

u
c

�
; (7.77)

so that

c
du�

d

D .c�1g � u; gu0/ ; (7.78)

since we are taking

.u�/D .u0;u=c/ ; u0 D �.v/ ; uD �.v/v :

We also note that

dt

d

D � ;

whence

du
dt
D

du
d


d


dt
D gu0��1 D g : (7.79)

Since g is independent of time, this is indeed the usual
definition for translational uniform acceleration (TUA).
It has solution

uD gtCu0 ; (7.80)

where u0 is the value of u at time tD 0. It is not difficult
to see how this accords with the earlier definition.

Note that the definition of purely TUA does not
give rise to a covariant notion of uniform acceleration,
since it depends on having !D 0. This standard notion
would thus only be covariant under transformations that
preserve this condition, namely, Lorentz boosts in the
direction of g and space rotations about the direction
of g. Rather than being the whole homogeneous Lorentz
group, as for the new definition of uniform acceler-
ation, the covariance group would be the little group
fixing the space axis along g. In fact, the generalized
form of uniform acceleration is even covariant under the
transformations of the inhomogeneous Lorentz group
(Poincaré group), including spacetime translations.

The type (1,1) tensor A and the associated antisym-
metric type (2,0) tensor NA are both referred to as the
acceleration tensor. A uniformly accelerated motion is
uniquely defined by its acceleration tensor A and its ini-
tial 4-velocity u0. The associated worldline Ox.
/ can be
found if we know the initial position Ox.0/. The basic
equation (7.70) along with an initial value u.0/D u0

can be solved exactly to obtain u.
/, and the resulting
expression is easily integrated to obtain Ox.
/ if we have
the initial value Ox.0/. The details can be found in [7.5].
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7.9.4 Coordinate Frame for Generalized
Uniform Acceleration

Once again, we follow Friedman and Scarr for this con-
struction [7.5]. The aim will be to construct a coordinate
frame K0 such that the observer with uniform accel-
eration and proper time 
 has worldline .c
; 0; 0; 0/.
We shall do this in a mathematically natural way and
we shall find that the result is a rigid frame in the
sense that two nearby particles sitting at fixed space
coordinates in K0 are always the same distance apart
as measured in the instantaneously comoving inertial
frame of either.

Note that we already have a rigid frame, obtained
by FW transporting a space triad along the observer
worldline and using the construction described in detail
earlier. In the present case, we shall obtain a generally
different rigid coordinate frame that depends crucially
on the observer worldline being generated as in (7.70)
by a constant acceleration tensor. We shall once again
transport a space triad along the observer worldline, but
the transport will be a generalization of FW transport,
although it will be a generalization only for the case of
generalized uniform acceleration (GUA), and only re-
duce to it in the special case where we have the purely
translational form of uniform acceleration in some iner-
tial frame in which the observer comes to rest at some
event.

Consider the worldline Ox.
/ of a uniformly acceler-
ating observer in the sense of (7.70), with motion de-
termined by a constant acceleration matrix NAD .A��/,
initial 4-velocity u.0/, and initial position Ox.0/. The first
step is to define an ICIF K� at each proper time 
 , spec-
ified by a tetrad 	.
/D f	.�/.
/g�D0;1;2;3. To do so we
choose an initial ICIF K0 with origin at Ox.0/, specified
by a tetrad O	D fO	.�/g�D0;1;2;3, where as usual we take
O	.0/ D u.0/ and f O	.i/giD1;2;3 can be chosen arbitrarily
to complete the tetrad.

We must now transport this initial tetrad along the
worldline. Previously we used FW transport and ob-
tained a perfectly good rigid coordinate frame in that
way. However, there is a mathematically more natural
way to transport our space triad in the present case. For

 > 0, we define K� by requiring the origin of K� at
time 
 to be Ox.
/ and requiring the basis of K� to be the
unique solution 	.
/D f	.�/.
/g�D0;1;2;3 of the initial
value problem

c
d	�
.�/

d

D A��	

�
.�/ ; 	.�/.0/D O	.�/ : (7.81)

Since O	.0/ D u.0/ and u.
/ satisfies this differential
equation according to (7.70), we deduce that 	.0/.
/D
u.
/ for all values of 
 . Furthermore, the type (1,1)
tensor A is a constant matrix, and we can immediately
solve the system (7.81) to obtain

	.
/D exp

�
A


c

�
O	 : (7.82)

Note also that this kind of transport is an isometry, that
is, it preserves the Lorentzian scalar product. To see
this, suppose that v and w are any two 4-vectors at Ox.0/
and solve (7.81) to obtain vector fields v.
/ and w.
/
along Ox.
/. Then consider

d

d

Œv.
/ �w.
/�D ŒAv.
/� � Œw.
/�

C Œv.
/� � ŒAw.
/�

D ��	A��v�w	 C ��	v�A	�w�

D A	�v�w	 CA��v�w�

D A��.v
�w�C v�w�/D 0 ;

(7.83)

due to the antisymmetry of the type (2,0) tensor NA.
Interestingly, we do not use the constancy of the ma-
trix A in this proof, only the differential relations that v
and w must satisfy, so this kind of transport is isomet-
ric for quite general, possibly time-varying acceleration
matrices A, provided that the associated matrix NA is an-
tisymmetric.

The fact that this transport is isometric is impor-
tant, because it means that the solution to (7.81) will
be orthonormal right along the observer worldline, i. e.,
it will be a tetrad. We shall examine the resulting co-
ordinate system in a moment. Before doing so, it is
interesting to rewrite (7.81) in a slightly different way.
To begin with, let us think of our initial frame O	 as a ma-
trix with columns

O	D
�
O	.0/ O	.1/ O	.2/ O	.3/

	
; (7.84)

where each column comprises the components O	�
.�/

of
the given tetrad 4-vector expressed relative to the iner-
tial (laboratory) frame K. This matrix maps the basis

e0 WD

0
BB@

1
0
0
0

1
CCA ; e1 WD

0
BB@

0
1
0
0

1
CCA ; e2 WD

0
BB@

0
0
1
0

1
CCA ; e3 WD

0
BB@

0
0
0
1

1
CCA ;

(7.85)
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of K to the basis we have chosen for the initial ICIF K0.
Now define the new matrix

QA WD O	�1A O	 ; (7.86)

the representation of the type (1,1) tensor A relative to
the basis of the initial ICIF K0. Put another way, we now
have

O	 QAD A O	 ; (7.87)

or in component form

O	�./
QA./.�/ D A�	 O	

	
.�/ : (7.88)

The point is that we can now write

c
d	�
.�/

d

D

�
exp

�
A


c

���
�A�	 O	

	
.�/

D

�
exp

�
A


c

���
�
O	�./
QA./.�/ ;

whence

c
d	�
.�/

d

D 	

�

./
QA./.�/ : (7.89)

This is just a slightly different, but equivalent version of
(7.81). It is useful for drawing the parallel with previous
constructions, as we shall see, and also for showing that
this kind of transport generalizes FW transport in the
case of purely TUA in the initial ICIF K0 D O	.

These considerations generalize easily to the case
of acceleration matrices that are not constant along the
observer worldline. It can be shown that we can always
find a matrix A�� such

c
d	�.0/

d

D A��	

�
.0/ ; (7.90)

although it will not generally be constant, with the fur-
ther property that

c
d	�.i/

d

D A��	

�
.i/ ; iD 1; 2; 3 ; (7.91)

whatever smooth choice of space tetrad f	�.i/giD1;2;3

has been made along the worldline (but noting that the
matrix A then depends on that choice).

Let us now see how to set up coordinates fy.�/g
adapted to the generalized uniformly accelerating ob-
server worldline. For any event X with coordinates x�

in K, we find a proper time 
 for the observer for which
Ox.
/ is simultaneous with X in the ICIF K� . We then de-
fine the zero (or time) coordinate of X in the proposed
accelerating frame K0 to be y.0/ D c
 . Note that all
events in this particular HOS for K� will be attributed
the same time coordinate c
 .

Put another way, K0 is borrowing the hyperplanes
of simultaneity of an instantaneously comoving iner-
tial observer, so given that we obtain the tetrad field
along the observer worldline by the isometric propaga-
tion (7.81) (or (7.89)), we have a standard construction
of semi-Euclidean coordinates as described previously.
And as in our earlier constructions, we still have the
problem that such hyperplanes can intersect off the ob-
server worldline. These coordinates will generally only
be valid on some neighborhood of the worldline, and
not throughout the whole of spacetime.

Now the displacement Ny of X relative to the observer
at proper time 
 can be expressed in terms of the space
triad f	.i/.
/giD1;2;3, since

Ny � u.
/D Œx� Ox.
/� � u.
/D 0 ;

by the specific choice of 
 . Hence, there are y.i/ 2 R,
iD 1; 2; 3; such that

NyD y.i/	.i/.
/ :

In short, we have found 
 such that

x� D Ox�.
/C y.i/	.i/.
/ : (7.92)

The coordinates of event X in the coordinate frame
K0 will then be defined as .c
; y.1/; y.2/; y.3//, and the
relation (7.92) tells us how to convert from these coor-
dinates to the original laboratory coordinate system K.

7.9.5 Rigidity

We shall show that this is a rigid coordinate system
in the sense of Sect. 7.4. It is important to understand
that this notion of rigidity is not the same as saying
that the geometry of the hyperplanes of simultaneity is
Euclidean, which is true by construction. Imagine two
particles A and B at rest relative to the space coordinates
of the proposed accelerating frame K0, with worldlines
of the form f.c
; yA/ W 
 2Rg and f.c
; yB/ W 
 2 Rg, re-
spectively. At a given 
 , the particles lie in the same
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hyperplane of simultaneity of the inertial frame K� , and
since this is also the HOS adopted in K0, the proper dis-
tance between A and B at coordinate time 
 in the K0

system is just the length of the vector Œy.i/B �y.i/A �	.i/.
0/,
namely,

r
ıij

h
y.i/B � y.i/A

i h
y.j/B � y.j/A

i
:

The fact that this is independent of 
 does not prove
rigidity.

Rigidity according to Sect. 7.4 means that neighbor-
ing worldlines with fixed space coordinates are always
the same proper distance apart as measured in the in-
stantaneous rest frame of either. We need therefore to
examine the proper distance between A and B as mea-
sured in the instantaneous rest frame of A, for example,
which depends on the motion of A. The frame K0 is
nevertheless rigid in this sense, ultimately because the
acceleration matrix is constant, but this is not obvious
and requires more work.

We have already done this work in Sect. 7.6, how-
ever. The key will be (7.89). Recall that A is a constant
matrix, i. e., independent of proper time 
 , and so
of course is the matrix O	 of (7.84). This means that
the matrix QA in (7.89) is also independent of 
 . But
(7.89) corresponds exactly to the key relation (7.52) in
Sect. 7.6, namely,

cPn �i D a0iu
�C c�ijn

�
j ; (7.93)

where we have reinstated c and replaced the notation u0

for the 4-velocity of the observer by the present nota-
tion u, recalling that we made the latter dimensionless.

Now we have the correspondence ni$ 	.i/, iD
1; 2; 3; while u$ 	.0/. By (7.53), we also have

a0i D�cni � Pu ; (7.94)

which means that

cPuD a0ini ; (7.95)

since Pu is orthogonal to u.
So, in the notation of Sect. 7.6, which was a com-

pletely general construction using any smoothly chosen
tetrad along the worldline, and for an arbitrary smooth
timelike worldline, the relation

c
d	�
.�/

d

D 	

�

.�/
QA.�/.�/ (7.96)

is replaced by

(
c P	.i/ D a0i	.0/C c�ij	.j/ ;

c P	.0/ D a0i	.i/ :
(7.97)

We can now read off the matrix QA, obtaining

QA.�/.�/ D

0
BB@

0 a01 a02 a03

a01 0 c�21 c�31

a02 c�12 0 c�32

a03 c�13 c�23 0

1
CCA ; (7.98)

with � specifying the row and � the column. Note in
passing that, when 	.
/ is obtained by the isometric
transport (7.82), namely,

	.
/D exp
�

A


c

�
O	 ; (7.99)

we get the same result for QA no matter what ICIF.
/DW
K� is used to reexpress A, since

	�1.
/A	.
/D O	�1 exp

�
�A


c

�
A exp

�
A


c

�
O	

D O	�1A O	D QA :

(7.100)

Returning to the above identification of the matrix QA
with the matrix on the right-hand side of (7.98), we
can immediately deduce what we need to know here
in order to prove that we have another rigid frame by
this construction, despite the evident fact that the initial
tetrad need not be FW transported along the worldline,
since we are not assuming�ij D 0 for all i; j 2 f1; 2; 3g.
The point is that A is a constant matrix if and only if QA
is a constant matrix, and this is true if and only if a0i

and �ij are constant for all i; j 2 f1; 2; 3g. This corre-
sponds exactly to superhelical motion as introduced in
Sect. 7.6.

At least, we have shown that the theory of GUA
in [7.5] always leads to cases of superhelical motion,
but it is not yet entirely clear that superhelical motion
always corresponds to a case of GUA with isometrically
transported triad. After all, if we begin with the relations
(7.97), we obtain a relation like (7.96), namely,

c
d	�
.�/

d

D 	

�

.�/
A.�/.�/ ; (7.101)
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where A is the constant matrix

A.�/.�/ WD

0
BB@

0 a01 a02 a03

a01 0 c�21 c�31

a02 c�12 0 c�32

a03 c�13 c�23 0

1
CCA ; (7.102)

with � specifying the row and � the column, but we
have not said anything about how the space triad should
be propagated along the worldline. Superhelical motion
occurs when the�ij are not necessarily zero, but all the
a0i and �ij are constant, but to show that we have GUA
according to the definition, we need to show that we
have

c
du�

d

D A��u� ; (7.103)

for some constant matrix A and for some choice of iner-
tial frame, and we also need to know that the space triad
f O	.i/giD1;2;3 has been transported isometrically accord-
ing to the rule

c
d	�
.i/

d

D A��	

�
.i/ ; iD 1; 2; 3 : (7.104)

This needs to be carefully considered if we are to claim
that superhelical motion corresponds precisely to the
general GUA construction of Friedman and Scarr.

We can see how to carry out this construction. Start-
ing with (7.101) and (7.102), we have the solution

	
�

.�/
.
/D 	

�

.�/
.0/

�
exp

�
A


c

���
.�/

; (7.105)

and we define O	�
.�/
WD 	

�

.�/
.0/, which is basically the

initial ICIF, whence

	
�

.�/
.
/D O	

�

.�/

�
exp

�
A


c

���
.�/

: (7.106)

Since we expect A to correspond to the matrix QA in our
previous discussion, we now know how we must define
the matrix A by looking at (7.87) and (7.88)

A WD O	AO	�1 ; (7.107)

or in component form

A�	 WD O	
�
./A

./
.�/. O	

�1/.�/	 : (7.108)

Note that A is constant, i. e., independent of 
 , because
the matrix O	 is independent of 
 . Now what we hope is
that

c
du�

d

D A��u� ; (7.109)

and that f	.i/giD1;2;3 is obtained by isometric transport,
i. e., by solving

c
d	�
.i/

d

D A��	

�
.i/ ; iD 1; 2; 3 : (7.110)

Since uD 	.0/, satisfying the last two equations
amounts to satisfying

c
d	�
.�/

d

D A��	

�
.�/ ; � D 0; 1; 2; 3 : (7.111)

Let us drop indices and work from (7.106) and (7.107)
in the form

	D O	 exp
�

A


c

�
; AD O	A O	�1 : (7.112)

These imply

	 O	�1 D O	 exp

�
A


c

�
O	�1

D exp. O	A O	�1
=c/

D exp

�
A


c

�
;

whence

	D exp

�
A


c

�
O	 ; (7.113)

and this differentiates to give the required result

c
d	

d

D A	 :

Note that the above argument generalizes in a certain
sense to nonconstant acceleration tensors.

In the present case, the conclusion from this is that
the rigid motion described earlier as superhelical is pre-
cisely the motion of fixed space points in the coordinate
system constructed by Friedman and Scarr for an ob-
server with GUA in the case where the rotational part
of the acceleration matrix is not zero.

Note finally that we do expect the type (2,0) ob-
ject QA.�/.�/ to be antisymmetric, since

	.�/ �	.�/ D ���) P	.�/ �	.�/C	.�/ � P	.�/ D 0

)
h
	.�/ QA

.�/
.�/

i
�	.�/

C	.�/ �
h
	.�/ QA

.�/
.�/

i
D 0

) ��� QA
.�/

.�/C ��� QA
.�/

.�/ D 0

) QA.�/.�/C QA.�/.�/ D 0 :

(7.114)
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The type (2,0) object QA.�/.�/ WD ��� QA.�/.�/ we obtain
from (7.98) is

QA.�/.�/ D

�
0 aT

0
�a0 c�

�
; (7.115)

where � labels rows and � labels columns, and

� WD

0
@�11 �12 �13

�21 �22 �23

�31 �32 �33

1
A ; (7.116)

and this matrix QA.�/.�/ is indeed antisymmetric.

7.9.6 Summary

Generalized uniform acceleration is a motion satisfying

c
du�

d

D A��u� ; (7.117)

with some specified initial value u.0/D u0, where A��
is a tensor under Lorentz transformations with the prop-
erty that A�� WD ��	A	� is antisymmetric and with
the further crucial property of being independent of 
 .
The initial ICIF O	D fO	.�/g is transported along the
worldline by the isometry specified by

c
d	�
.�/

d

D A��	

�
.�/ ; 	.�/.0/D O	.�/ :

(7.118)

This GUA and the associated semi-Euclidean frame are
Poincaré covariant constructions.

When the acceleration matrix A has the translational
form

AD

�
0 gT

g 0

�
; (7.119)

where g is constant (independent of 
 along the world-
line), in some inertial frame relative to which the
worldline comes to rest at some event, then the motion
is pure TUA according to the standard definition of uni-
form acceleration and it is straightforward to show that
isometric transport (7.118) coincides with FW trans-
port.

So we can construct SE coordinate systems for any
observer motion and any smooth propagation of the

space triad, but in general, a fluid whose particles sit at
fixed space coordinates in such a system will have rigid
motion if and only if the space triad is FW transported
along the observer worldline. However, for GUA mo-
tion with Friedman–Scarr (FS) isometric transport of
the space triad, a fluid whose particles sit at fixed space
coordinates will also have rigid (superhelical) motion.
Indeed such superhelical motion can only be achieved
for GUA motion of the main observer and FS transport
of the space triad.

7.9.7 Metric for Friedman–Scarr Coordinates

These coordinates are obtained by transporting a tetrad
from some initial point on the observer worldline to
all other points along it and then carrying out the gen-
eral construction for an SE coordinate frame. We can
thus use the general theory developed earlier, and which
leads to the metric form (7.66). We begin with the ma-
trix QA given in (7.98), namely,

QA.�/.�/ D

0
BB@

0 a01 a02 a03

a01 0 c�21 c�31

a02 c�12 0 c�32

a03 c�13 c�23 0

1
CCA ; (7.120)

where � specifies the row and � the column. Then rela-
tive to the coordinates fy.�/g�D0;1;2;3, the metric takes
the form

g.�/.�/ D0
BBBB@



1C y.i/a0i

�2
�y.i/y.j/�ik�jk

y.i/�i1 y.i/�i2 y.i/�i3

y.i/�i1 �1 0 0
y.i/�i2 0 �1 0
y.i/�i3 0 0 �1

1
CCCCA

(7.121)

Note how this matrix is always independent of the
temporal coordinate y.0/, and the a0i and �ij are just
temporal constants for GUA.

This is enough to conclude something that is of-
ten (mistakenly) considered important for discussions
of the physical interpretation of such coordinate frames,
namely that @y.0/ is a Killing vector field for every such
coordinate construction for GUA motion. A Killing
vector field X is one such that the Lie derivative LXg
of the metric along the flow curves of X is zero.

To prove this claim, we may use the general coordi-
nate formula for the Lie derivative as given in [7.6]. For



Rigid Motion and Adapted Frames 7.9 Generalized Uniform Acceleration and Superhelical Motions 137
Part

B
|7.9

any contravariant vector field X, we have

.LXg/.�/.�/ D
@g.�/.�/
@y.�/

X.�/

C g.�/.�/
@X.�/

@y.�/
C g.�/.�/

@X.�/

@y.�/
:

(7.122)

We then take X D @y.0/ which has components X.0/ D 1,

X.i/ D 0, iD 1; 2; 3, in these coordinates. Hence,

.LXg/.�/.�/ D
@g.�/.�/
@y.0/

X.0/ D 0 ;

as claimed. We can thus say that all observers sitting
at fixed space coordinate positions in these frames are
Killing observers.

Any spacetime with a metric of the form (7.121)
has a globally defined timelike Killing vector field and
is said to be stationary. If in addition only the diago-
nal elements are nonzero, as happens when all the �ij

are zero and we have TUA, the spacetime is said to be
static. Of course, this is the flat Minkowski spacetime
so we already know that it is static. What we discover
here is the plethora of Killing vector fields that can be
used to get the Minkowski metric into the stationary or
static forms.

7.9.8 More about Observers
at Fixed Space Coordinates

A more general question is whether these Killing
observers sitting at fixed space coordinates in the
fy.�/g�D0;1;2;3 system actually have GUA motion. In
order to tackle this, we need to know the proper time of
these observers.

Here we can also use the general theory of semi-
Euclidean coordinate systems in Sect. 7.6. Recall that
this analysis considers a space triad fnigiD1;2;3 that
is smoothly transported along the observer world-
line, without assuming anything other than smoothness
about the transport. Furthermore, we have made the link
with the quantities a0i and �ij in the relations (7.93),
namely,

cPn �i D a0iu
�C c�ijn

�
j : (7.123)

So as we saw previously, we have the correspondence
ni$ 	.i/, iD 1; 2; 3; while u$ 	.0/ and

a0i D�cni � Pu ; (7.124)

which means that

cPuD a0ini ; (7.125)

since Pu is orthogonal to u. Then, in this notation,
which was a completely general construction using any
smoothly chosen tetrad along the worldline, and for an
arbitrary smooth timelike worldline, the relation

c
d	�
.�/

d

D 	

�

.�/
QA.�/.�/

is replaced by

(
c P	.i/ D a0i	.0/C c�ij	.j/ ;

c P	.0/ D a0i	.i/ ;
(7.126)

and we read off the matrix QA as

QA.�/.�/ D

0
BB@

0 a01 a02 a03

a01 0 c�21 c�31

a02 c�12 0 c�32

a03 c�13 c�23 0

1
CCA ; (7.127)

with � specifying the row and � the column. The spe-
cific feature of GUA motion is that the a0i and �ij are
actually independent of the proper time along the ob-
server worldline. It is also important to note that the
point of contact between this analysis and Friedman and
Scarr’s is through QA, the expression for the acceleration
matrix relative to any ICIF for the main observer, rather
than through A, the expression for the acceleration ma-
trix relative to some arbitrary laboratory inertial frame.

Now it is established in Sect. 7.6 that the 4-velocity
of an observer sitting at fixed � i$ y.i/ in the accelerat-
ing frame is (see (7.54))

u�.�; 
/D

�

1C � ia0i
�

u0
�C � i�ijnj

�
�
P� ;

(7.128)

where 
 is the proper time for the observer at � and
�.�; 
/ is the corresponding proper time of the main
observer, corresponding in the sense that, at that proper
time, the main observer considers the observer at � to be
simultaneous. The dot on � denotes the derivative with
respect to 
 , keeping � fixed, so it is the time dilation
effect between the two observers. In fact, it was shown
in (7.55) that

P� D
h�

1C � ia0i
�2
� � i� j�ik�jk

i
�1=2

: (7.129)
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Note that P� is constant for GUA motion, because then
a0i and�ij are constant and we have fixed the � i. So the
full formula for the 4-velocity of the observer sitting at
fixed � is

u�.�; 
/D

�
1C � ia0i

�
u0
�C � i�ijnj

�

h
.1C � ia0i/

2
� � i� j�ik�jk

i1=2
:

(7.130)

We must now obtain the 4-acceleration a�.�; 
/ by dif-
ferentiating u�.�; 
/ with respect to 
 for fixed � . The
aim will be to see whether the 4-acceleration can be ob-
tained by multiplying the 4-velocity by some constant
matrix. We have

a�.�; 
/D
@u�.�; 
/

@


ˇ̌̌
ˇ
�

D

�
1C � ia0i

�
Pu0
�C � i�ij Pnj

�

h
.1C � ia0i/

2
� � i� j�ik�jk

i1=2
P�

D

�
1C � ia0i

�
A��u0

� C � i�ijA��nj
�

.1C � ia0i/
2
� � i� j�ik�jk

D
A��h

.1C � ia0i/
2
� � i� j�ik�jk

i1=2

� u�.�; 
/ ;

(7.131)

using the fact that Pu0
� D A��u0

� and Pnj
� D A��nj

� ,
where A�� is the version of the constant accelera-
tion matrix expressed relative to the laboratory inertial
frame. We conclude that an observer sitting at fixed � i

in the FS accelerating frame would indeed have GUA,

with the acceleration matrix

A��.�/D
A��h

.1C � ia0i/
2
� � i� j�ik�jk

i1=2
;

(7.132)

as expressed relative to the laboratory inertial frame.
When the latter is the initial instantaneously comoving
inertial frame ICIF(0) of the main observer, or in fact
any ICIF of the main observer and hence also of the
observer at � , we have

QA��.�/D
1h

.1C � ia0i/
2
� � i� j�ik�jk

i1=2

�

0
BB@

0 a01 a02 a03

a01 0 �21 �31

a02 �12 0 �32

a03 �13 �23 0

1
CCA

;

(7.133)

although it is not necessary to see this form in order to
prove the above claim.

It can be shown that observers sitting at fixed space
coordinates in the FS frame of a main observer with
GUA motion share hyperplanes of simultaneity with the
latter, in the precise sense described just after (7.63), if
and only if the motion of the main observer is actually
TUA. But in fact HOS sharing also occurs for a main
observer with arbitrary motion provided she uses an FW
transported tetrad to establish coordinates, regardless of
whether her purely translational acceleration as viewed
in this frame is uniform or not.

7.10 A Brief Conclusion

There is an important difference between inertial frames
and what we have been referring to as accelerating
frames: when an observer has inertial motion, either
in special relativity or in general relativity, we know
what is the most natural frame for such a person to
use, namely, an inertial or locally inertial frame, since it
is in these frames that our theories of nongravitational
physics take on their simplest forms. This in turn is ulti-
mately related to the fact that the latter theories, which

govern whatever is being measured and whatever is be-
ing used to measure them, have a velocity symmetry,
which we usually refer to as Lorentz or local Lorentz
symmetry, respectively.

But when the observer is moving with some accel-
eration, although we may still find adapted frames in
the sense outlined back at the beginning of Sect. 7.2,
we cannot simple-mindedly pretend that our theories of
physics expressed relative to such frames look just as



Rigid Motion and Adapted Frames References 139
Part

B
|7.10

they would in inertial frames. We must remember that
our accelerating frames merely provide us with a co-
ordinate description that happens to be convenient in
some ways. This in turn is ultimately related to the fact
that our theories of nongravitational physics have no ac-
celeration symmetries, at least as far as we know. For
in-depth discussion of this problem, see [7.3].

It should also be remembered that what we have
referred to as rigid motion is very much a theoretical
notion. Whether it could ever be achieved by any con-
tinuous material is quite another question [7.7]. In fact,
the whole of this chapter is concerned primarily with
mathematical aspects of our modern spacetime theories.
Their physical interpretation is another matter.

References

7.1 W. Rindler: Introduction to Special Relativity (Oxford
Univ. Press, New York 1982)

7.2 M. Friedman: Foundations of Space–Time Theories
(Princeton Univ. Press, Princeton 1983)

7.3 S.N. Lyle: Uniformly Accelerating Charged Particles.
A Threat to the Equivalence Principle, Fundamental
Theories of Physics, Vol. 158 (Springer, Berlin Heidel-
berg 2008), see in particular Chap. 2

7.4 B. DeWitt: Bryce DeWitt’s Lectures on Gravitation
(Springer-Verlag, Berlin Heidelberg 2011), The nota-

tion and formulation here are very largely inspired by
these lecture notes

7.5 Y. Friedman, T. Scarr: Covariant uniform acceleration
(2011) arXiv:1105.0492v2 [phys.gen-ph]

7.6 S.W. Hawking, G.F.R. Ellis: The Large Scale Struc-
ture of Space–Time (Cambridge Univ. Press, Cambridge
1973)

7.7 S.N. Lyle: Self-Force and Inertia. Old Light on New
Ideas, Lecture Notes in Physics, Vol. 796 (Springer,
Berlin Heidelberg 2010), Chap. 12



Physics as Sp
141

Part
B

|8.1

8. Physics as Spacetime Geometry

Vesselin Petkov

As there have been no major advancements in
fundamental physics in the past decades it seems
reasonable to reexamine the major explicit and
especially implicit assumptions in fundamental
physics to ensure that all logically possible re-
search directions are identified. The purpose of this
chapter is to outline such a direction. Minkowski’s
program of regarding four-dimensional physics as
spacetime geometry is rigorously and consistently
employed to the already geometrized general rel-
ativity with the most stunning implication that
gravitational phenomena are fully explained in the
theory without the need to assume that they are
caused by gravitational interaction. Then the real
open question in gravitational physics seems to be
how matter curves spacetime, not how to quantize
the apparent gravitational interaction. In view of
the difficulties encountered by quantum gravity,
even the radical option that gravity is not a physical
interaction deserves careful scrutiny due to its po-
tential impact on fundamental physics as a whole.
The chapter discusses the possible implications of
this option for the physics of gravitational waves
and for quantum gravity and ends with an exam-
ple where regarding physics as spacetime geometry
provides a straightforward explanation of a rather
subtle issue in relativity – propagation of light in
noninertial reference frames.
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8.1 Foundational Knowledge and Reality of Spacetime

Minkowski’s program of regarding four-dimensional
physics as spacetime geometry is often viewed as just
a more convenient description of physical phenom-
ena. However, I think Minkowski’s program is cru-
cially important for fundamental physics; hence, the
program and its implications should be rigorously ex-
amined for the following reason. The identification of
four-dimensional physics with the geometry of space-

time presupposes that spacetime represents a real four-
dimensional world as Minkowski insisted since physics
cannot be geometry of something abstract (here we
again face the challenging question of whether a math-
ematical formalism is only a convenient description of
physical phenomena or reveals true features of the phys-
ical world). However, the status of spacetime has been
unresolved and this might turn out to be ultimately re-
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sponsible for the failure to create a quantum theory
of gravity so far, and possibly even for the fact that
in the last several decades there has been no major
breakthrough as revolutionary as the theory of relativ-
ity and quantum mechanics despite the unprecedented
advancements in applied physics and technology and
despite the efforts of many brilliant physicists.

It is not inconceivable to assume that the present
state of fundamental physics may be caused by some
metatheoretical problems, not by the lack of sufficient
experimental evidence and talented physicists. I think
the major metatheoretical reason for most difficulties
in contemporary fundamental physics, and particularly
for not dealing with the status of spacetime, is un-
derestimating the necessity to identify explicitly which
elements of our theories adequately represent elements
of the physical world. Such reliable knowledge about
the world is a necessary condition for the smooth ad-
vancement of fundamental physics since it forms the
foundation on which new theories are built. To ensure
that such foundational knowledge will never be revised
as our understanding of the world deepens, knowledge
should be rigorously and unambiguously extracted from
the experimental evidence. As experiments do not con-
tradict one another no future discoveries can challenge
the accumulated foundational knowledge. In 1909 Max
Planck expressed the idea of foundational knowledge
(whose elements he properly called invariants) perhaps
in the best possible way [8.1]:

The principle of relativity holds not only for pro-
cesses in physics but also for the physicist himself,
in that a fixed system of physics exists in reality only
for a given physicist and for a given time. But, as in
the theory of relativity, there exist invariants in the
system of physics: ideas and laws which retain their
meaning for all investigators and for all times, and
to discover these invariants is always the real en-
deavor of physical research. We shall work further
in this direction in order to leave behind for our
successors where possible – lasting results. For if,
while engaged in body and mind in patient and often
modest individual endeavor, one thought strength-
ens and supports us, it is this, that we in physics
work, not for the day only and for immediate results,
but, so to speak, for eternity.

In close connection with the necessity for ex-
plicit foundational knowledge, it is worth stressing that
a view, which some physicists are sometimes tempted
to hold – that physical phenomena can be described
equally by different theories (it is just a matter of de-

scription) – hampers our understanding of the world
and negatively affects the advancement of fundamen-
tal physics since such a view effectively rules out the
need for foundational knowledge. I hope all will agree
that part of the art of doing physics is to determine
whether different theories are indeed simply different
descriptions of the same physical phenomena (as is
the case with the three representations of classical me-
chanics – Newtonian, Lagrangian, and Hamiltonian),
or only one of the theories competing to describe
and explain given physical phenomena is the cor-
rect one (as is the case with general relativity, which
identifies gravity with the non-Euclidean geometry of
spacetime, and other theories, which regard gravity as
a force).

Due to the unsettled status of spacetime, there are
physicists who hold the experimentally unsupported
view that the concept of spacetime is only a success-
ful description of the world (an abstract bookkeeping
structure [8.2]) and for this reason it is nothing more
than an abstract four-dimensional mathematical con-
tinuum [8.2]. Therefore, on this view, the concept of
spacetime does not imply that we inhabit a world
that is such a four- (or, for some of us, ten-) di-
mensional continuum [8.2]. In addition to not being
backed by experiment, the problem with this view is
that it is an unproductive one since it makes it impos-
sible even to identify what the implications of a real
spacetime are. As those implications might turn out
to be necessary for the advancement of fundamental
physics, Sect. 8.2 deals with the essence of the space-
time concept (the reality of spacetime, i. e., that the
world is four-dimensional) and argues that the rela-
tivistic experimental evidence provides strong support
for it, which allows us to regard the reality of space-
time as an important piece of foundational knowledge.
Section 8.2 also examines how Minkowski’s program
of geometrization of physics sheds additional light on
Einstein’s geometrization of gravity and suggests that
gravitational phenomena are not caused by gravitational
interaction since those phenomena are fully explained
in general relativity without the need of gravitational
interaction. The implications of this possibility for the
search for gravitational waves and for quantum gravity
are discussed in the last part of the section. Section 8.3
demonstrates how taking the reality of spacetime ex-
plicitly into account makes it self-evident why the
propagation of light in noninertial reference frames
in flat and curved spacetimes is anisotropic. (Strictly
speaking, the expression propagation of light in flat
and curved spacetime is incorrect. Nothing propagates
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or moves in spacetime since the whole history of ev-
ery particle is entirely given (at once) as the particle’s
worldline in spacetime. Such expressions only mean to

state how the null worldlines of light rays in flat and
curved spacetime are expressed in the ordinary three-
dimensional language as propagation of those rays.)

8.2 Four-Dimensional Physics as Spacetime Geometry

In the beginning of this section I will summarize what
I think is the unequivocal experimental evidence which
indicates that the concept of spacetime does represent
a real four-dimensional world. If the arguments con-
vincingly show (as I believe they do) that the relativistic
experimental evidence would be impossible if the world
were three dimensional, then the reality of spacetime
(i. e., the assertion that the world is four-dimensional)
is indeed a major piece of foundational knowledge.

It was Minkowski who initially extracted this foun-
dational knowledge from the experimental evidence
that supported the relativity principle. On September
21, 1908 he began his famous lecture Space and Time
by announcing the revolutionary view of space and
time, which he deduced from experimental physics by
successfully decoding the profound message hidden
in the failed experiments to discover absolute motion
[8.3, p.111]:

The views of space and time which I want to
present to you arose from the domain of experimen-
tal physics, and therein lies their strength. Their
tendency is radical. From now onwards space by
itself and time by itself will recede completely to be-
come mere shadows and only a type of union of the
two will still stand independently on its own.

Minkowski repeatedly stressed the experimental
fact that absolute motion and absolute rest cannot be
discovered:

All efforts directed towards this goal, especially
a famous interference experiment of Michelson had,
however, a negative result. [8.3, p. 116].

In light of Michelson’s experiment, it has been
shown that, as Einstein so succinctly expresses this,
the concept of an absolute state of rest entails no
properties that correspond to phenomena. [8.4].

Minkowski had apparently felt that the experimen-
tal evidence supporting Galileo’s principle of relativ-
ity (absolute motion with constant velocity cannot be
discovered through mechanical experiments) and the
failed experiments (involving light beams) to detect
the Earth’s motion contained some hidden information
about the physical world that needed to be decoded.

That is why he had not been satisfied with the princi-
ple of relativity which merely postulated that absolute
motion and absolute rest did not exist. To decode
the hidden information, Minkowski first examined (as
a mathematician) the fact that The equations of New-
tonian mechanics show a twofold invariance [8.3, p.
111]. As each of the two invariances represents a certain
group of transformations for the differential equations
of mechanics Minkowski noticed that the second group
(representing invariance with respect to uniform trans-
lations, i. e., Galileo’s principle of relativity) leads to the
conclusion that the time axis can then be given a com-
pletely arbitrary direction in the upper half of the world
t > 0. This strange implication made Minkowski ask the
question that led to the new view of space and time [8.3,
p. 111]:

What has now the requirement of orthogonality in
space to do with this complete freedom of choice of
the direction of the time axis upwards?

In answering this question Minkowski showed why
the time t of a stationary observer and the time t0, which
Lorentz introduced (as an auxiliary mathematical quan-
tity [8.5]) calling it the local time of a moving observer
(whose x0-axis is along the x-axis of the stationary
observer), should be treated equally (which Einstein
simply postulated in his 1905 paper) [8.3, p. 114]:

One can call t0 time, but then must necessarily, in
connection with this, define space by the manifold
of three parameters x0, y, z in which the laws of
physics would then have exactly the same expres-
sions by means of x0, y, z, t0 as by means of x, y, z, t.
Hereafter we would then have in the world no more
the space, but an infinite number of spaces analo-
gously as there is an infinite number of planes in
three-dimensional space. Three-dimensional geom-
etry becomes a chapter in four-dimensional physics.
You see why I said at the beginning that space and
time will recede completely to become mere shad-
ows and only a world in itself will exist.

The profound implication of the requirement of or-
thogonality in space is evident in the beginning of this
quote – as t and t0 are two different times it necessar-
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ily follows that two different spaces must be associated
with these times since each space is orthogonal to each
time axis. Minkowski easily saw the obvious for a math-
ematician fact that different time axes imply different
spaces and remarked that the concept of space was
shaken neither by Einstein nor by Lorentz [8.3]. Then,
as the quote demonstrates, Minkowski had immediately
realized that many spaces and times imply that the
world is four-dimensional with all moments of time
forming the fourth dimension (Poincaré showed before
Minkowski that the Lorentz transformations can be re-
garded as rotations in a four-dimensional space with
time as the fourth axis but, unlike Minkowski, he did
not believe that such a four-dimensional mathematical
space represented anything in the world; see the In-
troduction of [8.6], particularly pages 19�23, and the
reference therein).

Minkowski excitedly announced the new views of
space and time since he clearly recognized that their
strength comes from the fact that they arose from the
domain of experimental physics – the arguments that
many times imply many spaces as well, which in turn
implies that the world is four-dimensional, are deduced
unambiguously from the experiments that confirmed the
principle of relativity (i. e., the impossibility to discover
absolute uniform motion and absolute rest). Indeed, all
physical phenomena look in the same way to two ob-
servers A and B in uniform relative motion (so they
cannot tell who is moving as the experimental evi-
dence proved) because A and B have different times
(as Lorentz formally proposed, Einstein postulated and
Minkowski explained) and different spaces – each ob-
server performs experiments in his own space and time
and for this reason the physical phenomena look in the
same way to A and B (e.g., the speed of light is the
same for them since each observer measures it in his
own space by using his own time). This explanation
of the profound meaning of the principle of relativ-
ity, extracted from experimental physics, makes the
nonexistence of absolute motion and absolute rest quite
evident – absolute motion and absolute rest do not exist
since they are defined with respect to an absolute (sin-
gle) space, but such a single space does not exist in the
world; all observers in relative motion have their own
spaces and times.

The most direct way to evaluate Minkowski’s con-
fidence in the strength of the new views of space and
time and his insistence that they were deduced from
experimental physics is to assume, for the sake of the ar-
gument, that spacetime is nothing more than an abstract
four-dimensional mathematical continuum [8.2] and

that the physical world is three dimensional. Then there
would exist a single space (since a three-dimensional
world presupposes the existence of one space), which
as such would be absolute (the same for all observers).
As a space constitutes a class of simultaneous events
(the space points at a given moment), a single (abso-
lute) space implies absolute simultaneity and therefore
absolute time as well. Hence a three-dimensional world
allows only absolute space and absolute time in con-
tradiction with the experimental evidence that uniform
motion with respect to the absolute space cannot be dis-
covered as encapsulated in the principle of relativity.
Minkowski’s realization that the world must be four-
dimensional in order that absolute motion and rest do
not exist naturally explains his dissatisfaction with the
principle of relativity, which postulates, but does not ex-
plain the nonexistence of absolute motion and rest [8.3,
p. 117]:

I think the word relativity postulate used for the re-
quirement of invariance under the group Gc is very
feeble. Since the meaning of the postulate is that
through the phenomena only the four-dimensional
world in space and time is given, but the projection
in space and in time can still be made with a certain
freedom, I want to give this affirmation rather the
name the postulate of the absolute world.

In addition to Minkowski’s arguments, I would like
to stress what I consider to be a fact that special relativ-
ity and particularly the experiments, which confirmed
the kinematical relativistic effects, are impossible in
a three-dimensional world. I think each of the argu-
ments listed below taken even alone is sufficient to
demonstrate that:

� Relativity of simultaneity is impossible in a three-
dimensional world – as a three-dimensional world
(like a three-dimensional space) is a class of simul-
taneous events (everything that exists simultane-
ously at the present moment), if the physical world
were three dimensional, there would exist a single
class of simultaneous events; therefore simultaneity
would be absolute since all observers in relative mo-
tion would share the same three-dimensional world
and therefore the same class of simultaneous events.

� Since length contraction and time dilation are spe-
cific manifestations of relativity of simultaneity
they are also impossible in a three-dimensional
world. What is crucial is that the experiments which
confirmed these relativistic effects would be impos-
sible if the physical world were three dimensional
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[8.7, Chap. 5]. Along with time dilation, the muon
experiment (see, for example, [8.8, p. 103]) effec-
tively tested length contraction experimentally as
well [8.8, p. 104] –

In the muon’s reference frame, we reconcile the
theoretical and experimental results by use of the
length contraction effect, and the experiment serves
as a verification of this effect.

� The twin paradox effect and the experiments
that confirmed it are also impossible in a three-
dimensional world [8.7, Chap. 5].

A valuable concrete example of why special rel-
ativity is impossible in a three-dimensional world is
Minkowski’s explanation of the deep physical meaning
of length contraction as depicted in figure 1 of his paper
Space and Time whose right-hand part is reproduced in
Fig. 8.1.

The essence of his explanation (which is the ac-
cepted correct explanation) is that the relativistic length
contraction of a body is a manifestation of the real-
ity of the body’s worldline or rather worldtube (for
a spatially extended body). Minkowski considered two
bodies in uniform relative motion represented by their
worldtubes as shown in Fig. 8.1. To see clearly why
the worldtube of a body must be real in order that
length contraction be possible, consider the body repre-
sented by the vertical worldtube. The three-dimensional
cross-section PP, resulting from the intersection of the
body’s worldtube and the space (represented by the
horizontal line in Fig. 8.1) of an observer at rest with
respect to the body, is the body’s proper length. The
three-dimensional cross-section P0P0, resulting from
the intersection of the body’s worldtube and the space
(represented by the inclined dashed line) of an observer
at rest with respect to the second body (represented by

Q'
Q'

P'

P

P'

P Q Q

Fig. 8.1 The right-hand part of figure 1 in Minkowski’s pa-
per Space and Time

the inclined worldtube), is the relativistically contracted
length of the body measured by that observer (the cross-
section P0P0 only appears longer than PP because a fact
of the pseudo-Euclidean geometry of spacetime is rep-
resented on the Euclidean surface of the page). Note
that while measuring the same body, the two observers
measure two three-dimensional bodies represented by
the cross-sections PP and P0P0 in Fig. 8.1 (this relativis-
tic situation will not be truly paradoxical only if what is
meant by the same body is the body’s worldtube).

In order to judge the argument that length con-
traction is impossible in a three-dimensional world,
assume that the worldtube of the body did not exist
as a four-dimensional object and were nothing more
than an abstract geometrical construction. Then, what
would exist would be a single three-dimensional body,
represented by the proper cross-section PP, and both
observers would measure the same three-dimensional
body of the same length. Therefore, not only would
length contraction be impossible, but relativity of si-
multaneity would be also impossible since a spatially
extended three-dimensional object is defined in terms of
simultaneity – all parts of a body taken simultaneously
at a given moment – and as both observers in rela-
tive motion would measure the same three-dimensional
body (represented by the cross-section PP) they would
share the same class of simultaneous events in contra-
diction with relativity.

After Minkowski had successfully decoded the pro-
found message hidden in the failed experiments to de-
tect absolute uniform motion and absolute rest – that the
world is four-dimensional – he had certainly realized
that four-dimensional physics was in fact spacetime ge-
ometry since all particles which appear to move in
space are in reality a forever given web of the particles’
worldlines in spacetime. Then Minkowski outlined the
program of geometrization of physics [8.3, p. 112]:

The whole world presents itself as resolved into
such worldlines, and I want to say in advance, that
in my understanding the laws of physics can find
their most complete expression as interrelations be-
tween these worldlines.

And before his tragic and untimely departure from this
world on January 12, 1909 he started to implement this
program as will be briefly discussed below. But let me
first address a view which some physicists are some-
times tempted to hold – that we should not take the
implications of special and general relativity too seri-
ously because these theories cannot accommodate the
probabilistic behavior of quantum objects.
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In fact, it is that view which should not be taken
seriously for two reasons. First, as it is the exper-
iments confirming the kinematical relativistic effects
that would be impossible in a three-dimensional world,
the reality of spacetime (the four-dimensionality of the
world) must be treated with utmost seriousness. Since
experiments do not contradict one another no future
experiments can force us to abandon the view that the
world is four-dimensional and that macroscopic bod-
ies are worldtubes in this world. Second, the fact that
elementary particles are not worldlines in spacetime
only indicates what they are not and in no way tells
us something against the reality of spacetime. Elemen-
tary particles, or perhaps more appropriately quantum
objects, might be more complex structures in space-
time (for a conceivable example see [8.7, Chap. 10] and
the references therein). As an illustration that spacetime
can accommodate probability perfectly well, imagine
that the probabilistic behavior of the quantum object
is merely a manifestation of a probabilistic distribu-
tion of the quantum object itself in the forever given
spacetime – an electron, for instance, can be thought
of (for the sake of the argument that spacetime struc-
tures can be probabilistic as well) as an ensemble
of the points of its disintegrated worldline which are
scattered in the spacetime region where the electron
wavefunction is different from zero. Had Minkowski
lived longer he might have described such a proba-
bilistic spacetime structure by the mystical expression
predetermined probabilistic phenomena.

I think the very fact that the status of spacetime has
not been firmly settled for over a 100 year deserves
special attention since it may provide some valuable
lessons for the future of fundamental physics. Indeed, it
is logically inexplicable why Minkowski’s effective ar-
guments for the reality of spacetime have been merely
ignored (they have not been disproved); as we saw
above his arguments taken alone demonstrate that the
world must be four-dimensional in order that special
relativity and the experimental evidence which tested
its kinematical effects be possible. It appears the reason
for ignoring the arguments for the reality of space-
time are not scientific; the reason does not seem to
be even rational since those arguments are merely re-
garded as nonexistent. Quite possibly, such an attitude
towards the nature of spacetime is caused by the temp-
tation to regard the claim that the physical world is
four-dimensional as an outrageously and self-evidently
false, because of the colossally counter-intuitive nature
of such a world and because of its huge implications
for virtually all aspects of our lives. Perhaps such a re-

action to arguments for disturbingly counter-intuitive
new discoveries was best shown by Cantor in a letter
to Dedekind in 1877 where he commented on the way
he viewed one of his own major results (the one-to-one
correspondence of the points on a segment of a line
with i) the points on an indefinitely long line, ii) the
points on a plane, and iii) the points on any multidimen-
sional mathematical space) – I see it, but I don’t believe
it [8.9]. However, the nature of the world as revealed
by the experimental evidence – no matter how counter-
intuitive it may be – should be faced and should not be
squeezed into our preset and deceivingly comfortable
views about what exists.

Due to the unsettled status of spacetime so far,
Minkowski’s program of adequately treating four-
dimensional physics as spacetime geometry has not
been fully implemented. As a result, new discoveries
leading to a deeper understanding of the world might
have been delayed. A small example is the propaga-
tion of light in noninertial reference frames – this issue
could have been addressed and clarified immediately
after Minkowski’s four-dimensional formulation of spe-
cial relativity. In the remaining part of this section I will
discuss first Minkowski’s initial steps of the implemen-
tation of his program of geometrization of physics and
then will outline other unexplored implications of his
program some of which may have significantly affected
front line research programs in fundamental physics
such as the search for gravitational waves and quantum
gravity.

8.2.1 Generalization of Inertial Motion
in Special and General Relativity

Minkowski generalized Newton’s first law (of inertia)
for the case of flat spacetime by noticing that a free
particle, which is at (relative) rest or moves by iner-
tia, is a straight timelike worldline. Then he pointed out
that an accelerating particle is represented by a curved
worldline. Here is how Minkowski described the three
states of motion of a particle (corresponding to the
worldlines a, b, and c in Fig. 8.2) [8.3, p. 115]:

A straight worldline parallel to the t-axis corre-
sponds to a stationary substantial point, a straight
line inclined to the t-axis corresponds to a uni-
formly moving substantial point, a somewhat curved
worldline corresponds to a nonuniformly moving
substantial point.

As a straight timelike worldline represents inertial
motion it immediately becomes clear why experiments
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Fig. 8.2 Worldlines a and b represent two particles – one
at rest (a) and the other in uniform motion (b), whereas
worldline (c) represents an accelerating particle

have always failed to distinguish between a state of rest
and a state of uniform motion – in both cases a particle
is a straight worldline as seen in Fig. 8.2 (worldlines a
and b) and there is clearly no distinction between two
straight lines. In the figure the time axis of the reference
frame is along worldline a and the particle represented
by this worldline appears to be at rest in the refer-
ence frame. If the time axis of another reference frame
is chosen along worldline b, the particle represented
by that worldline will appear to be at rest in the new
reference frame, whereas the first particle (represented
by worldline a) will appear to be uniformly moving
with respect to the second particle (since worldline a
is inclined to the new time axis, i. e., inclined to world-
line b). Minkowski seems to have been impressed by this
elegant explanation of the experimental fact that rest
and uniform motion cannot be distinguished (which is
a more detailed explanation of the relativity principle)
that he decided [8.10, p. 115]

to introduce this fundamental axiom: With appro-
priate setting of space and time the substance ex-
isting at any worldpoint can always be regarded as
being at rest.

Perhaps the most successful continuation of Minkows-
ki’s program of geometrization of physics is the gener-
alization of inertial motion in general relativity. This is
encapsulated in the geodesic hypothesis in general rel-
ativity, which states that the worldline of a free particle
is a timelike geodesic in spacetime. This hypothesis is
regarded as a natural generalization of Newton’s first
law [8.11, p. 110], that is, a mere extension of Galileo’s
law of inertia to curved spacetime [8.12]. This means
that in general relativity a particle, whose worldline is
geodesic, is a free particle which moves by inertia.

Unfortunately, the important implications of this
rare implementation of Minkowski’s program have not
been fully explored, which might have delayed the
research in gravitational physics, particularly the initia-
tion and advancement of a research program to reveal
the mechanism of how matter curves spacetime. The
immediate consequence of the geodesic hypothesis and
its experimental confirmation by the fact that falling
bodies do not resist their fall (a falling accelerometer,
for example, reads zero resistance, i. e., zero absolute
acceleration, since it measures acceleration through re-
sistance) implies that the explanation of gravitational
phenomena does not need the assumption of the exis-
tence of gravitational interaction. The reason is that as
a falling body moves by inertia (since it does not resist
its fall) no gravitational force is causing its fall, i. e.,
it is not subject to any interactions since inertial, i. e.,
nonresistant, motion by its very nature is interaction-
free motion. The analysis of this consequence of the
geodesic hypothesis naturally leads to the question of
how matter curves spacetime in order to determine
whether the Earth interacts gravitationally with a falling
body through the curvature of spacetime. If there is
such an interaction between the Earth and the body,
there should exist extra stress energy of the Earth not
only to curve spacetime but to change the shape of
the geodesic worldtube of the falling body (that change
of shape makes it more curved, but not deformed, as
will be discussed below, which means that the world-
tube of the falling body is geodesic and the body does
not resist its fall). As we will see below this does not
appear to be the case since the Einstein–Hilbert equa-
tion implies that no extra stress energy is necessary to
change the shape of the geodesic worldtube of a falling
body – the same stress energy of the Earth, for exam-
ple, produces the same spacetime curvature no matter
whether or not there are other bodies in the Earth’s
vicinity.

The importance of the experimental fact that falling
bodies offer no resistance to their fall is that it rules
out any alternative theories of gravity and any at-
tempts to quantize gravity (by proposing alternative
representations of general relativity aimed at making it
amenable to quantization) that regard gravity as a phys-
ical field which gives rise to a gravitational force since
they would contradict the experimental evidence. It
should be particularly stressed that a gravitational force
would be required to move particles downwards only
if the particles resisted their fall, because only then
a gravitational force would be needed to overcome that
resistance.
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8.2.2 In What Sense Is Acceleration
Absolute in Both Special and General
Relativity?

Minkowski’s own implementation of his program to
represent four-dimensional physics as spacetime geom-
etry produced another important result – an unforeseen
resolution of the debate over the status of acceleration,
which was prompted by Newton’s insistence that both
acceleration and space are absolute (since acceleration
is experimentally detectable, and therefore absolute,
which implies that space is also absolute due to the ap-
parently self-evident assumption that any acceleration
is with respect to space).

Encouraged by the resolution of the centuries-old
puzzle (that it is impossible to distinguish experimen-
tally between rest and uniform motion) in terms of the
geometry of spacetime – two particles, one at rest and
the other in uniform motion, are both straight world-
lines in spacetime – Minkowski almost certainly had
immediately seen that another experimental fact – ac-
celeration is experimentally detectable – also had an
elegant explanation in terms of spacetime geometry: an
accelerating particle is a curved worldline in spacetime.
He expressed this observation by stressing that Espe-
cially the concept of acceleration acquires a sharply
prominent character [8.3, p. 117].

Minkowski left this world less than 4 months af-
ter he gave his last and famous lecture Space and Time
where he talked about that sharply prominent character
of acceleration. He was not given the chance to de-
velop further his ideas. But Minkowski succeeded in
revealing the deep physical meaning of the distinction
between inertial and accelerated motion: the absolute
physical facts that inertial motion cannot be detected
experimentally, whereas accelerated motion is exper-
imentally detectable, correspond to two geometrical
facts in spacetime – a particle moving by inertia is
a straight worldline, whereas an accelerating particle
is a curved worldline. Such an explanation of physi-
cal facts by facts of the geometry of spacetime is not
only natural, but is the only explanation in a real four-
dimensional world – in such a world, i. e., in spacetime,
there are no three-dimensional particles which move
inertially or with an acceleration; there is only a for-
ever given network of straight and curved worldlines
there.

The absoluteness (frame-independence) of acceler-
ation and inertial motion is reflected in the curvature
of the worldline of an accelerating particle and the
straightness of the worldline of a particle moving by

inertia, respectively, which are absolute geometrical
properties of the particles’ worldlines. So

acceleration is absolute not because a particle ac-
celerates with respect to some absolute space, but
because its worldline is curved,

which is a geometrical fact that is frame-independent
(and indeed there is neither motion nor a distinguished
space in spacetime). In the same way, inertial motion
is absolute – in any reference frame the worldline of
an inertial particle is straight. This deep understand-
ing of inertial and accelerated motion in terms of the
shape of particles’ worldlines and with no reference to
space nicely explains the apparent paradox that seems
to have tormented Newton the most – both an inertial
and an accelerating particle (appear to) move in space,
but only the accelerating particle resists its motion. Be-
low we will see that this nice explanation becomes
beautiful when it is taken into account that the geometry
of a real four-dimensional world is physical geome-
try which involves real physical objects – worldlines
or rather worldtubes in the case of spatially extended
bodies.

In general relativity (in curved spacetime) the
absoluteness of inertial motion reflects the absolute
(frame-independent) geometrical property of the world-
line of a free particle to be geodesic. By analogy
with the absoluteness of acceleration in flat space-
time, the absoluteness of acceleration in curved space-
time manifest itself in the fact that the worldline
of a particle, whose curved-spacetime acceleration
(a� D d2x�=d
2C�

�

˛ˇ
.dx˛=d
/.dxˇ=d
/) is differ-

ent from zero, is not geodesic – the worldline of such
a particle is curved or, perhaps more precisely, de-
formed (intuitively, that deformation can be regarded
as an additional curvature to the natural curvature of
a geodesic worldline which is due to the curvature
of spacetime itself; rigorously, in general relativity
a geodesic is not curved, only nongeodesic world-
lines are curved). There is a second acceleration in
general relativity caused by geodesic deviation, which
reflects two facts – that there are no straight world-
lines and no parallel or rather congruent worldlines
in curved spacetime. This acceleration is not absolute,
but relative since it involves two geodesic worldlines
(which are not deformed), whereas absolute accelera-
tion involves a single nongeodesic worldline (which is
deformed).

Regarding four-dimensional physics as spacetime
geometry easily refutes Mach’s view of the relativ-
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ity of acceleration (now the overwhelming majority of
physicists regard acceleration as absolute; here is an
example [8.13, p. 34]: an observer’s acceleration is
an absolute, local quantity, measurable without ref-
erence to anything external). Two consequences of
this view discussed by Mach himself [8.14] are i) the
equivalence of rotation and translation and ii) the rel-
ativity of rotation, which implied (as Mach stated)
the equivalence of the Ptolemaic and the Copernican
models of our planetary system. It is clear that ro-
tation and translation are distinct in spacetime – the
worldline of a particle moving translationally is ei-
ther a straight line in flat spacetime (when the particle
moves uniformly) or a curved line (when the parti-
cle accelerates translationally), whereas the worldline
of a rotating particle is a helix. This also explains
why the Ptolemaic and the Copernican systems are
not equivalent – the planets’ worldlines are helixes
around the worldline of the Sun. Another consequence
of Mach’s view is that if there were no other bod-
ies in the Universe, one could not talk about the
state of motion of a single particle since on Mach’s
view only motion relative to a body makes sense. In
spacetime the situation is crystal clear – a single par-
ticle in the Universe is either a geodesic worldline
(which means that the particle moves by inertia) or
a deformed worldline (which means that the particle
accelerates).

8.2.3 Inertia as Another Manifestation
of the Reality of Spacetime

Had Minkowski lived longer he would have certainly
noticed that his explanation of the absoluteness of ac-
celerated and inertial motion in terms of the absolute
geometrical properties of particles’ worldlines (curva-
ture and straightness, respectively) not only reflected
the experimental (and therefore absolute, i. e., frame-
independent) facts that an accelerating body resists its
acceleration, whereas a particle moving by inertia of-
fers no resistance to its motion, but could also explain
these facts.

Two pieces of reliable knowledge about an acceler-
ating body would have appeared naturally linked in the
spacetime explanation of the absoluteness of accelera-
tion – an accelerating body i) resists its acceleration,
and ii) is represented by a curved (and therefore de-
formed) worldtube. Then taking into account the reality
of the body’s worldtube (relativistic length contraction
would be impossible if the worldtube of the contracting
body were not real as seen from Minkowski’s explana-

tion discussed above), would have led to the logically
evident, but totally unexpected consequence of linking
the two features of the accelerating body – the resis-
tance an accelerating body offers to its acceleration
could be viewed as originating from a four-dimensional
stress in the deformed worldtube of the body. And it
turns out that the static restoring force existing in the
deformed worldtube of an accelerating body does have
the form of the inertial force with which the body re-
sists its acceleration [8.7, Chap. 9]. The origin of the
static restoring force (i. e., the inertial force) can be
traced down to the most fundamental constituents of
matter – as an elementary particle is not a worldline in
spacetime its inertia appears to originate from the dis-
torted fields which mediate the particle’s interactions
(the distortion of the fields is caused by the particle’s
acceleration) [8.7, Chap. 9].

I guess, Minkowski would have been truly thrilled –
inertia appears to be another manifestation of the
four-dimensionality of the world (since only a real
worldtube could resist its deformation) along with the
other manifestations he knew then – length contrac-
tion and all experiments demonstrating that absolute
uniform motion could not be detected (that is, that
rest and uniform motion could not be distinguished
experimentally).

With this insight into the origin of inertia implied
by the reality of spacetime, the experimental distinction
between accelerated and inertial motion finds a natural
but counter-intuitive explanation – an accelerating body
resists its acceleration since its worldtube is deformed
and the static restoring force existing in the worldtube is
interpreted as the inertial force, whereas a particle mov-
ing by inertia offers no resistance to its motion since its
worldtube is not deformed – it is straight in flat space-
time and geodesic in curved spacetime – and therefore
no restoring force exists in the particle’s worldtube
(which explains why inertial motion cannot be detected
experimentally).

8.2.4 Why Is the Inertial Force Equivalent
to the Force of Weight?

The equivalence of the inertial force with which a par-
ticle resists its acceleration and the particle’s weight (or
the gravitational force acting on the particle in terms of
the Newtonian gravitational theory) is best visualized
by Einstein’s thought experiments involving an acceler-
ating elevator and an elevator on the Earth’s surface.
Assume that a particle is on the floor of an elevator
whose acceleration a is equal to the acceleration due
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to gravity g. The particle exerts on the elevator’s floor
an inertial force with which it resists its acceleration
(forced on it by the floor). When the same elevator
with the same particle on its floor is on the Earth’s sur-
face, the particle exerts on the floor a force of the same
magnitude which is called the particle’s weight (in the
Newtonian gravitational theory this force is regarded as
the gravitational force acting on the particle). Einstein
regarded the equivalence of the two forces as a manifes-
tation of his principle of equivalence according to which
the effects of accelerated motion and gravity cannot be
distinguished locally in spacetime (i. e., for small dis-
tances and short periods of time). In other words, if an
observer in a small elevator i) measures the weight of
a particle and ii) studies for a short period of time its
fall toward the floor of the elevator, he will be unable
to determine from his measurements whether the ele-
vator is accelerating with aD g or it is on the Earth’s
surface.

Initially, Einstein postulated the equivalence of the
inertial and gravitational forces as part of the principle
of equivalence which was a crucial step in the cre-
ation of general relativity. Later, when Minkowski’s
representation of inertial and accelerated motion in
spacetime was generalized for the case of curved space-
time it became possible to reveal the deep meaning of
this equivalence and of the principle of equivalence it-
self – inertial and gravitational forces (and masses as
will be discussed below) are equivalent since they both
are inertial forces (and masses).

By the geodesic hypothesis in general relativity
(confirmed by the experimental fact that falling bod-
ies do not resist their fall), a particle falling toward
the Earth’s surface moves by inertia since its worldtube
is geodesic (more precisely, the center of the parti-
cle’s mass is a geodesic worldline). This means that
the particle does not resist its motion in agreement with
the fact that its worldtube is not deformed (since it is
geodesic).

When the particle reaches the ground it is pre-
vented from moving by inertia (i. e., prevented from
falling) and the particle resists the change in its iner-
tial motion. In other words, the particle on the ground
is accelerating since it is forced by the Earth’s surface
to change its motion by inertia. This counter-intuitive
fact – that a particle on the ground accelerates, whereas
it is obviously at rest there – is naturally explained by
the generalization of Minkowski’s observation (see also
[8.13, Chap. 9]) that in spacetime an accelerating parti-
cle is a curved (deformed) worldtube. Indeed in general
relativity the acceleration of a particle at rest on the

Earth’s surface is the (first) curvature of the particle’s
worldtube [8.11, pp. 138, 177]. The worldtube of the
falling particle is geodesic, but starting at the event at
which the particle touches the ground, the particle’s
worldtube is constantly deformed by the huge world-
tube of the Earth, which means that the particle on
the ground is constantly accelerating (the particle’s ab-
solute acceleration is a manifestation of its deformed
worldtube).

As the worldtube of the particle, when it is at rest
on the ground, is deformed the static restoring force in
the worldtube acts back on the Earth’s worldtube. This
restoring force manifest itself as the resistance force
which the particle exerts on the ground, i. e., as the
inertial force with which the particle resists its accel-
eration while being at rest on the ground. Therefore, it
becomes clear that what has been traditionally called
the gravitational force acting on the particle, or the par-
ticle’s weight, is in reality the particle’s inertial force
with which the particle resists its acceleration when it
is at rest on the ground. This explains naturally why
there is no such thing as the force of gravity in general
relativity [8.11, p. 109].

To summarize, general relativity showed that what
has been traditionally called the force of weight of
a particle (or the gravitational force acting on a parti-
cle) is the inertial force with which the particle resists
its acceleration while being at rest on the Earth’s sur-
face. As Rindler put it [8.12]:

ironically, instead of explaining inertial forces as
gravitational . . . in the spirit of Mach, Einstein ex-
plained gravitational forces as inertial.

Indeed, according to Mach the origin of inertia is
nonlocal since he believed that all the masses in the
Universe are responsible for the inertial forces (which
implies that these forces are gravitational), whereas the
now accepted Minkowski’s treatment of acceleration in
spacetime (as the curvature of an accelerating particle’s
worldline) implies that inertia is a local phenomenon
in spacetime since it originates from the deformation of
an accelerating particle’s worldtube. Therefore inertia is
not a nonlocal phenomenon that is caused by the distant
masses as Mach argued. One might say that what deter-
mines the shape of a free particle’s geodesic worldtube
(which, when deformed, resists its deformation) are all
the masses in the Universe in line with Mach’s view.
However, that would be misleading since in curved
spacetime it is the nearby mass that is essentially re-
sponsible for the shape of the geodesics in its vicinity.
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The shape of the geodesic worldline of a particle falling
toward the Earth, for example, is predominantly deter-
mined by the Earth’s mass and the distant masses have
practically no contribution.

8.2.5 Why Is the Inertial Mass Equivalent
to the Gravitational Mass?

When a particle accelerates, the coefficient of propor-
tionality mi linking the force and the induced by it
acceleration in the equation FD mia is called the in-
ertial mass of the particle. Since Newton it has been
defined as the measure of the resistance a particle of-
fers to its acceleration. In the Newtonian gravitational
theory, when the same particle is at rest on the Earth’s
surface the coefficient of proportionality mg linking the
force of gravity and the induced by it acceleration in
the equation FD mgg is called the (passive) gravita-
tional mass of the particle. Since Newton it has been
known that the inertial mass and the gravitational mass
are equivalent. But no one knew what this equiva-
lence meant. Einstein merely postulated it as another
manifestation of the principle of equivalence when he
created general relativity.

As we saw above the generalization of Minkowski’s
representation of accelerated and inertial motion for
curved spacetime and taking seriously the reality of
particles’ worldtubes (and the reality of spacetime it-
self) naturally explained the equivalence of inertial and
(what was called before general relativity) gravitational
forces. This effectively also explained the equivalence
of inertial and gravitational masses – both masses are
inertial. Indeed, whether a particle is accelerating or
is on the Earth’s surface, in both cases the particle is
subject to absolute acceleration (since its worldtube is
deformed, i. e., nongeodesic) and the particle resists the
change in its inertial motion (i. e., resists the defor-
mation of its worldtube). As the inertial mass is the
measure of the resistance a particle offers to its accel-
eration, it does follow that in both cases the particle’s
mass is inertial.

Since there have been some recent attempts to deny
the reality of the relativistic increase of the mass I think
it is appropriate to note that those attempts somehow
fail to see the obvious reason for the introduction of
relativistic mass – as inertial mass is the measure of
the resistance a body offers to its acceleration and as
its acceleration is different in different inertial refer-
ence frames, the body’s inertial mass cannot be the
same in all frames (for more details see [8.7, pp. 114–
116]).

8.2.6 Are Gravitational Phenomena
Caused by Gravitational Interaction
According to General Relativity?

What follows in this section may seem quite contro-
versial but I think it is worth exploring the implica-
tions of general relativity itself since the generaliza-
tion of Minkowski’s representation of inertial motion
for curved spacetime – the geodesic hypothesis – im-
plies that gravitational phenomena are not caused by
gravitational interaction. Such a stunning possibil-
ity [8.15] deserves very serious scrutiny because of its
implications for fundamental physics as a whole, and
particularly for two research programs as mentioned
above – detection of gravitational waves and quantum
gravity.

As too much is at stake in terms of both the number
of physicists working on quantum gravity and on detec-
tion of gravitational waves, and the funds being invested
in these worldwide efforts, even the heretical option of
not taking gravity for granted should be thoroughly an-
alyzed. It should be specifically stressed, however, that
such an analysis may require extra effort from relativists
who sometimes appear to be more accustomed to solv-
ing technical problems than to examining the physical
foundation of general relativity which may involve no
calculations. Such an analysis is well worth the effort
since it ensures that what is calculated is indeed in the
proper framework of general relativity and is not smug-
gled into it to twist it until it yields some features that
resemble gravitational interaction.

Had Minkowski lived longer he would have proba-
bly been enormously excited to see his profound idea
that four-dimensional physics is spacetime geometry so
powerfully boosted by Einstein’s discovery that gravi-
tation is a manifestation of the non-Euclidean geometry
of spacetime. Indeed, the fact that the appearance of
gravitational attraction between two free particles arises
from the convergence of their geodesic worldlines in
curved spacetime is fully in line with Minkowski’s an-
ticipation [8.3, p. 112] that the laws of physics can
find their most complete expression as interrelations be-
tween these worldline. However, keeping in mind how
critically and creatively he examined the facts that led to
the creation of Einstein’s special relativity and how he
gave its now accepted spacetime formulation, it is quite
reasonable to imagine that Minkowski might have acted
in the same way with respect to Einstein’s general rela-
tivity as well. Imagining such a scenario could help us
to examine the logical structure of general relativity by
applying the lessons learned from Minkowski’s exam-
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ination of special relativity. Such an examination now
seems more than timely especially in light of the fact
that the different approaches aimed at creating a theory
of quantum gravity [8.16–18] have been unsuccessful.

In order to explore rigorously the implications of
general relativity itself let me state explicitly the fol-
lowing facts from it:

� Like flat (Minkowski) spacetime, the non-Euclidean
spacetime of general relativity is a static entity with
a forever given network of worldtubes of macro-
scopic bodies. Relativists are of course aware of
this intrinsic feature of spacetime (reflecting its very
nature) – that one cannot talk about dynamics in
spacetime [8.13, p. 7]:

There is no dynamics in spacetime: nothing ever
happens there. Spacetime is an unchanging, once-
and-for-all picture encompassing past, present, and
future.

But it seems it is not always easy to regard this
counter-intuitive feature of spacetime as adequately
representing the world.

� The geometry of spacetime is either intrinsic
(pseudo-Euclidean in the case of Minkowski space-
time and pseudo-non-Euclidean in the case of de
Sitter’s vacuum solution of the Einstein–Hilbert
equation) or induced by matter (although it is
widely assumed to be clear in general relativity that
matter causes the curvature of spacetime, that issue
is more subtle than usually presented in the litera-
ture as briefly discussed below).

� What is still (misleadingly) called the gravitational
field in general relativity is not a physical field; at
best, the gravitational field can be regarded as a ge-
ometrical field.

� There is no gravitational force in general relativity.
� By the geodesic hypothesis, a timelike geodesic in

spacetime represents a free partricle, which moves
by inertia.

A close examination of these facts reveals that when
general relativity is taken for what it is, it does imply
that gravitational phenomena are fully explained in the
theory without the need to assume that they are caused
by gravitational interaction. What has the appearance of
gravitational attraction between particles involves only
inertial (interaction-free) motion of free particles and is
merely a result of the curvature of spacetime. In general
relativity falling bodies and the planets are all free bod-
ies which move by inertia and for this reason they do
not interact in any way with the Earth and the Sun, re-

spectively, since by its very nature inertial motion does
not involve any interaction.

I think the major reason for so far missing the op-
portunity to decode everything that general relativity
has been telling us about the world is that the existence
of gravitational interaction has been taken for granted.
As a result of adopting such a fundamental assumption
without any critical examination, gravitational interac-
tion has been artificially and forcefully inserted into
general relativity through i) the definition of a free par-
ticle (which posits that otherwise free particles are still
subject to gravitational interaction), and ii) the quantity
gravitational energy and momentum, which general rel-
ativity itself refuses to accommodate.

The often openly stated definition of a free particle
in general relativity – a particle is free from any influ-
ences other than the curvature of spacetime [8.19] –
effectively postulates the existence of gravitational in-
teraction by almost explicitly asserting that the in-
fluence of the spacetime curvature on the shape of
a free particle’s worldline constitutes gravitational in-
teraction.

To see whether a free particle is subject to gravita-
tional interaction, imagine a wandering planet far away
from any galaxy which means that in a huge spacetime
region the geometry is close to flat and only the planet’s
mass induces an observable curvature. Imagine also
a free particle in that spacetime region, which travels
toward the planet. When far away from the planet, the
particle’s worldline is straight. But as the particle ap-
proaches the planet, its worldline becomes increasingly
deviated from its straight shape. Despite that its shape
changes, the particle’s worldline remains geodesic (not
deformed) since the curvature of the worldline is sim-
ply caused by the spacetime curvature induced by the
planet’s mass. The standard interpretation of this situ-
ation in general relativity, implied by the definition of
a free particle, is that the planet, through the space-
time curvature created by its mass, affects the worldline
of the particle which is interpreted as gravitational
interaction.

However, if carefully analyzed, the assumption that
the planet’s mass curves spacetime, which in turn
changes the shape of the geodesic worldline of a free
particle, does not imply that the planet and the particle
interact gravitationally. There are four reasons for that.

First, it is assumed that in general relativity the
Einstein–Hilbert equation clearly demonstrates that
matter determines the geometry of spacetime through
the stress energy of matter Tab. In fact, how that hap-
pens (how matter curves spacetime) is the major open
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question in general relativity. What further complicates
the (often taken as self-evident) assertion that matter
determines the geometry of spacetime is the fact that
in general relativity matter cannot be clearly regarded
as something that tells the spacetime geometry how to
change since matter itself cannot be defined without that
same geometry [8.13, p. 83] –

Tab itself is a quantity which refers, not only to mat-
ter, but also to geometry

(since Tab contains the metric tensor). Therefore, as
very little is known of how matter influences the ge-
ometry of spacetime, it is unjustified to take for certain
that the change of the shape of the worldline of a free
particle by the spacetime curvature caused by a massive
body constitutes gravitational interaction; moreover, as
indicated below the massive body does not spend any
additional energy to change the shape of the particle’s
worldline.

Second, the shape of the geodesic worldlines of
free particles is naturally determined by the curvature
of spacetime which itself may not be necessarily in-
duced by some mass. This is best seen from the fact
that general relativity shows both that spacetime is
curved by the presence of matter, and that a matter-
free spacetime can be intrinsically curved. The latter
option follows from de Sitter’s solution [8.20] of the
Einstein–Hilbert equation. Two test particles in the de
Sitter universe only appear to interact gravitationally
since in fact their interaction-like behavior is caused
by the curvature of their geodesic worldlines (curva-
ture here means nonstraightness), which is determined
by the intrinsic curvature of the de Sitter spacetime.
The fact that there are no straight geodesic worldlines in
non-Euclidean spacetime (which gives rise to geodesic
deviation) manifests itself in the relative acceleration
of the test particles toward each other which creates
the impression that the particles interact gravitationally.
Due to the usual assumption that the masses of test par-
ticles are negligible in order not to affect the geometry
of spacetime, the example with the test particles in the
de Sitter universe is a good approximation of a matter-
free universe.

Third, the experimental fact that particles of dif-
ferent masses fall toward the Earth with the same
acceleration in full agreement with general relativity’s
a geodesic is particle independent [8.10, p. 178], ulti-
mately means that the shape of the geodesic worldline
of a free particle in spacetime curved by the presence
of matter is determined by the spacetime geometry
alone and not by the matter. This is best seen from

the Einstein–Hilbert equation itself – a body curves
solely spacetime irrespective of whether or not there
are other particles there, which means that no addi-
tional energy is spent for curving (not deforming) the
geodesic worldlines of any free particles that are in the
vicinity of the body. That is why a geodesic is parti-
cle independent. This feature of general relativity taken
alone demonstrates that the fact that the shape of the
geodesic worldline of a free particle is determined by
the curvature of spacetime does not constitute gravita-
tional interaction.

Fourth, if determining the shape of a free parti-
cle’s geodesic worldline by the spacetime curvature
induced by a body’s mass–energy constituted gravita-
tional interaction, that would imply some exchange of
gravitational energy-momentum between the body and
the particle. But there is no such a thing as gravita-
tional energy-momentum in general relativity itself – its
mathematical structure does not allow a proper tensorial
expression for a gravitational energy-momentum. This
counter-intuitive feature of general relativity is not sur-
prising at all since i) there is no physical gravitational
field (one can use the term field to describe gravitational
phenomena only in the sense of a geometrical field, but
such a field describes the geometry of spacetime and
as such does not possess any energy), and ii) there is
no gravitational force and therefore there is no gravita-
tional energy either since such energy is defined as the
work done by gravitational forces.

In short, the mass-energy of a body influences the
geometry of spacetime no matter whether or not there
are any particles in the body’s vicinity, and the shape of
a free particle’s geodesic worldline reflects the space-
time curvature no matter whether it is intrinsic or
induced by matter.

8.2.7 Is There Gravitational Energy?

Although this question was answered above it is nec-
essary to explain briefly why the energy involved in
gravitational phenomena is not gravitational. Consider
the energy of oceanic tides which is transformed into
electrical energy in tidal power stations. The tidal en-
ergy is part of gravitational phenomena, but is not
gravitational energy. It seems most appropriate to call
it inertial energy because it originates from the work
done by inertial forces acting on the blades of the tidal
turbines – the blades further deviate the volumes of wa-
ter from following their geodesic (inertial) paths (the
water volumes are already deviated since they are pre-
vented from falling) and the water volumes resist the
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further change in their inertial motion; that is, the water
volumes exert inertial forces on the blades. With respect
to the resistance, this example is equivalent to the situa-
tion in hydroelectric power plants where water falls on
the turbine blades from a height (this example is even
clearer) – the blades prevent the water from falling (i. e.,
from moving by inertia) and it resists that change. It is
that resistance force (i. e., inertial force) that moves the
turbine, which converts the inertial energy of the falling
water into electrical energy. According to the standard
explanation it is the kinetic energy of the falling water
(originating from its potential energy) that is converted
into electrical energy. However, it is evident that be-
hind the kinetic energy of the moving water is its inertia
(its resistance to its being prevented from falling) –
it is the inertial force with which the water acts on
the turbine blades when prevented from falling. And it
can be immediately seen that the inertial energy of the
falling water (the work done by the inertial force on the
turbine blades) is equal to its kinetic energy [8.15, Ap-
pendix B].

8.2.8 Do Gravitational Waves Carry
Gravitational Energy?

At present there exists a widespread view that there
is indirect astrophysical evidence for the existence of
gravitational energy. That evidence is believed to come
from the interpretation of the decrease of the orbital
period of binary pulsar systems, notably the system
PSR 1913+16 discovered by Hulse and Taylor in 1974
[8.21]; recently it was also reported of evidence for the
loss of orbital energy in agreement . . . with the emis-
sion of gravitational waves from a binary system of two
candidate black holes [8.22, 23]. According to this in-
terpretation the decrease of the orbital period of such
binary systems is caused by the loss of energy due
to gravitational waves emitted by the systems. Almost
without being challenged (with only few exceptions
[8.24–26]) this view holds that quadrupole radiation
of gravitational waves which carry gravitational energy
away from the binary systems has been indirectly ex-
perimentally confirmed.

I think the interpretation that the orbital motion of
the neutron stars in the PSR 1913+16 system, for ex-
ample, loses energy by emission of gravitational waves
should be rigorously reexamined since it contradicts
general relativity, particularly the geodesic hypothe-
sis and the experimental evidence which confirmed it.
The reason is that by the geodesic hypothesis the neu-
tron stars, whose worldlines had been regarded as exact

geodesics (since the stars had been modeled dynami-
cally as a pair of orbiting point masses [8.27]), move by
inertia without losing energy because the very essence
of inertial motion is motion without any loss of energy.
For this reason no energy can be carried away by the
gravitational waves emitted by the binary pulsar system.
Therefore, the experimental fact of the decay of the or-
bital motion of PSR 1913+16 (the shrinking of the stars’
orbits) cannot be regarded as evidence for the existence
of gravitational energy. The observed diminishing of the
orbital period of the binary pulsar should be caused by
other mechanisms, e.g., magnetic or (and) tidal effects.
Tidal friction was suggested in 1976 [8.28] as an al-
ternative to the explanation given by Hulse and Taylor,
which ignored the tidal effects by treating the neutron
stars as point masses. The argument that the neutron
stars would behave as rigid bodies (since they are be-
lieved to be very compact) is not convincing because by
the same reason – the large spacetime curvature caused
by the stars (which is ultimately responsible for their
rigidity) – the other gravitational effects, that is, the
tidal effects, are also very strong.

If it really turns out that binary pulsars are not
slowed by the emission of gravitational energy (as I be-
lieve it would), that would be another important lesson
of the superior role of physics over mathematics in
physical theories. Being aware that not devoting par-
ticular attention to physical (conceptual) analyses of
physical situations could lead to problems. Wheeler and
Taylor stressed that the superiority of physics should al-
ways and explicitly be kept in mind in what he called
the first moral principle [8.29]:

Never make a calculation until you know the an-
swer. Make an estimate before every calculation,
try a simple physical argument (symmetry! invari-
ance! conservation!) before every derivation, guess
the answer to every paradox and puzzle.

In the case of the decrease of the orbital period of bi-
nary systems, the physical argument is that the geodesic
hypothesis and the statement that bodies, whose world-
lines are geodesic, emit gravitational energy cannot be
both correct. Another physical argument in the case
of binary systems involves orbital energy. Saying that
a binary system of two neutron stars has orbital (gravi-
tational) energy is equivalent to saying that two bodies
in uniform relative motion approach each other in flat
spacetime also have some common energy since in both
cases only inertial motion is involved – the stars’ world-
lines are geodesic in curved spacetime and the bodies
worldlines are straight in flat spacetime. The two cases
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are equivalent since the stars also move by inertia and
there is no exchange of some gravitational energy be-
tween them – as discussed above the same stress-energy
tensor of each star produces the same spacetime curva-
ture no matter whether or not the other star is there.

8.2.9 Can Gravity Be Quantized?

In the case of physical interactions when one talks
about the energy associated with an interaction, it is
the energy of the entity (the field and its quanta) that
mediates an interaction and it is that entity and its en-
ergy which are quantized. What should make us to
consider seriously the possibility that a theory of quan-
tum gravity might be impossible is the fact that there
is no such a thing as an entity which mediates gravi-
tational interaction in general relativity. Although the
term gravitational field is widely used in the general
relativistic literature its correct meaning is to describe
the geometry of spacetime and nothing more. It is not
a physical field that can be quantized. If the gravita-
tional field represented some physical entity, it should
be measurable. Misner, Thorne, and Wheeler paid spe-
cial attention to the question of the measurement of the
gravitational field [8.30, p. 399]:

I know how to measure the electromagnetic field us-
ing test charges; what is the analogous procedure for
measuring the gravitational field? This question has,
at the same time, many answers and none.

It has no answers because nowhere has a pre-
cise definition of the term gravitational field been
given – nor will one be given. Many different math-
ematical entities are associated with gravitation:
the metric, the Riemann curvature tensor, the Ricci
curvature tensor, the curvature scalar, the covariant
derivative, the connection coefficients, etc. Each of
these plays an important role in gravitation theory,
and none is so much more central than the others
that it deserves the name gravitational field. Thus it
is that throughout this book the terms gravitational
field and gravity refer in a vague, collective sort of
way to all of these entities. Another, equivalent term
used for them is the geometry of spacetime.

As there is no physical entity which is represented
by the term gravitational field in general relativity
it does follow that there is no energy and momen-
tum of that nonexistent physical entity. This in turn
should make us to accept the unambiguous fact that
the logical structure of general relativity does not
contain and does not allow a tensor of the gravita-
tional energy and momentum. It was Einstein who
first tried to insert the concept of gravitational en-
ergy and momentum forcefully into general relativity
(since he represented it by a pseudo-tensor, not a ten-
sor as it should be) in order to ensure that gravity
can still be regarded as some interaction. Einstein
made the gigantic step toward the profound under-
standing of gravity as spacetime curvature but even
he seems to have been unable to accept all im-
plications of the revolutionary view of gravitational
phenomena.

For decades the efforts of many brilliant physicists
to create a quantum theory of gravity have not been
successful. This could be an indication that those ef-
forts might not have been in the right direction. In
such desperate times in fundamental physics all ap-
proaches and ideas should be on the research table,
including the approach discussed here – that general
relativity completely explains gravitational phenomena
without the need of gravitational interaction, if gravity
is consistently and rigorously regarded as a manifes-
tation of the non-Euclidean geometry of spacetime,
that is, general relativity implies that gravitational phe-
nomena are not caused by gravitational interaction. An
immediate implication of this approach is that quan-
tum gravity understood as quantization of gravitational
interaction is impossible because there is nothing to
quantize. If this turns out to be the case, the efforts to
quantize the apparent gravitational interaction should
be redirected toward what seems to be the actual open
question in gravitational physics – how matter curves
spacetime – since it is quantum physics which should
deal with this question and which should provide the
definite answer to the central question in general rel-
ativity – whether or not there exists some kind of
interaction between physical bodies mediated by space-
time itself.
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8.3 Propagation of Light in Noninertial Reference Frames in Spacetime
So far the issue of the propagation of light in noniner-
tial reference frames (accelerating in special relativity
and associated with a body in general relativity whose
worldline is not geodesic) has not been fully presented
in the books on relativity (I am aware only of two
books where only the slowing down of light in curved
spacetime is explicitly discussed [8.31, 32]). This is-
sue has a straightforward and self-evident explanation
when the physical phenomenon of propagation of light
is regarded as spacetime geometry. In fact, regarding
the phenomenon of light propagation as spacetime ge-
ometry naturally explains both why the speed of light
is the same in all inertial reference frames in flat space-
time and why it is not constant in noninertial reference
frames (in flat and curved spacetimes).

Let us start with the propagation of light in iner-
tial reference frames. In his 1905 paper Einstein merely
postulated (as his second postulate) that the speed of
light is the same in all inertial frames. It is clear now
that Einstein did not need to introduce a second pos-
tulate in special relativity since the constancy of the
speed of light follows from the first postulate (the prin-
ciple of relativity) – the consequence of Maxwell’s
equations that electromagnetic waves propagate with
a constant speed (which turned out to be a fundamen-
tal constant cD ."0�0/

�1=2) should hold in all inertial
frames. However, at the time when Michelson and Mor-
ley proved experimentally that the speed of light is
constant and a bit later when Einstein postulated it, that
fact had been a complete mystery.

The situation completely changed in 1908 when
Minkowski gave the four-dimensional formulation of
special relativity. One of the implications of Minkows-
ki’s four-dimensional physics was the explanation of
the constancy of the speed of light in inertial frames.
In the ordinary three-dimensional (space and time) lan-
guage, the speed of light is the same in all inertial
frames because each reference frame has not only its
own (proper) time, but also (as Minkowski showed) its
own (proper) space and light propagates with respect to
the proper space of each frame and the frame’s proper
time measures the duration of the light propagation.

However, complete understanding of the whole phe-
nomenon of propagation of light is obtained when the
physics of this phenomenon is regarded as spacetime
geometry. Only when Minkowski gave the spacetime
formulation of special relativity it was revealed that
there are three kinds of length in spacetme and that the
propagation of light is represented by null (or lightlike)

geodesics whose status is absolute or frame indepen-
dent. A light signal which travels the distance dx for the
time period dt in any inertial reference frame is repre-
sented in flat spacetime by a lightlike worldline whose
length between the events of emission and arrival of the
light signal is zero (in the case of a two-dimensional
spacetime)

ds2 D c2 dt2 � dx2 D 0 :

It is evident from here that in any inertial reference
frame the speed of light is the same: cD dx=dt.

However, even in flat spacetime the spacetime met-
ric in a noninertial reference frame (e.g., an elevator
accelerating with a proper acceleration a along the x-
axis) is [8.30, p. 173]

ds2 D
�

1C
ax

c2

	2
c2 dt2 � dx2 : (8.1)

It is immediately seen from here that for a light-
like worldline (representing a propagating light signal)
ds2 D 0 and therefore the coordinate anisotropic veloc-
ity of light ca at a point x is

ca.x/D˙c
�

1C
ax

c2

	
; (8.2)

where theC and � signs correspond to the propagation
of a light signal along or against the x-axis, respectively.

As spacetime is flat it is clear that the nonconstancy
of the velocity of light in an accelerating elevator is not
caused by the curvature of spacetime. It is seen from
(8.1) that the non-Euclidean metric in the accelerat-
ing elevator results from the curvature of the elevator’s
worldline along which the time axis is constantly cho-
sen (at each point of the elevator’s worldline the time
axis is the tangent at that point and coincides with the
time axis of the instantaneously comoving inertial ref-
erence frame at that point). In 1960 Synge stressed the
need to distinguish between two types of effects in rel-
ativity [8.11]:

Spacetime is either flat or curved, and in several
places in the book I have been at considerable pains
to separate truly gravitational effects due to curva-
ture of space-time from those due to curvature of
the observer’s world-line (in most ordinary cases
the latter predominate).

The anisotropic velocity of light (8.2) is another mani-
festation of the latter effect.
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a

Fig. 8.3 A horizontal light ray propagates in an accelerat-
ing elevator

That the velocity of light is not constant in an ac-
celerating elevator was first realized by Einstein whose
thought experiments involving an accelerating elevator
and an elevator at rest on the Earth’s surface led him to
the discovery that a horizontal light signal bends in such
elevators (as shown in Fig. 8.3) [8.33]:

A curvature of rays of light can only take place
when the velocity of propagation of light varies with
position.

The implications of these results have not been fully ex-
plored. Although the bending of a horizontal light ray in
Einstein’s original thought experiments with elevators
found their way even in introductory physics textbooks
[8.34–37], the obvious question of whether light rays
propagating in a vertical direction (parallel and antipar-
allel to the elevator’s acceleration) are also affected by
the elevators’s acceleration, has never been asked. The
definite answer to this question could have been given
even before Minkowski’s spacetime formulation of spe-
cial relativity.

Consider an inertial reference frame I in which an
elevator is at rest. At a given moment t0 the elevator
starts to accelerate upward as shown in Fig. 8.4 [8.7,
Sect. 7.3]. The x-axes of I and a noninertial frame N
associated with the elevator are along the elevator’s ac-
celeration. At the same moment t0 three light rays are
emitted simultaneously in the elevator from points D,
A, and C toward point B. As at that moment I and N are
at rest the emission of the light rays is simultaneous in I
as well (now we can say that I is the instantaneously

comoving inertial frame at the moment t0 which means
that I and N share the same instantaneous space and
therefore they share the same class of simultaneous
events at t0).

At the next moment as N accelerates an observer
in I sees that the three light rays arrive simultaneously
not at point B, but at B0 (since during the time the light
rays travel the elevator, i. e., N, moves upward); the
inertial observer sees that the horizontal light ray emit-
ted from D propagates along a straight line (the dashed
yellow line in Fig. 8.4). Let DBDABD BCD r in I.
Since for the time tD r=c in I the light rays travel
toward B, the elevator moves a distance ı D at2=2D
ar2=2c2. As the simultaneous arrival of the three rays
at point B0 as viewed in I is an absolute (observer-
independent) fact due to its being a single event, it
follows that the rays arrive simultaneously at B0 as seen
by an observer in N as well.

We have DBD ABD BCD r in both I and N
because this thought experiment represents a clearly
nonrelativistic situation and therefore the relativistic
contraction of AB and BC in I can safely be ignored
(the elevator just started to accelerate and its velocity
relative to I is negligible compared to c). Since for the
same coordinate time tD r=c in N, the three light rays
travel different distances DB0 � r, AB0 D rC ı, and
CB0 D r�ı, before arriving simultaneously at point B0,
an observer in the elevator concludes that the propaga-
tion of light is affected by the elevator’s acceleration.
The average velocity ca

AB0
of the light ray propagating

from A to B0 is slightly greater than c

ca
AB0 D

rC ı

t
� c

�
1C

ar

2c2

	
:

The average velocity ca
B0C of the light ray propagating

from C to B0 is slightly smaller than c

ca
CB0 D

r� ı

t
� c

�
1�

ar

2c2

	
:

It is easily seen that to within terms proportional to c�2

the average light velocity between A and B is equal to
that between A and B0, i. e., ca

AB D ca
AB0

and also ca
CB D

ca
CB0

ca
AB D

r

t� ıc
D

r

t� at2
2c

D
c

1� ar
2c2

� c
�

1C
ar

2c2

	

(8.3)

and

ca
CB D

r

tC ı
c

� c
�

1�
ar

2c2

	
: (8.4)
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a
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At moment t0

D

a

A

B

B'

C

A moment later
I

D

Fig. 8.4 How an inertial observer I
and an observer in an accelerating el-
evator see the propagation of three
light rays in the elevator

Since the coordinate time t is involved in the calcula-
tion of the average velocities (8.3) and (8.4), it is clear
that these expressions represent the average coordinate
velocities between the points A and B and the points C
and B, respectively.

The same expressions for the average coordinate
velocities ca

AB and ca
CB can also be obtained from the ex-

pression for the coordinate velocity of light (8.2) in N.
As the coordinate velocity ca.x/ is continuous on the in-
terval ŒxA; xB�, one can calculate the average coordinate
velocity between A and B in Fig. 8.4

ca
AB D

1

xB� xA

xBZ
xA

ca .x/ dx

D c
�

1C
axB

c2
C

ar

2c2

	
;

(8.5)

where we have taken into account the fact that xA D

xBC r. When the coordinate origin is at point B (xB D

0), the expression (8.5) coincides with (8.3). In the same
way,

ca
BC D c

�
1C

axB

c2
�

ar

2c2

	
; (8.6)

where zC D xB � r. For xB D 0, (8.6) coincides with
(8.4).

Analogous expressions can be obtained for the aver-
age coordinate velocity of light in an elevator at rest on
the Earth’s surface, which is subject to the acceleration

due to gravity g [8.7, Sect. 7.3]

cg
AB D c

�
1C

gxB

c2
C

gr

2c2

	
(8.7)

and

cg
BC D c

�
1C

gxB

c2
�

gr

2c2

	
: (8.8)

As indicated above representing the physical situa-
tion depicted in Fig. 8.4 in terms of spacetime geometry
is the best way to demonstrate that it is the curva-
ture of the worldline of point B (and B0) which causes

a

C B' B A

x

Fig. 8.5 Regarding the physical phenomenon of light
propagation as spacetime geometry provides a straightfor-
ward explanation of the anizotropic propagation of light in
the accelerating elevator – the nonconstancy of the velocity
of light observed in the elevator is caused by the curvature
of the worldline of point B
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Fig. 8.6 The spacetime geometry of
the propagation of three light rays in
an inertial elevator

the nonconstancy of the velocity of light in N. This is
done in Fig. 8.5 which represents a two-dimensional
spacetime diagram. The worldlines of points A, B, B0,
and C as well as the worldlines of the light rays emitted
from A and C are depicted in the figure. It is obvious
that due to the curvature of the worldline of B (and B0)
the worldlines of the light rays meet at the worldline
of B0, not at the worldline of B. In this thought experi-
ment it is the curvature of the worldline B alone which
is responsible for the anisotropic velocity of light in the
accelerating elevator, but in more complex experiments
with light rays in an accelerating elevator the curvature
of the worldlines of the light sources and the light de-
tectors causes the anisotropy in the propagation of light
in noninertial reference frames.

The spacetime geometry of the propagation of all
three light rays emitted from points A, C, and D can be
represented in a three-dimensional spacetime diagram.
In order to make the spacetime diagram of the accel-
erating elevator more easily understandable, let us first
consider the propagation of the three light rays in an el-
evator, which moves with constant velocity as shown in
Fig. 8.6. The elevator at the moment t0, when the three
light rays are emitted simultaneously toward point B, is
represented by the bottom side of the parallelepiped in
Fig. 8.6. At moment t1, when the worldlines of the three
light rays meet at the worldline of point B, the elevator
is represented by the top side of the parallelepiped.

Now consider the spacetime diagram in Fig. 8.7
showing the propagation of the three light rays in an
accelerating elevator. The elevator at moments t0 and
t1 is represented by the bottom and top sides of the
parallelepiped, respectively (the two sides of the par-
allelepiped represent the instantaneous spaces of the
noninertial reference frame associated with the elevator,
which correspond to the moments t0 and t1). It is again
quite obvious that what causes the anisotropic propaga-
tion of light in the accelerating elevator (in this specific
thought experiment) is the curvature of the worldline
of point B – the worldlines of the light rays emitted
from A, C, and D at t0 all meet at the worldline of
point B0.

It turns out that the average coordinate velocity of
light is not sufficient for the complete description of
propagation of light in noninertial reference frames.
The average coordinate velocity of light explains the
propagation of light in such frames in situations like the
one discussed above. However, in a situation where the
average light velocity between two points – a source
and an observation point – is determined with re-
spect to one of the points, where the local velocity
of light is c and where the proper time is used, that
average velocity of light is not coordinate; it can be
regarded as an average proper velocity of light. For in-
stance, such a situation occurs in the Shapiro time delay
effect.
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A (at t1)

B (at t1)
B' (at t1)
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Fig. 8.7 The spacetime geometry of
the propagation of three light rays in
an accelerating elevator. In order not
to complicate the spacetime diagram,
the elevator at moments t0 and t1 is
shown as the bottom and top sides
of the parallelepiped. However, in
reality the two sides (representing
the elevator at t0 and t1 and also the
instantaneous spaces at t0 and t1 of
the noninertial reference frame N as-
sociated with the elevator) are not
parallel, because those sides (i. e.,
the instantaneous spaces of N at the
two moments) coincide with the
spaces of the instantaneously comov-
ing inertial reference frames at t0 and
t1, which are not parallel since the
two instantaneously comoving iner-
tial reference frames are in relative
motion

We calculated the average coordinate velocity of
light in an accelerating elevator, but now we will deter-
mine the average proper velocity of light in a noninertial
reference frame N associated with an elevator at rest
on the Earth’s surface (Fig. 8.8). The reason is to ex-
plain in detail how light propagates toward and away
from the Earth since this issue is not always explained
properly in introductory physics textbooks. For exam-
ple, one can read that a beam of light will accelerate
in a gravitational field, just like objects that have mass
and therefore near the surface of the earth, light will
fall with an acceleration of 9:81 m=s2 [8.34]. We shall
now see that during its fall toward the Earth, light is
slowing down – a negative acceleration of 9:81 m=s2 is
decreasing its velocity.

As an elevator at rest on the Earth is prevented from
falling it is accelerating (since its worldtube is curved)
with an acceleration g due to gravity.

To calculate the average proper velocity of light
which originates from B and is observed at A, we
have to determine the initial velocity of a light sig-
nal at B and its final velocity at A, both with respect
to A [8.7, Sect. 7.4]. As the local velocity of light is c,
the final velocity of the light signal determined at A is
obviously c. By taking into account that in a parallel
gravitational field, proper and coordinate distances are
the same [8.38], we can determine the initial velocity of

the light signal at B as seen from A

cg
B D

dxB

d
A
D

dxB

dt

dt

d
A
:

Here d
A D dsA=c is the proper time of an observer
with constant spatial coordinates at A,

d
A D
�

1C
gxA

c2

	
dt ;

and dxB=dtD cg.xB/ is the coordinate velocity of light
at B,

cg.xB/D c
�

1C
gxB

c2

	
;

which follows from the metric (the line element) in the
case of parallel gravitational field [8.30, p. 1056]

ds2 D
�

1C
gx

c2

	2
c2 dt2 � dx2 � dy2 � dz2 :

As xA D xBC r (we again have ABD BCD r) and
gxA=c2 < 1 (since for any value of x in N, there exists
the restriction jxj< c2=g), for the coordinate time dt,
we have (to within terms / c�2)

dt�
�

1�
gxA

c2

	
d
A D

�
1�

gxB

c2
�

gr

c2

	
d
A :
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Fig. 8.8 An elevator at rest on the Earth’s surface

Then for the initial velocity cg
B at B as determined at A,

we obtain

cg
B D c

�
1C

gxB

c2

	�
1�

gxB

c2
�

gr

c2

	
;

or, keeping only the terms proportional to c�2,

cg
B D c

�
1�

gr

c2

	
: (8.9)

Therefore, an observer at A will determine that when
a light signal is emitted at B with the initial velocity
(8.9) during the time of its journey toward A (away from
the Earth’s surface) it will accelerate with an accelera-
tion g and will arrive at A with a final velocity equal
to c.

For the average proper velocity Ncg
BA D .1=2/.cg

BCc/
of light propagating from B to A as observed at A, we
have

Ncg
BA .as observed at A/D c

�
1�

gr

2c2

	
: (8.10)

As the local velocity of light at A (measured at A) is c,
it follows that if a light signal propagates from A to-
ward B, its initial velocity at A is c, the final velocity
of the light signal at B is (8.9) and therefore, as seen
from A, it is subject to a negative acceleration g and
will slow down as it falls toward the Earth. The average
proper velocity Ncg

AB (as seen from A) of a light signal
emitted at A with the initial velocity c and arriving at B
with the final velocity (8.9) will be equal to the average
proper velocity Ncg

BA (as seen from A) of a light signal
propagating from B toward A. Thus, as seen from A,

the back and forth average proper speeds of light trav-
elling between A and B are the same.

Now let us determine the average proper velocity of
light between B and A with respect to point B. A light
signal emitted at B as seen from B will have an initial
(local) velocity c there. The final velocity of the signal
at A as seen from B will be

cg
A D

dxA

d
B
D

dxA

dt

dt

d
B
;

where dxA=dtD cg.xA/ is the coordinate velocity of
light at A,

cg.xA/D c
�

1C
gxA

c2

	
;

and d
B is the proper time at B,

d
B D
�

1C
gxB

c2

	
dt :

Then as xA D xBC r, we obtain for the velocity of light
at A, as determined at B,

cg
A D c

�
1C

gr

c2

	
: (8.11)

Using (8.11), the average proper velocity of light prop-
agating from B to A as determined from B becomes

Ncg
BA .as observed at B/D c

�
1C

gr

2c2

	
: (8.12)

If a light signal propagates from A to B, its average
proper velocity Ncg

AB (as seen from B) will be equal to
Ncg

BA (as seen from B) – the average proper speed of light
propagating from B to A. This demonstrates that, for an
observer at B, a light signal emitted from B with veloc-
ity c will accelerate toward A with an acceleration g and
will arrive there with the final velocity (8.11). As deter-
mined by the B-observer, a light signal emitted from A
with initial velocity (8.11) will be slowing down (with
�g) as it falls toward the Earth and will arrive at B with
a final velocity equal to c. Therefore, an observer at B
will agree with an observer at A that a light signal will
accelerate with an acceleration g on its way from B to A
and will decelerate while falling toward the Earth dur-
ing its propagation from A to B, but will disagree on the
velocity of light at the points A and B.

The use of the average anisotropic velocity of light
in the Shapiro time delay and the Sagnac effect is
demonstrated in [8.7, Sects. 7.5, 7.8].

The calculation of the average proper velocity of
light in an accelerating frame is obtain in the same way
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and gives [8.7, Sect. 7.4]

Ncg
BA .as observed at A/D c

�
1�

ar

2c2

	
(8.13)

and

Nca
BA .as observed at B/D c

�
1C

ar

2c2

	
; (8.14)

where a is the proper acceleration of the frame.
Comparing the average coordinate velocities of

light (8.5) and (8.6) with (8.7) and (8.8) and the av-
erage proper velocities of light (8.13) and (8.14) with
(8.10) and (8.12) shows that their expressions are the
same in an accelerating elevator and in an elevator on
the Earth’s surface. This fact can be regarded as an-
other manifestation of the equivalence principle. But
this principle only postulates such equivalences without
any explanation; they are pure mystery. The complete
explanation of the identical anisotropy in the propaga-

tion of light in both elevators is obtained only when the
phenomenon of propagation of light is regarded as ge-
ometry of a real spacetime. Only then it becomes clear
that acceleration is a curvature of a worldline. Only then
it becomes clear that, like an accelerating elevator, an
elevator on the Earth’s surface also accelerates since its
worldtube, like the worldtube of the accelerating eleva-
tor, is also curved. Then the same accelerations aD g
of the elevators demonstrate that their worldtubes are
equally curved, which causes the identical anisotropic
propagation of light in an accelerating elevator and in an
elevator at rest on the Earth’s surface. The fact that the
worldlines of the points of the accelerating elevator are
as much deviated from their geodesic shapes (i. e., from
their straight shapes in flat spacetime) as the worldlines
of the points of the elevator on the Earth’s surface are
deviated from their geodesic shapes in curved space-
time naturally explains the equivalence of all physical
phenomena in the elevators (which equivalence was
postulated as the equivalence principle).
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9. Electrodynamics of Radiating Charges
in a Gravitational Field

Øyvind Grøn

The electrodynamics of a radiating charge and its
electromagnetic field based upon the Lorentz–
Abraham–Dirac (LAD) equation are discussed both
with reference to an inertial reference frame and
a uniformly accelerated reference frame. It is
demonstrated that energy and momentum are
conserved during runaway motion of a radiating
charge and during free fall of a charge in a field of
gravity. This does not mean that runaway motion
is really happening. It may be an unphysical solu-
tion of the LAD equation of motion of a radiating
charge due to the unrealistic point particle model
of the charge upon which it is based. However
it demonstrates the consistency of classical elec-
trodynamics, including the LAD equation which is
deduced from Maxwell’s equations and the prin-
ciple of energy-momentum conservation applied
to a radiating charge and its electromagnetic field.
The decisive role of the Schott energy in this con-
nection is made clear and an answer is given to
the question: What sort of energy is the Schott
energy and where is it found? It is the part of the
electromagnetic field energy which is proportional
to (minus) the scalar product of the velocity and
acceleration of a moving accelerated charged par-
ticle. In the case of the electromagnetic field of
a point charge it is localized at the particle. This
energy is negative if the acceleration is in the same
direction as the velocity and positive if it is in the
opposite direction. During runaway motion the
Schott energy becomes more and more negative
and in the case of a charged particle with finite
extension, it is localized in a region with increasing
extension surrounding the particle. The Schott
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energy provides the radiated energy of a freely
falling charge. Also it is pointed out that a proton
and a neutron fall with the same acceleration in
a uniform gravitational field, although the proton
radiates and the neutron does not. It is made clear
that the question as to whether or not a charge
radiates has a reference-dependent answer. An
accelerated charge is not observed to radiate by an
observer comoving with the charge, although an
inertial observer finds that it radiates.

9.1 The Dynamics of a Charged Particle

The analysis of the energy-momentum balance of a ra-
diating charge is usually based on the equation of
motion of a point charge. The nonrelativistic version

of the equation was discussed already more than 100
years ago by H. A. Lorentz [9.1]. The relativistic gen-
eralization of the equation was originally found by
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M. Abraham [9.2] in 1905 and re-derived in 1909 by
M. von Laue [9.3] who Lorentz transformed the nonrel-
ativistic equation from the instantaneous rest frame of
the charge to an arbitrary inertial frame. A new deduc-
tion of the Lorentz covariant equation of motion was
given by P. A. M. Dirac in 1938 [9.4]. This equation
is therefore called the Lorentz–Abraham–Dirac equa-
tion, or for short the LAD equation. A particularly
interesting feature about Dirac’s deduction is that it
establishes a connection between Maxwell’s equations
and the equation of motion for a charged particle. It
shows that the presence of the Abraham four-vector in
the equation of motion (Sect. 9.1.2) comes from con-
servation of energy and momentum for a closed system
consisting of a charge and its electromagnetic field.

9.1.1 The Nonrelativistic Equation of Motion
of a Radiating Charge

In the nonrelativistic limit the equation of motion of
a radiating charge, q, with mass m0, acted upon by an
external force, fext, takes the form

m0RrD f extCm0
0«r ; 
0 D
q2

6
�"0m0c3 ; (9.1)

where the dot denotes differentiation with respect to the
(Newtonian) time. If q and m0 represent the charge and
mass of an electron, respectively, 
0 is of the same or-
der of magnitude as the time taken by light to move
a distance equal to the classical electron radius, i. e.,

0 � 10�23 s. The general solution of the equation is

Rr.T/D eT=�0

�

2
4Rr.0/� 1

m
0

TZ
0

e�T0=�0 f ext.T
0/dT 0

3
5 :

(9.2)

Hence the charge performs a runaway motion unless
one chooses the initial condition

m
0Rr.0/D

1Z
0

e�T0=�0 f ext.T
0/dT 0 : (9.3)

By combining (9.2) and (9.3) one obtains [9.5]

mRr.T/D

1Z
0

e�sf ext.TC 
0s/ds : (9.4)

This equation shows that the acceleration of the charge
at a point of time T is determined by the future force,
weighted by a decreasing exponential factor with value
1 at the time T , and a time constant 
0, i. e., there is
pre-acceleration.

In his discussion of (9.1) Lorentz [9.1] writes:

In many cases the new force represented by the sec-
ond term in (9.1) may be termed a resistance to
the motion. This is seen if we calculate the work of
the force during an interval of time extending from
T D T1 to T D T2. The result is

T2Z
T1

Pa � vdT D Œa � v�T2
T1
�

T2Z
T1

a2 dT : (9.5)

Here the first term disappears if, in the case of pe-
riodic motion, the integration is extended to a full
period, and also if at the instants T1 and T2 either
the velocity or the acceleration is zero. Whenever
the above formula reduces to the last term, the work
of the force is seen to be negative, so that the name
of resistance is then justly applied.

P. Yi [9.6] gives the following interpretation:

The total energy of the system may be split into three
pieces: the kinetic energy of the charged particle,
the radiation energy, and the electromagnetic en-
ergy of the Coulomb field. In effect, the last acts
as a sort of energy reservoir that mediates the en-
ergy transfer from the first to the second and in
the special case of uniform acceleration provides all
the radiation energy without extracting any from the
charged particle.

9.1.2 The Relativistic Equation of Motion
of a Radiating Charge

The original relativistic equation of motion of a particle
with rest mass m0 and charge q (the LAD equation) may
be written as [9.7]

F�extC�
� Dm0 PU

� ; (9.6)

where

� � �m0
0
�
PA� �A˛A˛U�

�
; (9.7)

and the dot denotes differentiation with respect to the
proper time of the particle. Here F�ext is the external
force acting upon the particle, U� is its four-velocity
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and A� its four-acceleration. (Capital letters shall be
used for four-vector components referring to an inertial
frame, and units are used so that cD 1.)

The vector � � is called the Abraham four-force and
is given by

� � D � .v �� ;� / ; (9.8)

where � is the three-dimensional force called the field
reaction force [9.8], v is the ordinary velocity of the
particle, and � D .1� v2/�1=2. In an inertial reference
frame the Abraham four-force may be written as

� � D m0
0�.v � Pg; Pg/ ; (9.9)

where gD .A˛A˛/
1
2 is the proper acceleration of the

charged particle in the inertial frame. Hence

� D m0
0 Pg : (9.10)

In flat spacetime there exist global inertial frames. How-
ever, in curved spacetime there are only local inertial
frames. They are freely falling. Then g is the acceler-
ation of the particle in a freely falling frame in which
the particle is instantaneously at rest. In such a frame
a freely falling particle has no acceleration. Hence,
a particle falling freely in a gravitational field has van-
ishing four-acceleration. From (9.7) and (9.10) is seen
that for such a particle the Abraham four-force van-
ishes. This is also valid for a charged particle emitting
radiation while it falls. This case shall be treated in
more detail in Sect. 9.5.

According to the Lorentz covariant Larmor formula,
valid with reference to inertial systems, the energy ra-
diated by the particle per unit time is (using the sign
convention that the signature of the metric is C2),

PL Dm0
0A˛A˛ D m0
0g2 : (9.11)

The radiated momentum per unit proper time is

P�R D PLU� : (9.12)

From the equation of motion (9.6) we obtain the energy
equation

v �Fext D �
�1
�
m0 PU

0 �� 0
�

D m0�
3v � a� v ��

D
dEK

dT
� v �� ;

(9.13)

where EK D .��1/m0c2 is the kinetic energy of the par-
ticle and T is the coordinate time in the inertial frame.
Note that the energy supplied by the external force is
equal to the change of the kinetic energy of the charge
when the Abraham four-force vanishes. Hence, it is
tempting to conclude from the Abraham–Lorentz the-
ory, i. e., from (9.10) and (9.13), that a charge having
constant acceleration does not radiate. This is, however,
not the case. The power due to the field reaction force is

v �� D m0
0
d

dT
.�4v � a/�PL

D�
dES

dT
�

dER

dT
;

(9.14)

where ER is the energy of the radiation field and ES is
the Schott energy defined by

ES ��m0
0�
4v � aD�m0
0A0 : (9.15)

(This energy was called acceleration energy by
Schott [9.9] but is now usually called Schott energy.)
Hence, in the case of constant acceleration, when the
Abraham four-force vanishes, the charge radiates in
accordance with Larmor’s formula, (9.11), and the rate
of radiated energy is equal to minus the rate of change
of the Schott energy. The energy equation may now be
written as

dWext

dT
D v �Fext D

d

dT
.RKCESCER/ ; (9.16)

where Wext is the work on the particle due to the
external force.

Let Pext be the momentum delivered to the particle
from the external force. Then dPext=dT D Fext, and by
means of (9.1), (9.2), and (9.7) we obtain

dPext

dT
D Fext D m0

dv
dT
�m0
0

�
dA
dT
� g2v

�

D
dPM

dT
C

dPS

dT
C

dPR

dT
:

(9.17)

Thus, according to (9.12) and (9.17) the four-
momentum of the particle takes the form

P� D P�M CP�S ; (9.18)

where

P�M D m0U� ; P�S D�m0
0A� (9.19)
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are the mechanical four-momentum of the particle and
the Schott four-momentum, respectively. In addition we
have the four-momentum of the radiation field, which is
not a state function of the particle.

9.1.3 Significance of the Schott Momentum

In order to demonstrate as clearly as possible the ne-
cessity of taking into account the Schott momentum in
the dynamics of a charged particle we shall here con-
sider circular motion with a constant speed [9.9]. Then
v � aD 0 and the Schott energy vanishes, but not the
Schott momentum. It is

pS D�m0
0�
2a : (9.20)

Since both the kinetic energy and the Schott energy are
constant, (9.16) in this case reduces to

dWext

dT
D v �Fext D

dER

dT
D PL : (9.21)

This equation shows that the radiated energy is provided
by the tangential component of the external force.

Although the radiated energy per unit time is equal
to the power due to the tangential component of the ex-
ternal force, the radiated momentum is not due only to
this force. In order to see this most clearly we insert the
expression for the centripetal acceleration into the ex-

pression (9.20) for the Schott momentum, which gives

pS D�m0
0�
2 v2

r
er ; (9.22)

where er is the radial unit vector. The rate of change of
the Schott momentum with respect to the inertial labo-
ratory time is

dpS

dT
D m0
0�

2 v2

r2
v : (9.23)

Putting FD F
k

CF
?

where F
k

and F
?

are the com-
ponents of F along and orthogonal to v, we obtain

F
?

D �m0a ; (9.24)

and

F
k

D
dpS

dT
CPLv : (9.25)

For an uncharged particle the centripetal force F
?

is
the only force. But in the case of a charged particle
a tangential force F

k

is necessary to keep the velocity
constant. The radiated energy comes from the work per-
formed by this force. The radiated momentum is partly
due to F

k

and partly due to the change of the direction
of the Schott momentum vector.

9.2 Schott Energy as Electromagnetic Field Energy

Already in 1915 Schott [9.10] argued that in the case of
uniformly accelerated motion

the energy radiated by the electron is derived en-
tirely from its acceleration energy; there is as it
were internal compensation amongst the different
parts of its radiation pressure, which causes its re-
sultant effect to vanish.

But what is the acceleration energy, now called the
Schott energy? Schott [9.10] and later Rohrlich [9.8]
noted that there is an important difference between
the radiation rate and the rate of change of the Schott
energy:

The radiation rate is always positive (or zero) and
describes an irreversible loss of energy; the Schott
energy changes in a reversible fashion, returning to
the same value whenever the state of motion repeats
itself.

Rohrlich also wrote [9.11]:

If the Schott energy is expressed by the electromag-
netic field, it would describe an energy content of
the near field of the charged particle which can
be changed reversibly. In periodic motion energy
is borrowed, returned, and stored in the near-field
during each period. Since the time of energy mea-
surement is usually large compared to such a period
only the average energy is of interest and that
average of the Schott energy rate vanishes. Uni-
formly accelerated motion permits one to borrow
energy from the near-field for large macroscopic
time-intervals, and no averaging can be done be-
cause at no two points during the motion is the
acceleration four-vector the same. Nobody has so
far shown in detail just how the Schott energy oc-
curs in the near-field, how it is stored, borrowed
etc.
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A step toward answering this challenge was taken
by C. Teitelboim [9.12]. He made a Lorentz invariant
separation of the field tensor of the electromagnetic
field of a point charge into two parts, F�� D F��I C

F��II , where F��I is the velocity field and F��II the ac-
celeration field. Inserting these parts into the expression
for the energy-momentum tensor of the electromag-
netic field, Teitelboim found that the energy-momentum
tensor contains terms of three types: a part T��I,I in-
dependent of the acceleration, a part T��I,II depending
linearly upon the acceleration, and a part T��II,II depend-
ing linearly upon the square of the acceleration of the
charged particle producing the fields. Teitelboim then
defined T��I D T��I,I CT��I,II and T��II D T��II,II . The con-
tribution of the interference between the fields I and
II has been included in T��I , whereas the tensor T��II
is related only to the part of the field depending upon
the square of the acceleration. Teitelboim showed that
the energy-momentum associated with the field F��II
travels with the speed of light. The field fronts are
spheres with centers at the emission points. The four-
momentum associated with T��I remains bound to the
charge. Furthermore he calculated the four-momenta
and their time derivatives associated with T��I and
T��II .

The results of Rohrlich and Teitelboim have been
summarized by P. Pearle [9.13] in the following way:

The term � � in the Lorentz–Dirac equation, as
given in (9.6), is called the Abraham force. Its first
term, m0
0 PA� is called the Schott term, and its sec-
ond, �m0
0A˛A˛U�, the radiation reaction term.
The zeroth component of the radiation reaction term
is to be interpreted as the radiation rate. Indeed,
the scalar product of this term with U� is the rela-
tivistic version of the Larmor formula. The spatial
component of this term, proportional to �v like
a viscous drag force, may similarly be interpreted
as the radiation reaction force of the electron.

The physical meaning of the Schott term has
been puzzled over for a long time. Its zero com-
ponent represents a power which adds Schott ac-
celeration energy to the electron and its associated
electromagnetic field. The work done by an external
force not only goes into electromagnetic radiation
and into increasing the electron’s kinetic energy,
but it causes an increase in the Schott accelera-
tion energy as well. This change can be ascribed
to a change in the bound electromagnetic energy in
the electron’s induction field, just as the last term
of (9.14) can be ascribed to a change in the free

electromagnetic energy in the electron’s radiation
field.

What meaning should be given to the Schott
term? Teitelboim [9.12] has argued convinc-
ingly that when an electron accelerates, its near-
field is modified so that a correct integration
of the electromagnetic four-momentum of the
electron includes not only the Coulomb four-
momentum .q2=8�"0r/U�, but an extra four-
momentum �m0
0A� of the bound electromagnetic
field.

It remained to obtain a more precise localization of
the Schott field energy.

Rowe [9.15] modified Teitelboim’s separation of
the energy-momentum tensor of the electromagnetic
field of a point charge, which he described by a delta-
function, and introduced a separation into three sym-
metrical, divergence-free parts. In order to obtain a fi-
nite expression for the localization of the Schott energy
as part of the energy of the electromagnetic field of
a charged particle, Eriksen and Grøn [9.7] applied
Rowe’s separation to a charged particle with a finite
radius and obtained the following result. The Schott en-
ergy is inside a spherical light front S touching the front
end of a moving Lorentz contracted charged particle.

A
ε

X (TQ2)

T–TQ2

X (T) v

Fig. 9.1 A Lorentz contracted charged particle with proper
radius "moving to the right with velocity v. The field is ob-
served at a point of time T , and at this moment the center
of the particle is at the position X.T/. The circle is a field
front produced at the retarded point of time TQ2 when the
center of the particle was at the position X.TQ2/. The field
front is chosen such that it just touches the front of the
particle. The Schott energy is localized in the shaded re-
gion between the field front and the ellipsoid representing
the surface of the particle. The velocity is chosen to be
vD 0:6 (after [9.14], courtesy of the American Associa-
tion of Physics Teachers)
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From Fig. 9.1 one finds that at the point of time T the
radius of the light front S that represents the boundary
of the distribution of the Schott energy, is

T � TQ2 D "

r
1C v

1� v
; (9.26)

where the field at the light front S is produced at the
retarded point of time TQ2, " is the proper radius of
the particle, and v is the absolute value of its veloc-
ity. Hence, unless the velocity of the charge is close to
that of light, the Schott energy is localized just outside
the surface of the charged particle. The radius of the
light front S increases towards infinity for the field of
a charge approaching the velocity of light, for example
during runaway motion, which we shall now consider
in Sect. 9.4.

In the deduction of the localization of the Schott
energy we have not applied the equation of motion of
the charge. We have only considered the field produced
by the charge. Hence the deduction permits us to con-
sider a charge with a finite proper radius. However, the
LAD equation is deduced for a point charge. So relat-
ing the Schott energy to the conservation of energy for
a radiating point charge and the field it produces, we
should take the limit "! 0. In this limit it seems that

the Schott energy is localized at the point charge. But it
must be admitted that this limit seems rather unphysi-
cal, and our conclusion should rather be that this limit
signals a breakdown of classical electrodynamics, or at
least some sort of unsolved problem.

A slightly different perception of the Schott en-
ergy, still interpreted as electromagnetic field energy,
has recently been given by D. R. Rowland [9.16]. He
found that the Schott energy is the difference between
the energy in the actual bound electromagnetic field of
a charge and the energy in the bound field if the charge
had moved with a constant velocity equal to its instanta-
neous velocity. Rowland’s analysis further provides the
following physical explanation of the existence of the
Schott energy:

This difference arises because the bound fields of
a charge cannot respond rigidly when the state of
motion of a charge is changed by an external force.
During uniform acceleration, the rate of change of
this difference is just the negative of the rate at
which radiation energy is created, and hence the
power needed to accelerate a charged particle uni-
formly is just that which is required to accelerate
a neutral particle with the same rest mass even
though the charge is radiating.

9.3 Pre-Acceleration and Schott Energy

The LAD equation has two strange consequen-
ces [9.17–25]: pre-acceleration, which is accelerated
motion before a force acts; and run-away motion, which
is accelerated motion of a charge after a force which
acted upon it has ceased to act.

It has been claimed that during a period of pre-
acceleration, before a charge is acted upon by an ex-
ternal force, the charge will not emit radiation [9.26].
In this section we will review a recent demonstration
we have given where it was shown that a charge emits
radiation during a period of pre-acceleration and that
the radiation energy then comes from the Schott energy,
which decreases during this period [9.27].

We shall consider a particle with charge Q and rest
mass m0 moving in an inertial frame and acted upon by
an external force F of finite duration.

With P�R as defined in (9.12) and P�S in (9.19), the
LAD equation can be written as

F� D m0 PU
� C PP�S C PP

�
R : (9.27)

In the following we restrict ourselves to linear motion
(along the x-axis). The equations can be simplified by
introducing the rapidity of the particle,

˛ D artanh v : (9.28)

Hence,

vD tanh˛ ; � D cosh˛ ; �vD sinh˛ ;

aD
dv

dt
D

d


dt

dv

d

D

Pv

cosh˛
D

P̨

cosh3 ˛
;

(9.29)

U� D .cosh˛; sinh˛; 0; 0/ ;

A� D PU� D . P̨ sinh˛; P̨ cosh˛; 0; 0/ ;
(9.30)

where P̨ D a0, i. e. P̨ is the acceleration in the inertial
rest frame. The components of the mechanical, Schott,
and radiation four-momenta may then be expressed as

m0U� D m0.cosh˛; sinh˛/ ; (9.31)
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P�S D�
2

3
Q2 P̨.sinh˛; cosh˛/ ; (9.32)

P�R D
2

3
Q2

�Z
�1

P̨ 2.cosh˛; sinh˛/d
 : (9.33)

Differentiation gives

m0 PU
� D m0 P̨ .sinh˛; cosh˛/ ; (9.34)

PP�S D�
2

3
Q2 R̨.sinh˛; cosh˛/

�
2

3
Q2 P̨ 2.cosh˛; sinh˛/ ;

(9.35)

PP�R D
2

3
Q2 P̨ 2.cosh˛; sinh˛/ (9.36)

with the sum

m0 PU
� C PP�S C PP

�
R D

�
m0 P̨ �

2

3
Q2 R̨

�

� .sinh˛; cosh˛/ :
(9.37)

In terms of the rapidity the Minkowski force (9.27)
reads as

F� D .�vF; �F/D F.sinh˛; cosh˛/ : (9.38)

The LAD equation for linear motion then takes the
form [9.28]

FD m0. P̨ � 
0 R̨ / : (9.39)

Note that (9.39) transforms into the nonrelativistic
equation of motion when ˛ is replaced by v and proper
time by laboratory time [9.29]. Equation (9.39) may be
written as

d

d


�
e��=�0 P̨

	
D�

F

m0
0
e��=�0 : (9.40)

Let 
1 and 
2 be two points of proper time with 
1 < 
2

and F a function of 
 such that F .
/D 0 for 
 < 
1

and 
 > 
2. Then the general solution of (9.40) may be
written as

e��=�0 P̨ .
/D

�2Z
�

F .
 0/

m0
0
e��

0=�0 d
 0CC0 ; (9.41)

where C0 is a constant. For 
 > 
2 the integral is zero,
and

P̨ .
/D C0e�=�0 ;

i.e. ˛ .
/D C0
0e�=�0 C const.
(9.42)

When C0 ¤ 0 this is a run away solution. The rapidity
increases without any boundary, and the velocity ap-
proaches the velocity of light when 
 !1.

In this section we put C0 D 0, which gives the fol-
lowing solution of (9.40),

P̨ .
/D e�=�0

�2Z
�

F .
 0/

m0
0
e��

0=�0 d
 0 : (9.43)

The integral has the same value for all 
 < 
1 and is
equal to zero for 
 > 
2. For convenience we introduce
the notation

f .
/�

�2Z
�

F .
 0/

m0
0
e��

0=�0 d
 0 : (9.44)

We put ˛.�1/D 0 and obtain from (9.43) and (9.44),
for

for 
 < 
1 ; P̨ D e�=�0 f .
1/ ;

˛ D 
0e�=�0 f .
1/;
(9.45)

for 
1 < 
 < 
2 ; P̨ D e�=�0 f .
/ ;

aD 
0e�=�0 f .
/C
1

m0

�Z
�1

F.
 0/d
 0;
(9.46)

for 
 > 
2 ; P̨ D 0 ;

˛ D ˛.
2/D
1

m0

�2Z
�1

F.
 0/d
 0 :
(9.47)

Note that P̨ D 0 for 
 < 
1 if f .
1/D 0. That is, there is
no pre-acceleration if

R �2
�1

F.
 0/e��
0=�0 d
 0 D 0.

In order to discuss the energy and momentum of the
particle and its field, we consider the formulation (9.27)
of the LAD equation, which is a conservation equation
of energy and momentum in differential form. Let 
a

and 
 be two points of proper time with 
 > 
a. Then
according to (9.27)

�Z
�a

F� d
 D�
�
m0U�

�
C�P�S C�P�R : (9.48)

For � D 0 the left-hand side is the work done by the ex-
ternal force and for � D 1 it is the delivered momentum.
The � symbols refer to the increments from 
a to 
 .

As seen from (9.45) the energies and momenta in
the pre-acceleration period are given by (9.31)–(9.33)
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α

α• τ0

0–2–4
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10–14

2 4 6
τ/τ0

Fig. 9.2 ˛ is the rapidity of an electron and 
0 is the time taken by
a light signal to travel a distance equal to two-thirds of the classical
electron radius. A constant force acts from the proper time 
1 D 0 to
the proper time 
2 D 3
0. The electron, originally at rest, gets a mo-
tion (pre-acceleration) before the force acts (after [9.14], courtesy
of the American Association of Physics Teachers)

W

Ekin

PR
0

PS
0

0–2–4

5

4

3

2

1

–1

10–28mo

2 4 6
τ/τ0

Fig. 9.3 The solution is the same as in Fig. 9.2. The graphs show
the kinetic energy Ekin, the radiated energy P0

R, the Schott energy
P0

S, and the external work W as a function of 
=
0. Note that
W D EkinCP0

RCP0
S. In the pre-acceleration period P0

R D Ekin

(after [9.14], courtesy of the American Association of Physics
Teachers)

when we put P̨ D ˛=
0. The integral in (9.43) is then
solved by introducing d
 D 
0 d˛=˛. We put 
a D�1

and 
 < 
1. Due to the initial condition ˛ .�1/D 0
we obtain

�
�
m0U�

�
D .Ekin .
/ ;P .
//

Dm0 .cosh˛� 1; sinh˛/ ;
(9.49)

�P�S D P�S .
/D m0 .�˛ sinh˛;�˛ cosh˛/ ;
(9.50)

�P�R D P�R .
/Dm0 .˛ sinh˛� cosh˛C 1;

˛ cosh˛� sinh˛/ ;
(9.51)

where

˛ D 
0e�=�0 f .
1/ : (9.52)

This leads to

�
�
m0U�

�
C�P�S C�P�R D 0 ; (9.53)

which says that the total increment of the energy and
momentum of the system is zero, as it must be since
the external force in the interval is zero.

A simple illustration of the above results is obtained
by considering the special case where F is constant. We
then put gD F=m0, and the solution (9.45)–(9.47) takes
the form


 < 
1 ;

˛ D g
0e.���1/=�0

�
1� e�.�2��1/=�0

	
;

(9.54)


1 < 
 < 
2 ;

˛ D g
0

�
1� e.���2/=�0

	
C g .
 � 
1/ ;

(9.55)


 > 
2 ; ˛ D g .
2 � 
1/ : (9.56)

The rapidity ˛ and its rate of change times 
0 are
shown graphically in Fig. 9.2. The corresponding
curves for the work performed by the external force,
W D

R �
�1

F0 d
 , the kinetic energy of the particle, the
radiation energy, and the Schott energy, as given in
(9.49)–(9.51), are shown in Fig. 9.3.

In order to obtain some intuition about the quan-
tities involved, we may refer to the figures, where we
have put 
2 � 
1 D 3
0, and the external force is due to
the critical electrical field in air, ED 2:4�106 V m�1.
Then for an electron, gD 4:2�1017 m s�2 and g
0 D

2:6�10�6 m s�1. In ordinary units, where c is not
taken to be 1, the factor g
0 in (9.54), say, should
be replaced by g
0=cD 0:88�10�14. Hence, accord-
ing to (9.54) the rapidity in the pre-acceleration period
is of the order 10�14, ˛.
1/D 0:84�10�14, v.
1/D
c tanh˛.
1/D 2:5�10�6 m s�1. To lowest order in ˛
(the next order is of the magnitude 10�42/ the expres-
sions (9.49) and (9.50) for the changes of the kinetic
energy and the Schott energy, and the emitted radiation
energy in the pre-acceleration period reduce to

Ekin D m0 .cosh˛� 1/�
1

2
m0˛

2 ; (9.57)

P0
S D�m0˛ sinh˛ ��m0˛

2 ; (9.58)
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P0
R D m0 .1C ˛ sinh˛� cosh˛/

�
1

2
m0˛

2 ;
(9.59)

where ˛ is given by (9.54). These expressions show that
radiated energy is approximately equal to the increase
of kinetic energy.

9.4 Energy Conservation During Runaway Motion

Runaway acceleration seems to be in conflict with the
conservation laws of energy and momentum. The mo-
mentum and the kinetic energy of the particle increase
even when no force acts upon it. The charged particle
even puts out energy in the form of radiation. Where do
the energy and the momentum come from?

We shall here show that the source of energy
and momentum in runaway motion is the so-called
Schott energy and momentum [9.30]. During motion of
a charge in which the velocity increases, the Schott en-
ergy has an increasingly negative value and there is an
increasing Schott momentum directed oppositely to the
direction of the motion of the charge.

We shall consider a charged particle performing
runaway motion along the x-axis. Introducing the ra-
pidity ˛ of the particle its velocity and acceleration is
expressed as in (9.29).

For F D 0, i. e., for a free particle, the solutions of
the LAD equation (9.40) are

1.

P̨ D 0; i.e. ˛ D const: ; vD const:;

(9.60)

which is consistent with Newton’s first law;
2.

P̨ D ke�=�0 ; k¤ 0 ; i.e. a¤ 0 (9.61)

is the runaway solution.
As pointed out by Dirac [9.4] a particle in state 1

or 2 will remain in that state as long as no external
force is acting. We shall here consider a particle which
is at rest, i. e., in state 1., until it is acted upon by
a force F.
/ pointing in the positive x-direction, i. e., we
consider a solution to the LAD equation without pre-
acceleration. The force acts from 
1 to 
2. For 
 > 
2

the particle is again free.
According to (9.43) P̨ is in the present case given

by

P̨ .
/D�
e�=�0

m0
0

�Z
�1

F.
 0/e��
0=�0 d
 0 : (9.62)

The integral vanishes for 
 < 
1, which gives P̨ D 0
(and ˛ D 0/. For 
 > 
2 the integral is independent of 

and we obtain the runaway motion (9.61). If the integral
limit �1 in (9.62) is replaced by 1, pre-acceleration
is introduced, and the runaway motion disappears.

In the following, we examine (9.62) when the
force F has constant value F0 between 
1 and 
2, and
is equal to zero outside this interval. The solution of the
equation of motion is then


 < 
1 ; P̨ D 0 ; ˛ D 0 ; (9.63)


1 < 
 < 
2 ; P̨ D
F0

m0
�

F0

m0
e
���1
�0 ;

˛ D
F0

m0
.
 � 
1/�

F0
0

m0

�
e
���1
�0 � 1

	
;

(9.64)


2 < 
 ; P̨ D �
F0

m0

�
e�

�1
�0 � e�

�2
�0

	
e
�
�0 ;

˛ D
F0

m0
.
2 � 
1/�

F0
0

m0

�
e�

�1
�0 � e�

�2
�0

	
e
�
�0 :

(9.65)

Equation (9.30) shows a strange aspect of the motion.
The quantity P̨ contains two terms. The first expresses
the relativistic version of Newton’s second law, i. e.,
F0 D d.�m0v/=dt. However, the second term repre-
sents a runaway motion oppositely directed relative to
the external force F0, a highly unexpected mathemati-
cal result. According to (9.64) P̨ and ˛ are oppositely
directed relative to F0 during the entire time interval

1 < 
 < 
2.

At the point of time 
 D 
2,

P̨ .
2/D
F0

m0

�
1� e

�2��1
�0

	
; (9.66)

˛ .
2/D
F0

m0

�

2 � 
1C 
0 � 
0e

�2��1
�0

	
: (9.67)

In order to simplify the expressions we let 
2 � 
1!

0 and F0!1 keeping the product .
2 � 
1/ �F0 � P
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constant. We then find the limits

P̨.
2/D�
P

m0
0
; i.e. aD�

P

m0
0
; (9.68)

˛.
2/D 0 ; i.e. vD 0 : (9.69)

In this limit the external force is expressed by a ı func-
tion

F.
/D ı.
 � 
1/P : (9.70)

Putting 
1 D 0 we have the situation: for 
 < 0 the par-
ticle stays at rest. At 
 D 0 it is acted upon by the force

F D ı.
/P ; (9.71)

giving the particle an acceleration oppositely directed
relatively to the force and a vanishing initial velocity,

a.0/D a0 D�
P

m0
0
; v.0/D 0 : (9.72)

According to (9.63), (9.64) and (9.72) the motion is as
follows,


 < 0 ; P̨ D 0 ; ˛ D 0 ; (9.73)


 > 0 ; P̨ D a0e
�
�0 ; ˛ D 
0a0e

�
�0 � 
0a0 :

(9.74)

The runaway motion for 
 > 0 is accelerated, and the
velocity vD tanh˛ approaches the velocity of light as
an unobtainable limit (Fig. 9.4).

The problem is to explain how this is possible for
a particle not acted upon by any external force. It must
be possible to demonstrate that the energy and mo-
mentum of the particle and its electromagnetic field is
conserved, and find the force causing the acceleration.
Of essential importance in this connection is the Schott
energy and the Schott momentum.

Noting that P̨ is the acceleration in the instantaneous
inertial rest frame of the particle, we find the energies
expressed by the rapidity utilizing, from (9.74), that
P̨ D a0C ˛=
0. The kinetic energy of the particle is

Ekin D m0.� � 1/D m0.cosh˛� 1/ : (9.75)

The radiation energy is

ER D m0
0

�Z
0

P̨ 2 cosh˛d


D m0.˛ sinh˛C a0
0 sinh˛� cosh˛C 1/ :

(9.76)

v

1

1

τ/τ0

ατ0α•

Fig. 9.4 The proper acceleration P̨ , the velocity parameter
˛, and the velocity vD tanh˛, as functions of the proper
time for a particle performing runaway motion, starting
from rest with positive acceleration. The quantity 
0 is the
time taken by a light signal to travel a distance equal to
two-thirds of the particle’s classical radius (after [9.14],
courtesy of the American Association of Physics Teachers)

The Schott energy is

ES D�m0
0�
4vaD�m0
0 P̨ sinh˛

D�m0.˛C a0
0/ sinh˛ :
(9.77)

The sum of the energies is constant and equal to the
initial value zero (Fig. 9.5).

Referring to Fig. 9.1 we see that during the run-
away motion the sum of the increase of kinetic energy
and radiation energy comes from tapping a reservoir of
Schott energy which is initially localized very close to
the charge. This field energy becomes more and more
negative, and the radius of the spherical surface limiting
the region with Schott energy increases rapidly. Using
(9.26), (9.29), and (9.74) we find that it varies with the
proper time of the particle as

T �TQ2 D "e
˛ D " exp

�
ja0j exp

�




0

��
; (9.78)

where a0 is given in (9.72).
Next we consider the momenta. The momentum of

the particle is

Pkin D m0�vDm0 sinh˛ : (9.79)
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ES

1

Energy

ER Ekin

mo

–mo

τ/τ0

Fig. 9.5 The energies of a particle and its electromagnetic
field while the particle performs runaway motion, as func-
tions of 
=
0. Here Ekin is kinetic energy, ER is radiated
energy, and ES is the Schott (or acceleration) energy (af-
ter [9.14], courtesy of the American Association of Physics
Teachers)

The momentum of the radiation is

PR D m0
0

�Z
0

P̨ 2 sinh˛d


D m0.˛ cosh˛C a0
0 cosh˛� sinh˛� a0
0/ :

(9.80)

The Schott momentum (acceleration momentum) is

PS D�m0
0�
4aD�m0
0 P̨ cosh˛

D�m0.˛C a0
0/ cosh˛ :
(9.81)

The sum of the momenta is constant and is equal
to �m0a0
0, which is the initial Schott momentum
(Fig. 9.6).

The forces which are responsible for the increase
in the momentum of the particle (internal forces) are
the following (for rectilinear motion in general). The
radiation reaction force,

�R D�
dPR

dt
D�m0
0 P̨

2 tanh˛ ; (9.82)

PS

1

Energy

PR

Pkin

mo

–mo

τ/τ0

Fig. 9.6 The momentum of a particle and its electromag-
netic field while the particle performs runaway motion,
as functions of 
=
0. Here Pkin is kinetic momentum, PR

is radiated momentum, and PS is Schott (or acceleration)
momentum (after [9.14], courtesy of the American Asso-
ciation of Physics Teachers)

and the acceleration reaction force,

�A D�
dPS

dt
D�

1

cosh˛
PPS

D m0
0. R̨ C P̨
2 tanh˛/ : (9.83)

The total field reaction force (also called the self-force)
is

� D �RC�A D m0
0 R̨ : (9.84)

By means of (9.82)–(9.84) the forces are shown as func-
tions of 
=
0 in Fig. 9.7.

Equation (9.82) shows that the radiation reaction
force �R is a force that retards the motion, acting like
friction in a fluid. The push in the direction of the
motion is provided by the acceleration reaction force,
which is opposite to the change of Schott momentum
per unit time. This force is opposite to the direction of
the external force, i. e., it has the same direction as the
runaway motion.

There is a rather strange point here. We earlier iden-
tified the Schott energy as a field energy localized close
to the charge [9.7]. Yet, in the present case the Schott
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1

Force

ΓΓA

ΓR

mo /τo

–mo /τo

τ/τ0

Fig. 9.7 The forces due to the electromagnetic field of
a particle acting on the particle while it performs runaway
motion, as functions of 
=
0. Here �R is the radiation reac-
tion force, �A is the Schott (or acceleration) reaction force.
Their sum is the field reaction force, � D �RC�A (af-
ter [9.14], courtesy of the American Association of Physics
Teachers)

momentum is oppositely directed to the motion of the
charge. This is due to the fact that the Schott energy is

negative. Hence even if the Schott momentum has a di-
rection opposite to that of the velocity of the charge, it
represents a motion of negative energy in the same di-
rection as that of the charge.

In general the Schott energy is

ES D�m0
0A0 ; (9.85)

and the Schott momentum is

PS D�m0
0A ; (9.86)

where .A0;A/ is the four-acceleration of the particle.
From the relation A0 D v �A we obtain ES D v �PS. It fol-
lows that for rectilinear motion v and PS are oppositely
directed when ES is negative.

The Schott energy saves energy conservation for
runaway motion of a radiating charge. Nevertheless,
physicists doubt that runaway motion really exists.
There is, however, no doubt that it is a solution of the
LAD equation of motion of a charged particle. In this
sense it is allowed, but maybe not everything that is
allowed is obligatory. The physics equations seem to
contain many possibilities that are not realized in our
universe. Moreover, we seem to lack a criterion to elim-
inate those possibilities that do not exist physically.
Hence one can only wonder why no runaways have ever
been observed or why they could not be used as com-
pact particle accelerators.

9.5 Schott Energy and Radiated Energy of a Freely Falling Charge

The Rindler coordinates .t; x; y; z/ of a uniformly ac-
celerated reference frame are given by the following
transformation from the coordinates .T;X; Y;Z/ of an
inertial frame,

gtD artanh
�

T

X

�
; xD

p
X2 �T2 ; (9.87)

with inverse transformation

T D x sinh.gt/ ; X D x cosh.gt/ : (9.88)

Here g is a constant which shall be interpreted physi-
cally below.

Using Rindler coordinates, the line element takes
the form [9.31]

ds2 D�g2x2 dt2C dx2C dy2C dz2 : (9.89)

In the Rindler frame the nonvanishing Christoffel sym-
bols are

� x
tt D g2x ; � t

tx D �
t

xt D
1

x
: (9.90)

The Rindler coordinates are mathematically conve-
nient, but not quite easy to interpret physically. An
observer at rest in a uniformly accelerated reference
frame in flat spacetime experiences a field of gravity.
From the geodesic equation,

du�

d

C�

�

˛ˇ
u˛uˇ D 0 ; (9.91)

which is also the equation of motion of a freely mov-
ing particle, follows that acceleration of a free particle
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instantaneously at rest is

d2x

dt2
D�� x

tt D�g2x : (9.92)

Consider a fixed reference point xD constant in the
Rindler frame. It has velocity and acceleration

V D
dX

dT
D tanh.gt/ ;

AD
dV

dT
D

1

x

1

cosh3.gt/
;

(9.93)

respectively, in the inertial frame. Hence, the acceler-
ation of a reference point xD constant at the point of
time tD 0 is

A.0/D
1

x
: (9.94)

This shows that the coordinate x of the Rindler frame
has dimension 1 divided by acceleration and that it is
equal to the inverse of the acceleration of the reference
point that it represents at the point of time tD 0. The
physical interpretation of the constant g then follows
from (9.92). It represents the acceleration of gravity ex-
perienced in the Rindler frame at the reference point
having acceleration equal to g relative to the inertial
frame at the point of time tD 0.

The four-velocity and the four-acceleration of a par-
ticle moving along the x-axis are

u� D
dx�

d

D �.1; v; 0;0/ ;

� D .g2x2 � v2/�
1
2 ;

(9.95)

a� D
du�

d

C�

�

˛ˇ
u˛uˇ

D �4

�
aC g2x�

2v2

x

�
.v; g2x; 0; 0/ ;

(9.96)

where vD dx=dt and aD dv=dt.
As seen from the expression (9.7) for the Abraham

four-force the field reaction force vanishes for a freely
moving charge. Hence, such a charge falls with the
same acceleration as a neutral particle. It has vanishing
four-acceleration and follows a geodesic curve. This is
valid in a uniformly accelerated reference frame in flat
spacetime, but not in curved spacetime [9.32].

From the expression (9.96) it is seen that in the
present case the equation of motion may be written as

x
d2x

dt2
� 2

�
dx

dt

�2

C g2x2 D 0 : (9.97)

The solution of this equation for a particle falling from
xD x0 at tD 0 is

xD
x0

cosh.gt/
: (9.98)

Hence

vD�gx0
sinh.gt/

cosh2.gt/
;

� D
cosh2.gt/

gx0
: (9.99)

In order to give a correct description of the radiation
emitted by a charge valid in an accelerated frame of
reference, one has to generalize the usual form of the
Larmor formula for the radiated effect OP valid in the
orthonormal basis of an inertial frame,

OPD m0
0 Oa
2 ; (9.100)

where Oa is the acceleration of the charge in an inertial
frame. This formula says that an accelerated charge ra-
diates, which is a misleading statement. It sounds as if
whether a charge radiates or not, is something invari-
ant that all observers can agree upon. However, that is
not the case. An accelerated observer permanently at
rest relative to an accelerated charge would not say that
it radiates. The covariant generalization of the formula
is

PL D m0
0A�A� : (9.101)

Freely falling charges have vanishing four-acceleration.
Hence, this version of Larmor’s formula seems to say
that charges that are acted upon by nongravitational
forces radiate. As mentioned above this is not gener-
ally the case. In fact, the formula above is not generally
covariant. It is only Lorentz covariant because the com-
ponents of the four-acceleration are presupposed to
be given with reference to an inertial frame in this
formula.

Saying that a charge radiates is not a reference-
independent statement. This conclusion has been ar-
rived at in different ways [9.33–38]. M. Kretzschmar
and W. Fugmann [9.37, 38] generalized Larmor’s for-
mula (9.100) to a form which is valid not only in
inertial reference frames, but also with respect to accel-
erated frames. A consequence of their formula is that
a charge will be observed to emit radiation only if it
accelerates relative to the observer. Whether it moves
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along a geodesic curve is not decisive. A freely falling
charge, i. e., a charge at rest in an inertial frame may be
observed to radiate, and a charge acted upon by non-
geodesic forces may be observed not to radiate.

Hirayama [9.39] recently generalized the Lorentz
covariant formula (9.101) to one which is also valid
in a uniformly accelerated reference frame. He then
introduced a new four-vector which may be called
the Rindler four-acceleration of the charge. It is a
four-vector representing the acceleration of the charge
relative to the Rindler frame, and has components

˛� D a� �
1

gx2.gxC v/
.v; g2x2; 0; 0/ ; (9.102)

where a� are the components in the Rindler frame of
the four acceleration of the charge. For a freely falling
charge a� D 0. The generalized Larmor formula valid
in a uniformly accelerated reference frame has the form

PD m0
0g2x2˛�˛
� ; (9.103)

and has been thoroughly discussed by Eriksen and
Grøn [9.31].

We shall now apply this formula to the charge
falling freely from xD x0 where it was instantaneously
at rest. Then we need to calculate

˛�˛
� D�g2x2.at/2C .ax/2 : (9.104)

Inserting the expressions (9.98) and (9.99) for x and v
in (9.102), we obtain

˛t D
1

gx2
0

egt sinh.gt/ cosh2.gt/ ;

˛x D�
1

x0
egt cosh2.gt/ ;

(9.105)

which gives

˛�˛
� D

1

x2
0

e2gt cosh2.gt/ : (9.106)

Inserting this into (9.103) we find the power radiated by
the freely falling charge

PDm0
0g2e2gt : (9.107)

The radiated energy is

ER D

tZ
0

PdtD
m0
0

2
g.e2gt� 1/ : (9.108)

One may wonder where this energy comes from. A pro-
ton and a neutron will perform identical motions during
the fall, although the proton radiates energy and the
neutron does not. The answer is: the radiated energy
comes from the Schott energy. The Schott energy is
given by

ES D�m0
0v˛x : (9.109)

Inserting the expressions (9.99) and (9.105) for v
and ˛x, respectively, we obtain for the Schott energy
as a function of time

ES D�
m0
0

2
g.e2gt� 1/ : (9.110)

This shows that the radiation energy does indeed come
from the Schott energy. Again the Schott part of the
field energy inside the light front S in Fig. 9.1 becomes
more and more negative during the motion, and the re-
gion filled with Schott energy which is inside the light
front S and outside the particle, initially has a vanishing
volume, but increases rapidly in size.

9.6 Noninvariance of Electromagnetic Radiation

F. Rohrlich was one of the first to note the noninvari-
ance of electromagnetic radiation from a point charge
against a transformation involving a relative accelera-
tion between two reference frames [9.33]. He consid-
ered a uniformly accelerated charge in flat spacetime
and concluded that a freely falling observer would see
a supported charge in a uniformly accelerated reference
frame radiating, and a supported observer would see
a freely falling charge radiating. But a supported ob-
server would not see a supported charge radiating, and

a freely falling observer would not see a freely falling
charge radiating. The same was later noted by A. Kovetz
and G. E. Tauber [9.34], and an explanation for this was
given by D. G. Boulware [9.36].

The nature of electromagnetic radiation is still
a mystery. The wave–particle duality is something
which seems to transcend our intuitive understand-
ing. The waves of monochromatic light have infi-
nite extension, but a photon is thought of as some-
thing having an exceedingly minute extension with
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a smallness only limited by the Heisenberg uncertainty
relations.

Also thinking of electromagnetic radiation as a pho-
ton gas, and photons as a sort of object which you
can detect with your apparatus, it seems exceedingly
strange to claim that you can make the object vanish
just by changing your state of motion. On the other
hand that claim does not sound so impossible if you
think of electromagnetic radiation as waves. The waves
are a state of oscillation of electric and magnetic fields
moving through space with the velocity of light. Maybe
they can be transformed away?

That should indeed be possible. Think of a uni-
formly accelerated charge, radiating out an electromag-
netic power. Transforming to the permanent rest frame
of the charge the magnetic field vanishes. In this frame
the charge does not radiate. Hence, saying that a charge
radiates is not a reference-independent statement.

As mentioned in Sect. 9.5 M. Kretzschmar and W.
Fugmann [9.37, 38] and T. Hirayama [9.39] deduced
a generalized versions of Larmors’s formula valid in
uniformly accelerated reference frames. The signifi-
cance of these formulae in connection with energy
momentum conservation of a charged particle and its
electromagnetic field has been thoroughly analyzed by
Eriksen and Grøn [9.31].

The nonvanishing Christoffel symbols in the
Rindler frame are given in (9.90), and the four-velocity
and the four-acceleration of a particle moving along
the x-axis have components given in (9.95) and (9.96).
Transformation by means of (9.87) and (9.88) gives
the following components of the four-velocity and four-
acceleration in the inertial frame,

U� D .gxvt; vx; 0; 0/ ;

A� D .gxat; ax; 0; 0/ :
(9.111)

Inserting vD aD 0 in (9.95) and (9.96) we find the
four-velocity and four-acceleration of the reference par-
ticles in the Rindler frame

u� D

�
1

g
x; 0; 0; 0

�
; g� D

�
0;

1

x
; 0; 0

�
:

(9.112)

Using (9.96) we find that the proper acceleration Oa (rel-
ative to an instantaneous inertial rest frame) is given by
Oa2 D a�a� D A�A�, i. e.,

OaD �3gx

�
aC g2x�

2v2

x

�
: (9.113)

For a particle instantaneously at rest at the point xD x1

we obtain

OaD
a

g2x2
1

C
1

x1
; (9.114)

where 1=x1 is the proper acceleration of the point xD x1

in the Rindler frame. The difference Oa� 1=x1 will be
denoted by Qa. We obtain

QaD
a

g2
x2

1 ; (9.115)

which may be interpreted as the acceleration of the
particle relative to the Rindler system, measured by
a standard clock carried by the particle.

According to the analysis of Kretzschmar and Fug-
mann [9.37, 38] the generalized Larmor formula as
written out in a uniformly accelerated reference frame
takes the form

PD
2

3
Q2 .gx1/

2 Qa2 : (9.116)

We shall now consider a freely falling charge in the
Rindler frame. It is permanently at rest in the inertial
comoving frame. Obviously it does not radiate as ob-
served in this frame. But according to (9.116) it radiates
as observed in the Rindler frame. In order to understand
this from a field theoretic perspective in a similar way
as was obtained with reference to an inertial frame in
Sect. 9.2, we may again consider the Teitelboim parti-
tion of the field into a generalized Coulomb field I and
a radiation field II. Calculating the flow of field energy
of these types out of the Rindler section we arrived at
in [9.31],

PI D
2

3
Q2g .v� gx1/



�2g .v� gx1/C 2ax

�
;

(9.117)

PII D
2

3
Q2

�
ax

�

�2

: (9.118)

The emitted energy per emission time is

PD PICPII D
2

3

Q2

�2



axC �2g .v� gx1/

�2
;

(9.119)

where

ax D �4
�
aC g2x1 � 2v2=x1

�
g2x2

1 : (9.120)
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We now apply these formulae to the special case of
a freely falling charge in the Rindler frame. Then the
four-acceleration vanishes, ax D 0, which gives

PI D
2

3
Q2g2�2 .gx1� v/2 ; PII D 0 : (9.121)

In this case there is no emission of type II energy, only
of type I.

This example shows the inadequacy of the Teit-
elboim separation with respect noninertial reference
frames. In inertial frames radiation is associated with
type II energy. However, as is seen from the present re-
sults, this is not the case in general. The separation in
type I and II energy is based, respectively, on the van-
ishing and the nonvanishing of the four-acceleration of
the charge, which means whether it is in free fall or not.
The emission of radiation, on the other hand, depends
upon the relative acceleration between the charge and
the observer. Only in an inertial frame does the vanish-
ing of the four-acceleration mean that the charge is not
accelerated relative to the observer. It should also be
noted that since there is a flux of type I energy out of
the Rindler sector, type I energy is not a state function
of the charge in the Rindler frame, as it is in an inertial
frame.

Following Hirayama [9.39] we shall now present
a separation of the electromagnetic field energy in two
types, QPI and QPII, making use of a modified acceleration
called ˛. We write ˛x D ax ��x, where �x is a quan-
tity independent of ˛x, which is determined from the
condition that there shall be no energy of the new type
I emitted out of the Rindler system, QPI D 0. Inserting
ax D ˛xC�x into (9.121) and selecting the term of sec-
ond order in ˛x gives

QPII D
2

3
Q2 .˛x=�/2 : (9.122)

Since the total transport of energy out of the sector is
independent of the partition used, we have QPI D P� QPII.
Hence, by means of (9.122) we obtain,

QPI D
2

3

Q2

�2

�
2˛xC�xC �2gv� �2g2x1

�

�
�
�xC �2gv� �2g2x1

�
:

(9.123)

From the requirement that QPI D 0 for all values of ˛x

follows

�x D �2g .gx1 � v/ ; (9.124)

giving

˛x D ax � �2g .gx1 � v/ ; (9.125)

and

QPI D 0 ; QPII D P : (9.126)

Here ˛x is just the x-component of the acceleration of
the charge relative to the Rindler frame found by Hi-
rayama using Killing vectors.

The covariant expression of the vector is

˛� D a��
�
g˛g˛

� 1
2 u�� g�

�
�
g˛g˛

� 1
2 vˇuˇv� � v˛g˛v� :

(9.127)

Using (9.95), (9.96) and (9.112), we have in our case

.g˛g˛/
1
2 D

1

x1
;

vˇuˇ D��gx1 ;

v˛g˛ D �
v

x1
;

(9.128)

and Hirayama’s vector reads

˛� D a��
�2 .gx1 � v/

gx2
1

�
v; g2x2

1; 0;0
�
; (9.129)

or, by means of (9.113),

˛� D

�
�4
�

a�
v2

x1

�
C
�2v

gx2
1

� �
v; g2x2

1; 0; 0
�
:

(9.130)

It follows that .˛x=�/2 D g2x2
1˛�˛

�, which by means
of (9.125) gives

PD QPII D
2

3
Q2g2x2

1˛�˛
� ; (9.131)

for the field energy produced per coordinate time which
leaves the Rindler sector.

It is easily seen that the Hirayama separation is
a proper generalization of the Teitelboim separation to
accelerated frames, which reduces to the latter in in-
ertial frames. To that end we describe the particle by
the coordinate NxD x1 � 1=g. Then the coordinate time
for NxD 0 is equal to the proper time. Keeping Nx finite
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and letting g! 0 we obtain the limits x1!1; gx1!

1; ds2!�dt2C dx2; � ! .1� v2/�1=2. From (9.129)
we then find that ˛�! a�, and from (9.131) that P!
.2=3/Q2a�a�.

Calculating the bound energy in the Rindler frame
we find that the total energy of the charge and its field
is [9.31]

QU D QUIC QUII D�
1

2
Q2gC g2x2

1�m0C QESC QER :

(9.132)

The first term on the right-hand side has no obvious
physical interpretation. The second is the mechanical
energy of the particle. The third term is the acceleration
energy or the Schott energy, when the partition of the
field is made according to the acceleration ˛�,

QES D�
2

3
Q2v˛x : (9.133)

The quantity QES is analogous to the Schott energy

ES D�
2

3
Q2VAX ; (9.134)

in an inertial system according to the Teitelboim par-
tition. The fourth term is the radiation energy in the
˛�-partition,

QER D
2

3
Q2

t1Z
�1

g2x2˛�˛
� dt : (9.135)

By differentiation upon the proper time of the particle,
i. e., d=d
 D �.d=dt1/, we find the formula

d

d


�
�g2x2

1

�
D atg2x2

1 D�at ; (9.136)

by which the energy equation (9.132) becomes

d QU

d

D�m0atC Q�0 ; (9.137)

where

Q�0 D
d

d


�
QESC QER

�

D
2

3
Q2

�
d˛t

d

� vt˛�˛

�

�
:

(9.138)

The quantity Q�0 is interpreted as a component of the
Abraham vector in the Rindler frame. Let us compare
it with the time component of the corresponding vec-
tor � � given by Hirayama [9.39]. From his (9.50) we
obtain for the motion in the x-direction,

�0 D
2

3
Q2


v�r�˛t �

˛t

�vx
� vt˛�˛

�

�
: (9.139)

Inserting

v�r�˛t D
d˛t

d

�� 	tˇvˇ˛	 D

d˛t

d

C

˛t

�vx
; (9.140)

we obtain

�0 D
2

3
Q2


d˛t

d

� vt˛�˛

�

�
; (9.141)

which is equal to Q�0 as given by (9.141). Thus for the
Abraham vector in the Rindler frame we have

�0 D Q�0 D
d

d


�
QESC QER

�
: (9.142)

Note that when �0 D 0, the radiation energy is sup-
plied by the Schott energy. This is quite similar to
the corresponding case in an inertial frame. From [9.6,
eq. (3.2)] we then have �T D d=d
.ESCER/, where
ES D .2=3/Q2AT and ER D

2
3 Q2

R T
�1

A�A� dT .
From the Lorentz invariance of Maxwell’s equa-

tions it follows that the existence of electromagnetic
radiation is Lorentz invariant. The quantum mechanical
photon picture of radiation suggests that its existence is
generally invariant. However, as we have shown in this
section, the equations of classical electrodynamics im-
ply that this is not the case. The existence of radiation
from a charged particle is not invariant against a trans-
formation involving reference frames that accelerate or
rotate relative to each other. Even if a charge acceler-
ates as observed in an inertial frame, it does not radiate
as observed from its permanent rest frame.

D. R. Rowland [9.16] recently explained this in the
case of a uniformly accelerated charge in the following
way:

The electric field lines of the charge in the Rindler
frame in which it is at rest lie along the geodesics for
photons for that frame of reference. This means that
relative to the Rindler frame, the photons emitted by
the charge are purely longitudinal, not transverse,
meaning that they are virtual rather than real (i. e.
radiation) photons.
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9.7 Other Equations of Motion

The problems with the LAD equation of motion of
a charged point particle, i. e., pre-acceleration and run-
away solutions, have motivated several researchers to
propose alternative equations of motion. R. T. Ham-
mond [9.40] recently reviewed some proposals for
constructing a new equation of motion of a radiating
electron. The equation of motion is written in the form
(9.6). In the case of the LAD equation the vector � � is
given by (9.7). We now consider a charged particle in
an external electromagnetic field as described with ref-
erence to an inertial frame. Then the external force is
given by F� D qF�	U	 , where F�	 are the compo-
nents of the electromagnetic field tensor.

Another equation that has been much used, is
the so-called Landau–Lifschitz (LL) equation of mo-
tion [9.41], which is

� � D 
0
�
q PF�	U	

Cq2
�
F�F˛U˛ CF�F˛�U˛U�

��
:

(9.143)

In the nonrelativistic limit the LL equation takes the
form

m0 PvD f extC 
0 Pf ext : (9.144)

In the absence of an external force this reduces to
Newton’s first law, and there is now a runaway solu-
tion. Moreover, there is no pre-acceleration. Hammond
pointed out, however, that in the deduction of this
equation one utilizes a condition which in the case of
a charge oscillating with frequency ˝ takes the form
(inserting the velocity of light in this formula),

˝ << .fext=m0c
0/
1
2 : (9.145)

Hammond notes that for weak enough external forces
this condition may never be satisfied. He comments fur-
ther on this [9.40]:

Of course in this case the net force is extremely
small, but for long times, such as charged particles
in a galactic orbit, we see that we cannot even use
the LL equation. Thus there is an entire range in
which the LL equation seems to fail.

G. W. Ford and R. F. O’Connell constructed a more
general equation of motion for a radiating charged

particle taking a possible electron structure into ac-
count [9.42–46] This equation is

� � D 
0q
��

F�	U	
�:
CU�U˛

�
F˛ˇUˇ

	:	
:

(9.146)

In the nonrelativistic limit this is the same as the non-
relativistic version of the LL equation.

Another approach was developed by A. D.
Yaghjian [9.47]. He modeled a particle by a shell
and assumed that no forces act upon the shell until the
time when the force is applied, and obtained

� � D 
0.
/. RU
�CU� PU˛U˛/ ; (9.147)

where .
/ is the step function. Due to the presence
of the step function the equation of motion with this
expression for � � avoids pre-acceleration.

Yet another approach is followed by Ham-
mond [9.40, 48]. In [9.40] he considers the nonrela-
tivistic case in one dimension and writes the equation
of motion as

m0 PvD fext� f ; (9.148)

where f is the radiation reaction force. Then he assumes
that the radiated effect is given byfv. Combining this
with Larmor’s formula (9.11) he finds

fvD m0
0.Pv/
2 : (9.149)

Eliminating f from (9.148) and (9.149) he arrives at

m0vPvD vfext �m0
0 Pv
2 : (9.150)

Integration gives

1

2
m0v2 D

Z
fext dx�

Z
PL dt : (9.151)

Hence, the increase of kinetic energy equals the work
done by the external force minus the energy radiated
away. Hammond then says that (9.150) is free of the
plagues of the LAD equation. However, that is not quite
so. There is a reminiscence of the runaway solution.
If there is no external force fext D 0, (9.150) reduces
to vD�
0 Pv with general solution vD v0e�t=�0 . Thus,
there is an exponentially decaying runaway solution.
It may be noted that a solution of (9.150) of the same
form, vD v0e�t=2�0 is obtained if there is an external
friction like force proportional to the velocity, fext D

�.m0=4
0/v.
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9.8 Conclusion
Seemingly there is a problem with energy conservation
connected with the LAD equation of motion of a radi-
ating charge in combination with the Larmor formula
for the effect of the radiation emitted by an accelerated
charged particle, although a general analysis implies
energy conservation for a dynamics based upon these
equations [9.49]. The equation of motion has runaway
solutions in which a charge accelerates and emits ra-
diation even when it is not acted upon by any exterior
force. Where does the increase of kinetic energy and
radiation energy come from?

In the present article it has been shown how the
Schott energy provides both an increase of the kinetic
energy of the particle and the energy it radiates. The
Schott energy is the part of the electromagnetic field
energy which is proportional to the acceleration of the
charge, and for nonrelativistic motion of the charge it
is localized close to the charge [9.7]. The Schott energy
has the curious property that it can become increasingly
negative, which makes it possible to use it as a sort of
inexhaustible source of energy in the case of runaway
motion.

Also the case of a freely falling charge in the grav-
itational field which exists in a uniformly accelerated
reference frame in flat spacetime, is quite strange. The
comoving frame of the charge is an inertial frame in

which it is permanently at rest. Obviously the charged
particle does not radiate in this frame. Nevertheless it
radiates as observed in the accelerated frame [9.31].
Again one may wonder: Where does the radiated en-
ergy come from? Again the answer is: It comes from
the Schott energy.

We have here demonstrated how this comes about
by calculating the radiated energy and the Schott energy
as functions of time for runaway motion and for freely
falling motion in a gravitational field. This provides an
interesting application of the LAD equation that may be
useful in the teaching of the electrodynamics of radiat-
ing charges. It has been shown that it is necessary to
take the Schott energy into account in order to avoid
apparent energy paradoxes in the theory of radiating
charges based on the LAD equation.

The necessity of taking the Schott energy into ac-
count for energy-momentum conservation may point
to a problem with the LAD equation or the point
particle model of a charge. Whereas there is a phys-
ical basis for the Schott energy in the electromag-
netic field of a point charge, an energy that becomes
negative without bound and supplies limitless radia-
tion energy and kinetic energy of runaway solutions
may be a sign of the breakdown of the LAD equa-
tion [9.40].
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10. The Nature and Origin of Time-Asymmetric
Spacetime Structures

H. Dieter Zeh

Time-asymmetric spacetime structures, in par-
ticular those representing black holes and the
expansion of the universe, are intimately related
to other arrows of time, such as the second law
and the retardation of radiation. The nature of the
quantum arrow, often attributed to a collapse of
the wave function, is essential, in particular, for
understanding the much discussed black hole in-
formation loss paradox. This paradox assumes
a new form and can possibly be avoided in a con-
sistent causal treatment that may be able to avoid
horizons and singularities. The master arrow that
would combine all arrows of time does not have
to be identified with a direction of the formal time
parameter that serves to formulate the dynamics
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as a succession of global states (a trajectory in con-
figuration or Hilbert space). It may even change
direction with respect to a fundamental physical
clock such as the cosmic expansion parameter if
this was formally extended either into a future con-
traction era or to negative pre-big-bang values.

10.1 The Time Arrow of Gravitating Systems

Since gravity is attractive, most gravitational phenom-
ena are asymmetric in time: objects fall down or
contract under the influence of gravity. In General Rel-
ativity, this asymmetry leads to drastically asymmetric
spacetime structures, such as future horizons and future
singularities, which would occur, in particular, in black
holes. However, since the relativistic and nonrelativistic
laws of gravitation are symmetric under time rever-
sal, all time asymmetries must arise as consequences
of specific (only seemingly normal) initial conditions,
for example a situation of rest that can be prepared by
means of other arrows of time, such as friction. Other-
wise, conclusions like gravitational contraction would
have to apply in both directions of time. Indeed, the
symmetry of the gravitational laws does allow objects to
be thrown up, where their free motion could in principle
end by another external intervention, or the existence of
so called white holes, which would have to contain past
singularities and past horizons.

The absence of past horizons and past singulari-
ties from our universe (except for a very specific big
bang singularity) must be regarded as a time asym-

metry characterizing our global spacetime (Sects. 10.2
and 10.4), while Einstein’s field equations would not
only admit the opposite situation (for example, local
past singularities), but also many solutions with mixed
or undefined arrows of time – including closed time-
like curves and nonorientable spacetimes. Therefore,
the mere possibility of posing an initial condition is
exceptional in general relativity from a general point
of view. I will here not discuss such mathematically
conceivable solutions that do not seem to be realized
in nature, but instead concentrate on models that come
close to our universe – in particular those which are
globally of Friedmann type. A specific arrow charac-
terizing a Friedmann universe is given by its expansion
(unless this would be reversed at some time of maxi-
mum extension – see Sect. 10.4).

In many cases, nongravitational arrows of time re-
main relevant for the evolution of gravitating bodies
even after the latter have been prepared in an appropri-
ate initial state. This applies, in particular, to strongly
gravitating objects, such as stars, whose evolution is
essentially controlled by thermodynamics (emission of
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heat radiation into the cold universe). The relation be-
tween the electrodynamic and thermodynamic arrows
(retardation and the second law, respectively) [10.1,
Chap. 2] is quite obvious in this case.

Gravitating systems are nonetheless thermodynami-
cally unusual in possessing negative specific heat [10.1,
Chap. 5]. This means, for example, that stars become
hotter when losing energy through emitting heat, and
that satellites accelerate as a consequence of friction
in the earth’s atmosphere. It can best be understood by
means of the virial theorem, which states in its nonrela-
tivistic limit that, for all forces varying with the second
negative power of distance (that is, gravitational and
Coulomb forces), bound states have to obey the rela-
tion Epot D�2Ekin, where the overbar means averaging
over (quasi) periods of time. Therefore,

ED Epot.t/CEkin.t/D EpotCEkin D
1
2 Epot

D�Ekin / �T :
(10.1)

In order to maintain a stable state, these systems must
gain from gravitational contraction twice the energy
they are losing by radiation or by friction. Nonrelativis-
tically, this negative heat capacity could be bounded by
means of other (repulsive) forces that become relevant
at high densities, or by the Pauli principle, which con-
trols the density of electrons in white dwarf stars or
solid planets, for example. Relativistically, even these
limits will break down at a certain mass, since (1) rela-
tivistic degeneracy must ultimately lead to the creation
of other particles, while (2) the potential energy of re-
pulsive forces will itself gravitate, and for a sufficiently
large mass overcompensate any repulsion. Therefore, it
is the thermodynamic arrow underlying thermal radia-
tion and the accretion of matter that requires evolution
of gravitating systems toward the formation of black
holes. Classically, black holes would thus define the
final states in the observable evolution of gravitating
systems.

10.2 Black Hole Spacetimes

The metric of a spherically symmetric vacuum solu-
tion for nonzero mass is shown in Fig. 10.1 in the
Kruskal coordinates u and v. This diagram represents
the uniquely completed Schwarzschild metric in the
form

ds2 D
32M2

r
e�r=2M.�dv2C du2/

C r2.d2C sin2  d�2/ ;

(10.2)

where the new coordinates u and v are in the ex-
ternal region (r > 2M) related to the conventional
Schwarzschild coordinates r and t by

uD er=4M

r
r

2M
� 1 cosh

� t

4M

	
; (10.3a)

vD er=4M

r
r

2M
� 1 sinh

� t

4M

	
: (10.3b)

Each point in the diagram represents a sphere with sur-
face 4�r2. Note that r and t interchange their roles as
space and time coordinates for r < 2M, where 2M is
the Schwarzschild radius. All parameters are given in
Planck units „ D GD cD 1.

As nature seems to provide specific initial con-
ditions in our universe, it may thereby exclude all
past singularities, and hence all past event horizons.

This initial condition would immediately eliminate the
Schwarzschild–Kruskal vacuum solution that is shown
in the figure, but we may instead consider the future
evolution of a spherically symmetric mass distribution
initially at rest, such as a dust cloud. It would classi-
cally collapse freely into a black hole, as quantitatively
described by the Oppenheimer–Snyder scenario [10.2]
(see the left part of Fig. 10.2). The vacuum solu-
tion (10.2) is then valid only outside the surface of the
dust cloud, but this surface must, according to a clas-
sical description, fall through the arising horizon at
some finite proper time, and a bit later onto the future
singularity.

For a cloud of interacting gas molecules, this grav-
itational collapse would be thermodynamically delayed
by the arising pressure, as indicated in Sect. 10.1. Grav-
itational radiation would lead to the loss of any kind of
macroscopic structure, while whatever remains would
become unobservable to an external observer. Although
thermodynamic phenomena control the loss of energy
by radiation during most of the time, the asymmetric
absence of past singularities represents a fundamental
cosmological initial condition. However, a conceivable
white hole initiated by a past singularity that com-
pletely represented a time-reversed black hole would
even require anti-thermodynamics and coherently in-
coming advanced radiation. So one may suspect that
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Fig. 10.1 Complete formal continuation of the Schwarz-
schild solution by means of unique Kruskal coordinates.
Quadrants I and II represent external and internal parts,
respectively, of a classical black hole. III is another asymp-
totically flat region, while IV would describe the interior of
a white hole. In this diagram, fixed Schwarzschild coordi-
nates r and t are represented by hyperbola and straight lines
through the origin, respectively. Proper times of local ob-
jects could start at tD�1 in I or at tDC1 in III (both
at r D1, or at r D 0 on the past singularity in IV, while
they must end at tDC1 or �1 in I or III, respectively,
or at a second singularity with the coordinate value r D 0
in II. On time-like or light-like curves intersecting one of
the horizons at the Schwarzschild radius rD 2M, the value
of the coordinate t jumps from C1 to �1 at the rim of
quadrant I, or from �1 toC1 at the rim of quadrant III,
where t decreases in the physical time direction

all these various arrows are related to one another, thus
defining a common master arrow of time.

Since it would require infinite Schwarzschild co-
ordinate time for an object to reach the horizon, any
message it may send to the external world would not
only be extremely redshifted, but also dramatically de-
layed. The message could reach a distant observer only
at increasingly later stages of the universe. (An appa-
ratus falling into a galactic size black hole could even
send messages for a considerable length of proper time
before it would approach the horizon.) So all objects
falling into the black hole must disappear from the view
of mortal external observers and their descendents, even
though these objects never seem to reach the horizon
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Fig.10.2a,b Oppenheimer–Snyder-type spacetimes of (a) a black
and (b) a white hole

according to their rapidly weakening, but in principle
still arriving signals. The only asymptotically remain-
ing properties of the black hole are conserved ones
that have early enough caused effects on the asymp-
totic metric or other asymptotic fields, namely angular
momentum and electric charge. This time-asymmetric
consequence is known as the no-hair theorem for black
holes. During cosmological times, a black hole accu-
mulating ionized interstellar matter may even lose its
charge and angular momentum, too, for statistical and
dynamical reasons [10.3]. Only its mass and its cen-
ter of mass motion would then remain observationally
meaningful. A black hole is usually characterized by
its center of mass system and its long-lasting proper-
ties, namely its mass M, charge Q, and angular mo-
mentum J, in which case its Kerr–Newman metric is
explicitly known. The internal topological structures of
these metrics for J ¤ 0 and/or Q¤ 0 are radically dif-
ferent from that of the Kruskal geometry in Fig. 10.1,
thus raising first doubts in the physical relevance of
their formal continuations inside the horizon.

It is important, though, to keep in mind the major
causal structure of a black hole: its interior spacetime
region II would never enter the past of an exter-
nal observer, that is, it will never become a fact for
him or her. While the whole exterior region r > 2M
can be completely foliated in terms of what will be
called very nice space-like slices according to increas-
ing Schwarzschild or similar time coordinates with
�1 < t <C1, the interior can then be regarded as
its global future continuation beyond the event hori-
zon, where increasing time can be labeled by the
Schwarzschild coordinate r decreasing from r D 2M
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to rD 0. This structure must be essential for all
causal considerations that include black holes. In this
purely classical scenario, the internal state of a black
hole would be completely determined by the infalling
matter, which could even depend on our free deci-
sions about what to drop into a black hole. Nonethe-

less, all properties of this infalling matter would ir-
reversibly become irrelevant for external observers –
a term that is also used to define a generalized con-
cept of coarse graining required for the concept of
physical entropy in statistical thermodynamics [10.1,
Sect. 3.2].

10.3 Thermodynamics and Fate of Black Holes

In the classical picture described above, a black hole
would represent a perfect absorber at zero temperature.
This picture had to be corrected when Bekenstein and
Hawking demonstrated [10.4, 5], the latter by explicitly
taking into account quantum fields other than gravity,
that a black hole must possess finite temperature and
entropy proportional to its surface gravity � and surface
area A, respectively,

T D
„�

2�kB
!

„c3

8�GkB

1

M
; (10.4a)

SD
kBc3A

4„G
!

4�kBG

„c
M2 : (10.4b)

Here, � and A are known functions of M, Q, and J, while
the explicit expressions given on the right-hand side of
the arrow hold for Schwarzschild black holes (QD J D
0) and with respect to spatial infinity (that is, by tak-
ing into account the gravitational redshift). This means,
in particular, that a black hole must emit thermal radia-
tion (Hawking radiation) proportional to T4A according
to Stefan–Boltzmann’s law, and therefore, that it lives
only for a limited time of the order 1065.M=Msun/

3 yr.
For astrophysical objects this is many orders of magni-
tude more than the present age of the universe of about
1010 yr, but far less than any Poincaré recurrence times
for macroscopic systems.

Even these large evaporation times will begin to
count only after the black hole has for a very long time
to come grown in mass by accreting matter [10.6] –
at least until the cosmic background temperature has
dropped below the very small black hole temperature
by means of the growing Hubble redshift. Although
evaporation times are thus extremely large, all radia-
tion would causally always precede a genuine horizon.
Schwarzschild times represent proper times of distant
observers in the rest frame of the black hole, but their
corresponding simultaneities may be consistently con-
tinued inward while remaining outside the horizon to
form complete time coordinates for the whole external

region I. According to their construction, they would
then all have to include the center of the collapsing
matter at a prehorizon stage. However, the horizon and
interior region II could never form if the black hole’s
energy was indeed radiated away before any matter has
arrived at the expected horizon in the sense of these si-
multaneities. So what happens to the infalling matter
and, in particular, to nonlocal quantum states in this de-
scription?

Schwarzschild simultaneities are counterintuitive.
For example, one may use time translation invariance of
the external region of the Kruskal-type diagram (Figs.
10.1 or 10.2) in order to define the time coordinate
vD tD 0 to coincide with an external time close to the
peak of the Hawking radiation (in the very distant fu-
ture from our point of view). Assuming that one can
neglect any quantum uncertainty of the metric (which
must in principle arise in quantum gravity) for this pur-
pose, all infalling matter that had survived the radiation
process so far would at this coordinate time vD 0 be
in the very close vicinity of the center because of the
extreme Lorentz contraction on this simultaneity with
respect to the rest system of the infalling matter. There-
fore, this simultaneity represents quite different proper
times for the various parts of infalling matter even for
a collapsing homogeneous dust cloud – and even more
so for later infalling things. Most of the black hole’s
initial energy must already exist in the form of outgo-
ing Hawking radiation at this time, and may even have
passed any realistic external observer. If something hap-
pens that can become relevant to an external observer
(such as the creation of Hawking radiation), it must hap-
pen outside the horizon because of relativistic causality.

Black hole radiation is again based on the radiation
arrow of retardation, but its conventional formulation
also depends on a quantum arrow that is responsible
for the statistical interpretation. A pure quantum state
gravitationally collapsing toward a black hole would
accordingly decay into a collection of various possible
decay fragments (mainly photons), described by a sta-
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tistical ensemble of all their emission times – similar
to a series of unread measurements or to the decay
of a highly excited quantum state of a complex ob-
ject [10.7, 8]. An apparent ensemble can be defined
even for a resulting pure state (according to a uni-
tary description) by means of some physically relevant
coarse graining. In quantum theory, one usually ne-
glects in this sense (that is, one regards as irrelevant for
the future) the entanglement between all possible de-
cay products and the phase relations between all their
decay times. This coarse graining does not only for-
mally justify the concept of growing physical entropy in
spite of a pure global state [10.1, Sect. 3.2], but also the
phenomenon of decoherence. In contrast to the global
ensemble entropy that would be conserved under uni-
tary dynamics (and vanishes for a pure state), physical
entropy is defined as an extensive quantity, that is, in ac-
cord with the concept of an entropy density that neglects
information about correlations. The major difference
between the decay of highly excited states of normal
matter and the evaporation of black holes is that the
latter’s unitary dynamics is not explicitly known (and
occasionally questioned to apply).

The thus described situation is nonetheless much
discussed as an information loss paradox for black
holes [10.9–14]. Its consequences are particularly dra-
matic if one presumes the existence of a black hole inte-
rior region that would necessarily arise in the absence of
Hawking radiation, since matter (and the information it
may represent) can then not causally escape any more.
This questionable presumption is often introduced by
using nice slices that are defined to avoid the singular-
ity but may, in contrast to our very nice slices, intersect
the thus also presumed horizon. A unitary description
means, however, that the information defining the initial
pure state is partly transformed into nonlocal entangle-
ment (formally analogous to the statistical correlations
arising in deterministic Boltzmann collisions). In the
quantum case, unitarity leads to a superposition of
many worlds which remain dynamically autonomous,
and which may include different versions of the same
observers (thus physically justifying the concept of de-
coherence). The replacement of this superposition by
an ensemble of many possible worlds according to
a fundamental statistical interpretation (a collapse of the
wave function) would objectively and irreversibly anni-
hilate the information contained in their relative phases,
thus introducing a fundamental dynamical time asym-
metry. Recall that the Oppenheimer–Snyder model, on
which the nice slices are based, precisely neglects the
local energy loss due to Hawking radiation. Although

the (back) reaction of the metric in response to radiation
loss may in principle require quantum gravity, my argu-
ment about the nonexistence of a horizon is here only
based on the local conservation of momentum-energy
in a situation where it does not have to be questioned.

Instead of assuming an initial vacuum when cal-
culating the creation of Hawking radiation close to
the horizon, one should therefore take into account
the presence of infalling matter, in which case some
kind of internal conversion might lead to its annihila-
tion. A similar scenario has recently been postulated
as a novel kind of physics close to the horizon (called
a firewall) [10.15]. While this firewall is meant to pre-
vent an observer from remaining intact when falling in,
it should according to my earlier proposal objectively
convert all potentially infalling matter into radiation
(see the first version of this paper, available under
arXiv:1012.4708v1). Note that the local Bekenstein–
Hawking temperature diverges close to the horizon,
and therefore must lead to the creation of all kinds
of particle–antiparticle pairs. As long as such an in-
ternal conversion cannot be excluded, there is no rea-
son to speculate about black hole remnants, trapping
horizons, superluminal tunneling, or a fundamental vi-
olation of unitarity that would go beyond decoherence
(that is, beyond a mere dislocalization of superposi-
tions) [10.16–18]. The concept of complementarity (in
the Copenhagen interpretation) would apply to different
potential measurements by the same observer, but not to
actual measurements to be performed by different ones
(including Wigner’s friends), who would always agree
on an objective outcome. Unitarity can only apply to
the global bird’s perspective that includes all Everett
branches, while it is incompatible with any kind of dou-
ble entanglement [10.19].

What might remain as a remnant according to this
semiclassical description of black hole evolution on
very nice slices is a massless pointlike curvature sin-
gularity, since the Riemann tensor of the Schwarzschild
metric is proportional to M=r3, and hence diverges for
rD 2M! 0. Evidently, this singularity signals a break-
down of the semiclassical description. Quantum gravity
would require a boundary condition for the timeless
Wheeler–DeWitt wave function, which cannot distin-
guish between past and future singularities (Sects. 10.4
and 10.5). This might lead to an effective final condi-
tion affecting black holes from inside in an anticausal
manner [10.1, Sect. 6.2.3]. For example, any inward-
directed (hence virtual) negative energy radiation com-
pensating the emission of Hawking radiation could in
this way recohere the effective black hole state in or-
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der to lower its entropy in accordance with both the
mass loss and Bekenstein’s relation (10.4b). This retro-
causality could even affect the nature of the outgoing
Hawking radiation. The conventional classical contin-
uation of the metric beyond the horizon according to
a no-drama scenario may simply be too naive.

Note that the concept of an S-matrix is also un-
realistic for macroscopic objects, such as black holes.
Because of their never-ending essential interaction with
their environments, they can never become asymptot-
ically isolated (the reason for their permanent deco-
herence). The extreme lifetimes of black holes mean,
however, that the information loss problem is rather
academic at any rate: any apparently lost information
would remain irrelevant for at least the next 1065 yr,
and it could hardly ever be exploited even if it finally
came out in the form of entangled radiation (represent-
ing a huge superposition of many worlds). The concept
of a Page time [10.20], at which the entanglement be-
tween the residual black hole and its emitted radiation
would be maximal, can therefore not have any physical
consequences for the remaining black hole.

Several physicists (including myself) used to see
a problem in the equivalence principle, which seems
to require that observers or detectors freely falling into
the black hole do not register any black hole radiation.
Some even concluded that the mass-loss of black holes,
too, must be observer dependent (the already mentioned
black hole complementarity). However, this conclusion
appears to be wrong. While the equivalence between
a black hole and a uniformly accelerated detector (as
regards their radiation) must indeed apply to the local
laws, it can in general not do so for their boundary con-
ditions. An observer or detector fixed at some distance
from the black hole would not be immersed in isotropic
heat radiation, since this radiation comes from the black
hole surface (or a region close to it), which would cover
the whole sky only for an observer very close to the
horizon. Even if the infalling detector does not register
the radiation at all, the latter’s effect on fixed detec-
tors, or its flux through a fixed sphere around the black
hole, must exist objectively, just as the clicks of an ac-
celerated detector in an inertial vacuum (attributed to
Unruh radiation) can be observed by an inertial ob-
server, too. Therefore, both observers would agree that
the energy absorbed by the accelerated detector must
be provided by the rocket engine and, analogously, that
the Hawking net flux of energy requires an observer-
independent mass loss of the black hole. The infalling
observer would furthermore have to regard the clicks
of fixed detectors as occurring in an extreme quick mo-

tion movie with respect to his proper time, and therefore
as being caused by an extremely strong outward flux
of energy in his reference frame. For the same rea-
son, matter at the rim of a collapsing dust cloud can
at large Schwarzschild times not experience any gravi-
tational field as there are no net sources for it inside its
present radius any more. So it can never cross a horizon.
In this way, the phenomenon of black holes from the
point of view of external observers is consistent with
the fate of an infalling observer, who may either soon
in his proper time have to be affected himself by the
internal conversion process, or otherwise have to ex-
perience the black hole surface very rapidly shrinking
and disappearing before he arrives. (Note, however, that
the concept of an event horizon changing in time ap-
pears ill-defined in principle, since a horizon is already
a spacetime concept.)

If the observer could survive the internal conversion
process, he would have traveled far into the cosmic fu-
ture in a short proper time because of the extreme time
dilation close to the would-be horizon. On the other
hand, no theory that is compatible with the equivalence
principle can describe baryon number nonconservation
in the absence of a singularity, although all symmetries
can in principle be broken by the effective nonunitar-
ity characterizing the dynamics of an individual Everett
branch (an observed quantum world). This last remark
might also be relevant for the above-mentioned pos-
sibility of anticausality (recoherence) required by an
apparent future condition that would be in accord with
a timeless Wheeler–DeWitt equation (Sect. 10.5); re-
coherence would have to include a reunification of
different Everett worlds.

Roger Penrose compared black hole entropy nu-
merically with that of matter in the universe under
normal conditions [10.21, 22]. Since the former is pro-
portional to the square of the black hole mass according
to (10.4b), macroscopic black hole formation leads to
a tremendous increase of entropy. As thermodynamic
entropy is proportional to the particle number, it is
dominated in the universe by photons from the pri-
mordial cosmic radiation (whose number exceeds the
baryon number by a factor of 109). If our observable
part of the universe of about 1079 baryons consisted
completely of solar mass black holes, it would pos-
sess an entropy of order of 1098 (in units of k�1

B /,
that is, 1010 times as much as the present matter en-
tropy represented by 1088 photons. Combining all black
holes into one huge one would even raise this num-
ber to 10121, the highest conceivable entropy for this
(perhaps partial) universe unless its volume increased
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tremendously [10.3, 6, 23]. If entropy is indeed a mea-
sure of probability, any approximately homogeneous
matter distribution would be extremely improbable ex-
cept for densities much lower than at present (at a very
late stage of an eternally expanding universe). There-
fore, the homogeneity of the initial universe is usually
regarded as the fundamental improbable initial con-
dition that explains the global master arrow of time
if statistical reasoning is applicable toward the future

(Sect. 10.4). However, its relationship to the thermody-
namically important condition of absent or dynamically
irrelevant nonlocal initial correlations (or entanglement
in the quantum case) seems to be not yet fully un-
derstood. If the two entropy concepts (black hole and
thermodynamic) are to be compatible, the entropy of
the final (thermal) radiation must be greater than that of
the black hole, while the latter has to exceed that of any
kind of infalling matter.

10.4 Expansion of the Universe

The expansion of the universe is a time-asymmetric
process, but in contrast to most other arrows, it forms
an individual phenomenon rather than a whole class
of similar ones, such as black holes, radiation emit-
ters, or steam engines. It may even change its direction
at some time of maximum extension, although present
astronomical observations may indicate that the expan-
sion will last forever. A homogeneous and isotropic
Friedmann universe is described by the dynamics of
the expansion parameter a.t/ according to the time-
symmetric energy theorem

1
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k

2a2
; (10.5)

where � is the energy density of matter, � the cos-
mological constant, and kD 0, ˙1 the sign of the
spatial curvature. The value of the formal total en-
ergy (the difference of both sides of the equation) is
fixed and vanishes in general-relativistic cosmology.
Penrose’s entropy estimates demonstrate that the homo-
geneity assumed in (10.5) is extremely improbable from
a statistical point of view. Therefore, it must be highly
unstable over cosmological times (in spite of being dy-
namically consistent) under the influence of gravity.

In accordance with a homogeneous initial matter
distribution, Penrose postulated that free gravitational
fields vanished exactly at the Big Bang. These free
fields are described by the Weyl tensor, that is, the
trace-free part of the curvature tensor. The trace itself
(the Ricci tensor) is locally fixed by the stress–energy
tensor of matter by means of the Einstein field equa-
tions. The Weyl tensor, on the other hand, is analogous
to the divergence-free part of the electrodynamic field
tensor F��, whose divergence @�F�� (the trace of
the tensor of its derivatives) is similarly fixed by the
charge current j� . Therefore, the Weyl tensor hypothe-

sis is analogous to the requirement of the absence of any
free initial electromagnetic radiation, a condition that
would leave only the retarded electromagnetic fields of
all past sources in the universe. This universal retarda-
tion of radiation had indeed been proposed as a law
by Planck (in a dispute with Boltzmann) [10.24], and
later by Ritz (in a dispute with Einstein) [10.25], in or-
der to derive the thermodynamic arrow from the law.
Here, Boltzmann and Einstein turned out to be right,
since the observed retardation is itself a causal con-
sequence of the presence of thermodynamic absorbers
[10.1, Chap. 2] – cosmologically including the absorber
formed by the radiation era, which would not allow us
to observe any conceivable primordial electromagnetic
radiation. In contrast, the early universe seems to be
transparent to gravitational radiation, possibly includ-
ing that which might have been created with the Big
Bang.

Note that the low entropy and corresponding homo-
geneity of the universe can not be explained by an early
cosmic inflation era (as has occasionally been claimed)
if this inflation is deterministic and would thus conserve
ensemble entropy.

Although our universe may expand forever, the idea
of its later recontraction is at least conceptually inter-
esting. Thomas Gold first argued that the low entropy
condition should not be based on an absolute direc-
tion of time, and hence be valid at a conceivable Big
Crunch as well [10.26]. The latter would then be ob-
served as another Big Bang by observers living during
the formal contraction era, while local (black hole) fu-
ture singularities would be excluded similarly as white
holes. Gold’s scenario would not only require a transi-
tion era without any well-defined arrow in our distant
future – it would also pose serious consistency prob-
lems, since the extremely small initial probability for
the state of the universe would have to be squared if
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the two conditions were statistically independent of one
another [10.27]. If nonetheless true, it would have im-
portant consequences for the fate of matter falling into
massive black holes. If such black holes survived the
mentioned thermodynamic transition era at the time of
maximum extension because of their long evaporation
times (Sect. 10.3), they would according to the global
dynamics enter an era with reversed arrows of time.
However, because of the transparency of the late uni-
verse to light, they would receive coherent advanced
radiation from their formal future even before that hap-
pens. This advanced radiation must then retro-cause
such massive black holes to expand again in order to
approach a state of homogeneity in accordance with
the final condition [10.28]. In mathematical terms, their
horizon is not absolute in this case even in the absence
of any black hole evaporation.

A reversal of the arrow of time may not only oc-
cur in the distant future, but it may also have occurred
in the past. Several pre-big-bang scenarios have been
discussed in novel and as yet speculative theories. Usu-
ally, one thereby identifies the direction of the formal
time parameter with the direction of the physical ar-
row of time. For example, according to arguments first
used in loop quantum gravity [10.29], the configuration
space for Friedmann-type universes may be doubled by
interpreting formally negative values of the cosmic ex-
pansion parameter a as representing negative volume
measures. The cosmic dynamics can then be continued
backward in time beyond the Big Bang into its mirror
image by turning space inside out (turning right-handed
triads into left-handed ones) while going through aD 0
even in a classical picture. For this purpose, the classical
dynamical description (10.5) would have to be modified
close to the otherwise arising singularity at aD 0 – as it
is indeed suggested by loop quantum gravity. However,
if the boundary conditions responsible for the arrow of
time are still assumed to apply at the situation of van-
ishing spatial volume, the arrow would formally change
direction, and jaj rather than a would represent a phys-
ical cosmic clock. Observers on both temporal sides of
the Big Bang could only remember events in the direc-
tion toward aD 0. Another possibility of avoiding the
singularity is a repulsive force acting at small values
of a [10.30, 31], which would lead to a Big Bounce with
similar conceivable consequences for the arrow of time
as the above model that involves space inversion.

In cosmology, quantum aspects of the arrow of time
must again play an important role. According to the
Copenhagen interpretation, there is no quantum world –

so no complete and consistent cosmic history would be
defined any more when quantum aspects become es-
sential. In other orthodox interpretations, the unitary
evolution of the quantum state is repeatedly interrupted
by measurements and similar time-asymmetric events,
when the wave function is assumed to collapse inde-
terministically. The consequences of such stochastic
events on quantum cosmology would be enormous,
but as long as no general dynamical formulation of
a collapse of the wave function has been confirmed,
one has again arrived at an impasse. Going forward
in time may be conceptually simple in such theo-
ries, since one just has to throw away all components
of the wave function which represent the not actual-
ized potential outcomes, while going backward would
require these lost components to recombine and dy-
namically form local superpositions again. So one has
to keep them in the cosmic bookkeeping at least –
regardless of whether they are called real (as in the
Everett interpretation) or not. Going back to the Big
Bang would require all those many components that
have ever been thrown away in the orthodox descrip-
tion during the past of our universe, while one would
have to throw away others when formally going back-
ward beyond the Big Bang in order to obtain an in-
dividual quasi-classical pre-big-bang history. In other
words, a unitary continuation beyond the Big Bang
can only relate the complete Everett superposition of
worlds on both sides of the Big Bang, but not any
individually observed quasi-classical worlds. The cor-
responding master arrow of time would thus not only
affect all realms of physics – it must be truly universal in
a much deeper sense: it can only have multiversal mean-
ing. The same multiversality was required in a unitary
black hole evolution of Sect. 10.3, and it does, in fact,
apply to the unitary quantum description of all macro-
scopic objects, when irreversible decoherence mimics
a collapse of the wave function and thereby explains
classicality.

The time direction of Everett’s branching of the
wave function, based on decoherence, requires a ho-
mogeneous initial quantum state (presumably at aD 0),
which does not contain any nonlocal entanglement that
might later have local effects. Quantum dynamics will
then lead to decoherence (the in practice irreversible
dislocalization of superpositions), and thereby intrinsi-
cally break various global symmetries – possibly even
in the form of many different quasi-classical landscapes
that represent branches of one symmetric superposition
of all of them.
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10.5 Quantum Gravity

General Relativity has traditionally been considered in
a block universe picture, but because of the hyperbolic
type of Einstein’s field equations, it is a dynamical the-
ory just as any other field theory. The explicit dynami-
cal description, which requires a non-Lorentz-invariant
form, was completed by Arnowitt, Deser, and Misner
(ADM) [10.32]. This Hamiltonian formulation is a pre-
requisite for the canonical quantization of the theory. I
shall regard the result as an effective quantum theory,
without considering any speculative generalizations or
possible justifications (such as string theory or loop
quantum gravity, respectively).

The ADM formalism is based on an arbitrary space-
like foliation of spacetime that has to be chosen on
the fly, that is, while solving an initial value problem.
The spatial metric on these space-like slices represents
the dynamical variables of the theory, and it has to
be described by a symmetric matrix hkl.xm/ (with k,
l, m running from 1 to 3). Three of its six indepen-
dent matrix elements represent the choice of physically
meaningless coordinates, two would in the linear limit
correspond to the spin components of a gravitational
wave (˙2 with respect to the direction of propagation
for a plane wave), while the remaining one can be re-
garded as a measure of many-fingered physical time
(metric distance between space-like slices). The corre-
sponding canonical momenta �kl define the embedding
of the spatial metric into spacetime and the arbitrary
propagation of spatial coordinates. The dynamics can
then be formulated by means of the Hamiltonian equa-
tions with respect to an arbitrary time parameter t that
formally distinguishes different slices in a given folia-
tion. They are equivalent to Einstein’s field equations.
In contrast to metric time, the parameter t is geomet-
rically or physically meaningless, and can therefore be
replaced by any monotonic function t0 D f .t/, including
its inversion.

Note that when Special Relativity is said to aban-
don the concept of absolute time, this statement refers
only to the concept of absolute simultaneity, while
proper times, which control all motion according to
the principle of relativity, are still assumed to be given
absolutely by the fixed Lorentz metric. This remain-
ing absoluteness is dropped only in General Relativity,
where the metric itself becomes a dynamical object
like matter, as described by the ADM formalism. The
absence of an absolute time parameter (here repre-
sented by its reparametrizability) was already required
by Ernst Mach. Julian Barbour, who studied its con-

sequences in much historical detail [10.33–35], called
it timelessness. However, a complete absence of time
would remove any possibility of defining an arrow,
while a remaining time parameter characterizing a one-
dimensional succession of states still allows one to
define time-asymmetric trajectories (histories).

The invariance of the theory under spatial coor-
dinate transformations and time reparametrization is
warranted by four constraints for the matrix hkl.t/,
called momentum and Hamiltonian constraints, respec-
tively. They may be regarded as initial conditions, but
are conserved in time. In particular, the Hamiltonian
constraint assumes the form

H.hkl; �kl/D 0 : (10.6)

When quantized (see [10.36] for a review), and when
also taking into account matter variables, this constraint
translates into the Wheeler–DeWitt equation,

H�.hkl;matter/D 0 ; (10.7)

which means that the time-dependent Schrödinger
equation becomes trivial,

@�

@t
D 0 : (10.8)

Even the time parameter t has now disappeared, because
there are no trajectories in quantum theory any more
that might be parametrized. Only this drastic quantum
consequence of classical reparametrizability can really
be regarded as genuine timelessness.

The timelessness of the Wheeler–DeWitt wave
function has been known at least since 1967, but it
seems to have originally been regarded as just formal.
Time was often smuggled in again in various ways –
for example in terms of parametrizable Feynman paths,
by means of semiclassical approximations, or by at-
tempts to reintroduce a Heisenberg picture in spite of
the Hamiltonian constraint [10.37, 38]. The problem
became pressing, though, in connection with realistic
interpretations of the wave function in quantum cosmol-
ogy [10.39–41].

The general wave functional � (hkl, matter) de-
scribes entanglement of geometry and matter. If we
did have a succession of such quantum states (forming
a quantum trajectory or quantum history), an appropri-
ate, initially not entangled state could explain an arrow
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of growing entanglement and decoherence. The result-
ing branching of the wave function according to a cor-
responding parameter t would then include branching
spacetime geometries (that is, branching quasi-classical
wave packets in the configuration space of three geome-
tries). Although there is no time parameter any more,
the metric hkl still contains a measure of metric time.
Therefore, it describes a physical time dependence in
the form of an entanglement of this measure with all
other degrees of freedom – even for a formally time-less
solution of (10.7) [10.42]. For Friedmann universes, the
expansion parameter a, which is part of the metric hkl,
is such an appropriate measure of time, but how does
that help us to define an initial value problem for this
static wave equation? The surprising answer is that this
equation is globally hyperbolic for Friedmann-type uni-
verses – not on spacetime, as for classical fields, but
on its infinite-dimensional configuration space (which
has therefore also been called superspace). The expan-
sion parameter a appears as a time-like variable in this
sense because of the unusual negative sign of its for-
mal kinetic energy component [10.43]. Therefore, the
Wheeler–DeWitt equation allows one to define an ini-
tial value problem at a small value of a, for example.
For a modified Wheeler–DeWitt equation, this possi-
bility may even be extended to aD 0. There is no
conceptual difference between a (multiversal) Big Bang
and a Big Crunch any more, since in the absence of
a time parameter the wave function can only be a stand-
ing wave on configuration space.

The metric tensor and other fields defined on
a Friedmann sphere, aD const, may be represented
by a four-dimensional multipole expansion, which is
particularly useful for describing the very early, approx-
imately homogeneous and isotropic universe [10.44,
45]. In this case, one may conveniently model matter
quantum mechanically by a massive scalar field ˚.xk/.
The wave functional of the universe then assumes the
form �.a; ˚0; fxng/, where ˚0 is the homogeneous part
of the scalar field, while fxng are all higher multipoles
of geometry and matter. For the metric, only the tensor
modes are geometrically meaningful, while the rest rep-
resents gauge degrees (here describing the propagation
of spatial coordinates). The global hyperbolic nature
with respect to all physical degrees of freedom becomes
manifest in this representation.

In a simple toy model one neglects all higher multi-
poles in order to solve the Wheeler–DeWitt equation
on the remaining two-dimensional mini superspace
formed by the two monopoles only. The remaining
Hamiltonian represents an a-dependent harmonic oscil-

m = 2×10–1

a-turn = 2.4×10–2

a from 5×101 to 1.5×102

Phi from –1.9×10–1 to 1.9×10–1

Mean n = 600
Phase = 0.0×100

Fig. 10.3 Wave packet for a homogeneous massive scalar
field amplitude ˚0 (plotted along the horizontal axis) dy-
namically evolving as a function of the time-like parameter
˛ D ln a that is part of the metric (second axis in this
two-dimensional mini superspace). The classical trajectory
possesses a turning point above the plot region 50 	 a	
150 – namely at about aD 240 in this numerical example
that represents an expanding and recontracting mini uni-
verse. Wave mechanically, this corresponds to a reflection
of the wave packet by a repulsive potential in (10.5) at this
value of a (reflected wave omitted in the plot). This re-
flection leads to considerable spreading of the initial wave
packet. The causal order of these two legs of the trajectory
is quite arbitrary, however, and the phase relations defin-
ing coherent wave packets could alternatively be chosen
to give rise to a narrow wave packet for the second leg
instead. So this (not shown) formal spreading does not rep-
resent a physical arrow of time (after [10.1, Sect. 6.2.1])

lator for˚0, which allows one to construct adiabatically
stable Gaussian wave packets (coherent states) [10.46].
Figure 10.3 depicts the propagation of such a wave
packet with respect to the time variable ˛ D ln a. This
standing wave on mini superspace mimics a time-
less classical trajectory. However, the complete wave
functional has to be expected to form a broad superpo-
sition of many such dynamically separate wave packets
(a cosmologically early realization of many worlds).
Note that these worlds are propagating wave packets
rather than trajectories (as in David Deutsch’s under-
standing of Everett). If the higher multipoles are also
taken into account, the Wheeler–DeWitt equation may
describe decoherence progressing with a – at first that
of the monopoles˚0 and a itself, although this requires
effective renormalization procedures [10.47].

This intrinsic dynamics with respect to the time-like
expansion parameter a has nothing as yet to do with the
local dynamics in spacetime (controlled by proper times
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along time-like curves) that must be relevant for matter
as soon as the metric becomes quasi-classical. In or-
der to understand the relation between these two kinds
of dynamics, one may apply a Born–Oppenheimer ex-
pansion in terms of the inverse Planck mass, which
is large compared to all particle masses, in order to
study the Wheeler–DeWitt wave function [10.36, 48–
50]. The Planck mass occurs in all kinetic energy terms
of the geometric degrees of freedom that appear in the
Hamiltonian constraint. The formal expansion in terms
of powers of m�1=4

Planck then defines an adiabatic approxi-
mation with analogy to the theory of molecular motion
(electron wave functions in the electrostatic fields of
slowly moving nuclei). In most regions of configuration
space (depending on the boundary conditions) one may
further apply a Wentzel–Kramers–Brillouin WKB ap-
proximation to the heavy degrees of freedom Q. In this
way one obtains an approximate solution of the type

�.hkl;matter/D �.Q; q/

D eiS.Q/�.Q; q/ ;
(10.9)

where S.Q/ is a solution of the Hamilton–Jacobi equa-
tions for Q. The remaining wave function �.Q; q/
depends only slowly on Q, while q describes all light
(matter) variables. Under these approximations one
may derive from the Wheeler–DeWitt equation the adi-
abatic dependence of �.Q; q/ on Q in the form

irQSrQ�.Q; q/D hQ�.Q; q/ : (10.10)

The operator hQ is the weakly Q-dependent Hamilto-
nian for the matter variables q. This equation defines
a new time parameter tWKB separately along all WKB
trajectories (which define classical spacetimes) by the
directional derivative

@

@tWKB
WD rQSrQ : (10.11)

In this way, one obtains from (10.10) a time-dependent
global Schrödinger equation for matter with respect to
the derived WKB time tWKB [10.36, 39].This param-
eter defines a time coordinate in spacetime, since the
classical trajectories Q.t/ in the superspace of spatial
geometries Q define spacetime geometries. Equation
(10.10) also describes the decoherence of superposi-
tions of different WKB trajectories. Decoherence is also
required to eliminate superpositions that form a real
wave function eiS�C e�iS��, which has to be expected
from the real Wheeler–DeWitt equation under physi-
cally meaningful boundary conditions.

In order to solve this derived time-dependent
Schrödinger equation along a given WKB trajectory,
that is, in terms of a foliation of a classical spacetime
that does in turn adiabatically depend on the evolving
matter, one needs a (low entropy) initial condition in the
region where the WKB approximation begins to apply.
For this purpose one would first have to solve the exact
Wheeler–DeWitt equation (or its generalized version
that may apply to some as yet elusive unified theory) as
a function of a by using its fundamental cosmic initial
condition at aD 0. This might be done, for example, by
using the multipole expansion on the Friedmann sphere
until one enters the WKB region (at some distance
from aD 0), where this solution would then provide
initial conditions for the matter wave functions � for all
arising WKB trajectories. The derived time-dependent
Schrödinger equation with respect to tWKB then has
to be expected to describe further decoherence (the
emergence of classical properties), and thereby explain
the origin of all other arrows of time. In particular,
it must enforce decoherence of superpositions of
arising macroscopically different spacetimes, which
would form separate quasi-classical worlds [10.36].
It would also decohere conceivable CPT symmetric
superpositions of black and white holes, which are
analogous to parity eigenstates of chiral molecules, if
they had ever come into existence [10.23].
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11. Teleparallelism: A New Insight into Gravity

José G. Pereira

Teleparallel gravity, a gauge theory for the trans-
lation group, turns up as fully equivalent to
Einstein’s general relativity. In spite of this equiv-
alence, it provides a whole new insight into
gravitation. It breaks several paradigms related
to the geometric approach of general relativity,
and introduces new concepts in the description of
the gravitational interaction. The purpose of this
chapter is to explore some of these concepts, as
well as discuss possible consequences for gravita-
tion, mainly those that could be relevant for the
quantization of the gravitational field.
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11.1 Preliminaries

Despite being equivalent to general relativity, telepar-
allel gravity is, conceptually speaking, a completely
different theory. For example, the gravitational field
in this theory is represented by torsion, not by cur-
vature. Furthermore, in general relativity curvature is
used to geometrize the gravitational interaction: geom-
etry replaces the concept of gravitational force, and
the trajectories are determined by geodesics – trajecto-
ries that follow the curvature of spacetime. Teleparallel
gravity, on the other hand, attributes gravitation to
torsion, which acts as a force, not geometry. In telepar-
allel gravity, therefore, trajectories are not described by
geodesics, but by force equations [11.1].

The reason for gravitation to present two equiva-
lent descriptions is related to its most peculiar property:
universality. Like the other fundamental interactions
of nature, gravitation can be described in terms of

a gauge theory. This is just teleparallel gravity, a gauge
theory for the translation group. Universality of free
fall, on the other hand, allows a second, geometric
description, based on the equivalence principle, just
general relativity. As the unique universal interaction,
it is the only one to allow a geometric interpretation,
and hence two alternative descriptions. From this point
of view, curvature and torsion are simply alternative
ways of representing the very same gravitational field,
accounting for the same degrees of freedom of grav-
ity. (There are models in which curvature and torsion
are related to different degrees of freedom of gravity.
In these models, known as Einstein–Cartan–Sciama–
Kibble theories, in addition to energy and momentum,
also intrinsic spin appears as source of gravitation. The
main references on these theories can be traced back
from [11.2].)
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The notion of teleparallel structure – also known
as absolute or distant parallelism, characterized by
a particular Lorentz connection that parallel-transports
everywhere the tetrad field (Sect. 11.3.2 for a remark
about the notion of absolute parallelism condition and
local Lorentz transformations.) – was used by Einstein
in his unsuccessful attempt to construct a unified field
theory of electromagnetism and gravitation [11.3–5].
The birth of teleparallel gravity as a gravitational the-
ory, however, took place in the late fifties and early

sixties with the works by Møller [11.6]. Since then
many contributions from different authors have been in-
corporated into the theory, giving rise to what is known
today as the teleparallel equivalent of general relativity,
or just teleparallel gravity [11.7]. The purpose of this
chapter is to review the fundamentals of this theory, as
well as to explore some of the new insights it provides
into gravitation, in particular those that could eventually
be relevant for the development of a quantum theory for
gravitation.

11.2 Basic Concepts

11.2.1 Linear Frames and Tetrads

Spacetime is the arena on which the four presently
known fundamental interactions manifest themselves.
Electromagnetic, weak and strong interactions are de-
scribed by gauge theories involving transformations
taking place in internal spaces, by themselves unrelated
to spacetime. The basic setting of gauge theories are the
principal bundles, in which a copy of the gauge group
is attached to each point of spacetime – the base space
of the bundle. Gravitation, on the other hand, is deeply
linked to the very structure of spacetime. The geometri-
cal setting of gravitation is the tangent bundle, a natural
construction always present in any differentiable mani-
fold: at each point of spacetime there is a tangent space
attached to it – the fiber of the bundle – which is seen as
a vector space. We are going to use the Greek alpha-
bet .�; �; �; : : :D 0; 1;2; 3/ to denote indices related
to spacetime, and the first letters of the Latin alphabet
.a;b; c; : : :D 0; 1; 2; 3/ to denote indices related to the
tangent space, a Minkowski spacetime whose Lorentz
metric is assumed to have the form

�ab D diag.C1;�1;�1;�1/ : (11.1)

A general spacetime is a 4-dimensional differential
manifold, denoted R3;1, whose tangent space is, at each
point, a Minkowski spacetime. Spacetime coordinates
will be denoted by fx�g, whereas tangent space coordi-
nates will be denoted by fxag. Such coordinate systems
determine, on their domains of definition, local bases
for vector fields, formed by the sets of gradients

f@�g � f@=@x�g and f@ag � f@=@xag ; (11.2)

as well as bases fdx�g and fdxag for covector fields,
or differentials. These bases are dual, in the sense

that

dx�.@�/D ı
�
� and dxa.@b/D ı

a
b : (11.3)

On the respective domains of definition, any vector or
covector can be expressed in terms of these coordinate
bases, a name that stems from their relationship to a co-
ordinate system.

Trivial Frames
Trivial frames, or trivial tetrads [11.8], will be denoted
by

feag and feag : (11.4)

The above mentioned coordinate bases

feag D f@ag and feag D fdxag (11.5)

are very particular cases. Any other set of four linearly
independent fields feagwill form another basis, and will
have a dual feag whose members are such that

ea.eb/D ı
a
b : (11.6)

Notice that, on a general manifold, vector fields are (like
coordinate systems) only locally defined – and linear
frames, as sets of four such fields, defined only on re-
stricted domains.

These frame fields are the general linear bases on
the spacetime differentiable manifold R3;1. The whole
set of such bases, under conditions making of it also
a differentiable manifold, constitutes the bundle of lin-
ear frames. A frame field provides, at each point p 2
R3;1, a basis for the vectors on the tangent space TpR3;1.
Of course, on the common domains they are defined,
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each member of a given basis can be written in terms of
the members of any other. For example,

ea D e�a @� and ea D ea
� dx� ; (11.7)

and conversely,

@� D ea
�ea and dx� D e�a ea : (11.8)

On account of the orthogonality conditions (11.6), the
frame components satisfy

ea
�e�a D ı

�
� and ea

�e�b D ı
a
b : (11.9)

Notice that these frames, with their bundles, are consti-
tutive parts of spacetime: they are automatically present
as soon as spacetime is taken to be a differentiable man-
ifold.

A general linear basis feag satisfies the commuta-
tion relation

Œea; eb�D f c
ab ec ; (11.10)

with f c
ab the so-called structure coefficients, or coeffi-

cients of anholonomy, or still the anholonomy of frame
feag. As a simple computation shows, they are defined
by

f c
ab D e�a e�b .@�ec

�� @�ec
�/: (11.11)

A preferred class is that of inertial frames, denoted e0a,
those for which

f 0acd D 0 : (11.12)

Such bases fe0ag are said to be holonomic. Of course,
all coordinate bases are holonomic. This is not a lo-
cal property, in the sense that it is valid everywhere for
frames belonging to this inertial class.

Consider now the Minkowski spacetime metric,
which in cartesian coordinates fNx�g has the form

N��� D diag.C1;�1;�1;�1/ : (11.13)

In any other coordinate system, ��� will be a function
of the spacetime coordinates. The linear frame

ea D e�a @� ; (11.14)

provides a relation between the tangent-space metric
�ab and the spacetime metric ��� . Such relation is
given by

�ab D ���e�a e�b : (11.15)

Using the orthogonality conditions (11.9), the inverse
relation is found to be

��� D �abea
�eb

� : (11.16)

Independently of whether ea is holonomic or not, or
equivalently, whether they are inertial or not, they
always relate the tangent Minkowski space to a Min-
kowski spacetime. These are the frames appearing in
special relativity, and are usually called trivial frames –
or trivial tetrads.

Nontrivial Frames
Nontrivial frames, or nontrivial tetrads, will be denoted
by

fhag and fhag : (11.17)

They are defined as linear frames whose coefficient of
anholonomy is related to both inertial effects and grav-
itation. Let us consider a general pseudo-riemannian
spacetime with metric components g�� in some dual
holonomic basis fdx�g. The tetrad field

ha D ha
�@� and ha D ha

� dx� ; (11.18)

is a linear basis that relates g�� to the tangent-space
metric �ab through the relation

�ab D g��ha
�hb

� : (11.19)

The components of the dual basis members ha D

ha
� dx� satisfy

ha
�ha

� D ı�� and ha
�hb

� D ıa
b ; (11.20)

so that (11.19) has the inverse

g�� D �abha
�hb

� : (11.21)

It follows from these relations that

h� det.ha
�/D

p
�g ; (11.22)

with gD det.g��/.
A tetrad basis fhag satisfies the commutation rela-

tion

Œha; hb�D f c
abhc ; (11.23)

with f c
ab the structure coefficients, or coefficients of

anholonomy, of frame fhag. The basic difference in rela-
tion to the linear bases feag is that now the f c

ab represent
both inertial effects and gravitation, and are given by

f c
ab D ha

�hb
� .@�hc

� � @�hc
�/ : (11.24)
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Although nontrivial tetrads are, by definition, anholo-
nomic due to the presence of gravitation, it is still
possible that locally, f c

ab = 0. In this case, dha D 0,
which means that ha is locally a closed differential
form. In fact, if this holds at a point p, then there is
a neighborhood around p on which functions (coordi-
nates) xa exist such that

ha D dxa :

We say that a closed differential form is always locally
integrable, or exact. This is the case of locally inertial
frames, which are always holonomic. In these frames,
inertial effects locally compensate for gravitation.

11.2.2 Lorentz Connections

A Lorentz connection A�, frequently referred to also as
spin connection, is a 1-form assuming values in the Lie
algebra of the Lorentz group,

A� D
1
2 Aab

�Sab ; (11.25)

with Sab a given representation of the Lorentz gen-
erators. As these generators are antisymmetric in the
algebraic indices, Aab

� must be equally antisymmetric
in order to be lorentzian. This connection defines the
Fock–Ivanenko covariant derivative [11.9, 10]

D� D @� �
i

2
Aab

�Sab ; (11.26)

whose second part acts only on algebraic, tangent space
indices. For a Lorentz vector field �c, for example, the
representation of the Lorentz generators are matrices
Sab with entries [11.11]

.Sab/
c

d D i
�
�bdı

c
a � �adı

c
b

�
: (11.27)

The Fock–Ivanenko derivative is, in this case,

D��c D @��
cCAc

d��
d : (11.28)

On account of the soldered character of the tangent
bundle, a tetrad field relates tangent space (or internal)
tensors with spacetime (or external) tensors. For exam-
ple, if �a is an internal, or Lorentz vector, then

�� D ha
��a (11.29)

will be a spacetime vector. Conversely, we can write

�a D ha
��
� : (11.30)

On the other hand, due to its nontensorial character,
a connection will acquire a vacuum, nonhomogeneous
term, under the same operation,

� ��� D ha
�@�ha

�C ha
�Aa

b�hb
�

� ha
�D�ha

� ;
(11.31)

where D� is the covariant derivative (11.28), in which
the generators act on internal (or tangent space) indices
only. The inverse relation is, consequently,

Aa
b� D ha

�@�hb
�C ha

��
�
��hb

�

� ha
�r�hb

� ;
(11.32)

where r� is the standard covariant derivative in the
connection � ���, which acts on external indices only.
For a spacetime vector �� , for example, it has the form

r��
� D @��

� C� ����
� : (11.33)

Using relations (11.29) and (11.30), it is easy to verify
that [11.12]

D��d D hd
�r��

� : (11.34)

Equations (11.31) and (11.32) are simply different
ways of expressing the property that the total covariant
derivative of the tetrad – that is, a covariant derivative
with connection terms for both internal and external in-
dices – vanishes identically

@�ha
� ��

�
��ha

�CAa
b�hb

� D 0 : (11.35)

Behavior Under Lorentz Transformations
A local Lorentz transformation is a transformation of
the tangent space coordinates xa

x0a D�a
b.x/x

b : (11.36)

Under such a transformation, the tetrad transforms ac-
cording to

h0a D�a
b.x/h

b : (11.37)

At each point of a riemannian spacetime, (11.21) only
determines the tetrad up to transformations of the six-
parameter Lorentz group in the tangent space indices.
This means that there exists actually an infinity of
tetrads ha

�, each one relating the spacetime metric g��
to the tangent space metric �cd. This means that any
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other Lorentz-rotated tetrad fh0ag will also relate the
same metrics

g�� D �cdh0c�h0d� : (11.38)

Under a local Lorentz transformation �a
b.x/, the spin

connection undergoes the transformation

A0ab� D�
a

c.x/A
c

d��b
d.x/

C�a
c.x/@��b

c.x/ :
(11.39)

The last, nonhomogeneous term appears due to the non-
tensorial character of connections.

11.2.3 Curvature and Torsion

Curvature and torsion require a Lorentz connection to
be defined [11.13]. Given a Lorentz connection Aa

b�,
the corresponding curvature is a 2-form assuming val-
ues in the Lie algebra of the Lorentz group,

R�� D
1
2 Rab

��Sab : (11.40)

Torsion is also a 2-form, but assuming values in the Lie
algebra of the translation group,

T�� D Ta
��Pa ; (11.41)

with Pa D @a the translation generators. The curvature
and torsion components are given, respectively, by

Ra
b�� D @�Aa

b� � @�Aa
b� CAa

e�Ae
b�

�Aa
e�Ae

b�
(11.42)

and

Ta
�� D @�ha

� � @�ha
� CAa

e�he
��Aa

e�he
� :

(11.43)

Through contraction with tetrads, these tensors can be
written in spacetime-indexed forms

R���� D ha
�hb

�Ra
b�� ; (11.44)

and

T��� D ha
�Ta

�� : (11.45)

Using relation (11.32), their components are found to
be

R���� D @��
�
�� � @��

�
�� C�

�
���

�
��

�� ����
�
��

(11.46)

and

T��� D �
�
�� ��

�
�� : (11.47)

Since the spin connection Aa
b� is a four-vector in

the last index, it satisfies

Aa
bc D Aa

b�hc
� : (11.48)

It can thus be verified that, in the anholonomic basis
fhag, the curvature and torsion components are given
respectively by

Ra
bcd D hc .A

a
bd/� hd .A

a
bc/CAa

ecA
e

bd

�Aa
edAe

bc � f e
cdAa

be
(11.49)

and

Ta
bc D Aa

cb �Aa
bc� f a

bc ; (11.50)

where, we recall, hc D hc
�@�. Use of (11.50) for three

different combinations of indices gives

Aa
bc D

1
2 .fb

a
cC Tb

a
cC fc

a
bCTc

a
b

�f a
bc� Ta

bc/ :
(11.51)

This expression can be rewritten in the form

Aa
bc D

ı

Aa
bcCKa

bc ; (11.52)

where

ı

Aa
bc D

1
2 .fb

a
cC fc

a
b � f a

bc/ (11.53)

is the usual expression of the general relativity spin con-
nection in terms of the coefficients of anholonomy, and

Ka
bc D

1
2 .Tb

a
cCTc

a
b � Ta

bc/ (11.54)

is the contortion tensor. The corresponding expression
in terms of the spacetime-indexed linear connection
reads

� ��� D
ı

� ��� CK��� ; (11.55)

where

ı

� 	�� D
1
2 g	� .@�g�� C @�g�� � @�g��/

(11.56)
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is the zero-torsion Christoffel, or Levi-Civita connec-
tion, and

K��� D
1
2

�
T�
�
�C T�

�
� �T���

�
(11.57)

is the spacetime-indexed contortion tensor. Equa-
tions (11.52) and (11.55) are actually the content of
a theorem, which states that any Lorentz connection
can be decomposed into the spin connection of gen-
eral relativity plus the contortion tensor [11.13]. As is
well-known, the Levi-Civita connection of a general
spacetime metric has vanishing torsion, but nonvanish-
ing curvature

ı

T��� D 0 and
ı

R���� ¤ 0 : (11.58)

11.2.4 Purely Inertial Lorentz Connection

In special relativity, Lorentz connections represent in-
ertial effects present in a given frame. In order to obtain
the explicit form of such connections, let us recall that
the class of inertial (or holonomic) frames, denoted by
e0a�, is defined by all frames for which f 0cab D 0. In
a general coordinate system, the frames belonging to
this class have the holonomic form

e0a� D @�x0a ; (11.59)

with x0a a spacetime-dependent Lorentz vector: x0a D
x0a.x�/. Under a local Lorentz transformation, the holo-
nomic frame (11.59) transforms according to

ea
� D�

a
b.x/e

0b
� : (11.60)

As a simple computation shows, it has the explicit form

ea
� D @�xaC

�

Aa
b�xb �

�

D�xa ; (11.61)

where

�

Aa
b� D�

a
e.x/@��b

e.x/ (11.62)

is a Lorentz connection that represents the inertial ef-
fects present in the new frame ea

�. As can be seen
from (11.39), it is just the connection obtained from
a Lorentz transformation of the vanishing spin connec-

tion
�

A0ed� D 0

�

Aa
b� D�

a
e.x/
�

A0ed��b
d.x/

C�a
e.x/@��b

e.x/ :
(11.63)

Starting from an inertial frame, different classes of
frames are obtained by performing local (point-depen-
dent) Lorentz transformations �a

b.x�/. Within each
class, the infinitely many frames are related through
global (point-independent) Lorentz transformations,
�a

b D constant.
Each component of the inertial connection (11.62),

which is sometimes referred to as the Ricci coefficient
of rotation [11.14], represents a different inertial effect
[11.15]. Owing to its presence, the transformed frame
ea
� is no longer holonomic. In fact, its coefficient of

anholonomy is given by

f c
ab D�

�
�

Ac
ab�

�

Ac
ba

�
; (11.64)

where we have used the identity
�

Aa
bc D

�

Aa
b�ec

�. Of

course, as a purely inertial connection,
�

Aa
b� has van-

ishing curvature and torsion

�

Ra
b�� � @�

�

Aa
b�� @�

�

Aa
b� C

�

Aa
e�

�

Ae
b�

�
�

Aa
e�

�

Ae
b�

D 0

(11.65)

and

�

Ta
�� � @�ea

�� @�ea
� C

�

Aa
e�ee

�

�
�

Aa
e�ee

�

D 0 :

(11.66)

11.2.5 Equation of Motion of Free Particles

To see how a purely inertial connection shows up in
a concrete example, let us consider the equation of mo-
tion of a free particle. In the class of inertial frames
e0a�, such particle is described by the equation of
motion

du0a

d�
D 0 ; (11.67)

with u0a the anholonomic four-velocity, and

d�2 D ��� dx� dx� (11.68)

the quadratic Minkowski interval. In an anholonomic
frame ea

�, related to e0a� by the local Lorentz trans-
formation (11.60), the equation of motion assumes
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the manifestly covariant form under local Lorentz
transformations

dua

d�
C
�

Aa
b�ubu� D 0 ; (11.69)

where

ua D�a
b.x/u

0b (11.70)

is the Lorentz transformed four-velocity, and

u� D uaea
� (11.71)

is the usual, holonomic four-velocity

u� D
dx�

d�
: (11.72)

Observe that the inertial forces coming from the frame
noninertiality are represented by the inertial connection
on the left-hand side of the equation (11.69), which is
noncovariant by its very nature. Observe also that it is
invariant under general coordinate transformations.

In terms of the holonomic four-velocity written in
cartesian coordinates fNx�g, the particle equation of mo-
tion has the form

d Nu�

d�
D 0 : (11.73)

Under a general coordinate transformation Nx�! x�, it
assumes the manifestly covariant form under general

coordinate transformations

du�

d�
C
�

����u�u� D 0 ; (11.74)

where [11.16]

�

���� D
1
2�
��.@����C @���� � @����/ (11.75)

is a flat, coordinate-related connection, with ��� the
Minkowski metric written in the general coordinate sys-
tem fx�g. Of course, since the equations of motion
(11.69) and (11.74) describe the same free particle, they
are equivalent ways of writing the same equation of mo-
tion. This means that connections (11.62) and (11.75)
are different ways of writing the very same inertial con-
nection. In fact, using relation (11.71), it is an easy task
to verify that they are related by

�

Aa
b� D ea

�@�eb
�C ea

�

�

����eb
�

� ea
�

�

r�eb
� ;

(11.76)

which is a relation of the form (11.32) between equiv-
alent connections. We can then conclude that local
Lorentz transformations are equivalent to general co-
ordinate transformations in the sense that they give rise
to the very same inertial connection. In Sect. 11.4.5 we
will discuss further the implications of this equivalence
for gravitation.

11.3 Teleparallel Gravity: A Brief Review

For the sake of completeness we present in this section
a short review of teleparallel gravity, as well as discuss
its equivalence to general relativity.

11.3.1 Translational Gauge Potential

Teleparallel gravity corresponds to a gauge theory for
the translation group [11.7]. As such, the gravitational
field is represented by a translational gauge potential
Ba
�, a 1-form assuming values in the Lie algebra of the

translation group,

B� D Ba
�Pa ; (11.77)

with Pa D @a the translation generators. On account of
the translational coupling prescription, it appears as the

nontrivial part of the tetrad,

ha
� D ea

�CBa
� ; (11.78)

where

ea
� �

�

D�xa D @�xaC
�

Aa
b�xb (11.79)

is the trivial (nongravitational) tetrad (11.61). Under an
infinitesimal gauge translation

ıxa D "bPbxa � "a ; (11.80)

with "a � "a.x�/ the transformation parameters, the
gravitational potential Ba

� transforms according to

ıBa
� D�

�

D�"a : (11.81)
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The tetrad (11.78) is consequently gauge invariant

ıha
� D 0 : (11.82)

This is a matter of consistency as a gauge transforma-
tion cannot change the spacetime metric.

11.3.2 Teleparallel Spin Connection

The gravitational field in teleparallel gravity is fully
represented by the translational gauge potential Ba

�.
This means that in this theory Lorentz connections
keep their special-relativistic role of representing iner-
tial effects only. The fundamental Lorentz connection
of teleparallel gravity is consequently the purely iner-
tial connection (11.62), which has of course vanishing
curvature

�

Ra
b�� D @�

�

Aa
b� � @�

�

Aa
b�C

�

Aa
e�

�

Ae
b�

�
�

Aa
e�

�

Ae
b� D 0 :

(11.83)

For a tetrad involving a nontrivial translational gauge
potential, that is, for

Ba
� ¤

�

D�"a ; (11.84)

its torsion will be nonvanishing

�

Ta
�� D @�ha

� � @�ha
�C

�

Aa
e�he

�

�
�

Aa
e�he

�

¤ 0 :

(11.85)

Using the trivial identity

�

D�
�

D�xa �
�

D�
�

D�xa D 0 ; (11.86)

it can be rewritten in the form

�

Ta
�� D @�Ba

� � @�Ba
�C

�

Aa
b�Bb

�

�
�

Aa
b�Bb

� ;

(11.87)

which is the field strength of teleparallel gravity. In this
theory, therefore, gravitation is represented by torsion,
not by curvature. On account of the gauge invariance
of the tetrad, the field strength is also invariant under
gauge transformations

�

T 0a�� D
�

Ta
�� : (11.88)

This is actually an expected result. In fact, considering
that the generators of the adjoint representation are the
coefficients of structure of the group taken as matri-
ces, and considering that these coefficients vanish for
abelian groups, fields belonging to the adjoint represen-
tation of abelian gauge theories will always be gauge
invariant – a well-known property of electromagnetism.

The spacetime linear connection corresponding to
the inertial spin connection (11.62) is

�

� ��� D ha
�@�ha

�C ha
�
�

Aa
b�hb

�

� ha
�
�

D�ha
� :

(11.89)

This is the so-called Weitzenböck connection. Its defi-
nition is equivalent to the identity

@�ha
� C

�

Aa
b�hb

� �
�

� ���ha
� D 0 : (11.90)

In the class of frames in which the spin connection
�

Aa
b� vanishes, it reduces to

@�ha
� �
�

� ���ha
� D 0 ; (11.91)

which is the so-called absolute, or distant parallelism
condition, from where teleparallel gravity got its name.
It is important to remark that, at the time the term ab-
solute, or distant parallelism condition was coined, no
one was aware that this condition holds only on a very
specific class of frames. The general expression valid in
any frame is that given by (11.90). This means essen-
tially the the tetrad is not actually parallel-transported
everywhere by the Weitzenböck connection. The name
teleparallel gravity is consequently not appropriate. Of
course, for historical reasons we shall keep it.

11.3.3 Teleparallel Lagrangian

As a gauge theory for the translation group, the action
functional of teleparallel gravity can be written in the
form [11.17]

�

SD 1

2ck

Z
�ab

�

Ta ^?
�

Tb ; (11.92)

where

�

Ta D 1
2

�

Ta
�� dx� ^ dx� (11.93)



Teleparallelism: A New Insight into Gravity 11.3 Teleparallel Gravity: A Brief Review 205
Part

B
|11.3

is the torsion 2-form, ?
�

Ta is the corresponding dual
form, and kD 8�G=c4. More explicitly,

�

SD 1

8ck

Z
�ab

�

Ta
�� ?

�

Tb
�	 dx�

^ dx� ^ dx� ^ dx	 :
(11.94)

Taking into account the identity

dx� ^ dx� ^ dx� ^ dx	 D�����	hd4x ; (11.95)

with hD det.ha
�/, the action functional assumes the

form

�

SD� 1

8ck

Z
�

Ta�� ?
�

Ta
�	�

���	 hd4x : (11.96)

Using then the generalized dual definition for soldered
bundles [11.18]

?Ta
�� D

h

2
���˛ˇSa˛ˇ ; (11.97)

it reduces to

�

SD 1

4ck

Z
�

Ta
�	

�

Sa
�	hd4x ; (11.98)

where

�

Sa
�	 ��

�

Sa
	�

D ha
�

�
�

K�	� � ı�
	
�

T��� C ı�
�
�

T�	�

�

(11.99)

is the superpotential, with

�

K�	� D
1

2

�
�

T	�� C
�

T�
�	 �

�

T�	�

�
(11.100)

the contortion of the teleparallel torsion. The lagrangian
corresponding to the above action is [11.19]

�

LD h

4k

�

Ta��

�

Sa�� : (11.101)

Using relation (11.55) for the specific case of teleparal-
lel torsion, it is possible to show that

�

LD
ı

L� @�
�

2hk�1
�

T���

�
; (11.102)

where

ı

LD�
p
�g

2k

ı

R (11.103)

is the Einstein–Hilbert lagrangian of general relativ-
ity. Up to a divergence, therefore, the teleparallel la-
grangian is equivalent to the lagrangian of general
relativity.

One may wonder why the lagrangians are equiva-
lent up to a divergence term. To understand that, let
us recall that the Einstein–Hilbert lagrangian (11.103)
depends on the tetrad, as well as on its first and
second derivatives. The terms containing second deriva-
tives, however, reduce to a divergence term [11.20].
In consequence, it is possible to rewrite the Einstein–
Hilbert lagrangian in a form stating this aspect
explicitly,

ı

LD
ı

L1C @�.
p
�gw�/ ; (11.104)

where
ı

L1 is a lagrangian that depends solely on the
tetrad and its first derivatives, and w� is a four-vector.
On the other hand, the teleparallel lagrangian (11.101)
depends only on the tetrad and its first derivative. The
divergence term in the equivalence relation (11.102) is
then necessary to account for the different orders of
the teleparallel and the Einstein–Hilbert lagrangians.
We mention in passing that in classical field theory
the lagrangians involve only the field and its first
derivative. We can then say that teleparallel gravity
is more akin to a field theory than general relativity.
In Sect. 11.4.4 this point will be discussed in further
details.

11.3.4 Field Equations

Consider the lagrangian

LD
�

LCLs ; (11.105)

with Ls the lagrangian of a general source field. Varia-
tion with respect to the gauge potential Ba

� (or equiva-
lently, in terms of the tetrad ha

�) yields the teleparallel
version of the gravitational field equation

@	 .h
�

Sa
�	 /� kh

�

J a
� D kh�a

� : (11.106)
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In this equation,

h
�

Ja
� ��

@
�

L
@ha

�

D
1

k
ha
�
�

Sc
��
�

Tc
��

�
ha
�

h

�

LC 1

k

�

Ac
a	

�

Sc
�	

(11.107)

stands for the gauge current, which in this case repre-
sents the Noether energy-momentum pseudo-current of
gravitation plus inertial effects [11.21], and

h�a
� D�

ıLs

ıha
�

��

�
@Ls

@ha
�

� @�
@Ls

@�@ha
�

�

(11.108)

is the source energy-momentum tensor. Due to the anti-
symmetry of the superpotential in the last two indices,
the total (gravitational plus inertial plus source) energy-
momentum density is conserved in the ordinary sense

@�
�
h
�

Ja
�C h�a

�
�
D 0 : (11.109)

The left-hand side of the gravitational field equa-

tion (11.106) depends on
�

Aa
b� only. Using identity

(11.52) for the specific case of the inertial connec-

tion
�

Aa
b�,

�

Aa
b� D

ı

Aa
b�C

�

Ka
b� ; (11.110)

through a lengthy but straightforward calculation, it can

be rewritten in terms of
ı

Aa
b� only

@	
�
h
�

Sa
�	
�
� kh

�

Ja
�

D h
�ı
Ra
� � 1

2 ha
�
ı

R
�
:

(11.111)

As expected due to the equivalence between the cor-
responding lagrangians, the teleparallel field equation
(11.106) is equivalent to Einstein’s field equation

ı

Ra
� � 1

2 ha
�
ı

RD k�a
� : (11.112)

Observe that the energy-momentum tensor appears as
the source in both theories: as the source of curvature in
general relativity, and as the source of torsion in telepar-
allel gravity. This is in agreement with the idea that
curvature and torsion are related to the same degrees
of freedom of the gravitational field.

11.4 Achievements of Teleparallel Gravity

Despite being equivalent to general relativity, teleparal-
lel gravity shows many conceptual distinctive features.
In this section we discuss some of these features, as well
as explore their possible consequences for the study of
both classical and quantum gravity.

11.4.1 Separating Inertial Effects
from Gravitation

In teleparallel gravity, the tetrad field has the form

ha
� D

�

D�xaCBa
� : (11.113)

The first term on the right-hand side represents the
frame and the inertial effects present on it. The second
term, given by the translational gauge potential, repre-
sents gravitation only. This means that both inertia and
gravitation are included in the tetrad ha

�. As a conse-

quence, its coefficient of anholonomy,

f c
ab D ha

�hb
�.@�hc

�� @�hc
�/ ; (11.114)

will also represent both inertia and gravitation. Of
course, the same is true of the spin connection of gen-
eral relativity,

ı
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b� D

1
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� .fb
a

cC fc
a

b � f a
bc/ : (11.115)

Now, according to the identity (11.110), such spin con-
nection can be decomposed in the form

ı

Aa
b� D

�

Aa
b��

�

Ka
b� : (11.116)

Since
�

Aa
b� represents inertial effects only, whereas

�

Ka
b� represents the gravitational field, the above iden-

tity amounts actually to a decomposition of the general



Teleparallelism: A New Insight into Gravity 11.4 Achievements of Teleparallel Gravity 207
Part

B
|11.4

relativity spin connection (11.115) into inertial and
gravitational parts.

To see that this is in fact the case, let us consider
a locally inertial frame in which the spin connection of
general relativity vanishes

ı

Aa
b�

:
D 0 : (11.117)

In such local frame, although present, gravitation be-
comes locally undetectable. Making use of identity

(11.116), the local vanishing of
ı

Aa
b� can be rewritten

in the form

�

Aa
b�

:
D
�

Ka
b� : (11.118)

This expression shows explicitly that, in such a local
frame inertial effects (left-hand side) exactly compen-
sate for gravitation (right-hand side) [11.22]. The pos-
sibility of separating inertial effects from gravitation is
an outstanding property of teleparallel gravity. It opens
up many interesting new roads for the study of gravi-
tation, which are not possible in the context of general
relativity.

11.4.2 Geometry Versus Force

In general relativity, the trajectories of spinless particles
are described by the geodesic equation

dua

ds
C
ı

Aa
b�ubu� D 0 ; (11.119)

where ds2 D g�� dx� dx� is the riemannian spacetime
quadratic interval. It says essentially that the four-
acceleration of the particle vanishes

ı

aa D 0 : (11.120)

This means that in general relativity there is no the con-
cept of gravitational force. Using identity (11.116), the
geodesic equation can be rewritten in terms of a purely
inertial connection and its torsion. The result is

dua

ds
C
�

Aa
b�ubu� D

�

Ka
b�ubu� : (11.121)

This is the teleparallel equation of motion of a spin-
less particle as seen from a general Lorentz frame.
Of course, it is equivalent to the geodesic equa-
tion (11.119). There are conceptual differences, though.

In general relativity, a theory fundamentally based on
the equivalence principle, curvature is used to ge-
ometrize the gravitational interaction. The gravitational
interaction in this case is described by letting (spin-
less) particles to follow the curvature of spacetime.
Geometry replaces the concept of force, and the tra-
jectories are determined, not by force equations, but
by geodesics. Teleparallel gravity, on the other hand,
attributes gravitation to torsion, which accounts for
gravitation not by geometrizing the interaction, but by
acting as a force [11.1]. In consequence, there are
no geodesics in teleparallel gravity, only force equa-
tions similar to the Lorentz force equation of elec-
trodynamics. (We remark in passing that this is in
agreement with the gauge structure of teleparallel grav-
ity in the sense that gauge theories always describe
the (classical) interaction through a force.) Notice that
the inertial forces coming from the frame noniner-
tiality are represented by the connection on the left-
hand side, which is noncovariant by its very nature.
In teleparallel gravity, therefore, whereas the gravita-
tional effects are described by a covariant force, the
inertial effects of the frame remain geometrized in
the sense of general relativity. In the geodesic equa-
tion (11.119), both inertial and gravitational effects
are described by the connection term on the left-hand
side.

11.4.3 Gravitational Energy-Momentum
Density

All fundamental fields have a well-defined local energy-
momentum density. It is then expected that the same
should happen to the gravitational field. However,
no tensorial expression for the gravitational energy-
momentum density can be defined in the context of
general relativity. The basic reason for this impossi-
bility is that both gravitational and inertial effects are
mixed in the spin connection of the theory, and cannot
be separated. Even though some quantities, like curva-
ture, are not affected by inertial effects, some others
turn out to depend on it. For example, the energy-
momentum density of gravitation will necessarily in-
clude both the energy-momentum density of gravity
and the energy-momentum density of the inertial ef-
fects present in the frame. Since the inertial effects are
essentially nontensorial – they depend on the frame –
the quantity defining the energy-momentum density of
the gravitational field in this theory always shows up as
a nontensorial object. Some examples of different pseu-
dotensors can be found in [11.23–31].
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On the other hand, owing to the possibility of sep-
arating gravitation from inertial effects in teleparallel
gravity, it turns out possible to write down an energy-
momentum density for gravitation only, excluding the
contribution from inertia. Such quantity is a tensorial
object. To see how this is possible, let us consider
the sourceless version of the teleparallel field equation
(11.106),
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� D 0 ; (11.122)
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is the usual gravitational energy-momentum pseudo-
current, which is conserved in the ordinary sense
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This is actually a matter of necessity: since the deriva-
tive is not covariant, the conserved current cannot be
covariant either so that the conservation law itself is co-
variant – and consequently physically meaningful.

Using now the fact that the last, nontensorial term of
the pseudo-current (11.123) together with the potential
term make up a Fock–Ivanenko covariant derivative,
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the field equation (11.122) can be rewritten in the form
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where
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is a tensorial current that represents the energy-
momentum of gravity alone [11.21]. Considering that
the teleparallel spin connection (11.62) has vanishing

curvature, the corresponding Fock–Ivanenko derivative
is commutative

�
�

D�;
�

D	
�
D 0 : (11.128)

Taking into account the anti-symmetry of the super-
potential in the last two indices, it follows from the field
equation (11.126) that the tensorial current (11.127) is
conserved in the covariant sense

�
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�
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�
	
D 0 : (11.129)

This is again a matter of necessity: a covariant cur-
rent can only be conserved in the covariant sense. Of
course, since it does not represent the total energy-
momentum density – in the sense that the inertial
energy-momentum density is not included – it does
not need to be truly conserved. Only the total energy-

momentum density
�

Ja
� must be truly conserved.

It should be remarked that the use of pseudoten-
sors to compute the energy of a gravitational system
requires some amount of handwork to get the physically
relevant result. The reason is that, since the pseudoten-
sor includes the contribution from the inertial effects,
which is in general divergent for large distances (recall
the centrifugal force, for example), the space integration
of the energy density usually yields divergent results. It
is then necessary to use appropriate coordinates – like
for example cartesian coordinates [11.32] – or to make
use of a regularization process to eliminate the spurious
contributions coming from the inertial effects [11.33].
On the other hand, on account of the tensorial character
of the teleparallel energy-momentum density of grav-
ity, its use to compute the energy of any gravitational
system always gives the physical result, no matter the
coordinates or frames used to make the computation,
eliminating in this way the necessity of using appropri-
ate coordinates or a regularizing process [11.34].

11.4.4 A Genuine Gravitational Variable

Due to the fact that the spin connection of general rel-
ativity involves both gravitation and inertial effects, it
is always possible to find a local frame – called locally
inertial frame – in which inertial effects exactly com-
pensate for gravitation, and the connection vanishes at
that point

ı

Aa
b�

:
D 0 : (11.130)
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Since there is gravitational field at that point, such con-
nection cannot be considered a genuine gravitational
variable in the usual sense of classical field theory.
Strictly speaking, therefore, general relativity is not
a true field theory in the usual sense of classical field
theory. There is an additional problem: the noncovariant

behavior of
ı

Aa
b� under local Lorentz transformations

is due uniquely to its inertial content, not to gravitation
itself. To see it, consider the decomposition (11.116):
whereas the first term on the right-hand side represents
its inertial, noncovariant part, the second term repre-
sents its gravitational part, which is a tensor. This means
that it is not a genuine gravitational connection either,
but an inertial connection.

In teleparallel gravity, on the other hand, the grav-
itational field is represented by a translational-valued
gauge potential

B� D Ba
�Pa ; (11.131)

which shows up as the nontrivial part of the tetrad. Con-
sidering that the translational gauge potential represents
gravitation only, not inertial effects, it can be consid-
ered a true gravitational variable in the sense of classical
field theory. Notice, for example, that it is not possible
to find a local frame in which it vanishes at a point. Fur-
thermore, it is also a genuine gravitational connection:
its connection behavior under gauge translations is re-
lated uniquely to its gravitational content. Put together,
these properties show that, in contrast to general rela-
tivity, teleparallel gravity is a (background-dependent)
true field theory.

11.4.5 Gravitation and Gauge Theories

If general relativity is not a true field theory, it cannot be
a gauge theory either. There have been some attempts to
describe general relativity as a gauge theory for diffeo-
morphisms, but this is impossible for several reasons.
To begin with, general coordinate transformations take
place on spacetime, not on the tangent space – the fiber
of the tangent bundle – as it should be for a true gauge
theory. In addition, general covariance by itself is empty
of dynamical content in the sense that any relativis-
tic equation, like for example Maxwell equation, can
be written in a generally covariant form without any
gravitational implication. There have also been some
attempts to recast general relativity as a gauge theory
for the Lorentz group. However, this is not possible ei-
ther for different reasons. First, the spin connection of
general relativity, as discussed in the previous section,

is neither a true field variable nor a genuine gravita-
tional connection. A second reason is that local Lorentz
transformations are equivalent to general coordinate
transformations in the sense that they give rise to the
very same inertial connection.

Indeed, observe that the inertial connection (11.62),
obtained by performing a local Lorentz transformation,
and the inertial connection (11.75), obtained by per-
forming a general coordinate transformation, represent
two different ways of expressing the very same iner-
tial connection, as shown by (11.76). Consciously or
not, this equivalence is implicitly assumed in the met-
ric formulation of general relativity. For example, it is
a commonplace in many textbooks on gravitation to find
the definition of a locally inertial coordinate system.
Of course, the property of being or not inertial belongs
to frames, not to coordinate systems. Such notion only
makes sense if local Lorentz transformations and gen-
eral coordinate transformations are considered on an
equal footing. Then comes the point: since diffeomor-
phism is empty of dynamical meaning, and considering
that it is equivalent to a local Lorentz transformation,
the latter is also empty of dynamical meaning. One
should not expect, therefore, any dynamical effect com-
ing from a gaugefication of the Lorentz group.

On the other hand, there is a consistent rationale
behind a gauge theory for the translation group. To be-
gin with, remember that the source of gravitation is
energy and momentum. From Noether’s theorem, a fun-
damental piece of gauge theories [11.35], we know that
the energy-momentum tensor is conserved provided the
source lagrangian is invariant under spacetime transla-
tions. If gravity is to be described by a gauge theory
with energy-momentum as source, therefore, it must be
a gauge theory for the translation group. This is similar
to electrodynamics, whose source lagrangian is invari-
ant under the one-dimensional unitary group U.1/, the
gauge group of Maxwell theory.

11.4.6 Gravity and the Quantum

If general relativity is not a field theory in the usual
sense of the term, the traditional approach of quan-
tum field theory cannot be used in this case. In addi-
tion, due to the fact that general relativity is deeply
rooted on the equivalence principle, its spin connec-
tion involves both gravitation and inertial effects. As
a consequence, any approach to quantum gravity us-
ing this connection as field variable will necessarily
include a quantization of the inertial forces – whatever
this may come to mean. Considering furthermore the di-
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vergent asymptotic behavior of inertial effects, like for
example the centrifugal force, such approach is likely
to face consistency problems. As a matter of fact, in
the geometric approach of general relativity there is not
a genuine gravitational variable to be quantized using
the methods of quantum field theory. For these reasons,
one should not expect to obtain a consistent quantum
gravity theory from general relativity. (Different argu-
ments leading to the same conclusion can be found in
[11.36].)

On the other hand, as a gauge theory for the trans-
lation group, teleparallel gravity is much more akin
to a classical field theory than general relativity. It is,
of course, different from the Yang–Mills type theories
because of the soldering, which makes it a background-
dependent field theory. In this theory, whereas inertial
effects are represented by a Lorentz connection, the
gravitational field is represented by a translational-
valued connection, a legitimate gravitational variable
in the usual sense of classical field theory. It is, for
this reason, the variable to be quantized in any ap-

proach to quantum gravity. Taking into account that
loop quantum gravity has a natural affinity with gauge
theories [11.37–39], a quantization approach based on
teleparallel gravity seems to be more consistent – and
of course much simpler due to the abelian character of
translations.

Still in connection to a prospective quantum theory
for gravitation, it is important to remark that, differently
from the geometrical approach of general relativity, the
gauge approach of teleparallel gravity is not grounded
on the equivalence principle [11.40]. In other words, it
does not make use of the local equivalence between
gravitation and inertial effects. As a consequence, it
does not make use of ideal, local observers, as required
by the strong equivalence principle, eliminating in this
way the basic inconsistency with quantum mechanics,
which presupposes real, dimensional observers [11.41].
Of course, this is not enough to guarantee that a quan-
tum version of teleparallel gravity will be a consistent
theory, but can be considered an important conceptual
advantage of teleparallel gravity.

11.5 Final Remarks

Although equivalent to general relativity, teleparallel
gravity introduces new concepts into both classical and
quantum gravity. For example, on account of the ge-
ometric description of general relativity, which makes
use of the torsionless Levi-Civita connection, there is
a widespread belief that gravity produces a curvature
in spacetime. The universe as a whole, in consequence,
should also be curved. However, the advent of telepar-
allel gravity breaks this paradigm: it becomes a matter
of convention to describe the gravitational interaction
in terms of curvature or in terms of torsion. This means
that the attribution of curvature to spacetime is not an
absolute, but a model-dependent statement. Notice fur-
thermore that, according to teleparallel gravity, torsion
has already been detected: it is responsible for all grav-
itational phenomena, including the physics of the solar
system, which can be re-interpreted in terms of a force
equation with torsion playing the role of force. A reap-
praisal of cosmology based on teleparallel gravity could
provide a new way to look at the universe, eventually

unveiling new perspectives not visible in the standard
approach based on general relativity.

Not only cosmology, but many other gravitational
phenomena would acquire a new perspective when an-
alyzed from the teleparallel point of view. For instance,
in teleparallel gravity there is a tensorial expression for
the energy-momentum density of gravitation alone, to
the exclusion of inertial effects. Gravitational waves
would no longer be interpreted as the propagation of
curvature-perturbation in the fabric of spacetime, but as
the propagation of torsional field-strength waves. Fur-
thermore, similarly to the teleparallel gauge potential,
a fundamental spin-2 field should be interpreted, not as
a symmetric second rank tensor, but as a translational-
valued vector field [11.42]. Most importantly, teleparal-
lel gravity seems to be a much more appropriate theory
to deal with the quantization of the gravitational field.
We can then say that this theory is not just equivalent to
general relativity, but a new way to look at all gravita-
tional phenomena.
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12. Gravity and Spacetime: An Emergent Perspective

Thanu Padmanabhan

Classical general relativity treats spacetime as
a continuum just as fluid dynamics treats a fluid
as a continuum. Boltzmann was the first to em-
phasize that the thermal phenomena exhibited
by a fluid – e.g., its ability to retain and trans-
fer heat – implies the existence of microstructure.
Today we know of several examples of spacetimes
that exhibit thermal phenomena, which raises the
following questions: Could it be that spacetime
itself has a microstructure and classical gravity
is just the thermodynamic limit of the statisti-
cal mechanics of these atoms of spacetime? If
so, does classical gravity show evidence of this
feature? Several recent results suggest that this
could indeed be the case. This article describes
the context, concrete results, and implications of
this approach which views gravity as an emergent
phenomenon.
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12.1 Introduction, Motivation, and Summary

Recent results suggest that gravity could be an emer-
gent phenomenon, like fluid mechanics or elasticity,
with the field equations governing gravitational dynam-
ics having the same status as, say, the equations of
fluid mechanics. This alternative perspective for clas-
sical gravity appears to be conceptually more satisfying
than the standard perspective in certain aspects [12.1–
3]. This article describes several aspects of this alternate
paradigm and its consequences.

The context in which such an approach arises is the
following. We will assume that there are certain pre-
geometric variables underlying the spacetime structure
and that there exists a microscopic theory describing

their dynamics. If we think of continuum spacetime as
conceptually analogous to a continuum description of
a fluid, the microscopic – quantum gravitational – de-
scription is analogous to statistical mechanics of the
molecules of the fluid. (That is, the pregeometric vari-
ables will be the atoms of spacetime.) The exact theory
should allow us to construct, in a coarse-grained long
wavelength limit, a smooth spacetime and the effective
degrees of freedom (like the metric tensor) in terms of
pregeometric variables. This procedure is analogous to
the definition of variables like pressure, temperature,
etc., for a fluid in terms of microscopic variables. The
dynamical equations of the microscopic theory will also
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lead to some effective description for the emergent de-
grees of freedom. For example, given the microscopic
picture of molecules moving randomly inside a con-
tainer and colliding with the walls, one can obtain
the ideal gas law PV D NkBT governing the macro-
scopic (emergent) variables like pressure, temperature,
etc. Similarly, once we have the correct theory of quan-
tum gravity (in terms of pregeometric variables), we
should be able to obtain the field equations governing
the spacetime geometry by a suitable long wavelength
description.

Such an approach, unfortunately, works only when
we know the underlying microscopic theory. How do
we proceed when we do not know the underlying the-
ory, which is the current situation? In the case of normal
matter, this was indeed the situation a couple of cen-
turies back and physicists could successfully describe
the behavior of matter using thermodynamic concepts,
even before we understood the molecular structure of
matter. The emergent paradigm for gravity is a similar
attempt to describe gravity in a thermodynamic lan-
guage, given the fact that we do not know the exact,
microscopic description of spacetime.

In the case of normal matter, the evidence for the ex-
istence of microscopic degrees of freedom is provided
by the elementary observation that matter can be heated
up. Boltzmann strongly emphasized the fact that matter
can store and transfer energy in the form of heat only
because it contains microscopic degrees of freedom. If
a fluid admits continuum description all the way and
has no internal degrees of freedom, it cannot store heat
or have a useful notion of temperature. In other words,
the existence of thermal phenomena provides strong in-
ternal evidence that continuum fluid mechanics misses
some essential aspect of physics. This is clearly seen, in
the case of an ideal gas, if we write

NkB D
PV

T
: (12.1)

The quantities on the right-hand side are well defined
and meaningful in thermodynamics, but the N on the
left-hand side has no physical meaning in thermody-
namics. It counts the number of microscopic degrees
of freedom of the gas and is irrelevant in the strictly
continuum limit. With hindsight, we now know that the
existence of the gas constant RD NkB for a mole of gas
has a microscopic interpretation related to the internal
degrees of freedom. This is one example in which we
could have guessed (as Boltzmann did) the existence of
microscopic degrees of freedom – and even counted it,

as the Avogadro number for a mole of gas – from the
existence of thermal phenomena in normal matter.

In a similar vein, it makes sense to ask whether the
continuum description of spacetime dynamics exhibits
evidence of a more fundamental level of microscopic
description in terms of atoms of spacetime. It would,
of course, be impossible to describe the precise statisti-
cal mechanics of such microscopic degrees of freedom
knowing only the continuum description of spacetime,
just as one could not understand the constituents of
matter in the days of Boltzmann. However, it must be
possible to provide internal evidence strongly suggest-
ing the existence of such atoms of spacetime by probing
the continuum theories of gravity.

The first task of the emergent paradigm that is de-
scribed here is to provide such internal evidence by
closely examining classical theories of gravity. We will
discuss several peculiar features in the structure of
classical gravitational theories, which have no expla-
nation within the standard framework and have to be
accepted as just algebraic accidents. It turns out that
these peculiar features provide us with hints about the
underlying microscopic theory. In that sense, they are
conceptually similar to the equality of inertial and grav-
itational mass (which could have been thought of as
an algebraic accident in Newtonian gravity but finds
a deeper explanation when gravity is treated as space-
time geometry) or the fact that matter can be heated up
(which defied a fundamental explanation until Boltz-
mann postulated the existence of microscopic degrees
of freedom). These features strongly suggest interpret-
ing classical gravity as an emergent phenomenon with
its field equations having the same status as equations of
fluid mechanics or elasticity. Careful analysis of classi-
cal gravity (with one single quantum mechanical input,
viz., the Davies–Unruh temperature [12.4, 5] of local
Rindler horizon) leads us to this conclusion.

In the context of normal matter, a more formal
link between microscopic and macroscopic descrip-
tion is established by specifying certain thermodynamic
potentials like entropy, free-energy, etc., as suitable
functions of emergent variables like pressure, temper-
ature, etc. The functional form of these potentials can,
in principle, be derived from microscopic theory but is
postulated phenomenologically from the known behav-
ior of the macroscopic systems when we do not know
the microscopic theory. Similarly, if the ideas are cor-
rect, we would expect such a thermodynamic approach
to work in this case of spacetime as well. It should be
possible to write down, say, an entropy or free energy
density for spacetime in terms of suitable variables, the



Gravity and Spacetime: An Emergent Perspective 12.1 Introduction, Motivation, and Summary 215
Part

B
|12.1

extremum of which should lead to a consistency con-
dition on the background spacetime – which will act
as the equation of motion. Such a consistency condi-
tion arises even in normal thermodynamics, though it is
not often stated as such. For a gas of N molecules in
a volume V, we can express the kinetic energy and mo-
mentum transfer through collisions to the walls of the
container per unit area and time, entirely in terms of the
microscopic variables of the molecules. Coarse grain-
ing these we obtain the macroscopic variables T and P.
The equations of microscopic physics now demand the
consistency condition

�
mean momentum transfer to walls

per unit time per unit area

�

.mean kinetic energy/
D

N

V
D

P

T
;

(12.2)

between the two coarse-grained variables. It will be
shown in Sect. 12.5 that such an approach is indeed pos-
sible to obtain the field equations of gravity.

In the case of normal matter, the laws of thermody-
namics hold for all kinds of matter and do not depend
on the kind of matter (ideal gas, liquid crystal, metal,
. . . ) one is studying. The information about the specific
kind of matter that one is studying is provided by the
specific functional form of the thermodynamic potential
say, free energy F D F.T;V/. Similarly, the thermody-
namic framework is capable of describing a wide class
of possible gravitational field equations for the effective
degrees of freedom. Which of these field equations ac-
tually describe nature depends on the specific functional
form of the thermodynamic potential, say, the entropy
density of spacetime. It turns out that this information
is encoded in a tensor Pab

cd , which I call the entropy
tensor, and the nature of the resulting theory depends
on the dimension of spacetime. In particular, if DD 4,
the thermodynamic paradigm selects Einstein’s theory
uniquely under some very reasonable assumptions.

This approach can be thought of as a top-down
view (in real space, like zooming into a Google map of
terrain!) from classical gravity to quantum gravity. Spe-
cific quantum gravitational models which approach the
problem bottom-up have to maintain consistency with
the features of classical gravity described in the sequel.
In particular, this approach makes precise the task of
the microscopic quantum gravity model. It should lead
to a specific functional form for the entropy or free en-
ergy density of spacetime, just as microscopic statistical
mechanics will lead to a specific entropy (or free en-
ergy) functional for a material system. In this sense,

the emergent approach complements microscopic ap-
proaches based on toy models of quantum gravity. Such
a perspective also implies that quantizing any classical
gravitational field will be similar to quantizing equa-
tions of fluid dynamics or elasticity. Gravitons will be
just like phonons in a solid. Neither will give us insights
into the deeper microstructure (spacetime or atoms).

The alternative paradigm has important implica-
tions for cosmology and, in fact, suggests linking cos-
mology with the emergence of space itself in a special
manner. The last part of the article will describe the
implications of this paradigm for cosmology and new
features that are arising [12.3].

The idea that gravity is an emergent phenomenon
has a long history. Sakharov [12.6] was probably the
first to suggest (in 1968) an analogy between spacetime
dynamics and elasticity, although the way he imple-
mented the ideas was rather restrictive. Bei-lok Hu,
Volovik, and others have emphasized such points of
view since the mid-1990s [12.7, 8], and a concrete
procedure to obtaining Einstein’s field equations from
thermodynamic argument was attempted in 1995 by
Jacobson [12.9]. These ideas have been generalized
significantly to cover a much wider class of gravi-
tational theories and have also been explored from
widely different perspectives by this author and his
collaborators [12.1–3] in the last decade. This chap-
ter will concentrate on the work of the author and his
collaborators.

The chapter is set out as follows: in the next
section, the conventional approach to classical gravita-
tional theories is rapidly reviewed, emphasizing some
of its curious features. Section 12.3 introduces quan-
tum mechanics into the picture through Davies–Unruh
temperature and describes the notions of temperature
and entropy which can be associated with null surfaces
that act as horizons for a particular class of observers.
In Sect. 12.4, the intimate relationship between field
equations of gravity and thermodynamics of horizon
is discussed from different points of view. Building
on this background, Sect. 12.5 provides an alternative
perspective in which the gravitational dynamics is ob-
tained from a thermodynamic extremum principle. Last
two sections describe some key new implications of the
emergent paradigm for cosmology. Section 12.6 dis-
cusses how one could think of space itself as emergent
in the context of cosmology and Sect. 12.7 shows how
these ideas might solve one of the most puzzling prob-
lems of theoretical physics, viz. the numerical value
of the cosmological constant. The final section briefly
summarizes the conclusions.
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12.2 Curious Features in the Conventional Approach to Classical Gravity

Given the success and elegance of general theory of rel-
ativity, it is probably important to begin by answering
a question like Why fix it when it works? for classi-
cal gravity. So let us start by critically reviewing the
conventional approach and discussing several of its pe-
culiarities. It is useful for this purpose to distinguish the
kinematical structure of gravitational theory from the
dynamics which is encoded in the field equation.

12.2.1 Kinematics of Gravity
and the Ubiquity of Horizons

Using a fairly natural interpretation of the principle of
equivalence and the principle of general covariance, it
is possible to conclude that the kinematics of gravity is
closely linked to the spacetime structure and can be de-
scribed by the metric tensor gij.xa/. Given a metric, and
the associated spacetime geometry, one can write down
the covariant equations of motion for matter fields and
work out how gravity makes matter move. The usual
beauty and elegance attributed to Einstein’s general rel-
ativity, arise from this natural kinematic description of
gravity in terms of the geometry of spacetime. The al-
ternative perspective that is described later retains this
kinematic structure and hence loses none of this ele-
gance. (In addition, as we shall see, it will describe the
dynamics of gravity as well from a nice principle.)

Even at the level of kinematics, the geometrical de-
scription introduces two new features which have no
analog in other areas of physics.

First, the principle of equivalence – along with
a judicious set of thought experiments – implies that
gravity influences the propagation of light and hence
affects the causal structure of spacetime. It is possible
to write down metrics gij.xa/ such that there are re-
gions in spacetime which cannot communicate with the
rest of the spacetime because of the nontrivial causal
structure. Unless we introduce some principle to ex-
clude such metrics – and no such principle is likely to
exist, for reasons described below – it is obvious that
the amount of information accessible to different ob-
servers will be different. This does not happen in any
other physical theory; in the absence of gravity one can
introduce global inertial frame in flat spacetime which
has a standard causal structure.

Second, the principle of general covariance implies
that all observers, moving along any (nonspace-like)
world line, have an equal right to study and describe
physics. In flat spacetime, since there exists a global in-

ertial frame with the metric gab D �ab, it makes sense
to give special status to inertial observers. Noninertial
observers may see certain phenomenon which inertial
observers do not see but we do have a right to treat
inertial observers as special. Mathematically one can
attribute all the difference between the actual metric
gab and the flat metric �ab to the choice of coordinates.
However, in a curved spacetime (i. e., in the presence
of gravity), there is no global inertial frame; we can no
longer say how much of gab is due to coordinate choice
and how much of it is due to genuine curvature. Locally,
the freely falling frame (FFF) takes away the effects of
the coordinate system and leaves only the imprint of
curvature; but one cannot do this globally so we should
be prepared to treat all observers (and their coordinate
systems) as equal. Again, this does not happen in other
theories; while one can use noninertial coordinates for
technical convenience the global inertial frame remains
special.

Combining these two features leads to an impor-
tant consequence viz., horizons are ubiquitous. One
can construct a noninertial coordinate system in flat
spacetime in which a class of observers (say, for exam-
ple, uniformly accelerated observers which we will call
Rindler observers) will perceive a horizon and will use
a nontrivial metric. These observers will view physi-
cal phenomena differently from inertial observers in flat
spacetime – which should be accepted as an inevitable
consequence of general covariance and the principle
of equivalence. All one can wish for is a clear dictio-
nary translating the physical phenomena as viewed by
observers in different state of motion, in spite of limita-
tions of causality implied by a nontrivial metric.

These features do not create any serious issues in
classical physics and it is fairly easy to discuss classical
phenomena in a general covariant manner. However, it
turns out that quantum field theory introduces of certain
amount of conceptual tension vis-a-vis the principle
of general covariance. This will be one of the central
themes running through this article.

12.2.2 The Troubles
with Gravitational Dynamics

To complete the picture, we need some prescription for
determining the form of the metric tensor at all events
in spacetime. The conventional view has been to think
of the metric tensor as akin to a field, write down an
action principle, and obtain a differential equation that
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determines the metric tensor. While such an approach
proved very successful in other areas of physics, it is
not at all clear – a priori – why the dynamics of the
spacetime geometry should be derivable from an action
principle.

This question brings to sharp focus the dual nature
of gravity which behaves as a field as well as playing a
role in determining the spacetime structure. The kine-
matics of gravity mostly makes use of the geometrical
nature of gravity with the metric tensor being prede-
fined on a differential manifold, etc. But an attempt
to write down a variational principle to arrive at the
equations which determine the evolution of the metric
tensor, arises from the view that gravity also behaves
like a field. It is entirely conceivable that the description
of spacetime may need a totally different approach! All
that one needs is some physical principle which leads
to the necessary differential equations and, in the later
sections, we will describe a viable alternative to the
standard interpretation. However, for the moment, let us
assume that we are interested in writing down a scalar
Lagrangian that will lead to the differential equations
governing the evolution of the metric.

We immediately face the difficulty that we have
no elegant governing principle to choose such a La-
grangian. For example, if we take the view that gravity
is like a field seriously, we will look for a Lagrangian
which is quadratic in the derivatives of the metric. How-
ever, there are no scalars that can be built from the
metric and its first derivatives, which is quadratic in the
first derivatives, unlike in other field theories. (There
are, of course, ways of getting around these problems
by technical artifacts, but the fact remains that the sim-
plest and most natural ideas run into trouble.) So, in
contrast to the kinematics of gravity, the dynamics of
gravity is crying out for a fundamental physical princi-
ple for its determination.

This should give us a warning that it may be wrong
to think of gravity as a field; but let us ignore this and
carry on forward. Then the simplest choice – which
turns out to be adequate and even unique in a sense
described below – would be to choose a Lagrangian
L
�
Rab

cd ; g
ij
�

which depends on the curvature Rab
cd and the

metric but not on the derivatives of the curvature. (Most
of the conceptual comments made here will go through
even if the Lagrangian depends on the derivatives of the
curvature tensor.)

The next problem we face is that actions defined us-
ing such scalars do not possess a functional derivative
with respect to metric; that is, we cannot have a well-
defined variational principle when we fix the metric

alone on the boundary of a region. Once again, we
need to do something special for gravity – either impose
somewhat unusual boundary conditions or add some
surface term to cancel unwanted terms in the variation.
If we do this, we obtain the following field equation:

Gb
a D Pde

acRbc
de � 2rcrdPdb

ac �
1

2
Lıb

a

�Rb
a �

1

2
Lıb

a D
1

2
Tb

a ;

Pab
cd �

�
@L

@Rcd
ab

�
;

(12.3)

where Tab is the stress tensor of matter. The term Rab is
actually symmetric but it is nontrivial to prove this re-
sult [12.10]. We thus see that the dynamics is encoded
in the tensor Pab

cd , which also has the symmetries of
the curvature tensor. Given a particular spacetime with
a certain curvature tensor, we determine its dynamics
using Pab

cd with different Pab
cds leading to different dy-

namics.
In general, (12.3) will contain fourth-order deriva-

tives of the metric tensor and it is not clear whether
one would like to allow this. In the conventional ap-
proach, when we think of the metric as akin to a field,
it seems reasonable to limit ourselves to equations of
motion that are second order in derivatives which can
be achieved by choosing L such that raPabcd D 0. In-
terestingly enough, one can determine [12.11, 12] the
most general scalar functionals L.Rab

cd ; g
ij/ satisfying

this condition. These scalars are, in fact, independent of
the metric (if we express the Lagrangian as a function
of Rab

cd and gab) and can be expressed as polynomi-
als in curvature tensor Rab

cd contracted with a string of
Kronecker delta functions in the form of determinant
tensors. With this choice, we are led to the (so-called)
Lanczos–Lovelock models with the field equations

Pde
acRbc

de �
1

2
Lıb

a DRb
a �

1

2m
Rıb

a D
1

2
Tb

a I

Rb
a � Pde

acRbc
de ; RDRa

a :

(12.4)

The second form of the equation is valid for the
m-th order Lanczos–Lovelock model for which RD
Rab

cd

�
@L=@Rab

cd

�
D mL. In the simplest context of mD 1

we take L/ RD R=16� (with conventional normal-
ization), leading to Pab

cd D .32�/�1
�
ıa

c ı
b
d � ı

a
dı

b
c

�
, and

Ra
b D Ra

b=16�;Ga
b D Ga

b=16� so that one recovers Ein-
stein’s equations. (It is easy to see that in DD 4 we
recover Einstein’s theory uniquely. Thus, if one insists
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that DD 4 and that the Lagrangian should be built from
Rab

cd and Kronecker deltas, we obtain Einstein’s theory.)
This action functional for the Lanczos–Lovelock

model has several peculiar features which again should
warn us that maybe we have not really understood the
nature of gravitational dynamics.

First, as we have already mentioned, the functional
derivative of L with respect to gab does not exist, due to
the presence of second derivatives of the metric. This is
usually tackled by adding some surface terms. These
surface terms are neither unique – a fact not usually
appreciated by many, who think the York–Gibbons–
Hawking surface term [12.13, 14] proportional to K is
unique in GR, which it is not [12.15, 16] – nor simple
for Lanczos–Lovelock models (see, e.g., [12.17]); the
mere fact that we have to do it, is a strange feature of
gravitational theories.

A second, and related, peculiarity is that one can
separate the Lanczos–Lovelock Lagrangian into bulk
and surface terms (LD LbulkC Lsur) connected by a pe-
culiar relation

p
�gLsur D�@a

�
gij
ı
p
�gLbulk

ı.@agij/

�
; (12.5)

thereby duplicating the information in bulk and bound-
ary terms [12.18]. All Lanczos–Lovelock action func-
tionals have this structure [12.19] and nobody knows
why. In fact, in a small region around any event P,
the Einstein–Hilbert action reduces to a pure surface
term when evaluated in the Riemann normal coordi-
nates, suggesting that the dynamical content is actually
stored on the boundary rather than in the bulk. We will
keep coming across such correspondence between bulk
and boundary behavior (all of which we will call holo-
graphic) as we go along. No such issues (bulk and
boundary terms, nonexistence of functional derivative
without extra prescriptions, etc.) arise in any other field
theory, including nonabelian gauge theories.

Third, the fact that RD LbulkCLsur in Einstein grav-
ity, with the two terms being related by (12.5), suggests
that Einstein–Hilbert action should be thought of as
a momentum-space action [12.15, p. 292]. This is clear
if we use f ab �

p
�ggab as the dynamical variables and

with the associated momenta

Ni
jk �

@.
p
�gLbulk/

@ .@if jk/

D�

�
� i
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1

2

�
ıi
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a
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a
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��
:

(12.6)

Then it is easy to show that

ı.
p
�gR/D

p
�gGabıg

ab� @i
�
f jkıNi

jk

�
; (12.7)

so that equations of motion will arise from ıAEH D 0 if
we fix the momenta Ni

jk on the boundary. If we decide
not to add any surface term to Einstein–Hilbert action,
then we can still obtain the field equations if we demand

ıAEH D�

Z
@V

d3x
p

hnig
jkıNi

jk ; (12.8)

instead of the usual ıAEH D 0. This looks more like the
change in the bulk property being equated to a change
in the surface property rather than standard action prin-
ciple. As we shall see later, all these features have
thermodynamic interpretation.

Finally, there is another curious aspect related to
the surface term in Einstein–Hilbert action. When we
introduce an action functional to describe the dynam-
ics of gravity, we are clearly relying on the idea that
gravity is similar to other fields in nature and when
quantized it will lead to the concept of gravitons. In
standard quantum field theory action is dimensionless
and all fields will have the dimension of inverse length,
in natural units. In the case of a gravitational field, we
associate a second rank symmetric tensor field, Hab,
to describe the graviton and write the metric gab as
gab D �abC	Hab, where 	 is a constant with dimen-
sions of length. (In normal units, 	2 D 16�.G„=c3/.)
We can now use this expansion in Einstein–Hilbert ac-
tion and retain terms up to the lowest nonvanishing
order in the bulk and surface terms to obtain the action
functional in the form:A�AquadCAsur. We then find
that A matches exactly with the action for the spin-2
field known as Fierz–Pauli action (see, e.g., [12.20]) but
the surface term – which is usually ignored in standard
field theory – is nonanalytic in the coupling constant

Asur D
1

4	

Z
d4x@a@b



Hab� �abHi

i

�
CO.1/ :

(12.9)

In fact, the nonanalytic behavior of Asur on 	 can be
obtained from fairly simple considerations related to
the algebraic structure of the curvature scalar. In terms
of a spin-2 field, the final metric is gab D �abC	Hab,
where 	/

p
G has the dimension of length and Hab has

the correct dimension of (length)�1 in natural units with
„ D cD 1. Since the scalar curvature has the structure
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R' .@g/2C@2g, substitution of gab D �abC	Hab gives
to the lowest order

LEH /
1

	2
R' .@H/2C

1

	
@2H : (12.10)

Thus even the full Einstein–Hilbert Lagrangian is non-
analytic in 	 because of the surface term, which has no
interpretation in terms of gravitons.

If we choose to ignore these peculiarities and de-
cide to treat gravity naively as some kind of a field,
then, as far as classical description goes, the story ends
here. We may postulate DD 4 and work out the con-
sequences of the theory and determine any parameters
(e.g., Newton’s constant and the cosmological constant)
by comparing theory with observation – which is what
we were taught to do in the grad school. The most se-
rious inconsistency we will then face is that the theory
is incapable of answering well-posed questions as re-
gards some of its solutions. Like, for example, what is

the fate of matter in the context of gravitational collapse
to a singularity as viewed by an observer freely falling
into the singularity or what happened to our universe
at sufficiently early times, etc. The existence of math-
ematical singularities leads to a lack of predictability
in the theory, showing that the theory – at the least –
is incomplete. This, coupled to the fact that sources of
gravity are known to obey quantum laws, suggest that
the more complete theory could be quantum mechanical
in nature.

Since all attempts to construct a quantum theory
of gravity using the conventional tools of high energy
physicists – which were so successful in other con-
texts – have failed, it makes sense to study areas of
contact and conflict between gravity and quantum the-
ory with the hope that we will obtain some clues. As
we will see, such a study reemphasizes the view that
one should not approach the dynamics of gravity as the
dynamics of some kind of a field.

12.3 Quantum Theory and Spacetime Horizons

The author believes the single most important guid-
ing principle we can use, in understanding the quantum
structure of spacetime, is the thermodynamic proper-
ties of null surfaces. In fact, these phenomena could
be considered as important as the equality of inertial
and gravitational masses (which was used by Einstein
to come up with the geometric description of gravity)
or the fact that normal matter can store heat (which was
used by Boltzmann to work out the existence of micro-
scopic degrees of freedom in matter). Let us elaborate
on this point of view.

12.3.1 Observer-Dependent Temperature
of Null Surfaces

The original idea, due to Bekenstein, that black hole
horizons should be attributed an entropy found strong
support from the discovery of the temperature of the
black hole horizon by Hawking [12.21, 22]. One might
have thought that these are just couple of more esoteric
features special to black holes except for the discovery
by Davies and Unruh [12.4, 5] (and the work of many
others later) which showed that even Rindler observers
in flat spacetime will attribute temperatures to the hori-
zons they perceive. In fact, the situation is more general
because one could introduce the notion of local Rindler
observers around any event in any spacetime along the
following lines.

Take any event P in any spacetime and construct
the Riemann normal coordinates (Xi) around that event
as the origin so that gab D �abCO.X2/. Observers at X
= constant are locally inertial observers around P. We
can now construct local Rindler observers (and the cor-
responding local Rindler frame, LRF, with coordinates
xi) who move, say, with an acceleration � along the X
direction. These observers will perceive the null surface
X D T as a local Rindler horizon and will attribute to it
a temperature �=2� .

The existence of such a local description can be
easily understood by analytically continuing the metric
around P into the Euclidean sector. The null surfaces
X2 � T2 D 0 will map to the origin of the Euclidean
TE�X plane and the Rindler observers (following xD
constant world lines) will have Euclidean trajectories
X2CT2

E D constant, which are circles around the ori-
gin. The Euclidean Rindler time coordinate tE will be
periodic with a period .2�=�/. Thermal phenomena of
approximately local nature will arise as long as the ac-
celeration does not change significantly over this period
of the Euclidean time; this translates to the condition
P�=�2� 1, which can always be achieved by choosing
sufficiently large �. Thus, observers close to the Eu-
clidean origin, orbiting on circles of very small radius,
will provide a local description of the thermal phenom-
ena. (The Euclidean description of null surfaces has
another advantage. Since the region beyond the hori-
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zon is not accessible to the local Rindler observer, it
seems appropriate to construct an effective field theory
for this observer in a spacetime which has only the re-
gion accessible to it. The inaccessible region behind the
null surfaces collapses to a point at the origin in the Eu-
clidean description leaving only the region accessible to
the local Rindler observer for the study of physical phe-
nomena.) The nature of the geometry far away from P
becomes irrelevant in the limit of �!1.

The same conclusions can also be reached by an-
alyzing an observer close to its event horizon of, say,
a Schwarzschild spacetime. With a suitable coordinate
choice, the Schwarzschild metric can be approximated
as a Rindler metric near the horizon, with � replaced by
the surface gravity of the black hole. An observer very
close to the event horizon, performing quasi-local ex-
periments (at length scales that are small compared to
curvature scale) has no way of distinguishing between
a Rindler coordinate system in a flat spacetime and
the black hole spacetime, because the results of quasi-
local observations performed by an observer should
not depend on the nature of the geometry far away. It
follows that local Rindler observers must attribute to
their horizons the standard thermodynamic properties
if black hole horizons exhibit thermal properties. This
argument also shows that the local Rindler observers
will attribute an entropy density to the Rindler hori-
zon – which is just a null surface in flat spacetime –
if black hole horizons are attributed an entropy den-
sity. What matters are the operationally well-defined,
quasilocal observations, by which one cannot distin-
guish the thermodynamic features of Rindler horizon
in flat spacetime from the event horizon of black holes.
Freely falling observers will see nothing special while
crossing either horizon, while observers accelerated
with respect to the FFF will attribute thermal properties
to both horizons.

Thus combining the principles of quantum theory
(in the form of the Davies–Unruh effect in local Rindler
horizons) with standard description of gravity leads
to associating an observer-dependent temperature, en-
tropy density, etc., to all null surfaces in spacetime. So
spacetimes, like matter, appear to be hot to some ob-
servers. Let us explore the consequences of this.

12.3.2 Observer-Dependent Entropy
of Null Surfaces

Given a particular metric which has a horizon with re-
spect to a certain class of observers, one can work out
the quantum field theory in that spacetime and deter-

mine the temperature of the horizon. For slowly varying
horizons (with P�=�2� 1) such an analysis will lead to
a temperature �=2� . This result has nothing to do with
the dynamics of gravity and it does not care about the
field equations (if any) for which the given metric arises
as a solution. In fact, once we approximate a nonex-
tremal, slowly varying horizon as a Rindler horizon,
the results translate to those which we know in flat
spacetime itself and thus cannot depend on the field
equations. This is to be expected because, even in the
case of normal matter, the temperature contains very lit-
tle information about the structure of the matter heated
to that temperature.

One might have thought that the analysis that leads
to temperature will also lead to an expression for en-
tropy which is independent of the theory. Indeed, there
exists an entropy SD�� log � (called the entanglement
entropy) associated with the thermal density matrix
� / exp.�ˇH/ of the matter field in the presence of
the horizon. It turns out, however, that this is not the
entropy associated with the horizon, for two reasons.
To begin with it is divergent and hence its value de-
pends on the cut-off used; so it is useless for predicting
anything. Second, the entanglement entropy is always
proportional to the area of the horizon but the cor-
rect entropy (which will obey the appropriate laws of
black hole physics, for example) is not proportional to
the area except in Einstein’s theory. (The situation is
slightly different in the emergent paradigm where one
can argue that the regularization procedure needs to be
modified but in a Lorentz invariant manner. Then, us-
ing a generalization of ideas described in [12.23–27],
one can possibly tackle this issue. We will not this
discuss here; for more details, see [12.28]) The cor-
rect entropy of a horizon depends on the theory and
arises in a manner which defies simple interpretation
in the conventional approach. There are two mathe-
matically well-defined procedures for computing the
correct entropy of horizons and I will now describe
them. In the conventional approach, we have no idea
why either procedure should lead to a thermodynamic
quantity.

Entropy from Diffeomorphism Invariance
In the first method, one proceeds in the following man-
ner [12.29, 30]. In any theory with a generally covariant
action, the invariance of the action under infinitesi-
mal coordinate transformation xa! xaC qa.x/ leads
to the conservation of a Noether current Ja related to
the Noether potential Jab (which depends on qa) by
Ja �rbJab. In the case of the Lanczos–Lovelock mod-



Gravity and Spacetime: An Emergent Perspective 12.3 Quantum Theoryand Spacetime Horizons 221
Part

B
|12.3

els, these are given by

Jab D 2Pabcdrcqd ;

Ja D 2Pabcdrbrcqd :
(12.11)

The entropy of the horizon is then given by the surface
integral

SNoether �
1

T

Z
dD�2˙ab Jab

D
1

4

I
H

�
32�Pab

cd

�
�ab�

dc d� ;
(12.12)

where T D ˇ�1 D �=2� is the horizon temperature and
qa D �a, where �a is the local Killing vector corre-
sponding to time translation symmetry of the LRF. In
the final expression the integral is over any surface with
.D� 2/ dimension, which is a space-like cross-section
of the Killing horizon on which the norm of �a vanishes,
with �ab denoting the bivector normal to the bifurcation
surface.

In Einstein’s theory, with 32�Pab
cd D

�
ıa

c ı
b
d � ı

a
dı

b
c

�
,

the entropy will be one quarter of the area of the hori-
zon. However, in general, the entropy of the horizon is
not proportional to the area and depends on the theory.
(Even in Einstein’s theory, the thermodynamical vari-
ables T and S have strange limiting behavior which is
not well understood. For example, the flat spacetime
can be thought of as the M! 0 of the Schwarzschild
metric or as the H! 0 limit of de Sitter spacetime.
In the first case, the entropy SD 4�M2 vanishes as to
be expected for flat spacetime but the temperature T D
.1=8�M/ diverges. In the second case, the tempera-
ture T D .H=2�/ does vanish but the entropy SD �=H2

diverges. These features probably indicate the non-
perturbative nature of spacetimes with horizons when
considered as excitations of the gravitational vacuum
represented by flat spacetime). This feature again shows
that, as mentioned before, the entanglement entropy
cannot be identified with the entropy of the Lanczos–
Lovelock models, since the horizon entropy is given in
terms of Pab

cd , which we may call the entropy tensor of
the theory.

The knowledge of the functional dependence of S
on �ab (or the dependence of Jab on riqj), say, is equiv-
alent to the knowledge of Pab

cd and – consequently – the
field equations of the theory through (12.4). One could
think of spacetime having two tensors Rab

cd and Pab
cd as-

sociated with it. The first one describes curvature while
the second one describes the entropy of null surfaces.

These two tensors are related by Pab
cd D @L=@Rcd

ab which
is reminiscent of thermodynamic duals with L being
some thermodynamic potential. The field equations,
(12.4), of the theory are determined by the product of
entropy tensor and curvature tensorRb

a � Pde
acR

bc
de so that

different entropy tensors Pab
cd will lead to different field

equations for the same spacetime geometry. This seems
to give a nice separation of the dynamics of spacetime
and encode it in its entropy.

All these features – in particular why diffeomor-
phism invariance should have anything to do with
a thermodynamic quantity like the horizon entropy – are
mysterious in conventional approaches but we will see
later that all these ideas fit naturally with the emergent
perspective.

Entropy from the Surface Term
in the Action Functional

There is an alternative way of computing the same hori-
zon entropy – from the surface term of the gravitational
action – which also defies physical interpretation in the
conventional approach. Recall that the field equations
can be obtained by varying only the bulk term (e.g., � 2

term in Einstein’s theory) in the action ignoring (or by
canceling with a counterterm) the surface term in the
action. However, if we evaluate the surface term on the
horizon of any solution to the field equations of the the-
ory, we obtains the entropy of the horizon when we fix
the range of time integration using the periodicity in the
Euclidean time!

For example, in Einstein’s theory, we have

16�Lsur D @c.
p
�gVc/

with [12.15, eq (6.15)]

Vc D�.1=g/@b
�
ggbc

�
;

while the Gibbons–Hawking–York counterterm is the
integral of K=8� over the surface. If we use a Rindler
approximation to the near horizon metric (with �g00 D

1=gxx D N2 D 2�x and evaluate these on N D const sur-
face we will obtain

1

8�

Z
x

dt d2x
?

p
hK D

1

16�

Z
x

dt d2x
?

Vx

D˙t

�
�A
?

8�

�
;

(12.13)

where A
?

is the transverse area. (The sign depends
on the convention chosen for the outward normal or
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whether the contribution of the integral is taken at
the inner or outer boundaries; see e.g., the discussion
in [12.31, 32].) In the Euclidean sector the range of time
integration is .0;2�=�/, which leads to, with a proper
choice of sign,

AE
sur D

1

4
A
?

; (12.14)

which is the entropy. More generally, a static, near-
horizon geometry can be described by the met-
ric [12.33–35]

ds2 D�N2 dt2C dl2C �AB dxA dxB ; (12.15)

where N and �AB have near-horizon behavior of the
form

N D �lCO.l3/ I �AB D �AB.x
A/CO.l2/ ; (12.16)

where lD 0 is taken to be the location of the horizon.
The integrals in (12.13) again lead to the same result.

This raises the question:

How does the surface term, which was discarded
before the field equations were even obtained, know
about the entropy associated with a solution to those
field equations?!

The only explanation seems to lie in the duplication of
information between surface and bulk terms described
by the relation in (12.5). However, if a part of the ac-
tion functional is the entropy, it makes sense to look for
a thermodynamic interpretation to the full action func-
tional! So maybe we have been deriving field equations
by extremizing a thermodynamic potential rather than
action – a point of view that we will come back to.

Incidentally, note that (12.13) allows us to define
a surface Hamiltonian for a horizon [12.36]. In the
Rindler limit the integrand does not depend on t; y; z,
and hence the result of integration must be proportional
to tA

?

, and we only need to determine the numerical
factor of proportionality. Choosing the minus sign in
(12.13), we can define the horizon surface Hamiltonian
as

Hsur ��
@Asur

@t
D

1

8�

Z
x

d2x
?

p
hK

D

�
�A
?

8�

�
D TS :

(12.17)

This Hamiltonian plays an interesting role in the study
of black hole horizons [12.31, 32] and is closely related

to the phase of the semiclassical wave function of the
black hole. When a semiclassical black hole is in con-
tact with external matter fields, the probability for its
area to change by �A

?

is governed by a Fourier trans-
form of the form

P.�A
?

/D

1Z
�1

dtFm.t/ expŒ�it�Hsur�

D

1Z
�1

dtFm.t/ exp
h
�it

�

8�
�A
?

i
;

(12.18)

where Fm.t/ is a suitable matter variable. Because
of the exponential redshift near the horizon, the time
evolution of Fm.t/ will have the asymptotic form
expŒ�iC exp.��t/� with some constant C. This will
lead to the result that the relative probability for black
hole radiation changing its area by �A

?

is given by
expŒ�A

?

=4�.
One can think of Hsur as the heat content of the

horizon in the emergent perspective because it satisfies
the relation dSD dHsur=T . The corresponding horizon
heat energy per unit area of the horizon, Hsur=A

?

D

�=8� D P appears as the pressure term in the Navier–
Stokes equation obtained by projecting Einstein’s equa-
tion onto the null surface [12.37, 38] and leads to the
equation of state PAD TS (Sect. 12.4.1). This heat en-
ergy per unit area of the horizon, taken to be x1 D const
surface with nc D ı

1
c , is

H D NK

8�
D

1

16�
p
�gVcnc

D�
1

16�
p
�gnc

�
gabNc

ab

� (12.19)

(with a suitable choice of signs), showing that it is also
closely related to gravitational momentum density de-
fined in (12.6).

The existence of horizon entropy is a nonperturba-
tive result [12.20] and has no interpretation in terms of
gravitons. We saw earlier that the surface term is nonan-
alytic in the coupling constant when we write the metric
in terms of a spin-2 graviton field as gab D �abC	Hab

with 	2 D 16�.G„=c3/. Therefore, we cannot interpret
the surface term – and hence – the horizon entropy
(which, as we have seen, can be obtained from the sur-
face term in the action) in the linear, weak coupling
limit of gravity. The fact that horizon degrees of free-
dom which contribute to the entropy are not connected
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with gravitons is also obvious from another fact. There
are black hole solutions in 1+2-dimensional gravity
with a sensible entropy and thermodynamics. However,
in 1+2 dimension there are no propagating degrees of
freedom or gravitons.

We thus have two different procedures for comput-
ing the entropy of the horizon. The first one described
in Entropy from Diffeomorphism Invariance uses the
Noether current related to diffeomorphism, while the
approach developed in this section gives us the surface
term of the action functional. Curiously enough, there
exists a simple connection [12.36] between these two
ways of computing the entropy, which does not seem to
have been emphasized in the literature. The Gibbons–
Hawking–York surface term in general relativity can
also be written as a volume integral

Asur D
1

8�

Z
@V

p
hd3xK

D
1

8�

Z
V

p
�gd4xra.Kna/ ;

(12.20)

where na is any vector which coincides with the unit
normal to the boundary @V of the region V and K D
�rana. Since this expression is a scalar, it also leads to
a conserved Noether current Ja �rbJab corresponding
to the diffeomorphism xa! xaC �a . The Noether po-
tential Jab in this case (see, e.g., [12.39, Appendix]) is
given by

Jab D
K

8�

�
�anb � �bna

�
: (12.21)

An elementary calculation in the LRF now shows that
the Noether charge is given by

Z
dD�2˙abJab D

�A
?

8�
D TSDHsur : (12.22)

In other words, the surface Hamiltonian defined ear-
lier in (12.17) is the same as the Noether charge for
a current obtained from the surface term of the ac-
tion [12.36]. It follows that the entropy corresponding
to this Noether charge, given by (12.12), is the standard
entropy of the horizon

SD
1

T

Z
dD�2˙abJab D

A
?

4
: (12.23)

This provides a direct link between evaluation of the
entropy by the boundary term in the action or from

Noether current; if we use the Noether charge corre-
sponding to the boundary term we obtain the correct
result. As a bonus, we also see that the boundary Hamil-
tonian is the same as the Noether charge.

The connection between a conserved current aris-
ing from the diffeomorphism invariance under xi!

xiCqi and a thermodynamic variable-like entropy is yet
another mystery that defies explanation in the conven-
tional approach and is intimately related to several other
peculiarities to which we have been alluding.

Gravitational Action Functional
as the Free Energy of Spacetime

We mentioned earlier that, since the surface term of
the action gives horizon entropy, the full gravitational
Lagrangian itself is likely to have a direct thermody-
namic interpretation. The Noether potential allows us to
interpret it as the free energy density in any static space-
time with horizon. For any Lanczos–Lovelock model
we have the result (obtained by writing the time com-
ponent of the Noether current for the Killing vector
qa D �a D .1;0/)

LD
1
p
�g
@˛
�p
�gJ0˛

�
� 2G0

0 : (12.24)

Only spatial derivatives contribute in the first term on
the right-hand side when the spacetime is static. In-
tegrating L

p
�g over a spacetime region with time

integration restricted to the interval .0; ˇ/ to obtain the
action, it is easy to see (using (12.12)) that the first
term gives the entropy and the second term can be in-
terpreted as energy [12.40]. Taking the thermodynamic
interpretation as fundamental, one could even argue that
all gravitational actions have a surface and bulk terms
because they give the entropy and energy of a static
spacetime with horizons, adding up to the bulk term to
make the action the free energy of the spacetime. (This
is closely related to the more general result in (12.5)
which holds in general without the assumption of static
spacetime.)

This thermodynamic interpretation of the action is
reinforced by a path integral analysis. Consider the Eu-
clidean path integral of expŒ�Agrav� over a restricted
class of static, spherically symmetric geometries con-
taining a horizon in a Lanczos–Lovelock model. This
path integral can actually be performed and the result-
ing partition function has the form

Z D
X

g

expŒ�Agrav�/ expŒS�ˇE� ; (12.25)
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where S;E are the entropy and energy of the horizon
and ˇ�1 its temperature. This result, originally obtained
in Einstein’s theory [12.41], holds for all Lanczos–
Lovelock models [12.42] with S and E matching with
the corresponding expressions obtained by other meth-
ods.

This duplication of information in (12.5) also allows
one to obtain the full action [12.43] from the surface
term alone in the following manner. Let us consider the
full action obtained from integrating

p
�g.LsurCLbulk/

with the two terms related by (12.5). Since Lbulk is
quadratic in the first derivative of the metric, the ex-
pression in the bracket on the right-hand side of (12.5)
is linear in the first derivatives of the metric. The most
general linear term of this kind can be expressed as
a sum c1gbc� a

bcC c2gab� c
bc. The ratio .c2=c1/ can be

fixed by demanding that this surface term should give
an entropy proportional to the area of a horizon in the
Rindler approximation. Integrating (12.5) and using the
fact that the Rindler metric should be a solution to
the field equation will then lead to [12.43] the stan-
dard expression for Lbulk. It is also possible to construct
a specific variational principle and obtain the field equa-
tions, purely from the surface term [12.44, 45]. More
importantly, since the variation of the surface term gives
the change in the gravitational entropy, we can see
that Rab essentially determines the gravitational en-
tropy density of the spacetime. We will say more about
this later on.

Observer Dependence of All Thermodynamics
One striking conclusion we can draw from the above
results is that all thermodynamic phenomena (including
those of normal matter like a glass of water or a metal
rod) must be observer-dependent. This follows immedi-
ately from the fact that the temperature attributed to the
same vacuum state by an inertial observer and a Rindler
observer is different; the former is zero while the latter
is nonzero. If we now construct highly excited states
of the vacuum (thereby making, say, a glass of water)
by operating on the vacuum state with standard cre-
ation operators, the inertial and Rindler observers will
attribute different temperatures to a glass of water as
well. This, of course, is not of any practical relevance
but assumes significance in the context of spacetime
physics.

As an important aside, let us emphasize a new prin-
ciple of equivalence, which has been brought about by
these results. Consider some temperature sensitive de-
vice, say a microchip with circuits embedded in which
one can measure thermal noise. If we move this mi-

crochip in different trajectories it will show a different
amount of thermal noise and we can choose a trajec-
tory in which the thermal noise is minimum. If we also
check the acceleration of the microchip in these trajec-
tories, we will find that the thermal noise is minimal
when the acceleration is zero! That is, we can define the
inertial motion of microchip either as one in which its
acceleration is zero or the one in which it exhibits mini-
mal thermal noise. This equivalence is highly nontrivial
(and not understood at a deeper level) and arises from
the mathematical similarity of vacuum fluctuations and
thermal fluctuations. So we have a purely thermody-
namic way of determining the geodesics of a spacetime.
In a general situation we get a mix of acceleration
thermodynamics and standard coarse-grained thermo-
dynamics.

We now need to treat the entropy of a system as
an observer-dependent quantity. A local Rindler ob-
server will attribute an entropy density to a null surface
which it perceives as a horizon, while an inertial ob-
server will not attribute any entropy or temperature
to it. The same result holds for a black hole horizon.
A freely falling observer crossing the horizon will not
attribute any special thermodynamic properties to it,
while a static observer hovering outside the horizon
will attribute a temperature and entropy to the horizon.
We are accustomed to thinking of degrees of freedom
(and resultant entropy) as an absolute quantity indepen-
dent of the observer. The examples we discussed above
shows that this is simply not true.

In the light of this, we next conclude that the often
asked (and sometimes even answered!) question:

What are the degrees of freedom that contribute to
the entropy of black hole horizon?

cannot have an observer-independent answer! We need
to introduce the notion of effective degrees of freedom
appropriate for each observer which arises along the
following lines. The full theory of gravity which we
consider is invariant under a very large class of dif-
feomorphisms, xi! xiC qi.x/ for vector fields qi.x/.
However, when we consider a specific class of ob-
servers who perceives a null surface as a horizon, we
should introduce a restricted class of diffeomorphisms
which preserves the form of the metric near the null
surface. Such a restriction upgrades some of the orig-
inal gauge degrees of freedom (that could have been
eliminated by diffeomorphisms which we are now dis-
allowing) to effective (true) degrees of freedom as far
as this particular class of observers is concerned. The
entropy that these observers attribute to the null sur-
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face are related to these degrees of freedom which may
not have any relevance for, say, freely falling observers
around that event. (One possible way of implementing
this idea and obtaining the entropy of the horizons is
explored in [12.39].)

These ideas are also important in understanding the
interplay between horizon temperature and usual tem-
perature of matter. Consider a box of gas at rest in an
inertial coordinate system (X D constant) with the usual
temperature and usual entropy which scales as the vol-
ume of the box. When the world line of this box crosses

the null surface X D T , the inertial observer will see
nothing peculiar. However, a Rindler observer will find
that the box hovers around X D T for an infinite amount
of Rindler time and never crosses it! This will allow the
degrees of freedom of gas to come into thermal equilib-
rium with the horizon degrees of freedom as far as the
Rindler observer is concerned. Further, it will appear to
the Rindler observer that the entropy will scale as the
transverse (yz-plane) area of the box [12.40]. These are
some of the peculiarities which arise due to observer
dependence of thermodynamics.

12.4 Gravitational Dynamics and Thermodynamics of Null Surfaces

All these results suggest a close relationship between
horizon thermodynamics and gravitational dynamics.
Direct evidence for this relationship arises from the
fact that gravitational field equations can be interpreted
as thermodynamic/fluid mechanical equations. We will
now discuss these results.

12.4.1 Field Equations
as Thermodynamic Relations

To begin with, it can be shown that [12.35] the field
equations in any Lanczos–Lovelock model, when eval-
uated on a static solution of the theory which has
a horizon, can be expressed in the form of a ther-
modynamic identity T dSD dEgCPdV. Here S is the
correct Wald entropy of the horizon in the theory, Eg

is a geometric expression involving an integral of the
scalar curvature of the submanifold of the horizon and
PdV represents the work function of the matter source.
The differentials dS; dEg, etc., should be thought of
as indicating the difference in S;Eg, etc., between two
solutions in which the location of the horizon is in-
finitesimally displaced. (For a sample of related results
see [12.46–54]).

To see this result in the simplest context [12.41], let
us consider a static, spherically symmetric spacetime
with a horizon, described by a metric

ds2 D�f .r/c2 dt2C f�1.r/dr2C r2 d˝2 ; (12.26)

where we are using normal units temporarily. The lo-
cation of the horizon is the radius rD a at which the
function f .r/ vanishes, so that f .a/D 0. Using the Tay-
lor series expansion of f .r/ near the horizon as f .r/�
f 0.a/.r� a/ one can easily show that the surface grav-

ity at the horizon is � D .c2=2/f 0.a/. Therefore, we can
associate a temperature

kBT D
„cf 0.a/

4�
; (12.27)

with the horizon. This temperature knows nothing about
the dynamics of gravity or Einstein’s field equations.

Let us next write down the Einstein equation for the
metric in (12.26), which is given by .1� f /� rf 0.r/D
�.8�G=c4/Pr2, where PD Tr

r is the radial pressure of
the matter source. When evaluated on the horizon rD a
this equation becomes

c4

G

�
1

2
f 0.a/a�

1

2

�
D 4�Pa2 : (12.28)

This equation, which is just a textbook result, does not
appear to be very thermodynamic! To see its hidden
structure, consider two solutions to Einstein’s equa-
tions differing infinitesimally in the parameters such
that horizons occur at two different radii a and aC da.
If we multiply (12.28) by da, we obtain

c4

2G
f 0.a/a da�

c4

2G
daD P.4�a2 da/ : (12.29)

The right-hand side is just PdV where V D .4�=3/a3

is what is called the areal volume which is the rel-
evant quantity to use while considering the action of
pressure on a surface area. In the first term, f 0.a/ is pro-
portional to the horizon temperature in (12.27), and we
can rewrite this term in terms of T by introducing a „
factor (by hand, into an otherwise classical equation)
to bring in the horizon temperature. We then find that
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(12.29) reduces to
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:

(12.30)

Each of the terms has a natural – and unique – thermo-
dynamic interpretation as indicated by the labels. Thus
the gravitational field equation, evaluated on the hori-
zon now becomes the thermodynamic identity T dSD
dECPdV, allowing us to read off the expressions for
entropy and energy

SD
1

4L2
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.4�a2/D
1

4
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L2
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I

ED
c4
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c4

G

�
AH

16�

�1=2

:

(12.31)

Here AH is the horizon area and L2
P DG„=c3 is the

square of the Planck length.
It is well known that black holes satisfy a set of

laws similar to laws of thermodynamics, including the
first law. The result derived above has a superficial sim-
ilarity to it; however, the above result is quite different
from the standard first law of black hole dynamics. For
example, the usual first law of black hole mechanics
will become, in the present context, T dSD dE while
we have an extra term PdV. Further, the energy E
used in the conventional first law is defined in terms
of matter source while E in our relation is purely geo-
metrical. (For a detailed discussion of these differences,
see [12.55].) The most important difference is that our
result is local and does not use any property of the
spacetime metric away from the horizon. Because we
did not use any global notion (like asymptotical flat-
ness), the same result holds even for a cosmological
horizon like the de Sitter horizon once we take into
the fact that we are sitting inside the de Sitter hori-
zon [12.41]. In this case, we obtain the temperature and
entropy of the de Sitter spacetime to be

kBT D
„H

2�
I SD

�c2

L2
PH2

: (12.32)

This result also generalizes to other Friedmann uni-
verses (when H is not a constant) and gives sensible
results; we will discuss these aspects in Sect. 12.6.

Classical field equations, of course, have no „ in
them, while the Davies–Unruh temperature does. How-
ever, the Davies–Unruh temperature scales as „, while
the entropy scales as 1=„ (coming from the inverse
Planck area), thereby making T dS independent of „!
This is conceptually similar to the fact that, in normal
thermodynamics, T / 1=kB; S/ kB making T dS inde-
pendent of kB. In both cases, the effects due to possible
microstructure (indicated by nonzero „ or kB) disap-
pears in the continuum limit thermodynamics.

Einstein’s Equations
are Navier–Stokes Equations

The discussion above dealt with static spacetimes
which are analogous to states of a system in thermo-
dynamic equilibrium differing in the numerical values
of some parameters. What happens when we consider
time-dependent situations? One can again establish
a correspondence between gravity and fluid dynamics,
even in the most general case. It turns out that Ein-
stein’s field equations, when projected onto any null
surface in any spacetime, reduce to the form of Navier–
Stokes equations in suitable variables [12.37, 38]. This
result was originally known in the context of black hole
spacetimes [12.56, 57] and is now generalized to any
null surface perceived as a local horizon by suitable ob-
servers. Probably this is the most curious fact about the
structure of the Einstein field equation, which has no
explanation in conventional approaches.

Field Equations as an Entropy Balance Law
on Null Surfaces

We said before that the connection between entropy
and diffeomorphism invariance is a mystery in the con-
ventional approach. However, if we interpret (from the
active point of view) the diffeomorphism xi! xiCqi as
shifting (virtually) the location of null surfaces and thus
the information accessible to specific observers, then
the connection with entropy can be related to the cost
of gravitational entropy involved in the virtual displace-
ments of null horizons [12.58].

Consider an infinitesimal displacement of a local
patch of the stretched (local Rindler) horizon H in the
direction of its normal ra, by an infinitesimal proper
distance �, which will change the proper volume by
dVprop D �

p
� dD�2x, where �ab is the metric in the

transverse space. The flux of energy through the sur-
face will be Ta

b �
bra (where �a is the approximate Killing

vector corresponding to translation in the local Rindler
time), and the corresponding entropy flux can be ob-
tained by multiplying the energy flux by ˇloc D Nˇ.
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Hence the loss of matter entropy to the outside observer
because the virtual displacement of the horizon has en-
gulfed some matter is

ıSm D ˇlocıED ˇlocTaj�arj dVprop : (12.33)

Interpreting ˇlocJa as the relevant gravitational entropy
current, the change in the gravitational entropy is given
by

ıSgrav � ˇlocraJa dVprop ; (12.34)

where Ja is the Noether current corresponding to the
local Killing vector �a given by Ja D 2Ga

b�
bCL�a.

(Note the appearance of the local, redshifted, tem-
perature through ˇloc D Nˇ in both expressions.) As
the stretched horizon approaches the true horizon,
Nra! �a and ˇ�a�aL! 0. Hence we obtain, in this
limit, ıSgrav � ˇ�aJa dVprop D 2ˇGaj�a�j dVprop: Com-
paring ıSgrav and ıSm we see that the field equations
2Ga

b D Ta
b can be interpreted as the entropy balance

condition ıSgrav D ıSmatt, thereby providing direct ther-
modynamic interpretation of the field equations as local
entropy balance in LRF.

Although we work with entropy density, the factor
ˇ D 2�=� cancels out in this analysis – as it should,
since the local Rindler observer with a specific � was in-
troduced only for interpretational convenience – and the
relation TıSm D TıSgrav would have served the same
purpose. The expression on the right-hand side is the
change in the horizon (heat) energy Hsur D TS of the
horizon (see (12.17)) due to injection of matter en-
ergy. The context we consider corresponds to treating
the local Rindler horizon as a physical system (like
a hot metal plate) at a given temperature and possess-
ing certain intrinsic degrees of freedom. Then one can
integrate ıSD ıE=T at constant T to relate change in
horizon energy to injected matter energy. Any energy
injected onto a null surface appears [12.1, 2] to hover
just outside the horizon for a very long time as far as
the local Rindler observer is concerned and thermal-
izes at the temperature of the horizon if it is assumed
to have been held fixed. This is a local version of the
well-known phenomenon that the energy dropped into
a Schwarzschild black hole horizon hovers just outside
RD 2M as far as an outside observer is concerned. In
the case of a LRF, similar effects will occur as long as
the Rindler acceleration is sufficiently high; that is, if
P�=�2� 1. I stress that all these results hold for a gen-
eral Lanczos–Lovelock model.

These ideas take an interesting form in the context
of cosmology. With future applications in mind, we will

describe the form of entropy balance relation in the con-
text of cosmology. Consider a Friedmann universe with
expansion factor a.t/ and let H.t/D Pa=a. We will as-
sume that the surface with radius H�1 (in units with cD
1; kB D 1) is endowed with the entropy SD .A=4L2

P/D�
�=H2L2

P

�
and temperature T D „H=2� . During the

time interval dt, the change of gravitational entropy is
dS=dtD

�
1=4L2

P

�
.dA=dt/ and the corresponding heat

flux is T.dS=dt/D .H=8�G/.dA=dt/. On the other
hand, the Gibbs–Duhem relation tells us that for matter
in the universe, the entropy density is sm D .1=T/.�C
P/ and the corresponding heat flux is TsmAD .�CP/A.
Balancing the two gives us the entropy (or heat) balance
condition T dS=dtD smAT , which becomes

H

8�G

dA

dt
D .�CP/A : (12.35)

Using AD 4�=H2, this gives the result

PH D�4�G.�CP/ ; (12.36)

which is the correct Friedmann equation. Combin-
ing with the energy conservation for matter �da3 D

�Pda3, we immediately find that

3H2

8�G
D �C constantD �C �� ; (12.37)

where �� is the energy density of the cosmological
constant (with P� D���) which arises in the form
of an integration constant. We thus see that the en-
tropy balance condition correctly reproduces the field
equation – but with an arbitrary cosmological constant
arising as the integration constant. This is obvious from
the fact that, treated as a fluid, the entropy density
(s� D .1=T/.��CP�/D 0) vanishes for the cosmo-
logical constant. Thus, one can always add an arbitrary
cosmological constant without affecting the entropy
balance.

This is a general feature of the emergent paradigm
and has important consequences for the cosmological
constant problem. In the conventional approach, gravity
is treated as a field which couples to the energy density
of matter. The addition of a cosmological constant – or
equivalently, shifting of the zero level of the energy –
is not a symmetry of the theory and the field equations
(and their solutions) change under such a shift. In the
emergent perspective, it is the entropy density rather
than the energy density which plays the crucial role.
When the spacetime responds in a manner maintaining
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entropy balance, it responds to the combination �CP
(or, more generally, to Tabnanb, where na is a null vec-
tor), which vanishes for the cosmological constant. In
other words, shifting of the zero level of the energy is
the symmetry of the theory in the emergent perspective
and gravity does not couple to the cosmological con-
stant. Alternatively, one can say that the restoration of
this symmetry allows us to gauge away any cosmolog-
ical constant, thereby setting it to zero. From this point
of view, the vanishing of the bulk cosmological constant
is a direct consequence of a symmetry in the theory. We
will see later in Sect. 12.6 that the presence of a small
cosmological constant or dark energy in the universe
has to be thought of as a relic from quantum gravity
when this symmetry is broken.

Deformations of Null Surfaces
The Noether current provides a nice, alternative de-
scription of the result that field equations become an
entropy balance law on the null surface and connects it
up with the surface term in the action functional. We
will now briefly discuss this feature.

To any conserved current Ja, we can associate with
an infinite family of vector fields ql through the equa-
tion Jc �rl.r

cql�r lqc/. (This is obvious if we think
of qa as the electromagnetic vector potential produced
by the conserved current Ja; two vector fields qa and
qaC @a˛ belong to the same family and produce the
same Noether potential and current.) With straightfor-
ward algebraic manipulation, we can now write this
result as an identity satisfied by any conserved Jc

Jc Drl.r
cql �r lqc/D 2Rc

mqm�V c ; (12.38)

with

V c � gik£q�
c

ik � gck£q�
l

kl D glm£qNc
lm ; (12.39)

where Nc
lm is the canonical momentum defined in (12.6).

The two terms on the right-hand side of (12.38) arise
from the variation of Einstein–Hilbert action under the
diffeomorphism xi! xiC qi. So we can interpret the
conservation of any current Jc as due to the diffeomor-
phism invariance of Einstein–Hilbert action under the
spacetime deformation of a corresponding vector field
qa related to Ja! These ideas generalize to Lanczos–
Lovelock theories. Given any conserved current Ja and
an entropy tensor Pabcd it is possible to solve the equa-
tion 2Pabcdrbrcqd D Ja and obtain an infinite set of
qas, again related to each other by a gauge transforma-
tion. Just as in the case of general relativity, one can

now obtain an algebraic identity

Jc D 2Rc
mqm�V c ; (12.40)

where V c � 2P bcd
a £q�

a
bd . The conservation of this cur-

rent now follows from invariance of the Lanczos–
Lovelock Lagrangian (for which the chosen Pabcd is
the entropy tensor) under the diffeomorphism induced
by qa.

Given a deformation field qa we can separate its gra-
dient raqb into a symmetric and antisymmetric parts by
.1=2/£ngab D Sab D .1=2/r.aqb/ and .1=2/Jab� Fab D

.1=2/rŒaqb
 in a standard manner. We will call a defor-
mation qa isoentropic at an event P, if Jab D 0 around
that event and Killing if Sab D 0 around that event. The
most natural context in which isoentropic deformation
arises is when we consider a deformation normal to
a null surface; if �.x/D constant describes a family of
null surfaces, then its normal qa Dra� (locally) can be
taken to be pure gradient since there is no unique nor-
malization for a null vector. In this case, using (12.40),
we can write the Lanczos–Lovelock field equations
as

Tabqaqb DV aqa D qcg
lm£qNc

lm ; (12.41)

where the last relation holds for Einstein’s theory.
Tabqaqb (multiplied by 2�=�) is related to the mat-
ter entropy flux through the null surface, while V aqa

is the gravitational entropy flux contribution. The fact
the V c term arises from the variation of the sur-
face term in the action (which as we know is re-
lated to the entropy) shows the relationship between
the two results. In Einstein’s theory this contribu-
tion is related to the Lie derivative of the gravita-
tional momentum under the deformation of the null
surface.

12.4.2 The Avogadro Number
of the Spacetime
and Holographic Equipartition

Given the fact that spacetime appears to be hot, just like
a body of gas, we can apply the Boltzmann paradigm
(If you can heat it, it has microstructure) and study
the nature of the microscopic degrees of freedom of
the spacetime – exactly the way people studied gas
dynamics before the atomic structure of matter was
understood.

One key relation in such an approach is the equipar-
tition law�ED .1=2/kBT�N relating the number den-
sity �N of microscopic degrees of freedom we need to
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store an energy �E at temperature T . (This number is
closely related to the Avogadro number of a gas, which
was known even before people worked out what it was
counting!). If gravity is the thermodynamic limit of the
underlying statistical mechanics, describing the atoms
of spacetime, we should be able to relate E and T of
a given spacetime and determine the number density of
microscopic degrees of freedom of the spacetime when
everything is static. Remarkably enough, we can do this
directly from the gravitational field equations [12.59–
61]. Einstein’s equations imply the equipartition law
between the energy E in a volume V bounded by an
equipotential surface @V and degrees of freedom on the
surface

ED
1

2

Z
@V

p
� d2x

L2
P

„

c


Na�n�

2�

�

�
1

2
kB

Z
@V

dnTloc ;

(12.42)

where kBTloc � .„=c/.Na�n�=2�/ is the local accel-
eration temperature and �n�

p
� d2x=L2

P with dADp
� d2x being the proper surface area element. This

allows us to read off the number density of micro-
scopic degrees of freedom. We see that, unlike normal
matter – for which the microscopic degrees of free-
dom scale in proportion to the volume and one would
have obtained an integral over the volume of the form
dV.dn=dV/ – the degrees of freedom now scale in pro-
portion to area of the boundary of the surface. In this
sense, gravity is holographic. In Einstein’s theory, the
number density .dn=dA/D 1=L2

P is a constant with ev-
ery Planck area contributing a single degree of freedom.
The true importance of these results again rests on the
fact that they remain valid for all Lanczos–Lovelock
models with correct surface density of degrees of free-
dom [12.61].

Holographic Equipartition
in the Newtonian Limit

Considering the importance of the above result for cos-
mology, we will provide [12.60] an elementary deriva-
tion of this result in the Newtonian limit of general
relativity, to leading order in c2. Consider a region of
three-dimensional space V bounded by an equipoten-
tial surface @V, containing mass density �.t; x/ and
producing a Newtonian gravitational field g through
the Poisson equation �r � g�r2� D 4�G�. Integrat-
ing �c2 over the region V and using the Gauss law, we

obtain

EDMc2 D�
c2

4�G

Z
V

dVr � g

D
c2

4�G

Z
@V

dA.�On � g/ :

(12.43)

Since @V is an equipotential surface, �On � gD g is the
magnitude of the acceleration at any given point on the
surface. Once again, introducing a „ into this classical
Newtonian law to bring in the Davies–Unruh tempera-
ture kBT D .„=c/.g=2�/we obtain the result

ED
c2

4�G

Z
@V

dAgD
Z
@V

dA

.G„=c3/

1

2

�
„

c

g

2�

�

D

Z
@V

dA

.G„=c3/

�
1

2
kBT

�
;

(12.44)

which is exactly the Newtonian limit of the holographic
equipartition law in (12.42).

In the still simpler context of spherical symme-
try, the integration over dA becomes multiplication by
4�R2, where R is the radius of the equipotential surface
under consideration, and we can write the equipartition
law as an equality between number of degrees of free-
dom in the bulk and surface

Nbulk D Nsur ; (12.45)

where

Nbulk �
E

.1=2/kBT
; Nsur D

4�R2

L2
P

;

EDM.< R/c2 ; kBT D
„

c

GM

2�R2
:

(12.46)

In this form, we can think of Nbulk � ŒE=.1=2/kBT�
as the degrees of freedom of the matter residing in
the bulk and (12.46) can be thought of as providing
the equality between the degrees of freedom in the
bulk and the degrees of freedom on the boundary sur-
face. We will call this holographic equipartition, which
among other things, implies a quantization condition
on the bulk energy contained inside any equipotential
surface.
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In the general relativistic case, the source of grav-
ity is proportional to �c2C 3P rather than �. In the
nonrelativistic limit, �c2 will dominate over P and
the equipartition law ED .1=2/NsurkBT relates the rest
mass energy Mc2 to the surface degrees of freedom Nsur.
If we instead decide to use the normal kinetic energy
Ekin D .1=2/Mv2 of the system (where vD .GM=R/1=2

is the typical velocity determined through, say, the virial
theorem 2EkinCUgrav D 0), then we have the result

Ekin D
v2

2c2
ED

v2

2c2

�
1

2
NsurkBT

�

�
1

2
NeffkBT ;

(12.47)

where

Neff �
v2

2c2
Nsur D 2�

MRc

„
(12.48)

can be thought of as the effective number of degrees of
freedom which contributes to holographic equipartition
with the kinetic energy of the self-gravitating system.
In virial equilibrium, this kinetic energy is essentially
Ekin D .1=2/jUgj and hence the gravitational potential
energy inside an equipotential surface is also deter-
mined by Neff by

jUgravj D
1

8�G

Z
V

dVjr�j2 D 2Ekin

D NeffkBT D 2�
MRc

„
kBT :

(12.49)

We thus find that, for a nonrelativistic Newtonian
system, the rest mass energy corresponds to Nsur /�
R2=L2

P

�
of surface degrees of freedom in holographic

equipartition, while the kinetic energy and gravitational
potential energy corresponds to the number of degrees
of freedom Neff /MR which is smaller by a factor
v2=c2. In the case of a black hole, M / R, making MR/
R2 leading to the equality of all these expressions. We
will see later on that the difference .Nsur�Nbulk/ plays
a crucial role in cosmology.

The Approach to Holographic Equipartition
When the spacetime is not static, we do not expect the
equipartition law to hold and the difference between the
bulk and surface degrees of freedom will drive the dy-

namical evolution. To see this, consider a spacetime in
which we have introduced the usual .1C 3/ split with
the normals to t D constant surfaces being ua, which
we can take to be the four-velocities of a congruence
of observers. Let ai � ujrjui be the acceleration of the
congruence and Kij D�riuj � uiaj be the extrinsic cur-
vature tensor. We then have the identity

Rabuaub Dri.KuiC ai/CK2 �KabKab

D uaraKCria
i�KijK

ij :
(12.50)

When the spacetime is static, we can choose a natural
coordinate system with Kij D 0 so that the above equa-
tion reduces to riai D Rabuaub. Using the field equa-
tions to write Rabuaub D 8� NTabuaub (where NTab D Tab�

.1=2/gabT) and integratingriai D 8� NTabuaub over a re-
gion of space, we can immediately obtain the equiparti-
tion law discussed in Sect. 12.4.1.

In a general spacetime, if we choose a local gauge
with N˛ D 0; ui D�Nı0

i (so that a0 D 0), then (12.50)
can be reduced to the form

D�.Na�/D 4��KomarCN
�

K˛ˇKˇ˛ � PK
	
; (12.51)

where

�Komar � 2N NTabuaub I

PK � dK=d
 � uaraK :
(12.52)

Integrating this relation over a region of space, we can
express the departure from equipartition, as seen by ob-
servers following this congruence as

E�
1

2

Z
@V

kBTloc dnD
1

4�

Z
V

d3x
p

hN

�
�
PK �K˛ˇKˇ˛

	
:

(12.53)

This is an exact equation which can be used to study
the evolution of the geometry in terms of the depar-
ture from equipartition for both finite and cosmological
systems.

These results suggest that one should be able to
think of gravitational dynamics from a completely dif-
ferent perspective closer in spirit to the manner in which
we view the bulk properties of matter like elasticity or
fluid dynamics. We will now explore this aspect. For
further developments in this direction see [12.62].
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12.5 Gravity from an Alternative Perspective
If we take this point of view seriously, then the deforma-
tions of spacetime .Nxi�xi/� qi associated with a vector
field qi are analogous to deformations of a solid in the
study of elasticity. By and large, such a spacetime de-
formation is not of much consequence except when we
consider the deformations of null surfaces. As we de-
scribed earlier, any null surfaces can be thought of as
acting as a local Rindler horizon to a suitable set of
observers. The deformation of a local patch of a null
surface will change the amount of information acces-
sible to the local Rindler observer. Therefore, such an
observer will associate a certain amount of entropy den-
sity with the deformation of a null patch with normal
na. We might hope that extremizing the sum of gravita-
tional and matter entropy associated with all null vector
fields simultaneously could then lead to the equations
obeyed by the background metric.

Conceptually, this idea is very similar to the manner
in which we determine the influence of gravity on other
matter fields. If we fill the spacetime with freely falling
observers and insist that normal laws of special relativ-
ity should hold for all these observers simultaneously,
we can arrive at the generally covariant versions of
equations obeyed by matter in an arbitrary metric. This,
in turn, allows us to determine the influence of gravity
on matter fields, thereby fixing the kinematics of grav-
ity. To determine the dynamics, we play the same game
but now by filling the spacetime with local Rindler ob-
servers. Insisting that the local thermodynamics should
lead to the extremum of an entropy functional associ-
ated with every null vector in the spacetime, we will
obtain a set of equations that will determine the back-
ground spacetime.

There is no a priori assurance that such a program
will succeed and hence it is yet another surprise that one
can actually achieve this. Let us associate with every
null vector field na.x/ in the spacetime a thermody-
namic potential I .na/ (say, entropy) which is quadratic
in na and is given by

I Œna�D IgravŒn
a�C ImattŒn

a�

��
�
4Pcd

abrcnardnb �Tabnanb
�
;

(12.54)

where Pcd
ab and Tab are two tensors that play a role

analogous to elastic constants in the theory of elastic de-
formations. If we extremize this expression with respect
to na, we will normally obtain a differential equation for
na involving its second derivatives. We, however, want
to demand that the extremum holds for all na, thereby

constraining the background geometry. Further, our in-
sistence on the strictly local description of null-surface
thermodynamics translates into the demand that the Eu-
ler derivative of the functional I .na/ should not contain
any derivatives of na.

It is indeed possible to satisfy all these conditions
by the following choice. We take Pcd

ab to be a ten-
sor having the symmetries of a curvature tensor and
being divergence-free in all its indices; we take Tab

to be a divergence-free symmetric tensor. (The condi-
tions raPab

cd D 0;raTa
b D 0 can also be thought of as

a generalization of the notion of constancy of elastic
constants of spacetime [12.63].) Once we obtain the
field equations we can read Tab as the matter energy-
momentum tensor; the notation anticipates this result.
We also know that the Pabcd with the assigned proper-
ties can be expressed as Pcd

ab D @L=@Rab
cd , where L is the

Lanczos–Lovelock Lagrangian and Rabcd is the curva-
ture tensor [12.1, 2]. This choice in (12.54) will also
ensure that the equations resulting from the entropy ex-
tremization do not contain any derivative of the metric
which is higher than second order.

We now demand that ıI=ına D 0 for the varia-
tion of all null vectors na with the condition nana D

0 imposed by adding a Lagrange multiplier function
	.x/gabnanb to I Œna�. An elementary calculation and
use of generalized Bianchi identity and the condition
raTa

b D 0 leads us to [12.1, 2, 64–66] the following
equations for background geometry

Ga
b DRa

b �
1

2
ıa

bLD
1

2
Ta

bC�ı
a
b ; (12.55)

where � is an integration constant. These are pre-
cisely the field equations for gravity in a theory with
Lanczos–Lovelock Lagrangian L with an undetermined
cosmological constant�, which arises as an integration
constant.

The thermodynamical potential corresponding to
the density I can be obtained by integrating the den-
sity I Œna� over a region of space or a surface, etc.,
depending on the context. The matter part of the I is
proportional to Tabnanb, which will pick out the contri-
bution .�C p/ for an ideal fluid, which is the enthalpy
density. If multiplied by ˇ D 1=T , this reduces to the
entropy density because of the Gibbs–Duhem relation.
When the multiplication by ˇ can be reinterpreted in
terms of integration over .0; ˇ/ of the time coordinate
(in the Euclidean version of the LRF), the correspond-
ing potential can be interpreted as entropy and the
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integral over space coordinates alone can be interpreted
as the rate of generation of entropy. (This was the inter-
pretation provided in the earlier works [12.1, 2, 64–66],
but the result is independent of this interpretation as
long as suitable boundary conditions can be imposed.)
One can also think of I Œna� as an effective Lagrangian
for a set of collective variables na describing the defor-
mations of null surfaces.

The gravitational entropy density in (12.54) can be
expressed in terms of the Killing and isoentropic defor-
mations introduced in the section Deformations of Null
Surfaces

�4Pab
cdraqcrbqd D 4PbijdSijSbd

� 2PabcdFabFcd

D Pbijd.£qgij/.£qgbd/

�
1

2
PabcdJabJcd :

(12.56)

The second equation shows that the gravitational en-
tropy density has two parts: one coming from the
square of the Noether potential (which vanish for isoen-
tropic deformations) and another which depends on the
change in the metric under the deformation (which will
vanish for the Killing deformations). When qj is a pure
gradient, Jab will vanish and one can identify the first
term with a structure like Tr.K2/�.TrK/2. On the other
hand, when qa is a local Killing vector, the contribu-
tion from Sij to the entropy density vanishes and we
find that the entropy density is just the square of the
antisymmetric potential Jab. For a general null vector,
both the terms contribute to the entropy density. Varia-
tion of entropy density with respect to either of the two
contributions (after adding suitable Lagrange multiplier
to ensure vanishing of the other term) will lead to the
gravitational field equations.

In this approach, there arise several new features
worth mentioning.

First, we find [12.64, 65] that the extremum value of
the thermodynamic potential, when computed on-shell
for a solution with static horizon, leads to the Wald
entropy. This is a nontrivial consistency check on the
approach because it was not designed to reproduce the
Wald entropy. When the field equations hold, the to-
tal entropy of a region V resides on its boundary @V ,
which is yet another illustration of the holographic na-
ture of gravity.

Second, in the semi-classical limit, one can
show [12.67] that the gravitational (Wald) entropy is
quantized with Sgrav [on-shell] D 2�n. In the lowest

order Lanczos–Lovelock theory, the entropy is propor-
tional to area and this result leads to area quantization.
More generally, it is the gravitational entropy that is
quantized. The law of equipartition for the surface
degrees of freedom is closely related to this entropy
quantization.

Third, the entropy functional in (12.54) is invariant
under the shift Tab! TabC�0gab, which shifts the zero
of the energy density. This symmetry allows any low
energy cosmological constant, appearing as a parameter
in the variational principle, to be gauged away thereby
alleviating the cosmological constant problem to a great
extent [12.66, 68, 69]. As far as we know, this is the
only way in which one can make gravity immune to the
zero point level of energy density. It is again interesting
that our approach leads to this result in a natural fashion
even though it is not designed for this purpose. This
works because the cosmological constant, treated as an
ideal fluid, has zero entropy because �CpD 0 and thus
cannot affect gravitational dynamics in this perspective
in which gravity responds to the entropy density rather
than energy density.

Fourth, the algebraic reason for the whole idea to
work is the easily proved identity

4Pcd
abrcnardnb D 2Rabnanb

Crc


4Pcd

abnardnb
�
;

(12.57)

which shows that, except for a boundary term, we
are extremizing the integral of .2Rab�Tab/nanb with
respect to na subject to the constraint nana D 0. The al-
gebra is trivial but not the underlying concept. In fact, if
we ignore the total divergence term in (12.57) then we
can express the total entropy in a spacetime region as

SD
Z
@@V

dD�2˙abJabC

Z
@V

dD�1˙aV a : (12.58)

The first term is the contribution from the Noether po-
tential on a surface of codimension 2 (which vanishes
if na Dra�), while the second term gives the contribu-
tion from the variation of the surface term in the action.
In writing this expression, we have assumed suitable
boundary conditions to ignore contributions from other
boundaries. As explained before, the contribution from
the Noether potential vanishes for isoentropic deforma-
tions and the contribution from the action vanishes for
Killing deformations.
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Fifth, the gravitational entropy density – which is
the term in the integrand Igrav / .�Pcd

abrcnardnb/ in
(12.54) – also obeys the relation

@Igrav

@ .rcna/
D�8

�
�Pcd

abrdnb
�
D

1

4�

�
ranc � ıc

arin
i
�
;

(12.59)

where the second relation is for Einstein’s theory. This
term is analogous to the more familiar object tc

a D Kc
a �

ıc
aK (where Kab is the extrinsic curvature) that arises

in the .1C3/ separation of Einstein’s equations. (More
precisely, the projection to three-space leads to tc

a.) This
term has the interpretation as the canonical momen-
tum conjugate to the spatial metric in (1+3) context,
and (12.59) shows that the entropy density leads to
a similar structure. That is, the canonical momentum
conjugate to the metric in the conventional approach
and the momentum conjugate to na in Igrav are es-
sentially the same. For further developments in this
direction see [12.62].

12.6 Emergence of Cosmic Space

In the discussion of the emergent paradigm so far, we
argued that the field equations are emergent while as-
suming the existence of a spacetime manifold, metric,
curvature, etc., as given structures. In this approach, we
interpret the field equations as certain consistency con-
ditions obeyed by the background spacetime. A more
ambitious project will be to give meaning to the con-
cept that the spacetime itself is an emergent structure.
The idea is to build up the spacetime itself from some
underlying pregeometric variables, along the lines we
obtain macroscopic variables like density, temperature,
etc., from atomic properties of matter. Unfortunately, it
is not easy to give this idea a rigorous mathematical ex-
pression, consistent with what we know already know
about space and time. In attempting this, we run into (at
least) two key difficulties.

The first issue has to do with the role played by
time, which is quite different from the role played by
space in the entire description of physics. It is very dif-
ficult conceptually to treat time as being emergent from
some pregeometric variable if it has to play the stan-
dard role of a parameter that describes the evolution of
the dynamical variables. It seems necessary to treat time
differently from space, which runs counter to the spirit
of general covariance.

The second issue has to do with space around finite
gravitating systems, like the Earth, Sun, Milky Way, etc.
It is incorrect to argue that space is emergent around
such finite gravitating systems because direct experi-
ence tells us that space around them is preexisting. So
any emergent description of the gravitational fields of
finite systems has to work with space as a given entity –
along the lines we described in the previous sections.
Thus, when we deal with finite gravitating systems,
without assigning any special status to a time variable, it

seems impossible to come up with a conceptually con-
sistent formulation for the idea that spacetime itself is
an emergent structure.

What is remarkable is the fact that both these diffi-
culties disappear [12.70] when we consider spacetime
in the cosmological context! Observations show that
there is, indeed, a special choice of time variable avail-
able in our universe, which is the proper time of the
geodesic observers who see the CMBR as homoge-
neous and isotropic. This fact justifies treating time
differently from space in (and only in) the context
of cosmology. Further, the spatial expansion of the
universe can certainly be thought of as equivalent to
the emergence of space as the cosmic time flows for-
ward. All this suggests that we may be able to make
concrete the idea that cosmic space is emergent as cos-
mic time progresses in a well-defined manner in the
context of cosmology. We will now describe how it
works.

Once we assume that the expansion of the universe
is equivalent to emergence of space, we need to ask
why this happens. In the more conservative approach
described in earlier sections, the dynamics of spacetime
is governed by gravitational field equations and we can
obtain the expanding universe as a special solution to
these equations. However, when we want to treat space
itself as being emergent, we cannot start with gravita-
tional field equations and need to treat cosmic evolution
as more fundamental.

The holographic principle suggests a deep relation-
ship between the number of degrees of freedom residing
in a bulk region of space and the number of degrees
of freedom on the boundary of this region. To see why
cosmic space emerges – or, equivalently, why the uni-
verse is expanding – we will use a specific version of
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holographic principle. To motivate this, let us consider
a pure de Sitter universe with a Hubble constant H.
Such a universe obeys the holographic principle in the
form

Nsur D Nbulk : (12.60)

Here the Nsur is the number of degrees of freedom at-
tributed to a spherical surface of Hubble radius H�1 and
is given by

Nsur D
4�

L2
PH2

; (12.61)

if we attribute one degree of freedom per Planck area
of the surface. Nbulk D jEj=Œ.1=2/kBT� is the effective
number of degrees of freedom which are in equiparti-
tion at the horizon temperature kBT D .H=2�/, with jEj
being the Komar energy j.�C 3P/jV contained inside
the Hubble volume V D .4�=3H3/. So

Nbulk D�
E

.1=2/kBT
D�

2.�C 3P/V

kBT
: (12.62)

For a pure de Sitter universe with PD��, our (12.60)
reduces to H2 D 8�L2

P�=3, which is the standard result.
Note that .�C 3P/ is the proper Komar energy density,
while V D 4�=3H3 is the proper volume of the Hubble
sphere. The corresponding comoving expressions will
differ by a3 factors in both, which will cancel out lead-
ing to the same expression for E.

This result is consistent with the equipartition law
described earlier in Sect. 12.4.2 in which we obtained
the result jEj D .1=2/NsurkBT (which is, of course, the
same as (12.60)) as a consequence of gravitational
field equations in static spacetimes. Here, we do not
assume any field equations but will consider the rela-
tion jEj=.1=2/kBT D Nsur as fundamental. The (12.60)
represents the holographic equipartition and relates the
effective degrees of freedom residing in the bulk, de-
termined by the equipartition condition, to the degrees
of freedom on the boundary surface. The dynamics of
the pure de Sitter universe can thus be obtained directly
from the holographic equipartition condition, taken as
the starting point.

Our universe, of course, is not pure de Sitter but
is evolving towards an asymptotically de Sitter phase.
It is, therefore, natural to think of the current acceler-
ated expansion of the universe as an evolution towards
holographic equipartition. Treating the expansion of the
universe as conceptually equivalent to the emergence of

space we conclude that the emergence of space itself
is being driven towards holographic equipartition. Then
we expect the law governing the emergence of space
to relate the availability of greater and greater volumes
of space to the departure from holographic equipartition
given by the difference .Nsur�Nbulk/. The simplest (and
the most natural) form of such a law will be

�V D�t.Nsur�Nbulk/ ; (12.63)

where V is the Hubble volume in Planck units and t is
the cosmic time in Planck units. Our arguments suggest
that .�V=�t/ will be some function of .Nsur�Nbulk/,
which vanishes when the latter does. Then, (12.63)
represents the Taylor series expansion of this function
truncated at the first order. We will now elevate this
relation to the status of a postulate which governs the
emergence of the space (or, equivalently, the expansion
of the universe) and show that it is equivalent to the
standard Friedmann equation. Reintroducing the Planck
scale and setting .�V=�t/D dV=dt, this equation be-
comes

dV

dt
D L2

P.Nsur�Nbulk/ : (12.64)

Substituting V D .4�=3H3/, Nsur D
�
4�=L2

PH2
�
, kBT

D H=2� and using Nbulk in (12.62), we find that the
left-hand side of (12.64) is proportional to dV=dt /
.� PH=H4/, while the first term on the right-hand side
gives Nsur / .1=H2/. Combining these two terms and
using PHCH2 D Ra=a, it is easy to show that this equa-
tion simplifies to the relation

Ra

a
D�

4�L2
P

3
.�C 3P/ ; (12.65)

which is the standard dynamical equation for the
Friedmann model. The condition raTa

b D 0 for matter
gives the standard result d.�a3/D�Pda3. Using this,
(12.65), and the de Sitter boundary condition at late
times, one gets back the standard accelerating universe
scenario. Thus, we can describe the evolution of the ac-
celerating universe entirely in terms of the concept of
holographic equipartition.

Let us next consider the full evolution of the uni-
verse, consisting of both the decelerating and acceler-
ating phases. The definition of Nbulk in (12.62) makes
sense only in the accelerating phase of the universe
where .�C 3P/ < 0 so as to ensure Nbulk > 0. For nor-
mal matter, we would like to use (12.62) without the



Gravity and Spacetime: An Emergent Perspective 12.6 Emergence of Cosmic Space 235
Part

B
|12.6

negative sign. This is easily taken care of by using ap-
propriate signs for the two different cases and writing

dV

dt
D L2

P.Nsur� �Nbulk/ ; (12.66)

with the definition

Nbulk D��
2.�C 3P/V

kBT
: (12.67)

Here � DC1 for matter with .�C 3P/ < 0 and � D�1
for matter with .�C 3P/ > 0. (We use the sign conven-
tion such that we maintain the form of (12.63) for the
accelerating phase of the universe. One could have, of
course, used the opposite convention for � and omitted
the minus sign in (12.67).) Because only the combina-
tion C�2.�C 3P/� .�C 3P/ occurs in .dV=dt/, the
derivation of (12.65) remains unaffected and we also
maintain Nbulk > 0 in all situations (Fig. 12.1). We can
understand (12.66) better if we separate out the mat-
ter component, which causes deceleration, from the
dark energy, which causes acceleration. For the sake
of simplicity, we will assume that the universe has just
two components (pressureless matter and dark energy)
with .�C3P/ > 0 for matter and .�C3P/ < 0 for dark
energy. In that case, (12.66) can be expressed in an
equivalent form as

dV

dt
D L2

P.NsurCNm�Nde/ ; (12.68)

where all the three degrees of freedom, Nsur, and
Nm;Nde, are positive (as they should be) with .Nm�

Nde/D .2V=kBT/.�C 3P/tot. We now see that the con-
dition of holographic equipartition with the emergence
of space coming to an end (dV=dt! 0) asymptoti-
cally, can be satisfied only if we have a component in
the universe with .�C 3P/ < 0. In other words, the ex-
istence of a cosmological constant in the universe is
required for asymptotic holographic equipartition.

One can, of course, obtain (12.66) from the general
result in (12.53). In the Friedmann universe, the natural
observers are the geodesic observers for whom ai D 0.
For the geodesic observers, (12.50) reduces to

uaraK � PK D KijK
ijC 8� NTabuaub : (12.69)

Further, in the Friedmann universe, K˛
ˇ
D�Hı˛

ˇ
, giv-

ing PK D�3 PHIKijKij D 3H2. Using these values and
dividing (12.69) throughout by H4, it is easy to reduce it
to (12.64). We can see that the surface degrees of free-
dom actually arise from a term of the kind KijKij=K4,

Degrees of freedom which
have already emerged

Surface degrees
of freedom

Degrees of freedom
and space which are
yet to emerge

Cosmic space which
has already emerged

ΔV = Δt (Nsur–εNbulk)

Nbulk

Nsur

Fig. 12.1 This figure illustrates the ideas described in this
section schematically. The shaded region represents the
cosmic space that has already emerged by the time t, along
with the surface degrees of freedom (Nsur), which reside
on the surface of the Hubble sphere and the bulk degrees
of freedom (Nbulk) that have reached equipartition with the
Hubble temperature kBT D H=2�. At this moment of time,
the universe has not yet achieved the holographic equipar-
tition. The holographic discrepancy (Nsur��Nbulk) between
these two drives the further emergence of cosmic space,
measured by the increase in the volume of the Hubble
sphere with respect to cosmic time, as indicated by the
equation. Remarkably enough, this equation correctly re-
produces the entire cosmic evolution

when one interprets 1=K as the relevant radius. How-
ever, our goal here is to think of (12.66) as the starting
point of description.

Treating the Hubble radius H�1.t/ as the bound-
ary of cosmic space should not be confused with the
causal limitation imposed by light propagation in the
universe. If the Hubble radius at time t1, say, is H�1.t1/,
we assume that space of size H�1.t1/ can be thought
of as having emerged for all t 	 t1. This is in spite
of the fact that, at an earlier time t < t1, the Hubble
radius H�1.t/ could have been significantly smaller.
This is necessary for consistent interpretation of cos-
mological observations. For example, CMBR (cosmic
microwave background radiation) observations allow us
to probe, on the zD zrec � 103 surface, length scales
that are larger than the Hubble radius H�1.trec/ at zD
zrec. So, as far as observations made today are con-
cerned, we should assume that the size of the space
that has emerged is the present Hubble radius, H�1

0 ,
rather than the instantaneous Hubble radius correspond-
ing to the redshift of the epoch from which photons are



Part
B

|12.7

236 Part B Foundational Issues

received. In this sense, the emergence of space from
pregeometric variables may seem to be acausal, but it
is completely consistent with what we know about the
universe today.

As noted before, at the largest scales, our universe
breaks Lorentz symmetry in the sense that our absolute
motion with respect to the CMBR (treated as cosmic
aether) can be (and has been) measured. Usually, one
bypasses this embarrassing observational fact by say-
ing that, while the known laws of physics exhibit a large
symmetry (viz. general covariance) a specific solution
of the gravitational field equations (like FRW models)
need not exhibit the symmetry. This is perfectly correct
in the conventional picture, where we think of gravita-
tional field equations as fundamental and cosmology as
described a special solution to these equations. In the
description given above, however, we describe the cos-
mological evolution from a different principle and not
as a special solution to field equations. We then start
with the dynamics at largest scales and move to smaller
scales. The matter and spacetime degrees of freedom
emerge in the process and a higher degree of symmetry
(general covariance) is realized at smaller scales while
a preferred time coordinate continues to exist at largest
scales. When the Hubble radius is endowed with a hori-
zon temperature T , we can treat the bulk degrees of
freedom which have already emerged – along with the
space – as though they are inside a microwave oven with
the temperature set to the surface value. Because these
degrees of freedom account for an energy E, it follows
that E=.1=2/kBT is, indeed, the correct count for effec-
tive Nbulk. (This temperature T and Nbulk should not be
confused with the normal kinetic temperature of mat-
ter in the bulk and the standard degrees of freedom we
associate with matter. It is more appropriate to think of
these degrees of freedom as those which have already
emerged, along with space, from some pregeometric
variables.) The emergence of cosmic space itself is
driven by the holographic discrepancy .NsurCNm�Nde/
between the surface and bulk degrees of freedom, where
Nm is contributed by normal matter with .�C 3P/ > 0
and Nde is contributed by the cosmological constant
with all the degrees of freedom being counted posi-
tive. In the absence of Nde, this expression can never be
zero and holographic equipartition cannot be achieved.
In the presence of the cosmological constant, the emer-
gence of space will soon lead to Nde dominating over
Nm when the universe undergoes accelerated expansion.
Asymptotically, Nde will approach Nsur and the rate of

emergence of space, dV=dt, will tend to zero allowing
the cosmos to find its peace.

The study of the evolution of the universe using
(12.63) is conceptually quite different from treating
the expanding universe as a specific solution of grav-
itational field equations. The simplicity of (12.63) is
quite striking and it is remarkable that the standard
expansion of the universe can be reinterpreted as an
evolution towards holographic equipartition. If the un-
derlying ideas are not correct, we need to explain
why (12.63) holds in our universe! The simplicity of
(12.63) itself suggests proper choices for various phys-
ical quantities. For example, we have assumed that the
relevant temperature for obtaining Nbulk is given by
T D H=2� even when H is time-dependent. There is
some amount of controversy in the literature regard-
ing the correct choice for this temperature. One can
obtain equations similar to (12.63) with other defini-
tions of the temperature but none of the other choices
leads to equations with the compelling naturalness of
(12.63). The same is true as regards the volume ele-
ment V, which we have taken as the Hubble volume;
other choices lead to equations which have no simple
interpretation.

It should be noted that (12.63) is parameter free
when expressed in Planck units and can be given a sim-
ple combinatorial interpretation. If we think of time
evolution in steps of Planck time (t D tn; nD 1; 2; : : :)
and the volume of the space which has emerged by
the n-th step as Vn, then (12.63) tells us that

VnC1 D VnC .Nsur� �Nbulk/ ; (12.70)

which is just an algorithmic procedure in integers.
When we understand the pregeometric variables better,
we may be able to interpret (12.63) purely in com-
binatorial terms. An immediate consequence of the
discretized version in (12.70) is that we expect sig-
nificant departures from conventional evolution when
the relevant degrees of freedom are of the order of
unity. Modifications of this equation will help us to
study the evolution of the universe close to the big
bang in a quantum cosmological setting when the de-
grees of freedom are of order unity. However, we
have now bypassed the usual complications related to
the time coordinate. Postulating suitable corrections to
the bit dynamics in (12.70) may provide an alternate
way of tackling the singularity problem of classical
cosmology.
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12.7 A Principle to Determine the Value of the Cosmological Constant

The idea of holographic equipartition, described in the
last section demands a cosmological constant but does
not determine its numerical value. We will now describe
how it can be done in a unified picture for the evolution
of the universe.

The current observations indicate that the radiation
(and matter) dominated epoch of the universe is sand-
wiched between two asymptotic de Sitter epochs of
expansion, usually identified with the inflationary era
and the epoch of late time acceleration. These two de
Sitter phases are characterized by two length scales LUV

and LIR corresponding to the respective Hubble radii.
Given the fact that de Sitter geometry is invariant un-
der time translation, we can interpret the radiation (and
matter) dominated phase of the universe as a transition
state which connects the two equilibrium (steady) states
of the geometry in which Nsur D Nbulk. It seems natu-
ral to set the length scale LUV of the initial de Sitter
phase to be the Planck length LP and the length scale of
the accelerating phase LIR to be .3=�/1=2, where � is
the cosmological constant. The ratio of these two length
scales is conveniently expressed in terms of the dimen-
sionless number

�L2
P � 10�122 � 3� e�281 ; (12.71)

where the numerical value is determined by observa-
tions (with ˝DE � 0:7 and h� 0:7).

An important question in theoretical physics is to
determine this numerical value from first principles.
For an excellent theoretical review, see [12.71]; for
a classification of approaches to cosmological constant
problem, see, e.g., [12.72].

If a fundamental principle can be found which al-
lows the determination of this number, then all the
conventional difficulties associated with the cosmolog-
ical constant (e.g., why is it fine-tuned, why does it
dominate the universe now, etc.) will vanish. We will
describe a principle, closely related to the ideas of holo-
graphic equipartition, which allows us to express this
number in the form

�L2
P D 3 exp.�24�2�/ ; (12.72)

where � is a number of order unity and, in principle,
calculable. Observations match with the above expres-
sion when �� 1:18, which is extremely encouraging.
Even for the natural choice of �D 1, (12.72) pre-
dicts log

�
�L2

P=3
�
D�103 compared to the observed

value of �122. We do not know of any other at-
tempt that could express the number�L2

P essentially in
terms of e; �; : : : etc. and get this close to the observed
value!

Let us now describe how (12.72) is obtained. In
Fig. 12.2 we have shown the relevant length scales in-
volved with our universe. The thick red line ADBC
denotes the Hubble radius H�1.a/D .Pa=a/�1, which
is constant asymptotically during the early inflation-
ary epoch (a < aF) and late time accelerating phase
(a > a�). In the intermediate epoch (aF < a< a�), the
Hubble radius DB grows as a2 if the universe is radia-
tion dominated. (To be precise, there is a regime close to
B when the universe becomes matter dominated which
we have ignored for the moment. Note that this phase
lasts only for about 4 decades while the radiation dom-
inated phase lasts for about 24 decades.)

In principle, one can extend the asymptotic de Sit-
ter phases (which represent the universe in steady, time
translation invariant, state) into the past and future as
long as one wants. However, there are two natural
boundaries to these de Sitter phases (for a detailed dis-
cussion, see [12.3, 66, 73]). The boundary A (at aD
aI) in the inflationary phase is determined as follows.
We know that cosmologically relevant modes exit the
Hubble radius during the inflationary phase and then
re-enter the Hubble radius during the radiation (and
matter) dominated phase. (The proper wavelengths of

B
C

D

QQ Q

A

avac

ln a

ln L

aΛaFaI

Fig. 12.2 The relevant length scales in a universe char-
acterized by a radiation dominated epoch sandwiched
between two de Sitter phases. See text for details
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these modes grow linearly with a and will be lines
of unit slope in Fig. 12.2.) All the modes which exit
the Hubble radius during the inflationary phase will
re-enter the Hubble radius later on if there is no late
time accelerating phase for the universe. However, in
the presence of late time acceleration, there is a mode
with a critical wavelength (shown by the line AB, in-
creasing linearly with a) which just skirts entering the
Hubble radius. Given the points D and B, the point A is
determined by drawing a unit slope line through B. El-
ementary geometry tells us that the universe expands
by the same factor Q� .aF=aI/D .a�=aF/ during AD
and DB.

The natural boundary C (at aD avac) in the late
time acceleration phase is determined by a different
consideration. We know that the de Sitter phase is
associated [12.13, 74] with the Gibbons–Hawking tem-
perature TdS D .H=2�/. As the universe expands, the
CMBR temperature will keep decreasing Tcmb.a//
.1=a/ and will eventually fall below the de Sitter tem-
perature TdS after which the temperature of the universe
will be essentially dominated by the de Sitter vacuum
noise. This determines the point C through the condi-
tion Tcmb.avac/D TdS. If the initial de Sitter phase is
characterized by the Planck length (i. e., H�1 D LP),
then it is natural to assume that the reheating temper-
ature at the end of Planck scale inflation is given by
the de Sitter temperature TP D 1=.2�LP/. In that case,
it is again elementary to show that the unit slope line
drawn from C passes through D. (As an aside, note that
we do not determine C by drawing a unit slope line
from D. Instead, the point C is determined by the con-
dition TdS D Tcmb. A unit slope line drawn from C will
not, in general, pass through the point D which is in-
dependently specified as the end point of inflation. It
passes through D in this specific scenario because we
have ignored the matter dominated phase and taken the
reheating temperature to be set by Planck scale. How-
ever, even in a more realistic scenario, the three phases
of expansion last for an approximately equal number of
decades; for details, see, [12.66, 73].) So the relevant
part of late time acceleration also lasts for an expansion
by factor QD .avac=a�/.

In such a simple scenario, all the relevant physics is
contained within the cosmic parallelogram ADCB with
the universe expanding by the same factor Q during
each of the three epochs. Given the fact that H�1 / a2

during the radiation dominated phase DB, we can relate
the Hubble radius H�1

�
D .3=�/1=2 at B with the Hub-

ble radius H�1
P D LP at D by .HP=H�/D .a�=aF/

2 D

Q2. That is, .H�=HP/
2 D .1=3/.�L2

P/D Q�4, which

allows us to relate the numerical value of the cosmo-
logical constant� to Q by

�L2
P D 3Q�4 : (12.73)

The value of �L2
P is fixed, if we have a physical prin-

ciple to determine Q, which is the factor by which the
universe expands in each of these three phases. We will
now describe such a physical principle.

To do this let us consider the modes (specified by
comoving wave vectors k) which exit the Hubble ra-
dius during AD. They will enter the Hubble radius
during DB and will again exit the Hubble radius during
BC. Let us calculate the total number of modes which
cross the Hubble radius in the time interval .t1; t2/ or,
more conveniently, when the expansion factor is in the
range .a1; a2/. Since the phase space density of the
number of modes in the comoving Hubble volume
Vcom D 4�=3H3a3 is given by the integral of dN D
Vcom d3k=.2�/3 D Vcomk3=.2�2/d ln k we need to com-
pute the integral over the relevant range of k. (We, of
course, get the same expression if we use the proper
volume and proper wave number instead of comoving
variables). If we take the condition for horizon crossing
to be kD Ha, then we obtain

N.a1; a2/�

Z
d3xd3k

.2�/3
D

Z
Vcom d3k

.2�/3

D
2

3�
ln

�
H2a2

H1a1

�
;

(12.74)

where we have used Vcom D 4�=3H3a3 and kD Ha.
Note that, as we have defined it, N.a1; a2/ is transitive
with N.a1; a3/D N.a1; a2/CN.a2; a3/ with the sign of
N.a1; a2/ being positive if H2a2 > H1a1 and negative
otherwise. Further, if a particular mode exits the Hub-
ble radius at aD aexit and enters again at aD aenter,
then N.aexit; aenter/D 0. In fact, for any such mode,
N.aexit; aF/D�N.aF; aenter/:Hereafter, it is convenient
to choose a1 and a2 in N.a1; a2/ such that a1 < a2 or
a1 > a2, depending on whether the mode is exiting the
Hubble radius or entering the Hubble radius so as to
make N.a1; a2/ positive. (Note that during exit, k�1

1 >
k�1

2 implies a1 < a2, while during the entry k�1
1 > k�1

2
implies a1 > a2.) Then it is clear that during each of
the three phases of the universe shown in Fig. 12.2, the
total number of modes which cross the Hubble radius
remains constant

N.aI; aF/D N.a�; aF/D N.a�; avac/� N ;

(12.75)
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which can be thought of as some kind of conservation
law. It is easy to find its value in any of the phases. In
the de Sitter phase with constant H we have Ha/ a,
while in the radiation dominated phase H / a�2, so that
Ha/ 1=a. Therefore,

N D
2

3�
ln Q : (12.76)

So the equality of ratios of expansion factors in the
three phases translates to the equality of the number of
modes N in a Hubble volume which crosses the Hubble
radius in the three phases. This number N is a charac-
teristic, conserved quantity for the universe during the
three phases.

The above relation was obtained by assuming that
there is an abrupt change of slope of the Hubble ra-
dius at D and B and ignoring the matter domination
phase. Correcting for matter domination and including
the smooth transition at B is algebraically trivial since
we know the behavior of our universe around B. The
transition at the end stage of a Planck scale inflation
with re-heating, emergence of matter, etc., at D is more
uncertain. We have also assumed that the condition for
Hubble radius crossing is kDHa. This is equivalent to
taking the comoving length scale corresponding to k to
be 1=k; one could have taken this to be 2�=k:�=k; : : :,
etc., with the same level of uncertainty. All these effects
could introduce order unity corrections to the expres-
sion for N and to remind ourselves of this fact we will
rewrite the expression in (12.76) as

�N D
2

3�
ln Q ; (12.77)

where � is expected to be a number of order unity.
Substituting in (12.73) we can relate the value of the
cosmological constant to N by

�L2
P D 3Q�4 D 3 exp.�6��N/ : (12.78)

We consider this an important result in its own right.
It reduces the problem of understanding the numerical
value of cosmological constant to a more manageable
problem of understanding a particular value for �N for
our universe.

The natural value for N is just 4� in our scenario.
To see this note that during the Planck scale inflation,
the surface area of the Hubble sphere is 4�L2

P and it
is reasonable to assume that the total number of modes
crossing this Hubble radius during the Planck scale do-
main should be of the order of Nsur D 4�L2

P=L2
P D 4� .

(There could again be an order unity factor which we
will absorb into �.) Using N D 4� in (12.78), we find

�L2
P D 3 exp.�24�2�/ : (12.79)

We can see that, even for �D 1, this gives �L2
P D

3� 10�103, which is within striking distance of the ob-
servations and far better than what any other model has
achieved. The smallness of the cosmological constant
is now related to its exponential dependence on N, plus
the fact that 24�2 is a rather large number! One can
obtain the correct, observed value of the cosmological
constant for �D 1:18, which, as advertised, is an order
unity number

�obsL
2
P D 3 exp.�24�2�/ .�D 1:18/ : (12.80)

We will now make several comments about the results
from a broader context.

Usually, one does not consider a Planck scale infla-
tionary scenario because of the claims in the literature
that it produces too many gravitational wave perturba-
tions. What is actually provable is that, if one considers
spin-2 perturbations within the framework of normal
continuum field theory in an inflationary background,
then the primordial gravitational waves generated will
violate the observational bound if the inflation scale is
close to Planck scale. However, this is not a convincing
argument because, as we go close to the Planck scale,
we cannot trust continuum field theory of spin-2 field
and the results based on it. In fact, there are sugges-
tions in the literature [12.75, 76] that this problem goes
away if we considers corrections to propagators arising
from quantum gravitational effects in the form of a cut-
off at Planck scale. While these are just toy models, it
prevents us from taking the gravitational wave bounds
seriously to exclude Planck scale inflation.

Second, the computation of N in (12.74) only used
one (e.g., scalar) degree of freedom, and one might
think that we should multiply it by the effective num-
ber of species, geff, at Planck scale. We do not know
what this number is but it turns out to be irrelevant in
the picture we have in mind. We consider the transition
at D to be the emergence of space along with the emer-
gence of matter degrees of freedom (which leads to the
radiation dominated era) from some other pregeometric
degrees of freedom. We then expect the equipartition of
gravitational and matter degrees of freedom to set the
total matter degrees of freedom geffN to some specific
value like 4� . So, the factor geff does not play any role
in the final expression for �L2

P. (That is, it will modify
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the intermediate equations (12.76), (12.77), and (12.78)
by changing N to geffN but the final result in (12.79) will
not change when we set geffN D 4� .) In fact, the initial
de Sitter phase, with energy scale equal to Planck en-
ergy, needs quantum gravitational inputs for its proper
treatment and cannot be considered as the usual infla-
tion driven by a scalar field, etc.

Third, there is a curious relation between N and the
entropy one can associate with modes that cross the
Hubble radius. If dN is the number of modes which
cross the Hubble radius during the period when the ex-
pansion factor changes by da, then they contain the
energy dED .k=a/dN if we treat the modes as (ef-
fectively) massless. If we associate a temperature T D
H=2� with the Hubble radius, then we can associate
an entropy dSD dE=T D 2�.k=Ha/dN D 2� dN with
these modes. So the number of modes N.a1; a2/ which
crosses the Hubble radius during a1 < a < a2 is re-
lated to an entropy S.a1; a2/D 2�N.a1; a2/. In terms
of S, (12.76) becomes QD exp.3�N=2/D exp.3S=4/.
Equivalently

eS D Q
4
3 D

�
a2

a1

� 4
3

; (12.81)

which relates the expansion factor to this entropy. Also
note that, since aH D Pa, S.a1; a2/ relates the expansion
rates of the universe at any two epochs directly

Pa.t2/D Pa.t1/ exp
�

3�

2
N.a1; a2/

�

D Pa.t1/ exp
�

3

4
S.a1; a2/

�
:

(12.82)

Let us now turn to the conceptual aspects of this
approach. I consider the above analysis as a program
capable of determining the numerical value of �L2

P.
Such a program has the following ingredients:

� The universe is described by two fundamental
length scales LP and ��1=2 or – equivalently – by
one length scale Lp and the dimensionless ratio�L2

P.
This ratio needs to be determined by a physical prin-
ciple and the fact that it is very small should become
obvious when this principle is implemented prop-
erly.

� Time translation invariance of the geometry sug-
gests that de Sitter spacetime qualifies as some kind
of equilibrium configuration. Given the two length
scales, one can envisage two de Sitter phases for the
universe, one governed by H D L�1

P and the other
governed by H D .�=3/1=2. Of these, I would ex-
pect the Planck scale inflationary phase to be an
unstable equilibrium causing the universe to make
a transition towards the second de Sitter phase gov-
erned by the cosmological constant. The transient
stage is populated by matter emerging along with
classical geometry around the point D in Fig. 12.2.

� Such a cosmological model is characterized by
a number N related to �L2

P by (12.78). This N
has a direct physical interpretation as the number
of modes within a Hubble volume which crosses
the Hubble radius during any of the three phases
of evolution of the universe. Because N has a di-
rect physical meaning, this translates the problem
of determining a very small number �L2

P to the
problem of determining a more manageable num-
ber .1=6�/ ln.�L2

P=3/, which is of order 10 for our
universe.

� We have given an argument as to why N is of order
4� . This has to be a postulate at this stage since
we do not understand how matter and space emerge
from some pregeometric variables. However, even
without such a detailed knowledge one can argue
that the numerical value cannot be widely far off
from the result N D 4� . Given a better model for
quantum gravity, one should be able to calculate �
and obtain a more precise numerical value for �.
Incidentally, cosmological observation can be used
to determine N and for a wide range of accepted
parameter values, we obtain N � 4� .

The acceptance of the arguments in this section pro-
vides a route for resolving what is often considered to
be a major challenge in theoretical physics. the author
believes the final solution to cosmological problem will
only require refining the various ingredients described
in the itemized list above. In particular, we need to ac-
cept the existence of two length scales in our universe
and look for a first principle argument to determine
the ratio between these two scales. For further devel-
opments in this direction see [12.77].
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12.8 Conclusions
The authors believes that the features of gravitational
theories described above makes a strong case for treat-
ing gravitational field equations as emergent and hav-
ing the same conceptual status as equations of fluid
dynamics or elasticity. The peculiar features of grav-
itational field theories all point to such an interpre-
tation and it is fascinating that one could make so

much progress without specifying the dynamics of
the microscopic degrees of freedom. Further, this per-
spective offers a refreshingly different paradigm for
cosmology and holds hope for determining the nu-
merical value of the cosmological constant, which is
considered one of the deepest puzzles in theoretical
physics.
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13. Spacetime and the Passage of Time

George F. R. Ellis, Rituparno Goswami

This paper examines the various arguments that
have been put forward suggesting either that time
does not exist, or that it exists but its flow is not
real. We argue that:

1. Time both exists and flows.
2. An evolving block universe (EBU) model of

spacetime adequately captures this feature,
emphasizing the key differences between the
past, present, and future.

3. The associated surfaces of constant time are
uniquely geometrically and physically deter-
mined in any realistic spacetime model based
in general relativity theory.

4. Such a model is needed in order to capture
the essential aspects of what is happening
in circumstances where initial data does not
uniquely determine the evolution of spacetime
structure because quantum uncertainty plays
a key role in that development.

Assuming that the functioning of the mind is
based in the physical brain, evidence from the way
that the mind apprehends the flow of time prefers
this evolving time model over those where there is
no flow of time.
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13.1 Spacetime and the Block Universe

In this section we briefly summarize the usual represen-
tation in relativity theory of spacetime as an unchanging
block universe, and the associated view that the change
of time is an illusion.

The nature of spacetime in both special and general
relativity has led some people to a view that the pas-

sage of time is an illusion [13.1–4]. Given data at an
arbitrary time, it is claimed that everything occurring
at any later or earlier time can be uniquely determined
from that data, evolved according to deterministic local
physical laws (this is formalized in standard existence
and uniqueness theorems [13.5]). Consequently, there
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cannot be anything special about any particular mo-
ment; there is no special now that can be called the
present. Past, present, and future are equal to each other,
for there is no surface that can uniquely be called the
present.

Such a view can be formalized in the idea of a block
universe [13.1, 6, 7]: space and time are represented
as merged into an unchanging spacetime entity, with
no particular space sections identified as the present
and no evolution of spacetime taking place. The uni-
verse just is; a fixed spacetime block, representing
all events that have happened and that will happen.
This representation implicitly embodies the idea that
time is an illusion; time does not roll on in this pic-
ture. All past and future times are equally present,
and the present now is just one of an infinite number.
Price [13.8] and Barbour [13.9] in particular advo-
cate such a position. Underlying this, as emphasized
by Barbour, is the idea that time-reversible Hamilto-
nian dynamics provides the foundation for physical
theory in general and gravitation in particular. Occa-
sionally cosmology or astrophysics takes into account
time-irreversible physics, for example nucleosynthesis
in the early universe or the late phases of gravitational
collapse, but the notion of the present as a special time
remains absent.

The problem with this view is that it is a profound
contradiction to our experiences in everyday life, and in
particular to the way science is carried out. Scientific
theories are developed and then tested by an ongoing
process that rolls out in time: initially the theory does
not exist; it is developed, tested, refined, finally perhaps
accepted. Is it really plausible that all of this process is
an illusion, as some claim? Can it really be that time
is real but flow is not (Davies [13.1]), or time does not
exist (Barbour [13.9], Rovelli [13.10])? If time is an il-
lusion, how can the mind generate this illusion, when
(assuming the validity of present day neuroscience) the
mind is based in the brain – a physical entity, governed
by the laws of physics?

By contrast to this view, Broad already in
1923 [13.11] argued that the true nature of spacetime is
best represented as an emergent block universe (EBU),
a spacetime which grows and incorporates ever more
events, concretizing as time evolves along each world
line [13.12]. Unlike the standard block universe, it ad-
equately represents the differences between the past,
present, and future, and depicts the change from the po-
tentialities of the future to the determinate nature of the
past. This is the view we present in this chapter – the
claim time is an illusion results from using an inade-
quate model of spacetime.

13.2 Time and the Emerging Block Universe

In this section we summarize the alternative represen-
tation of spacetime as an ever-growing emergent block
universe, embodying the view that the ongoing flow of
time is a key physical aspect of reality, and relate this to
the classical physics concept of the nature of time.

How do we envisage spacetime and the objects in
it as time unrolls? To motivate the EBU model of real-
ity, consider the following scenario [13.12]: a massive
object has rocket engines attached at each end that al-
low it to move either left or right. The engines are fired
alternately by a computer, which produces firing inter-
vals and burn times based on a sensor activated by the
random decays of a radioactive element [13.13]. These
signals select the actual spacetime path of the object
from the set of all possible paths. Due to the quantum
uncertainty inherent in radioactive decay [13.14–16],
the path realized is not determined by the initial data
at any previous time; which potential path becomes ac-
tual cannot be predicted, it is determined as it happens
(Fig. 13.1).

Because the objects are massive and hence produce
spacetime curvature, spacetime structure itself is unde-
termined until the object’s motion is determined by the
specific radioactive decay that takes place. Instant by
instant, the spacetime structure changes from indeter-
minate to definite. Thus a definite spacetime structure
comes into being as time evolves. The random ele-
ment introduced through the irreducible uncertainty of
quantum events ensures that there is no way the future
spacetime can be predicted from the past; what will ac-
tually happen is not determined until it happens. Second
by second, one specific evolutionary history out of all
possibilities is chosen, takes place, and becomes cast
in stone (sometimes literally). The future is uncertain
and indeterminate until local determinations have taken
place at the spacetime event here and now, designating
the present on a world line at a specific instant; there-
after this event is in the past, having become fixed and
immutable, with a continually new event on the world
line designating the present.
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Events that have occurred
Possible events that might occur
Possible events that did not occur

Time

t = t1

Position

Time

t = t1

t = t2

Position

Fig. 13.1 Motion of a particle world line controlled in a random way, so that what happens is determined as it happens.
On the left events are determined until time t1 but not thereafter; on the right, events are determined until time t2 > t1,
but not thereafter. Spacetime is unknown and unpredictable even in principle before it is determined (because that choice
is based on the randomness of quantum decay of radioactive particles). The time at which it is determined inexorably
moves on, and given this physical context, this unfolding cannot be stopped, changed, or reversed

Time 1 Time 2

Fig. 13.2 An evolving curved spacetime picture that takes the flow of time seriously. Time evolves along each world
line, extending the determinate spacetime as it does so. One cannot locally predict uniquely to the future from data on
any constant time surface because of quantum uncertainty. This is true both for physics and for the spacetime itself; the
developing nature of spacetime is determined by the evolution of the matter in it. A key example is the process whereby
quantum fluctuations determine seed spacetime inhomogeneities during the inflationary era in the early universe

The EBU model of spacetime represents this situa-
tion (Fig. 13.2): time progresses, events take place, and
history is shaped. This is represented through a grow-
ing spacetime diagram, in which the past is represented
as a usual block universe, but now existing only from
the start of spacetime up to the ever-changing sur-
face representing the present. Even the nature of future
spacetime, along with the physical events that occur

in it, is uncertain; unlike the past, the future does
not yet exist, it is just a potentiality; hence it is not
represented in the diagram as part of the presently
existing spacetime. The passing of time marks the
change from indefinite (not yet existing) to definite
(having come into being); the present marks the in-
stant at which we can act and change reality. Spacetime
grows as time inexorably evolves: at each new in-
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stant every previous present has become part of the
past [13.12].

The proposed view is thus that spacetime is contin-
ually extending to the future as events develop along
each world line in a way determined by the complex
of causal interactions; these shape the future, including
the very structure of spacetime itself. The EBU contin-
ues evolving along every world line until it reaches its
final state, resulting in an unchanging final block uni-
verse at the end of time. One might say that then time
has changed into eternity. It is this final block universe
that is usually represented in spacetime diagrams, but it
only exists when time has run its course everywhere.

13.2.1 The Paradox

This model of spacetime is obviously far more in ac-
cord with our daily experience than the standard block
universe picture; indeed everyday data, including the
apparent passage of time involved in carrying out ev-
ery single physics experiment, would seem to decisively
choose the EBU over the block universe. The evidence
seems abundantly clear. Why, then, do some physicists
prefer the latter? If the scientific method is to abandon
a theory when the evidence is against it, why do some
hold to it?

This counter viewpoint was put succinctly by Sean
Caroll in a blog [13.17]:

The past and future are equally real. This isn’t com-
pletely accepted, but it should be. Intuitively we
think that the now is real, while the past is fixed
and in the books, and the future hasn’t yet occurred.
But physics teaches us something remarkable: ev-
ery event in the past and future is implicit in the
current moment. This is hard to see in our everyday
lives, since we’re nowhere close to knowing every-
thing about the universe at any moment, nor will we
ever be – but the equations don’t lie. As Einstein put
it, It appears therefore more natural to think of phys-
ical reality as a four dimensional existence, instead
of, as hitherto, the evolution of a three dimensional
existence.

However, the question is which equations, and when
are they applicable? As emphasized so well by Edding-
ton [13.18, pp. 246–260], our mathematical equations
representing the behavior of macro objects are highly
abstracted versions of reality, leaving almost all the
complexities out. The case made in [13.19] is that
when true complexity is taken into account, the uni-
tary equations leading to the view that time is an

illusion are generically not applicable except to iso-
lated micro components of the whole. The viewpoint
expressed by Carroll supposes a determinism of the
future that is not realized in practice: inter alia, he
is denying the existence of quantum uncertainty in
the universe we experience. However, physics experi-
ments show uncertainty to be a well-established aspect
of the universe [13.14, 16], and it can have macro-
scopic consequences in the real world, as is demon-
strated by the historic process of structure formation
resulting from quantum fluctuations during the infla-
tionary era [13.20]. These inhomogeneities were not
determined until the relevant quantum fluctuations had
occurred and then become crystalized in classical fluc-
tuations; and they were unpredictable, even in principle.

Actually, the EBU proposal does not contradict the
first part of the Einstein quote given in Carroll’s blog.
The core issue not touched on in that quote is where
the future boundary of the four-dimensional spacetime
advocated by Einstein lies. In the usual block universe
picture, it is taken to be at the end of time. In the EBU,
it corresponds to the ever-changing present time.

The prime issue arising is that the spacetime view
of special relativity denies the existence of any pre-
ferred time slices, whereas the claimed existence of
the present in the EBU is certainly a preferred time
surface (at each instant, it is the future boundary of
the four-dimensional spacetime). We will deal with
this objection in the following section, after first look-
ing at common physics views of the passage of time
in the rest of this section. An array of further argu-
ments for the claim time is an illusion have been made
by philosophers and physicists; these are conveniently
summarized in the Spring, 2012 special issue of Sci-
entific American [13.1] (See also [13.21–23] for recent
reviews of these issues, with references.). We will turn
to these in Sect. 13.4. We then consider the way the
block universe view relates to theories of the mind
(Sect. 13.6): a key problem for that view. Next, we
consider how the EBU picture may be altered when
one takes quantum issues into account (Sect. 13.2.3),
and point out how it relates to the arrow of time is-
sue (Sect. 13.8.1) and solves the chronology protection
question (Sect. 13.8.2). Finally, we reflect on the nature
of time in relation to the EBU proposal (Sect. 13.9).

13.2.2 The Classical Physics of the Passage
of Time

There are no problems with the existence or passage
of time in standard physics textbooks on classical me-
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chanics, see, for example, The Feynman Lectures in
Physics [13.24].

Reversible Dynamics
A standard example is a simple harmonic oscillator
(SHO) with equation of motion

FD m
d2q

dt2
D�kq ; (13.1)

and solution

q.t/D A cos.!t��/ ;

p.t/Dm
dq

dt
D�mA! sin.!t��/ ; (13.2)

where ! WD
q

k
m . As time evolves, the oscillator os-

cillates, with its state at time t given by fq.t/; p.t/g.
Standard texts discussing the SHO do not question the
existence or flow of time.

More generally for dynamical systems with N vari-
ables xi

dxi=dtD f .xj/ .i; jD 1�N/ ; (13.3)

the solution xi.t/ represents how the variables change
as time flows steadily on. (The SHO is of this form if
xi D x, x2 D p.) In these cases knowledge of the state
at any time t0 enables deduction of the state at all ear-
lier and later times; the system is time-reversible and
predictable, and evolves with time according to this
equation (indeed, the very purpose of these equations
is to predict this time evolution). A particular case is
Hamiltonian dynamics where

dpi

dt
D�

@

@qi
H .qj.t/; pj.t// ; (13.4)

dqi

dt
DC

@

@pi
H .qj.t/; pj.t// ; (13.5)

.i; jD 1�N/. There may be constraints, perhaps involv-
ing first and second spatial derivatives

Cm.pi; qj; qj;k; qj;kl/D 0 (13.6)

.mD 1�M/, where qj;k WD @qj=@dxk. Then these must
be preserved under the time evolution

f.13:4/; .13:5/g )
dCm

dt
D 0 : (13.7)

Then provided the constraints are initially satisfied at
time t0, the past and the future are uniquely determined
for some time interval ŒT

�

; T
C

� containing t0

f.pi.t0/; qi.t0// W Cm.t0/D 0g

) f.pi.t/; qi.t// W T� < t < T
C

g : (13.8)

The time development of the system is given by these
equations. Three comments are made in the following.

Explicit Time Dependence. The case H .qj.t/;
pj.t/; t/, where @H=@t ¤ 0 breaks time translation
invariance and explicitly invokes preferred times in the
dynamics. We exclude this case in what follows.

Limited Prediction Times. Generically one or both of
T
�

, T
C

will be finite [13.5]. Except for comments on
the chronology protection question (Sect. 13.8.2), we
will not consider such global issues here.

First Integrals. For any function f .qi; pi; t/ (13.4) and
(13.5) imply the time derivative

df .qi; pi; t/

dt
D

�
@f

@qi

��
dqi

dt

�
C

�
@f

@pi

��
dpi

dt

�

C
@f

@dt
(13.9)

D

�
@f

@qi

@H
@pi
�
@H
@qi

@f

@pi

�

C @f =@dt : (13.10)

Applying this to the Hamiltonian H itself,

dH .qi; pi/=dtD

�
@H
@qi

@H
@pi
�
@H
@qi

@H
@pi

�
D 0 ;

(13.11)

so H is the conserved energy (related to time transla-
tion invariance of the dynamics); in simple cases with
kinetic energy T.p/ WD 1

2 p2 and potential energy V.q/,

H .p.t/;q.t//D T.p/CV.q/D constDW E :
(13.12)

This constant relation does not imply that there is no
time evolution taking place; it means there is a first
integral of that evolution. If there is no conserved en-
ergy, the Hamiltonian description f(13.4) and (13.5)g
does not apply. This will be the case whenever dissipa-
tive processes take place and affect the dynamics at the
chosen scale of description; this occurs in a great many
cases in both macro and micro physics [13.25].
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Irreversible Dynamics
In general, friction effects mean we have an inability
to retrodict if we lose information below some level
of coarse graining. The simplest example is a block
of mass m sliding on a plane, slowing down due to
constant limiting friction F D��R, where � is the
coefficient of friction and RD mg is the normal reac-
tion, where g is the acceleration due to gravity [13.26].
The motion is a uniform deceleration; if we consider
the block’s motion from an initial time tD 0, it comes
to rest at some later time t

�

> 0. For t < t
�

the ve-
locity v.t/ and position x.t/ of the object are given
by

v1.t/D��gtC v0 ;

x1.t/D�
1

2
�gt2C v0tC x0 ; (13.13)

where .v0; x0/ are the initial data for .v; x/ at the time
tD 0. This expression shows that it comes to rest at
t
�

D �g=v0. For t > t
�

, the quantities v and x are given
by

v2.t/D 0; x2.t/D X.constant/ ; (13.14)

where X WD � 1
2�gt2

�

C v0t
�

C x0.
The key point now is that from the later data (13.14)

at any time t > t
�

you cannot determine the initial data
.v0; x0/, nor even the time t

�

when the object came to
rest, thus you cannot reconstruct the trajectory (13.13)
from that later data. You cannot even tell if the block
came from the left or the right. The system is no longer
time reversible or predictable. The direction of time is
uniquely determined by the way it came to a halt (it
cannot spontaneously start moving; note that the rest
frame implied here is that defined by the table on which
the block slides). That coming to rest was an event that
took place in time; time does not cease after it comes to
rest, it is the block’s motion that ceases then. At macro
scales, reversibility does not hold, nor is the motion pre-
dictable in both directions of time; the dynamics is not
Hamiltonian.

A standard response is, if we knew how the surface
was heated, we could work out where the block cane
from and when it arrived. However, the heat dissipates
away and vanishes into thermal fluctuations (at a small
enough scale, into quantum fluctuations); that record is
soon irretrievably lost. The claim that every event in the
past and future is implicit in the current moment soon
ceases to be true.

13.2.3 Quantum Physics
of the Passage of Time

In the last example, our inability to predict is asso-
ciated with a lack of detailed information. So if we
were to fine-grain to the smallest possible scales and
collect all the available data, could we then determine
uniquely what is going to happen? No, we cannot pre-
dict to the future in this way because of foundational
quantum uncertainty relations(see e.g., [13.27–29]). We
cannot predict precisely when a nucleus will decay or
what the velocity of the resultant particles will be, nor
can we predict precisely where a photon or electron in
a double-slit experiment will end up on the screen. This
unpredictability is not the result of a lack of informa-
tion; it is the very nature of the underlying physics.

There are two kinds of quantum evolution [13.28–
30]. First, there is the unitary Schrödinger evolution

i„
@j i

@t
D OHj i ; (13.15)

where j .t/i is the wave function and OH the Hamil-
tonian operator. This equation determines its evolution:
time occurs here in the same way as in classical physics,
although the meaning of the relevant variable is quite
different. Time rolls on and the state vector evolves;
therefore probabilities change with time.

Second, there is wave function reduction, associated
with both state vector preparation and measurement
events. Consider the wave function or state vector
j .x/i. The basic expansion postulate for quantum me-
chanics is that before a measurement is made, j i can
be written as a linear combination of eigenstates

j 1i D
X

n

cnjun.x/i ; (13.16)

where un is an eigenstate of some observable OA (see
e.g. [13.29, pp. 5–7]). Immediately after a measurement
is made at a time tD t�, however, the wavefunction is
found to be in one of the eigenstates

j 2i D cNuN.x/ ; (13.17)

for some specific index N. The data for t < t� do not
determine N; they merely determine a probability for
the outcome N through the fundamental equation

pN D c2
N : (13.18)
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One can think of this as being due to the probabilistic
time-irreversible reduction of the wave function [13.28,
pp. 260–263]

j 1i D
X

n

cnjun.x/i �! j 2i D cNuN.x/ : (13.19)

This is the event where the uncertainties of quantum
theory become manifest, as the indeterminate future
makes a transition to the determined past (up to this
time the evolution is determinate and time reversible).
Invoking a many-worlds description (see, e.g., [13.29])
will not help determine the specific outcome; in the
actually experienced universe in which we make the
measurement, N is unpredictable, as confirmed by ex-
periment. The specific experimental outcome (13.17)
that will be measured by an observer to occur at a later
time is not determined by the Everett hypothesis. (This
assumes that in Fig. 13.1, all those possible paths in fact
occurred; but we experience only one specific path.)

Thus the initial state (13.15) does not uniquely de-
termine the final state (13.17), and this is not due to
lack of data, it is due to the foundational nature of quan-
tum interactions. You can predict the statistics of what is
likely to happen but not the unique actual physical out-
come, which unfolds in an unpredictable way as time
progresses; you can only find out what this outcome
is after it has happened. Furthermore, in general the
time t� is not predictable from the initial data either;
you do not know when the collapse of the wave func-
tion (the transition from (13.15) to (13.17)) will happen
(you cannot predict when a specific excited atom will
emit a photon or a radioactive particle will decay).

We also cannot retrodict to the past at the quantum
level, because once the wave function has collapsed to
an eigenstate we cannot tell from its final state what
it was before the measurement. You cannot retrodict
uniquely from the state (13.17) immediately after the

measurement takes place, or from any later state that
it then evolves to via the Schrödinger equation at later
times t > t�, because knowledge of these later states
does not suffice to determine the initial state (13.15) at
times t < t�; the set of quantities cn are not determined
by the single number aN .

This process takes place all the time as physical
events occur and have classical outcomes (in photo-
synthesis in plants and in nucleosynthesis in the early
universe, for example); it is not necessarily associ-
ated with a measuring apparatus or the mind of an
experimenter. However, it is time-irreversible, causing
information loss, and so is not describable by any uni-
tary evolution. The classical world would not exist if
this did not happen as an ongoing unfolding process in
time.

The fact that such events happen at the quantum
level does not prevent them from having macro-level
effects. Many systems can act to amplify them to macro
levels, including photomultipliers (whose output can
be used in computers or electronic control systems).
This amplification is what occurred when cosmic rays
– whose emission is subject to quantum uncertainty
– caused genetic damage in the distant past, result-
ing in new phenotypes occurring [13.31]. The specific
outcome that actually occurred was determined as it
happened, when quantum emission of the relevant pho-
tons took place. Any specific emission event (a photon
emission time and trajectory) was not determined by
the priori quantum state, so any consequent damage
to a specific gene in a particular cell at a particular
time and place cannot be predicted even in principle.
(This damage is not trivial, see [13.32].) Consequently
the specific evolutionary outcomes for life on Earth
(the existence of dinosaurs, giraffes, humans) cannot be
uniquely determined by causal evolution from detailed
data at the start of life on Earth.

13.3 A Problem: Surfaces of Change

The problem, however, is the claimed unique status of
the present in the EBU – the surface where the inde-
terminate future is changed to the definite past at any
instant. In this section, we propose that there are indeed
such preferred surfaces in all realistic general relativity
models of spacetime.

It is a fundamental feature of special relativity that
simultaneity is not uniquely defined; it depends on the
state of motion of the observer, and one presumes that in
some fundamental sense the present must be regarded

as a surface of constant time. What is past and future
elsewhere depends on one’s motion, hence the block
universe model is natural; it is the only way a space-
time model can incorporate this lack of well-defined
surfaces of instantaneity. For different observers at an
event P, different surfaces of simultaneity will des-
ignate different events Q on a distant world line �1

as simultaneous with P [13.33]; the only resolution is
that they are all simultaneous with P, hence time is an
illusion.
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However, there are two fundamental points to be
made here that completely change the picture. First,
the physical events that shape how things evolve are
based on particle interactions, and take place along
time-like or null world lines, not on space-like surfaces,
which are secondary. The concept of simultaneity is
only physically meaningful for neighboring events; it
has no physical impact for distant events, it is merely
a theoretical construct we like to make in our minds.
What we think is instantaneous makes no difference to
our interaction with a vehicle on Mars. What is signif-
icant is firstly what happens over there, secondly what
happens here on Earth, and, thirdly the signals between
us. Simultaneity does not enter into it.

What really matters is proper time 
 measured
along timelines xi.v/, determined from the metric ten-
sor gij.xk/ by the basic formula [13.5, 33]


 D

Z p
�ds2 D

Z q
�gij.dxi=dv/.dxj=dv/dv :

(13.20)

Indeed this is the reason why the metric tensor is cen-
tral to relativity theory: as well as determining which
lines are null lines (d
 D 0 all along the curve), it deter-
mines proper time along time-like world lines. Natural
surfaces of constant time have been given by this inte-
gral since the start of the universe. Thus we can propose
the following.

The Present
The ever-changing surface S.
/ separating the future
and past – the present – at the time 
 is the surface
f
 D constantg determined by the integral (13.20) along
a family of fundamental world lines starting at the be-
ginning of spacetime.

If the universe were to exist forever we would have
to start at some arbitrarily chosen present time f
0 D

constg, which we assume exists, and integrate from
there.

However, is this well defined, given that there are
no preferred world lines in the flat spacetime of special
relativity? The second fundamental feature is that it is
general relativity that describes the structure of space-
time, not special relativity. Gravity governs spacetime
curvature [13.5], and because there is no perfect vac-
uum anywhere in the real universe (inter alia because
cosmic blackbody background radiation permeates the
Solar System and all of interstellar and intergalac-
tic space [13.20]), spacetime is nowhere flat or even

of constant curvature; therefore there are preferred
time-like lines everywhere in any realistic spacetime
model [13.34]. The special relativity argument does not
apply.

A unique geometrically determined choice for fun-
damental world lines is the set of time-like eigenlines
xa.v/ of the Ricci tensor (they will exist and be unique
for all realistic matter, because of the energy condi-
tions such matter obeys [13.5]). Their four-velocities
ua.v/D dxa.v/=dv satisfy

Tabub D 	1ua, Rabub D 	2ua ; (13.21)

where the equivalence follows from the Einstein field
equations. Thus we can further propose the following.

Fundamental World Lines
The proper time integral (13.20) used to define the
present is taken along the world lines with four-velocity
ua.v/ satisfying (13.21).

In effect this is the proper time comoving gauge used in
perturbation theories; it will, of course, give the usual
surfaces of constant time in the standard Friedmann–
Lemaître–Robertson–Walker (FLRW) cosmologies.

The following two key issues arise regarding this
proposal:

� What about general covariance and local Lorentz
invariance? These are symmetries of the general
theory, not of its solutions. Interesting solutions
break the symmetries of the theory; this is not sur-
prising, as we know that broken symmetries are the
key to interesting physics [13.35].

� What about simultaneity? In general these surfaces
are not related to simultaneity as determined by
radar [13.33]; indeed this is even so in the FLRW
spacetimes (where the surfaces of homogeneity are
generically not simultaneous, according to the radar
definition [13.36]). The flow lines are not neces-
sarily orthogonal to the surfaces of constant time;
indeed they may have nonzero vorticity and accel-
eration as well as shear and expansion, so there may
be no surfaces orthogonal to the flow lines [13.34].
More than that, the surfaces determined in this way
are not even necessarily space-like, in an inhomo-
geneous spacetime.

The latter feature means that the there may possibly
be a time horizon; a null boundary where these surfaces
make a transition from space-like to time-like. This will
of course only happen for very large gravitational fields
such as occur in black holes; indeed, these surfaces may
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well usually coincide with an event horizon. The initial
value problem will then be very different when based
in data in these surfaces; however even if these surfaces
become time-like (necessarily then being null in some
places), data on them will still determine the spacetime
in their future and past Cauchy development, up to in-
tersections of this development with surfaces where the
outcome is already determined. The physics of time
then will be quite different than usual: this needs in-
vestigation. It could relate to the black hole information
paradox.

In Summary. While the general coordinate invariance
invoked in general relativity theory might be thought to

proclaim there are no preferred such surfaces, in any
particular solution this is not the case – there will be
preferred time-like lines in any realistic cosmological
solution. The result will be existence of a family of
preferred surfaces representing constant proper time 

since the start of the universe along these fundamental
world lines. The proposal is that each represents what
was the present at the corresponding time 
 , for all
times up to the present time 
0 (they do not exist for

 > 
0, for that spacetime is not yet determined). These
surfaces are derivative rather than primary, as they re-
sult from the configuration of fundamental world lines.
They will usually not be instantaneous as determined
by radar soundings.

13.4 Other Arguments Against an EBU

A series of other arguments, both physical and philo-
sophical, have been deployed in favor of the standard
block universe picture [13.1], and hence deny the EBU
proposal. In this section we review these and argue that
none of them are fatal.

13.4.1 Categorization Problem

A philosophical argument is that the past, present, and
future are exclusive categories, so a single event cannot
have the character of belonging to all three. The coun-
terargument is as follows:

� Suppose E happens at tE.
� At time t1 < tE, E is in future,
� At time t1 D tE , E is in present,
� At time t1 > tE, E is in past.

Its category changes – that is the essence of the flow
of time – so this is a semantic problem, not a logical
one. One needs adequate semantic usage and philo-
sophical categories to allow description of this change:
language usage cannot prevent the flow of time.

13.4.2 Not Necessary to Describe Events

Davies [13.1] and Rovelli [13.10] claim time does not
flow because it is not needed to describe the relations
between relevant variables, which are all that matter
physically. Thus one can always obtain correlations
between position p.t/ and momentum q.t/ for a sys-
tem by eliminating the time variable: solve for tD t.q/

and then substitute to obtain p.t/D p.t.q//D p.q/, and
time has vanished! For example, in the case of the sim-
ple harmonic oscillator (13.2), this gives the SHO phase
plane

q2C
� p

m

	2
D A2 : (13.22)

Thus one can describe system changes by relating
component variables to one another, rather than to
a global idea of time, which suggests nothing happens
or changes, they are just correlated.

Yes indeed, one can find this time-independent rep-
resentation of what happens. (This is just the energy
integral (13.12).) However, that does not mean that time
does not flow, it just means that the results of times
flow are correlations between relevant variables. That
abstraction represents part of what happens, namely the
relation between p and q, and omits other parts, namely
the relation to time. One can put time back to obtain

q.t/2C

�
p.t/

m

�2

D A2 ; q.t/D A cos.!t��/ ;

(13.23)

and the point representing the system moves along the
flow lines as time changes. The first model leaves out
part of what is happening: that does not mean it does
not happen, it just means it is a partial model of reality,
including some aspects and omitting others. It leaves
out the way that the continually changing correlations
flow smoothly one after another in a continuous ongo-
ing way.
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13.4.3 Rates of Change

A key question is What determines the rate of flow of
time? or How fast does time pass? Davies and others
suggest there is no sensible answer to this question. In
contrast, we claim that the answer is given by (13.20),
which determines proper time 
 along any world line.
This is the time that will be measured along that world
line by any perfect clock [13.5, 33]; real world clocks
– oscillators that obey the simple harmonic equation –
are approximations to such ideal clocks, and it is the
relation between such clocks and other physical events
that measures the passage of time.

The Preferred Time Parameter
The whole edifice of physics is built on the assumption
that we can build such clocks to a good approxima-
tion, giving a time parameter 
 that appears equally
in all dynamical equations of physics: Newton’s equa-
tion of motion [13.24], Maxwell’s equations [13.37],
the Schrödinger equation [13.14], General relativity ex-
pressed in a 1C 3 covariant formalism [13.34], and so
on; because of this, a lot of money is spent on build-
ing idealized clocks that are understood to be more
accurate than any previous clock (see, e.g., http://en.
wikipedia.org/wiki/Clock; accurate navigation, for ex-
ample, requires accurate timekeeping [13.38], which is
thus a core feature of GPS systems). Standard physics
would not work if a different time parameter was
needed in each of these equations. Special and general
relativity identify that time as proper time (13.20) along
time-like worldlines.

Given such clocks, the rate of change with time of
any variable f .
/ along a world line is given by

f 0 D df =d
 : (13.24)

Then choosing f .
/D 
 , the answer to the question
posed is that the rate of change of time is unity


 0 D d
=d
 D 1 : (13.25)

In other words, through (13.20) the rate of change of
time in any particular coordinate system is determined
by the metric tensor. Using normalized comoving coor-
dinates with ua D ıa

0 and the time parameter v chosen
as 
 [13.34], g00 D�1, and (13.20) becomes


 D

Z
d
 : (13.26)

The relative flow of time along different world lines
may be different; that is the phenomenon of time di-
lation, caused by the varying gravitational potentials

represented by the metric tensor [13.39]. However, this
does not mean it is not well defined along each world
line.

The Metric Evolution
So if the metric tensor determines proper time, what
determines the metric tensor? The Einstein field equa-
tions, of course [13.5]. These can be expressed in many
ways, for example a 1+3 covariant formalism [13.34],
a tetrad formalism [13.40], or ADM (Arnowitt, Deser,
and Misner) formalism [13.41]. Following the ADM
approach, the first fundamental form (the metric) is rep-
resented as

ds2 D .�N2CNiN
i/dt2CNi dxi dtC gij dxi dxj ;

(13.27)

where i; jD 1; 2; 3. The lapse function N.x˛/ and shift
vector Ni.xˇ/ represent coordinate choices, and can be
chosen arbitrarily; gij.x˛/ is the metric of the three-
spaces ftD constg. The second fundamental form is

�ij D niIj ; (13.28)

where the normal to the surfaces ftD constg is ni D ı
0
i ;

the matter flow lines have tangent vector ui D ıi
0 (which

differs from ni D gijnj whenever Ni ¤ 0, cf. [13.42]).
The field equations for gij are as follows (where three-
dimensional quantities have the prefix .3/): four con-
straint equations

.3/RC�2 ��ij�
ij D 16��H ; (13.29)

R� WD �2��j
jj D 16�T�0 ; (13.30)

where jj represents the covariant derivative in the three-
surfaces, and 12 evolution equations

@tgij D 2Ng�1=2
�
� ij� 1

2 gij�
�
CNijjCNjji ; (13.31)
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(13.32)

Equations of state for matter must be added, and the
matter conservation equations Tab

Ib D 0 satisfied (as is
required for consistency of the evolution equations).
Then (13.31) determines the rate of change of the met-
ric gij.x˛/ relative to the ADM time coordinate; (13.32)

http://en.wikipedia.org/wiki/Clock
http://en.wikipedia.org/wiki/Clock
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determines the rate of change of the geometric source
terms �ij occurring in (13.31); and the matter equations
determine the rate of change of the matter terms. How
this works out in practice is shown in depth in [13.43].
Overall this determines the metric tensor as a function
of time, and hence evolution of the surfaces of con-
stant time as defined above (which are determined by
the metric).

This can be worked out using any time surfaces (that
is the merit of the ADM formalism); in particular one
can specialize the time surfaces and flow lines to those
defined above (Sect. 13.3):

1. We choose the 4-velocity to be a Ricci Eigenvector:

T�0 D 0) R� D�2��j
jj D 0 ; (13.33)

which algebraically determines the shift vector
Ni.xj/, thereby solving the constraint (13.30).

2. We determine the lapse function N.xi/ by the con-
dition that the time parameter t measures proper
time 
 along the fundamental flow lines.

These conditions uniquely determine the lapse and
shift (see the Appendix for details). Then, given the
equations of state and dynamical equations for the mat-
ter (in the case of a perfect fluid, [13.43, (45)–(77)])
with S� D Sı�0 , (13.31) and (13.32) determine the time
evolution of the metric in terms of proper time 
 along
the fundamental flow lines; the constraints are con-
served because of energy-momentum conservation. The
development of spacetime with time takes place just as
is the case for other physical fields, with the relevant
time parameter being proper time along the fundamen-
tal flow lines. There is no problem with either the
existence or the rate of flow of time.

Predictability
Do these equations mean the spacetime development is
uniquely determined to the future and the past from ini-
tial data? That all depends on the equations of state of
the matter content: the relations between the density �H

in (13.29), pressure tensor OTij in (13.32), and momen-
tum density T�0 in (13.30). These quantities depend on
the frame chosen, and T�0 is zero when we make the
choice (13.33).

Assuming this choice, define the pressure p and
anisotropic stress ˘ij by

pD
1

3
gij OTij ; ˘ij D OTij � pgij : (13.34)

The future and past will be uniquely determined
for simple equations of state such as noninteracting

baryons plus radiation, as in standard cosmological
models

�H D �bC �r ; pD pbC pr D
1
3�r ; ˘ij D 0 ;

(13.35)

where the energy density conservation equations will
determine the time evolution of �b, �r . However:

� One can have dissipative processes (shear viscos-
ity or bulk viscosity, for example [13.34]), so the
evolution is not time reversible – a Hamiltonian de-
scription does not apply to the matter, and hence
does not apply to the combined (matter, gravity)
system either, where matter determines space-time
curvature.

� One can have an explicitly time-dependent equation
of state

pD p.�H; 
/ ; ˘ij D˘ij.�H; 
/ ; (13.36)

and predictability is no longer the case if the time
dependence is not predictable from the available
initial data at the relevant scales; again a time-
reversible and predictive Hamiltonian description
cannot be used for the system as a whole.

For example, one can have a massive body where
effectively one has

˘ij.
/D F.
/˘ij.0/ ; (13.37)

where F.
/ represents internal dynamics not visible
to the external world (Bondi’s massive objects Twee-
dledum and Tweedledee incorporated this idea, see
Narlikar [13.44] for a description); there might be
a mechanism here that is computer controlled via
an algorithm embodying a random number generator
(see [13.45] for a discussion.) or based in random sig-
nals generated via radioactive decay [13.13]. Then as
explained above (Sect. 13.2) and in Fig. 13.1, the ini-
tial data do not determine the outcome (F.
) indicates
a causal influence but not a predictable functional re-
lation). One can only determine what will happen as it
happens.

So (13.31) and (13.32) determine the time evolution
of the spacetime, but do not guarantee predictability
either of the future or the past. That depends on the
physics of the matter; if quantum unpredictability is
amplified to macro scales, the spacetime evolution is in-
trinsically undetermined until it happens (as mentioned
above, this was essentially what happened during the
generation of seed inhomogeneities in the inflationary
era in the very early universe).



Part
B

|13.4

254 Part B Foundational Issues

Conclusion
Time flows at the rate of one second per second, with
the metric tensor determining what this rate is for clocks
and every other physical system (the choice of units
is, of course, arbitrary, but can be done in a way that
makes sense). The result is that clock readings and par-
ticle motions are correlated in a way that enable us to
reliably predict motions. So yes, such correlations are
fundamental to our experience of the flow of time (as
emphasized by Davies); they are a result of its equally
inexorable omnipresent continuing flow in all physical
systems. Can you change the rate of time? No! Can you
stop time? No! Can you reverse time? No! Like Old
Man River, it just keeps flowing on; that is the prim-
itive expressed in all the time evolution equations of
physics [13.14, 24, 34, 37] and the related existence and
uniqueness theorems [13.5].

13.4.4 Time Parameter Invariance
of General Relativity

What about the time parameter invariance of gen-
eral relativity, as made manifest in the ADM formal-
ism [13.41, 46]? This has basically already been dealt
with in the discussion above:

� The gravitational side of the ADM equations may
be time-parameter invariant, but the matter side is
not, in particular because rescaling time changes the
value of the kinetic energy T.p/ while leaving the
potential energy U.xi/ unchanged. Hence any solu-
tions with matter present (i. e., all realistic solutions)
will not be time parameter invariant; this is part of
the ongoing tension between the geometric and mat-
ter sides of the Einstein field equations.

� This is part of the broader theme mentioned above:
specific solutions of the theory have less symme-
try than the theory itself; this symmetry breaking
is a key feature of all realistic solutions of the
equations of physics [13.35], and in particular cos-
mological solutions (Sect. 13.3).

� Proper time (13.20) along fundamental world lines
(13.21) provides a preferred time parameter in real-
istic solutions of general relativity theory.

Local physics does indeed have a preferred time pa-
rameter: for example, in a simple harmonic oscillator
using standard time t, q.t/D A cos.!t��/ (see (13.2));
these cycles measure time t like a metronome (which is
why SHOs are used as clocks). One can, in principle,

change to an arbitrary time t0,

t0 D t0.t/) tD t.t0/) qD A cos.!t.t0/��/ ;

(13.38)

for example,

t0 D exp H.t/) t

D exp.�Ht0/) q

D A cos.! exp.�Ht0/��/ ; (13.39)

hence the regular motion no longer is represented as
regular. This is because one has chosen a peculiar time,
which will not correlate simply with any other physi-
cal behavior [13.46, p. 57–60]. The sensible choice of
time is that which makes sense of patterns of physics
behavior; so the maximum sensible variation is t0 D
˛tCˇ (just as in the case of the allowed change in
affine parameter along geodesics). One can choose any
other reparametrization of time; but any transforma-
tions other than affine transformations of proper time
confuse and hide what is actually happening. One is
able to choose proper time and does so if one wants
to illuminate the physics.

It is nonoptimal to examine the dynamics of gen-
eral relativity without acknowledging the central role
of the metric tensor gij and resultant proper time (13.20)
along world lines – which are at the core of the phys-
ical interpretation of general relativity [13.5, 33]. You
can use a proper time coordinate 
 in the ADM formal-
ism (as shown above in Sect. 13.4.1; this is a general
way of solving the problem of time in ADM dynamics,
see [13.47]). That choice ties this time parameter in to
the rest of physics and in particular to time as measured
by local ideal clocks (such as a cesium atom). Conse-
quently, the flow of time is then characterized by the
relation between such clocks and other physical events,
including the gravitational dynamics represented by the
ADM evolution equations (13.31), (13.32). In this sense
time is relational (cf. [13.46, p. 163–166]).

In the case of the standard FLRW models of cos-
mology, the usual [13.5] metric is

ds2 D�d
2C a2.
/d�2 ; (13.40)

where d�2.xi/ is a time-independent three-space of
constant curvature [13.20, 34] and 
 is precisely the
preferred time coordinate defined above (Sect. 13.3),
as the flow lines ua D ıa

0 are Ricci flow lines and 
 is
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proper time along them (these are normalized comoving
coordinates [13.34]). Just as in the case of the sim-
ple harmonic oscillator, one can choose other, arbitrary
time parameters – but it is very perverse to do so, and
this is not done in practice, except for one other com-
mon choice: the use of a conformal time parameter �.
/

�D

Z
d
=a.
/) ds2 D a2.�/.�d�2C d�2/ ;

(13.41)

which is a very poor representation of proper time
but represents causal structure very well [13.5, 33].
However, this still has the same surfaces of constant

time as in (13.40) and is always acknowledged to be
different from the proper time 
 that is fundamental
in local physics. One never finds proposals for a time
tD t.
; xi/ with @t=@xi¤ 0, which would have dif-
ferent surfaces of constant time. The usual choice as
in (13.40), agreeing with the proposal made here in
(Sect. 13.3), ties time 
 in to all the rest of physics,
astronomy, geology, technology, and biology.

In Conclusion
Standard physics is based on the choice of a preferred
time parameter 
 along matter world lines. General rela-
tivity both allows such a choice and can itself be written
in terms of that choice.

13.5 Time with an Underlying Timeless Substratum

There are a number of proposals for an effective time to
somehow emerge in the context of a timeless substra-
tum. These include the Mott proposal (Sect. 13.5.1), the
Rovelli proposal (Sect. 13.5.2), and proposals based on
the the Wheeler–de Witt equation (Sect. 13.5.3). In this
section we will comment on them in turn.

As a preliminary, we first remark that there are two
common themes cutting across them all:

� If an effective time emerges at the macro scale, then
however that happens, it emerges, and the EBU pro-
posal is then good at macro scales, no matter how it
relates to a timeless substrate.

� All of these approaches are based on unitary
Schrödinger evolution, so none of them effectively
tackles the nonunitary evolution associated with
both state vector preparation and quantum mea-
surements [13.29]. Hence they omit a key way
that a flow of time takes place at the micro level
(Sect. 13.2.3). The many worlds view often associ-
ated with the Wheeler–de Witt equation proposes to
deal with measurements, but not with state vector
preparation, which is also nonunitary.

We regard the latter as a particularly significant
problem for all such proposals (cf. [13.19]).

13.5.1 Interaction with the Environment

Mott [13.48] and Briggs and Rost [13.49, 50] sug-
gest that the time-independent Schrödinger equation

(TISE) is more fundamental than the time-dependent
Schrödinger equation (13.15) (TDSE); indeed that the
latter emerges from the former, the interaction between
parts in a timeless whole generates an effective time
characterizing interaction between the parts. This is
summarized in [13.50] as follows:

Following work of Born, in 1931 Mott (3) described
the impact of ˛-particles on atoms by treating both
atom and beam quantum-mechanically with the
TISE. Then he showed that for a high energy beam
he could describe its motion classically resulting
in a time-dependent Hamiltonian and TDSE for the
atom alone . . . time is entering only from a classical
interacting environment . . . time enters the quantum
Hamiltonian only when some external system is ap-
proximated by classical behavior.

Thus this is an emergence of time by a top-down inter-
action from the environment.

According to Briggs and Rost [13.50], one can use
the TIDE in the form

H� D E� , .HE CHSCHI/� D E� ; (13.42)

where E represents the environment, S the system,
and I their interaction. Through a kinetic energy term,
the interaction Hamiltonian somewhat mysteriously in-
troduces an effective time into the wave function for the
system. If one accepts this proposal, it is a way that an
effective time variation is induced at the quantum level
due to top-down effects from the environment – a pro-
posal that is in consonance with the broad suggestions
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of the effectiveness of top-down effects in quantum
physics presented in [13.19]. Once this has occurred,
one has an effective EBU situation at the micro as well
as the macro level.

13.5.2 Get It by Coarse Graining?

By contrast Rovelli [13.10] suggests time can emerge
in a bottom-up way from a timeless substrate as a ther-
modynamic variable. We find it difficult to see how any
process of coarse graining a static state can introduce
time, but in any case this proposal faces two other prob-
lems.

First, it is based in the idea of equilibrium distribu-
tion:

Whatever the statistical state � is, there exists al-
ways a variable t�, measured by the thermal clock,
with respect to which the system is in equilibrium
and physics is the same as in the conventional non-
relativistic statistical case!

However, equilibrium is a state that emerges through
molecular collisions; if there is no time there will be no
such collisions, and no reason whatever to assume that
equilibrium is the most probable state of the system.
This proposal embodies a hidden assumption that time
already exists.

Second, it is based on the underlying symmetries of
Hamiltonian dynamics:

Mechanics does not single out a preferred variable,
because all mechanical predictions can be obtained
using the relativistic Hamiltonian H, which treats
all variables on equal footing.

However, this symmetry applies particularly to the di-
rection of time: Hamiltonian dynamics (13.4), (13.5)
has a time-reversal symmetry

x! x ; t!�t ; q! q ; p!�p ; (13.43)

hence like every other proposal for the purely bottom-
up emergence of time, it has problems determining the
arrow of time. An initial reaction to any such pro-
posal is that coarse graining from micro to macro scales
convincingly results in an arrow of time, as shown beau-
tifully by Boltzmann’s H-theorem [13.51, p. 43–48],
resulting from the fact that random motions in phase
space takes one from less probable to more probable
regions of phase space ([13.30, p. 686–696]; [13.52,
p. 43–47]; [13.53, p. 9–56]). Hence one can show that
entropy increases to the future; the second law of ther-

modynamics at the macro level emerges from the coarse
grained underlying micro theory. The quantum theory
version of this result is the statement that the density
matrix of open system evolves in a time asymmet-
ric manner, leading to an increase in entropy [13.54,
p. 123–125].

However, this apparent appearance of an arrow of
time from the underlying theory is an illusion, as the
underlying theory is time symmetric, so there is no way
an arrow of time can emerge by any local coarse grain-
ing procedure. Indeed the derivation of the increase of
entropy in Boltzmann’s H-theorem applies equally to
both directions of time (swap t!�t, the same deriva-
tion still holds). This is Loschmidt’s paradox ([13.28,
Fig. 7.6]; [13.30, p. 696–699]; [13.53]):

Time Symmetry of H-Theorem
Boltzmann’s H-theorem predicts that entropy will in-
crease to both the future and the past.

The same will apply to the quantum theory deriva-
tion of an increase of entropy through evolution of the
density matrix ([13.54, p. 123–125], [13.52, p. 38–42],
and 53–58); it cannot resolve where the arrow of time
comes from, or indeed why it is the same everywhere.
The latter is a key question for any local proposal for
determining the arrow of time:

The Arrow of Time Locality Issue
If there is a purely local process for determining the
arrow of time, why does it give the same result every-
where?

We are unaware of any contradictions with regard
to the direction of the arrow of time in the universe
around us, either locally (time does not run backwards
anywhere on Earth) or astronomically (irreversible pro-
cesses in distant galaxies seem to run in the same
direction of time as here [13.55]). Some top-down co-
ordinating mechanism is called for to guarantee that the
future direction of time will be the same everywhere;
that is lacking in any purely bottom-up proposal, which
is by its nature based in local interactions only.

Kupervasser et al. [13.56] suggest that interaction
between two subsystems with a different arrow of time
will cause a decay towards a universal direction for
the arrow of time. This is a very interesting claim, but
has two problems: first, how can a coherent interac-
tion take place at an interface where the direction of
time is different on the two sides? It seems a priori
that paradoxical behavior will abound, as closed causal
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loops will necessarily occur there. Moreover, if this
works despite these problems, then one has to show that
there has been sufficient time available since the start of
the universe that all domains opposite to the dominant
one are coerced to join the majority; effective causal
horizons [13.5] might even prevent this occurring. Ku-
pervasser et al. do not put their proposal in the cosmic
context, so this too is unresolved.

13.5.3 The Wheeler–de Witt Equation

Much literature on the problem of time in quantum
cosmology [13.9, 57, 58] suggests that an effective
time emerges from a time-independent wave function of
the universe determined by the Wheeler–de Witt equa-
tion [13.59–62]. As stated by Hartle [13.59, 60]:

In quantum mechanics, any system – the uni-
verse included – is described by a wave func-
tion � . There is a local dynamical law called the
Schrödinger equation that governs how the wave
function changes in time

i„
dj�.t/i

dt
D Hj�.t/i (dynamical law) : (13.44)

Here the operator H, the Hamiltonian, summarizes
the dynamical theory . . . . The Schrödinger equation
doesn’t make any predictions itself, it requires an
initial condition. This is

j�.0/i (initial condition) : (13.45)

When we consider the universe as a quantum me-
chanical system, this initial condition is Hawking’s
wave function of the universe [13.61].

This is the basis of quantum cosmology [13.63].
The problem of time then arises because in the case

of general relativity, where j�i is a function of three-
geometries: j�i D j�.hij/i, the Hamiltonian is such as
to lead to the Wheeler–de Witt equation for the wave
function of the universe

Hj�i D 0 : (13.46)

So by (13.44), j�i is time independent and the prob-
abilities for quantum outcomes in the universe, which
are expressed by the wave function j�i, are unchang-
ing in time (this is a simplified sketch; for details,
see [13.22, 23, 57]). Hence time does not pass, the uni-
verse just is. Time is an illusion [13.9]. Much literature
then tries to show how an effective time can emerge
from this timeless context [13.9, 57, 58]. We will make
four points.

First, Arnowitt, Deser, and Misner write about the
Hamiltonian formalism as follows [13.41]:

Since the relation between qMC1 and 
 is unde-
termined, we are free to specify it explicitly, i. e.,
impose a coordinate condition. If, in particular, this
relation is chosen to be qMC1 D 
 (a condition
which also determines N), the action (2.4) then re-
duces [to] (2.5) with the notational change qMC1!


; the nonvanishing Hamiltonian only arises as
a result of this process.

This is the choice made above (Sect. 13.4.2); the cor-
responding Hamiltonian will be nonzero as indicated in
this quote, so (13.46) will not hold [13.47].

Second, is there an alternative proposal that does
not lead to (13.46)? Yes indeed: unimodular gravity
(which produces a trace free version of the Einstein field
equations [13.64]) has the same effective gravitational
equations as general relativity theory [13.65] but makes
H ¤ 0 and so solves the time problem of quantum cos-
mology. Smolin [13.66] states this as follows:

Sorkin [13.67, 68] and Unruh [13.69, 70] have
pointed out that unimodular gravity has a nonva-
nishing Hamiltonian and hence evolves quantum
states in terms of a global time given by an ana-
logue of the Schrödinger equation.

This removes the basis of the problem.
It has other major benefits: as emphasized by Wein-

berg [13.65] and Smolin [13.66], it also solves the
strong cosmological constant problem; the discrepancy
factor of at least 1070 between estimates of the vac-
uum energy density and the cosmologically determined
value of the cosmological constant [13.20]. This reso-
lution is a crucial need in relating quantum field theory
to general relativity: it is a sine qua non for consistent
physics, hence the following.

Reconciling General Relativity and Quantum Field
Theory
Evidence from cosmology [13.20] of the small size of
the cosmological constant strongly favors the trace-free
version of the Einstein equations over the usual ver-
sion [13.64]. (If one applies Ockham’s razor (entities
must not be multiplied beyond necessity) the proposed
multiverse solution is severely disfavored in compari-
son with this resolution of the issue, which does not
involve an infinitude of unobservable entities.)

Then we can have (13.44) without (13.46).
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Third, this analysis assumes that a Hamiltonian
evolution (13.44) holds for the wave function of the uni-
verse as a whole at all times. This is sometimes justified
by saying that as there can be no external measuring ap-
paratus for the universe as a whole to interact with, no
measurement or wave function collapse can take place:
only unitary evolution will occur. However one can
advocate an emergent view of higher level laws of cau-
sation from lower level physical interactions [13.19].
On this view, the wave function of the universe j Ui

is the wave function obtained by composition of all its
components: it is a sum of terms of the form

j Ui D j 1i˝ j 2i˝ : : ::˝j Ni ; (13.47)

where N is the number of constituents making up the
universe and j ii the wave function for degrees of
freedom of the i-th component. This will not evolve
unitarily if any wave function collapse takes place
for any component anywhere in the universe. How-

ever, measurements do take place and classical physics
does emerge. Thus with this view, we are not enti-
tled to assume the existence of a wave function for
the entire universe that always obeys (13.46); this
starting assumption is unjustified, at least in recent
times.

Finally, the argument above is centrally based on
the Wheeler–de Witt equation, but it is not a tested and
proven part of physics.

Missing Confirmation
We have no observational or experimental evidence that
the Wheeler–de Witt equation, in fact, describes the
evolution of the real universe at any time.

It is an untested extrapolation of known physics,
which extrapolation may or may not represent reality
adequately [13.2]. Actually, one can suggest that every-
day experience strongly suggests it is not true (this is
hinted at in [13.22]). That is the topic of Sect. 13.6.

13.6 It’s All in the Mind

Barbour [13.9] tackles the key issue of how the mind
can experience the passing of time in the timeless
context of the Wheeler–de Witt equation: how do we
reconcile the conclusion that time is an illusion with
the fact we do indeed experience the passage of time?
This section reviews that suggestion, and argues that it
is fatally flawed; and that this issue is a major problem
for all proposals that time is an illusion.

Barbour claims [13.2, 9] that there exist records of
events that our brains read sequentially, and so create
a false illusion of the passage of time. Thus brain pro-
cesses are responsible for illusion of change. However,
processes are things that unfold in time – there are no
processes unless time flows. One cannot perceive a flow
of time unless time flows, because perception is a pro-
cess that takes place in time.

The prevalent view of present-day neuro-
science [13.71] is that mental states ˚ are functions
of brain states B, which are based in the underlying
neuronal states bi, determined by genetics, chemistry,
and physics interactions in the brain, taking place
in the overall physical, social, and psychological
environment E. Thus

˚ D ˚.B/D ˚.bi;E/ : (13.48)

If time does not flow in microphysics, in a given un-
changing environment


dbi

dt
D 0;

dE
dt
D 0

�
) d˚=dtD 0 ; (13.49)

mental states cannot evolve, unless they are driven in
some mysterious unspecified way by changes in the
environment;: but in Barbour’s argument, that cannot
evolve either.

However, one thing we do know is that time does
flow in our experience (indeed knowing is a key part of
that experience!). Hence the assumption that time does
not flow in the underlying microphysics cannot be true;
the data proves it to be wrong. If Barbour’s view is cor-
rect and no physical events take place, then – as the
brain is based in physics – no such record-reading pro-
cesses can take place. Rather than showing time is an
illusion, we suggest that the implication runs the other
way.

Taking Everyday Life Seriously
Comparing the conclusion (time is an illusion) with ev-
idence from mental life, by (13.49) the contradiction
between them is proof that the W–deW equation (13.46)
does not apply to the universe as a whole at the present
time, as proposed by Barbour.

If there is a meaningful wave function of the uni-
verse (perhaps defined by (13.47)), it does not evolve
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in a unitary way. The great merit of Barbour’s book is
that it takes the Wheeler–de Witt equation seriously and
pursues the implications to their logical conclusion; the
evidence from daily life then shows it to be wrong.

A further set of issues arise with regard to the per-
ception of time. Experienced time 
exp is a function of
proper time 
 but also of the emotional and psycho-
logical context. It also has a minimal resolution 
min

because of the interaction times in the brain; we cannot
distinguish events at smaller times scales because our
senses necessarily average over micro time scales with

a window function W.
min/. However, all this is unre-
lated to the fundamental issues of the nature of time that
we are dealing with here; it is to do with brain function-
ing. The brain is not necessarily a good clock, and it
will not click over instantaneously: there will be a finite
width to its time resolution. Yet the fact that it works
as it does is evidence of the flow of time in physics,
because the brain is based in physics. It is not just a se-
ries of correlations: it is an ordered sequence of causally
related correlations that flow from each other in an on-
going process enabling mental life.

13.7 Taking Delayed Choice Quantum Effects into Account
This chapter so far has been based on a classical
view of physics. The EBU proposal made so far does
not take into account the delayed choice experiments
of quantum theory, which suggest that one can in
some circumstances reach back into the past to affect
things there. This section briefly comments on how one
can extend the EBU model to take this feature into
account.

One can extend the EBU view to one that takes
account of this aspect of quantum physics through
proposing a crystallizing block universe (CBU), where
the present is effectively the transition region in
which quantum uncertainty changes to classical defi-
niteness [13.72]. Such a crystallization, however, does
not take place simultaneously, as it does in the sim-
ple classical picture. Quantum physics appears to al-
low some degree of influence of the present on the

past, as indicated by such effects as Wheeler’s delayed
choice experiments [13.73, 74] and Scully’s quan-
tum eraser [13.75] (see the summaries of these effects
in [13.15, 16]).

The CBU picture is an extension of the EBU where
local events may lead or lag the overall flow of time,
thus allowing some apparent influences from the fu-
ture to the past as evidenced in those experiments. It
adequately reflects such effects by distinguishing the
transitional events where uncertainty changes to cer-
tainty, which may in some cases be delayed till after
the apparent present time.

We have not here tried to relate the EBU picture
to the issue of entanglement and EPR type of experi-
ments [13.15, 16]. The way those experiments relate to
simultaneity and the flow of time as proposed here is
unclear; this is a topic for future research.

13.8 The Arrow of Time and Closed Time-Like Lines

Two closely related problems are the arrow of time
problem and the issue of closed time-like lines. This
section discusses how the EBU proposal reformulates
the first issue and solves the second.

13.8.1 The Arrow of Time

With respect to the arrow of time problem [13.51, 76],
if the EBU view is correct, the Wheeler–Feynman
prescription for introducing the arrow of time by inte-
gration over the far future [13.77], and associated views
comparing the far future with the distant past [13.28, 78,
79], are invalid approaches to solving the arrow of time
problem, for it is not possible to do integrations over
future time domains if they do not yet exist. Indeed,

the use of half-advanced and half-retarded Feynman
propagators in quantum field theory then becomes a cal-
culational tool representing a local symmetry of the un-
derlying physics that does not reflect the nature of emer-
gent physical reality, in which that symmetry is broken.

The arrow of time problem in this EBU context is
revisited in a companion paper [13.25]. The key point
is the following.

The direction of time
The arrow of time arises fundamentally because the
future does not yet exist; a global asymmetry in the
physics context. The Feynman propagator can only be
integrated over the past, as the future spacetime domain
is yet to be determined.
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One can be influenced at the present time from many
causes lying in our past, as they have already taken
place and their influence can be felt thereafter. One can-
not be influenced by causes coming from the future,
for they have not yet come into being. The history of
the universe has brought the past into being, which is
steadily extending to the future, and the future is just
a set of unresolved potentialities at present. One cannot
integrate over future events to determine their influence
on the present not only because they do not yet exist,
but because they are not even determined at present
(Sect. 13.2).

The direction of the arrow of time is thus deter-
mined in a contingent way in the EBU context [13.25]:
it is the direction of time leading from what already
has come into existence (the past) to the present. Col-
lapse of the quantum wave function is a prime candidate
for a location of a physical solution to the coming-
into-being problem and manifests itself as a form of
time-asymmetric top-down action [13.80] from the uni-
verse as a whole to local systems [13.28]. A key further
feature is that the initial state of the universe was very
special with very low entropy [13.25, 53, 58], allow-
ing complex higher entropy structures to form later on.
However, that effects how the arrow of time works out,
leading to the second law of thermodynamics, rather
than its very existence; that is provided by the EBU con-
text.

13.8.2 Closed Time-Like Lines:
Chronology Protection

A longstanding problem for general relativity theory is
that closed time-like lines can occur in exact solutions
of the Einstein field equations with reasonable matter
content, as shown famously in the static rotating Gödel
solution [13.5]. This opens up the possibility of many

paradoxes, such as killing your own grandparents be-
fore you were born and so creating causally untenable
situations.

It has been hypothesized that a chronology pro-
tection conjecture [13.81] would prevent this happen-
ing. Various arguments have been given in its sup-
port [13.82], but this remains an ad hoc condition added
on as an extra requirement on solutions of the field
equations, which do not by themselves give the needed
protection.

The EBU automatically provides such protection,
because creating closed time-like lines in this context
requires the undetermined part of spacetime intrud-
ing on regions that have already been fixed. But the
evolving spacetime regions can never intrude into the
completed past domains and so create closed time-
like lines through some spacetime event P, because to
do so would require the fundamental world lines to
intersect each other either before reaching P or at P. As-
suming plausible energy conditions, that would create
a spacetime singularity [13.5], because (being time-like
eigenvectors of the Ricci tensor) they are the average
flow lines of matter, and in the real universe, there
is always matter or radiation present: Rab ¤ 0. The
extension of time cannot be continued beyond such sin-
gularities, because they are the boundary of spacetime.

Causality
The existence of closed time-like lines [13.58, p. 93–
116] is prevented in an EBU, because if the funda-
mental world lines intersect, a spacetime singularity
occurs [13.5]: the worldlines are incomplete in the fu-
ture, time comes to an end there, and no grandfather
paradox can occur.

Hence the EBU as outlined above automatically pro-
vides chronology protection.

13.9 Overall: A More Realistic View

This paper has proposed an EBU representation of
spacetime which grows with time as events happen.
This final section reviews how it relates to the basic
features usually expected of time and to some of the
surprising features of time revealed to us by relativity
theory.

The EBU model recognizes that the nature of the fu-
ture is completely different from the nature of the past.
The past has taken place and is fixed, and so the nature

of its existence is quite different than that of the inde-
terminate future. Uncertainty exists with respect to both
the future and the past, but its nature is different in these
two cases. The future is uncertain because it has not yet
been determined; it does not yet exist in a physical sense
(although it is constrained in key ways by the current
state of things). Thus this uncertainty has an ontological
character. The past, however, is fixed and unchanging,
because it has already happened, and the times when it
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happened cannot be revisited; but our knowledge about
it is incomplete and can change with time. Thus this
uncertainty is epistemological in nature.

In Newtonian theory, and in ordinary quantum the-
ory, time is the source of:

1. Ordering of events
2. Duration measured between events
3. Simultaneity: synchronization of distant events
4. Direction of the flow of time
5. Transition: the fact that time flows
6. Continuity of the flow of time
7. The monotonic nature of that flow (it cannot reverse

or close up).

However, special relativity and general relativity
changed that with a surprising find [13.5]:

Key discovery 1: Simultaneity (3) is not fundamen-
tal to time: – time flows along time-like world lines,
proper time along world lines is the fundamen-
tally preferred time parameter. It is measured by the
spacetime metric, which determines duration (2).

Thus simultaneity (3) is secondary, with no direct
physical consequences. What matters are interactions
between distinct entities; these take place via time-like
curves and null geodesics, not on space-like surfaces.
This potentially puts a major barrier in the way of the
EBU proposal where the flow of time is taken seriously,
but this chapter has suggested that those barriers are
resolved by identifying preferred time-like curves and
associated space-like surfaces in realistic models of the
real universe (Sect. 13.4.3).

Additionally, general relativity made a crucial dif-
ference to (7) [13.5]:

Key discovery 2: – monotonicity (7) is not neces-
sarily true in a curved spacetime, unless something
prevents it (as shown by Gödel, closed time-like
lines are potentially possible even for solutions of
the Einstein field equations).

The EBU model solves this key problem (Sect. 13.8.2),
which means ordering (1) is also OK in them.

Unlike the block universe models, the general rel-
ativity EBU models adequately represent (4), (5), and
(6), which are the same in them as in Newtonian theory.

When quantum effects are significant, the future
manifests all the signs of quantum weirdness, includ-
ing duality, uncertainty, and entanglement. With the
passage of time, after the time-irreversible process of
state-vector reduction has taken place, the past emerges,
with the previous quantum uncertainty replaced by the

classical certainty of definite particle identities and
states. The present time is where this transition largely
takes place. However, the process does not take place
uniformly or reversibly; evidence from delayed choice
experiments shows that some isolated patches of quan-
tum indeterminacy remain, and their transition from
probability to certainty only takes place later. Thus,
when quantum effects are significant, the EBU of classi-
cal physics cedes way to CBU[13.72]. On large enough
scales that quantum effects are not significant, the two
models become indistinguishable.

Interesting work to be done arising of the EBU pro-
posal, apart from testing its basic ideas, includes

1. Determining the nature of the preferred time sur-
faces defined in Sect. 13.3 in inhomogeneous cos-
mologies (they are the same as the usual surfaces in
spatially homogeneous models).

2. Extending the ADM analysis of Sect. 13.4.3 to the
case where the preferred surfaces of constant time
go null and then become time like.

3. Relating the geometry of time surfaces when space-
time is represented on different averaging scales;
this is an aspect of the fitting and averaging prob-
lem for general relativity theory [13.83, 84].

4. Determining how the idea can sensibly relate to en-
tanglement and EPR type experiments [13.15, 16];

5. Investigating the relation of quantum gravity theo-
ries to the EBU proposal.

We do not yet have a reliable theory of quantum
gravity, but there are some proposals that do indeed
see time at the quantum level as unfolding in an anal-
ogous way to the EBU (for example, spin foam mod-
els [13.85]). Our view would be that however they relate
to time [13.21–23, 62, 86, 87], they must be capable
of producing an EBU at the classical level or they will
fail the fundamental test of relating convincingly to the
physics of ordinary everyday life. This is a correspon-
dence principle for these theories.

Conclusion. We have reviewed the many arguments
against the flow of time, in particular those based in the
Wheeler–de Witt equation, and have argued that they do
not carry the day; the EBU is a good model of space-
time that fits well with our daily experience as well as
with general relativity and quantum theory. A key issue
is how the properties of time relate to the experiences
we have through the operations of our mind; we have
argued (Sect. 13.6) that this is crucial evidence that we
must take into account.
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A Key Test
The experimental evidence supporting the huge cor-
pus of present-day neuroscience [13.71] decisively
favors the EBU over the usual block universe pro-
posal, at the classical level; therefore to be acceptable,
any proposed underlying theory must pass the criti-

cal test of leading to an effective EBU at the macro
level.

The physics equations we should believe are those that
are compatible with this evidence; those that are not fail
a basic reality test.

13.A The ADM Formalism
This Appendix further develops the relation of the
proposal made here to the usual ADM formalism
(Sect. 13.4.2).

Let us consider a globally hyperbolic manifold
(M; g) having a topological structure ˙ ˝R, where ˙t

denotes the family of space-like hypersurfaces labeled
by the parameter t. On each hypersurface of constant t,
we can define a purely spatial metric as hab D gabCnanb

where na is the (necessarily time-like) unit normal vec-
tor of˙t with nana D�1. Hence, given the foliation on
(M; g), the spatial metric hab on the space-like hyper-
surface ˙t is uniquely defined.

Let us also assume that the Ricci tensor Rab on
this manifold has one time-like and three space-like
eigenvectors. These eigenvectors are unique for any
physically realistic (Type I) nonzero matter field. Let

the timeline for a given observer, be the integral curve of
the time-like eigenvector ta of Rab. This then uniquely
defines the shift-vector with respect to a given foliation
of a family of space-like hypersurfaces ˙t as

Na D ha
btb : (13.50)

Furthermore, if we specify the relation between this co-
ordinate time t and proper time 
 as d
 D N.t; xi/dt
(where xi are the coordinates on the three-surface ˙t),
then by definition this gives the lapse function

N.t; xi/D�tana : (13.51)

Specifically if the coordinate time is equal to the proper
time then we must have tana D�1.

References

13.1 P.C.W. Davies: That mysterious flow, Sci. Am. 21, 8–
13 (2012), special edition

13.2 J.N. Butterfield: The End of Time?, arXiv:gr-
qc/0103055 (2010)

13.3 FQXI essay competition: http://fqxi.org/community/
forum/category/10 (2010)

13.4 FQXI meeting on time: http://fqxi.org/conference/
2011 (2011)

13.5 S.W. Hawking, G.F.R. Ellis: The Large Scale Structure
of Space-Time (Cambridge Univ. Press, Cambridge
1973)

13.6 D.H. Mellor: Real Time II (Routledge, London 1998)
13.7 S. Savitt: Being and becoming in modern physics.

In: The Stanford Encyclopedia of Philosophy (Spring
2002 Edition), ed. by E.N. Zalta, available on-
line at http://plato.stanford.edu/archives/spr2002/
entries/spacetime-bebecome/

13.8 H. Price: Time’s Arrow and Archimedes’ Point (Ox-
ford Univ. Press, New York 1996)

13.9 J.B. Barbour: The End of Time: The Next Revolution
in Physics (Oxford Univ. Press, Oxford 1999)

13.10 C. Rovelli: Forget time, FQXI essay (2008), avail-
able online at http://fqxi.org/community/forum/
topic/237

13.11 C.D. Broad: Scientific Thought (Harcourt Brace,
New York 1923), for table of contents and some
chapters see http://www.ditext.com/broad/st/st-
con.html

13.12 G.F.R. Ellis: Physics in the real universe: Time
and spacetime, GRG 38, 1797–1824 (2006), arXiv:gr-
qc/0605049

13.13 I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosen-
bluh: An optical ultrafast random bit generator,
Nat. Photonics 4, 58–61 (2010)

13.14 R.P. Feynman, R.B. Leighton, M. Sands: The Feyn-
man Lectures on Physics: Quantum Mechanics
(Addison-Wesley, Reading 1965)

13.15 Y. Aharanov, D. Rohrlich: Quantum Paradoxes.
Quantum Theory for the Perplexed (Wiley-VCH,
Weinheim 2005)

13.16 G. Greenstein, A.G. Zajonc: The Quantum Chal-
lenge: Modern Research on the Foundations of

http://fqxi.org/community/forum/category/10
http://fqxi.org/community/forum/category/10
http://fqxi.org/conference/2011
http://fqxi.org/conference/2011
http://plato.stanford.edu/archives/spr2002/entries/spacetime-bebecome/
http://plato.stanford.edu/archives/spr2002/entries/spacetime-bebecome/
http://fqxi.org/community/forum/topic/237
http://fqxi.org/community/forum/topic/237
http://www.ditext.com/broad/st/st-con.html
http://www.ditext.com/broad/st/st-con.html


Spacetime and the Passage of Time References 263
Part

B
|13.A

Quantum Mechanics (Jones and Bartlett, Sudbury
2006)

13.17 S. Caroll: Ten things everyone should know about
time, Discover Magazine, Kalmbach Publish-
ing Co. (2011), available online at http://blogs.
discovermagazine.com/cosmicvariance/2011/09/01/
ten-things-everyone-should-know-about-time/

13.18 A.S. dington (Ed.): The Nature of the Physical World
(MacMillan, London 1928)

13.19 G.F.R. Ellis: On the limits of quantum theory: con-
textuality and the quantum-classical cut, Ann.
Phys. 327, 1890–1932 (2012), arXiv:1108.5261

13.20 S. Dodelson: Modern Cosmology (Academic, New
York 2003)

13.21 C.J. Isham: Canonical quantum gravity and the
problem of time, Lectures at the NATO Summer
School held in Salamanca (1992), gr-qc/9210011

13.22 N. Huggett, T. Vistarini, C. Wuthrich: Time in quan-
tum gravity. In: The Blackwell Companion to the
Philosophy of Time, ed. by A. Bardon, H. Dyke
(Wiley-Blackwell, Chichester 2012), arXiv:1207.1635

13.23 E. Anderson: Problem of time in quantum gravity,
arXiv:1206.2403 (2012)

13.24 R.P. Feynman, R.B. Leighton, M. Sands: The Feyn-
man Lectures on Physics: Mainly Mechanics, Radi-
ation, and Heat (Addison-Wesley, Reading 1963)

13.25 G.F.R. Ellis: The arrow of time, the nature of space-
time, and quantum measurement (2011), avail-
able online at http://www.mth.uct.ac.za/~ellis/
Quantum_arrowoftime_gfre.pdf

13.26 M.R. Spiegel: Theory and Problems of Theoretical
Mechanics (Schaum/McGraw-Hill, New York 1967)

13.27 R. Feynman: QED: The Strange Theory of Light and
Matter (Princeton Univ. Press, Princeton 1985)

13.28 R. Penrose: The Emperor’s New Mind (Oxford Univ.
Press, Oxford 1989)

13.29 C.J. Isham: Lectures on Quantum Theory: Mathe-
matical and Structural Foundations (Imperial Col-
lege Press, London 1997)

13.30 R. Penrose: The Road to Reality: A complete guide
to the Laws of the Universe (Jonathan Cape, London
2004)

13.31 I. Percival: Schrödinger’s quantum cat, Nature 351,
357 (1991)

13.32 J. Scalo, J.C. Wheeler, P. Williams: Intermittent
jolts of galactic UV radiation: Mutagenetic effects,
Frontiers of Life. 12th Rencontres de Blois, ed. by
L.M. Celnikier (2001), astro-ph/0104209

13.33 G.F.R. Ellis, R.M. Williams: Flat and Curved Space
Times, 2nd edn. (Oxford Univ. Press, Oxford 2000)

13.34 G.F.R. Ellis: Relativistic cosmology, General Relativ-
ity and Cosmology, Proc. Int. School Phys. “Enrico
Fermi” (Varenna), Course XLVII, ed. by R.K. Sachs
(Academic, Elsevier 1971) pp. 104–179, Reprinted as
Golden Oldie: Gen. Relativ. Gravit. 41, 581 (2009)

13.35 P.W. Anderson: More is different, Science 177, 393–
396 (1972)

13.36 G.F.R. Ellis, D.R. Matravers: Spatial Homogene-
ity and the size of the universe. In: A Ran-
dom Walk in Relativity and Cosmology (Raychaud-
huri Festschrift), ed. by N. Dadhich, J.K. Rao,
J.V. Narlikar, C.V. Vishveshswara (Wiley Eastern,
Delhi 1985) pp. 92–108

13.37 R.P. Feynman, R.B. Leighton, M. Sands: The Feyn-
man Lectures on Physics: The Electromagnetic Field
(Addison-Wesley, Reading 1964)

13.38 D. Sobel: Longitude: The True Story of a Lone Genius
Who Solved the Greatest Scientific Problem of His
Time (Walker and Company, New York 1995)

13.39 K.S. Thorne: Black Holes and Time Warps: Einstein’s
Outrageous Legacy (W. W. Norton, New York 1995)

13.40 G.F.R. Ellis: The dynamics of pressure-free mat-
ter in general relativity, J. Math. Phys. 8, 1171–1194
(1967)

13.41 R. Arnowitt, S. Deser, C.W. Misner: The dynamics of
general relativity. In: Gravitation: An Introduction
to Current Research, ed. by L. Witten (Wiley, New
York 1962) pp. 227–265, Reprinted in Gen. Relativ.
Gravit. 40, 1997 (2008)

13.42 A.R. King, G.F.R. Ellis: Tilted homogeneous cos-
mologies. Comm.un Math, Phys. 31, 209–242 (1973)

13.43 P. Anninos: Computational cosmology: From the
early universe to the large scale structure, Living
Rev, Relativ. 4, 2 (2001)

13.44 J.V. Narlikar: The Lighter Side of Gravity (Cambridge
Univ. Press, Cambridge 1996)

13.45 M. Haahr: Introduction to Randomness and Ran-
dom Numbers, (1999), available online athttp://
www.random.org/randomness/

13.46 R. Gambini, J. Pullin: A First Course in Loop Quan-
tum Gravity (Oxford Univ. Press, Oxford 2012)

13.47 A. Peres: Critique of the Wheeler-De Witt equation.
In: On Einstein’s Path, ed. by A. Harvey (Springer,
New York 1998) pp. 367–379, arXiv:gr-qc/9704061v2
(1997)

13.48 N.F. Mott: Time dependence in quantum mechan-
ics, Proc. Camb. Phil. Soc. 27, 553 (1931)

13.49 J.S. Briggs, J.M. Rost: Time dependence in quantum
mechanics, Eur. Phys. J. D 10, 311–318 (2000)

13.50 J.S. Briggs, J.M. Rost: On the derivation of the time-
dependent equation of Schrödinger, Found. Phys.
31, 693–712 (2001)

13.51 H.-D. Zeh: The Physical Basis of the Direction of
Time (Springer, Berlin, Heidelberg 2007)

13.52 J. Gemmer, M. Michel, G. Mahler: Quantum
Thermodynamics: Emergence of Thermodynamic
Behaviour Within Composite Quantum Systems
(Springer, Heidelberg 2004)

13.53 R. Penrose: Cycles of Time: An Extraordinary New
View of the Universe (Knopf, New York 2011)

13.54 H.-P. Breuer, F. Petruccione: The Theory of Open
Quantum Systems (Clarendon Press, Oxford 2006)

13.55 M.J. Rees: Perspectives in Astrophysical Cosmology
(Cambridge Univ. Press, Cambridge 1995)

http://blogs.discovermagazine.com/cosmicvariance/2011/09/01/ten-things-everyone-should-know-about-time/
http://blogs.discovermagazine.com/cosmicvariance/2011/09/01/ten-things-everyone-should-know-about-time/
http://blogs.discovermagazine.com/cosmicvariance/2011/09/01/ten-things-everyone-should-know-about-time/
http://www.mth.uct.ac.za/~{}ellis/Quantum_arrowoftime_gfre.pdf
http://www.mth.uct.ac.za/~{}ellis/Quantum_arrowoftime_gfre.pdf
http://www.random.org/randomness/
http://www.random.org/randomness/


Part
B

|13.A

264 Part B Foundational Issues

13.56 O. Kupervasser, H. Nikoli, V. Zlati: The universal ar-
row of time (2012) arXiv:1011.4173

13.57 J. Halliwell: The interpretation of quantum cos-
mology and the problem of time. In: The Future
of Theoretical Phyics and Cosmology: Celebrating
Stephen Hawking’s 60th Birthday, ed. by G.W. Gib-
bons, E.P.S. Shellard, S.J. Rankin (Cambridge Univ.
Press, Cambridge 2003) pp. 675–690

13.58 S. Carroll: From Eternity to Here: The Quest for the
Ultimate Arrow of Time (Dutton, New York 2010)

13.59 J. Hartle: Theories of everything and Hawking’s
wave function. In: The Future of Theoretical Phy-
ics and Cosmology: Celebrating Stephen Hawking’s
60th Birthday, ed. by G.W. Gibbons, E.P.S. Shel-
lard, S.J. Rankin (Cambridge Univ. Press, Cambridge
2003) pp. 38–49

13.60 J. Hartle: The state of the universe. In: The Future
of Theoretical Phyics and Cosmology: Celebrating
Stephen Hawking’s 60th Birthday, ed. by G.W. Gib-
bons, E.P.S. Shellard, S.J. Rankin (Cambridge Univ.
Press, Cambridge 2003) pp. 615–620

13.61 S.W. Hawking: The quantum state of the universe,
Nucl. Phys. B239, 2447 (1984)

13.62 J. Butterfield, C.J. Isham: On the emergence of time
in quantum gravity. In: The Arguments of Time, ed.
by J. Butterfield (Oxford, Oxford Univ. Press 1999),
arXiv:gr-qc/9901024v1

13.63 G.W. Gibbons, E.P.S. Shellard, S.J. Rankin (Eds.):
The Future of Theoretical Physics and Cosmol-
ogy: Celebrating Stephen Hawking’s 60th Birthday
(Cambridge Univ. Press, Cambridge 2003)

13.64 G.F.R. Ellis, H. van Elst, J. Murugan, J.-P. Uzan: On
the trace-free Einstein equations as a viable alter-
native to general relativity, Class. Quantum Gravity
28, 225007 (2011), arXiv:1008.1196

13.65 S. Weinberg: The cosmological constant problem,
Rev. Mod. Phys. 61, 1–23 (1989)

13.66 L. Smolin: Quantization of unimodular gravity and
the cosmological constant problems, Phys. Rev. D
80, 084003 (2009), arXiv:0904.4841v1 [hep-th

13.67 R.D. Sorkin: On the role of time in the sum-over-
histories framework for gravity int, J. Theor. Phys.
33, 523–534 (1994)

13.68 R.D. Sorkin: Spacetime and causal sets (1991), avail-
able online at http://www.cdms.syr.edu/~sorkin/
some.papers/66.cocoyoc.pdf

13.69 W.G. Unruh: A unimodular theory of canonical
quantum gravity, Phys. Rev. D 40, 1048 (1989)

13.70 W.G. Unruh, R.M. Wald: Time and the interpreta-
tion of canonical quantum gravity, Phys. Rev. D 40,
2598 (1989)

13.71 E.R. Kandel, J.H. Schwartz, T.M. Jessell: Principles
of Neuroscience (McGraw Hill, New York 2000)

13.72 G.F.R. Ellis, T. Rothman: Crystallizing block uni-
verses, Int. J. Theor. Phys. 49, 988 (2010),
arXiv:0912.0808

13.73 J.A. Wheeler: The “past” and the “delayed-choice
double-slit experiment”. In: Mathematical Foun-
dations of Quantum Theory, ed. by A.R. Marlow
(Academic, PLARV 1978) pp. 9–48

13.74 V. Jacques, E. Wu, F. Grosshans, F. Treussart,
P. Grangier, A. Aspect, J.-F. Roch: Experimental re-
alization of Wheeler’s delayed-choice Gedanken-
Experiment, Science 315, 5814 (2007), arXiv:quant-
ph/0610241v1

13.75 Y.-H. Kim, R. Yu, S.P. Kulik, Y.H. Shih, M.O. Scully:
A Delayed Choice Quantum Eraser, Phys. Rev. Lett.
84, 1–5 (2000), arXiv:quant-ph/9903047v1

13.76 P.C.W. Davies: The Physics of Time Asymmetry (Sur-
rey Univ. Press, London 1974)

13.77 J.A. Wheeler, R.P. Feynman: Interaction with the
absorber as the mechanism of radiation, Rev. Mod.
Phys. 17, 157–181 (1945)

13.78 G.F.R. Ellis, D.W. Sciama: Global and non-global
problems in cosmology. In: General Relativity (A.
Synge Festschrift), ed. by L. O’Raifeartaigh (Oxford
Univ. Press, Oxford 1972) pp. 35–59

13.79 G.F.R. Ellis: Cosmology and local physics, New As-
tron. Rev. 46, 645–658 (2002), gr-qc/0102017)

13.80 G.F.R. Ellis: On the nature of causation in com-
plex systems, Trans. R. Soc. South Africa 63, 69–84
(2008)

13.81 S.W. Hawking: The chronology protection conjec-
ture, Phys. Rev. D 46, 603–611 (1992)

13.82 M. Visser: The quantum physics of chronology
protection. In: The Future of Theoretical Physics
and Cosmology: Celebrating Stephen Hawking’s
60th Birthday, ed. by G.W. Gibbons, E.P.S. Shel-
lard, S.J. Rankin (Cambridge Univ. Press, Cambridge
2002) pp. 161–173, arXiv:gr-qc/0204022v2

13.83 G.F.R. Ellis: Relativistic cosmology: Its nature, aims
and problems. In: General Relativity and Gravita-
tion, ed. by B. Bertotti, F. de Felice, A. Pascolini
(Reidel, Netherlands 1984) pp. 215–288

13.84 G.F.R. Ellis, W.R. Stoeger: The fitting problem in
cosmology, Class. Quantum Gravity 4, 1679–1690
(1987)

13.85 J.C. Baez: Spin foam models, Class. Quantum Grav-
ity 15, 1827–1858 (1998), arXiv:gr-qc/9709052v3

13.86 C.J. Isham: Prima facie questions in quantum grav-
ity (1993) arXiv:gr-qc/9310031v1

13.87 J. Butterfield, C.J. Isham: Spacetime and the philo-
sophical challenge of quantum gravity. In: Physics
meets Philosophy at the Planck Scale, ed. by C. Cal-
lender, N. Huggett (Cambridge Univ. Press, Cam-
bridge 2000), arXiv:gr-qc/9903072v1

http://www.cdms.syr.edu/~{}sorkin/some.papers/66.cocoyoc.pdf
http://www.cdms.syr.edu/~{}sorkin/some.papers/66.cocoyoc.pdf


Unitary Repre
265

Part
B

|14.1

14. Unitary Representations of the Inhomogeneous
Lorentz Group and Their Significance

in Quantum Physics
Norbert Straumann

Minkowski’s great discovery of the spacetime
structure behind Einstein’s special theory of rel-
ativity (SR) had an enormous impact on much
of twentieth-century physics. (For a historical
account of Minkowski’s Raum und Zeit lecture
and Poincaré’s pioneering contribution, we refer
to [14.1] and Chap. 2.) The symmetry requirement
of physical theories with respect to the auto-
morphism group of Minkowski spacetime – the
inhomogeneous Lorentz or Poincaré group – is
particularly constraining in the domain of rel-
ativistic quantum theory and led to profound
insights. Among the most outstanding early con-
tributions are Wigner’s great papers on relativistic
invariance [14.2]. His description of the (projective)
irreducible representations of the inhomogeneous
Lorentz group, that classified single particle states
in terms of mass and spin, has later been taken up
on the mathematical side by George Mackey, who
developed Wigner’s ideas into a powerful theory
with a variety of important applications [14.3–5].
Mackey‘s theory of induced representations has
become an important part of representation the-
ory for locally compact groups. For certain classes it
provides a full description of all irreducible unitary
representations.

We find it rather astonishing that this impor-
tant classical subject is not treated anymore in
most modern textbooks on quantum field theory.

I shall begin with general remarks on symme-
tries in quantum theory, and then repeat Wigner’s
heuristic analysis of the unitary representations
of the homogeneous Lorentz group (more pre-
cisely, of the universal covering group of the
one-component of that group). This will lead us to
those parts of Mackey’s theory of induced repre-
sentations which are particularly useful for physi-
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cists. In the final section, we shall describe free
classical and quantum fields for arbitrary spin,
and show that locality implies the normal spin–
statistics connection. We shall see that the theory
of free fields is a straightforward application of
Wigner’s representations of the inhomogeneous
Lorentz group. (Since the quantum theory for
massless fields poses delicate problems – as is
well known for spin 1 – we treat only the massive
case.)
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14.1 Lorentz Invariance in Quantum Theory
In this section, we recall why the requirement of the
restricted Lorentz invariance in quantum theory can
be described in terms of unitary representations of the
universal covering group of the one-component of the
Poincaré group P"

C

.

14.1.1 Symmetry Operations
in Quantum Theory

In quantum theory, a symmetry operation is realized by
a Wigner automorphism, that is by a bijection ˛ of the
set of unit rays of the underlying Hilbert space H (the
projective space P.H / of H ), which satisfies the in-
variance property

h˛.Œ��/; ˛.Œ �/i D hŒ��; Œ �i ; (14.1)

where the scalar product of two unit rays Œ��; Œ � is
defined by hŒ��; Œ �i D jh�; ij, with � 2 Œ��;  2 Œ �.
A well-known theorem of Wigner states that every
Wigner automorphism is induced by a unitary or an-
tiunitary transformation, i. e., ˛ is of the form

˛.Œ �/D ŒU � ;  2 Œ � ; (14.2)

where U is either unitary or antiunitary, and is uniquely
determined up to an overall phase. (In this section, we
quote various profound facts. For references to proofs,
see e.g. [14.6].)

14.1.2 Projective and Unitary
Representations

A symmetry group G is represented by Wigner auto-
morphisms ˛g, g 2 G, satisfying

˛g1 ı˛g2 D ˛g1g2 : (14.3)

We say that g 7! ˛g is a projective representation of G.
By Wigner’s theorem each ˛g is induced by a unitary
or antiunitary transformation Ug, which is unique up to
a phase factor. For any choice we obtain from (14.3)

Ug1 Ug2 D !.g1; g2/Ug1g2 ; j!.g1; g2/j D 1 :

(14.4)

Let us now consider topological groups, especially
Lie groups, and require that g 7! ˛g is weakly continu-

ous. This means that g 7! hŒ��; ˛g.Œ��/i is a continuous
function for all Œ��; Œ�� 2 P.H /. Each Ug for g in
the one-component G0 of G is then unitary if G0 is
a Lie group. First of all, each element in a sufficiently
small neighborhood N .e/ of the unit element e can
be represented as a square: for aD exp.X/ 2N .e/ we
have aD b2; bD exp.X=2/ 2N .e/, hence Ua is uni-
tary. Now, each g 2 G0 can be represented as a finite
product gD a1: : :an, with ak 2N .e/. This proves the
claim.

The following theorem of Bargmann is central.

Theorem 14.1 Bargmann
The phase freedom can be used such that in a some
neighborhood N .e/ the map g 7! Ug is strongly con-
tinuous.

Can one use the remaining phase freedom such that
the multipliers !.g1; g2/ are at least locally equal to 1?
The following is true:

Theorem 14.2 Bargmann
In a sufficiently small neighborhood of e, the choice
!.g1; g2/� 1 is possible for semisimple Lie groups
(such as SO.n/;L"

C

) and affine linear groups, in partic-
ular P"

C

. More precisely, this is exactly the case when
the second cohomology group H2.G;R/ of the Lie al-
gebra G of G is trivial.

Remark 14.1
It is physically significant that this is not possible for
the Galilei group.

In this situation, we have a local strongly contin-
uous unitary representation of G0 W Ug1 Ug2 D Ug1g2 . If
G0 is not simply connected, there is no reason that the
multipliers !.g1; g2/ can be transformed away glob-

(  )

σ
π U

G0

G
~0 U

~

Fig. 14.1 Diagram for the lifted representation
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ally. This becomes, however, possible if we pass to the
universal covering group QG0 of G0. These groups dif-
fer globally as follows: if � W QG0! G0 is the covering
map, the kernel N of � is a discrete central normal
subgroup.

Now, the local representation of G0 induces via the
local isomorphism with QG0 a local representation of the
universal covering group QG0. Since this group is sim-
ply connected, there is a unique extension to a strongly
continuous unitary representation QU of QG0. This is in-
dicated in Fig. 14.1, in which U.H / denotes the set of
unitary operators of the Hilbert space H .

The liftet representation QU
Qg of QG0 has the property

QU
Qg D 	1 ; j	j D 1 for Qg 2 N D ker.�/ : (14.5)

Conversely, a representation QU W QG0!U.H /, satisfy-
ing the property (14.5), induces a projective representa-
tion of G0. For this, choose a section � W G0! QG0 with
� ı� D idG0 and set Ug WD QU	.g/. Since �.g1/�.g2/
and �.g1g2/ are in the same coset of QG0=N, the map
g 7! Ug is indeed a projective representation.

In particular, projective representations U ofP"
C

are
in one-to-one correspondence with unitary representa-
tions QU of its universal covering group QP"

C

that satisfy
the condition QU

�e D˙1.
At this point, we recall the concrete form of QP"

C

.
The universal covering group of L"

C

is SL.2;C/. The
twofold covering homomorphism 	 W SL.2;C/�! L"

C

is determined as follows

	.A/xD AxA� ; (14.6)

where x denotes for each x 2R4 the Hermitian 2� 2
matrix

xD x��� ; �� D .1; �k/ : (14.7)

(Here �k are the Pauli matrices, and A� denotes the Her-
mitian conjugate of A.) From

xD

�
x0C x3 x1 � ix2

x1C ix2 x0 � x3

�
; (14.8)

it follows that

det xD xx ; xyD ���x�y� D xT�y ;

�D .���/D diag.1;�1;�1;�1/ : (14.9)

Using this it is easy to see that the assignment A 7�!
	.A/ is a homomorphism from SL.2;C/ into L"

C

. One
can show that the image is all of L"

C

[14.7, 8].
The universal covering group of P"

C

is the semidi-
rect product R4 Ì SL.2;C/, where the action of
SL.2;C/ is given by a 2 R4 7! 	.A/a. The covering ho-
momorphism is .a;A/ 7! .a; 	.A//.

We assume that the reader is familiar with the spinor
calculus and the finite-dimensional representations of
SL.2;C/ (see the cited references).

14.2 Wigner’s Heuristic Derivation of the Projective Representations
of the Inhomogeneous Lorentz Group

In this section we give, following Wigner, a physicist
way of arriving at the unitary irreducible representa-
tions of QP0 �R4 Ì SL.2;C/. A rigorous treatment has
been given by G. Mackey (Sect. 14.3).

Let .a;A/ 7! U.a;A/ be a unitary representation of
QP0 in a Hilbert space H . If we restrict this representa-

tion to the subgroup of translations .a; 1/, we get a uni-
tary representation U.a/ of the translation group. Ac-
cording to a generalization of Stone’s theorem (SNAG
(Stone–Naimark–Ambrose–Godement) theorem), U.a/
has the representation

U.a/D eiPa ; (14.10)

where P� are commuting self-adjoint operators, inter-
preted as energy–momentum operators. The support of

their spectral measure is Lorentz invariant. Since they
commute we can choose an improper basis of eigen-
states of P�

P�jp; 	i D p�jp; 	i ; (14.11)

where 	 is a degeneracy parameter, to be determined
later. (Working with improper states is, of course, for-
mal.) We choose the covariant normalization

hp0; 	0jp; 	i D ı�0�2p0ı.3/.p0 �p/ :

Note that

U.a/jp; 	i D eipajp; 	i : (14.12)
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14.2.1 Positive Mass Representations

Let us first consider the case when the momenta
are on a positive mass hyperboloid HCm D fpjp

2 D m2;
p0 > 0g. Consider the standard momentum � D .m; 0/
on this SL.2;C/ invariant orbit in momentum space,
and introduce for each p 2 HCm an SL.2;C/ transfor-
mation L.p/ with the property L.p/� D p (L.p/q is an
abbreviation for 	.L.p//q). So, L.p/�L�.p/D p, thus,
since � D m1,

L.p/L�.p/D
p

m
: (14.13)

Various convenient choices of the map p 7! L.p/ will
be introduced later.

Now we consider the state U.L.p//j�;	i. This has
momentum p because

U.a/U.L.p//j�;	i DU.L.p//U.L.p/�1a/j�;	i

D exp.iL.p/�1a�/U.L.p//j�;	i

D eipaU.L.p//j�;	i :

We choose the degeneracy parameter 	 for an arbi-
trary p such that

jp; 	i D U.L.p//j�;	i : (14.14)

The vectors j�; 	i are transformed under SU.2/
among themselves, because for R 2 SU.2/

U.a/U.R/j�;	i D ei�aU.R/j�; 	i :

SU.2/ is the little (stability) group of � . Hence, the sub-
space spanned by j�;	i carries a representation D of
SU.2/

U.R/j�; 	i D
X
�0

j�; 	0iD�0�.R/ : (14.15)

For an arbitrary A 2 SL.2;C/ we can write

AD L.�Ap/W.p;A/L.p/�1 ; (14.16)

where �A � 	.A/ and

W.p;A/ WD L.�Ap/�1AL.p/ : (14.17)

One can easily see that W.p;A/ is an element of the
little group of � . This is a so-called Wigner rotation.
Using this decomposition, we obtain

U.A/jp; 	i D U.L.�Ap//U.W.p;A//j�;	i

D
X
�0

ˇ̌
�Ap; 	0

˛
D�0�.W.p;A// :

This explicitly shows that for an irreducible represen-
tation of QP0, the representation R 7! D.R/; R 2 SU.2/
of the little group SU.2/ has to be irreducible. Further-
more, only states with momenta in the orbit HCm are
transformed among themselves. If we choose for the
irreducible representations D.s/; sD 0; 1=2;1; : : :, the
usual canonical basis, we find the following result

U.A/jp; 	i D
X
�0

ˇ̌
�Ap; 	0

˛
D.s/
�0�
.W.p;A// ;

W.p;A/D L.�Ap/�1AL.p/ ;

U.a/jp; 	i D eipajp; 	i: (14.18)

Reformulation
Up to now we have worked with improper states jp; 	i.
We now translate our result to a mathematically proper
formulation.

Consider superpositions

j i D
X
�

Z

HCm

d˝m.p/f�.p/jp; 	i ;

where d˝m is the Lorentz invariant measure

d˝m.p/D
d3p

2p0
; p0 D

p
p2Cm2 :

On this we apply U.a;A/D U.a/U.A/ and proceed for-
mally

U.a;A/j i D
X
�0;�

Z
d˝m.p/f�.p/e

i�Apa

�D.s/
�0�
.W.p;A//

ˇ̌
�Ap; 	0

˛
D
X
�0;�

Z
d˝m.p/f�0

�
��1

A p
�

eipa

�D.s/
��0

�
W
�
��1

A p;A
��
jp; 	i:

Hence, the transformation of the functions f�.p/ is
given by

.U.m;s/.a;A/f /�.p/D eipa
X
�0

D.s/
�0
.R.p;A//

� f�0
�
��1

A p
�
;

(14.19)

where

R.p;A/DW
�
��1

A p;A
�

D L.p/�1AL
�
��1

A p
�
2 SU.2/ : (14.20)
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This is a unitary representation in the Hilbert space
H .m; s/D L2.HCm ; d˝mIC2sC1/, with the scalar
product

hf ; gi D
X
�

Z

HCm

d˝m.p/Nf�.p/g�.p/ :

One can show that this representation, which is now
mathematically well defined, is irreducible. It describes,
in the terminology of Wigner, elementary systems with
mass m and spin s.

Two Choices for the Boosts L.p/. As a first possibility
we choose the positive Hermitian solution of (14.13),
corresponding to a special Lorentz transformation in the
p-direction. This L.p/ is given by

L.p/D
1

m1=2
.p/1=2 D

mC pp
2m.mC p0/

: (14.21)

A second choice, which leads to helicity states, uses
the polar decomposition

L.p/D R.p/H.p/ ; R.p/ 2 SU.2/ ;

H.p/ positive Hermitian :

H.p/ leads to a special Lorentz transformation in the
z-direction that carries � into .p0; 0; 0; jpj/, and R.p/
rotates the z-direction into the p-direction. Explicitly,

H.p/D

0
@
q

p0
Cjpj
m 0

0
q

p0
�jpj
m ;

1
A (14.22)

and R.p/D e�i.'=2/	3 e�i.#=2/	2 , where #; ' are the
polar angles of the 3-momentum.Thus,

R.p/D

�
e�i'=2 cos #2 �e�i'=2 sin #2
ei'=2 sin #2 ei'=2 cos #2

�
: (14.23)

For the physical meaning of the degeneracy parame-
ter 	, let Jk; kD 1; 2; 3 be the infinitesimal generators
of the rotations about the xk-axis. We interpret these as
(total) angular momentum operators. Now,

U.L.p//J3U�1.L.p//D U.R.p//J3U�1.R.p//

D J Op ;

where OpD p=jpj. The first equation holds because the
special Lorentz transformation in the z-direction com-
mutes with the rotations about the z-axis. From this we

conclude

J Opjp; 	i D J OpU.L.p//j�;	i

D U.L.p//J3j�; 	i D 	jp; 	i :

Hence the parameter 	 is the helicity and jp; 	i are the
helicity eigenstates.

14.2.2 Massless Representations

Among the additional orbits we consider only the for-
ward light cone V" D fpjp2 D 0; p0 > 0g (without the
origin). The method is the same as for m> 0. As stan-
dard vector of the orbit we take � D .1=2;0; 0; 1=2/.
The boosts L.p/ still satisfy (14.13), and the degeneracy
parameters 	 are again chosen such that (14.14) holds.
The little group of � , denoted by QE.2/, is different.
It consists of all A 2 SL.2;C/ satisfying A�A� D �,
whence A is of the form

AD

�
ei'=2 ae�i'=2

0 e�i'=2

�
; (14.24)

with a 2C. This group is a 2 W 1 covering of the group
of Euclidean motions E.2/ in two dimensions. Indeed,
an element of QE.2/ is characterized by a pair .a; ei'=2,
and if we associate to this the Euclidean motion (Re a,
Im aIR'/, consisting of the translation (Re a, Im a) and
the rotation R' by the angle ', we obtain a homomor-
phism with kernel .0;0I˙1/. Hence,

QE.2/

.0; 0I˙1/
Š E.2/ : (14.25)

Next, we have to determine the irreducible unitary
representations of QE.2/. This is done along the same
lines as for QP0. First we choose improper eigenstates
for the translations. We then have two cases. Either the
momenta lie on a circle with radius � > 0 or the or-
bit in R2 under U.1/ consists only of the point 0. In
the first case the representations of QE.2/ are infinite
dimensional. Since this means that there are infinitely
many degrees of freedom (continuous spin) these mass-
less representations appear to be unphysical. Therefore,
we consider here only the second case, where the two-
dimensional translations are represented trivially. Then
the little group is U.1/. Its irreducible unitary represen-
tations are one-dimensional

#.�/ W ei'=2 7! ei�' I 	D 0;˙1=2;˙1; : : :
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Thus, the degeneracy parameter 	 takes only a single
value in an irreducible representation for mD 0, and the
action of QE.2/ on j�; 	i is given by

U.a; ei'=2/j�;	i D ei�' j�; 	i : (14.26)

The formulae in (14.18) remain valid for mD 0
if D.s/ of SU.2/ is replaced by #.�/ of U.1/. The
Wigner rotation is now an element of QE.2/.

The boosts L.p/ can again be chosen such that jp; 	i
describe helicity states.

14.3 On Mackey’s Theory of Induced Representations

We consider the following situation. Let G be a locally
compact group. (All topological spaces are assumed
to satisfy the second axiom of countability.) Let H be
a closed subgroup of G and consider the homogeneous
space X D G=H, the space of all left cosets gH; g 2 G.
� W G! X denotes the canonical mapping, defined by
�.g/D gH. X is a transitive G-space with the action

gxD �.gs/ ; g; s 2 G; xD �.s/ :

We equip X with the quotient topology. Below we shall
use the fact that there is a continuous section � W X! G,
which satisfies per definition � ı � D id. We also use
the fact that G has a left invariant Haar measure on
the �-algebra of Borel sets, which is unique, up to
a normalization factor. On X one can easily construct
quasi-invariant measures, which means that null sets are
transformed under the action of G into null sets. These
are all mutually absolutely continuous. If � is such
a measure and �g.E/ WD �.g�1E/, then � and �g are
equivalent and d�g D .d�g=d�/ d�, where d�g=d�
is the Radon–Nikodym derivative, which we will de-
note by �g.x/. This Borel function satisfies

�g1g2.x/D �g1.x/�g2

�
g�1

1 x
�
: (14.27)

Let now L W H!U.H / be a unitary representation
of H in the Hilbert space H (U.H / denotes the uni-
tary operators of H ). Consider maps f W G!H such
that:

1. .˚; f .g// is measurable for all ˚ 2H ;
2. f .gh/D L.h�1/f .g/, h 2 H;
3.

R
G=H kf k

2 d� <1.

For the last condition note that kf k depends only on
equivalence classes gH. These functions form a Hilbert
space with respect to the scalar product

.f1; f2/D
Z

G=H

hf1; f2iH d� : (14.28)

The induced representation of G in this Hilbert space is
defined by

�
UL

g f
�
.s/D

q
�g.�.s//f .g

�1s/ : (14.29)

One easily verifies that this is indeed a representation
that is unitary.

Reformulation 1
We choose a section � as described above, and define
 .x/D f .�.x// (Fig. 14.2).

Figure 14.2 f can be recovered from  

f .g/D f .�.x/ �.x/�1g„ ƒ‚ …
2H

/D L.g�1�.x// .x/ ;

xD �.g/ :

(14.30)

We now rewrite (14.29) in terms of  (for simplicity
we assume �g.s/D 1/. Because of the last equation it is
natural to define the transformation of  by

�
UL

g f
�
.s/DW L.s�1�.x//.VL

g /.x/ ; xD �.s/ :

Here, the left-hand side is

f .g�1s/D L.s�1g�.�.g�1s/// .�.g�1s/„ ƒ‚ …
g�1x

/

D L.s�1�.x//L.�.x/�1g�.g�1x// 

� .g�1x/ :

σ
π

ψ

G/H

G
f

Fig. 14.2 Diagram for the Map  
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Hence we obtain, including the case of a nontrivial �g,

�
VL

g 
�
.x/D

q
�g.x/L.�.x/

�1g�.g�1x/„ ƒ‚ …
2H

/

� .g�1x/ : (14.31)

This is a unitary representation in the Hilbert space
L2.G=H; �IH / of H -valued functions. (Verify the
representation property.)

Reformulation 2
Embed L into a representation QL of G; QL need not be
unitary. So we assume that there is a Hilbert space
QH and a representation QL of G in QH , such that H

can be identified with a Hilbert subspace of QH and
QL.h/uD L.h/u for all h 2 H; u 2H . We associate to
each f W G!H , satisfying the properties 1–3 above,
the map ' W G! QH , defined by

'.g/D QL.g/f .g/ : (14.32)

The covariance condition 2 then becomes '.gh/D '.g/
for all h 2 H, i. e., ' depends only on the coset Œg� 2
G=H. So ' induces the map ! W X D G=H! QH ,

!.x/D '.g/ ; xD Œg�D �.g/ : (14.33)

For ' the transformation law becomes .Ug'/.s/D
QL.g/'.g�1s/. This induces

.Ug!/.x/D QL.g/!.g
�1x/ : (14.34)

In the space of maps ! W X! QH we introduce a scalar
product, such that the transformation (14.34) is unitary.
For this consider for x 2 X a group element g 2 G with
gx0 D x, where x0 D Œe�DH, and define the subspace

Hx D QL.g/.H / : (14.35)

This depends only on Œg�. In Hx define the scalar prod-
uct

hu; vix D hQL.g
�1/u; QL.g�1/viH : (14.36)

This is well defined since L.h/ is unitary. Note also that

Hsx D QL.s/.Hx/ ; s 2 G ; (14.37)

and

h QL.s/u; QL.s/visx D hu; vix : (14.38)

The map ! satisfies !.x/ 2Hx. The scalar product of
two such maps !1; !2 is defined by

.!1; !2/D

Z
X

h!1.x/; !2.x/ix d�.x/ : (14.39)

From now on we consider !’s in the corresponding
Hilbert space H! , and we assume that the measure �
is invariant.

Representation (14.34) is unitary in H! . Indeed,
using (14.38) we have

h.Us!1/.x/; h.Us!2/.x/ix D h!1.s
�1x/ ;

!2.s
�1x/is�1x :

Together with the invariance of � on G=H the claim
follows.

Remarks 14.1

1. The scalar product (14.38) is more complicated than
that for the original maps f . This is the price we have
to pay for the simple transformation law (14.34) for
! 2H! .

2. Representation QLjH is typically not irreducible. To
arrive at irreducible representations of H we have
to impose subsidiary conditions. This will become
important in Sect. 14.A when we discuss free fields
for arbitrary spin.

3. There is also a description in terms of G-Hilbert
space bundles [14.9], which is completely equiva-
lent to what we have done.

14.3.1 Application to Semidirect Products

We now specialize the theory of induced representa-
tions to semidirect products GD AÌH relative to an
action of H on A, a 7! ha. (Examples: The inhomoge-
neous linear groups and certain subgroups, for instance
the inhomogeneous Lorentz group.) Both groups are as-
sumed to be locally compact, and we will only consider
the case when A is Abelian. For this class Mackey’s the-
ory guarantees that the induction process provides all
irreducible unitary representations.

We note that A and H can be regarded as subgroups
of G, A being a closed normal subgroup. Further-
more, GD AH; A\H D e, haD hah�1. This can be
regarded as an internal characterization of semidirect
products.
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Let OA be the character group of A, i. e., the set
of continuous homomorphisms of A into the group
of complex numbers of modulus 1. Under pointwise
multiplication this set becomes a group. Relative to
the topology of uniform convergence on compacta it
is locally compact and satisfies the second axiom of
countability. For x 2 OA we denote its value on a 2 A by
hx; ai. The action of H on A induces an action of H
on OA by hhx; ai D hx; h�1aiI x 7! hx is well defined
and continuous. We choose a point x0 2 OA and denote
by Hx0 D X the orbit of x0 in OA. Let H0 be the stabi-
lizer of H at x0, i. e., H0 D fh W h 2 H; hx0 D x0g. We
extend the action of H on OA to one by all of G, assum-
ing that A acts trivially. Note that if ˛.g/ denotes the
inner automorphism on A; ˛.g/.a/D gag�1, then the
extended action is given by hgx; ai D hx; ˛.g/�1.a/i.
This turns X into a G-space. The stability subgroup of G
is G0 D AÌH0.

For what follows we note that the map G=G0!

X; Œg� 7! Œg�x0 (defined with representatives) is a G-
isomorphism (verify this). Note that obviously G=G0 Š

H=H0, so we can also identify X with H=H0.
Let D.h/ be a unitary representation of H0 in the

Hilbert space H and consider the extension L.ah/D
hx0; aiD.h/ to G0. For this situation we can use
the transformation law (14.31). Thanks to the G-
isomorphism just mentioned, we can regard the func-
tions  in (14.31) as functions on X. With this rein-
terpretation we have to use instead of the sections � W
G=G0! G maps c W X! H 
 G with c.x/x0 D x, in
terms of which (14.31) becomes for �g � 1

.Vg /.x/D L.c.x/�1gc.g�1x// .g�1x/ : (14.40)

For gD a 2 A this gives

.Va /.x/D hx0; c.x/
�1ac.x/i .x/

D hc.x/x0; ai .x/D hx; ai .x/ ;

and for gD h 2 H we obtain

.Vh /.x/D D.c.x/�1hc.h�1x// .h�1x/ :

Since Vah D VaVh we obtain the unitary representation

.Vah /.x/D hx; aiD.c.x/
�1hc.h�1x// .h�1x/ ;

(14.41)

of GD AÌH in the Hilbert space L2.X; �IH /, where�
now denotes the transported measure to X (assumed to
be invariant).

Mackey’s theory establishes the following impor-
tant result (for detailed proofs, see [14.10]):

Theorem 14.3 Mackey
Let us choose, for each H-orbit ˝ in OA, a point x˝
on ˝, and an irreducible representation D of the sta-
bility subgroup H˝ at the point x˝ . Then the repre-
sentation VD;˝ , given by (14.41), is irreducible. Two
such representations are equivalent if and only if the or-
bits coincide, and the representations of the stabilizer
are equivalent. If the H-orbit structure of OA satisfies
a certain smoothness property, then each irreducible
representation is equivalent to some VD;˝ .

In the Appendix we indicate Mackey’s strategy.
Let us specialize this important result for the uni-

versal covering group R4 Ì SL.2;C/ of P"
C

. With the
notation introduced in Sect. 3, Eq. (14.41) becomes, for
example, for the orbit HCm

.U.a;A/f /.p/D eipaD
�
L.p/�1AL

�
��1

A p
��

� f .��1
A p/ ;

f 2 L2
�

HCm ; d˝mIH
	
:

(14.42)

For DD D.s/ this agrees with (14.19). For the appli-
cations in the next section we introduce a construction
similar to the reformulation 2 above.

Let us assume that the Hilbert space H is a sub-
space of a Hilbert space QH , and QD is a representation
of SL.2;C/ in QH , not necessarily unitary, such that
the restriction of QD to SU.2/ in H is equal to D.
(The restriction may, however, be reducible in QH .) Let
Hp D QD.L.p//.H /, with the inner product

hu; vip D h QD.L.p/
�1/u; QD.L.p/�1/viH : (14.43)

Consider Borel maps  W HCm ! QH with  .p/ 2Hp.
Clearly, if

 .p/ WD QD.L.p//f .p/ ; (14.44)

then

h 1.p/; 2.p/ip D hf1.p/; f2.p/iH : (14.45)

In terms of  (14.42) becomes (abusing notation)

.U.a;A/ /.p/D eipa QD.A/ 
�
��1

A p
�
: (14.46)
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We choose  in the Hilbert space of maps with finite
norm belonging to the scalar product

. 1;  2/D

Z

HCm

h 1.p/; 2.p/ip d˝m.p/ : (14.47)

This construction gives a unitary representation of QP"
C

which is not irreducible when QDjSU.2/ is reducible
in QH . In order to obtain irreducible representations, we
have to impose subsidiary conditions. This brings us to
the next topic.

14.4 Free Classical and Quantum Fields for Arbitrary Spin,
Spin, and Statistics

With the developed group theoretical tools we can now
give an elegant approach to fields with arbitrary spin
(see also [14.11]). We first consider classical fields.

14.4.1 Classical Fields for Arbitrary Spin
and Positive Mass

A classical relativistic field  ˛.x/ is a solution of
a system of Lorentz invariant field equations. Under
QP"
C

� QP0 the field transforms according to

 0˛.x
0/D S.A/˛ˇ ˇ.x/ ; x0 D�AxC a : (14.48)

Here, A 7! S.A/ is a finite-dimensional representation
of SL.2;C/. We consider only free fields. Then the
solution space is linear and hence we can define a rep-
resentation of QP0 by

.U.a;A/ /˛.x/D S.A/˛ˇ ˇ
�
��1

A .x� a/
�
:

(14.49)

In this section, we construct systems of linear field
equations, such that the positive frequency solutions
give rise to an irreducible unitary Wigner representation
.m; s/;m> 0.

2sC1 Component Field Equation
For the extension of D.s/ to SL.2;C/ we choose, in
standard notation, the representation D.s;0/ that we also
denote by D.s/. Then (14.44) becomes

'˛.p/D
sX

�D�s

D.s/
˛�
.L.p//f�.p/ ; (14.50)

and the norm belonging to (14.47) is

k'k2 D

Z
'�.p/D.s/

 
Op

m

!
'.p/d˝m.p/ : (14.51)

The ‘hat’ symbol on a 2� 2 matrix A is defined by OAD
" NA"�1 where " is the standard symplectic matrix. For
A 2 SL.2;C/ one easily finds OAD .A�/�1. In (14.51)
we have used (14.13). Transformation (14.46) becomes

.U.a;A/'.p/D eipaD.s/.A/'.��1
A p/ : (14.52)

This is precisely of the form (14.49) in momentum
space, with S.A/D D.s;0/.A/. Since the restriction of
D.s;0/ to SU.2/ is D.s/, representation (14.52) is ir-
reducible and equivalent to the Wigner representation
.m; s/. No subsidiary conditions have to be imposed. If
we pass to x-space by

'˛.x/D .2�/
�3=2

Z
'˛.p/e

�ipx d˝m.p/ ; (14.53)

then '˛.x/ satisfies only the Klein–Gordon equation
�
�Cm2

�
'˛.x/D 0 ; ˛ D�s; : : :;Cs : (14.54)

Beside the positive frequency solutions, this equa-
tion has also negative frequency solutions, which span
an irreducible unitary representation belonging to the
orbit H�m and spin s.

2.2sC1/ Component Field Equation
Instead of the extension D.s;0/ we could have
used D.0;s/. This is equivalent to the representation
OD.s/.A/ WD D.s;0/. OA/D D.s;0/.A/��1. For this case we
introduce the spinor amplitudes

� P̨ .p/D
sX

�D�s

OD.s/
P̨�
.L.p//f�.p/ : (14.55)

The scalar product now becomes

.�1; �2/D

Z
�
�
1 .p/D

.s/

� p

m

�
�2.p/d˝m.p/ :

(14.56)
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The �-fields transform according to

U.a;A/�.p/D eipa OD.s/.A/�
�
��1

A p
�
: (14.57)

In this case S.A/ in (14.49) is OD.s/.
The fields ' and � are, of course, not independent.

We claim that

�.p/D D.s/
 
Op

m

!
'.p/ ;

'.p/D D.s/
�

p

m

�
�.p/ : (14.58)

For instance,

�.p/D OD.s/.L.p//f .p/

D OD.s/.L.p//D.s/.L.p//�1'.p/

DD.s/. OL.p/L.p/�1/'.p/

DD.s/
 
Op

m

!
'.p/ :

Equations (14.58) are the generalizations of the
Dirac equation for sD 1=2

Op'.p/D m�.p/ ;

p�.p/D m'.p/ : (14.59)

Imposing (14.58) as subsidiary equations provides
again an irreducible representation in the space of 2�
.2sC 1/-component fields

 .p/D

�
'.p/
�.p/

�
; (14.60)

transforming according to the reducible representation

S.A/D

�
D.s/.A/
OD.s/.A/

�
: (14.61)

In x-space Eqs. (14.58) become

D.s/.iO@/'.x/D m2s�.x/ ;

D.s/.i@/�.x/D m2s'.x/ : (14.62)

In addition,  satisfies, of course, the Klein–Gordon
equation.

We also introduce generalizations of the Dirac ma-
trices. Since D.s/.p/ is a homogeneous polynomial of
degree 2s in p, we can set

D.s/.p/D ��1:::�2s p�1 � � � p�2s ;

D.s/.Op/D O��1:::�2s p�1 � � � p�2s : (14.63)

The generalized Dirac matrices are defined by

��1:::�2s D

�
0 ��1:::�2s

O��1:::�2s 0

�
: (14.64)

With these we can write the field equations (14.62) as



.�i/2s��1:::�2s@�1 � � � @�2s Cm2s

�
 .x/D 0 :

(14.65)

For sD 1=2 this reduces to the Dirac equation. Fields of
this type have been considered, for instance, in [14.12,
13].

Bargmann–Wigner Fields
These fields are constructed with yet another extension
of D.s/ to SL.2;C/. We realize the Wigner representa-
tion .m; s/ in the Hilbert space

H .m;s/ D

8<
: f�1:::�2s.p/

ˇ̌̌X
.�/

Z
jf�1:::�2s.p/j

2

� d˝m.p/ <1

9=
; ;

(14.66)

where the functions f are symmetric in the two-valued
indices. So the functions f are maps from HCm into the
2s-fold symmetric tensor product of C2. The Wigner
representation is

.U.m;s/.a;A/f /�1:::�2s.p/

D eipa
X
.�/

Y
j

.R.p;A//�j�
0

j
f�01:::�02s

�
��1

A p
�
:

(14.67)

Now, we define generalized Dirac spinors. Let

Ba�.p/D

�
L˛�.p/
OL
P̨�.p/;

�
; aD .˛; P̨/ ; (14.68)
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and define

 a1:::a2s.p/D
X
.�/

Y
j

Baj�j .p/f�1:::�2s.p/ : (14.69)

Dropping indices, we also write

 .p/D

0
@O

j

Bj.p/

1
A f .p/ :

The scalar product (14.43) becomes, using (14.59),

h 1.p/; 2.p/ip D
1

2
 
�
1 .p/

O
j

�0
.j/ 

�
2 ; (14.70)

where

�
�

.j/ D 1˝ � � �˝ ��˝ 1˝ � � �˝ 1

(2s factors, �� at position j). As a result of the identity,

1

m
��p�

�
L˛�.p/
OL
P̨�.p/;

�
D

�
L˛�.p/
OL
P̨�.p/

�
;

the  .p/ satisfy the Bargmann–Wigner equations

�
�
�

.j/p��m
	
 D 0 : (14.71)

There are, by construction, no other subsidiary condi-
tions (show this).

For the transformation law of the Bargmann–
Wigner fields one readily finds

.U.a;A/ .p/D eipa

0
@O

j

Sj.A/

1
A ���1

A p
�
;

(14.72)

where each Sj.A/ is equal to the reducible Dirac repre-
sentation D.1=2/L OD.1=2/:

S.A/D

�
A 0
0 OA

�
:

This shows that  a1:::a2s is a symmetric multi-Dirac
spinor.

Pauli–Fierz Fields
Let m; n be two integers � 0 with mC nD 2s. The
Pauli–Fierz spinor fields are defined by

�
Pˇ1::: Pˇm
˛1:::˛n

.p/D
nY

jD1

L j̨�j .p/

�

mY
kD1

OL
Pˇk�k

.p/f�1:::�nI�1:::�m.p/ ;

(14.73)

where f is separately symmetric in the indices 	 and �.
The identities

p OL.p/D mL.p/ ;

OpL.p/D m OL.p/ : (14.74)

imply the Pauli–Fierz equations [14.14]

p˛
Pˇ�
Pˇ2::: Pˇm
˛˛1:::˛n

D m�
Pˇ Pˇ2::: Pˇm
˛1:::˛n

;

p
˛ Pˇ
�
Pˇ Pˇ2::: Pˇm
˛1:::˛n

D m�
Pˇ2::: Pˇm
˛˛1:::˛n

: (14.75)

Different choices of m; n lead to different fields. As
long as we do not consider reflections or interactions,
all these fields are, by construction, equivalent.

Rarita–Schwinger Fields
For practical calculations with half-integer spin � 3=2,
fields introduced by Rarita and Schwinger are very
useful. One can arrive at these starting from the Pauli–
Fierz fields. For details, I refer to [14.7]. If sD 3=2,
the Rarita–Schwinger field has a Dirac and a vector
index; notation:  �.x/, where the Dirac index is not
written. From the construction one obtains the Rarita–
Schwinger equations

�
��p� �m

�
 � D 0 ; (14.76)

plus the subsidiary condition

�� � D 0 : (14.77)

14.4.2 Free Quantum Fields, Spin Statistics

So far we have only considered one-particle states,
transforming irreducibly under QP0 (elementary systems
in the sense of Wigner). It should be said at this point
that from the transformation law alone we do not know
whether the system is elementary or composite in the
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usual sense, in which an electron is elementary and
a deuteron is composite. (For an interesting dispute on
this delicate issue between Heisenberg and Wigner, see
the discussion after Heisenberg’s talk at the Dirac con-
ference [14.15].)

In a theory of fundamental interactions, like the
Standard model of particle physics, the elementary sys-
tems in the sense of Wigner, span a proper subspace
H1 
H that is invariant under the representation
U.a;A/ of QP0 in the total spaceH .

We discuss here only the Hilbert space of an ar-
bitrary number of noninteracting particles. This is es-
sential for the formulation of the scattering problem
(description of asymptotic states).

Fock Space over .m; s/
Let F1 be the one-particle space L2.HCm ; d˝mI

C2sC1/ carrying the Wigner representation .m; s/

.U1.a;A/f /.p/D eipaD.s/.L.p/�1

�AL.��1
A p//f .��1

A p/ : (14.78)

The space of N-particle states is

FN DF1˝s;a � � � ˝s;aF1 .N times/ ; (14.79)

where ˝s;a denotes the symmetric or antisymmetric
tensor product. Explicitly,

FN D
n
f .p1; 	1; : : :pN ; 	N/

ˇ̌̌
f symmetric or

antisymmetric ;

kf k2
N <1

�
;

with

kf k2
N D

X
.�/

Z
j f .p1; 	1; : : :pN ; 	N/j

2

� dN˝m.p/ :

The Fock space is the direct Hilbert sum .F0 WDC/

F D
1M

ND0

FN : (14.80)

An element f 2F is a sequence f D .f .0/; f .1/; : : :/,
with

kf k2 D

1X
ND0

kf .N/k2
N :

The special state ˝F D .1;0; : : :/ is the Fock vacuum.
The representation U1 inF1 induces in a natural manner
representations UN in FN and U in F . (On F0 the rep-
resentation is trivial: invariance of the Fock vacuum.)

Interpretation: Let f 2F ; f D ff .N/g, then
jf .N/.p1; 	1; : : :; pN ; 	N/j

2 dN˝m.p/ is the proba-
bility measure in momentum space for given spin
components 	1; : : :; 	N .

In what follows, F
1

denotes the subspace of F ,
whose elements have only a finite number of nonva-
nishing components. On F

1

one can introduce the
standard creation and annihilation operators a.g/;a�.g/
for g 2F1. For instance, if f 2 F

1

, then

.a.g/f /.n�1/.p1; 	1; : : :; pn; 	n/

D
p

n
Z

d˝m.p/
X
�

g� .p; 	/f .n/

� .p; 	; p1; 	1; ::; pn�1; 	n�1/ :

On F
1

the creation and annihilation operators are ad-
joint to each other and satisfy

1. Œa.g1/;a�.g2/�
˙

D .g1; g2/1 .˙ for symmetric (an-
tisymmetric) tensor products);

2. U.a;A/a�.g/U�1.a;A/D a�.g.a;A//, g.a;A/ D
U1.a;A/g.

(Subtleties connected with unbounded operators are
treated in [14.16].)

2sC1 Component Quantum Fields
Now, we introduce quantum versions of the fields con-
structed in Sect. 5.1.1. Let ffk.p; 	/g be an orthonormal
basis in F1, and

u.k/˛ .x/D .2�/
�3=2

Z
d˝m.p/

�
X
�

D.s/
˛�
.L.p//fk.p; 	/e

�ipx ;

v.k/˛ .x/D .2�/
�3=2

Z
d˝m.p/

�
X
�

D.s/
˛�
.L.p/"/f�k .p; 	/e

ipx : (14.81)

With this we define the quantum field (operator-valued
distribution)

'˛.x/D
X

k

h
a.fk/u

.k/
˛ .x/C a�.fk/v

.k/
˛ .x/

i
:

(14.82)
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This expression becomes more transparent if we write
symbolically

a�.f /D
Z

d˝m.p/
X
�

a.p; 	/f .p; 	/ : (14.83)

Then we get

'˛.x/D
1

.2�/3=2

Z
d˝m.p/

X
�

�
n
D.s/
˛�
.L.p//a.p;	/e�ipx

CD.s/
˛�
.L.p/"/a�.p; 	/eipx

o
: (14.84)

Remarks 14.2

1. We have only introduced one sort of particles. The
generalization to the case, where the antiparticles
are different, is obvious.

2. The factor of a.p; 	/, namely D.s/
˛�
.L.p//e�ipx�

u˛.x; 	/ is a plane-wave positive frequency solution
of the classical field in Sect. 5.1.1. This factor and
the corresponding one for a�.p; 	/ are chosen such
that '˛.x/ transforms as

U.a;A/'˛.x/U
�1.a;A/

D
X
ˇ

D.s/
˛ˇ
.A�1/'ˇ.�AxC a/ : (14.85)

The verification of this is straightforward.

Now we come to a crucial point. We shall see that
the field is only local if we choose the standard connec-
tion between spin and statistics. For this we compute
Œ'˛.x/; '

�

ˇ
.y/�
˙

, using

Œa.p; 	/; a�.p0; 	0/D ı�0�2p0ı.3/.p0�p/ : (14.86)

(We proceed formally, but the derivation can easily
be rewritten in a mathematically rigorous manner.)
A short calculation, using (14.13), leads to the impor-
tant result

h
'˛.x/; '

�

ˇ
.y/
i
˙

D
1

.2�/3

Z
d˝m.p/D

.s/
˛ˇ

�
p

m

�

�
h
e�ip.x�y/˙ .�1/2seip.x�y/

i
:

(14.87)

If and only if ˙.�1/2s D�1, that is if the normal con-
nection between spin and statistics holds, we get a local
field

h
'˛.x/; '

�

ˇ
.y/
i
˙

D iD.s/
˛ˇ

�
i
@

m

�
�.x� yIm/ ;

(14.88)

where 4.x/ is the famous Jordan–Pauli distribution. In
(14.88) one has to take the commutator for integer spin
and the anticommutator for half-integer spin. Otherwise
the noncausal distribution �1 would appear, and the
field would be nonlocal.

We leave it as an exercise to introduce also quantum
versions of the other field types, discussed in Sect. 5.1.
For instance, one finds for the Bargmann–Wigner fields
instead of (14.88) the following result (dropping indices
and using the obvious generalization of Dirac’s N )

Œ .x/; N .y/�
˙

D
O

j

h
i��
.j/@�Cm

i
�.x� yIm/ :

(14.89)

What we have done in this section is, I believe, the
kings way to the quantum theory of free fields for arbi-
trary spin.

14.A Appendix: Some Key Points of Mackey’s Theory

Mackey’s important theorem, formulated in Sect. 14.4,
is based on his theory of imprimitivity systems. Let me
first describe the connection between unitary represen-
tations of GD AÌH and systems of imprimitivity of H
based on OA.

Let g 7!Wg be a unitary representation of G in
a Hilbert space H and let U DWjA;V DWjH be its
restrictions to A and H, respectively. According to the

SNAG theorem we have the spectral decomposition

Ua D

Z
OA

x.a/dP.x/ ; (14.90)

where P is a unique projection-valued measure on OA.
From haD hah�1 we conclude that

VhUaV�1
h D Uha ; (14.91)
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implying that

VhP.E/V�1
h D P.hE/ ; (14.92)

for every Borel set E of OA. By definition, the pair .V;P/
is a system of imprimitivity for H based on OA. (V is
a representation of H and P a projection-valued mea-
sure of OA, such that (14.92) is satisfied.)

Conversely, given such a system of imprimitivity
.V;P/, (14.90) defines a unitary representation U of A.
Setting

Wah D UaVh ;

we obtain, as a result of (14.91) (implied by (14.92)),
a representation of G, leading to the original system
of imprimitivity. One can show that W is irreducible
if and only if the corresponding system of imprimitiv-
ity is irreducible (in an obvious sense). An analogous

statement holds for the notion of equivalence [14.10,
Lemma 9.23].

The main part of Mackey’s theory is concerned with
the classification and description of irreducible sys-
tems of imprimitivity. A major tool in achieving this
is Mackey’s description of cohomology classes of co-
cycles [14.10, Theorem 8.27]). This leads to a 1 W 1
correspondence between such cohomology classes and
equivalence classes of systems of imprimitivity. (The
main results are stated in [14.10, Theorems 9.7, 9.11].)
For transitive systems of imprimitivity one then obtains
a description in terms of representations of the stability
group [14.10, Theorems 9.12, 9.20]. These results im-
ply, in particular, Mackey’s important theorem cited in
Sect. 14.4.

The theory has, however, other interesting applica-
tions. It provides, for instance, a transparent uniqueness
proof for the Schroedinger representation of the canon-
ical commutation relations.
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15. Spinors

Robert Geroch

Starting from an abstract complex 2-dimensional
vector space with a fixed alternating tensor, there
is constructed what is called a spinor space. This
spinor space, it turns out, is intimately connected
to what is known as a Lorentz vector space – a 4-
dimensional vector space endowed with a metric
of Lorentz signature. Finally, this connection be-
tween these two kinds of spaces is exploited to in-
troduce, on virtually any spacetime, spinor fields.

Spinor fields, in many ways, merely reflect ten-
sor fields. Every tensor field can be expressed in
terms of one or more spinor fields; and the deriva-
tive operator on tensor fields extends uniquely to
one on spinor fields. Thus, every algebraic calcu-
lation and every differential equation involving
tensor fields has a direct spinor analog. It turns
out, however, that for a number of topics – though
by no means for all – the spinor version is simpler
and more transparent than the tensor version.
Examples include the classification of the Weyl
tensor, the structure of the Maxwell field and the
properties of null geodetic congruences. In addi-
tion, there are some topics for which spinors seem
to be essential. These include the spin-s fields (for
s a half-integer) and the Witten proof of positivity
of gravitational mass. Acting on the spinor space
is a certain group, the spinor group. The spinors
generate the representations of that group, and in
addition show how this group and its representa-
tions are related to those of the Lorentz group.
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There are two common variants of spinors: 4-
component spinors (which are used extensively in
particle physics); and Euclidean spinors (which are
used in, among other things, the Witten proof).
There is also a number of subtleties involved in
using spinors. For example: Some spacetimes ad-
mit no spinors at all, and for those that do admit
a spinor structure it is not in general unique; there
is in general not available any notion of the Lie
derivative of a spinor field; and variational cal-
culations involving spinors must be done with
some care. Finally, there exist entire computational
schemes – the spin-coefficient formalisms – based
on spinors.

Spinors play two distinct roles in relativity.
On the one hand, there is a number of topics for

which spinors seem to be essential. Examples include
the description of Fermions in spacetime (e.g., via
the Dirac equation); and the Witten proof that certain
spacetimes have positive total mass, measured at spa-

tial infinity. We simply do not have a viable description
of Fermions, nor a version of the Witten proof, that
circumvents spinors. Note that these topics are about
physics, not just mathematics. The mere existence of
such topics suggests that there is something fundamen-
tal about spinors. Also, since the complex numbers are



Part
C

|15.1

282 Part C Spacetime Structure and Mathematics

an integral part of spinors, this further suggests that the
complexes are also somehow intertwined with the phys-
ical structure of spacetime.

The other role involves the use of spinors to carry
out calculations and to illuminate the structure of var-
ious geometrical objects. Examples include the classi-
fication of the the Weyl tensor; and the derivation of
the properties of shear-free null geodetic congruences.
Spinors are not necessary for these tasks: They can
be done perfectly well directly with tensors. But when
spinors are useful, they are often very useful. For exam-
ple, it is, in my opinion, easier first to learn spinors and
then to learn the associated spinor classification of the
Weyl tensor, than it is to learn the pure-tensor version
of that classification. On the other hand, there are many
other topics, such as the equations that describe a per-
fect fluid, for which spinors provide no advantage at all.

In both of these roles, spinors have the character
of a “service subject” – rather like group theory or
differential geometry. That is, spinors are important pri-
marily because of the light they shed on other topics.

To “learn” spinors is mostly to learn technique: How to
calculate with them quickly and efficiently. This is not
something to be absorbed passively, by merely reading.
You must push some indices around for yourself.

The purpose of this chapter is to explain what
spinors are, how they work, and how they are used.
Sections 15.1 and 15.2 contain basic background ma-
terial. We define spinor fields on a spacetime, discuss
the relation between spinors and tensors, and give a few
examples of how to do calculations with spinors. The
remaining seven sections are a mixed bag of various
topics, essentially independent of each other. These pro-
vide some examples of how spinors work (spinor struc-
ture, Lie derivatives, 4-spinors) and what they can be
used for (representations of groups, Euclidean spinors,
spin coefficients, variational problems). For other dis-
cussions of spinors, see [15.1–4].

Throughout this chapter, all manifolds are taken to
be connected. Also, smoothness is assumed for every
object for which “smooth” makes sense, e.g., for mani-
folds, maps, fields, etc.

15.1 Spinor Basics

In this section, we introduce spinor fields on space-
times; as well as the basic operations available on such
fields, the relation between spinor and tensor fields, etc.

Fix a complex, two-dimensional, vector space V.
We associate, with this V, three additional vector

spaces, as follows. The first is the dual of V, written
V�. This, the complex vector space of all linear maps
from V to the complexes, indeed has the structure of
a vector space: We add such linear maps, and mul-
tiply them by complex numbers, in the obvious way.
The second is the complex conjugate of V, written V.
As a set, V is the same as V. We keep this straight
by means of the following notation. For ˛ 2 V, we
write ˛ for the corresponding element of V . Addition
and scalar multiplication in this set V are now defined,
in terms of the corresponding operations in V, by the
formula c˛Cˇ D .c˛Cˇ/, where ˛; ˇ are any two
elements of V, and c is any complex number. In this
formula, addition and scalar multiplication on the right-
hand side are in V (where these operations are already
defined); on the left, in V (where these operations are
being defined). Here, c denotes the complex conjugate
of this complex number. In other words, to take a lin-
ear combination of elements of V , take the same linear
combination, in V, of the corresponding elements of V,

but apply complex conjugation to the scalars, as indi-
cated above. It is easy to check that this set V, with these
operations, is indeed a vector space. The third vector
space constructed from V is the complex conjugate of
the dual of V (or, what is the same thing, the dual of the
complex conjugate), written V� (or V

�

).
Thus, we end up with a total of four complex, two-

dimensional vector spaces, V, V�, V , and V�. Note that
taking additional duals, or additional complex conju-
gates, on the vector spaces in this list simply returns
other vector spaces in the list. The point of this con-
struction is, not the vector spaces themselves (for if you
have seen one complex, two-dimensional vector space,
you have seen them all), but rather how these vector
spaces are connected with each other. The connections
between V, V�, V , and V� are expressed in terms of
two operations. First, each of V and V� acts linearly
on the other – and each of V and V� also acts linearly
on the other. This operation reflects the construction of
the dual: Vector spaces dually related to each other act
on each other. Second, there is given an antilinear iso-
morphism between V and V – and also one between
V� and V�. This operation reflects the construction of
the complex conjugate: The complex-conjugation oper-
ation is an antilinear map.
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We have introduced these four vector spaces, and
the operations between them, by “building them up”,
starting from a single vector space V. But once the vec-
tor spaces have been constructed and the operations
introduced, it is better to think of all four as being on
the same footing.

It is convenient to introduce standard index nota-
tion. Elements of V will be denoted by upper-case Latin
superscripts (e.g., $A); elements of V� by subscripts
(e.g., �C); elements of V by primed superscripts (e.g.,
�S0); and elements of V� by primed subscripts (e.g.,

D0). That is, the indices tell us in which vector space
an element resides. The operations relating these vec-
tor spaces are now expressed in terms of indices as
follows. The action of elements of the dual of a vec-
tor space on a vector space (i. e., of V� on V; of V
on V�; of V

�

on V; and of V on V
�

) is expressed
by simply writing the two elements, with the same in-
dex, next to each other. Thus, 
 D �C0�

C0 means: apply
the element � of V

�

(the dual of V) to the element �
of V, and denote the resulting complex number by 
 .
The operations of complex conjugation (from V to V ;
from V to V; from V� to V�; and from V� to V�) are
all denoted by an overline. Thus, for ˇK0 an element
of V�, we write ˛K D ˇK0 or ˛K D ˇK to mean: Apply
the complex-conjugation operation to this ˇ, and de-
note the resulting element of V� by ˛. As an example
of the notation, we have the following fact: �A0.c�A/D

c.�A�
A/.

Next, we introduce all possible tensor products
between these four vector spaces, possibly with repeti-
tions. These are represented in standard index notation.
That is, elements of tensor-product spaces are repre-
sented by the appropriate combinations of primed or
unprimed subscripts or superscripts, where we agree
that no repeated indices are to appear in any such
tensor-product elements. Thus, for example, 
A0

C would
denote an element of V˝V�. Furthermore, the ten-
sor product of two elements (having no index letter
in common) is represented by writing the elements in
juxtaposition. Thus, for example, the formula 
A0

C D

˛A0�C means that 
 is the tensor product of the elements
˛ 2 V and � 2 V�.

On these tensor-product elements, we have, by
virtue of their construction, four operations: i) addition
(applicable to two elements having precisely the same
index structure); ii) outer product (take the tensor prod-
uct of two elements, written, e.g., as �B

D0E�S
T0 ); iii)

contraction (written using a repeated index, e.g., from
�A

D0B in V˝V
�

˝V�, we obtain �B
D0B, an element

of V
�

); and iv) complex conjugation (e.g., from 
A0
C

in V˝V�, we obtain 
A
C0 , an element of V˝V

�

).
We regard complex numbers as elements of the ten-
sor product of “no V’s”; and thus scalar multiplication
as a special case of ii). These four operations satisfy
a very long list of properties: addition and outer product
are associative; addition is commutative and associates
over outer product; complex-conjugation, applied twice
in succession, returns the original element; contraction
commutes with addition, outer product and complex
conjugation; outer product commutes with complex
conjugation; etc.

Note that these tensor-product elements have many
“interpretations”. Thus, element 
A0

C could be thought
of, not only as an element of V˝V� as above, but
also as a linear map from V to V (with action ˛!

A0

C˛
C); as a linear map from V

�

to V� (with action
ˇ! 
A0

C Ǎ0 , as an element of .V
�

˝V/� (with ac-

tion � ! 
A0
C�A0

C); as an element of V˝V
�

; etc. We
denote by ıA

B the identity, i. e., the element satisfying
ıA

B˛
B D ˛A for every ˛A. Also, we use round brackets

to denote symmetrization (e.g., ˛.A0B0/ D .1=2/. Ą0B0 C

˛B0A0/); and square brackets to denote antisymmetriza-
tion (e.g., ˛ŒA0B0
 D .1=2/. Ą0B0 � ˛B0A0/).

The above is basic linear algebra – applicable quite
generally to any finite-dimensional, complex vector
space V. We now specialize to the structure of inter-
est. Fix a nonzero, antisymmetric element, �AB D �ŒAB
,
over V. Since V is two-dimensional, such an element
always exists, and any two are related by a nonzero
complex factor. We next introduce its inverse, �AB, sat-
isfying �AM�BM D ı

A
B, its complex conjugate, �A0B0 D

�AB, and its inverse-complex conjugate, �A0B0 . These �’s
will be used to raise and lower the indices, in the fol-
lowing manner. Given ˛A and ˇB, we set Ą D ˛

M�MA

and ˇB D �BMˇM. Similarly for objects with primed in-
dices, and with many indices. Note that raising and
then lowering an index of a spinor returns that original
spinor. While this convention for raising and lower-
ing indices is extremely useful, one must take care
to get the signs right. For example, we have ˛A

Ǎ D

� Ąˇ
A. (Perhaps there could be invented some better

notation.) Note that, for any Ą0B0 , we have ˛ŒA0B0
 D
.1=2/˛M0

M0�A0B0 .
By a spinor space, we mean a complex two-

dimensional vector space V, together with a nonzero
antisymmetric element �AB of V�˝V�. Elements of the
various tensor-product spaces constructed from a spinor
space are called spinors. Thus, the (algebraic) opera-
tions on spinors are addition, outer product, contraction,
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complex conjugation, and the raising and lowering of
indices.

The key reason for interest in spinor spaces stems
from the following construction. Fix a spinor space,
.V; �AB/. Denote by K the collection of all spinors, �AA0 ,
that are self-adjoint: �AA0 D �AA0 . Then any real lin-
ear combination of elements of K is again in K, i. e.,
K acquires the structure of a real vector space. We
next introduce an inner product on this K as follows:
h�; �i D �AA0�AA0 . (Note that indices were lowered on
the right-hand side.) This is clearly a real, symmetric
inner product. One checks (e.g., by choosing a basis
for V – more on this later) that this vector space K has
dimension 4; and that the inner product h ; i has signa-
ture .C;�;�;�/. In short, we have constructed, from
certain spinors and certain spinor operations, a Lorentz
vector space.

Now fix any Lorentz vector space .T; gab/. That
is, T is a real, four-dimensional vector space, and gab

is a metric over T of signature .C;�;�;�/ (which
we may interpret as an inner product on T). We use
standard (lower case Latin) indices for tensors over T ,
and we use the metric gab of T to raise and lower
those indices. By a spinor structure on .T; gab/, we
mean a spinor space .V; �AB/, together with an isomor-
phism between the vector space K (constructed above)
and T that sends the inner product h ; i on K to that
of the metric gab on T . Clearly, every Lorentz vector
space admits a spinor structure. Furthermore, all spinor
structures are obtained from any one by applying a suit-
able Lorentz transformation. It is convenient to describe
a spinor structure by expressing the mapping in terms
of a tensor �b

AA0 (i. e., in T˝V�˝V
�

): The action of
this mapping on �AA0 2 K produces �b

AA0�
AA0 2 T . The

metric-preserving property can now be written in either
(equivalent) form

�b
AA0�

c
DD0gbc D �AD�A0D0 ; (15.1)

�b
AA0�

c
DD0�

AD�A0D0 D gbc : (15.2)

Thus, the inverse map, from T back to K, is represented
by �b

AA0 .
Much of the usefulness of spinors arises from the

interplay between K and T . This will be discussed ex-
tensively in the following section; but we give just one
example here. Let oA be any spinor. Then oAoA0 is in K,
and so lb D �b

AA0oAoA0 , its image under the isometry,
is in T . From (15.1), we have lala D .oAoA0/.oAoA0/.
But by antisymmetry of �AB, there follows that oAoA.D

oAoB�BA/D 0, and so that the right-hand side of this ex-
pression vanishes. That is la is a null vector in T . It is
easy to check that every, suitably directed, null vector
can be written in this form; and that la determines oA

uniquely up to phase.
The object �b

AA0 above is called a soldering form,
for it “solders” K to T . As we noted above, for fixed
.V; �AB/ and .T; gab/ there are many such soldering
forms. In some situations (e.g., for certain variational
problems), one is contemplating dealing with a vari-
ety of such forms, and in those cases it is appropriate
to retain �b

AA0 , explicitly, in every equation. A much
more common situation, however, is that in which one
has a single soldering form �b

AA0 , fixed throughout the
discussion. When this is the case, it is convenient to
suppress � entirely. This is accomplished by the follow-
ing notation: Instead of �b D �b

AA0

AA0 , we write simply

�b D 
BB0 , i. e., we think of “b” as merely standing
for “BB0” (the � that generates the transition between
these two being understood). Also, similarly, we write
�c D �CC0 instead of �c D gcb�

b
AA0�DD0�

AD�A0D0 . In this
notation we have, for example, gab D �AB�A0B0 .

This completes our discussion of the algebra of
spinors. We have the notion of a spinor space, of
spinors and the operations on them, of spinor structure
on a Lorentz vector space, and of the soldering form,
which represents that structure. The next step is to in-
stall spinors on spacetimes.

Fix a spacetime, .M; gab/, so M is a 4-manifold,
and gab is a Lorentz-metric field on this manifold. At
each point p of M, the tangent space at p has the struc-
ture of a Lorentz vector space. By a spinor structure on
.M; gab/, we mean a (smooth) assignment of a spinor
structure to each tangent space. A spinor structure on
a spacetime, in other words, consists of two things.
First, we must attach, to each point of M, a complex,
two-dimensional vector space with alternating tensor.
Second, we must specify a soldering-form field, �a

BB0 ,
which, at each point of M, maps the self-adjoint spinors
at that point to tangent vectors at that point. The ques-
tion of which spacetimes admit any spinor structure at
all, and, when there is such a structure, of how unique
that structure is, will be discussed in a later section.

Fix a spacetime with spinor structure. Then, asso-
ciated with each point of M, we have a spinor space,
and so we can introduce the spinors of various ranks
at that point. This can be done at each point of M,
and so we have the notion of (smooth) spinor fields
on M. One such field, for example, is �AB. The var-
ious operations on spinors at a point then extend to
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corresponding operations on these spinor fields. Thus,
we can add spinor fields (when they have precisely the
same index structure), take outer products of spinor
fields, and apply contraction and complex conjugation
to spinor fields. Furthermore, we may raise and lower
spinor indices (using �AB and its progeny), and translate
between tensor and spinor fields (using the soldering
form �b

AA0 .) By taking further tensor products, we may
also introduce mixed fields – having both tangent-space
and spinor indices. One such field, for example, is �b

AA0

itself.
The above completes our discussion of the algebraic

structure of spinor fields on spacetimes. We now turn
to the differential structure. Fix a spacetime, .M; gab/.
Then, as is well known, there is one and only one
(derivative) operator, ra, acting on tensor fields on that
spacetime, that i) is additive, commutes with contrac-
tion, and satisfies the Leibnitz rule under outer product;
and ii) annihilates the metric: ragbc D 0. We shall al-
ways assume that such operators produce the gradient
when applied to scalar fields, and satisfy rŒarb
� D 0
for any scalar field � (i. e., are torsion-free).

It would also be extremely useful to be able take
derivatives, not only of tensor fields, but also of spinor
fields. That is, it would be useful to extend the action
of this operator ra to include also spinor fields. It turns
out that there always exists a unique such extension.

Theorem 15.1
Fix a spacetime with spinor structure. Then there ex-
ists one and only one extension of ra to spinor fields
on that spacetime, that i) is additive, commutes with
contraction and complex conjugation, and satisfies the
Leibnitz rule under outer products; and ii) annihi-
lates �AB and �a

BB0 .

That is, the ra of the theorem is to be applicable
to both tensor fields and spinor fields (and, there-

fore, to mixed fields). Then the requirement (in ii) that
rc�

a
BB0 D 0 guarantees that this derivative commutes

with converting between tensors and spinors.
To prove this, fix any spinor field Ą in this space-

time, and set Fab D Ą˛B�A0B0 C �AB˛A0˛B0 . Then the
real, antisymmetric tensor field Fab is null, i. e., satis-
fies FmnFmn D 0 and FŒabFcd
 D 0. It follows that rkFab

(where here rk is the derivative operator on tensor
fields) satisfies .rkFmn/Fmn D 0 and .rkFŒab/Fcd
 D 0.
But this, in turn, implies that rkFab D 2�k.A˛B/�A0B0 C

2�AB�k.A0˛B0/ for some (clearly unique) field �kA.
We now define an operator, rk, on one-index spinor
fields Ą by: rk Ą D �kA. Next, extend the action of
this ra to other one-index spinor fields using commu-
tativity with contraction and complex conjugation, and
then to arbitrary spinor fields using the Leibnitz rule.
Finally, check that the resulting operator satisfies all the
properties of the theorem. Uniqueness is clear from this
construction.

For clarity, we made the hypothesis of this the-
orem stronger than necessary. One weakening that
might seem attractive would be to remove the condi-
tion rc�AB D 0. But this does not work: The uniqueness
of rc then fails. The derivative operator can also be
written as rCC0 (i. e., �b

CC0rb, before suppression of
the soldering form �). Then the torsion-free condition,
for example, becomes simply r.AM0rB/M0� D 0.

Thus, on a spacetime with spinor structure we have
spinor fields of various types: the ability to pass from
tensor to spinor fields; the standard algebraic opera-
tions on spinor fields; and derivatives of those spinor
fields.

It should be noted that at no point in the treatment
above did we introduce frames of any kind. This is an
important point, which is sometimes overlooked. The
introduction, manipulation, and application of spinors
nowhere requires any choice of frames, tetrads or
bases.

15.2 Manipulating Spinors

To use spinors effectively, one must develop some fa-
cility for manipulating them and for passing back and
forth between tensors and spinors. In this section, we
provide a few examples of such calculations. While
these examples are far from illustrating everything that
can be done with spinors, they will, I hope, at least give
a sense of what is involved.

Fix, once and for all, a spacetime .M; gab/ and
a spinor structure on that spacetime. Let us consider,

in this spacetime, a Maxwell field, Fab. That is, Fab is
antisymmetric, and satisfies Maxwell’s equations.

The first step is to turn the tensor field Fab into
a spinor field using the soldering form. There results
FAA0BB0 D �

m
AA0�

n
BB0Fmn. Next note that any spinor in-

volving two indices, A and B, is equal to the sum of
that spinor symmetrized in these two indices and that
spinor antisymmetrized. But the latter is a multiple
of �AB. Applying this fact in the present case, we obtain
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FAA0BB0 D ĄA0BB0C Ǎ0B0�AB, where ĄA0BB0 is symmetric
in “A;B”. Repeating the same procedure on the primed
indices of ˛ and ˇ, we obtain

FAA0BB0 D �AA0BB0 C 
A0B0�ABC�AB�A0B0 C ��AB�A0B0 ;

(15.3)

where 
 and � are each symmetric spinors, and �
is symmetric in both index pairs “A;B” and “A0;B0”.
But Fab is an antisymmetric tensor, and so FAA0BB0

must reverse sign under simultaneous interchange of
index pairs “A;A0” and “B;B0”. This implies that �
and � above both vanish. Finally, reality of the Maxwell
tensor Fab implies that 
 D �. We conclude that our
Maxwell field Fab can be written uniquely as

FAA0BB0 D �AB�A0B0 C�A0B0�AB ; (15.4)

where �AB is symmetric in its two indices. Thus, the
skew tensor Fab becomes, in spinor form, a symmet-
ric spinor �AB. This �AB is called the Maxwell spinor.
Note that the dimensions work out: The vector space
of skew tensors Fab at a point has dimension 6, the
same as the (real) dimension of the space of symmetric,
second-rank spinors. The Maxwell spinor, then, simply
reorganizes the components of the Maxwell tensor in
a different way.

The idea, now, is to re-express various algebraic fea-
tures of Maxwell fields in terms of the Maxwell spinor.
First note that the alternating tensor of .M; gab/ is given
by

�abcd D i.�AB�CD�A0C0�B0D0 � �A0B0�C0D0�AC�BD/ :

(15.5)

This follows, noting that the right-hand side is indeed
antisymmetric in “a; b; c; d”, and satisfies �abcd�abcd D

�24. For the former, it suffices to check: If we sym-
metrize over any two unprimed indices in (15.5), then
the result is antisymmetric in the corresponding two
primed indices. From (15.5), it follows that the spinor
version of the dual of F, �Fab D .1=2/�ab

mnFmn is
simply i�AB. That is, dualization on skew tensors is mul-
tiplication by i on the corresponding spinors. By direct
computation, we now find

�AB�AB D 1=4.FabFabC iFab�Fab/ : (15.6)

Thus, the two (real) scalar invariants of the Maxwell
field are combined into a single complex scalar in-
variant constructed directly from the corresponding

Maxwell spinor. For the stress–energy of the Maxwell
field, we have

Tab D Fa
mFbm� 1=4gabFmnFmn D �AB�A0B0 : (15.7)

Several facts about the Maxwell stress-energy are im-
mediate from this expression. First, the vanishing of the
trace of the stress-energy, 0D gabTab D �

AB�A0B0TAA0BB0 ,
follows from symmetry of �AB. Second, the stress-
energy of Fab is the same as the stress-energy of its dual.
This follows, replacing �AB by i�AB in (15.7). The en-
ergy condition on the stress-energy arises as follows.
First note that a vector ta is timelike, with the same
time-orientation as the null vectors la D ˛A˛A0 , if and
only if tala >, i. e., if and only if the quadratic form
tAA0

Ą˛A0 is positive-definite. The energy condition now
follows directly, contracting (15.7) with tAA0 tBB0 and us-
ing positive-definiteness. Finally, we note, from (15.7),
that Ta

mTbm is a multiple of gab. This is far from obvious
from the tensor expression for the stress-energy.

Recall that a Maxwell field is called null provided
both of its scalar invariants vanish. In spinor terms,
this means that �AB�AB D 0. But this equation implies
that �A

M�BM D 0 (since the left-hand side of this is
already antisymmetric in “A;B”); which in turn im-
plies that �AB, regarded as a linear map from one-index
spinors to one-index spinors, has rank one; which,
finally, implies that �AB D Ą˛B for some one-index
spinor Ą. The converse – that every Maxwell spinor is
of this form is null – is immediate. Now set la D ˛A˛A0 ,
a null vector. It follows, from (15.4), that la Fab D 0.
Thus, a null Maxwell field annihilates a nonzero null
vector (and conversely). Note also, from (15.7) that, for
a null Maxwell field, Tab D lalb. These are, of course,
well-known facts about Maxwell fields. But sometimes
things become more transparent when expressed using
spinors.

It is an important fact – which we shall use later –
that a null Fab determines the spinor Ą uniquely up to
sign.

More generally, every Maxwell spinor can be writ-
ten in the form �AB D ˛.AˇB/, for some spinors Ą

and ˇB, where these spinors are unique up to exchang-
ing a complex factor. To see this, perform in turn the
following four steps: choose a basis, oA, $A, for spinor
space; consider the quadratic polynomial in a complex
variable z given by �AB.oAC z$A/.oBC z$B/; factor this
polynomial as a product of two factors linear in z; and
write each of the two factor as some one-index spinor,

Ą and ˇB, contracted with .oAC z$A/. The spinors ˛,
ˇ so defined are called the principal spinors of the
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Maxwell spinor. Define, from the principal spinors, two

null vectors la D ˛A˛A0 ; na D ˇAˇ
A0

. Substituting
from (15.4), we find that lŒaFb
mlm D 0 and nŒaFb
mnm D

0. These will be recognized as the defining equations
for the principal null directions of the Maxwell tensor.
Thus, the principal spinors are simply the spinor rendi-
tions of the principal null vectors.

We now turn to Maxwell’s equations, which we
may write as rmFam D 0 and rm�Fam D 0. Substitut-
ing (15.4) into the former, we obtain

rA
B0�ABCrB

A0�A0B0 D 0 : (15.8)

The other Maxwell equation yields the same formula,
but with the sign of the second term reversed. Thus,
the entirety of Maxwell’s equations becomes, in spinor
form

rA
B0�AB D 0 : (15.9)

If there were sources, then on the right-hand side there
would appear a vector, JBB0 . The real and imaginary
parts of this (in general complex) vector are the electric
and magnetic charge-currents, respectively. Applying
rAA0 to the stress-energy (15.7), and using Maxwell’s
equations, (15.9), without sources, we see immediately
that the stress-energy is conserved.

Consider next Maxwell’s equations in the null case.
Substituting �AB D Ą˛B into (15.9), and contracting
with ˛B˛B0 , we obtain ˛B˛A˛B0rAB0˛B D 0. Setting
la D ˛A˛A0 , this can be rewritten as ˛Blara˛B D 0. But
this means that lara˛B is a multiple of ˛B, which in turn
implies that laralb is a multiple of lb. We have proved:
For a null solution of Maxwell’s equations, the null vec-
tor field la is geodetic.

Many of the features we have seen in the Maxwell
case above are merely examples of more general facts
about spinors.

Every spinor can be written in terms of spinors that
are totally symmetric in all unprimed indices, and also
totally symmetric in all primed indices. To see this,
consider a spinor Ą���D, with n indices. First note that
every rearrangement of the indices of ˛ can be obtained
from the arrangement Ą���D by switching indices two
at a time. Therefore, every such rearrangement differs
from Ą���D by terms involving �EF and spinors of lower
rank. It follows that ˛.A���D/ differs from Ą���D by such
terms. In other words, Ą���D is equal to ˛.A���D/ plus

terms involving lower-ranked spinors. Now repeat this
procedure for the spinors of lower rank; and continue in
this way until all spinors have been replaced by totally
symmetric spinors. The result – that every spinor can be
written in terms of spinors separately totally symmetric
in primed and in unprimed indices – now follows, by
the same argument.

In many cases (such as the Maxwell case), this de-
composition of spinors into totally symmetric spinors
reveals interesting features. But in other cases it re-
veals nothing at all. For instance, applied to the
stress-energy tensor this decomposition yields Tab D

TAA0BB0 D KAA0BB0 C 1=4T�AB�A0B0 , where K is symmet-
ric in “A;B” and “A0;B0” and T D Tm

m.
Every totally symmetric spinor field, �A���D D

�.A���D/, can be written as a symmetrized product
of 1-index spinors: �A���D D �.A � � � �D/. This follows
from the same argument as we gave for the Maxwell
case. The spinors �A; : : : ; �D are called the princi-
pal spinors of �. They are unique up to exchanging
complex factors. In the Maxwell case, the Maxwell
spinors, �AB fall into two classes: the null spinors,
when the two principal spinors coincide, and the non-
null, when they do not. One can carry out a sim-
ilar classification for higher-rank (totally symmetric)
spinors, resulting in more classes. For example, for
a fourth-rank spinor  ABCD, there are five classes:
˛.AˇB�CıD/, ˛.A˛BˇC�D/, ˛.A˛BˇCˇD/, ˛.A˛B˛CˇD/,
and Ą˛B˛C˛D.

A mass-zero spin-s field (where s is a positive half-
integer) consists of a 2s-index, totally symmetric spinor,
�AB���D, satisfying the equation rM

A0�MB���D D 0. So, for
example, the Maxwell field is a spin-1 field. Every spin-
s field, then, gives rise to 2s principal spinors, some
of which may coincide. In the case of a null Maxwell
spinor (when the two principal spinors coincide) that
spinor gives rise to a null, geodetic vector field. By
the same argument, for a null spin-s field (all prin-
cipal spinors coincide) with s� 1, there again arises
a null, geodetic vector field. This is a portion of the
Goldberg–Sachs theorem [15.5]. When s is an integer,
we can reexpress the spin-s field in terms of a tensor,
and rewrite the field equation as an equation on this
tensor. But this quickly gets very complicated. Try it for
sD 3. But when s is not a whole integer there is no sim-
ple tensor rendition of the spin-s field: Spinors seem to
play an essential role in describing the physics of these
particles.

In the case sD 1=2, we obtain the what is called the
Weyl neutrino equation. On the other hand, a massive
spin-1/2 particle is described by a pair of spinor fields,
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.�A; �0A/, satisfying the Dirac equation

rAA0�
A D

m
p

2
�A0 ; r

AA0�A0 D�
m
p

2
�A ; (15.10)

where m is the mass. Taking a derivative of the first
equation in (15.10), and using the second, we obtain
rbr

b�A D�m2�A. That is, �A (and, similarly, �A0) sat-
isfy, by virtue of the Dirac equation, the Klein–Gordon
equation with mass m. It follows from the Dirac equa-
tion that the future-directed timelike-or-null vector field
�A�

A0
C �A0�A is conserved. This is the charge-current

vector of the Dirac field.
Finally, we discuss briefly how curvature enters

spinor calculations. Fix a spinor field ˛C. It then follows,
from the Leibnitz rule, that rŒarb
˛C is linear in ˛C.
Therefore, there exists a spinor field �abC

D such that

rŒarb
˛C D �abC
D˛D : (15.11)

This �abC
D is the “effective curvature” for spinor fields.

Analogous formulae follow for spinors with a single
primed index (using that ra commutes with complex
conjugation), for spinors with a single superscript (us-
ing that ra commutes with contraction and satisfies the
Leibnitz rule), and for spinors with many indices (again
using commutation and Leibnitz). It follows, from the
fact that ra�BC D 0 that �abCD is symmetric in indices
“C;D”. Now consider rŒarb
˛CC0 . We may evaluate
this, in terms of �, using (15.11). Alternatively, since
˛CC0 is a merely a covariant vector field on the space-
time, we may also evaluate this expression in terms of
the Riemann tensor. Equating these two, we obtain

Rabcd D �abCD�C0D0 C �abC0D0�CD: (15.12)

This equation says what one would have expected: Re-
gard Rabcd as a “Maxwell field” in its last two indices,

keeping the first two indices intact. Then the associ-
ated “Maxwell spinor” is just �. In any case, (15.12)
shows that Rabcd and �abCD carry precisely the same
information.

The Riemann tensor, rewritten as a spinor, can be
decomposed in terms of spinors that are totally symmet-
ric, as noted earlier. The result is to split the Riemann
tensor into three pieces: the scalar curvature R, the
trace-free Ricci tensor, Rab � 1=4Rgab, and the Weyl
tensor, Cabcd. Spinors do not have much to say about
the first two, but they do about the third. The spinor
equivalent of the Weyl tensor is given by

Cabcd D  ABCD�A0B0�C
0D0C A0B0C0D0�AB�CD :

(15.13)

Here,  ABCD, the Weyl spinor is totally symmetric.
Compare (15.4). Note that the dimensions work out:
Total symmetric fourth-rank spinors have (real) di-
mension 10, the same as that of Weyl tensors. We
remarked earlier about the general classification of to-
tally symmetric spinors. Applied to the Weyl tensor, we
recover [15.3] the five classes comprising the Petrov
classification [15.6].

Let the Ricci tensor vanish, so the entire Riemann
tensor is comprised of its Weyl part. Then the Bianchi
identity becomes

rA0
A ABCD D 0 : (15.14)

That is, the Weyl tensor in this case is just a spin-2 field!
Next, consider the tensor field Tabcd D  ABCD A0B0C0D0 ,
constructed from the Weyl tensor. It is clear from its
definition that this tensor field is totally symmetric, and
positive definite, in the sense that Tabcdtatbtctd � 0 for
every timelike ta. Furthermore, it follows from (15.14)
that Tabcd is conserved: raTabcd D 0. This is the Bel–
Robinson tensor [15.7].

15.3 Groups; Representations

Fix a Lorentz vector space, .T; gab/, with spinor struc-
ture, .V; �AB; �

b
AA0/.

The group of all �-preserving isomorphisms on the
vector space V is called the spinor group, S, of .V; �AB/.
In more detail, an element of S is a spinor SA

B (a lin-
ear map on V) satisfying SM

ASN
B�MN D �AB (epsilon-

preservation). The group operation in S is composition:
S OS! SA

M OSM
B. This group (also known as SL.2;C/) is

six-dimensional: It is connected and simply connected,
and its topology is the product of the 3-sphere, S3,
and R3.

The group of all gab-preserving isomorphisms on
the vector space T is called the Lorentz group, L, of
.T; gab/. An element of L is a tensor, La

b, satisfy-
ing Lm

aLn
bgmn D gab. The group operation in L is also

composition: L OL! La
m OLm

b. This group (also known
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as O.3; 1/) is also six-dimensional. It has four con-
nected components (consisting, respectively, of Lorentz
transformations that preserve both time- and space-
orientation; those that preserve one and not the other;
and those that preserve neither). Each component has
topology the product of the projective 3-sphere RP3

(i. e., the 3-sphere with opposite points identified) and
R3. Thus, each connected component of the Lorentz
group is doubly connected. Those Lorentz transfor-
mations that preserve both orientations form a normal
subgroup of L called the restricted Lorentz group. The
quotient of the Lorentz group by the restricted Lorentz
group is a group with four elements, isomorphic with
Z2 �Z2 (i. e., isomorphic with the group of all ways
to “flip orientations”). The double connectivity of the
restricted Lorentz group can be pictured as follows.
Consider, in this group, the family of rotations, about
some fixed spatial axis, through angles ranging from 0
to 2� . This is a closed curve in the restricted Lorentz
group. It cannot be contracted to a point within that
group. However, the closed curve that traverses this
one twice (i. e., that consists of rotations through angles
ranging from 0 to 4�), can be contracted to a point.

There is a natural Lie-group homomorphism from S
to L. It sends SA

B 2 S to the La
b 2 L given by La

b D

SA
BS

A0

B0 . Note that this is indeed a map from S to L, and
that it is indeed product- and inverse-preserving (i. e.,
that it is indeed a homomorphism of groups). This ho-
momorphism is two-to-one: the two elements S and �S
of S are sent to the same element L of L. This homo-
morphism is onto the restricted Lorentz group. In other
words, every restricted Lorentz transformation La

b can

be written in the form SA
BS

A0

B0 with SA
B in S, and this

SA
B is unique up to sign.

Every curve � in the Lorentz group, starting at the
identity, ıa

b 2 L, can be lifted uniquely to a curve � 0

in S starting at the identity, ıA
B, of that group. Here

“lifted” means that the image of � 0 under the homomor-
phism S! L is precisely � . (This uniqueness follows
from the fact that S is a covering manifold of the
restricted Lorentz group.) Consider the “2�-rotation
curve” described earlier. The lifting of this closed curve
is a curve in S that joins the identity, ıA

B, to �ıA
B. That

is, the lifting is not a closed curve. In follows that this
closed curve cannot be contracted to a point in L. How-
ever, the lifting of the 4�-rotation curve is closed in S;
and this curve can be contracted to a point. All this is
a reflection of the simple connectivity of S and the dou-
ble connectivity of L.

The remaining elements of the Lorentz group (i. e.,
those that reverse one or both of time- and space-
orientation) are represented in terms of spinors as fol-
lows. Those that reverse both orientations are of the
form La

b D�SA
BS

A0

B0 , where again S is �-preserving
and again S is uniquely determined by L, up to sign.
Those that preserve time-orientation but not space-
orientation are of the form La

b D KA
B0K

A0

B, where KA
B0

satisfies KM
A0KN

B0�MN D �A0B0 . Finally, those that pre-
serve space orientation but not time orientation are
given by the same formula, but with a minus sign on
the right; for the same class of spinors KA

B0 . In these
cases, again, L determines K uniquely up to sign. Thus,
in particular, every element La

b of the Lorentz group L
can be expressed, spinorially, in one and only one of
these four forms.

Fix an arrangement of spinor indices, say . /A
0C

DF .
Consider the complex vector space of all spinors hav-
ing this index arrangement. Its (complex) dimension
is 2 raised to the power of the number of indices
(i. e., in this example, 16). The spinor group S acts on
this vector space as follows: SA

B 2 S sends ˛A0C
DF to

S
A0

M0SC
NSD

KSF
L˛M0N

KL. This action is clearly a repre-
sentation of the group S. In this way, then, we acquire
a large number of representations of the spinor group.

The various spinor operations now become opera-
tions on these representations. Taking outer products of
spinors corresponds to taking tensor products of rep-
resentations. For example, the tensor product of the
representation on spinors ˛A and that on ˇB0 is the
representation on spinors 
A

B0 . Taking complex con-
jugates corresponds to taking the complex-conjugate
representation. Raising and lowering of indices provide
isomorphisms between certain representations. Con-
sider, for example, the representation on spinors ˛A, and
that on spinors Ǎ. “Raising and lowering the spinor in-
dex” provides an isomorphism between the underlying
vector spaces, which (by virtue of the fact that each
S 2 S leaves �AB invariant) commutes with the action
of S. In other words, raising and lowering generates an
isomorphism between these representations. A similar
result holds, clearly, for spinors of other ranks. We may
eliminate these equivalent representations from our list
by restricting to those representations based on spinors
with only subscripts (since any representation based
on spinors having superscripts is equivalent to some
subscript-only representation).

The fact that every spinor can be written in terms
of symmetric spinors means that some of these rep-
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resentations are direct sums of others. For example,
every second-rank spinor ĄB can be written uniquely
as ǍBC ��AB with ǍB a symmetric spinor and �
a complex number; and, clearly, this decomposition is
preserved by the action of elements of the spinor group.
This means that the representation based on general
spinors ĄB is the direct sum of the representation based
on symmetric spinors ǍB and that based on scalars �.
A similar result holds for spinors with more indices.
We conclude that every spinor representation of the
spinor group S is a direct sum of representations on
spinors having only subscripts, and totally symmetric
in those subscripts. Consider the representation of the
spinor group based on spinors of the form 
A���CD0���E0 ,
where 
 is totally symmetric in A � � �C and in D0 � � �E0.
This is called the .n=2;n0=2/-representation, where n
is the number of unprimed indices, and n0 the num-
ber of primed indices, of 
 . The (complex) dimension
of the underlying vector space is .nC 1/.n0C 1/. We
have shown, then, that every spinor representation of S
is a direct sum of these .n=2;n0=2/-representations.

Take the tensor product of two of these symmetric-
spinor representations, and then write the spinors that
arise from the outer products back in terms of symmet-
ric spinors. There results a formula, expressing the ten-
sor product of two symmetric-spinor representations as
a direct sum of symmetric-spinor representations. The

coefficients in this expression are called the Clebsch–
Gordon coefficients.

Thus, we have obtained, from these totally sym-
metric spinors 
A���CD0���E0 , a list of representations of S.
It turns out that these representations have just about
every desirable property one could imagine. They are
distinct (i. e., no two of these representations are iso-
morphic with each other) and irreducible (i. e., none can
be written as any direct sum of any representations of
lower dimension). More important, these exhaust the
collection of all finite-dimensional representations of S,
in the following sense: Every finite-dimensional repre-
sentation of the spinor group S is isomorphic to some
direct sum of these standard representations.

Much of the above applies also to representations of
the Lorentz group. But this case is a little more com-
plicated. The main difference is this: It is false that
every tensor over a Lorentz vector space can be writ-
ten in terms of symmetric tensors. But it is still possible
to find a list of “fundamental tensor representations”,
where these are based on more complicated tensor
symmetries. There are again formulae that express the
tensor product of two of these as a direct sum of fun-
damental representations. These are again distinct and
irreducible; and, again, every finite-dimensional repre-
sentation of the Lorentz group is isomorphic to a direct
sum of these.

15.4 Spinor Structure

Let .M; gab/ be a spacetime. Recall that a spinor struc-
ture on .M; gab/ consists of a smooth assignment of
a spinor structure to the tangent space of each point
of M. The procedure for constructing a spinor struc-
ture, in more detail, is the following. First, we must
introduce a smooth fibre bundle over M, where the
fibre at each point has the structure of a complex two-
dimensional vector space with alternating tensor. Then,
we must introduce on M a smooth soldering-form field,
�b

AA0 , which provides an isometry, at each point, be-
tween the tangent space of M at that point, and the
self-adjoint spinors at that point. Which spacetimes
have such spinor structures?

Call two spinor structures on spacetime .M; gab/,
equivalent if there exists, globally over all of M, an �-
preserving map between the spinor spaces that sends
one soldering form to the other. For equivalent spinor
structures, then, one can pass from one spinor space
to the other in a way that preserves the relationship

between spinors and tensors. In other words, equiva-
lent spinor structures are functionally identical. Given
a spacetime that has one spinor structure, how many, up
to equivalence, does it have? And how can the various
spinor structures be characterized?

These are the subjects of this section.
We first note that a spinor structure on .M; gab/ au-

tomatically endows that spacetime with a specific time-
orientation (namely, that for which the future light cones
are those containing null vectors of the form ˛A˛A0);
and also with a specific space-orientation (namely, that
which arises from the time-orientation and the alternat-
ing tensor (15.5) generated from �AB). It follows from
this remark that if a spacetime fails to be time-orientable
or fails to be space-orientable then it cannot have any
spinor structures at all. It further follows that a necessary
condition that two spinor structures on a spacetime be
equivalent is that they induce the same time-orientation
and the same space-orientation on that spacetime.
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Roughly speaking, in order that a spacetime
.M; gab/ have any spinor structure at all, it must, in
addition to being time- and space-orientable, satisfy
a certain topological condition. This condition is sat-
isfied for the vast majority of spacetimes of physical
interest. In fact, it is not even so easy to find an exam-
ple of a spacetime on which it fails. Now suppose that
a spacetime satisfies this condition, so it does have at
least one spinor structure. Then in general there there
will exist a number of inequivalent spinor structures.
These are classified by making a specific choice of
a time- and space-orientation for that spacetime, and, in
addition making one further choice, involving the first
homotopy group of the underlying manifold M. The de-
tails are as follows.

Let .M; gab/ be a spacetime. Fix, once and for all,
a separate Lorentz vector space, .T 0; g0/. Consider any
point p of M, and consider the tangent space, Tp at that
point. This Tp, by virtue of the spacetime metric gab, it-
self has the structure of a Lorentz vector space. Denote
by Fp the collection of all isometries between the two
Lorentz vector spaces .Tp; gabjp/ and .T 0; g0/. Given one
such isometry, then all of the other isometries are ob-
tained from this one by composing it with the Lorentz
transformations on .T 0; g0/. Thus, the collection Fp of
all these isometries is a copy of the Lorentz group, i. e.,
it is a 6-manifold, consisting of four connected pieces,
each of which is diffeomorphic with the projective 3-
sphere cross R3. Next, consider the fiber bundle, B,
over M whose fiber, at each point p 2M is thisFp. Thus,
the bundle manifold of B is 10-dimensional (four di-
mensions being required to locate the point p of M; and
then six more dimensions to locate the point of Fp).

A cross-section of the fibre bundle B is a map
that assigns (smoothly), to each point p of M, an el-
ement of Fp. In other words, a cross-section assigns,
to each point p of M, an isometry between the tan-
gent space Tp at that point and our fixed Lorentz vector
space .T 0; g0/. Note that a cross-section is a global ob-
ject: It makes these assignments over all of M. Now,
a given spacetime .M; gab/ may or may not admit any
such cross-sections. If the spacetime is Minkowski, for
instance, then clearly there are cross-sections. By con-
trast, if the given spacetime fails to be time-orientable,
or fails to be space-orientable, then there are no such
cross sections. This is easy to see: fix a time- and
space-orientation on the Lorentz vector space .T 0; g0/.
Then a cross-section would induce, at each point p
of M, a time- and space-orientation on the tangent
space Tp at that point, i. e., would time- and space-orient
.M; gab/.

Next, fix, once and for all, a spinor structure on this
Lorentz vector space .T 0; g0/. That is, fix a complex,
two-dimensional vector space V with alternating ten-
sor �, together with a soldering form � to .T 0; g0/.

Now suppose for a moment that we have found
some cross-section of the bundle B over M. Then we
may construct from that cross-section a spinor structure
on .M; gab/. This construction is the obvious one: we
take, as our spinor bundle over M, the simple product
M�V. Then this cross-section (which connects T 0 to
each tangent space Tp), together with the soldering form
on our spinor space (which connects V to T 0) yields
a soldering form for this bundle, i. e., a soldering form
field on M.

Thus, we have described one, very direct, way to
obtain a spinor structure on a spacetime: Introduce
the bundle B, find a cross-section of that bundle, and
from that cross-section build the spinor structure as
described above. Take M to be noncompact. (The com-
pact case is a little different. But this case is also not
very important, as virtually every physically interest-
ing spacetime is noncompact.) Then this is not only
one way to obtain a spinor structure – it is the only
way. It is known [15.8] that every spinor structure on
noncompact .M; gab/ arises from a cross-section of the
bundle B. But, as remarked earlier, not every time- and
space-orientable spacetime admits [15.8] such a cross-
section.

We next consider uniqueness. Suppose that we have
two spinor structures constructed as above. That is, we
have two cross-sections of the bundle B, each giving
rise to its own spinor structure. Suppose further that
these two cross-sections are homotopic to each other –
i. e., that one cross-section can be continuously de-
formed, through a family of cross-sections, to the other.
It then follows, we claim, that the two spinor struc-
tures are equivalent. To see this, fix a point p of M.
Then each cross-section, evaluated at p, produces an el-
ement of Fp. The homotopic family then gives rise to
a curve in Fp with initial point the element, F0, of Fp

arising from one of the cross-sections; and final point
the element F1 arising from the other. This curve can
be described by applying, to the element F0, a curve in
the Lorentz group of .T 0; g0/ with initial point the ori-
gin. But there is a unique lifting of this curve to a curve,
again with initial point the origin, in the spinor group
of .V; �/. The final point of this lifted curve gives a cer-
tain element S0, of the spinor group of .V; �/. This S0

provides the desired mapping between the two spinor
spaces at p. Repeating this construction for each point p
of M, we obtain an equivalence between the two spinor
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structures. Note that the homotopic family of cross sec-
tions plays a crucial role in this argument. Without the
homotopic family, we would still have a Lorentz trans-
formation on .T 0; g0/ sending F0 to F1, but there are
two elements of the spinor group associated with this
element of the Lorentz group, and we would have no
guarantee that there is a consistent way of resolving this
sign ambiguity over all of M.

Thus, homotopic cross-sections give rise to equiv-
alent spinor structures. Note that this is consistent
with our earlier observations, for homotopic cross-
sections certainly give rise to the same time- and space-
orientations on .M; gab/. Here, then, is one way to show
equivalence of two spinor structures. It turns out (at
least, when M is noncompact) that this is not only one
way – it is the only way. It is known that two spinor
structures are equivalent if and only if their associated
cross-sections are homotopic.

We summarize these remarks:

Theorem 15.2
Let .M; gab/ be a spacetime with M noncompact. Then
every spinor structure on this spacetime arises from
some cross-section of the bundle B, as described above.
Furthermore, two spinor structures are equivalent if and
only if the cross-sections are homotopic, as described
above.

It follows from the theorem, in particular, that if
a spacetime admits any spinor structure at all, then it
always admits at least four – namely, those that arise
from the given one by the various combinations of time-
and space-reversal. Consider, for example, Minkowski
spacetime. Then there is a natural cross-section of B for
this spacetime, constructed as follows. Map all tangent
spaces of M to each other via parallel transport, and then
map the tangent spaces, so identified, to .T 0; g0/. This
cross-section produces the standard spinor structure on
Minkowski spacetime. We obtain three others by ap-
plying to this one the various time- and space-reversals.
These four spinor structures exhaust the possibilities for
Minkowski spacetime. This follows from the fact that
two cross sections of the bundle B are homotopic to
each other if and only if they manifest the same ori-
entations.

Consider, to take a second example, Minkowski
spacetime with a timelike 2-plane removed. Let, in this
spacetime, � be a closed curve that “goes once around

the removed 2-plane”. This � cannot be contracted to
a point in M. Indeed, the first homotopy group of M
is Z, the additive group of integers. (An integer n in Z
corresponds to a curve that traverses � n times.) De-
note by � the standard angular function on M, so, on
traversing � , � goes from 0 to 2� . Now fix a time-
and space-orientation on this spacetime. Then there are
precisely two spinor structures compatible with these
orientations. One is the standard one that comes from
the cross-section, C, that arises via parallel transport in
this flat spacetime. The other is constructed from this
one, as follows. For each point p of M, first map the
tangent space Tp at p to T 0 by the cross-section C, but
then apply a spatial rotation in T 0 through angle �.p/.
Thus, on going around the curve � , the map to T 0 under-
goes a rotation of 2� relative to the parallel-transported
map. This cross-section, C0 is not homotopic to C, and
so gives rise to a different spinor structure. Other cross-
sections can be obtained by applying to C rotations
through angle n�.p/, where n is any integer. But all of
these are homotopic to the cross-sections we have al-
ready listed: to C when n is even; and to C0 when n
is odd. (This follows from the fact that a curve in the
Lorentz group corresponding to a 2�n rotation is ho-
motopic to a point if and only if n is even.) Thus, there
is a total of eight spinor structures on this spacetime,
two for each set of orientation-choices. Do these spinor
structures produce, via the Dirac equation, physically
different electrons?

It turns out that the general situation is similar to
that of the above example. Fix a spacetime .M; gab/,
together with some cross-section C of the bundle B.
Then all the cross-sections, compatible with the orien-
tations provided by C, are classified, up to homotopy,
by homomorphisms from the first homotopy group
of M, �1.M/, to Z2, the multiplicative group of in-
tegers .C1;�1/. In other words, to construct a new
spinor structure, one must first specify a map that as-
signs to each closed curve in M passing through some
fixed point p 2M, one of .C1;�1/, where this speci-
fication is such that i) curves that can be continuously
deformed to each other are assigned the same integer,
and ii) the closed curve that results from first travers-
ing one closed curve and then another is assigned the
integer given by the product of the integers assigned to
the original curves. Space-times with complicated con-
nectivity can have large numbers of inequivalent spinor
structures.



Spinors 15.5 Lie and Other Derivatives 293
Part

C
|15.5

15.5 Lie and Other Derivatives

Fix a manifold M. Recall how Lie derivatives work. To
each tangent vector field �a on M, we assign an op-
erator, L� , which acts on every tensor field T::::, of
arbitrary rank, on M, returning a tensor field, L�T::::,
of the same index structure. There is one and only one
such assignment having the following three properties:
i) Each operator L� is additive, satisfies the Leibnitz
rule, and commutes with contraction; ii) applied to any
scalar field, each L� is the �-directional derivative; and
iii) the operators L� satisfy the commutation relation
L�L� �L�L� D L.L��/ (which is really just a variant
of the Leibnitz rule). The operator L thus characterized
is, of course, the Lie derivative. It can be defined in at
least three different, but equivalent, ways: i) Introduce
any derivative operator, ra, on M, write down a for-
mula for the action of L� in terms of that ra, and note
that the result is independent of the choice of deriva-
tive operator. ii) Introduce the one-parameter family
of local diffeomorphisms on M generated by �a, ap-
ply those diffeomorphisms to the tensor field T:::: to
obtain a one-parameter family of tensor fields on M,
take the parameter-derivative of this family, and eval-
uate at parameter-value zero. iii) Define the action of
L� on tangent vector fields using the commutation rela-
tion, and then extend the action to all tensor fields using
property i) above.

Next, fix a spacetime with spinor structure. It is nat-
ural to ask whether the action of the Lie derivative,
L� , on tensor fields on M, can be extended to include
also spinor fields on this spacetime. That is, we ask,
for each tangent vector field �a, for an operator, also
written L� , on spinor fields satisfying conditions i)–iii)
above and also having the property that, when applied
to the spinor-representation of a tensor field, it repro-
duces the original Lie derivative of that tensor field.
This last condition can be written as L��a

BB0 D 0. It is
easy to show that there exists no such extension. Indeed,
if there were one, then it would follow from the Leib-
nitz rule and antisymmetry ofL��AB thatL�.�AB�A0B0/ is
a multiple of �AB�A0B0 . In other words (since �AB�A0B0 is
the spinor representation of the metric), it would follow
that �a is a conformal Killing field. But there always
exist tangent vector fields �a on .M; gab/ that are not
conformal Killing fields.

Thus, there is in general no such thing as “the Lie
derivative of a spinor field”. This is not surprising, for
spinor fields are “linked to the light cones”, and we
would not expect them to be Lie-derivable by fields �
that do not respect those light cones. One might imag-

ine that it would be possible to invent weaker conditions
for what constitutes a “Lie derivative”, such that, un-
der these weakened conditions, there is a unique natural
operator L� on spinor fields. But this program has not
turned out to be fruitful.

The remarks above suggest that it should be pos-
sible to take Lie derivatives of spinor fields by vector
fields �a that “respect the light cones”, in the sense that
they are conformal Killing vectors. This is indeed the
case. For �a a conformal Killing field, we have

ra�b D �AB�A0B0 C �A0B0�ABC 4��AB�A0B0 ; (15.15)

for some unique symmetric spinor field �AB and real
scalar field �. (This equation is precisely the assertion
thatra�b differs from 4�gab by some skew tensor field.)
We now define an operator L� on spinor fields as fol-
lows. First, set

L� Ą D �
mrm ĄC�A

M˛MC � Ą ; (15.16)

L�ˇA D �mrmˇ
A��M

AˇM � �ˇA : (15.17)

Now define the action of L� on one-index primed
spinor fields by taking the complex conjugates of these
formulae; and on multi-index spinor fields by using the
Leibnitz rule. There results an operator, L� , on spinor
fields of arbitrary index structure. It is easy to check
that this family of operators (one for each conformal
Killing field �) has all the required properties. (Note
that property iii) makes sense, for the Lie bracket of two
conformal Killing fields is a conformal Killing field.) In
particular, every Killing field on .M; gab/ is also a con-
formal Killing field (the case � D 0 above); and thus
Lie derivatives of spinor fields by Killing vector fields
make sense.

One might hope that the Lie-derivative operation
defined above (for conformal Killing fields �) is the
unique one having the properties there listed. In fact,
it is not. Indeed, fix any real scalar field � on M, and in-
troduce, on the right-hand sides of the two equations
above, the terms iL�� and �iL��, respectively. The
result again satisfies all the conditions for a Lie deriva-
tive. This reflects a kind of “gauge freedom” inherent in
spinors. Thus, while there is a variety of operators L�
satisfying the conditions we have listed, there is a “nat-
ural” choice among these, namely the operator given by
(15.16) and (15.17).

The Lie derivative of a geometrical object describes
how that object changes under “diffeomorphisms differ-
ing infinitesimally from the identity”. The behavior of
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spinors under full diffeomorphism is exactly what one
would expect. Fix a spacetime, .M; gab/. Then each dif-
feomorphism  on the manifold M defines a mapping
that sends each tensor field �a::c

b::d on M to a new ten-
sor field,  �� , on this manifold. In particular,  sends
the metric gab to some new metric, g0 D  �g, on M.
Now let there be given a spinor structure on .M; gab/.
Then this diffeomorphism  sends this spinor structure
to a spinor structure on .M; g0ab/. Furthermore,  sends
each g-spinor field on M to a g0-spinor field. There is, of
course, no natural way to turn this g0-spinor field back
into a g-spinor field.

We remark that a similar situation obtains for
derivative operators. Recall that a derivative operator,
ra, on a general manifold M can be applied to any ten-
sor field T:::: on M, returning a tensor field, raT::::.
Now consider a spacetime, with spinor structure. Can
every such derivative operator ra on the underlying
manifold M be extended to act also on spinor fields,
retaining the usual properties (additive, Leibnitz, reduc-
ing to the originalra for tensor fields, etc.)? The answer

is no. And the argument is the same as that above: If
there were such an extension, then it would follow that
rc.�AB�A0B0/ is a multiple of .�AB�A0B0/, i. e., that rcgab

is a multiple of gab. But there always exist derivative
operators on M that do not have this property. Thus,
not every derivative operator on M can be extended, in
a natural way, to act also on spinor fields. But, as the
remarks above suggest, there does exist such an exten-
sion whenever the original derivative operator has the
property that rcgab is a multiple of gab, i. e., has the
property that it is “light-cone preserving”. It turns out
that, for a derivative operator ra satisfying this condi-
tion, there exists a variety of extensions of ra to spinor
fields. But, just as was the case for the Lie derivative,
there is singled out, from among all these extensions,
one natural one.

There is, of course, always one derivative opera-
tor ra satisfying that rcgab is a multiple of gab, namely
that satisfying rcgab D 0. Other such derivative op-
erators are those associated with conformally related
metrics, ˝2gab. There are still others.

15.6 4-Spinors

In particle physics, it is common to use what are called
“4-spinors”. These are closely related to the spinors we
have discussed in Sect. 15.1; and in this section we
briefly summarize what that relationship is.

Roughly speaking, a “4-spinor” is a pair of “2-
spinors”, one with an unprimed and one with a primed
index: .�A; �A0/. These pairs clearly form a complex,
four-dimensional vector space. There is a complex-
conjugation operation, which sends this vector to
.�A; �A0/. The “Dirac matrices” play the role of the sol-
dering form: They connect these spinors to vectors. The
“derivative” on 4-spinor fields arises directly from the
natural derivative operator, ra, on 2-spinors. Thus, for
instance, the Dirac equation (15.10) can be written as
a first-order, linear equation on a single 4-spinor field.

The paragraph above summarizes the structure of
4-spinors. But it is incomplete – particularly with re-
spect to issues of orientations. For example, the mere
existence of 2-spinors on a spacetime imposes on
that spacetime a preferred choice of time- and space-
orientations, while 4-spinors do not. We discuss below
how to account correctly for the orientations.

A 4-spinor space consists of i) a pair of complex,
two-dimensional vector spaces, each with a preferred

nonzero antisymmetric spinor; and ii) a pair of antilin-
ear isomorphisms between the vector spaces, differing
only by sign, each of which sends the preferred anti-
symmetric spinor of one space to that of the other.

Each of the vector spaces specified in i), then, has
the structure of a spinor space. But this pair of vector
spaces is to be “unordered”, i. e., neither one is singled
out as the “primary” vector space, the other one being
constructed from it. The antilinear isomorphisms spec-
ified in ii) are “complex-conjugation operations”. They
take elements of one of the vector spaces to those of
the other. Condition ii) specifies there are to be given
two candidates for complex conjugation, differing by
sign. Again, these two candidates are to be unordered.
Thus, in essence, in a 4-spinor space we do not know
which spinors have been assigned the privilege of hav-
ing the unprimed indices and which must make do with
the primed; and, while we do have complex conjuga-
tion of one-index spinors, we have that operation only
up to sign. Note that this sign ambiguity for complex
conjugation disappears when applied to spinors with an
even number of indices. Thus, the demand that the two
preferred antisymmetric spinors be complex conjugates
of each other is meaningful. Note that a 4-spinor space
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has the structure of a complex, four-dimensional vector
space.

We may construct a 4-spinor space as follows. Fix
a regular spinor space .V; �AB/. Let the vector spaces
be V together with its complex conjugate V, and let
the antisymmetric spinors be �AB and �A0B0 . Let the two
antilinear isomorphisms consist of the usual complex-
conjugation operation together with that operation with
a sign reversal. Finally, unorder, i. e., “forget” that we
started with V and constructed V from it; and that we
started with one preferred complex-conjugation opera-
tion and constructed the other from it.

Fix a 4-spinor space. Take the tensor product of
the two vector spaces. The complex conjugation op-
erates on this tensor-product without sign ambiguity.
Denote by T the real, four-dimensional vector space of
all elements of this tensor product that are self-adjoint,
i. e., that are equal to their complex conjugates. The
two alternating tensors define, just as for 2-spinors,
a Lorentz-signature metric g on this T .

Thus, from any 4-spinor space we construct
a Lorentz vector space. Two things should be noted re-
garding this construction. First, this is genuinely a con-
struction from a 4-spinor space, i. e., it does not require
that there be singled out one specific choice from the
two complex vector spaces, nor one specific choice
from the two complex-conjugation operations. And sec-
ond, the Lorentz vector space .T; g/ that arises from this
construction comes with no preferred time- or space- or
total-orientation.

Suppose that we select one of the two anti-
linear isomorphisms, and designate it as the offi-
cial “overline-operation”. Then this selection induces
a time-orientation on .T; g/, namely that for which the
future light cone contains elements given by the tensor
product of one element of one of the vector spaces with
the overline of that element. Had there been chosen the
other complex-conjugation operation, then the opposite
time-orientation would have been induced.

Next, select one of the two vector spaces as the “pri-
mary” one. That is, choose one of the vector spaces

to have its elements denoted by unprimed indices, the
other by primed. Then this selection assigns a partic-
ular total-orientation to T , namely that associated with
the alternating tensor �abcd given by (15.5). Note that if
you reverse this choice, i. e., reverse the roles of primed
and unprimed indices on the right-hand side in (15.5),
then you reverse the sign of this alternating tensor. In
other words, you reverse the assigned total orientation.

To summarize, a 4-spinor space represents, effec-
tively, “2-spinors, but stripped of the structure that
singles out orientations”. One can then restore that ad-
ditional structure by hand, and thereby recover those
orientations.

Next, let .M; g/ be a spacetime. A 4-spinor struc-
ture on .M; g/ is a 4-spinor bundle over M together
with a soldering form, which provides an isometry, at
each point, between the above-constructed Lorentz vec-
tor space and the tangent space at that point. Note that
a spacetime can have a 4-spinor structure without be-
ing either time-orientable, or space-orientable, or total-
orientable. Indeed, fix, in a spacetime with 4-spinor
structure, any closed curve � in M. Then, for example,
the result of traversing that curve in the spacetime will
reverse time-orientation if and only if traversing that
curve reverses the sign of the complex-conjugation op-
eration. Similarly for the other orientations. Thus, fail-
ure of a spacetime to be time- and/or space-orientable
is no barrier to its having 4-spinors. However, the addi-
tional topological condition, discussed in Sect. 15.4, for
a spacetime to have 2-spinors is also required in order
to have 4-spinors.

Finally, we introduce a derivative operator on 4-
spinor fields, in exactly the same manner as for 2-
spinors. We are thus able to write out systems of
differential equations on such fields. Specifically, we
may write out, for example, the Dirac equation (15.10).
This now becomes a single, linear, first-order equa-
tion on a single 4-spinor field. We conclude from all
this, among other things, the following: Electrons make
sense in a spacetime, even if it fails to be time- or space-
orientable.

15.7 Euclidean Spinors

Fix a complex, two-dimensional vector space V. Then,
just as in Sect. 15.1, we may apply dualization and
complex conjugation to V, and then take tensor prod-
ucts between the resulting vector spaces. There results

spinors – objects with primed and unprimed subscripts
and superscripts – over V. The next step, in Sect. 15.1,
was to introduce, as a fundamental object, an antisym-
metric spinor �AB. This spinor was then incorporated
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into the notation by using it to raise and lower indices;
and once so incorporated � practically disappeared from
the formalism.

This time, we proceed in a slightly different way. In-
stead of just �AB, we introduce two fundamental objects.
One is the same nonzero, antisymmetric spinor �AB that
we had before. The other is a spinor tAA0 , which satisfies
the following three conditions: It is self-adjoint (i. e.,
satisfies tA0A D tAA0); it is positive-definite (i. e., is such
that, for any nonzero ˛A, tAA0˛

A˛A0 > 0); and it is nor-
malized with respect to � by

tAŒA0 tjBjB0
 D
1

2
�AB�A0B0 : (15.18)

This tAA0 defines a positive-definite, Hermitian inner

product on V: h˛jˇi D ˛Aˇ
A0

tAA0 . Thus, this vector
space V, with this inner product, has the structure of
a Hilbert space. But it has more structure than this:
There is also specified the �AB.

We next incorporate these two objects into the for-
malism, as follows. We incorporate �AB, just as before,
by using it, together with its inverse, complex conju-
gate, and inverse complex conjugate, to raise and lower
spinor indices. We incorporate tAA0 by using it to con-
vert primed indices to unprimed. To this end we define
an adjoint operation, on spinors with only unprimed in-
dices, as follows. For ˛A���C

B���D any such spinor, we set

˛�A���C
B���D D .�1/stA

A0 � � � t
C

C0

� tB
B0 � � � tD

D0˛A0���C0
B0���D0 ; (15.19)

where s is the number of superscripts of ˛. Thus, the ad-
joint of a scalar is its complex conjugate, while ��AB D

�AB. Taking the adjoint commutes with outer product
and contraction, and so with the raising and lowering
of indices. We have, for any spinor ˛, ˛�� D .�1/r˛,
where r is the total number of indices of ˛.

We may now deal exclusively with spinors with
unprimed indices, the complex-conjugation operation
having been replaced in favor of this adjoint. With this
convention, the spinor tAA0 (now buried in the adjoint)
disappears entirely from the formalism. Call a spinor
self-adjoint if it is equal to its adjoint. Then every
spinor with an even number of indices can be written
uniquely as the sum of a self-adjoint and an anti-self-
adjoint spinor. But for spinors with an odd number of
indices the situation is completely different: If a spinor
with an odd number of indices is self-adjoint or anti-
self-adjoint, then it vanishes. Note that quite generally

˛�A���D
Ą���D is nonnegative, vanishing only when Ą���C

itself vanishes.
Fix .V; �AB; tAA0/, as described above. Consider the

vector space K of all spinors �AB that are symmetric
and self-adjoint: �AB D �

�
.AB/. This K is a real three-

dimensional vector space. On this vector space, we can
form the inner product, h�; 
i D �AB
AB. Note that this
inner product is real, by self-adjointness, and positive-
definite, by positive-definiteness of tAA0 . In short, this
vector space K, with this inner product h ; i, is a Eu-
clidean vector space.

Now fix any Euclidean vector space, i. e., any real
three-dimensional vector space W with positive defi-
nite metric qab. By a spinor structure on .W;qab/, we
mean a complex two-dimensional vector space V, with
spinors �AB and tAA0 , as described above, together with
an isometry between the Euclidean vector space K; h ; i
constructed from .V; �AB; tAA0/ and .W; qab/. We may
describe this isometry by means of a soldering form,
�a

BC .
Thus, the construction of spinors for a Euclidean

vector space is completely analogous to the construc-
tion for a Lorentz vector space. The key difference is
that, for the Euclidean case, we introduce one additional
fundamental object, the spinor tAA0 . (Think of this tAA0

as a “fixed timelike vector” in the Lorentz vector space,
and of the Euclidean vector space as constructed of vec-
tors that are orthogonal to tAA0 .) Just as we used Lorentz
spinors and their Lorentz vector space to install spinors
on spacetimes, we now use Euclidean spinors and their
Euclidean vector space to install spinors on certain Rie-
mannian manifolds.

Fix a Riemannian 3-manifold, .N;qab/, so qab is
a positive-definite metric on the manifold N. Then at
each point of N, the tangent space has the structure
of a Euclidean vector space. By a spinor structure on
.N; qab/ we mean a smooth assignment of a spinor
structure to the tangent space of each point of N. Ap-
plying the construction above to each point of N, we
acquire spinor fields (all with unprimed indices) on N.
On those fields we have the usual operations: addition,
outer product, contraction and the adjoint operation.
Just as in the spacetime case, we have a derivative
operator on these spinor fields: There exists one and
only one extension of the derivative operator Da of
.N; qab/ to spinor fields that i) is additive, commutes
with contraction and the adjoint operation, and satisfies
the Leibnitz rule under outer product; and ii) annihi-
lates �AB and the soldering form.

An important application of spinor fields on a Rie-
mannian 3-manifold is to Witten’s proof [15.9] that the
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total mass, measured at spatial infinity, of certain space-
times must be positive. Consider an initial-data set,
.N;qab; pab/. Here, N is a 3-manifold, qab a positive-
definite metric (the induced metric) on N, and pab

a symmetric tensor field (the extrinsic curvature) on N.
Let the 3-manifold N be diffeomorphic with R3. Let this
initial data set be asymptotically flat in a suitable sense,
i. e., let qab approach a flat metric and pab approach zero
at infinity, at appropriate rates. It is known that, under
these conditions, there exists a spinor field 	A on N that
satisfies the Witten equation,

DAB	
B D
�i
p

8
pm

m	A ; (15.20)

and approaches a constant spinor at infinity, in an ap-
propriate sense. In fact, there exists one and only one
such solution, for each value of the “asymptotic con-
stant”. Fix such a solution 	A. We then write down
a certain integral, whose integrand is quadratic in 	A

and its derivatives. This integral has two properties.
First, the integrand is nonnegative, provided only that
the sources for the original initial data set satisfy an
energy condition. It follows that the value of integral
itself is nonnegative. Second, the integrand is an exact
divergence, and so, using Gauss’ law, we may rewrite
that integral as a surface integral. It then turns out that
this surface integral is precisely a certain component of
the total mass-momentum of the initial data set, namely
the component along the null direction determined by
the asymptotic behavior of the solution 	A. These two
properties imply, then, that a certain null component
of the total mass-momentum 4-vector is nonnegative.
Furthermore, we are guaranteed that there are enough
solutions of (15.20) that we can test in this way ev-
ery null component of that total mass-momentum. It
follows that the asymptotic 4-vector representing the to-
tal mass-momentum must be future-directed timelike or
null. This is the Witten proof of the positive-mass theo-
rem. For details, see Chap. 18.

What is striking about this proof is that it requires,
in an essential way, the use of spinors.

Closely related to Euclidean spinors are the spin-
weighted functions on the 2-sphere [15.10]. Fix a Eu-
clidean spinor space .V; �AB; tAA0/. Denote by S the set
of all unit vectors in the corresponding Euclidean vec-
tor space, i. e., the set of symmetric, self-adjoint spinors
satisfying �AB�AB D 1. Then S has the structure of
a 2-sphere. We next introduce certain complex-valued
functions on this 2-sphere. Let 
A���D be any totally
symmetric spinor, with 2l indices, where l is a nonneg-

ative integer. The function  on S given by  .�AB/D

A���D�

AB � � ��CD is call a spherical harmonic of rank l.
The real and imaginary parts of this  are associated
with the self-adjoint and anti-self-adjoint parts of 
A���D,
respectively. Note that, had we not imposed symme-
try on the 
A���D above, then we could still have defined
the function  as above, but now it would be equal to
a sum of spherical harmonics. This follows from the
decomposition of 
A���D in terms of totally symmetric
spinors. The collection of all spherical harmonics, of
fixed rank l, forms a vector space, of (complex) di-
mension .2lC 1/. The standard formula expressing the
product of two spherical harmonics as a linear combi-
nation of spherical harmonics is recovered, in spinor
language, from the formula expressing the symmetrized
product of two symmetric spinors in terms of totally
symmetric spinors. It follows immediately from this
characterization that the ranks of the spherical harmon-
ics in the product range from lC l0 to jl� l0j, where l and
l0 are the ranks of the factors.

We next claim that every spinor�AB 2 S can be writ-
ten in the form �AB D i

p
2˛�.A˛B/, where ˛A is some

unit spinor: ˛�A
Ą D 1. To see this, note that, as in

Sect. 15.1, we may write any symmetric spinor �AB

in the form �AB D ˛.AˇB/, for some ˛, ˇ. But self-
adjointness of �AB implies that ˛ and ˇ must, up to
a factor, be adjoints of each other. The factor i

p
2 gets

the normalization right.
Note that, in the decomposition above, �AB 2 S de-

termines ˛A uniquely up to phase. It turns out that
this phase has a simple geometrical interpretation: It
represents a direction in the 2-sphere S at the point
i
p

2˛�.A˛B/ 2 S. To see this, fix unit ˛A, and con-
sider i.˛A˛B �˛�A˛�B/. This spinor is symmetric and
self-adjoint, and is orthogonal to �AB. Thus, i.˛A˛B �

˛�A˛�B/ defines a first-order change in �AB that pre-
serves, to first order, its symmetry, self-adjointness, and
uniticity. That is, it defines a direction in the 2-sphere,
S, of symmetric, self-adjoint, unit �AB. Multiplying ˛A

by ei� rotates this direction through angle 2	. So,
e.g., ˛A and �˛A define the same direction. We con-
clude, then, that the manifold of all unit spinors ˛A

is a double covering of the direction bundle of the 2-
sphere.

A complex-valued function f on this manifold of
unit spinors is called spin weighted provided it has
the following property: For any unit ˛A and real num-
ber 	, f .ei�˛A/D e2is�f .˛A/. Here, s is a half-integer
(positive or negative), called the spin weight of f . The
spin-weighted functions, of given weight, form a com-
plex vector space (of infinite dimension). The product
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of two spin-weighted functions is a spin-weighted func-
tion whose weight is the sum of those of the factors.
Complex conjugation reverses the sign of spin weight.
The functions of spin-weight zero (i. e., that are inde-
pendent of the phase of ˛) are just ordinary complex-
valued functions on the 2-sphere S.

A simple class of spin-weighted functions consists
of those that are “polynomial”. Fix a totally symmet-
ric spinor 
A���D (not necessarily with an even number
of indices). Consider the function given by f .˛A/D

A���D˛

A � � �˛B˛�C � � �˛�D, i. e., the result of contract-
ing 
 with some number a of ˛’s, and some number b
of ˛�’s. This is clearly a spin-weighted function, of
spin-weight .a� b/=2. These functions are called the
spin-weighted spherical harmonics. Again, had we not
imposed symmetry on 
A���D above, then we could still
have defined the function f as above, but now it would
be equal to a sum of spin-weighted spherical harmon-
ics. This follows, decomposing 
 in terms of totally
symmetric spinors. In the case aD b, i. e., spin-weight
zero, the spin-weighted spherical harmonics reduce to
the ordinary spherical harmonics, introduced above.
By the rank, l, of a spin-weighted spherical harmonic,
we mean half the number of indices on 
A���D, so l is
a nonnegative half-integer, and �l 	 s	 l. The spin-
weighted spherical harmonics of given spin weight
and rank form a complex vector space of dimension
.2lC 1/. Indeed, it is clear from the definition that
this vector space is precisely that of totally symmet-
ric, 2l-index spinors. In other words, fixing the rank l
once and for all, the spin-weighted functions for vari-

ous choices of spin-weight s merely constitute different
ways of talking about the same thing: Totally symmet-
ric spinors with 2l indices. (Usually, it is easier just to
stick with the spinors.) One can now derive directly the
Clebsch–Gordon formulae, which express a product of
spin-weighted spherical harmonics as a linear combi-
nation of spin-weighted spherical harmonics. If you are
adept at manipulating spinors, then you are automat-
ically adept at manipulating spin-weighted spherical
harmonics.

It is convenient to be able to take derivatives1 of
spin-weighted functions. To this end, we define an op-
erator, Ä, with action Äf D ˛A@f =@˛�A. Thus, the action
of Ä on a spin-weighted function raises the spin weight
by 1. Applied to a spin-weighed spherical harmonic,
Ä, returns another spin-weighted spherical harmonic,
having the same rank (indeed, having the same under-
lying spinor 
A���D), but with different weight. There
is a corresponding spin-weight-lowering operator Äf D
˛�A@f =@˛A D .Äf /. It follows directly from the defini-
tion that the commutator of these two has the following
action: ŒÄ; Ä�f D 2sf , where f is any spin-weighted
function and s is its spin weight. Applied to functions
of spin-weight zero, the operator ÄÄ (or, what, for such
functions, is the same thing, ÄÄ) is equal to minus the
Laplace operator on the sphere. The easiest way to
prove this is to check that it holds for spherical harmon-
ics, and then use completeness.

It turns out that conformal transformations on the
2-sphere S are generated by changing the choice of the
fundamental spinor tAA0 .

15.8 Bases; Spin Coefficients

Let .T; gab/ be a Lorentz vector space, with spinor
structure .V; �AB; �

b
AA0/. By a (normalized) basis for V,

we mean a pair of spinors, oA; $A, normalized by
oA$A D 1. It follows that these two span V. In fact,
the general element ˛A of V can be written as the
linear combination ˛A D .˛M$M/oA�.˛MoM/$

A. We ob-
tain from this basis for V also a basis for V , consisting of
oA0 ; $A

0

. Then any spinor, of any rank, can be expressed
in terms of complex numbers, the components of that
spinor in these bases.

Fix a normalized basis, oA; $A for V. It is convenient
to introduce the following three vectors: la D oAoA0 ,
na D $A$A

0

, and ma D
p

2oA$A
0

. The first two are real, the
third complex. From the normalization of the V-basis,
we find: lala D nana D 0, lana D 1, lama D nama D 0,

mama D 0, and mama D�2. In other words, la and
na are null vectors and the real and imaginary parts
of ma are unit, orthogonal spacelike vectors lying in
the 2-plane orthogonal to la and na. Such a system,
la; na;ma;ma, is called a null tetrad. Every complex
vector over T can be written as a unique linear combi-
nation (with complex coefficients) of these four vectors.

Next, fix, on a spacetime with spinor structure,
a basis-field, oA; $A. We introduce the components of
the derivatives of these basis spinors. These are or-
ganized as follows. First consider the three (complex)
vectors oArboA, oArb$

A, and iArboA. These give all the
information contained in the derivatives of oA and $A.
(The fourth combination, oArb$

A, is equal to $ArboA, as
a consequence of the normalization condition, oA$A D
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1.) Now contract these three vectors in turn with with
each of lb, nb, mb, and mb. The 12 complex scalar fields
that result, called the spin coefficients, carry all the in-
formation in the derivatives of oA and $A. Note that the
derivatives of the null-tetrad vectors, la, na, ma and ma,
can also be expressed in terms of these spin coefficients.
The idea of the spin-coefficient formalism [15.11, 12]
is that, since there are only 12 scalar fields, it becomes
just feasible to assign a separate Greek letter to each
one, and then write out everything explicitly in terms of
components.

The next step is to introduce the components of the
derivative operator. Set

DD lara I dD nara I

@D mara I @D mara : (15.21)

These four differential operators carry all the informa-
tion in ra.

The final step [15.11, 12] is to generate the so-called
spin-coefficient equations. This is a system of equations
that are linear in the first derivatives of the spin coef-
ficients, but also involve nonlinear terms algebraic in
those coefficients. The spin-coefficient equations are di-
vided into two sets.

The first set of equations consists of those involv-
ing the curvature tensor. Consider the two equations
rŒarb
.oC/D��ab

C
DoD and rŒarb
.$

C/D��ab
C

D$
D,

where �ab
C

D is given in terms of the curvature by

(15.12). Take the components of these equations, us-
ing la, na, ma, and ma for tensor indices, and oA, $A

for spinor indices. The right-hand sides become compo-
nents of the curvature tensor; while the left-hand sides,
on differentiating by parts, become expressions linear
in the derivatives of the spin coefficients. In this way,
we generate equations expressing the curvature tensor
in terms of the spin coefficients and their derivatives.

The second set of equations does not involve
the curvature tensor. Consider, e.g., the identity
rŒarb
.oC$C/D 0. Again, take components of this
equation using the null tetrad; expand the left-hand side;
and, again, differentiate the left-hand side by parts. We
thus generate a set of equations involving only spin co-
efficients and their derivatives.

Equations for other fields are also reduced to com-
ponents. For Maxwell’s equations, for example, we
first introduce the three complex scalar fields given by
the components, in our spinor basis, of the Maxwell
spinor, �AB. The components of Maxwell’s equations
then become a system of equations involving the spin
coefficients and these Maxwell components, linear in
the derivatives of the latter.

The spin-coefficient formalism is generally most
useful when one can choose the spinor basis such that
a number of the spin coefficients vanish. Typically,
this occurs when the spacetime has one or two pre-
ferred null vector fields, e.g., when it is algebraically
special.

15.9 Variations Involving Spinors

In this section, we discuss how to set up variational
problems when spinors are involved. It turns out that
there are a few subtle issues.

Consider, as an example, the Dirac equation,
(15.10). A Lagrangian for this system is given by

LD
Z h

i
�
�ArAA0�

A0
� �

A0
rAA0�

A
	

� i
�
�A0rAA0�

A� �ArAA0�
A0
	

C i
p

2m
�
�

A0
�A0 � �

A�A

	i
�cdef dVcdef :

(15.22)

What this means is the following. Fix the spacetime
.M; gab/, once and for all. Then given any pair of spinor
fields .�A; �A0/, we may compute L via (15.22). We now
ask for a such a pair having the following property:

On varying .�A; �A0/ the L given by (15.22) does not
change to first order. This requirement makes sense,
because we know what it means to change the spinor
fields, .�A; �A0/, on a fixed background spacetime. The
calculation is the standard one, and the result is what we
expect: This requirement is precisely the requirement
that .�A; �A0/ satisfies the Dirac equation (15.10).

Next, let us try to use this Lagrangian to compute
the stress-energy of the Dirac field. To do this, we must
vary the metric gab in the Lagrangian (15.22), keep-
ing the spinor fields .�A; �A0/ fixed. But what does this
mean? Spinors owe their very existence to the metric.
The spinors associated with one metric are completely
different objects from those associated with another.
So how can one maintain the “same” spinors, while
varying the metric? Since the spinor manifestation of
the metric is the alternating spinor �AB, one might try
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the following strategy. Write the Lagrangian entirely
in terms of spinors, making explicit each appearance
of �AB. Then vary this �AB, keeping the other spinors
fixed. Unfortunately, this does not work. The variation
of �AB must be a complex multiple of �AB, and so this
variation is described by a single complex function. But
surely this is no substitute for the ten components re-
quired for the variation of gab. Does there exist, then,
any sensible way at all to extract a stress-energy from
(15.22)?

It turns out that there does. The idea is to fix, once
and for all, the spinor bundle with its alternating spinor,
�AB. We then “vary the metric gab” indirectly, by varying
the soldering form �a

BB0 . Indeed, from (15.1), we see
that in order to generate a variation hab D ıgab in the
metric, we must make a variation in the soldering form
given by

ı�a
BB0 D�

1

2
ha

BB0 : (15.23)

Note that the this variation is a symmetric tensor.
A variation in �a

BB0 by an antisymmetric tensor leaves
the spacetime metric gab unchanged. It represents, ef-
fectively, an internal change in the spinor structure. So,
since we are only interested in metric variations, we
consider only those �-variations given by (15.23). We
must next determine the corresponding variation in the
derivative operator ra. For its action on tensor fields,
ıra is given by the standard formula: For a fixed con-
travariant vector field ka, for example, we have

ı
�
rakb

�
D

1

2

�
rbham� 2r.mha/

b
�

km : (15.24)

There is a similar formula for a general tensor field. In
order to determine the variation of ra applied to spinor
fields, we proceed as follows. There must (by the prop-
erties of a derivative operator) exist a spinor field La

M
B

such that, for any fixed spinor field ˛A

ı.ra˛
B/D La

B
M˛

M : (15.25)

We must now express this L in terms of hab. To this
end, we first note that ı.rc�

a
BB0/D 0. Expanding the

left-hand side, we obtain three types of terms. The first,
arising from the variation of � , is rc.ı�

a
BB0/, which we

evaluate in terms of hab via (15.23). The second, arising
from the variation of rc applied to tensors, we evaluate
using (15.24). The third, arising from the variation ofrc

applied to spinors, we evaluate using (15.25). Equating
to zero the sum of all these terms, we obtain the desired

expression

LaBC�B0C0 C LaB0C0�BC D�rŒbhc
a : (15.26)

Note that LaBC is symmetric in indices “B;C”, i. e.,
that, from (15.25), ı.ra�BC/D 0. This is what we
expect.

So, the general strategy is to write the Lagrangian
with all appearances of the soldering form made ex-
plicit, and then take the variation of that Lagrangian
with respect to that soldering form, using (15.23)–
(15.26). Let us now apply this strategy to the Dirac case.
For the first step, we have, rewriting (15.22),

LD
Z h

i
�
�Arb�

A0
� �

A0
rb�

A
	
�b

AA0

� i
�
�A0rb�

A � �Arb�
A0
	
�b

AA0

C i
p

2m
�
�

A0
�A0 � �

A�A

	i
�cdef dVcdef :

(15.27)

Variation now leads to the stress energy for the Dirac
field

Tab D i=2
�
�Arb�A0 � �A0rb�AC �A0rb�A

� �Arb�A0 C �Bra�B0 � �B0ra�B

C �B0ra�B� �Bra�B0

	
: (15.28)

Note that there is no “m-term” in this expression for
the stress-energy. This is a consequence of the fact
that m itself can be eliminated, using (15.10), in fa-
vor of derivatives of the Dirac fields. In the spin-zero
case, by contrast, no such elimination is available, and
thus in that case there do appear terms explicitly in-
volving m. This stress-energy, by virtue of (15.10), is
conserved.

1 Recall a few facts about functions of a complex variable.
A complex-valued function f on the complex plane (z 2 C)
is said to be differentiable at zD zo provided: There exist
complex numbers � and 
 such that f .zoC ız/� f .zo/�

�ız� 
ız vanishes to first order in jızj. The two complex
numbers � and 
 are unique if they exist. They are written
as df=dz and df=dz, respectively. (I find this notation a lit-
tle confusing, since, after all, f is just a function of z 2 C.)
The function f is said to be smooth if all its derivatives,
of all orders, exist everywhere and are continuous. Note
that smoothness is much weaker than complex-analyticity.
Similarly for functions of several complex variables.



Spinors References 301
Part

C
|15.9

References

15.1 F.A.E. Pirani: Spinors, Brandeis Summer Inst.
Theor. Phys. 1964 (Prentice Hall, Princeton, NJ
1965)

15.2 R. Penrose: Structure of Spacetime, Battelle Re-
contres Math. Phys. 1967, ed. by C. DeWitt (W. A.
Benjamin, New York 1968)

15.3 R. Penrose: A spinor approach to general relativity,
Ann. Phys. 10, 171–201 (1960)

15.4 P. O’Donnell: Introduction to 2-Spinors in General
Relativity (World Scientific, New York 2003)

15.5 J.N. Goldberg, R.K. Sachs: A theorem on Petrov
types, Acta Phys. Pol. 22, 13–23 (1962)

15.6 A.Z. Petrov: The classification of spaces defining
gravitational fields, Gen. Relativ. Gravit. 32, 1665–
1685 (2000)

15.7 L. Bel: Introduction d’un tenseur du quatrième or-
dre, C. r. 248, 1297–1318 (1959)

15.8 R. Geroch: Spinor structure of space-times in gen-
eral relativity I, J. Math. Phys 9, 1739–1744 (1968)

15.9 E. Witten: A new proof of the positive energy the-
orem, Commun. Math. Phys 80, 381–402 (1981)

15.10 J.N. Goldberg, A.J. Macfarlane, E.T. Newman,
F. Rohrlich, E.C.G. Sudarshan: Spin-s spherical har-
monics and Ä, J. Math. Phys. 8, 2155–2161 (1967)

15.11 E.T. Newman, R. Penrose: An approach to gravita-
tional radiation by a method of spin-coefficients,
J. Math. Phys 3, 566–768 (1962)

15.12 R. Geroch, A. Held, R. Penrose: A space-time calcu-
lus based on pairs of null directions, J. Math. Phys
14, 874–881 (1973)



The Initial Va
303

Part
C

|16.1

16. The Initial Value Problem in General Relativity

James Isenberg

One of the most effective ways of constructing and
studying solutions of Einstein’s gravitational field
equations is via the Initial Value Problem. Accord-
ing to this approach, one constructs spacetime
solutions by choosing initial data on a spacelike
manifold representing the initial state of a model
universe, and one then evolves the data into a
spacetime solution representing the full history of
that model universe.

A set of initial data cannot be chosen freely:
it must satisfy a set of partial differential equa-
tions known as the Einstein constraint equations.
Not only are these constraint equations a nec-
essary condition on initial data sets; they are as
well a sufficient condition for an initial data set
to admit evolution into a spacetime solution. Af-
ter showing how to split the full set of Einstein’s
field equations into the constraint equations and
the evolution equations, we discuss the Well-
Posedness Theorem, which shows that indeed all
constraint-satisfying data sets can be evolved into
spacetime solutions.

Our primary focus is on how to construct and
parametrize initial data sets which satisfy the Ein-
stein constraint equations. The Conformal and the
Conformal Thin Sandwich Methods both provide
ways of turning the constraint equations into a
determined nonlinear elliptic system. These equiv-
alent procedures are very effective for initial data
sets which involve constant mean curvature or
near-constant mean curvature. The challenge is to
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adapt these methods to more general data sets.
An alternative approach for constructing and an-
alyzing solutions of the constraints is via Gluing
techniques, which we briefly outline, along with
their remarkable applications.

We comment briefly on some of the main
questions which arise in studying the long-time
behavior of spacetime solutions of Einstein’s
equations.

16.1 Overview

Ever since Newton’s formulation of particle mechanics
over three hundred years ago, one of the most widely
used methods of modeling physical systems is via an
initial value formulation. For particle mechanics, the

idea is that one specifies the initial position y0 and initial
momentum p0 of the particle, and one then determines
the particle’s path y.t/ in time by solving the initial
value problem consisting of Newton’s equations (an or-
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dinary differential equation system)

d

dt
y.t/D

1

m
p.t/ ;

d

dt
p.t/D F.y; p/ ;

together with the initial conditions y.t0/D y0 and
p.t0/D p0. Analogously, to study the vibrational mo-
tion .x; t/ of a stretched string, one specifies the initial
displacement  0.x/ and initial velocity �0.x/ of the
string, and one then determines the subsequent motion
 .x; t/ by solving the initial value problem consisting
of the (first-order) wave equation (a partial differential
equation system)

@t .x; t/D �.x; t/ ;

@t�.x; t/D ˛@xx�.x; t/ ;

together with the initial conditions .x; t0/D  0.x/ and
�.x; t0/D �0.x/.

Although one of the signature properties of Ein-
stein’s theory of gravity is its spacetime covariant char-
acter, it too admits an initial value formulation. We re-
call that to model the gravitational interactions of phys-
ical systems, general relativity incorporates the physics
of the gravitational field into the geometry of space-
time, which is specified by a four-dimensional manifold
M4 together with a metric g of signature .�;C;C;C/.
Einstein’s equations relate the spacetime metric to the
nongravitational matter fields � which are present in
the spacetime by requiring that the Einstein tensor
G�� WD R���.2/Rg�� of g (here R�� is the Ricci ten-
sor of g and R is its scalar curvature) be proportional to
the stress–energy tensor T�� of � and g; specifically,

G�� Œg�D �T�� Œg; �� ; (16.1)

where � D 8�GN with GN Newton’s gravitational con-
stant. One of the most effective ways to construct
and study a solution .M4; g; �/ to Einstein’s equations
(16.1) is specifying a set of initial data corresponding to
an initial state of the universe, and then using Einstein’s
equations (reformulated as an initial value problem) to
evolve this data into the corresponding spacetime so-
lution. This chapter discusses the details of this initial
value formulation for Einstein’s theory: the specific na-
ture of the initial data sets for which the initial value
problem works, how one finds such initial data sets,
how one reformulates Einstein’s equations (16.1) as an
initial value problem and verifies that it is well-posed,
and some open problems related to the evolution of ini-
tial data sets.

One very important feature of the initial value for-
mulation of Einstein’s theory is that the initial data must
satisfy a set of constraint equations. This is a famil-
iar feature of Maxwell’s theory of electromagnetism as
well: An initial data set for Maxwell’s theory consists
of a pair of spatial vector fields .E0.x/;B0.x// which
are required to satisfy the Maxwell constraint equations

r �E0 D 0 ;

r �B0 D 0 ;

(presuming that the charge density is zero). A solution
.E.x; t/;B.x; t// is obtained from the initial data via the
evolution equations. (Here and throughout this chapter,
we set c, the speed of light equal to 1.)

@tB.x; t/Dr �E.x; t/ ;

@tE.x; t/D�r �B.x; t/ :

It is important to note that presuming a data set
.E0.x/;B0.x// satisfies the Maxwell constraints; it fol-
lows from the evolution equations that the solution
generated from this data set satisfies the constraints
r �E.x; t/D 0 and r �B.x; t/D 0 for all times t.

To understand the initial value formulation of
Einstein’s theory and how it produces spacetimes
.M4; g; �/ which satisfy Einstein’s equations, it is
useful to start examining spatial foliations of such
a spacetime, with a focus on the geometric fields
induced on the spatial leaves of such a foliation and
how they relate to the spacetime metric g. We do this
in Sect. 16.2. Included in this section is a discussion of
the Gauss–Codazzi–Mainardi equations which relate
the spacetime curvature of g to the induced fields.
Based on these equations, we derive the constraint and
evolution equations which comprise the initial value
formulation of Einstein’s theory, and then in Sect. 16.3,
we discuss the proof that this initial value problem is
well-posed. Next, we examine methods for obtaining
initial data sets which satisfy the Einstein constraint
equations. In Sect. 16.4, we focus on the conformal
method, in Sect. 16.5, we discuss the closely related
conformal thin sandwich method, and in Sect. 16.6, we
explore how such solutions can be obtained via gluing.
Our discussion of the Einstein evolution equations is
very brief; in Sect. 16.7, we comment primarily on
globally hyperbolic solutions with singularities and
the strong cosmic censorship conjecture, along with
brief remarks concerning the stability of Minkowski
spacetime, the Kerr solutions, and certain expanding
cosmological solutions of the Einstein equations.
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16.2 Derivation of the Einstein Constraint and Evolution Equations

To see how to build spacetime solutions of the Ein-
stein field equations from initial data on a Riemannian
manifold, it is useful to start with such a spacetime
.M4; g; �/, specify a spatial foliation of that spacetime
(Such a foliation exists so long as the spacetime is glob-
ally hyperbolic; non globally hyperbolic spacetimes
generally do not admit such foliations.), determine the
geometric quantities which are well defined on the
leaves of that foliation, and then calculate what Einstein
equations (16.1) tell us about these geometric quan-
tities. We do this here. (While earlier works of Lich-
nerowicz, of Dirac, and of Choquet-Bruhat explore the
split of the spacetime metric into pieces defined relative
to a spacelike foliation, and study the split of the Ein-
stein equations into constraints and evolution equations,
it is arguably the work of Arnowitt, Deser, and Misner
(ADM) which is most responsible for introducing this
approach to physicists. See, for example, [16.1].)

A three-dimensional hypersurface ˙3, smoothly
embedded in .M4; g/ (with embedding map i W˙3!

M4), is defined to be spacelike (or spatial) if the induced
bilinear form � WD i�g on ˙3 is Riemannian. Equiv-
alently, the embedded hypersurface is spacelike if all
vectors V tangent to i.˙3/ at p are spacelike with re-
spect to g (so that g.V;V/ > 0). A spatial foliation of
the spacetime .M4; g/ is a smooth one-parameter family
it W˙

3!M4 (for t 2 R) of embedded spacelike hyper-
surfaces such that each point p 2M4 is contained in one
and only one of the hypersurfaces it.˙

3/ (referred to as
the leaves of the foliation). We presume that it is also
true that for each p 2M4, there is one and only one point
q 2˙3 such that i

Ot.q/D p for some Ot.
We focus now on a particular leaf it.˙

3/ of a chosen
foliation it of a chosen spacetime .M4; g/. The defini-
tion of spatial foliation (above) guarantees that it.˙

3/
is equipped with a Riemannian metric �Œt
, which con-
sequently defines a covariant derivative rŒt
 and the
corresponding Riemann, Ricci, and scalar curvature
quantities, all intrinsic to it.˙

3/. In addition to speci-
fying these intrinsic geometric quantities, the foliation
it equips it.˙

3/ with extrinsic geometric quantities, in-
cluding (i) e

?Œt
, a future-pointing unit-length timelike
vector field, orthogonal to all vectors tangent to it.˙

3/;
(ii) ?

Œt
 , a unit-length one-form field such that (at each
point in it.˙

3/), h?
Œt
 ; e?Œt
i D 1 and h?.p/;Vi D 0

for all vectors V tangent to it.˙
3/; and KŒt
, the second

fundamental form, defined by

KŒt
.U;V/ WD g.DUe
?Œt
;V/ ; (16.2)

where D denotes the spacetime covariant derivative and
where U and V are vector fields tangent to it.˙

3/. It is
straightforward to show that KŒt
 is a well-defined (spa-
tial) tensor field with respect to the tangent spaces of
it.˙

3/, and further that it is symmetric. By contrast,
e
?Œt
 and ?

Œt
 are not spatially tensorial; rather, they act
tensorially on the spacetime tangent spaces of M4, re-
stricted to the subset it.˙

3/
M4.
To relate the foliation-related quantities �Œt
;rŒt
,

the spatial curvatures, KŒt
; e?Œt
 and ?
Œt
 to the

spacetime geometry, it is useful to specify foliation-
compatible bases. We obtain a (local in space) foliation-
compatible coordinate basis by choosing coordinates
fxagj.aD1;2;3/ locally on˙3, using the foliation to trans-
port these to its leaves it.˙

3/, and adding the param-
eter t to produce the spacetime coordinates fxa; tg DW
fx˛gj.˛D1;2;3;0/. The corresponding dual coordinate
bases f@˛g and fdx˛g are foliation-compatible in the
sense that dt annihilates vectors which are tangent to
the leaves, @t is transverse to the leaves, and @a are tan-
gent to the leaves; however, we note that @t and dt need
not be timelike everywhere (@t is timelike if g.@t; @t/ <
0 and it is null if g.@t; @t/ < 0; similarly dt is timelike or
null or spacelike depending on the sign of g�1.dt; dt/).
Alternatively, one may choose the foliation-compatible
basis fe

?Œt
; @ag and its dual f?
Œt
 ; 

a
Œt
 WD dxaCMa dtg;

here Ma
Œt
 are the components of the shift vector, which

is the spatial projection of @t

@t D NŒt
e?Œt
CMa
Œt
@a : (16.3)

The scalar NŒt
 is called the lapse function.
On the leaf it.˙

3/, one easily verifies that the space-
time metric g is related to the spatial metric �Œt
 by the
identity (and its expansion)

gD �Œt
 � 
?

Œt

?

Œt
 (16.4)

D �Œt
ab
�

dxaCMa
Œt
 dt

� �
dxbCMb

Œt
 dt
�
�N2

Œt
 dt2 :

(16.5)

The expression relating the spacetime covariant deriva-
tive D (compatible with g) and the spatial covariant
derivative rŒt
 (compatible with �Œt
/ is not so easily de-
rived; however, it does follow from the definition (16.2)
of the second fundamental form that for any pair of vec-
tors U and V tangent to it.˙

3/, one has

DUV DrŒt
UVCKŒt
.U;V/e?Œt
 ; (16.6)
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thus identifying KŒt
 with the surface-normal projection
of the spacetime covariant derivative. One also verifies
from this definition, as well as from the Lie derivative
identity LYg˛ˇ DD˛Yˇ CDˇY˛ , that

L@t�Œt
ab D 2NŒt
KŒt
abCLMŒt
�Œt
ab : (16.7)

Notably, this result involves not only quantities on the
slice iŒt
.˙3/, but also the rate of change of one of these
quantities, �Œt
, along the foliation.

It remains to consider the relationship between the
spacetime curvature and the spatial curvatures. Since
the calculations which lead to formulas for the com-
ponents of the spacetime curvature tensor in terms
of components of the spatial curvature tensor along
with other quantities intrinsic to leaves of a chosen
foliation are analogous to analyses first done (for Rie-
mannian rather than for Lorentzian ambient geometries)
by Gauss, Codazzi, and later Mainardi, these formulas
are often referred to as the Gauss–Codazzi–Mainardi
equations. Using

R˛ˇı WD h˛;DeDeı eˇ �DeıDe eˇ
�DŒe ;eı
eˇi ; (16.8)

to represent the spacetime curvature tensor (with re-
spect to spacetime dual bases fe˛g and fˇg) and
analogously

Ra
bcd WD h

a;recred eb �redrec eb �rŒec;ed
ebi ;

(16.9)

to represent the spatial curvature tensor (with respect
to spatial dual bases feag and fbg), we find that these
equations take the following form.

Ra
bcd D Ra

bcdCKa
c Kbd �Ka

dKbc ; (16.10)

Ra
?cd Drec Ka

d �red Ka
c ; (16.11)

and

Ra
?b? D�Le

?

Ka
b CKamKmbC

1

N
rarbN :

(16.12)

Note that, to avoid notational clutter, in equations
(16.9)–(16.12) we have removed the “Œt�” subscripts
from foliation-defined quantities such as rŒt
 and KŒt
ab

(The most straightforward method of deriving the

Gauss–Codazzi–Mainardi equations is combining ex-
pression (16.6) relating D, r, and K with the expres-
sions (16.8) and (16.9) for the curvatures. Details of
these calculations appear in [16.2].).

If the spacetime .M4; g; �/ under consideration sat-
isfies the Einstein field equations (16.1) and if a spatial
foliation it W˙

3!M4 has been specified, what do
these equations tell us about the foliation-defined geo-
metric quantities �Œt
 and KŒt
? Combining the definition
of the Einstein tensor G˛ˇ DR˛ˇ � 1

2Rg˛ˇ with the
Gauss–Codazzi–Mainardi equations (16.9)–(16.12), we
readily obtain the following:

RCKcdKcd � .Kc
c/

2 D 1
2 G
??

D
�

2
T
??

Œ�;  ; �� ;

(16.13)

rcKc
d �rd.K

c
c/D G

?d D �T
?dŒ�;  ; �� ; (16.14)

Le
?

KabCRab � 2KacK
c
bCKc

cKabC
1

N
rarbN

DGab �
1
2 gabGc

c D �TabŒ�;  ; ���
�

2
gabTc

c Œ�;  ; �� ;

(16.15)

where . ; �/ represent the nongravitational fields and
their derivatives, after they have been decomposed into
quantities which are well defined with respect to the
leaves of the foliation. (For Maxwell’s electromagnetic
field, . ; �/ correspond to .Ba;Ea/.)

The first two sets of these equations, (16.13) and
(16.14), have the very interesting feature that (pre-
suming the quantity T

??

Œ�;  ; �� behaves well), they
involve quantities (�Œt
 and KŒt
, not e

?

) defined as ten-
sors on the leaf it.˙

3/, and do not directly involve any
time derivatives of these quantities. By contrast, the re-
maining set of these equations, (16.15), does involve the
time derivative of KŒt
.

There is nothing special about it.˙
3/ or any other

leaf of the foliation, nor is there anything special about
the (arbitrarily) chosen foliation. Hence we see that on
any spacelike hypersurface embedded in a spacetime
.M4; g; �/ which satisfies the Einstein equations, the
surface quantities .�;K;  ; �/ must satisfy (16.13) and
(16.14). These are hence known as the initial value con-
straint equations for Einstein’s theory.

The initial value problem (or Cauchy problem) for
Einstein’s theory turns things around. It addresses the
following question: If we fix a three-dimensional mani-
fold ˙3 and if we choose a Riemannian metric �ab and
a symmetric tensor Kcd (and possibly, nongravitational
field data  and � on ˙3 as well) which satisfy the
constraint equations (16.13) and (16.14), is it always
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true that there exists a spacetime .M4; g; �/which satis-
fies the (spacetime) Einstein field equations (16.1), and
which contains an embedded submanifold i.˙3/
M4

for which �ab is the induced metric i�gab and Kcd is

the induced second fundamental form? Further, if such
a solution exists for a given set of initial data, is it
unique in any sense? We address this question in the
next section.

16.3 Well-Posedness of the Initial Value Problem for Einstein’s Equations

It appears, from our discussion in Sect. 16.2, that the
construction of a (vacuum) solution of the Einstein
equations from initial data is a straightforward enter-
prise (especially with a computer readily at hand):

a) On a specified three-dimensional manifold ˙3, we
choose an initial data set .�ab;Kcd/ which satisfies
the (vacuum) constraint equations

RCKcdKcd �
�
Kc

c

�2
D 0 ; (16.16)

rcKc
d �rd

�
Kc

c

�
D 0 : (16.17)

b) We freely choose the lapse as a one-parameter (t)
family of positive scalar functions N.x; t/ on ˙3,
and the shift as a one-parameter family of vector
fields Ma.x; t/ on ˙3.

c) Using the evolution equations

L@t�ab D 2NKŒt
abCLM�ab ; (16.18)

L@t Kab D�NRabC 2NKacK
c
b �NKc

cKab

�rarbNCLMKab ; (16.19)

we evolve the initial data set into a one-parameter
family of Riemannian metrics �ab.x; t/ and symmet-
ric tensors Kab.x; t/; and.

d) We construct the Lorentz metric

gD �ab.x; t/.dxaCMa.x; t/dt/

.dxbCMb.x; t/dt/�N2.x; t/dt2 ; (16.20)

on the spacetime manifold M4 D˙3�R and verify
that it is a solution of the vacuum Einstein equations
G˛ˇ D 0.

To determine that this construction procedure in fact
works, at least for some choices of the lapse and shift,
one needs to prove a well-posedness theorem. Such
a theorem was first proven for Einstein’s theory during
the 1950s by Yvonne Choquet-Bruhat [16.3]. This early
work leaves the issue of uniquenness unsettled to a cer-
tain extent. However, the later work of Choquet-Bruhat

with Robert Geroch [16.4] provides a strong form of
uniqueness. Before stating this combined result, we find
it useful to establish some terminology:

A spacetime .M4; g/ is globally hyperbolic if there
exists an embedded spatial hypersurface i.˙3/
M4

such that every future and past inextendible causal path
intersects i.˙3/ once and only once (A smooth path
� W I!M4 is causal if its tangent vector V is always ei-
ther timelike (g.V;V/ < 0) or null .g.V;V/D 0/. Such
a path is inextendible if there does not exist a smooth
path Q� which contains � as a proper subset.). If such
a hypersurface exists, it is called a Cauchy surface.
A spacetime is a globally hyperbolic development (gh-
development) of a specified set of initial data .�;K/
on ˙3 if

i) It as a solution of the Einstein field equations
ii) It is globally hyperbolic; and
iii) There exists an embedded hypersurface Qi.˙3/ such

that .M4; g/ induces the specified initial data .�;K/
on Qi.˙3/ in the sense that � D Qi�g and an appropri-
ately modified version of (16.2) holds.

A spacetime .M4; g/ is a maximal globally hy-
perbolic development of .�;K/ on ˙3 if every other
gh-development of the same set of data is diffeomor-
phic to a subset of .M4; g/.

Using this terminology, we have the key re-
sult [16.3, 4]:

Theorem 16.1 Well-posedness of Einstein’s vacuum
equations
For any smooth set of initial data .�;K/ on ˙3 which
satisfies the vacuum constraint equations (16.16) and
(16.17), there exists a unique (up to diffeomorphism)
maximal globally hyperbolic development.

Before discussing how to prove this result and dis-
cussing ways in which the result can be generalized,
we note a number of its features: First, Theorem 16.1
is fundamentally a local existence and uniqueness re-
sult. It guarantees that for any initial data set, there exist
spacetimes which are gh-developments of that data, and
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there exists a unique maximal gh-development, but it
says nothing regarding whether that maximal develop-
ment lasts for a finite or an infinite amount of proper
(or coordinate) time. Second, Theorem 16.1 guarantees
that there are globally hyperbolic spacetimes evolving
from any given set of initial data, but it says nothing
about nonglobally hyperbolic spacetimes containing an
embedded hypersurface with that data. In many cases –
the Taub-NUT spacetime [16.5] and the various gen-
eralized Taub-NUT spacetimes [16.6] are prominent
examples – the maximal development of a given set of
data can be extended smoothly across a Cauchy hori-
zon to a nonglobally hyperbolic spacetime solution.
A Cauchy horizon in a given spacetime .M4; g/ (not to
be confused with a Cauchy surface, as discussed above)
is a hypersurfaceH embedded in .M4; g/ which is null
(i. e., at each point ofH , there is a vector tangent toH
which is null) and which lies on the boundary between
the region in .M4; g/ which is globally hyperbolic and
the region which is not. The initial value problem tells
us essentially nothing about whether or not such exten-
sions exist for a given set of initial data. Third, Theorem
16.1 guarantees that there are choices of the lapse and
shift which can be used in evolving initial data sets to
produce gh-developments (numerical or otherwise), but
it does not tell us whether this is true just for certain
particular choices, or for all such choices. The proof
of Theorem 16.1, as we see below, does provide some
information regarding this issue, but does not resolve
it. Finally, we note that while well-posedness theorems
usually contain statements regarding continuity of the
map from the domain space of initial data sets to the
range space of solutions, this is not true of Theorem
16.1, as stated. Such a result does hold in an appropri-
ate form for Einstein’s equations; however, to avoid the
unenlightening detail needed to state it, we do not in-
clude it here. We refer the interested reader to [16.7,
Chap. 15].

The key for proving that the initial value prob-
lem for Einstein’s field equations is well posed is to
show that the system (16.1) can be, in a certain sense,
transformed into a hyperbolic PDE system for which
well-posedness is well established (A PDE system is
hyperbolic if, roughly speaking, it has the characteris-
tics of a system of wave equations. A precise definition
of hyperbolic PDE systems is found, for example,
in [16.8], and also in [16.7].). The vacuum Einstein
equation system, which we can write as R˛ˇ D 0, is
not itself hyperbolic. The system

R˛ˇC 1
2LZg˛ˇ D 0 ; (16.21)

with

Z˛ WD �g��
�
@�g�˛ �

1
2@˛g��

�
CF˛ Œg� ; (16.22)

for F˛Œg� a specified function of g˛ˇ but not of its
derivatives, takes the form

g��@�@�g˛ˇ DQ˛ˇŒg; @g� ; (16.23)

and therefore is a hyperbolic PDE system for the metric
g˛ˇ . This does not lead to the Einstein system itself be-
ing hyperbolic. However, using the Bianchi identities,
one can show that the vector field Z˛ satisfies the ho-
mogeneous hyperbolic system

g��@�@�Z˛ D�R˛ˇZˇ ; (16.24)

so that the combined system of (16.21)–(16.24) is hy-
perbolic. Further, one can show (see, for example,
[16.7, Chap. 14], or [16.9, Sect. 3.1]) that, so long as the
geometric initial data .�;K/ satisfy the constraints, one
can choose the corresponding initial values of g˛ˇ and
of @tg˛ˇ for the system (16.21)–(16.24) in such a way
that the initial values of Z˛ and @tZ˛ vanish. It then
follows from standard results regarding (nonlinear) hy-
perbolic systems (see, for example, [16.7, Chap. 9]) that
the system (16.21)–(16.24) is well posed; further, it fol-
lows that the solution .g˛ˇ.x; t/;Z˛.x; t// has Z˛.x; t/
vanishing for all time. Hence .g˛ˇ.x; t/; 0/ is a solution
of the vacuum Einstein equations, compatible with the
initial data .�;K/.

We note that in the original proof [16.3] of the well
posedness of the Einstein vacuum system, wave coor-
dinates (then called harmonic coordinates) are used.
Wave coordinates correspond to a particular choice
of the function F˛Œg�. Generalized wave coordinates,
which play an important role in numerical simulations
of black hole collisions [16.10] correspond to other
choices of F˛Œg�.

The techniques used to show that, for any given set
of initial data .�;K/ satisfying the constraint equations,
there exists a unique maximal spacetime development
of that data, are very different from those (just dis-
cussed) which are used to prove local existence. To
prove that a unique maximal development exists, the
idea is to consider the set MŒ;K
 of all spacetime de-
velopments of .�;K/, and then define a partial ordering
“>” on MŒ;K
, with . QM4; Qg/ > .M4; g/ if . QM4; Qg/ is
an extension of .M4; g/, up to diffeomorphism. One
then shows that the ordered set .MŒ;K
; >/ has the
properties needed to apply the maximality principle
from set theory, from which it follows that .MŒ;K
; >/
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has a unique maximal element (The maximality prin-
ciple is equivalent to the axiom of choice. It is often
referred to as Zorn’s lemma, although some dispute the
appropriateness of this label; see [16.7, Chap. 16]. One
readily verifies that this maximal element is indeed
a maximal spacetime development of the data .�;K/.
Details of this argument can be found in [16.4] and in
[16.7, Chap. 16].

There are two important ways in which one can
generalize Theorem 16.1. The first of these involves
coupling in nongravitational fields. It is not true that
if a field theory has a well-posed initial value problem
in Minkowski spacetime, then the standard (comma-to-
semicolon) coupling of that field theory to Einstein’s
theory also necessarily has a well-posed initial value
problem. (Roughly speaking, the comma-to-semicolon
coupling of a given field theory to gravity involves
replacing partial derivatives with metric-compatible co-
variant derivatives in the Lagrangian for the given field
theory, multiplying this Lagrangian by the metric vol-
ume density

p
� det g, adding the result to the Einstein

Lagrangian Rp� det g, and then varying the summed
Lagrangian with respect to the metric and the fields.)
The standard Klein–Gordon vector field theory, with
field equations D˛D˛W� D m2W�, provides an exam-
ple of a field theory which is well posed in flat space-
time, yet appears to be ill-posed if coupled to Einstein’s
theory. (It is generally difficult to prove that a system of
partial differential equations does not have a well-posed
Cauchy problem. However, for systems like the Klein–
Gordon vector field theory with standard coupling to
Einstein’s theory, the presence of derivative-coupling
terms in the equations causes standard analyses of hy-
perbolicity and well posedness to be essentially unman-
ageable; one is led to strongly suspect ill-posedness.
Some of these issues are discussed in [16.11].) How-
ever, there are a number of field theories involving
Einstein’s theory coupled to nongravitational fields that
do have well-posed Cauchy problems. These include
Einstein–Maxwell, Einstein–Yang–Mills, Einstein–
Dirac, certain forms of Einstein-scalar field theories,
and certain forms of Einstein-fluid theories. (The
verification of well posedness is straightforward for the

Einstein–Dirac theory with commuting spinor fields.
For Einstein–Dirac with anti-commuting spinor fields,
and also for N D 1 supergravity (which requires that
the spinor fields anti-commute), well-posedness holds,
but in a subtle sense. See [16.12] for details.) For all of
these, in addition to well posedness, one can prove that
for each set of initial data satisfying the appropriate set
of constraints, there is a unique maximal development
spacetime solution of the coupled system.

The second way in which Theorem 16.1 can be
generalized is by loosening the required degree of reg-
ularity. The original results, as well as the results we
state here, presume that the initial data is smooth. Re-
sults of over forty years ago [16.13, 14] show that well
posedness (as well as the existence of a unique max-
imal development) holds for initial data sets .�;K/
with � contained in a local Sobolev space of index
s> 5=2, and K in such a space with index s� 1.
(The Sobolev index s indicates (weak) L2 bounded-
ness for order s derivatives of the indicated fields. See,
e.g., [16.8] for definitions and properties of the Sobolev
function spaces.) The work of Klainerman and Rodni-
anski [16.15] lowers the required regularity to s> 2,
and the recent work of Klainerman et al. [16.16] indi-
cates that (with certain restrictions) one can prove well
posedness for sD 2 as well. We note that the drive to
achieve lower regularity well-posedness results is moti-
vated both by the desire to understand weak solutions,
and by the use of low regularity results as tools in un-
derstanding long-time behavior of solutions.

Not stated as part of Theorem 16.1 above, but an
important feature of Einstein’s theory, is the fact that
the quantities .�ab;Kcd/ induced on any Cauchy surface
in a spacetime solution of Einstein’s equations must
satisfy the constraint equations. Hence, as one evolves
a spacetime solution from a set of initial data, the evolu-
tion equations (16.18) and (16.19) effectively preserve
the constraints. Since numerical implementation of the
Cauchy problem inevitably introduces small errors, the
constraints are not precisely preserved in a numerically
constructed solution. This appears to be a source of in-
stability problems in numerical relativity.

16.4 The Conformal Method and Solutions of the Constraints

The crucial first step in building a spacetime solution
of the Einstein equations via the initial value problem
is to obtain a set of initial data which satisfies the con-

straints. Restricting our attention to the vacuum system
for most of the discussion here, we presume that a fixed
three-dimensional manifold ˙3 has been chosen, and
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we seek a Riemannian metric �ab on ˙3 and a sym-
metric tensor Kcd on ˙3 such that, together, .�ab;Kcd/
satisfy the vacuum constraints (16.16) and (16.17).

There are three somewhat different goals one might
have in studying solutions of the constraint equations:

i) The construction of physically interesting data sets,
which may then be evolved into physically interest-
ing spacetimes.

ii) The parametrization (in terms of an appropriate
function space) of the set of all solutions of the con-
straint equations.

iii) The systematic study of various mathematical and
physical properties of solutions of the constraints,
including (for asymptotically Euclidean data sets)
conserved quantities such as global mass and global
angular momentum.

The most widely used analytical method for study-
ing solutions of the constraints is the conformal
method (together with the closely related conformal
thin sandwich method). The conformal method is par-
ticularly adapted to the goal of finding a function space
parametrization of the set of solutions of the constraints,
the second goal listed above. It has also been used very
effectively in the numerical construction of physically
interesting initial data sets, especially those used to
simulate black hole collisions (which are important for
building gravitational signal templates). We discuss the
conformal method here and the conformal thin sand-
wich method in Sect. 16.5; in Sect. 16.6, we discuss
another approach for studying the constraints – gluing –
which is especially effective as a tool for attaining the
third goal listed above.

As a PDE system for the 12 functions encompassed
in �ab.x/ and Kab.x/, the four constraint equations
(16.16) and (16.17) constitute an underdetermined sys-
tem. The idea of the conformal system is to split the
initial data into two sets – the free (conformal) data, and
the determined data – in such a way that, for a specified
choice of the free data, the constraint equations become
a determined elliptical PDE system, to be solved for the
determined data. There a number of ways to carry out
this data split. We focus here on the semi-decoupling
split (labeled in the early literature of the conformal
method as method A; see [16.17]), which takes the fol-
lowing form:

� Free (Conformal) data:
	ab A Riemannian metric, specified up to confor-

mal factor

�ab A divergence-free (ra�ab D 0), trace-free
(	ab�ab D 0) symmetric tensor (the divergence
and trace are defined here using the conformal
metric 	ab)


 A scalar field.
� Determined data:

� A positive definite scalar field
Wa A vector field.

For a given choice of the free data, the four equa-
tions to be solved for the four functions of the deter-
mined data take the form

rm.LW/ma D
2
3�

6ra
 ; (16.25)

�� D 1
8 R�

� 1
8 .�

mnCLWmn/.�mnC LWmn/�
�7

C 1
12


2�5 ; (16.26)

where the Laplacian � and the scalar curvature R are
based on the 	ab-compatible covariant derivative ra,
and where L is the corresponding conformal Killing op-
erator, defined by

.LW/ab WD raWbCrbWa �
2
3	abrmWm : (16.27)

Presuming that for the chosen conformal data one can
indeed solve equations (16.25) and (16.26) for � and W ,
then the initial data set .�ab;Kcd/ constructed via the
formulas

�ab D �
4	ab ; (16.28)

Kab D �
�2.�abCLWab/C

1
3�

4	ab
 ; (16.29)

satisfies the Einstein constraint equations (16.16) and
(16.17).

The four equations (16.25)–(16.26), which we col-
lectively refer to as the LCBY equations (since their
derivation is based on the work of Lichnerowicz [16.18],
Choquet-Bruhat, and York [16.17]), are readily ob-
tained by substituting formulas (16.28) and (16.29) into
the vacuum constraints (16.16) and (16.17). Two key
identities play a major role in the derivation of (16.25)
and (16.26): The first is the formula for the scalar cur-
vature of the conformally transformed metric �ab D

�4	ab, expressed in terms of the scalar curvature for 	ab

and derivatives of �

R.�/D ��4R.	/� 8��� : (16.30)

We note that if we were to use a different power of �
as the conformal factor multiplying 	ab, then this for-
mula would involve squares of first derivatives of � as
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well. The second key formula relates the divergences of
a traceless symmetric tensor �ab as calculated using two
different covariant derivatives – r./ (compatible with
the metric � ) and r.�/ (compatible with 	)

rm
./�mb D �

�2rm
.�/

�
�2�mb

�
: (16.31)

This formula dictates the choice of conformal scaling
used in (16.29) for the trace-free part of Kab; a different
scaling would generally lead to the appearance of fur-
ther r� terms in the LCBY equations, which are to be
avoided.

Do the LCBY equations admit solutions .�;W/ for
every choice of the conformal data .˙3I	ab; �cd; 
/? It
is easy to see that this is not the case: If we choose,
for example, ˙3 D S3, 	ab is the round metric on
S3, �cd D 0 everywhere, and 
 D 1 everywhere, then
(16.25) takes the form rm.LW/ma D 0, which requires
that LWab vanish everywhere. Equation (16.26) then
takes the form�� D 1

8 R�C 1
12�

5. Since the right hand
side of this equation is positive definite (recall the re-
quirement that � > 0), it follows from the maximum
principle on closed (compact without boundary) man-
ifolds that there is no solution.

Since this example shows that solutions do not ex-
ist for every possible choice of the conformal data, we
seek to determine exactly which sets of such data lead
to a solution and which do not. This issue has been in-
tensively studied for at least 40 years, and while much is
known, there remains much to be determined. Roughly
speaking, for conformal data with constant mean cur-
vature (CMC), we generally know for which sets of
conformal data .˙3I	ab; �cd; 
/ solutions exist, and for
which sets they do not. Uniqueness is well understood
as well for CMC conformal data. For conformal data
with nearly constant mean curvature, we know a num-
ber of classes of conformal data for which solutions
exist, as well a number of classes for which they do
not; there are, however, a number of unresolved cases.
For conformal data with mean curvature far from con-
stant, we know much less; however, there has been
some progress recently in studying these sets of con-
formal data.

To explain more specifically what is known and
what is not known about solving the LCBY equations,
it is very useful to classify conformal data sets into
a wide collection of classes, based on a number of cri-
teria, which include the following:

� Manifold type and asymptotic conditions: Data on
closed manifolds, asymptotically Euclidean data,

asymptotically hyperbolic data, asymptotically con-
ical data, asymptotically cylindrical data, or data on
manifolds with boundary.

� Regularity conditions: Analytic data, smooth data,
or data contained in specified Sobolev or Hölder
spaces.

� Coupled nongravitational fields: Vacuum Einstein,
Einstein–Maxwell, Einstein–Dirac, Einstein-scalar,
Einstein-fluid, or Einstein–Vlasov.

It is beyond the scope of this chapter to discuss what
is known for each of the several classes delineated by
these criteria. Rather, we focus on what is known and
what is not known for smooth data satisfying the vac-
uum Einstein constraints, either on closed manifolds
or satisfying asymptotically Euclidean conditions. We
comment briefly on some of other the other classes.

Within each class of conformal data, the key
distinction is between those sets of data with constant
mean curvature and those which have nonconstant
mean curvature. The mean curvature of any initial
data set is given by the function trK WD �abKab D 

(we use (16.28)–(16.29) to calculate the last equality
here), so we see that the CMC condition corresponds
to choosing conformal data with constant 
 . Examining
(16.25), we see that the CMC condition is important
because constant 
 implies the vanishing of the right
hand side of equation (16.25), which then results in
the vanishing of the tensor quantity .LW/ab (It follows
from a straightforward analysis of the elliptic operator
r � L that in essentially all cases, if rm.LW/ma D 0, then
LWab vanishes.). Consequently, for CMC conformal
data the analysis of the LCBY equations reduces to that
of the (decoupled) Lichnerowicz equation, which takes
the form

�� D 1
8 R� � 1

8�
mn�mn�

�7C 1
12


2�5 : (16.32)

We note that for all of the nongravitational fields
coupled to gravity which are listed above, the first
of the LCBY equations takes the form rm.LW/ma D
2
3�

6r@a
 C Ja, where Ja depends on the nongravita-
tional conformal data, and does not involve � (This
effect occurs as a consequence of the choice one makes
for the conformal rescaling of the nongravitational
fields. Alternative choices could be made which would
lead to Ja depending on �, but there is little motivation
for making such choices.). Consequently, while LWab

does not vanish for CMC data if nongravitational
fields are being considered, the LCBY equations do
decouple, and as a result the determination if solutions



Part
C

|16.4

312 Part C Spacetime Structure and Mathematics

to the LCBY equations exist depends essentially on the
Lichnerowicz equation (with extra terms corresponding
to the nongravitational fields; e.g., in the case of the
Einstein–Maxwell theory, the Lichnerowicz equa-
tion picks up a term of the form ����3, where � is
quadratic in the conformal electric and magnetic fields).

16.4.1 CMC Data on Closed Manifolds

As noted above, for a set of constant mean curvature
conformal data .˙3I	ab; �cd; 
/ for the vacuum Ein-
stein equations, a solution to the LCBY equations exists
(and a map to a solution of the constraint equations
exists) if and only if there exists a solution to the Lich-
nerowicz equation (16.32). For this problem, we know
exactly which sets of conformal data lead to solutions
and which do not. To state these results (and to prove
them), two features regarding conformal transforma-
tions of the conformal data are crucial.

First, we note the Yamabe theorem [16.19] for Rie-
mannian metrics on closed manifolds, which states that
every such metric can be conformally transformed to
a metric of constant scalar curvature; further, for each
metric the sign of that constant scalar curvature is
unique. Hence, the set of Riemannian metrics on a given
manifold ˙3 are partitioned into three Yamabe classes
YC;Y0, and Y�, depending on that sign.

Second, we readily verify that the Lichnerowicz
equation is conformally covariant in the following
sense: If � is a solution to the Lichnerowicz equation for
a set of conformal data .˙3I	ab; �cd; 
/, then for any
smooth positive function  , the function O� D �1� is
a solution to the Lichnerowicz equation for the confor-
mal data .˙3I 4	ab; 

�2�cd; 
/. Combining this result
with the Yamabe theorem, we see that a solution to the
Lichnerowicz equation exists for .˙3I	ab; �cd; 
/ if and
only if there exists a solution for the conformally trans-
formed data .˙3I 4	ab; 

�2�cd; 
/ with RŒ4	ab�D
C1; 0 or �1, depending upon the Yamabe class of 	ab.

Besides the Yamabe class of 	ab, two aspects of
a given set of conformal data determine whether or not
a solution to the Lichnerowicz equation exists. One of

Table 16.1 Solvability of Lichnerowicz equation for CMC
data

� � 0,
� D 0

� 6� 0,
� D 0

� � 0,
� 6D 0

� 6� 0,
� 6D 0

YC N Y N Y

Y0 Y N N Y

Y� N N Y Y

them is whether or not the constant 
 is zero or not. In
table of results (Table 16.1), we label these alternatives

 D 0 or 
 6D 0. The other is whether or not the function
�cd�

cd is identically zero (on˙3) or not. We label these
alternatives � � 0 or � 6� 0. Using Y to indicate that
solutions exist for conformal data sets in a certain class
and using N to indicate that they do not, we summarize
the results in Table 16.1.

We note that for all those data sets such that solu-
tions exist, except for that class of data with 	 2 Y0,
with � � 0 and with 
 D 0, the solutions are unique.
In the latter (somewhat trivial) case, any (positive) con-
stant � is a solution.

The results summarized in the table here were
to a large extent proven in the 1970s by Yvonne
Choquet-Bruhat, James York, and Niall O’Murchadha;
see [16.17] for a discussion of this early work. The
complete proof, including two cases not handled by the
previous work, appears in [16.20]. There it is shown
that the No cases can all be proven using the maximum
principle, stated in the following form: On a closed
manifold, the equation �� D f .x; �/, with f .x; �/ ei-
ther nonvanishing and nonpositive or nonvanishing and
nonnegative, has no solution. It is also shown there that
the Yes cases can all be proven using the sub and su-
per solution theorem, which can be stated as follows: If
there exist a pair of positive functions �

C

� �
�

which
satisfy the inequalities

��
�

	 1
8 R�
�

� 1
8�

mn�mn�
�7
�

C 1
12


2�5
�

; (16.33)

and

��
C

� 1
8 R�
C

� 1
8�

mn�mn�
�7
C

C 1
12


2�5
C

; (16.34)

then there exists a solution � of the Lichnerowicz equa-
tion (16.32), with �

C

� � � �
�

. For some of the six
Yes cases (specifically those with the metric in the neg-
ative Yamabe class), constant sub and super solutions
are easily found. For others, nonconstant sub and super
solutions are needed, and are not so easily found.

We can use the results summarized in the table,
along with the conformal covariance stated above
and a certain scaling invariance, to parametrize the
set of CMC solutions of the vacuum constraints on
a chosen closed manifold ˙3. We first note that every
solution .�ab;Kab/ of the constraint equations (16.16)
and (16.17) can be obtained using the conformal
method, since one can choose 	ab D �ab, 
 D Kc

c , and
�cd equal to the divergence-free trace-free projection
(see [16.17]) of Kcd; with this conformal data, Wa D 0
and � D 1 satisfy the LCBY equations, leading us
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back to .�ab;Kab/. Next, we note that the conformal
covariance result implies that for any positive func-
tion  the two sets of conformal data .˙3I	ab; �cd; 
/
and .˙3I 4	ab; 

�2�cd; 
/ lead to related solutions
of the Lichnerowicz equation and thence to identical
solutions .�ab;Kcd/ of the constraint equations (16.16)
and (16.17). The scaling result [16.21] states that for
a positive constant A, the two sets of CMC conformal
data .˙3I	ab; �cd; 
/ and .˙3IA2	ab;A�cd;A�1
/
admit the same solution � of the Lichnerowicz equa-
tion. These lead to different solutions .�ab;Kcd/ and
.A2�ab;A Kcd/ of the constraint equations, but these
solutions are related by an essentially trivial scaling. As
a consequence of these considerations, we determine
that for any chosen closed manifold ˙3, the set of all
conformal data sets marked Yes in the table, quotiented
out by the conformal covariance equivalence and by
the scaling equivalence, provides a faithful (bijective)
parametrization of the space of CMC solutions of the
vacuum constraints on ˙3.

These results for CMC solutions of the vacuum
constraints are essentially replicated if one considers
the Einstein–Maxwell, Einstein–Yang–Mills, Einstein–
Dirac, or Einstein-fluid constraint equations [16.22]
(For the Einstein-fluid constraints, there are consistent
choices of conformal scaling of the fluid fields which
lead to a more difficult set of LCBY equations, analo-
gous to those arising for certain Einstein-scalar theories.
Conformal scalings can, however, always be chosen in
a way which avoids these problems [16.22].). On the
other hand, the results for the Einstein-scalar field theo-
ries with certain types of field theory potentials are not
nearly as complete. Details of the difficulties that can
arise are discussed in [16.23]; see also [16.24], which
explores how to handle some of these difficulties.

16.4.2 Asymptotically Euclidean CMC Data

The decoupling of the LCBY equations which results
from the assumption of constant mean curvature does
not depend upon the topology of ˙3 or the asymp-
totic conditions of the conformal data. Hence, as for
the closed manifold case discussed above, the analysis
of the conformal method for asymptotically Euclidean
data (as well as for asymptotically hyperbolic data or
any other chosen asymptotic condition) reduces to the
study of the solvability of the Lichnerowicz equation.
We note that the fall-off conditions which define a set
of data to be asymptotically Euclidean (see, for exam-
ple, [16.25] or [16.26] for a precise statement of these
fall-off conditions) require that the mean curvature, if

constant, be zero. Hence asymptotically Euclidean data
which is CMC must be maximal; i. e., Kc

c D 
 D 0.
The criterion for the Lichnerowicz equation to ad-

mit a solution for asymptotically Euclidean conformal
data is independent of �cd, and depends only the metric.
As proven by Cantor [16.27], the Lichnerowicz equa-
tion admits a solution for a given set of asymptotically
Euclidean conformal data if and only if the metric ad-
mits a conformal transformation which results in the
scalar curvature vanishing everywhere. Such metrics are
called Yamabe positive, and Brill and Cantor [16.28]
have also shown (with a correction pointed out by
Maxwell [16.29]; see also [16.30]) that an asymptoti-
cally Euclidean metric is Yamabe positive in the sense
just described if and only if for every nonvanishing com-
pactly supported function f on˙3, the inequality

inf
ff 6�0g

R
M.jrf j2CRf 2/

p
det	

jjf jj2
L2

> 0 (16.35)

holds.
We note that the same criterion for the solvability

of the Lichnerowicz equation holds for asymptotically
Euclidean data for the Einstein–Maxwell, Einstein–
Yang–Mills, Einstein–Dirac, Einstein-fluid, and other
such theories involving nongravitational fields coupled
to Einstein’s theory. We also note, without elaboration,
results concerning the solvability of the Lichnerowicz
equation for asymptotically hyperbolic data in [16.31],
and results for asymptotically cylindrical data sets
in [16.32] and [16.33].

16.4.3 Near-CMC Data

If we drop the non-CMC condition on the choice of the
conformal data, then r
 does not vanish, and we must
deal with the fully coupled LCBY system. While not
much is known about the solvability of the LCBY sys-
tem for general sets of non-CMC conformal data, for
those sets of data with jr
 j small in some appropriate
sense, one can in many cases determine whether or not
solutions exist.

One way to analyze the coupled system is to use the
iterated Gummel method, which replaces (16.25) and
(16.26) by the sequence of semidecoupled PDE systems

rc.LW.n//
c
a D

2
3�

6
.n�1/ra
 (16.36)

��.n/ D
1
8 R�.n/ �

1
8

�
� cdCLWcd

.n/

�
� .�cdCLW.n/cd/�

�7
.n/ C

1
12


2�5
.n/ :

(16.37)



Part
C

|16.4

314 Part C Spacetime Structure and Mathematics

The idea is to:

i) Choose an initializing value for �0;
ii) Show that a sequence .�.n/;W.n// of solutions to

(16.36)–(16.37) exists;
iii) Prove that there are uniform upper and lower

bounds for the sequence .�.n/;W.n//; and
iv) Use those upper and lower bounds together with

a contraction mapping argument to show that the se-
quence .�.n/;W.n// converges uniformly to a limit
.�;W/, which solves the LCBY equations.

The assumption that jr
 j is small plays a crucial
role in carrying out steps (iii) and (iv). It does this be-
cause, as a consequence of the elliptic equation (16.25)
and its sequential analog (16.36), the norm of LW is
controlled by jr
 j�6. Thence the term involving the
square of LW in (16.26), which contains factors of .�6/2

times ��7 – i. e., �5 – competes with the 
2�5 term. To
ensure that 
2�5 (which has the favorable sign) wins
this competition and to thereby retain the control of �
that one has in the CMC case, it is sufficient to require
that jr� j

j� j
be sufficiently small.

Analyses of the sort discussed above have been car-
ried out in [16.34, 35]. Combining these results with
others proven in [16.36] and [16.37], one has the fol-
lowing table which lists, for each of 12 classes of near-
CMC conformal data on closed manifolds, whether
solutions to the LCBY equations are known to exist
(Y), are known to not exist (N), or are not known ei-
ther way (?) (In all of the Y cases, uniqueness holds as
well.). In Table 16.2, the Yamabe classes and their la-
bels fYC;Y0;Y�g are the same as used above for the
CMC table, and the labels � � 0 and � 6� 0 denoting
whether or not j� j is identically zero or not are also the
same as for the CMC table. For the function 
 , the nota-
tion 
2 > 0 indicates those sets of conformal data with 

(presumed smooth) having no zeros, while 
2 6> 0 la-
bels those sets of conformal data with 
 allowed to have
zeroes.

Not surprisingly, the classes which cause the most
difficulty are those in which 
 has zeroes; we have
a fairly complete understanding of whether or not so-
lutions exist for the classes in which 
 is bounded away
from zero.

Near-CMC conformal data sets which are asymp-
totically Euclidean have also been studied. Techniques
similar to those discussed briefly here show [16.26] that
the criterion for the existence of solutions to the LCBY
equations for near-CMC asymptotically Euclidean con-

Table 16.2 Solvability of conformal constraints for near-
CMC data

� � 0,
�2 6> 0

� 6� 0,
�2 6> 0

� � 0,
�2 > 0

� 6� 0,
�2 > 0

YC ? Y N Y

Y0 ? Y N Y

Y� ? ? Y Y

formal data sets is very similar to that for CMC data.
Roughly the same holds true for asymptotically hyper-
bolic data sets; see [16.38].

16.4.4 Far-CMC Data

Without either the CMC or the near-CMC condition
imposed, the analysis of the LCBY equations is consid-
erably more difficult. For most sets of conformal data
satisfying neither of these conditions (we use the la-
bel far-CMC both for initial data sets .˙3I �ab;Kcd/ and
for conformal data sets .˙3I	ab; �cd; 
/ which are not
CMC and satisfy no smallness condition on Kc

c or on 
),
it is not known whether or not solutions exist.

There has, however, been recent work which begins
to explore whether or not solutions exist for far-CMC
data, and also explores their multiplicity. We briefly dis-
cuss three of these recent works here.

The work of Holst et al. [16.39] together with the
important follow-up work of Maxwell [16.40] effec-
tively swaps the near-CMC condition of smallness of
jr
 j for a condition requiring the smallness of j�cdj.
More specifically, their combined work shows that the
LCBY equations admit a solution for a given set of
conformal data on a closed manifold if the following
conditions hold:

i) 	ab 2 YC
ii) 	ab does not admit a conformal Killing field
iii) j�cdj is sufficiently small
iv) �cd is not identically zero.

We emphasize the fact that these conditions include
no restriction on the mean curvature function 
 . We also
note that while these conditions guarantee existence,
they tell us nothing about uniqueness.

Besides showing that a small but interesting class of
far-CMC conformal data is mapped to solutions of the
constraint equations, this work introduces a new ana-
lytical tool to the study of the conformal method. The
proof that the LCBY equations admit solutions for sets
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of conformal data of this sort described above relies on
expressing solutions of the LCBY equation formally as
fixed points of a map

F W �!��1

�
h

1
8 R� � 1

8

�
� C L

˚
.r � L/�1

�
2
3�

6r

���2

��7

C 1
12


2
i
;

(16.38)

and proving that such fixed points exist using Schauder
compactness.

Schauder techniques also play a role in the work
Dahl et al. [16.37]. They show that for certain classes
of conformal data – data on a closed manifold ˙3 with
the metric (any Yamabe class) admitting no conformal
Killing fields, with 
 bounded away from zero, and with
j� j2 not identically zero if 	ab 2 Y� – solutions of the
LCBY equations exist if the equation

�Ya D jLYj
1



ra
 ; (16.39)

does not admit a solution. Thus, from this perspective,
one proves the existence of LCBY solutions for a given
set of conformal data by showing that (16.39) (called
the limit equation by the authors of [16.37]) admits
no solution. This approach does not directly prove the
existence of solutions of the LCBY equation for sets
of far-CMC conformal data, but it can in principle be
used to do this. In [16.41], it shown that an analogous
limit equation-type result holds for asymptotically hy-
perbolic conformal data sets.

It is interesting that the derivation of these limit
equation results relies on the study of solutions of
a family of deformed LCBY� equations in which
(16.26) is left unchanged, but (16.25) is replaced

by

rm.LW/ma D
2
3�
.6��/ra
 : (16.40)

It is much easier to prove that solutions to the sys-
tem (16.26)–(16.40), with � > 0, exist, than to prove
the existence of solutions to the LCBY equations. The
idea then is to study the �! 0 limit of solutions of the
LCBY� system, and use the analysis of these limits to
shed light on the LCBY system. Such an analysis leads
to the limit equation results.

The third work concerning solutions of the LCBY
equations for far-CMC conformal data which we dis-
cuss here is that of Maxwell [16.42], in which he studies
a very simple class of planar symmetric conformal data
and finds somewhat surprising results. The conformal
data sets he considers are characterized as follows:

i) ˙3 D T3.
ii) The metric is flat.
iii) �cd has planar (T2) symmetry, and therefore, as

a consequence of the trace-free and divergence-free
conditions, is a matrix with constant entries (two
free constants).

iv) 
 is a step function, with a pair of discontinuities.

Working with these simple data sets, which are
parametrized by a small set of constants, Maxwell can
directly (numerically) construct solutions, if they exist.
He finds that for certain ranges of values of the pa-
rameters, no solutions exist; for other ranges, multiple
solutions exist; and finally for a third range, unique so-
lutions can be obtained.

It is very intriguing to consider whether these results
of Maxwell generalize to conformal data sets without
any discontinuities, and to data sets with less imposed
symmetry. In any case, these results suggest that the be-
havior of the conformal method for far-CMC conformal
data sets could be interesting and complicated.

16.5 The Conformal Thin Sandwich Method

The conformal method has proven to be a remarkably
useful tool for generating and parametrizing and ana-
lyzing solutions of the Einstein constraint equations. It
does, however, have some minor drawbacks:

a) The conformal data is somewhat remote from the
physical data, since the conformal factor changes
the physical scale on different regions of space.

b) While casting the constraints into a determined PDE
form has the advantage of producing PDEs of a rel-
atively familiar (elliptic) form, one does give up
certain flexibilities which are inherent in an under-
determined set of PDEs.

c) In choosing a set of conformal data, one has to first
project out a divergence-free trace-free tensor field
(�cd).
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d) While the LCBY system is conformally covariant in
the sense discussed above in Sect. 16.4.1 for CMC
conformal data, this is not the case for non-CMC
conformal data.

The last two of these problems can be removed
by modifying the conformal method in a way which
York [16.43] has called the conformal thin sandwich
(CTS) approach. The basic idea of the conformal thin
sandwich approach is essentially the same as that of
the conformal method. There are, however, two impor-
tant differences. First, the CTS free data sets are larger
than the free (conformal) data sets of the conformal
method in the following sense: Like the conformal data
sets, the CTS data sets include a conformal metric 	ab

and a mean curvature scalar 
 . In addition, the CTS
data sets include a trace-free tensor Ucd to replace the
divergence-free trace-free tensor �cd of the conformal
data sets, plus an extra scalar field �. Second, after solv-
ing the following set of CTS equations (analogous to the
LCBY equations)

rm..2�/
�1.LX//ma

D 2
3˚

6ra
 Crm..2�/�1Um
a / ; (16.41)

�˚ D 1
8 R˚

� 1
8 .U

mnC LYmn/

� .UmnCLYmn/˚
�7C 1

12

2˚5 ; (16.42)

for the conformal factor ˚ and the vector field Ya, one
constructs not just the initial data .�ab;Kcd/, but the
lapse N and the shift Ma as well,

�ab D ˚
4	ab (16.43)

Kab D ˚
�2.�UabC LYab/C

1
3˚

4	ab
 (16.44)

N D ˚6� (16.45)

Ma D Ya : (16.46)

It is clear that in using the CTS approach, one
need not project out a divergence-free part of a sym-
metric trace-free tensor. As well also, one also readily
checks that the CTS method is conformally covariant
in the sense discussed above: the initial data .�ab;Kcd/
and the lapse and shift .N;Ma/ generated from the
CTS data set .	ab;Uab; 
; �/ and from the CTS data
set .4	ab; 

�2Uab; 
; 
6�/ are identical. Furthermore,

since the mathematical form of (16.41) and (16.42) is
very similar to that of (16.25) and (16.26), the solvabil-
ity results for the conformal method can be essentially
carried over to the CTS approach.

There is, however, one problematic feature of the
conformal thin sandwich approach. The problem arises
if we seek CMC initial data with the lapse function cho-
sen so that the evolving data continues to have constant
mean curvature. (Such a gauge choice is often used
in numerical relativity.) In the case of the conformal
method, after solving (16.25) and (16.26) to obtain ini-
tial data .�ab;Kcd/ which satisfies the constraints, one
achieves this by proceeding to solve a linear homoge-
neous elliptic PDE for the lapse function. One easily
verifies that solutions to this extra equation always ex-
ist. By contrast, in the CTS approach, the extra equation
takes the form

�.˚7�/D 1
8˚

7�RC 5
2 .˚�/

�1.U� LY/2

C˚5Ymrm
 �˚
5 ; (16.47)

which is coupled to the system (16.41) and (16.42). The
coupling is fairly intricate; hence little is known about
the existence of solutions to the system, and it has been
seen that there are problems with uniqueness. These dif-
ficulties do not arise, of course, if one makes no attempt
to preserve the constant mean curvature condition.

16.6 Gluing Solutions of the Constraint Equations

Both the conformal method and the conformal thin
sandwich method are procedures for generating initial
data sets which satisfy the Einstein constraint equations
from scratch. The gluing procedures, which we discuss
here, produce new solutions of the constraint equations
by combining existing solutions. While the gluing pro-
cedures have not yet turned out to be as useful as the
conformal method and CTS method for the practical
generation of physical interesting initial data sets, they

have proven to be very effective for certain applications
and for settling certain conjectures. We outline some of
these applications below, after describing the two glu-
ing procedures which have been developed, and how
they work.

The asymptotic exterior gluing, developed by
Corvino and Schoen [16.44, 45], works as follows.
We presume that .˙3; �ab;Kcd/ is an asymptotically
Euclidean initial data set which satisfies the Einstein
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constraints, and also satisfies certain asymptotic condi-
tions (as specified in [16.45]). For any compact region
&3 
˙3 for which ˙3 n&3 DR3 nB3 (where B3 is
a ball in R3), there is a smooth asymptotically Eu-
clidean solution of the constraints on ˙3 which is
identical to the original solution on &3 
˙3, and is
identical to Cauchy data for the Kerr solution on ˙3 n
Q&3 for some Q&3 
˙3. In words, this technique allows

one to smoothly glue any interior region of an asymptot-
ically Euclidean solution to an exterior region of a slice
of a Kerr solution. There is generally a transition zone
between the interior chosen region and the exterior Kerr
region˙3n& which is unknown, but is a solution of the
constraint equations. We note that for asymptotically
Euclidean solutions of the constraints with Kcd D 0, this
method glues any interior region to an exterior region of
a slice of the Schwarzschild solution.

In some sense, the Corvino–Schoen asymptotic ex-
terior gluing result is very surprising. If the constraint
equations were a determined elliptic system, one would
not expect to be able to smoothly glue two solutions
together like this, even with a transition region (satisfy-
ing the constraints). The key to proving that asymptotic
exterior gluing indeed works is the exploitation of the
underdetermined character of the constraints as a PDE
system. Some of the ideas developed in the Corvino–
Schoen work have also proven to be useful for localiz-
ing metric deformations as solutions of the constraints,
as shown in the work of Chruściel and Delay [16.46].

The other gluing procedure, connected sum gluing,
was developed first by Isenberg et al. [16.47] with fur-
ther work done together with Chruściel et al. [16.48]
and with Maxwell et al. [16.22]. The idea here is to
start with a pair of solutions of the (vacuum) con-
straints .˙3

1 ; �1;K1/ and .˙3
2 ; �2;K2/ and to choose

of a pair of points p1 2˙
3
1 and p2 2˙

3
2 , one point

contained in each solution. Based on these solutions,
connected-sum gluing produces a new set of initial data
.˙3
.1�2/; �.1�2/;K.1�2// with the following properties:

i) ˙.1�2/ is diffeomorphic to the connected sum
˙3

1 #˙3
2 (which is constructed by first removing

a ball from each of the manifolds ˙3
1 and ˙3

2 , and
then using a cylindrical bridge S2� I (where I is an
interval in R1) to connect the resulting S2 boundaries
on each manifold).

ii) .˙3
.1�2/; �.1�2/;K.1�2// is a solution of the con-

straints everywhere on ˙3
.1�2/.

iii) On that portion of ˙3
.1�2/ which corresponds to

˙3
1 n fball around p1g, the data .�.1�2/;K.1�2// is

isomorphic to .�1;K1/, with a corresponding prop-

erty holding on that portion of ˙3
2 which corre-

sponds to ˙3
2 n fball around p2g.

Connected sum gluing can be carried out for fairly
general sets of initial data. The sets may be asymptot-
ically Euclidean, asymptotically hyperbolic, specified
on a closed manifold, or indeed anything else. The only
condition that the data sets must satisfy is that, in suf-
ficiently small neighborhoods of each of the points at
which the gluing is to be done, there do not exist non-
trivial solutions � to the equation D��

.;K/� D 0, where
D��

.;K/ is the operator obtained by taking the adjoint
of the linearized constraint operator. (If a solution to this
equation does exist on some region � 2˙3, it follows
from the work of Moncrief that the spacetime develop-
ment of the data on � admits a nontrivial isometry.)
In work by Beig et al. [16.49], it is shown that this
condition (sometimes referred to as No KIDs, meaning
no (localized) Killing initial data) is indeed generically
satisfied.

The details of the proof that connected sum glu-
ing can be carried out as generally as described above
are beyond the scope of this chapter; see [16.48] along
with the references cited in that work for a complete
discussion. We do wish to note three features of the
proof: First, the proof is constructive in the sense that
it outlines a systematic, step-by-step mathematical pro-
cedure for doing the gluing. In principle, one should
be able to carry out the gluing procedure numerically.
Second, connected sum gluing relies primarily on the
conformal method, but it also requires the use of a non-
conformal deformation (dependent on the techniques
of Corvino and Schoen, and of Chruściel and Delay),
so as to guarantee that the glued data is not just very
close to the given data on regions away from the con-
necting bridge, but is indeed identical to it. Third, while
the Corvino–Schoen asymptotic exterior gluing has not
yet been proven to work for solutions of the constraints
with source fields, connected sum gluing (up to the last
step, which relies on Corvino–Schoen) has been shown
to work for most matter source fields of interest [16.22].
It has also been shown to work for general dimensions
greater than or equal to 3.

As noted above, while gluing has not seen wide-
spread use as a procedure for producing physically
interesting initial data sets, it has proven to be very valu-
able for a number of applications. We note a collection
of these applications here:

1. Spacetimes with regular asymptotic structure: Un-
til recently, it was not known whether there is
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a large class of spacetime solutions of the Ein-
stein equations which admit the conformal com-
pactification and consequent asymptotically simple
structure at null and spacelike infinity characteristic
of the Minkowski and Schwarzschild spacetimes.
Using asymptotic exterior gluing, together with
Friedrich’s analyses of spacetime asymptotic struc-
tures and arguments of Chruściel and Delay [16.50],
one can produce such a class of solutions.

2. Initial data for the gravitational N-body problem:
To model the physics of a system consisting of N
chosen astrophysical bodies interacting gravitation-
ally, it is important to be able to construct initial
data sets which solve the Einstein constraints and
which accurately model the bodies of interest, their
initial placement, and their initial momenta, all in
a single asymptotically Euclidean space. Chruś-
ciel et al. [16.51] have used gluing techniques to
show that for any chosen set of N asymptotically
Euclidean solutions of the constraints representing
black holes, stars, or other astrophysical objects of
interest, one can construct a new asymptotically Eu-
clidean solution which includes interior regions of
these N chosen solutions, placed as desired (so long
as the distances between the bodies are sufficiently
large) and with the desired relative momenta.

3. Adding a black hole to a cosmological spacetime:
Although there is no clear established definition for
a black hole in a spatially compact solution of Ein-
stein’s equations, one can glue an asymptotically
Euclidean solution of the constraints to a solution on
a compact manifold, in such a way that there is an
apparent horizon on the connecting bridge. Study-
ing the nature of these solutions of the constraints,
and their evolution, could be useful in trying to un-
derstand what one might mean by a black hole in
a cosmological spacetime.

4. Adding a wormhole to your spacetime: While we
have discussed connected sum gluing as a proce-
dure which builds solutions of the constraints with

a bridge connecting two points on different mani-
folds, it can also be used to build a solution with
a bridge connecting a pair of points on the same
manifold. This allows one to do the following: If
one has a globally hyperbolic spacetime solution
of Einstein’s equations, one can choose a Cauchy
surface for that solution, choose a pair of points
on that Cauchy surface, and glue the solution to
itself via a bridge from one of these points to the
other. If one now evolves this glued-together initial
data into a spacetime, it will likely become sin-
gular very quickly because of the collapse of the
bridge. Until the singularity develops, however, the
solution is essentially as it was before the gluing,
with the addition of an effective wormhole. Hence,
this procedure can be used to glue a wormhole onto
a generic spacetime solution.

5. Removing topological obstructions for constraint
solutions: We know that every closed three dimen-
sional manifold˙3 admits a solution of the vacuum
constraint equations. To show this, we use the fact
that ˙3 always admits a metric � of constant neg-
ative scalar curvature. One easily verifies that the
data .� D �;K D � / is a CMC solution. Combin-
ing this result with connected sum gluing, one can
show that for every closed ˙3, the manifold ˙3 n

fpg admits both an asymptotically Euclidean and an
asymptotically hyperbolic solution of the vacuum
constraint equations.

6. Proving the existence of vacuum solutions on closed
manifolds with no CMC Cauchy surface: Based on
the work of Bartnik [16.52] one can show that if one
has a set of initial data on the manifold T3#T3 with
the metric components even-reflective across a cen-
tral sphere and the components of K odd-reflective
across that same central sphere, then the spacetime
development of that data does not admit a CMC
Cauchy surface. Using connected sum gluing, one
can show that indeed initial data sets of this sort ex-
ist [16.48].

16.7 Comments on Long-Time Evolution Behavior

Once an initial data set satisfying the Einstein constraint
equations has been obtained, one can evolve it into
a spacetime satisfying the Einstein field equations. As
guaranteed by the work discussed in Sect. 16.3, there is
a unique globally hyperbolic spacetime development of
this initial data which contains (up to diffeomorphism)
any other developments of the same set of data.

What do we know about the long-time properties of
these maximal developments? The Hawking–Penrose
singularity theorems [16.5] tell us that (among space-
times with a compact Cauchy surface), in one or the
other direction in time, such developments generically
become causally geodesically incomplete, which means
that there are causal geodesics in the spacetime which
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do not extend to the infinite affine parameter length.
This property of causal geodesic incompleteness is,
however, consistent with a wide variety of spacetime
behavior, including curvature blowup, Cauchy horizon
formation, and various topological anomalies [16.53].

One of the intriguing questions concerning space-
time developments is which of these behaviors – curva-
ture blowup, Cauchy horizon formation, or something
else – is expected to occur generically among those
spacetimes which are causally geodesically incomplete.
Penrose [16.54] has conjectured that curvature blowup
is the generic behavior. This conjecture has been la-
beled the strong cosmic censorship conjecture (SCC)
and it is viewed by many as one of the central ques-
tions concerning the evolutionary behavior of solutions
of Einstein’s equations (The strong cosmic censorships
conjecture does not imply, and is not implied by, the
weak cosmic censorship conjecture, which concerns the
generic formation of an event horizon around a singu-
larity which forms in an asymptotically flat solution of
Einstein’s equations.).

It is well known that there are infinite dimensional
families of solutions [16.6] which have bounded cur-
vature and develop Cauchy horizons. The existence of
these solutions does not disprove SCC. To formulate
and study the SCC conjecture carefully, one needs to
define the notion of generic in terms of the topology
of the space of constraint-satisfying initial data sets on
a fixed three-dimensional manifold ˙3, and then deter-
mine which sets of initial data evolve into a spacetime
with unbounded curvature, and which do not.

Strong cosmic censorship, formulated this way, has
been proven for certain families of solutions, most no-
tably (by Ringstrom [16.55]) for the Gowdy family
which is characterized by the existence of a T2 isom-
etry group, and vanishing twists (The Gowdy family
of solutions is introduced and characterized in [16.56]
and is studied extensively in [16.57].). Numerical and
other formal evidence strongly suggest that it is true
for a wider class of spacetimes, with smaller isometry
group [16.58]. Proving or disproving this remains a ma-
jor challenge.

The strong cosmic censorship conjecture concerns
generic behavior among those spacetimes which are

causally geodesically incomplete. Distinct from this is-
sue, and also of very significant interest, is the question
of which initial data sets evolve into spacetimes which
extend an infinite (proper) time into the future and/or
the past, and which do not. A complete answer to this
question appears to be beyond our current mathemati-
cal capabilities. However, as a small but very significant
step towards answering this question, a number of re-
searchers have focussed on the issue of the stability – in
terms of long time existence and structure – of solutions
which exist for infinite proper time.

The landmark stability result in general relativity is
the proof by Christodoulou and Klainerman [16.59] of
the stability of Minkowski spacetime. They show, using
energies based on the Bel–Robinson tensor to measure
initial data perturbations, that the spacetime develop-
ments of initial data sets which are sufficiently close
to Minkowski initial data do extend an infinite proper
time into the future and into the past. Moreover, they
show that these developments have the same asymptotic
spacetime structure as Minkowski spacetime. These re-
sults have been extended to allow electromagnetic as
well as gravitational initial data perturbations [16.60]
and have also been strengthened in terms of the nature
of the asymptotic structure which is shown to be sta-
ble [16.60].

If Minkowski spacetime is stable, one might log-
ically proceed to consider if this is also the case for
Schwarzschild spacetimes. However, since one knows
that a small perturbation of Schwarzschild initial data
which adds angular momentum will evolve into a Kerr
solution rather than a Schwarzschild solution, one is led
to consider the stability of Kerr spacetimes instead. The
determination of whether or not Kerr spacetimes are
stable is currently one of the most active areas of re-
search in mathematical relativity. A recent report on the
research directed towards this goal appears in [16.61].

We note that the stability of other spacetimes has
been established: Friedrichs [16.62] has shown that
De Sitter spacetime is stable, Andersson and Mon-
crief [16.63] have shown that Milne spacetime is stable,
and Ringstrom [16.64] has shown that certain solutions
of the Einstein-scalar field equations with accelerating
expansion are stable.
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17. Dynamical and Hamiltonian Formulation
of General Relativity

Domenico Giulini

Einstein’s theory of General Relativity describes
spacetime as a solution of a set of non-linear par-
tial differential equations. These equations are
initially not in the form of evolution equations
and it is hence not clear how to formulate and
solve initial-value problems, as would be physi-
cally highly desirable. In this contribution it will
be shown how to cast Einstein’s equations into the
form of a constrained Hamiltonian system. This will
allow to formulate and solve initial-value prob-
lems, integrate Einstein’s equations by numerical
codes, characterize dynamical degrees of freedom,
and characterize isolated systems and their con-
served quantities, like energy, momentum, and
angular momentum. Moreover, this reformula-
tion of General Relativity is also the starting point
for various attempts to subject the gravitational
field to the program of canonical quantization. The
exposition given here is, to some degree, self con-
tained. It attempts to comprehensively account for
all the relevant geometric constructions, including
the relevant symplectic geometry of constrained
Hamiltonian systems.
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17.1 Overview

The purpose of this chapter is to explain how the field
equations of general relativity – often simply referred
to as Einstein’s equations – can be understood as a
dynamical system; more precisely, as a constrained
Hamiltonian system.

In general relativity, it is often said, spacetime
becomes dynamical. This is meant to say that the geo-

metric structure of spacetime is encoded in a field that,
in turn, is subject to local laws of propagation and cou-
pling, just as, e.g., the electromagnetic field. It is not
meant to say that spacetime as a whole evolves. Space-
time does not evolve, spacetime just is. But a given
spacetime (four dimensional) can be viewed as the evo-
lution, or history, of space (three dimensional). There is
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a huge redundancy in this representation, in the sense
that apparently very different evolutions of space rep-
resent the same spacetime. However, if the resulting
spacetime is to satisfy Einstein’s equations, the evo-
lution of space must also obey certain well-defined
restrictions. Hence, the task is to give precise mathe-
matical expression to the redundancies in representation
as well as the restrictions of evolution for this picture of
spacetime as space’s history. This will be the main task
of this chapter.

This dynamical picture will be important for pos-
ing and solving time-dependent problems in general
relativity (GR), like the scattering of black holes with
its subsequent generation and radiation of gravitational
waves. It is also a key technology to:

� Formulate and solve initial-value problems.
� Integrate Einstein’s equations by numerical codes.
� Characterize dynamical degrees of freedom.
� Characterize isolated systems and the association of

asymptotic symmetry groups, which will give rise
to globally conserved charges, like energy and lin-
ear as well as angular momenta (Poincaré charges).

Moreover, it is also the starting point for the canon-
ical quantization program, which constitutes one main
approach to the yet unsolved problem of quantum grav-
ity. In this approach one tries to make essential use
of the Hamiltonian structure of the classical theory in
formulating the corresponding quantum theory. This
strategy has been applied successfully in the transi-
tion from classical to quantum mechanics and also in
the transition from classical to quantum electrodynam-

ics. Hence, the canonical approach to quantum gravity
may be regarded as conservative, insofar as it tries to
apply otherwise established rules to a classical theory
that is experimentally and observationally extremely
well tested. The underlying hypothesis here is that we
may quantize interaction-wise. This distinguishes this
approach from string theory, the underlying credo of
which is that quantum gravity only makes sense on the
basis of a unified description of all interactions.

Historically the first paper to address the problem
of how to put Einstein’s equations into the form of
a Hamiltonian dynamical system was that of Dirac
[17.1] in 1958. He also noticed its constrained nature
and started to develop the corresponding generalization
of constrained Hamiltonian systems in [17.2] and their
quantization [17.3]. On the classical side, this devel-
oped into the more geometric Dirac–Bergmann theory
of constraints [17.4] and on the quantum side into an
elaborate theory of quantization of systems with gauge
redundancies; see [17.5] for a comprehensive account.
Dirac’s attempts were soon complemented by an exten-
sive joint work of Richard Arnowitt, Stanley Deser, and
Charles Misner – usually and henceforth abbreviated by
ADM. Their work started in 1959 by a paper [17.6] of
the first two of these authors and continued in the series
[17.7–18] of 12 more papers by all three. A compre-
hensive summary of their work was given in 1962 in
[17.19], which was republished in 2008 in [17.20]; see
also the editorial note [17.21] with short biographies
of ADM. Modern textbooks on the 3C 1 formalism
and the canonical formulation of GR, with applications
to cosmology, black holes, and quantum gravity, are
[17.22, 23], respectively.

17.2 Notation and Conventions

Throughout, GR stands for general relativity. Spacetime
is a differentiable manifold M of dimension n, endowed
with a metric g of signature .";C; : : : ;C/. In GR
nD 4 and "D�1 and it is implicitly understood that
these are the right values. However, either for the sake
of generality and/or particular interest, we will some-
times state formulae for general n and ", where usually
n� 2 (sometimes n� 3) and either "D�1 (Lorentzian
metric) or "DC1 (Riemannian metric; also called Eu-
clidean metric). The case "D 1 has been extensively
considered in path-integral approaches to quantum
gravity, there referred to as Euclidean quantum gravity.

The tangent space of M at point p 2M will be de-
noted by TpM, the cotangent space by T�p M, and the
tensor product of u factors TpM with d factors of T�p M
by T u

pdM. (Mnemonic in components: uD number of
indices upstairs, d D number of indices downstairs.)
An element T in T u

pdM is called a tensor of contravariant
rank u and covariant rank d at point p, or simply a ten-
sor of rank .u;d/ at p. T is called contravariant if dD 0
and u> 0, and covariant if uD 0 and d > 0. A tensor
with u> 0 and d > 0 is then referred to as of mixed
type. Note that TpM D T 1

p0M and T�p M D T 0
p1M. The set

of tensor fields, i. e. smooth assignments of an element
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in T u
pdM for each p 2M, is denoted by (Tu

d M. Unless
stated otherwise, smooth means C1, i. e. continuously
differentiable to any order. For t 2 (Tu

d M, we denote by
tp 2 T u

pdM the evaluation of t at p 2M. C1.M/ denotes
the set of all C1 real-valued functions on M, which we
often simply call smooth functions.

Note that the general definition of metric is as
follows: g 2 (T0

2 M, such that gp is a symmetric nonde-
generate bilinear form on TpM. Such a metric provides
isomorphisms (sometimes called the musical isomor-
phisms)

[ W TpM! T�p M

X 7! X[ WD g.X; � / ; (17.1a)

] W T�p M! TpM

! 7! !] WD [�1.!/ :
(17.1b)

Using ], we obtain a metric g�1
p on T�p M from the met-

ric gp on TpM as follows

g�1
p .!1; !2/ WD gp.!

]
1 ; !

]
2 /D !1.!

]
2 / : (17.2)

We also recall that the tensor space T 1
p1M is naturally

isomorphic to the linear space End.TpM/ of all endo-
morphisms (linear self maps) of TpM. Hence, it carries
a natural structure as associative algebra, the product
being composition of maps denoted by ı. As usual, the
trace, denoted Tr, and the determinant, denoted det, are
the naturally defined real-valued functions on the space
of endomorphisms. For purely co- or contravariant ten-
sors the trace can be defined by first applying one of
the isomorphisms (17.1). In this case we write Trg to
indicate the dependence on the metric g.

Geometric representatives of curvature are often
denoted by bold-faced abbreviations of their names,
like Riem and Weyl for the (covariant, i. e. all in-
dices down) Riemann and Weyl tensors, Sec for the
sectional curvature, Ric and Ein for the Ricci and Ein-
stein tensors, Scal for the scalar curvature, and Wein
for the Weingarten map (which is essentially equiva-
lent to the extrinsic curvature). This is done in order
to highlight the geometric meaning behind some basic
formulae, at least the simpler ones. Later, as alge-
braic expressions become more involved, we will also
employ the standard component notation for computa-
tional ease.

17.3 Einstein’s Equations

Einstein’s equations form a set of 10 quasi-linear partial
differential equations of second order in spacetime. At
each point of spacetime (event) they equate 10 purely
geometric quantities to 10 quantities encoding the den-
sities (quantity per unit volume) and current densities
(quantity per unit area and unit time) of energy and mo-
mentum of matter. The geometric quantity in Einstein’s
equations is the Einstein tensor Ein; the matter quantity
is the energy–momentum tensor T. Both tensors are of
second rank, symmetric, and here taken to be covariant
(in components: all indices down).

Einstein’s equations (actually a single tensor equa-
tion, but throughout we use the plural to emphasize
that it comprises several component equations) state the
simple proportionality of Ein with T

EinD �T ; (17.3)

where � denotes the dimensionful constant of propor-
tionality. Note that no explicit reference to the dimen-
sion n enters (17.3), so that even if n¤ 4 it is usually

referred to as Einstein’s equations. We could have ex-
plicitly added a cosmological constant term gƒ on the
left-hand side, where ƒ is a constant the physical di-
mension of which is the square of an inverse length.
However, as long as we write down our formulae for
general T we may absorb this term into T, where it ac-
counts for a contribution Tƒ D�gƒ=�. This has to be
kept in mind when explicit models for T are used and
when we speak of vacuum, which now means

Tvacuum D Tƒ WD ���1gƒ : (17.4)

The signs are chosen such that a positiveƒ accounts for
a positive energy density and a negative pressure if the
spacetime is Lorentzian ("D�1).

There is another form of Einstein’s equations which
is sometimes advantageous to use and in which n ex-
plicitly enters

RicD �
�

T�
1

n� 2
gTrg.T/

�
: (17.5)
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These two forms are easily seen to be mathematically
equivalent by the identities

EinD Ric�
1

2
gTrg.Ric/ ; (17.6a)

RicD Ein�
1

n� 2
gTrg.Ein/ : (17.6b)

With respect to a local field of basis vectors fe0;
e1; : : : ; en�1g, we write Ein.e�; e�/DW G�� , T.e�;
e�/DW T�� , and Ric.e�; e�/DW R�� . Then (17.3) and
(17.5) take on the component forms

G�� D �T�� (17.7)

and

R�� D �

�
T�� �

1

n� 2
g��T��

�
; (17.8)

respectively. Next we explain the meanings of the sym-
bols in Einstein’s equations from left to right.

17.3.1 What Aspects of Geometry?

The left-hand side of Einstein’s equations comprises
certain measures of curvature. As will be explained in
detail in Sect. 17.5, all curvature information in dimen-
sions higher than two can be reduced to that of sectional
curvature. The sectional curvature at a point p 2M tan-
gent to spanfX; Yg 
 TpM is the Gauss curvature at p of
the submanifold spanned by the geodesics in M emanat-
ing from p tangent to spanfX; Yg. The Gauss curvature
is defined as the product of two principal curvatures,
each being measured in units of an inverse length (the
inverse of a principal radius). Hence, the Gauss curva-
ture is measured in units of an inverse length squared.

At each point p in spacetime the Einstein and Ricci
tensors are symmetric bilinear forms on TpM. Hence,
Einp and Ricp are determined by the values Einp.W;W/
and Ricp.W;W/ for all W 2 TpM. By continuity in W ,
this remains true if we restrict W to the open and
dense set of vectors which are not null, i. e. for which
g.W;W/¤ 0. As we will see later on, we then have

Ein.W;W/D�g.W;W/
N1X
?W

Sec ; (17.9)

Ric.W;W/DCg.W;W/
N2X
kW

Sec : (17.10)

For the Einstein tensor the sum on the right-hand
side is over any complete set of N1 D

1
2 .n� 1/.n�

2/ sectional curvatures of pairwise-orthogonal planes
in the orthogonal complement of W in TpM. For the
Ricci tensor it is over any complete set of N2 D n
� 1 sectional curvatures of pairwise-orthogonal planes
containing W . If W is a timelike unit vector represent-
ing an observer, Ein.W;W/ is simply .�"/ times an
equally weighted sum of spacelike sectional curvatures,
whereas Ric.W;W/ is " times an equally weighted sum
of timelike sectional curvatures. In that sense we may
say that, e.g., Ein.W;W/ at p 2M measures the mean
Gauss curvature of the (local) hypersurface in M that
is spanned by geodesics emanating from W orthogonal
to W . It, too, is measured in units of the square of an
inverse length.

17.3.2 What Aspects of Matter?

Now we turn to the right-hand side of Einstein’s equa-
tions. We restrict to four spacetime dimensions, though
much of what we say will apply verbatim to other di-
mensions. The tensor T on the right-hand side of (17.3)
is the energy–momentum tensor of matter. With respect
to an orthonormal basis fe0; e1; : : : ; en�1g with timelike
e0, the components T�� WD T.e�; e�/ form a symmet-
ric 4� 4 matrix, which we represent as follows by
splitting off terms involving a time component

T�� D

 
" �c EM
� 1

c
ES Tmn

!
: (17.11)

Here all matrix elements refer to the matter’s energy–
momentum distribution relative to the rest frame of the
observer who momentarily moves along e0 (i. e. with
four-velocity uD ce0) and uses the basis fe1; e2; e3g in
his/her rest frame. Then "D T00 is the energy density,
ESD .s1; s2; s3/ the (components of the) energy current
density, i. e. energy per unit surface area and unit time
interval, EM the momentum density, and finally Tmn the
(components of the) momentum current density, i. e.
momentum per unit of area and unit time interval. Note
that the symmetry T�� D T�� implies a simple relation
between the energy current density and the momentum
density

ESD c2 EM : (17.12)

The remaining relations Tmn D Tnm express equality
of the m-th component of the current density for n-
momentum with the n-th component of the current
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density for m-momentum. Note that the two minus
signs in front of the mixed components of (17.11)
would have disappeared had we written down the con-
travariant components T�� . In flat spacetime, the four
equations @�T�� express the local conservation of en-
ergy and momentum. In curved spacetime, the identity
(compare Sect. 17.5)

r�G�� � 0 (17.13)

implies via (17.7)

r�T�� D 0 ; (17.14)

which may be interpreted as expressing a local con-
servation of energy and momentum for the matter plus
the gravitational field, though there is no such thing as
a separate energy–momentum tensor on spacetime for
the gravitational field.

Several positivity conditions can be imposed on the
energy–momentum tensor T. The simplest is known as
the weak energy condition and reads T.W;W/� 0 for
all timelike W . It is equivalent to the requirement that
the energy density measured by any local observer is
nonnegative. For a perfect fluid of rest-mass density �
and pressure p, the weak energy condition is equiva-
lent to both conditions � � 0 and p ��c2�. The strong
energy condition says that

�
T� 1

2 gTrg.T/
�
.W;W/� 0

again for all timelike W . This neither follows nor im-
plies the weak energy condition. For a perfect fluid,
it is equivalent to both conditions p��c2� and p�
�c2�=3, i. e. to the latter alone if � is positive and to
the former alone if � is negative (which is not excluded
here). Its significance lies in the fact that it ensures
attractivity of gravity as described by Einstein’s equa-
tions. It must, for example, be violated if matter is
to drive inflation. Note that upon imposing Einstein’s
equations the weak and the strong energy conditions
read Ein.W;W/� 0 and Ric.W;W/� 0, respectively.
From (17.9) and (17.10), we can see that for fixed W
these imply conditions on complementary sets of sec-
tional curvatures.

17.3.3 A Small Digression on Symmetries

Conservation laws for the matter alone result in the
presence of symmetries. If V is a Killing vector field,
i. e. one has LVgD 0, where LV denotes the Lie deriva-
tive with respect to V, the 1-form JV that results from
contracting T with V is divergence free

JV WD iVTD V�T�� dx� ; (17.15)

where, because of Killing’s equation,

LVgD 0,r�V� Cr�V� D 0 ; (17.16)

and (17.14) one has

r�J�V D 0 : (17.17)

This may be equivalently expressed by saying that the
3-form ?JV , which is the Hodge dual of the 1-form JV ,
is closed

d ? JV D 0 : (17.18)

Integrating ?JV over some three-dimensional submani-
fold † results in a quantity

QŒV; †� WD
Z
†

?JV ; (17.19)

which, because of (17.18), is largely independent of †.
More precisely, if �
M is an oriented domain with
boundary @�D†1 �†2, then Stokes’ theorem gives
QŒV; †1�D QŒV; †2�. Suppose now that V arises from
a finite-dimensional Lie group G that acts from the
left on .M; g/ by isometries. Then this defines an anti-
homomorphism from the Lie algebra Lie.G/ of G into
the Lie algebra of vector fields on M. (For a right
action we would have obtained an ordinary homomor-
phism, but this is not important here.) This we denote by
V W � 7! V� for � 2 Lie.G/, so that ŒV� ;V��D�VŒ�;�
.
For fixed † the integral (17.18) then becomes a linear
map from Lie.G/ to R

P W Lie.G/!R ; P.�/ WD QŒV� ; †� : (17.20)

Hence, each hypersurface † defines an element P 2
Lie�.G/ in the vector space that is dual to the Lie al-
gebra, given that the integral over † converges. This
is the case for spacelike † and energy–momentum
tensors with spatially compact support (or at least suf-
ficiently rapid fall off). The same argument as above
using Stokes’ theorem and (17.18) then shows that P
is independent of the choice of spacelike †. In other
words, we obtain a conserved quantity P 2 Lie�.G/
for G-symmetric spacetimes satisfying Einstein’s equa-
tions. This map may be called the momentum map.
(Compare the notion of a momentum map in Hamil-
tonian mechanics; cf. Sect. 17.7.) Note that the value of
the momentum map is a quantity that is globally asso-
ciated with all of spacetime, not a particular region or
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point of it. The value lies in the vector space Lie�.G/
which carries the co-adjoint representation, Ad�, of G.
One may show that under the assumption of suitable
covariance properties for T, the momentum map, con-
sidered as a map from the matter fields to Lie�.G/,
is Ad� equivariant.

17.3.4 How Do Geometry and Matter
Relate Quantitatively?

We return to Einstein’s equations and finally discuss the
constant of proportionality � on the right-hand side of
(17.3). It is given by (J D joule)

� WD
8�G

c4
� 2:1�10�43 m�2

J m�3
; (17.21)

where G� 6:67384.80/�10�11 m3 kg�1 s�2 is New-
ton’s constant. It is currently (March 2013) known with
a relative standard uncertainty of 1:2�10�4 and is thus
by far the least well known of the fundamental physical
constants. cD 299 792 458 m s�1 is the vacuum speed
of light whose value is exact, due to the SI definition of
the meter (the meter is the length of the path traveled by
light in vacuum during a time interval of 1=299 792 458
of a second).

The physical dimension of � is T2=.M �L/, that
is, in SI units, s2 � kg�1 �m�1 or m�2=.J m�3/, where
JD jouleD kg m2 s�2. It converts the common physi-
cal dimension of all components T�� , which is that of

an energy density (joule per cubic meter in SI units) into
that of the components of Ein, which is that of curva-
ture (in dimension � 2), i. e., the square of an inverse
length (inverse square meter in SI units).

If we express energy density as mass density
times c2, the conversion factor is �c2 D 8�G=c2. It can
be expressed in various units that give a feel for the
local curving power of mass densities. For that of wa-
ter, �W � 103 kg m�3, and nuclear matter in the core of
a neutron star (which is more than twice that of atomic
nuclei), �N � 5�1017 kg m�3, we get, respectively

�c2 �

�
1

1:5 AU

�2

� ��1
W �

�
1

10 km

�2

� ��1
N ;

(17.22)

where AUD 1:5�1011 m is the astronomical unit
(mean Earth–Sun distance). Hence, roughly speaking,
matter densities of water cause curvature radii of the or-
der of the astronomical unit, whereas the highest known
densities of nuclear matter cause curvature radii of tens
of kilometers. The curvature caused by mere mass den-
sity is that expressed in Ein.W;W/ when W is taken
to be the unit timelike vector characterizing the local
rest frame of the matter: it is a mean of spatial sectional
curvatures in the matter’s local rest frame. Analogous
interpretations can be given for the curvatures caused
by momentum densities (energy current densities) and
momentum current densities (stresses).

17.4 Spacetime Decomposition

In this section we explain how to decompose a given
spacetime .M; g/ into space and time. For this to be
possible we need to make the assumption that M is dif-
feomorphic to the product of the real line R and some
3-manifold †

M ŠR�† : (17.23)

This will necessarily be the case for globally hyper-
bolic spacetimes, i. e. spacetimes admitting a Cauchy
surface [17.24]. We assume † to be orientable, for, if
it were not, we could take the orientable double cover
of it instead. Orientable 3-manifolds are always par-
allelizable [17.25], i. e. admit three globally defined
and pointwise linearly independent vector fields. This
is equivalent to the triviality of the tangent bundle.

In the closed case this is known as Stiefel’s theo-
rem (compare [17.26], problem 12-B) and in the open
case it follows, e.g., from the well-known fact that ev-
ery open 3-manifold can be immersed in R3 [17.27].
Note that orientability is truly necessary; e.g., RP2 �

S1 is not parallelizable. Since Cartesian products of
parallelizable manifolds are again parallelizable, it fol-
lows that a four-dimensional product spacetime (17.23)
is also parallelizable. This does, of course, not gen-
eralize to higher dimensions. Now, for noncompact
four-dimensional spacetimes it is known from [17.28]
that parallelizability is equivalent to the existence of a
spin structure, without which spinor fields could not
be defined on spacetime (compare Chap. 15). So, we
see that the existence of spin structure is already im-
plied by (17.23) and hence does not pose any further
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Fig. 17.1 Spacetime M is foliated by a one-parameter fam-
ily of spacelike embeddings of the 3-manifold †. Here the
image †s0 of † under "s0 lies to the future (above) and†s00

to the past (below) of†s if s00 < s< s0. Future and past re-
fer to the time function t, which has so far not been given
any metric significance

topological restriction. Note that the only other poten-
tial topological restriction at this stage is that imposed
from the requirement that a smooth Lorentz metric is
to exist everywhere on spacetime. This is equivalent
to a vanishing Euler characteristic (see, e.g., [17.25,
§ 40]), which in turn is equivalent to the global exis-
tence of a continuous, nowhere-vanishing vector field
(possibly up to sign) on spacetime. But such a vector
field clearly exists on any Cartesian product with one
factor being R. We conclude that existence of a Lorentz
metric and a spin structure on an orientable spacetime
M DR�† poses no restrictions on the topology of
an orientable †. As we will see later on, even Ein-
stein’s equations pose no topological restriction on †,
in the sense that some (physically reasonable) solutions
to Einstein’s equations exist for any given †. Topo-
logical restrictions may occur, however, if we ask for
solutions with special properties (see below).

Now, given †, we consider a one-parameter family
of embeddings (see Fig. 17.1)

"s W†!M ; †s WD "s.†/
M : (17.24)

We distinguish between the abstract 3-manifold †
and its image †s in M. The latter is called the leaf
corresponding to the value s 2 R. Each point in M is
contained in precisely one leaf. Hence, there is a real-
valued function t WM!R that assigns to each point
in M the parameter value of the leaf it lies on

t.p/D s, p 2†s : (17.25)

So far this is only a foliation of spacetime by three-
dimensional leaves. For them to be addressed as space,
the metric induced on them must be positive definite,

that is, the leaves should be spacelike submanifolds.
This means that the 1-form dt is timelike

g�1.dt; dt/ < 0 : (17.26)

The normalized field of 1-forms is then

n[ WD
dtp

�g�1.dt; dt/
: (17.27)

As explained in Sect. 17.2, we write n[ since we think
of this 1-form as the image under g of the normalized
vector field perpendicular to the leaves

n[ D g.n; � / : (17.28)

The linear subspace of vectors in TpM which are
tangent to the leaf through p is denoted by Tkp M; hence

Tkp M WD fX 2 TpM j dt.X/D 0g : (17.29)

The orthogonal complement is just the span of n at p,
which we denote by T?p M. This gives, at each point p
of M, the g-orthogonal direct sum

TpM D T?p M˚ Tkp M (17.30)

and associated projections (we drop reference to the
point p)

P? W TM! T?M ;

X 7! "g.X; n/ n ;
(17.31a)

Pk W TM! TkM ;

X 7! X� "g.X; n/ n :
(17.31b)

As already announced in Sect. 17.2, we introduced the
symbol

"D g.n;n/ ; (17.32)

in order to keep track of where the signature matters.
Note that the projection operators (17.31) are self ad-
joint with respect to g, so that for all X; Y 2 TM we have

g.P?X; Y/D g.X;P?Y/; (17.33a)

g.PkX; Y/D g.X;PkY/ : (17.33b)

A vector is called horizontal iff it is in the kernel
of P?, which is equivalent to being invariant under Pk.
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It is called vertical iff it is in the kernel of Pk, which is
equivalent to being invariant under P?.

All this can be extended to forms. We define vertical
and horizontal forms as those annihilating horizontal
and vertical vectors, respectively

T�?p M WD f! 2 T�p M j !.X/D 0 ; 8X 2 Tkp Mg ;
(17.34a)

T�kp M WD f! 2 T�p M j !.X/D 0 ; 8X 2 T?p Mg :
(17.34b)

Using the musical isomorphisms (17.1), the self-adjoint
projection maps (17.31) on vectors define self-adjoint
projection maps on covectors (again dropping the refer-
ence to the base point p)

P?
�

WD [ ıP? ı ] W T�M! T�?M ; (17.35a)

Pk
�

WD [ ıPk ı ] W T�M! T�kM : (17.35b)

For example, letting the horizontal projection of the
form ! act on the vector X, we get

Pk
�

!.X/D .Pk!]/[.X/

D g.Pk!];X/

D g.!];PkX/

D !.PkX/ ; (17.36)

where we merely used the definitions (17.1) of [ and ]
in the second and fourth equalities, respectively, and the
self adjointness (17.33b) of Pk in the third equality. The
analogous relation holds for P?

�

!.X/. It is also straight-
forward to check that Pk

�

and P?
�

are self adjoint with
respect to g�1 (cf. (17.2)).

Having the projections defined for vectors and cov-
ectors, we can also define them for the whole tensor
algebra of the underlying vector space, just by tak-
ing the appropriate tensor products of these maps. All
tensor products between Pk and Pj

�

will then, for sim-
plicity, just be denoted by Pk, the action on the tensor
being obvious. Similarly for P?. (In what follows we
need not consider mixed projections.) The projections
being pointwise operations, we can now define verti-
cal and horizontal projections of arbitrary tensor fields.
Hence, a tensor field T 2 (Tu

d M is called horizontal iff
PkT D T . The space of horizontal tensor fields of rank
.u;d/ is denoted by (Tkud M.

As an example, the horizontal projection of the met-
ric g is

h WD Pkg WD g.Pk � ;Pk � /D g� "n[˝ n[ : (17.37)

Hence, h 2 (Tk02 M. Another example of a horizontal
vector field is the acceleration of the normal field n

a WD rnn : (17.38)

Here r denotes the Levi-Civita covariant derivative
with respect to g. An observer who moves perpendicu-
lar to the horizontal leaves has four-velocity uD cn and
four-acceleration c2a. If L denotes the Lie derivative, it
is easy to show that the acceleration 1-form satisfies

a[ D Lnn[ : (17.39)

Moreover, as n is hypersurface orthogonal, it is irrota-
tional; hence, its 1-form equivalent satisfies

dn[ ^ n[ D 0 ; (17.40a)

which is equivalent to the condition of vanishing hori-
zontal curl

Pk dn[ D 0 : (17.40b)

Equation (17.40a) can also be immediately inferred di-
rectly from (17.27). Taking the operation in ıd (exterior
derivative followed by contraction with n) as well as the
Lie derivative with respect to n of (17.39) shows that

da[ ^ n[ D 0 ; (17.41a)

an equivalent expression being again the vanishing of
the horizontal curl of a

Pk da[ D 0 : (17.41b)

This will be useful later on.
Note that a is a horizontal covector field, i. e. an

element of (TkuD0
dD1M. More generally, for a purely

covariant horizontal tensor field we have the follow-
ing results, which will also be useful later on: let T 2
(Tk0d M; then

PkLnT D LnT ; (17.42a)

LfnT D fLnT ; (17.42b)

for all f 2 C1.M/. Note that (17.42a) states that the
Lie derivative in the normal direction of a horizontal co-
variant tensor field is again horizontal. That this is not
entirely evident follows, e.g., from the fact that a cor-
responding result does not hold for T 2 (Tkud M where
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Fig. 17.2 For fixed q 2† its image points pD "s.q/ and
p0 D "sCds.q/ for infinitesimal ds are connected by the
vector @=@tjp , whose components normal to †s are ˛ (one
function, called lapse) and ˇ (three functions, called shift),
respectively

u> 0. The proofs of (17.42) just use standard manipu-
lations.

A fixed space point q 2† defines the worldline (his-
tory of that point) R 3 s 7! "s.q/. The collection of all
worldlines of all space points defines a foliation of M
into one-dimensional timelike leaves. Each leaf is now
labeled uniquely by a space point. We can think of
space, i. e., the abstract manifold †, as the quotient
M=, where p p0 iff both points lie on the same
worldline. As any †s intersects each worldline exactly
once, each †s is a representative of space. Instead of
using the foliation by three-dimensional spatial leaves
(17.24), we could have started with a foliation by time-
like lines, plus the condition that these lines are vorticity
free. These two concepts are equivalent. Depending on
the context, one might prefer to emphasize one or the
other.

The vector parallel to the worldline at pD "s.q/ is,
as usual in differential geometry, defined by its action
on f 2 C1.M/ (smooth, real-valued functions)

@

@t

ˇ̌̌
ˇ
"s.q/

f D
df ."s0.q//

ds0

ˇ̌̌
ˇ
s0Ds

: (17.43)

At each point this vector field can be decomposed into
its horizontal component that is tangential to the leaves
of the given foliation and its normal component. We
write

1

c

@

@t
D ˛nCˇ ; (17.44)

where ˇ is the tangential part; see Fig. 17.2.
The real-valued function ˛ is called the lapse (func-

tion) and the horizontal vector field ˇ is called the shift
(vector field).

17.4.1 Decomposition of the Metric

Let fe0; e1; e2; e3g be a locally defined orthonormal
frame with dual frame f0; 1; 2; 3g. We call them
adapted to the foliation if e0 D n and 0 D n[. A lo-
cal coordinate system fx0; x1; x2; x3g is called adapted
if @=@xa are horizontal for aD 1; 2; 3. Note that in the
latter case @=@x0 is not required to be orthogonal to the
leaves (i. e. it need not be parallel to n). For example,
we may take x0 to be proportional to t; say x0 D ct.

In the orthonormal coframe the spacetime metric,
i. e. the field of signature .";C;C;C/ metrics in the
tangent spaces, has the simple form

gD "0˝ 0C

3X
aD1

a˝ a : (17.45)

The inverse spacetime metric, i. e. the field of signa-
ture .";C;C;C/ metrics in the cotangent spaces, has
the form

g�1 D "e0˝ e0C

3X
aD1

ea˝ ea : (17.46)

The relation that expresses the coordinate basis in
terms of the orthonormal basis is of the form (in a self-
explanatory matrix notation)

 
@

@x0

@
@xm

!
D

�
˛ ˇa

0 Aa
m

��
e0

ea

�
; (17.47)

where ˇa are the components of ˇ with respect to the
horizontal frame basis feag. The inverse of (17.47) is

�
e0

ea

�
D

�
˛�1 �˛�1ˇm

0 ŒA�1�ma

� @

@x0

@
@xm

!
; (17.48)

where ˇm are the components of ˇ with respect to the
horizontal coordinate-induced frame basis f@=@xmg.

The relation for the cobases dual to those in (17.47)
is given by the transpose of (17.47), which we write as

�
0 a

�
D
�

dx0 dxm
� �˛ ˇa

0 Aa
m

�
: (17.49)

The inverse of that is the transpose of (17.48)

�
dx0 dxm

�
D
�
0 a

� �˛�1 �˛�1ˇm

0 ŒA�1�ma

�
:

(17.50)
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Orthogonality of the ea implies for the chart com-
ponents of the spatial metric (17.37)

hmn WD h

�
@

@xm
;
@

@xn

�
D

3X
aD1

Aa
mAa

n (17.51)

and its inverse

hmn WD h�1 .dxm; dxn/D

3X
aD1

ŒA�1�ma ŒA
�1�na :

(17.52)

Inserting (17.49) into (17.45) and using (17.51)
leads to the (3C 1)-form of the metric in adapted co-
ordinates

gD ."˛2C h.ˇ; ˇ//c2 dt˝ dt

C cˇm .dt˝ dxmC dxm˝ dt/

C hmn dxm˝ dxn ; (17.53)

where ˇm WD hmnˇ
n are the components of ˇ[ WD

g.ˇ; � /D h.ˇ; � / with respect to the coordinate basis
f@=@xmg. Likewise, inserting (17.50) into (17.46) and
using (17.52) leads to the (3C 1)-form of the inverse
metric in adapted coordinates (we write @t WD @=@t and
@m WD @=@xm for convenience)

g�1 D "c�2˛�2@t˝ @t

� "c�1˛�2ˇm .@t˝ @mC @m˝ @t/

C .hmnC "ˇmˇn/ @m˝ @n : (17.54)

Finally, we note that the volume form on spacetime
also easily follows from (17.49)

d�g D 
0 ^ 1^ 2 ^ 3

D ˛
p

detfhmngcdt^ d3x ; (17.55)

where we use the standard shorthand d3xD dx1^ dx2^

dx3.

17.4.2 Decomposition
of the Covariant Derivative

Given horizontal vector fields X and Y , the covariant
derivative of Y with respect to X need not be horizontal.
Its decomposition is written as

rXY DDXYC nK.X; Y/ ; (17.56)

where

DXY WD PkrXY ; (17.57)

K.X;Y/ WD "g.n;rXY/ : (17.58)

The map D defines a covariant derivative (in the sense
of Kozul; compare [17.29, Vol. 2]) for horizontal vector
fields, as a trivial check of the axioms reveals. More-
over, since the commutator ŒX; Y� of two horizontal
vector fields is always horizontal (since the horizontal
distribution is integrable by construction), we have

TD.X; Y/D DXY �DYX� ŒX; Y�

D Pk .rXY �rY X� ŒX; Y�/

D 0 ; (17.59)

due to r being torsion free. We recall that torsion is
a tensor field T 2 (T1

2 M associated with each covariant
derivative r via

Tr.X; Y/DrXY �rYX� ŒX; Y� : (17.60)

We have T.X; Y/D�T.Y;X/. As usual, even though
the operations on the right-hand side of (17.60) in-
volve tensor fields (we need to differentiate), the result
of the operation just depends on X and Y pointwise.
This one proves by simply checking the validity of
T.fX; Y/D fT.X; Y/ for all smooth functions f . Hence,
(17.59) shows that D is torsion free becauser is torsion
free.

Finally, we can uniquely extend D to all horizon-
tal tensor fields by requiring the Leibniz rule. Then, for
X; Y;Z horizontal

.DXh/.Y;Z/

D X .h.Y;Z//� h.DXY;Z/� h.Y;DXZ/

D X .g.Y;Z//� g.rXY;Z/� g.Y;rXZ/

D .rXg/.Y;Z/D 0 ; (17.61)

due to the metricity, rgD 0, of r. Hence, D is metric
in the sense that

DhD 0 : (17.62)

The map K from pairs of horizontal vector fields
.X; Y/ into functions defines a symmetric tensor field.
Symmetry follows from the vanishing torsion of r,
since then

K.X; Y/D "g.n;rXY/

D "g.n;rYXC ŒX; Y�/

D "g.n;rYX/

D K.Y;X/ ; (17.63)
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for horizontal X; Y . From (17.58), one sees that
K.fX;Y/D fK.X; Y/ for any smooth function f .
Hence, K defines a unique symmetric tensor field on M
by stipulating that it be horizontal, i. e. K.n; � /D 0. It is
called the extrinsic curvature of the foliation or second
fundamental form, the first fundamental form being the
metric. From (17.58) and the symmetry just shown, one
immediately infers the alternative expressions

K.X; Y/D�"g.rXn;Y/D�"g.rYn;X/ : (17.64)

This shows the relation between the extrinsic curvature
and the Weingarten map, Wein, also called the shape
operator, which sends horizontal vectors to horizontal
vectors according to

X 7!Wein.X/ WD rXn : (17.65)

Horizontality of rXn immediately follows from n be-
ing normalized: g.n;rXn/D 1

2 X .g.n;n//D 0. Hence,
(17.64) simply becomes

K.X; Y/D�"h .Wein.X/; Y/

D�"h .X;Wein.Y// ; (17.66)

where we replaced g with h – defined in (17.37) – since
both entries are horizontal. It says that K is .�"/ times
the covariant tensor corresponding to the Weingarten
map, and that the symmetry of K is equivalent to the
self adjointness of the Weingarten map with respect

to h. The Weingarten map characterizes the bending of
the embedded hypersurface in the ambient space by an-
swering the following question: in what direction and
by what amount does the normal to the hypersurface tilt
if, starting at point p, you progress within the hypersur-
face by the vector X. The answer is just Weinp.X/. Self
adjointness of Wein then means that there always exist
three (n� 1 in general) perpendicular directions in the
hypersurface along which the normal tilts in the same
direction. These are the principal curvature directions
mentioned above. The principal curvatures are the cor-
responding eigenvalues of Wein.

Finally, we note that the covariant derivative of the
normal field n can be written in terms of the acceleration
and the Weingarten map as follows

rnD "n[˝ aCWein : (17.67)

Recalling (17.66), the purely covariant version of this is

rn[ D�"
�

K � n[˝ a[
	
: (17.68)

From (17.37) and (17.68), we derive by standard ma-
nipulation, using vanishing torsion

LnhD�2"K : (17.69)

In the presence of torsion there would be an additional
term C2.inT/[s , where the subscript s denotes sym-
metrization; in coordinates Œ.inT/[s ��� D n�T˛

�.�
g
�/˛

.

17.5 Curvature Tensors

We wish to calculate the (intrinsic) curvature tensor
ofr and express it in terms of the curvature tensor of D,
the extrinsic curvature K, and the spatial and normal
derivatives of n and K. Before we do this, we wish to
say a few words on the definition of the curvature mea-
sures in general.

All notions of curvature eventually reduce to that
of curves. For a surface S embedded in R3, we have
the notion of Gauss curvature, which comes about as
follows: consider a point p 2 S and a unit vector v
at p tangent to S. Consider all smooth curves passing
through p with unit tangent v. It is easy to see that
the curvatures at p of all such curves are not bounded
from above (due to the possibility of bending within
the surface), but there will be a lower bound, k.p; v/,
which just depends on the chosen point p and the tan-

gent direction represented by v. Now consider k.p; v/ as
a function of v. As v varies over all tangent directions,
k.p; v/ will assume a minimal and a maximal value, de-
noted by kmin.p/D k.p; vmin/ and kmax.p/D k.p; vmax/,
respectively. These are called the principal curvatures
of S at p and their reciprocals are called the principal
radii. It is clear that the principal directions vmin and
vmax just span the eigenspaces of the Weingarten map
discussed above. In particular, vmin and vmax are orthog-
onal. The Gaussian curvature K.p/ of S at p is then
defined to be the product of the principal curvatures

K.p/D kmin.p/ � kmax.p/ : (17.70)

This definition is extrinsic in the sense that essential use
is made of the ambient R3 in which S is embedded.
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However, Gauss’ theorema egregium states that this no-
tion of curvature can also be defined intrinsically, in the
sense that the value K.p/ can be obtained from geomet-
ric operations entirely carried out within the surface S.
More precisely, it is a function of the first fundamen-
tal form (the metric) only, which encodes the intrinsic
geometry of S, and does not involve the second fun-
damental form (the extrinsic curvature), which encodes
how S in embedded into R3.

Let us briefly state Gauss’ theorem in mathematical
terms. Let

gD gab dxa˝ dxb (17.71)

be the metric of the surface in some coordinates, and

(c
ab D

1
2 gcd.�@dgabC @agbdC @bgda/ (17.72)

certain combinations of first derivatives of the metric
coefficients, now known under the name of Christoffel
symbols. Next we form even more complicated com-
binations of first and second derivatives of the metric
coefficients, namely

Ra
b cd D @c(

a
db� @d(

a
cbC(

a
cn(

n
db �(

a
dn(

n
cb ; (17.73)

which are now known as components of the Riemann
tensor. From them we form the totally covariant (all in-
dices down) components

Rab cd D ganRn
b cd : (17.74)

They are anti-symmetric in the first and second in-
dex pair: Rab cd D�Rba cd D�Rab dc, so that R12 12 is
the only independent component. Gauss’ theorem now
states that at each point on S we have

K D
R12 12

g11g22� g2
12

: (17.75)

An important part of the theorem is to show that this
actually makes sense, i. e., that the right-hand side is
independent of the coordinate system that we use to
express the coefficients. This is easy to check once
one knows that Rabcd are the coefficients of a tensor
with the symmetries just stated. In this way the cur-
vature of a surface, which was primarily defined in
terms of curvatures of certain curves on the surface,
can be understood intrinsically. In what follows we
will see that the various measures of intrinsic curva-
tures of n-dimensional manifolds can be reduced to that

of two-dimensional submanifolds, which will be called
sectional curvatures.

Back to the general setting, we start from the no-
tion of a covariant derivative r. Its associated curvature
tensor is defined by

R.X; Y/Z D
�
rXrY �rYrX �rŒX;Y


�
Z : (17.76)

For each point p 2M, it should be thought of as a map
that assigns to each pair X; Y 2 TpM of tangent vectors
at p a linear map R.X; Y/ W TpM! TpM. This assign-
ment is anti-symmetric, i. e. R.X; Y/D�R.Y;X/. If
R.X; Y/ is applied to Z, the result is given by the
right-hand side of (17.76). Despite first appearance, the
right-hand side of (17.76) at a point p 2M only depends
on the values of X; Y , and Z at that point and hence de-
fines a tensor field. This one again proves by showing
the validity of R.fX; Y/Z D R.X; fY/Z D R.X; Y/fZ D
fR.X; Y/Z for all smooth real-valued functions f on M.
In other words: all terms involving derivatives of f can-
cel.

From (17.76) and using (17.60), one may show that
the Riemann tensor always obeys the first and second
Bianchi identities

X
.XYZ/

R.X; Y/Z

D
X
.XYZ/

f.rXT/.Y;Z/�T .X; T.Y;Z//g ; (17.77a)

X
.XYZ/

.rXR/.Y;Z/

D
X
.XYZ/

R .X; T.Y;Z// ; (17.77b)

where the sums are over the three cyclic permutations
of X, Y , and Z. For zero torsion these identities read in
component form

X
.���/

R˛��� D 0 ; (17.78a)

X
.���/

r�R˛ˇ�� D 0 : (17.78b)

The second traced on .˛; �/ and contracted with gˇ�

yields .�2/ times (17.13).
The covariant Riemann tensor is defined by

Riem.W;Z;X; Y/ WD g .W;R.X; Y/Z/ : (17.79)
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For general covariant derivatives its only symmetry
is the anti-symmetry in the last pair. But, for special
choices, it acquires more. In standard general relativity
we assume the covariant derivative to be metric com-
patible and torsion free

rgD 0 : (17.80)

T D 0 : (17.81)

In that case the Riemann tensor has the symmetries

Riem.W;Z;X; Y/D�Riem.W;Z; Y;X/ ; (17.82a)

Riem.W;Z;X; Y/D�Riem.Z;W;X; Y/ ;
(17.82b)

Riem.W;X; Y; Z/CRiem.W;Y;Z;X/

CRiem.W;Z;Y;X/D 0 ;
(17.82c)

Riem.W;Z;X; Y/D R.X; Y;W;Z/ : (17.82d)

Equation (17.82a) is true by definition (17.76), (17.82b)
is equivalent to metricity of r, and (17.82c) is the
first Bianchi identity in the case of zero torsion. The
last symmetry (17.82d) is a consequence of the pre-
ceding three. Together (17.82a), (17.82b), and (17.82d)
say that, at each point p 2M, Riem can be thought
of as a symmetric bilinear form on the anti-symmetric
tensor product TpM ^TpM. The latter has dimension
N D 1

2 n.n� 1/ if M has dimension n, and the space
of symmetric bilinear forms has dimension 1

2 N.NC1/.
From that number we have to subtract the number of
independent conditions (17.82c), which is

�n
4

�
in dimen-

sions n� 4 and zero otherwise. Indeed, it is easy to see
that (17.82c) is identically satisfied as a consequence
of (17.82a) and (17.82b) if any two vectors W;Z;X; Y
coincide (proportionality is sufficient). Hence, the num-
ber # of independent components of the curvature
tensor is

#RiemD8̂ˆ̂<
ˆ̂̂:

1

2
N.NC 1/�

 
n

4

!
D

1

12
n2.n2� 1/ for n� 4 ;

6 for nD 3 ;

1 for nD 2I :

(17.83)

The Ricci and scalar curvatures are obtained by
taking traces with respect to g: let fe1; : : : ; eng be an or-
thonormal basis and g.ea; eb/D ıab"a (no summation)

with "a D˙1; then

Ric.X;Y/D
nX

aD1

"a Riem.ea;X; ea;Y/ ; (17.84)

ScalD
nX

aD1

"a Ric.ea; ea/ : (17.85)

The Einstein tensor is

EinDRic� 1
2 Scal g : (17.86)

The sectional curvature is defined by

Sec.X;Y/D
Riem.X; Y;X; Y/

g.X;X/g.Y;Y/� Œg.X; Y/�2
: (17.87)

Here X; Y is a pair of linearly independent tangent
vectors that span a two-dimensional tangent subspace
restricted to which g is nondegenerate. We will say
that spanfX; Yg is nondegenerate. This is the nec-
essary and sufficient condition for the denominator
on the right-hand side to be nonzero. The quantity
Sec.X; Y/ is called the sectional curvature of the man-
ifold .M; g/ at point p tangent to spanfX; Yg. From the
symmetries of Riem, it is easy to see that the right-
hand side of (17.87) does indeed only depend on the
span of X; Y . That is, for any other pair X0;Y 0 such
that spanfX0; Y 0g D spanfX; Yg, we have Sec.X0;Y 0/D
Sec.X; Y/. The geometric interpretation of Sec.X;Y/ is
as follows: consider all geodesics of .M; g/ that pass
through the considered point p 2M in a direction tan-
gential to spanfX; Yg. In a neighborhood of p they form
an embedded 2-surface in M whose Gauss curvature is
just Sec.X;Y/.

Now, Riem is determined by components of the
form Riem.X; Y;X; Y/, as follows from the fact that
Riem is a symmetric bilinear form on TM^ TM. This
remains true if we restrict to those X; Y whose span is
nondegenerate, since they lie dense in TM ^TM and
.X; Y/ 7! Riem.X; Y;X; Y/ is continuous. This shows
that the full information of the Riemann tensor can be
reduced to certain Gauss curvatures.

This also provides a simple geometric interpreta-
tion of the scalar and Einstein curvatures in terms
of sectional curvatures. Let fX1; : : : ;Xng be any set
of pairwise-orthogonal nonnull vectors. The 1

2 n.n� 1/
planes spanfXa;Xbg are nondegenerate and also pair-
wise orthogonal. It then follows from (17.85) and
(17.87) that the scalar curvature is twice the sum of all
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sectional curvatures

ScalD 2
nX

a;bD1
a<b

Sec.Xa;Xb/ : (17.88)

The sum on the right-hand side of (17.88) is the same
for any set of 1

2 n.n� 1/ nondegenerate and pairwise-
orthogonal 2-planes. Hence, the scalar curvature can
be said to be twice the sum of scalar curvatures, or
n.n� 1/ times the mean scalar curvature. Similarly for
the Ricci and Einstein curvatures. The symmetry of
the Ricci and Einstein tensors implies that they are
fully determined by their components Ric.W;W/ and
Ein.W;W/. Again, this remains true if we restrict to
the dense set of nonnull W , i. e. g.W;W/¤ 0. Let
now fX1; : : : ;Xn�1g be any set of mutually orthogonal
vectors (again they need not be normalized) in the or-
thogonal complement of W . As before, the 1

2 .n�1/.n�
2/ planes spanfXa;Xbg are nondegenerate and pairwise
orthogonal. From (17.84), (17.86), and (17.87), it fol-
lows that

Ric.W;W/D g.W;W/
n�1X
aD1

Sec.W;Xa/ (17.89)

and

Ein.W;W/D�g.W;W/
n�1X

a;bD1
a<b

Sec.Xa;Xb/ :

(17.90)

Again, the right-hand sides will be the same for any set
fX1; : : : ;Xn�1g of n� 1 mutually orthogonal vectors in
the orthogonal complement of W . Note that Ric.W;W/
involves all sectional curvatures involving W , whereas
Ein.W;W/ involves all sectional curvatures orthogonal
to W . For normalized W , where g.W;W/D � D˙1,
we can say that��G.W;W/ is the sum of sectional cur-
vatures orthogonal to W , or 1

2 .n� 1/.n� 2/ times their
mean. Note that for timelike W we have � D�1 and
G.W;W/ is just the sum of spatial sectional curvatures.

Finally, we mention the Weyl tensor, which contains
that part of the information in the curvature tensor not
captured by the Ricci (or Einstein) tensor. To state its
form in a compact form, we introduce the Kulkarni–
Nomizu product, denoted by an encircled wedge, �,
which is a bilinear symmetric product on the space
of covariant symmetric rank-two tensors with values

in the covariant rank-four tensors that have the sym-
metries (17.82) of the Riemann tensor. Let k and `
be two symmetric covariant second-rank tensors; then
their Kulkarni–Nomizu product is defined by

k � `.X1;X2;X3;X4/ WD k.X1;X3/`.X2;X4/

C k.X2;X4/`.X1;X3/

� k.X1;X4/`.X2;X3/

� k.X2;X3/`.X1;X4/ ;

(17.91)

or in components

.k � `/abcd D kac`bdC kbd`ac � kad`bc � kbc`ad :

(17.92)

The Weyl tensor Weyl is of the same type as Riem but
in addition totally trace free. Its definition is

WeylD Riem�
1

n� 2

�
Ric�

1

2.n� 1/
Scal g

�
�g :

(17.93)

Its number of independent components is

#WeylD(
1

12 n.nC 1/ Œn.n� 1/� 6� for n� 4 ;

0 for n	 3 :
(17.94)

Note that in nD 3 dimensions the Weyl tensor also al-
ways vanishes, so that (17.93) can be used to express
the Riemann tensor in terms of the Ricci and scalar
curvature

RiemD
�
Ric� 1

4 Scal g
�
�g .for nD 3/ : (17.95)

A metric manifold .M; g/ is said to be of constant
curvature if

RiemD kg � g ; (17.96)

for some function k. Then RicD 2k.n� 1/g and EinD
�k.n� 1/.n� 2/g. We recall that manifolds .M; g/ for
which the Einstein tensor (equivalently, the Ricci ten-
sor) is pointwise proportional to the metric are called
Einstein spaces. The twice-contracted second Bianchi
identity (17.13) shows that k must be a constant unless
nD 2. For nD 3, (17.95) shows that Einstein spaces are
of constant curvature.
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17.5.1 Comparing Curvature Tensors

Sometimes one wants to compare two different cur-
vature tensors belonging to two different covariant
derivatives Or and r. In what follows, all quantities
referring to Or carry a hat. Recall that a covariant deriva-
tive can be considered as a map r W (T1

0 M�(T1
0 M!

(T1
0 M, .X;Y/ 7! rXY , which is C1.M/-linear in the

first and a derivation in the second argument. That is,
for f 2 C1.M/ we have rfXCY Z D frXZCrYZ and
rX.fYC Z/D X.f /YC frXYCrXZ. This implies that
the difference of two covariant derivatives is C1.M/-
linear also in the second argument and hence a tensor
field

Or �r DW� 2 (T1
2 M : (17.97)

Replacing Or with r C� in the definition of the curva-
ture tensor for Or according to (17.76) directly leads to

OR.X; Y/Z D R.X; Y/Z

C .rX�/.Y;Z/� .rY�/.X;Z/

C�.X; �.Y;Z//��.Y; �.X;Z//

C�.T.X; Y/;Z/ :

(17.98)

Note that so far no assumptions have been made con-
cerning torsion or metricity of Or and r. This formula
is generally valid. In the special case where Or andr are
the Levi-Civita covariant derivatives with respect to two
metrics Og and g, we set (for the rest of this subsection,
h has a different meaning than that of (17.37))

h WD Og� g ; (17.99)

which is a symmetric covariant tensor field. We recall
that the Levi-Civita covariant derivative is uniquely de-
termined by the metric. For r, this reads

2g.rXY;Z/

D X.g.Y;Z//CY.g.Z;X//� Z.g.X;Y//

� g.X; ŒY; Z�/C g.Y; ŒZ;X�/C g.Z; ŒX; Y�/ :

(17.100)

Subtracting (17.100) from the corresponding formula
with r and g replaced by Or and Og yields, using T D 0,

2Og .�.X; Y/;Z/

D�.rZh/.X;Y/C .rXh/.Y;Z/C .rYh/.Z;X/ :

(17.101)

This formula expresses � as a functional of g and Og.
There are various equivalent forms of it. We have
chosen a representation that somehow minimizes the
appearance of Og. Note that g enters in h as well as r,
whereas Og enters in h and via the scalar product on the
left-hand side. The latter obstructs expressing � as a
functional of g and h alone. In components (17.101)
reads

�a
bc D

1
2 Og

an .�rnhbcCrbhcnCrchnb/ : (17.102)

Note that one could replace the components of h with
those of OgD gCh in the bracket on the right-hand side,
since the covariant derivatives of g vanish.

Now suppose we consider h and its first and second
derivatives to be small and we wanted to know the dif-
ference in the covariant derivatives and curvatures only
to leading (linear) order in h. To that order, we may re-
place Og with g on the left-hand side of (17.101) and the
right-hand side of (17.102). Moreover, we may neglect
the �-squared terms in (17.98) and obtain, writing ıR
for the first order in h contribution to OR�R

ıRa
bcd Drc�

a
db�rd�

a
cb : (17.103)

From this, the first-order variation of the Ricci tensor
follows

ıRab Drn�
n
ab �rb�

n
na

D 1
2 .��ghab�rarbhCrar

nhnbCrbr
nhna/ ;

(17.104)

where�g WD gabrarb and hD gabhab. Finally, the vari-
ation of the scalar curvature is (note that ıgab D

�gacgbdıgcd D�hab)

ıRD�RabhabCraUa ; (17.105a)

where

Ua D gnm�a
nm� gan�m

mn

Drbhab�rahb
b

D Gabcdrbhcd : (17.105b)

Here we made use of the DeWitt metric, which defines
a symmetric nondegenerate bilinear form on the space
of symmetric covariant rank-two tensors and which in
components reads

Gabcd D
1

2
.gacgbdC gadgbc� 2gabgcd/ : (17.106)

We will later have to say more about it.
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We also wish to state a useful formula that compares
the curvature tensors for conformally related metrics,
i. e.

OgD e2�g ; (17.107)

where � WM!R is smooth. Then

Riem
Og D e2�



Riemg

� .rr�/� gC .d�˝ d�/� g

� 1
2 g�1.d�; d�/g � g

�
:

(17.108)

(This is best proven by using Cartan’s structure equa-
tion.) From that equation, we deduce the transformation
properties of the Ricci tensor

Ric
Og D Ricg �

�
�g�C .n� 2/g�1.d�; d�/

�
g

� .n� 2/.rr� � d�˝ d�/ ;

(17.109)

where, as above, �g is the Laplacian/d’Alembertian
for g. For the scalar curvature, we get

Scal
Og D e�2�

�
Scalg � 2.n� 1/�g�

� .n� 1/.n� 2/g�1.d�; d�/
�
:

(17.110)

This law has a linear dependence on the second and
a quadratic dependence on the first derivatives of �. If
the conformal factor is written as an appropriate power
of some positive function � WM!R

C

, we can elimi-
nate all dependence on first and just retain the second
derivatives. In n> 2 dimensions it is easy to check that
the rule is this

e2� D�
4

n�2 I (17.111)

then (17.110) becomes

Scal
Og D�

4.n� 1/

n� 2
��

nC2
n�2 Dg� ; (17.112a)

where

Dg D�g �
n� 2

4.n� 1/
Scalg : (17.112b)

Here Dg is a linear differential operator which is el-
liptic for Riemannian and hyperbolic for Lorentzian
metrics g. If we set �D�1�2 and apply (17.112)
twice, one time to the pair .Og; g/ and the other time to
.Og;�2g/, we obtain by direct comparison (and renam-
ing �2 to � thereafter) the conformal transformation
property for the operator Dg

D
�

4
n�2 g
DM

�
��

nC2
n�2

	
ıDg ıM.�/ ; (17.113)

where M.�/ is the linear operator of multiplica-
tion with �. This is the reason why Dg is called
the conformally covariant Laplacian (for Rieman-
nian g) or the conformally covariant wave operator (for
Lorentzian g). As we will see, it has useful applications
to the initial-data problem in GR.

17.5.2 Curvature Decomposition

Using (17.56), we can decompose the various curvature
tensors. From now on, h will again denote the horizontal
projection (17.37) of the metric g. First we let X; Y; Z be
horizontal vector fields. We use (17.56) in (17.76) and
get the general formula (i. e. not yet making use of the
fact that r and D are metric and torsion free)

R.X; Y/Z D RD.X; Y/Z

C .rXn/K.Y;Z/� .rYn/K.X;Z/

C nŒ.DXK/.Y;Z/� .DYK/.X;Z/�

C nK.TD.X; Y/;Z/ ;

(17.114)

where

RD.X; Y/Z WD
�
DXDY �DYDX �DŒX;Y


�
Z (17.115)

is the horizontal curvature tensor associated with the
Levi-Civita covariant derivative D of h. This formula
is general in the sense that it is valid for any covari-
ant derivative. No assumptions have been made so far
concerning metricity or torsion, and this is why the tor-
sion TD of D (defined in (17.59)) makes an explicit
appearance. From now on we shall restrict to vanish-
ing torsion. We observe that the first two lines on the
right-hand side of (17.114) are horizontal, whereas the
last two lines are proportional to n. Decomposition into
horizontal and normal components, respectively, leads



Dynamical and Hamiltonian Formulation of General Relativity 17.6 Decomposing Einstein’s Equations 339
Part

C
|17.6

to (TD D 0)

Riem.W;Z;X; Y/

D RiemD.W;Z;X; Y/

� "ŒK.W;X/K.Z;Y/�K.W;Y/K.Z;X/� ;

(17.116)

where we used h.W;rXn/D�"K.W;X/ from (17.64),
and

Riem.n;Z;X; Y/

D " Œ.DXK/.Y;Z/� .DYK/.X; Z/� : (17.117)

The remaining curvature components are those involv-
ing two entries in the n direction. Using (17.68), we
obtain via standard manipulations (now using metricity
and vanishing torsion)

Riem.X; n;Y; n/D iX
�
rYrn �rnrY �rŒY;n


�
n[

D iXiY
�
"LnKCK ıKCDa[ � "a[˝ a[

	
:

(17.118)

Here K ıK.X; Y/ WD h�1.iXK; iY K/D iXK..iYK/]/ and
we used the following relation between covariant and
Lie derivatives (which will have additional terms in the
case of nonvanishing torsion)

rnK D LnKC 2"K ıK : (17.119)

Note also that the left-hand side of (17.117) is symmet-
ric as a consequence of (17.82d). On the right-hand side
only Da[ is not immediately seen to be symmetric, but
that follows from (17.41b).

Equations (17.114), (17.116), and (17.117) express
all components of the spacetime curvature in terms of
horizontal quantities and their Lie derivatives Ln in the
normal direction. According to (17.44), the latter can be
replaced by a combination of Lie derivatives along the
time vector field @=@t and the shift ˇ. From (17.42b),
we infer that L˛n D ˛Ln on horizontal covariant tensor
fields; therefore, we may replace

Ln! ˛�1
�

L @
c@t
�Lˇ

	
! ˛�1

�
Lk@

c@t

� Lk
ˇ

�

(17.120)

on horizontal covariant tensor fields. Here we set Lk D
Pk ı L, i. e. Lie derivative (as operation in the ambient
spacetime) followed by horizontal projection. More-
over, using (17.39), the acceleration 1-form a[ may be
replaced by the spatial derivative of the lapse function

a[ D�"˛�1D˛ : (17.121)

Hence, the combination of accelerations appearing
in (17.117) may be written as

Da[ � "a[˝ a[ D�"˛�1D2˛ : (17.122)

Note that D2˛ WD DD˛ is just the horizontal Hessian
of ˛ with respect to h.

17.6 Decomposing Einstein’s Equations

The curvature decomposition of the previous section
can now be used to decompose Einstein’s equations.
For this we decompose the Einstein tensor Ein into
the normal–normal, normal–tangential, and tangential–
tangential parts. Let fe0; e1; e2; e3g be an orthonormal
frame with e0 D n, i. e. adapted to the foliation as in
Sect. 17.4.1. Then (17.90) together with (17.116) im-
mediately lead to

2Ein.e0; e0/D�
h
KabKab �

�
Ka

a

�2
i
� "ScalD ;

(17.123)

where ScalD is the scalar curvature of D, i. e. of the
spacelike leaves in the metric h. Similarly, we obtain
from (17.117)

Ein.e0; ea/D Ric.e0; ea/D�"


DbKab �DaKb

b

�
:

(17.124)

The normal–normal component of the Ricci ten-
sor cannot likewise be expressed simply in terms of
horizontal quantities, the geometric reason being that,
unlike the Einstein tensor, it involves nonhorizontal
sectional curvatures (compare (17.89) and (17.90)).
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A useful expression follows from taking the trace of
(17.118), considered as a symmetric bilinear form in X
and Y . The result is

Ric.e0; e0/D�KabKabC
�
Kc

c

�2
C "r �V ; (17.125)

where r� denotes the divergence with respect to r
and V is a vector field on M whose normal component is
the trace of the extrinsic curvature and whose horizontal
component is " times the acceleration on n

V D nKc
c C "a : (17.126)

For the horizontal–horizontal components of Einstein’s
equations, it turns out to be simpler to use their alterna-
tive form (17.6b) with the Ricci tensor on the left-hand
side. For that, we need the horizontal components of
the Ricci tensor, which we easily get from (17.116) and
(17.118)

Ric.ea; eb/DRicD.ea; eb/

CLnKabC 2"KacK
c
b � "KabKc

c

C "Daab� aaab :

(17.127)

For later applications we also note the expression for
the scalar curvature. It follows, e.g., from adding the
horizontal trace of (17.127) to " times (17.125). This
leads to

ScalD ScalD� "
h
KabKab �

�
Ka

a

�2
i
C 2r �V :

(17.128)

Here we made use of the relation between the r and D
derivatives for the acceleration 1-form

ra[ D Da[C "n[˝rna[C inK˝ n[ ; (17.129)

whose trace gives the following relation between the r
and D divergences of a

r � aD D � a� "h.a;a/ : (17.130)

Another possibility would have been to use (17.123)
and (17.125) in ScalD�2".Ein.e0; e0/�Ric.e0; e0//.

Using (17.123) and (17.124), and also using the
DeWitt metric (17.106) for notational ease, we can im-
mediately write down the normal–normal and normal–
tangential components of Einstein’s equations (17.3)

GabcdKabKcdC "ScalD D�2�T.n;n/ ; (17.131a)

GabcdDbKcd D�"�habT.n; eb/ : (17.131b)

From (17.66) and (17.106), we notice that the bilinear
form on the left-hand side of (17.131a) can be written
as

G.K;K/ W D GabcdKabKcd

D Tr.Wein ıWein/� .Tr.Wein//2 :

(17.132)

Here the trace is natural (needs no metric for its defini-
tion), since Wein is an endomorphism. In a local frame
in which Wein is diagonal with entries Ek WD .k1; k2; k3/,
we have

G.K;K/ WD .ıab � 3nanb/kakb ; (17.133)

where na are the components of the normalized vec-
tor .1;1; 1/=

p
3 in eigenvalue space, which we identify

with R3 endowed with the standard Euclidean inner
product. Hence, denoting by  the angle between En
and Ek, we have

G.K;K/D

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

0 if j cos  j D
1
p

3
;

> 0 if j cos  j <
1
p

3
;

< 0 if j cos  j >
1
p

3
:

(17.134)

Note that j cos  j D 1=
p

3 describes a double cone
around the symmetry axis generated by En and vertex
at the origin, whose opening angle is just right so as
to contain all three axes of R3. For eigenvalue vectors
inside this cone the bilinear form is negative, outside
this cone positive. Positive G.K;K/ require sufficiently
anisotropic Weingarten maps, or, in other words, suffi-
ciently large deviations from being umbilical points.

The tangential–tangential component of Einstein’s
equations in the form (17.5) immediately follows from
(17.127). In the ensuing formula we use (17.120) to ex-
plicitly solve for the horizontal Lie derivative of K with
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respect to @=c@t and also (17.122) to simplify the last
two terms in (17.127). This results in

PKab WD

�
Lk@

c@t

K

�
ab

D
�

Lk
ˇ

K
	

ab
CDaDb˛

C˛


�2"KacK

c
bC "KabKc

c �RicD.ea; eb/
�

�˛"
�

n� 2
habT.n;n/

C˛�

�
T�

1

n� 2
Trh.T/h

�
.ea; eb/ :

(17.135)

Note that in the last term the trace of T is taken with
respect to h and not g. The relation is Trh.T/D Trg.T/�
"T.n;n/.

The only remaining equation that needs to be added
here is that which relates the time derivative of h with K.
This we get from (17.69) and (17.120)

Phab WD

�
Lk@

c@t

h

�
ab

D
�

Lk
ˇ

h
	

ab
� 2"Kab : (17.136)

Equations (17.136) and (17.135) are six first-order-
in-time evolution equations for the pair .h;K/. This
pair cannot be freely specified but has to obey the four
equations (17.131a) and (17.131b) which do not con-
tain any time derivatives of h or K. Equations (17.131a)
and (17.131b) are therefore referred to as constraints,
more specifically (17.131a) as a scalar constraint (also
Hamiltonian constraint) and (17.131b) as a vector con-
straint (also diffeomorphism constraint).

We derived these equations from the 3C 1 split of
a spacetime that we considered to be given. Despite
having expressed all equations in terms of horizontal
quantities, there is still a relic of the ambient space in
our equations, namely the Lie derivative with respect to
@=@ct. We now erase this last relic by interpreting this
Lie derivative as an ordinary partial derivative of some
t-dependent tensor field on a genuine three-dimensional
manifold†, which is not thought of as being embedded
into a spacetime. The horizontal projection Lk

ˇ
of the

spacetime Lie derivative that appears on the right-hand
sides of the evolution equations above then translates
to the ordinary intrinsic Lie derivative on † with re-
spect to ˇ. This is how from now on we shall read the
above equations. Spacetime does not yet exist. Rather,
it has to be constructed from the evolution of the fields
according to the equations, usually complemented by

the equations that govern the evolution of the matter
fields. In these evolution equations ˛ and ˇ are freely
specifiable functions, the choice of which is subject
to mathematical/computational convenience. Once ˛
and ˇ are specified and h as a function of parameter
time has been determined, we can form the expression
(17.53) for the spacetime metric and know that, by con-
struction, it will satisfy Einstein’s equations.

To sum up, the initial-value problem consists in the
following steps:

1. Choose a 3-manifold †.
2. Choose a time-parameter-dependent lapse func-

tion ˛ and a time-parameter-dependent shift vector
field ˇ.

3. Find a Riemannian metric h 2 (T0
2† and a symmet-

ric covariant rank-two tensor field h 2 (T0
2† that

satisfy (17.131a) and (17.131b) either in vacuum
(TD Tƒ; cf. (17.4)) or after specifying some mat-
ter model.

4. Evolve these data via (17.136) and (17.135), pos-
sibly complemented by the evolution equations for
the matter variables.

5. Construct from the solution the spacetime metric g
via (17.53).

For this to be consistent, we need to check that
the evolution according to (17.136) and (17.135) will
preserve the constraints (17.131a) and (17.131b). At
this stage this could be checked directly, at least in
the vacuum case. The easiest way to do this is to
use the equivalence of these equations with Einstein’s
equations and then employ the twice-contracted sec-
ond Bianchi identity (17.13). It follows that r�E�� �
0, where E�� D G�� C	g�� . The four constraints
(17.131a) and (17.131b) are equivalent to E00 D 0 and
E0m D 0, and the six second-order equations Emn D 0
to the 12 first-order evolution equations (17.136) and
(17.135). In coordinates, the identity r�E�� D 0 reads

@0E0� D�@mEm��(
�

��
E���(���E�� ; (17.137)

which shows immediately that the time derivatives of
the constraint functions are zero if the constraints van-
ished initially. This suffices for analytic data, but in the
general case one has to do more work. Fortunately the
equations for the evolution of the constraint functions
can be put into a symmetric hyperbolic form, which suf-
fices to conclude the desired result in the general case.
For a mathematically more thorough discussion of the
Cauchy problem, we refer the reader to Chap. 16.
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Finally, we wish to substantiate our earlier claim
that any † can carry some initial data. Let us show
this for closed †. To this end, we choose a mat-
ter model such that the right-hand side of (17.131b)
vanishes. Note that this still allows for arbitrary cos-
mological constants, since Tƒ.n; ea// g.n; ea/D 0.
Next we restrict to those pairs .h;K/ where K D 	h
for some constant 	. Geometrically this means that,
in the spacetime to be developed, the Cauchy sur-
face will be totally umbilical (isotropic Weingarten
map). Due to this proportionality and the previous
assumption, the vector constraint (17.131b) will be
satisfied. In the scalar constraint we have G.K;K/D
G.	h; 	h/D�6	6, so that it will be satisfied provided
that

�"ScalD D 2�T.n;n/� 6	2 : (17.138)

For the argument to follow, the Lorentzian signa-
ture, "D�1, will matter. For physical reasons we
assume the weak energy condition so that �T.n;n/�
0, which makes a positive contribution to the right-
hand side of (17.138). However, if we choose the
modulus of 	 sufficiently large we can make the right-
hand side negative somewhere (or everywhere, since †
is compact). Now, in dimensions three or higher the
following is true [17.30, Theorem 1.1]: any smooth
function on a compact manifold which is negative
somewhere is the scalar curvature for some smooth
Riemannian metric. Hence, a smooth h exists which
solves (17.138) for any given T.n;n/� 0, provided
we choose 	2 > j	j sufficiently large. If † is not
closed, a corresponding theorem may also be shown
[17.31].

The above argument crucially depends on the signs.
There is no corresponding statement for positive scalar
curvature. In fact, there is a strong topological ob-
struction against Riemannian metrics of strictly positive
scalar curvature. It follows from [17.32, Theorem 8.1]
that a three-dimensional closed orientable † allows
for Riemannian metrics with positive scalar curvature
iff its prime decomposition consists of prime mani-
folds with finite fundamental group or handles S1� S2.
All manifolds whose prime list contains at least one
so-called K.�;1/-factor (a 3-manifold whose only non-
trivial homotopy group is the first) are excluded. See,
e.g., [17.33] for more explanation of these notions. We
conclude that the given argument crucially depends on
"D�1.

17.6.1 A Note on Slicing Conditions

The freedom in choosing the lapse and shift functions
can be of much importance, theoretically and in nu-
merical evolution schemes. This is particularly true for
the lapse function ˛, which determines the amount of
proper length by which the Cauchy slice advances in the
normal direction per unit parameter interval. If a sin-
gularity is to form in spacetime due to the collapse
of matter within a bounded spatial region, it would
clearly be advantageous to not let the slices run into
the singularity before the outer parts of it have had
any chance to develop a sufficiently large portion of
spacetime that one might be interested in, e.g. for the
study of gravitational waves produced in the past. This
means that one would like to slow down ˛ in regions
which are likely to develop a singularity and speed
up ˛ in those regions where it seems affordable. Take
as an example the equal-speed gauge ˛ D 1 and ˇ D 0,
so that gD�c2 dt2C h. This means that nD @=@ct is
geodesic. Taking such a gauge from the tD 0 slice
in the Schwarzschild/Kruskal spacetime would let the
slices run into the singularity after a proper time of
tD �GM=c3, where M is the mass of the black hole.
In that short period of time the slices had no chance to
explore a significant portion of spacetime outside the
black hole.

A gauge condition that one may anticipate to have
singularity-avoiding character is that where ˛ is chosen
such that the divergence of the normal field n is zero.
This condition just means that the locally comoving in-
finitesimal volume elements do not change volume, for
Ln d�D .r �n/d�, where d�D detfhabgd3x is the vol-
ume element of†. From (17.68), we see that n has zero
divergence iff K has zero trace, i. e. the slices are of zero
mean curvature. The condition on ˛ for this to be pre-
served under evolution follows from

0D Ln.h
abKab/D�KabLnhabC habLnKab :

(17.139)

Here we use (17.69) to eliminate Lnhab in the first term
and (17.118) to eliminate LnKab in the second term,
also making use of (17.122). This leads to the following
equivalent of (17.139)

�h˛C "
�
Ric.n; n/CKabKab

�
˛ D 0 : (17.140)

This is a linear elliptic equation for ˛. The case of
interest to us in GR is "D�1. In the closed case we im-
mediately deduce by standard arguments that ˛ D 0 is
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the only solution, provided the strong energy condition
holds (which implies that Ric.n;n/� 0). In the open
case, where we might impose ˛! 1 as asymptotic con-
dition, we deduce existence and uniqueness again under
the assumption of the strong energy condition. Hence,
we may indeed impose the condition habKab D 0, or
Tr.Wein/D 0, for nonclosed †. It is called the maxi-
mal slicing condition or York gauge [17.34].

Whereas this gauge condition has indeed the desired
singularity-avoiding character it is also not easy to im-
plement due to the fact that at each new stage of the
evolution one has to solve the elliptic equation (17.140).
For numerical studies it is easier to implement evolution
equations for ˛. Such an equation is, e.g., obtained by
asking the time function (17.25) to be harmonic, in the
sense that

0D�gt WD g��r�r� t

D j detfg��gj
�

1
2 @�

�
j detfg��gj

1
2 g��@�

	
t :

(17.141)

This is clearly just equivalent to

@�

�
j detfg��gj

1
2 g�0

	
D 0 ; (17.142)

which can be rewritten using (17.54) and (17.55) to give

P̨ W D
@˛

c@t
D Lˇ˛� "K

a
a˛

2

D Lˇ˛CTr.Wein/ ˛2 : (17.143)

This is called the harmonic slicing condition. Note that
we can still choose ˇ D 0 and try to determine ˛ as a
function of the trace of Wein. There also exist gener-
alizations to this condition where ˛2 on the right-hand
side is replaced with other functions f .˛/.

17.6.2 A Note on the DeWitt Metric

At each point p on † the DeWitt metric (17.106) can
be regarded as a symmetric bilinear form on the space
of positive-definite inner products h of Tp†. The latter
is an open convex cone in T�P †˝T�P †. We wish to ex-
plore its properties a little further.

A frame in Tp† induces a frame in T�p †˝ T�p †
(tensor product of the dual frame). If hab are the com-
ponents of h, then we have the following representation
of the generalized DeWitt metric

G.�/ D Gabcd
.�/ dhab˝ dhcd ; (17.144a)

where

Gabcd
.�/ D

1

2
.hachbdC hadhbc� 2	habhcd/ : (17.144b)

Here we introduced a factor 	 in order to parameterize
the impact of the negative trace term. We also con-
sider † to be of general dimension n.

The inverse metric to (17.144) is given by

G�1
.�/ D G.�/abcd

@

@hab
˝

@

@hcd
; (17.145a)

where

G.�/abcd D
1
2 .hachbdC hadhbc � 2�habhcd/ :

(17.145b)

The relation between 	 and � is

	C�D n	� ; (17.146)

so that

Gabnm
.�/ G.�/nmcd D

1
2

�
ıa

c ı
b
d C ı

a
dı

b
c

�
: (17.147)

If we change coordinates according to


 W D ln
�
Œdetfhabg�

1
n

	
;

rab W D
hab

Œdetfhabg�
1
n

; (17.148)

where 
 parameterizes conformal changes and rab the
conformally invariant ones, the metric (17.144) reads

G.�/ D n.1�	n/d
 ˝ d
 C racrbd drab˝ drcd ;

(17.149)

where ranrnb D ı
a
b . Since h is positive definite, so is r.

Hence, the second part is positive definite on the�
1
2 n.nC 1/� 1

�
-dimensional vector space of trace-free

symmetric tensors. Hence, the DeWitt metric is posi-
tive definite for 	 < 1=n, Lorentzian for 	 > 1=n, and
simply degenerate (one-dimensional null space) for the
critical value 	D 1=n. In the GR case we have 	D 1
and nD 3, so that the DeWitt metric is Lorentzian of
signature .�;C;C;C;C;C/. Note that this Lorentzian
signature is independent of ", i. e. it has nothing to do
with the Lorentzian signature of the spacetime metric.
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In the Hamiltonian formulation it is not G but rather
a conformally related metric that is important, the con-
formal factor being

p
detfhabg. If we set

OG.�/ WD Œdetfhabg�
1=2 G.�/ ; (17.150)

and correspondingly

OG�1
.�/ WD Œdetfhabg�

�1=2 G�1
.�/ ; (17.151)

we can again write OG.�/ in terms of .
; rab/. In fact, the
conformal rescaling clearly just corresponds to multi-
plying (17.149) with

p
detfhabg D en�=2. Setting

T WD 4

�
1� n	

n

�1=2

en�=4 ; (17.152)

we get, excluding the degenerate case 	¤ 1=n,

OG.�/ D sign.1� n	/dT˝ dT

CT2Cracrbd drab˝ drcd ; (17.153)

where CD n=.16j1� n	j/ (D 3=32 in GR). This
is a simple warped-product metric of R

C

with
the left-invariant metric on the homogeneous space
GL.3;R/=SO.3/�R

C

of symmetric positive-definite
forms modulo overall scale, the warping function being
just T2 if T is the coordinate on R

C

. Now, generally,

quadratic warped-product metrics of the form ˙dT˝
dTCT2g, where g is independent of T , are nonsingular
for T& 0 iff g is a metric of constant curvature˙1 (as
for a unit sphere in Rn, with T being the radius coordi-
nate, or the unit spacelike hyperboloid in n-dimensional
Minkowski space, respectively). This is not the case for
(17.153), which therefore has a curvature singularity for
small T , i. e. small detfhabg. Note that this is a singular-
ity in the space of metrics (here at a fixed space point),
which has nothing to do with spacetime singularities.
In the early days of canonical quantum gravity this has
led to speculations concerning natural boundary condi-
tions for the wave function, whose domain is the space
of metrics [17.35, 36]. The intention was to pose con-
ditions such that the wave function should stay away
from such singular regions in the space of metrics; see
also [17.37] for a more recent discussion.

We stress once more that the signature of the De-
Witt metric is not related to the signature of spacetime
(it is independent of "). For example, for the GR values
	D 1 and nD 3, it is Lorentzian even if spacetime were
given a Riemannian metric. Moreover, by integrating
over†, the pointwise metric (17.153) defines a bilinear
form on the infinite-dimensional space of Riemannian
structures on †, the geometry of which may be investi-
gated to some limited extent [17.38, 39].

17.7 Constrained Hamiltonian Systems

In this section we wish to display some characteris-
tic features of Hamiltonian dynamical systems with
constraints. We restrict attention to finite-dimensional
systems in order to not overload the discussion with an-
alytical subtleties.

Let Q be the n-dimensional configuration mani-
fold of a dynamical system that we locally coordinatize
by .q1; : : : ; qn/. By TQ we denote its tangent bundle,
which we coordinatize by (q1; : : : ; qn, v1; : : : ; vn), so
that a tangent vector X 2 TQ is given by X D va@=@qa.
The dynamics of the system is described by a La-
grangian

L W TQ!R ; (17.154)

which selects the dynamically possible trajectories in
TQ as follows: let R 3 t 7! x.t/ 2 Q be a (at least
twice continuously differentiable) curve; then it is dy-
namically possible iff the following Euler–Lagrange

equations hold (we set dx=dtDW Px)

@L

@qa

ˇ̌
ˇ̌

qDx.t/
vDPx.t/

�
d

dt

"
@L

@va

ˇ̌
ˇ̌

qDx.t/
vDPx.t/

#
D 0 : (17.155)

Performing the t-differentiation on the second term, this
is equivalent to

Hab .x.t/; Px.t// Rx
b D Va .x.t/; Px.t// ; (17.156)

where

Hab.q; v/ WD
@2L.q; v/

@va@vb
(17.157)

and

Va.q; v/ WD
@L.q; v/

@qa
�
@2L.q; v/

@va@qb
vb : (17.158)
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Here we regard H and V as functions on TQ with values
in the symmetric n�n matrices and Rn, respectively. In
order to be able to solve (17.156) for the second deriva-
tive Rx, the matrix H has to be invertible, that is, it must
have rank n. That is the case usually encountered in
mechanics. On the other hand, constrained systems are
those where the rank of H is not maximal. This is the
case we are interested in.

We assume H to be of constant rank r < n. Then,
for each point on TQ, there exist sD n�r linearly inde-
pendent kernel elements K.˛/.q; v/, ˛ D 1; : : : ; s, such
that Ka

.˛/
.q; v/Hab.q; v/D 0. Hence, any solution x.t/

to (17.156) must be such that the curve t 7! .x.t/; Px.t//
in TQ stays on the subset

C WD f.q; v/ 2 TQ j  ˛.q; v/D 0 ; ˛ D 1; : : : ; sg ;

(17.159a)

where

 ˛.q; v/D Ka
.˛/.q; v/Va.q; v/ : (17.159b)

We assume C 
 TQ to be a smooth closed submanifold
of codimension s, i. e. of dimension 2n� sD nC r.

Now we consider the cotangent bundle T�Q over Q,
which we coordinatize by (q1; : : : ; qn, p1; : : : ; pn), so
that a covector  2 T�Q is given by  D pa dqa. The
Lagrangian defines a map FL W TQ! T�Q through

FL.q; v/D

�
q; p WD

@L.q; v/

@v

�
: (17.160)

From what has been said above, it follows that the
Jacobian of that map has constant rank nCr. Given suf-
ficient regularity, we may further assume that

C� WD FL .C/
 T�Q (17.161)

is a smoothly embedded closed submanifold in phase
space T�Q of codimension s. Hence, there are s func-
tions �˛ , ˛D 1; : : : ; s such that

C� WD
˚
.q;p/ 2 T�Q j �˛.q;p/D 0 ; ˛ D 1; : : : ; s

�
:

(17.162)

This is called the constraint surface in phase space. It
is given as the intersection of the zero-level sets of s in-
dependent functions. Independence means that at each
p 2 C� the s 1-forms d�1jp : : : ; d�sjp are linearly inde-
pendent elements of T�p T�Q.

The dynamical trajectories of our system will stay
entirely on C�. The trajectories themselves are integral
lines of a Hamiltonian flow. But what is the Hamilto-
nian function that generates this flow? To explain this,
we first recall the definition of the energy function for
the Lagrangian L. It is a function E W TQ!R defined
through

E.q; v/ WD
@L.q; v/

@va
va � L.q; v/ : (17.163)

At first sight this function cannot be defined on phase
space, for we cannot invert FL to express v as a func-
tion of q and p which we could insert into E.q; v/ in
order to get E.q; v.q;p//. However, one may prove the
following: there exists a function

HC� W C�!R ; (17.164a)

so that

ED HC� ı FL : (17.164b)

A local version of this is seen directly from tak-
ing the differential of (17.163), which yields dED
va d.@L=@va/� .@L=@qa/dqa, expressing the fact that
dE.X/D 0 if dFL.X/D 0.

So far the function HC� is only defined on C�. By
our regularity assumptions there exists a smooth exten-
sion of it to T�Q, that is, a function H0 W T�Q!R such
that H0jC� DHC� . This is clearly not unique. But, we
can state the following: let H0 and H both be smooth (at
least continuously differentiable) extensions of HC� to
T�Q; then there exist s smooth functions 	˛ W T�Q!
R such that

H DH0C	
˛�˛ : (17.165)

Locally a proof is simple: let f W T�Q!R be contin-
uously differentiable and such that f jC� � 0. Consider
a point p 2 C� and coordinates .x1; : : : ; x2n�s; y1; : : :
ys/ in a neighborhood U 
 T�Q of p, where the x’s are
coordinates on the constraint surface and the y’s are just
the functions �. In U the constraint surface is clearly
just given by y1 D : : :D ys D 0. Then

f jU.x; y/D

1Z
0

dt
d

dt
f .x; ty/

D

1Z
0

dt
@f

@y˛
.x; ty/ y˛ D 	˛.x; y/y

˛ ;

(17.166a)
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where

	˛.x; y/ WD

1Z
0

dt
@f

@y˛
.x; ty/ : (17.166b)

For a global discussion, see [17.5].
As Hamiltonian for our constraint system we ad-

dress any smooth (at least continuously differentiable)
extension H of HC� . So, if H0 is a somehow given one,
any other can be written as

H D H0C	
˛�˛ ; (17.167)

for some (at least continuously differentiable) real-
valued functions 	˛ on T�Q.

Here we have been implicitly assuming that the
Hamiltonian dynamics does not leave the constraint sur-
face (17.161). If this were not the case, we would have
to restrict further to proper submanifolds of C� such
that the Hamiltonian vector fields evaluated on them lie
tangentially. (If no such submanifold can be found, the
theory is simply empty.) This is sometimes expressed
by saying that the primary constraints (those encoun-
tered first in the Lagrangian/Hamiltonian analysis) are
completed by secondary, tertiary, etc. constraints for
consistency.

Here we assume that our system is already dy-
namically consistent. This entails that the Hamiltonian
vector fields X�˛ for the �˛ are tangential to the con-
straint surface. This is equivalent to X�˛ .�ˇ/jC� D 0,
or expressed in Poisson brackets

f�˛; �ˇgjC� D 0 ; (17.168)

for all ˛; ˇ 2 f1; : : : ; sg. Following Dirac [17.3], con-
straints which satisfy this condition are said to be of first
class. By the result shown (locally) above in (17.166),
this is equivalent to the existence of 1

2 s2.s� 1/ (at
least continuously differentiable) real-valued functions
C
˛ˇ
D�C

ˇ˛
on T�Q, such that

f�˛; �ˇg D C
˛ˇ
� : (17.169)

Note that, as far as the intrinsic geometric properties
of the constraint surface are concerned, (17.168) and
(17.169) are equivalent.

The indeterminacy of the Hamiltonian due to the
freedom to choose any set of 	˛ seems to imply an s-
dimension worth of indeterminacy in the dynamically
allowed motions. But, the difference in these motions

is that generated by the constraint functions on the con-
straint surface. In order to actually tell apart two such
motions requires observables (phase-space functions)
whose Poisson brackets with the constraints do not van-
ish on the constraint surface. The general attitude is to
assume that this is not possible, i. e. to assume that phys-
ical observables correspond exclusively to phase-space
functions whose Poisson brackets with all constraints
vanish on the constraint surface. This is expressed by
saying that all motions generated by the constraints
are gauge transformations. This entails that they are
undetectable in principle and merely correspond to
a mathematical redundancy in the description rather
than to any physical degrees of freedom. It is there-
fore more correct to speak of gauge redundancies rather
than of gauge symmetries, as is sometimes done, for the
word symmetry is usually used for a physically mean-
ingful operation that does change the object to which
it is applied in at least some aspects (otherwise the op-
eration is the identity). Only some relevant aspects, in
the context of which one speaks of symmetry, are not
changed.

17.7.1 Geometric Theory

Being first class has an interpretation in terms of sym-
plectic geometry. To see this, we first recall a few
facts and notation from elementary symplectic geom-
etry. Here some sign conventions enter and the reader is
advised to compare carefully with other texts.

A symplectic structure on a manifold is a nonde-
generate closed 2-form. On any cotangent bundle there
is a natural such structure which derives from a sym-
plectic potential. The latter is a 1-form field  on T�Q
whose general geometric definition is as follows: let
� W T�Q! Q be the natural projection from the cotan-
gent bundle of Q (phase space) to Q itself. Then, for
each p 2 T�Q, we define

p WD p ı�
�

jp : (17.170)

So, in order to apply p to a vector X 2 TpT�Q, we do
the following: take the differential �

�

of the projection
map � , evaluate it at point p, and apply it to X 2 TpT�Q
in order to push it forward to the tangent space T�.p/Q
at point �.p/ 2 Q. Then apply p to it, which makes
sense since p is, by definition, an element of the cotan-
gent space at �.p/ 2 Q.

In the coordinates already introduced, this form is
simply given by

 WD pa dqa : (17.171)
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The symplectic structure is a 2-form field on T�Q, now
simply defined as

! WD �d D dqa ^ dpa : (17.172)

The nondegeneracy of ! allows us to uniquely associate
a vector field Xf with any real-valued function f on T�Q
through

iXf! D df : (17.173)

It is called the Hamiltonian vector field of f . An im-
mediate consequence of (17.173) and d! D 0 (which
follows from (17.171)) is that ! has vanishing Lie
derivative with respect to any Hamiltonian vector field

LXf! D .iXf ı dC d ı iXf /! D 0 : (17.174)

In coordinates, Xf looks like this

Xf D
@f

@pa

@

@qa
�
@f

@qa

@

@pa
: (17.175)

The Poisson bracket between two functions f and g is
defined as

ff ; gg W D !.Xf ;Xg/D Xg.f /D�Xf .g/

D
@f

@qa

@g

@pa
�
@f

@pa

@g

@qa
: (17.176)

It provides C1.T�Q/ with a structure of a Lie algebra,
which, if taken together with the commutative and as-
sociative pointwise multiplication, endows C1.T�Q/
with the structure of a Poisson algebra. The map f 7! Xf

is a Lie anti-homomorphism from the Lie algebra of
functions to the Lie algebra of vector fields on T�Q (the
Lie multiplication of the latter is just the commutator).
This is expressed by

X
ff ;gg D�ŒXf ;Xg� ; (17.177)

which is easy to prove from the definitions given.
After this brief digression, we now return to the ge-

ometric interpretation of first-class constraints. For any
p 2 C�, we define

T?p .T
�Q/

WD
˚
X 2 Tp.T

�Q/ j !.X; Y/D 0 ;8Y 2 TpC�
�
:

(17.178)

The nondegeneracy of ! implies that the dimen-
sion of T?p .T

�Q/ equals s, the codimension of C� in

T�Q. But, note that as ! is skew, T?p .T
�Q/ might well

have a nontrivial intersection with TpC�. This gives rise
to the following characterizations for the submanifold
C� 
 T�Q (understood to hold at each point p 2 C�):
C� is called:

� Isotropic iff TpC� 
 T?p .T
�Q/;

� Co-isotropic iff TpC� � T?p .T
�Q/;

� Lagrangian iff TpC� D T?p .T
�Q/.

Since f�˛; �ˇg D d�˛.X�ˇ /, we see that condition
(17.168) is equivalent to the statement that the Hamil-
tonian vector fields for the constraint functions �˛ are
tangent to the constraint hypersurface

X�˛ jC� 2 (TC� : (17.179)

Our assumption that the s differentials d�˛ be lin-
early independent at each p 2 C� now implies that the
s vectors X�˛ .p/ span an s-dimensional subspace of
TpC�. But, they are also elements of T?p .T

�Q/, since
!.X�˛ ;Y/D d�˛.Y/D 0 for all Y tangent to C�. As
the dimension of T?p .T

�Q/ is s, this shows that

T?p .T
�Q/D span fX�1 : : : ;X�sg 
 TpC� ;

(17.180)

that is, co-isotropy of C�. First-class constraints are
precisely those which give rise to co-isotropic con-
straint surfaces.

The significance of this lies in the following result,
which we state in an entirely intrinsic geometric fash-
ion. Let C� be co-isotropic of codimension s and let
e W C�! T�Q be its embedding. We write

O! WD e�! (17.181)

for the pull back of ! to the constraint surface (i. e. es-
sentially the restriction of ! to the tangent bundle of
the constraint surface). O! is now s-fold degenerate, its
kernel at p 2 C� being just T?p .T

�Q/
 TpC�. We have
the smooth assignment of subspaces

C� 3 p 7! kernelp. O!/D T?p .T
�Q/ ; (17.182)

which forms a subbundle of TC� called the kernel
distribution of O!. Now, the crucial result is that this
subbundle is integrable, i. e. tangent to locally embed-
ded submanifolds �� 
 C� of codimension s in C�, or
codimension 2s in T�Q. Indeed, in order to show this
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we only need to show that whenever two vector fields X
and Y on C� take values in the kernel distribution their
commutator ŒX; Y� also takes values in the kernel distri-
bution. That this suffices for local integrability is known
as Frobenius’ theorem in differential geometry. Writing

iŒX;Y
 O! D LX .iY O!/� iY .LX O!/ ; (17.183)

we infer that the first term vanishes because X is in O!’s
kernel and LX O! vanishes because LX D d ı iXC iX ı d on
forms, where iX O! D 0 again due to X being in the kernel
and d O! D de�! D e� d! D 0 due to ! being closed.

The program of symplectic reduction is now to
form the .2n� 2s/-dimensional quotient space C�=,
where  is the equivalence relation whose equivalence
classes are the maximal integral submanifolds of the
kernel distribution of O!. We stress that this geometric
formulation of the reduction program does not refer to
any set of functions �˛ that one might use in order to
characterize C�. If one uses such functions, it is un-
derstood that they obey the above-mentioned regularity
conditions of being at least continuously differentiable
in a neighborhood of C� and giving rise to a set of s lin-
early independent differentials d�˛ at any point of C�.
Hence, redefinitions of constraint functions like � 7!p
j�j or � 7! �2, albeit leading to the same surface C�,

are a priori not allowed.

17.7.2 First-Class Constraints
from Zero-Momentum Maps

First-class constraints often arise from group actions.
This is also true in GR, at least partially. So, let us
explain this in more detail. Let a Lie group G act
on the left on T�Q. This means that there is a map
G� T�Q! T�Q, denoted simply by .g;p/ 7! g � p, so
that g1 � .g2 � p/D .g1g2/ � p and e � pD p if e 2 G is the
neutral element. There is then an anti-homomorphism
from Lie.G/, the Lie algebra of G, to the Lie algebra of
vector fields on T�Q. It is defined as follows: the vector
field V� corresponding to � 2 Lie.G/, evaluated at point
p 2 T�Q, is

V�.p/ WD
d

dt

ˇ̌ˇ̌
tD0

exp.t�/ � p : (17.184)

It is then not hard to prove that



V� ;V�

�
D�VŒ�;�
 : (17.185)

Let us further suppose that the group action on T�Q is
of a special type, namely it arises from a group action
on Q by a canonical lift. (Every diffeomorphism f of Q
can be lifted to a diffeomorphism Of of T�Q given by the
pull back of the inverse f�1.) Then it is easy to see from
the geometric definition (17.170) that the symplectic
potential  is invariant under this group action and con-
sequently the group acts by symplectomorphisms (!-
preserving diffeomorphisms). The infinitesimal version
of this statement is that, for all � 2 Lie.G/

LV� D 0 : (17.186)

Since LV� D iV� ı dC d ı iV� , this is equivalent to

iV�! D d
�
.V�/

�
; (17.187)

which says that V� is the Hamiltonian vector field of the
function .V�/. We call the map

Lie.G/ 3 � 7! P� WD .V�/ 2 C1.T�Q/ (17.188)

the momentum map for the action of G. It is a linear
map from Lie.G/ to C1.T�Q/ and satisfies

fP� ;P�g D V�
�
.V�/

�
D
�
LV�

�
.V�/C 

�
LV�V�

�
D 

�
VŒ�;�


�
D PŒ�;�
 ; (17.189)

where we used (17.186) and (17.185) for the third
equality. Hence, we see that the map (17.188) is a Lie
homomorphism from Lie.G/ into the Lie algebra of
smooth, real-valued functions on T�Q (whose Lie prod-
uct is the Poisson bracket).

Now, first-class constraints are often given by the
condition of zero-momentum mappings, i. e., by P� D 0
for all � 2 Lie.G/. By linearity in � , this is equivalent to
the set of s WD dim.G/ conditions

�˛ WD Pe˛ D 0 ; (17.190)

where e˛ D fe1; : : : ; esg is a basis of Lie.G/. Let the
structure constants for this basis be C

˛ˇ
, i. e. Œe˛ ; eˇ�D

C
˛ˇ

e ; then (17.189) becomes

f�˛; �ˇg D C
˛ˇ
� : (17.191)
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Constraints in gauge theories will typically arise as
zero-momentum maps in the fashion described here,
the only necessary generalization being the extension
to infinite-dimensional groups and Lie algebras. In fact,
for gauge theories our G will correspond to the infinite-
dimensional group of gauge transformations, which is
not to be confused with the finite-dimensional gauge
group. The former consists of functions, or sections in
bundles, with values in the latter. On the other hand,
the constraints in GR will only partially be of this
type. More precisely, those constraints arising from
three-dimensional diffeomorphisms (called the vector
or diffeomorphism constraints) will be of this type;

those from nontangential hypersurface deformations
(scalar or Hamiltonian constraints) will not fit into this
picture. For the former, G will correspond to Diff.†/, or
some appropriate subgroup thereof, and Lie .Diff.†//
to the infinite-dimensional Lie algebra of vector fields
on † (possibly with special support and/or fall-off con-
ditions). The different nature of the latter constraint will
be signaled by structure functions C

˛ˇ
.q;p/ appearing

on the right-hand side rather than constants. This has
recently given rise to attempts to generalize the group-
theoretic setting described above to that of groupoids
and Lie algebroids, in which the more general structure
of GR can be accommodated [17.40].

17.8 Hamiltonian GR

The Hamiltonian formulation of GR proceeds along the
lines outlined in the previous section. For this we write
down the action in a (3C 1)-split form, read off the La-
grangian density, defining the conjugate momenta as
derivatives of the latter with respect to the velocities,
and finally expressing the energy function (17.163) in
terms of momenta. The constraint functions will not be
determined on the Lagrangian level, but rather directly
on the Hamiltonian level as primary and secondary con-
straints (there will be no tertiary ones), the primary ones
being just the vanishing of the momenta for lapse and
shift.

The Lagrangian density for GR is essentially just
the scalar curvature of spacetime. However, upon varia-
tion of this quantity, which contains second derivatives
in the metric, we will pick up boundary terms from par-
tial integrations which need not vanish by just keeping
the metric on the boundary fixed. Hence, we will need
to subtract these boundary terms, which will otherwise
obstruct functional differentiability. Note that this is not
just a matter of aesthetics: solutions to differential equa-
tions (like Einstein’s equations) will not be stationary
points of the action if the latter is not differentiable at
these points. Typically, Euler–Lagrange equations will
allow for solutions outside the domain of differentia-
bility of the action they are derived from. Including
some such solutions will generally need the adaptation
of the action by boundary terms. This clearly matters
if one is interested in the values of the action, ener-
gies, etc. for these solutions and, also, of course, in the
path-integral formulations of the corresponding quan-
tum theories.

The Einstein–Hilbert action of GR is

SGRŒ�; g�D�
"

2�

Z
�

Scal d�gC boundary terms ;

(17.192)

where, in local coordinates x� D .x0 D ct; x1; x2; x3/

d�g D
p
" detfg��gcdt^ dx1 ^ dx2 ^ dx3 :

(17.193)

The sign convention behind the prefactor�" in (17.192)
is such that in the Lorentzian as well as the Riemannian
case the Lagrangian density contains the bilinear De-
Witt inner product of the extrinsic curvatures (compare
(17.128)) with a positive sign, i. e. transverse traceless
modes have positive kinetic energy.

The boundary term can be read off from (17.128)
and (17.126). If the integration domain �
M is such
that the spacelike boundaries are contained in two hy-
persurfaces †s, i. e. two tD const. surfaces, say @�i WD

@�\†initial and @�f WD @�\†final, we would have to
add the two boundary terms (dependence on " drops
out)

��1
Z
@�f

Trh.K/d�h � �
�1

Z
@�i

Trh.K/d�h :

(17.194)

Here we used that the second term in (17.126) does not
contribute due to a being orthogonal to n. d�h is the
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standard measure from the induced metric h on the hy-
persurfaces. If the cylindrical timelike boundary @�cyl

is chosen such that its spacelike normal m is orthogonal
to n, only the second term in (17.126) contributes and
we get one more boundary term (again " drops out)

��1
Z

@�cyl

OK.n;n/d�h : (17.195)

Here OK is the extrinsic curvature of @�cyl in M,
which we picked up because g.a;m/D g.rnn;m/D
�g.n;rnm/D OK.n;n/.

Once the boundary terms are taken care of, we can
just read off the Lagrangian density from (17.128) also
using (17.55)

LGR D .2�/
�1 ŒG.K;K/� "R� ˛

p
h ; (17.196)

where we now used the standard abbreviations

G.K;K/ W D GabcdKabKcd ;

R W D ScalD ;
p

h W D
p

detfhabg : (17.197)

Moreover, Kab has here to be understood as expressed
in terms of the time and Lie derivatives of hab

K D�
"

2
˛�1

�
Ph� Lˇh

�
: (17.198)

We keep in mind that an overdot denotes differentiation
with respect to ct (not t). In passing, we also note that
LGR has the right physical dimension of an energy den-
sity (˛ is dimensionless).

The Hamiltonian density is now obtained by the
usual Legendre transform with respect to all config-
uration variables that are varied in the action. These
comprise all components g�� and hence in the (3C1)-
split parameterization all hab as well as the lapse ˛ and
the three shift components ˇa. However, it is immedi-
ate that (17.196) does not contain any time derivatives
of the latter; hence, their conjugate momenta vanish

�˛ WD
1

c

@LGR

@ P̨
D 0 ; (17.199a)

�ˇa WD
1

c

@LGR

@ P̌a
D 0 : (17.199b)

This leaves us with the momenta for the metric compo-
nents hab

�ab W D
1

c

@LGR

@Phab

D
.�"/
p

h

2�c
GabcdKcd

D
.�"/

2�c
OGabcdKcd : (17.200)

Here again K stands for the expression (17.198). We
also made use of the conformally rescaled DeWitt met-
ric (17.150), whose significance appears here for the
first time. Again in passing we note that the physical
dimension of �ab is right, namely that of momentum
per area (the dimension of K is an inverse length).

In order to compute the Hamiltonian density, we ex-
press Ph in terms of the momenta

Phab D .Lˇh/ab� 2"˛Kab

D .DaˇbCDbˇa/� 2"˛Kab ; (17.201)

and obtain

H0Œh; ��D �
abcPhab�LGR

D ˛
h
.2�c2/ OG�1

abcd�
ab�cd

C ".2�/�1
p

hR
i

C 2c�abDaˇb : (17.202)

The Hamiltonian H0 is just the integral of this density
over †. The subscript 0 is to indicate that this Hamilto-
nian is still to be modified by constraints according to
the general scheme. Also, we have to once more care
about surface terms in order to ensure functional dif-
ferentiability, without which the Hamiltonian flow does
not exist [17.41].

The first thing to note is that we have found the pri-
mary constraints (17.199). For them to be maintained
under the evolution, we impose

c P�˛ D f�˛;H0g D �
ıH0

ı˛
D 0 ; (17.203a)

c P�ˇa D f�ˇa ;H0g D �
ıH0

ıˇa
D 0 ; (17.203b)

giving rise to the secondary constraints

.2�c2/ OG�1.�; �/C ".2�/�1
p

hRD 0 ; (17.204a)

� 2Da�
ab D 0 ; (17.204b)
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respectively. It may be checked directly that these equa-
tions respectively are equivalent to (17.131) for TD 0.
If we had included a cosmological constant, this would
have led to the replacement of R in (17.204a) with .R�
2ƒ/. We know from our previous discussion that the
requirement of these secondary constraints to be pre-
served in time will not lead to further constraints. This
has been shown by the argument following (17.137).

The primary constraints are taken care of by simply
eliminating the canonical pairs .˛; �˛/ and .ˇa; �ˇa/
from the list of canonical variables. As we will see
shortly, the secondary constraints (17.204) are of first
class, so that, according to the general theory outlined
above, they should be added with arbitrary coefficients
to the initial Hamiltonian H0 to get the general Hamil-
tonian. This leads to

HŒ˛; ˇ�D Cs.˛/CCv.ˇ/C boundary terms ;

(17.205)

where

Cs.˛/ WD

Z
†

d3x˛
h
.2�c2/ OG�1.�;�/

C ".2�/�1
p

hR
i
;

(17.206a)

Cv.ˇ/ WD

Z
†

d3xˇa


�2chabDc�

bc
�
; (17.206b)

where ˛ and ˇa are now arbitrary coefficients corre-
sponding to the 	’s in (17.167). In particular, they may
depend on the remaining canonical variables h and � .
Note that up to boundary terms the Hamiltonian is just
a sum of constraints, where s stands for the scalar (or
Hamiltonian) and V for the vector (or diffeomorphism)
constraint. The equations of motion generated by H are

cPhab D fhab;Hg ; (17.207)

c P�ab D f�ab;Hg (17.208)

equivalent to (17.136) and (17.135), respectively, and
need not be written down again. Before we discuss the
boundary terms, we write down the Poisson brackets for
the constraints

˚
Cv.ˇ/;Cv.ˇ

0/
�
D Cv

�
Œˇ; ˇ0�

�
; (17.209a)

fCv.ˇ/;Cs.˛/g D Cs .ˇ.˛// ; (17.209b)˚
Cs.˛/;Cs.˛

0/
�
D "Cv.˛.d˛0/]� ˛0.d˛/]/ :

(17.209c)

These may be obtained by direct computation, but are
also dictated by geometry. Before discussing the geom-
etry behind them, we note the following obvious points:

1. The vector constraints form a Lie algebra. The map
ˇ! V.ˇ/ is a Lie homomorphism from the Lie al-
gebra of vector fields in† to the Lie algebra (within
the Poisson algebra) of phase-space functions. In
fact, this map is just the momentum map for the ac-
tion of the diffeomorphism group GD Diff.†/ on
phase T�Q, which is a lift of the action on QD
Riem.†/, the space of Riemannian metrics on †.
Note that here the symplectic potential can be writ-
ten in a symbolic infinite-dimensional notation

 D

Z
†

d3x �ab.x/ıhab.x/ ; (17.210)

and the vector field Vˇ generated by the action of
GD Diff.†/ on QD Riem.†/ as

Vˇ D
Z
†

d3x Lˇhab.x/
ı

ıhab.x/
: (17.211)

The momentum map (17.188) is then given by

Pˇ D .Vˇ/D
Z
†

d3x �abLˇhab

D c�1Cv.ˇ/C 2
Z
@†

d2xˇa�
abmb ;

(17.212)

where mb denote again the components of the
outward-pointing normal of @†. This shows that
for vector fields ˇ for which the surface term
does not contribute, the vector constraint is just
the momentum map (up to a factor of c�1, which
comes in because the physical dimension of the val-
ues of the momentum map is that of momentum
whereas the physical dimension of the constraints
is that of an Hamiltonian, that is, energy). The
surface term will be discussed below. What is im-
portant here is that the vector constraint coincides
with the zero-momentum map for those diffeomor-
phisms which are asymptotically trivial, i. e. for
which the surface term vanishes. Only those are
to be considered as gauge transformations. Long-
ranging diffeomorphisms for which the surface term
is nonzero, i. e. for configurations of nonvanishing
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linear and/or angular momenta (cf. Sect. 17.9), have
to be considered as proper changes in physical state.
If we required these motions to be pure gauge, we
would eliminate all states with nonzero asymptotic
charges. Compare the closing remarks of Sect. 17.7.

2. Once we have understood that the vector constraint
is the momentum map for diffeomorphisms, its
Poisson bracket with any other phase-space func-
tion F that defines a geometric object on † (i. e. an
object with well-defined transformation properties
under diffeomorphisms) is fixed. We simply have

fF;Vˇg D LˇF : (17.213)

In this sense (17.209b) says no more than that the
expression (17.204a) is a scalar density of weight
one. Recall that if F is a scalar density of weight
one, then LˇFD Da.ˇ

aF/. If we multiply F by ˛
and integrate over†, we get after partial integration
and assuming the boundary term to give no con-
tribution (which for nonclosed † requires certain
fall-off conditions) an integral of �Fˇ.˛/, which is
just what (17.209b) expresses. Algebraically speak-
ing, the fact that the Poisson bracket of a vector
and a scalar constraint is proportional to a scalar
rather than a vector constraint means that the vec-
tor constraints do not form an ideal. Geometrically
this means that the Hamiltonian vector fields for
the scalar constraint, if evaluated on the hypersur-
face for the vector constraint, will generally not be
tangential to it, except for the points where this hy-
persurface intersects that of the scalar constraint.
This has very important consequences for algo-
rithms of phase-space reduction, i. e. algorithms that
aim to solve the constraints. It means that a reduc-
tion in steps is not possible, whereby one first solves
for the vector constraint and then seeks for solutions
of the scalar constraint.

3. According to (17.209b), two scalar constraints Pois-
son commute into a vector constraint. Two facts
are remarkable concerning the vector field that
forms the argument of this vector constraint: first,
it depends on the signature of spacetime (overall
multiplication with "). Second, it depends on the
phase-space variable h through the ]-operation of
index raising; explicitly

˛.d˛0/]� ˛0.d˛/]

D hab
�
˛@b˛

0 �˛0@b˛
� @

@xa
: (17.214)

This is the fact, already mentioned at the end of
Sect. 17.7, that the constraints in GR are not alto-
gether in the form of a vanishing momentum map.
This fact has led to some discussion in the past
and attempts have been made to consider different
algebraic combinations of the constraints which de-
fine the same constraint hypersurfaces but display
structure constants rather than structure functions
in their Poisson brackets; e.g., [17.42]. But, as al-
ready discussed in Sect. 17.7, it is important that
these redefinitions do not spoil the regularity prop-
erties of the functions that define the constraint
surface.

This ends the immediate discussion of (17.209). But
there is another aspect that is related to the last point just
mentioned and that deserves to be mentioned.

17.8.1 Hypersurface Deformations
and Their Representations

Even though the constraints cannot be understood in
a straightforward fashion as a zero-momentum map of
a group action, they nevertheless do furnish a represen-
tation of an algebraic object (a groupoid) of hypersur-
face motions. As a result, the relations (17.209) are uni-
versal, in the sense that any spacetime diffeomorphism
invariant theory, whatever its field content, will give rise
to the very same relations (17.209); see [17.43, 44] for
early and lucid discussions and [17.45, 46] for a com-
prehensive account.

The idea is to regard the space of (spacelike)
embeddings Emb.†;M/ of † into M as an infinite-
dimensional manifold, on which the diffeomorphism
group of M acts on the left by simple composition. Then
there is a standard anti-homomorphism from the Lie al-
gebra of Diff.M/ to the Lie algebra of vector fields on
".†;M/, just as in (17.185). A tangent vector at a par-
ticular " 2 Emb.†;M/ can be visualized as a vector
field � on †
M with normal and tangential com-
ponents; more precisely, as a section in the pull-back
bundle "�TM over †. Its decomposition into normal
and tangential components depends on ". If we think
of M as being locally coordinatized by functions y�

and† by functions xa, then " can be locally represented
by four functions y� of three variables xa. A vector
field V� can then be represented in a symbolic infinite-
dimensional notation

V� D
Z
†

d3x �� .y.x//
ı

ıy�.x/
: (17.215)
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In full analogy to (17.185), this immediately leads to

ŒV� ;V��D�VŒ�;�
 : (17.216)

If we now decompose � in an embedding-dependent
fashion into its normal component ˛n and tangential
component ˇ, we can rewrite (17.215) as

V.˛; ˇ/DZ
†

d3x
�
˛.x/n�Œy�.x/Cˇa@ay�.x/

� ı

ıy�.x/
:

(17.217)

Here ".†/
M has to be considered as a functional of
the embedding. Again, we can compute the commuta-
tor explicitly. The only nontrivial part is the functional
derivative of the n� with respect to the y� . How this is
done is explained in the Appendix of [17.43]. The result
is

ŒV.˛1; ˇ1/;V.˛2; ˇ2/�D�V.˛; ˇ/ ; (17.218a)

where

˛ D ˇ1.˛2/�ˇ2.˛1/ ; (17.218b)

ˇ D Œˇ1; ˇ2�C "
�
˛1.d˛2/

]�˛2.d˛1/
]
	
:

(17.218c)

This is just (17.209) up to a relative minus sign that has
the same origin as that between (17.185) and (17.189).
We therefore see that (17.209) is a representation of
a general algebraic structure which derives from the ge-
ometry of deformations of (spacelike) hypersurfaces in
spacetime.

We can now address the inverse problem, namely
to find all Hamiltonian representations of (17.218)
on a given phase space. As in GR the phase space
is T�Q, where QD Riem.†/. That is, we may ask
for the most general phase-space functions H.˛; ˇ/ W
T�Riem.†/!R, parameterized by .˛; ˇ/, so that

fH.˛1; ˇ1/;H.˛2; ˇ2/g D H.˛; ˇ/ : (17.219)

The meaning of this relation is once more explained in
Fig. 17.3. It is also sometimes expressed as path in-
dependence, for it implies that the Hamiltonian flow
corresponding to two different paths in ".†;M/ reach-
ing the same final hypersurface will also result in the
same physical state (phase-space point).

Σ12

Σ21

Σ2

Σ1

(α, �)

(α
1 , �

1)

Σ
(α

2 , �
2)

(α2, �
2)

(α1, �
1)

Fig. 17.3 An (infinitesimal) hypersurface deformation with
parameters .˛1; ˇ1/ that maps † 7!†1, followed by one
with parameters .˛2; ˇ2/ that maps †1 7!†12, differs by
one with parameters .˛; ˇ/ given by (17.218b) from that
in which the maps with the same parameters are composed
in the opposite order

To answer this question, one first has to choose
a phase space. Here we stick to the same phase space
as in GR, that is, T�Q, where QD Riem.†/. The
representation problem can be solved under certain
additional hypotheses concerning the geometric inter-
pretation of H.˛D 0; ˇ/ and H.˛; ˇ D 0/:

1. H.0; ˇ/ should represent an infinitesimal spatial dif-
feomorphism, so that

fF;H.0; ˇ/g D LˇF (17.220a)

for any phase-space function F. This fixes H.0; ˇ/
to be the momentum map for the action of Diff.†/
on phase space.

2. H.˛; 0/ should represent an infinitesimal Diff.M/
action normal to †. In the absence of M, which is
not yet constructed, this phrase is taken to mean that
(17.69) must hold, i. e.

fh;H.˛; 0/g D �2"˛K ; (17.220b)

where K is the extrinsic curvature of † in the ambi-
ent spacetime that is yet to be constructed.

It has been shown that under these conditions the
Hamiltonian of GR, including a cosmological constant,
provides the unique two-parameter family of solutions,
the parameters being � andƒ. See [17.44] for more de-
tails and [17.47] for the most complete proof (see below
for a small topological gap). This result may be seen
as the Hamiltonian analog to Lovelock’s uniqueness re-
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sult [17.48] for Einstein’s equations using spacetime
covariance.

A particular consequence of this result is the impos-
sibility to change the parameter 	 in the DeWitt metric
(17.144) to any other than the GR value 	D 1 without
violating the representation condition, that is, with-
out violating covariance under spacetime diffeomor-
phisms. Such theories include those of Hořava–Lifshitz
type [17.49], which were suggested as candidates for
ultraviolet completions of GR.

At this point, we must mention a topological sub-
tlety which causes a small gap in the uniqueness proofs
mentioned above and might have important conse-
quences in quantum gravity. To approach this issue, we
recall from the symplectic framework that we can al-
ways perform a canonical transformation of the form

� 7! � 0 WD � C� ; (17.221)

where � is a closed 1-form on Riem.†/. Closed-
ness ensures that all Poisson brackets remain the same
if � is replaced with � 0. Since Riem.†/ is an open
positive convex cone in a vector space and hence con-
tractible, it is immediate that� D df for some function
f W Riem.†/!R. However, � and � 0 must satisfy the
diffeomorphism constraint, which is equivalent to say-
ing that the kernel of � (considered as a 1-form on
Riem.†/) contains the vector fields generated by spa-
tial diffeomorphisms, which implies that �, too, must
annihilate all those, so that f is constant on each con-
nected component of the Diff.†/ orbit in Riem.†/.
But, unless these orbits are connected, this does not
imply that f is the pull back of a function on the quo-

tient Riem.†/=Diff.†/, as assumed in [17.47]. We
can only conclude that � is the pull back of a closed
but not necessarily exact 1-form on superspace. Hence,
there is an analog of the Bohm–Aharonov-like ambi-
guity that one always encounters if the configuration
space is not simply connected. The quantum theory is
then expected to display a sectorial structure labeled
by the equivalence classes of unitary irreducible rep-
resentations of the fundamental group of configuration
space, which in analogy to Yang–Mills-type gauge the-
ories are sometimes referred to as  -sectors [17.50].
In GR the fundamental group of configuration space
is isomorphic to a certain mapping-class group of the
3-manifold †. The theta structure then depends on
the topology of † and can range from trivial to very
complicated. See [17.51] for more details of the rôle
and determination of these mapping-class groups and
[17.39] for a more general discussion of the configura-
tion space in GR, which, roughly speaking, is the quo-
tient Riem.†/=Diff.†/, often referred to as Wheeler’s
superspace [17.35, 36, 52].

We finally note that additional theta structures may
emerge if the gravitational field is formulated by means
of different field variables including more mathemati-
cal degrees of freedom and more constraints (so as to
result in the same number of physical degrees of free-
dom upon taking the quotient). The global structure of
the additional gauge transformations may then add to
the nontriviality of the fundamental group of configura-
tion space and hence to the complexity of the sectorial
structure. Examples have been discussed in the context
of Ashtekar variables (Sect. 17.11) in connection with
the CP problem in quantum gravity [17.53].

17.9 Asymptotic Flatness and Charges

Isolated systems are described by geometries which at
large spatial distances approach a matter-free space-
time. In the case of vanishing cosmological constant the
latter will be flat Minkowski spacetime. For nonzeroƒ,
it will be either de Sitter (ƒ> 0) or anti-de Sitter
(ƒ< 0). Here we are interested in the case ƒD 0. We
refer to Chap. 19) for the discussion of the anti-de Sitter
case.

An initial data set .h; �/ or .h;K/ on† needs to sat-
isfy certain asymptotic conditions in order to give rise
to an asymptotically flat spacetime. Before going into
this, we point out that there is also a topological con-
dition on † in order to sensibly talk about asymptotic

regions. The condition is that there exists a compact
set K 
† such that its complement †�K is diffeo-
morphic to the disjoint union of manifolds R3 �B,
where B is a closed ball. These pieces into which †
decomposes if one cuts out increasingly large compact
sets are called ends of †. In passing, we note that the
theory of ends for topological spaces and groups was
developed by Freudenthal in 1931 [17.54]. Now, the
first condition we pose is that there is only a finite
number of such ends. (It is easy to see that mani-
folds may even have an uncountable number of ends.)
With respect to each end, we can talk of approaching
infinity. This means letting r!1 if r is the stan-
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dard radial coordinate on R3 �B to which this end is
diffeomorphic.

In order to make the Hamiltonian evolution gener-
ated by (17.205) well defined, we have to specify the
boundary terms that we have to add in order to ensure
functional differentiability with respect to h and � in
the presence of long-ranging ˛ and ˇ. For the latter, we
at least wish to include asymptotically constant ˛ and
covariant constant ˇ corresponding to time and space
translations, as well as asymptotic rotations.

For asymptotically constant ˛, we will pick up
a boundary term from variations of (17.206a) with re-
spect to h, which appears twice differentiated in the
scalar curvature. The term itself is immediately read
off from (17.105). In order to cancel it from the vari-
ation of H, where it appears multiplied with ".2�/�1,
we have to add the boundary term

�".2�/�1˛
1

Z

S2
1

Ua ma

p
hd2x ; (17.222)

where Ua is as in (17.105b) and ˛
1

is the asymptotic
value of ˛. The dominant contribution will come from
the derivatives on h with all other factors of h being
set to their asymptotic value hab D ıab. Normalizing to
˛
1

D 1, this leads to the expression for the overall en-
ergy, called the ADM energy or ADM mass

EADM DMADMc2

D�".2�/�1
Z

S2
1

.@ahab� @bhaa/mb d� ;

(17.223)

where all components refer to the asymptotically Eu-
clidean coordinates for which indices are raised and
lowered with ıab, so that we keep them on the same
level, and where d� is the rotationally invariant mea-
sure on S2

1

, which in polar coordinates for the end is
just r2 sin  d ^ d', and mb are the components for
the outward-pointing normal (normalized with respect
to ı). Note that the dependence on the signature " has to
do with our earlier convention to keep the positive sign
for the traceless modes in the kinetic-energy expression
for both signatures.

The boundary terms for asymptotic ˇ motions
(translations and rotations) immediately follow from
our earlier discussion: they are just the momentum
maps for those motions, evaluated on the constraint sur-

face. This gives

Pˇ jCvD0 D

2
4Z
†

d3x�abLˇhab

3
5

CvD0

D 2
Z

S2
1

�abˇamb d� : (17.224)

This leads to the linear momentum in the asymptotic ˇ
direction if ˇ is taken to be an asymptotically covariant
constant and normalized vector field, like ˇa D ıab for
the translation in the b direction, and to angular mo-
mentum in the ! direction if ˇa D "abc!bxc, with !
normalized.

For these definitions to make sense, we have to clar-
ify the issues of existence and uniqueness. Existence
means that we have to make sure that these integrals
exist. Since an integral over S2

1

is the limit of S2.r/
integrals in the limit r!1, this means proving that
the limit exists. Looking at (17.223) and (17.224), we
see that we need a r�2 fall off for the combination
.@bhab�@ahbb/ma and likewise for �abˇamb. The ques-
tion is what conditions this implies for the fields h
and � , given that they are solutions to the constraints.
Moreover, given existence for certain fall-off condi-
tions, we also want them to ensure uniqueness, meaning
that the calculated asymptotic charges are the same for
any two different asymptotically Euclidean coordinate
systems in which the fall-off conditions hold. Finally,
we want these quantities to be preserved under the
Hamiltonian evolution, i. e. to be conserved charges.
The main result in this direction, at least as far as en-
ergy and linear momentum are concerned (i. e. ignoring
angular momentum for the moment), is the following:
ADM energy and linear momentum exist uniquely and
are preserved under Hamiltonian evolution if

hab D ıabC o2.r
�1=2/ ; (17.225a)

�ab D o1.r
�3=2/ : (17.225b)

Here we employ the little-o notation, where op.r�˛/
stands for terms with fall off faster than r�˛ and
whose q-th derivatives fall off faster than r�˛�q for all
q	 p. These are also the conditions for which stabil-
ity of Minkowski space is known to hold [17.55]. See
Chap. 18 for an example showing that the fall off for h
faster than r�1=2 cannot be further relaxed.

At first sight (17.225a) might seem too weak to
guarantee existence of (17.223). The reason why it
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is not is, in fact, easy to see. If we convert (17.223)
into a bulk integral using Gauss’ theorem, the inte-
grand contains a combination of second derivatives
of h which just form the second derivative part of the
scalar curvature. This is how we derived the expres-
sion (17.223) from (17.105) in the first place. Using the
scalar constraint, we can express this combination by
terms quadratic in the first derivatives of h and quadratic
in � , whose bulk integrals exist due to (17.225). See
also [17.56] for a more comprehensive discussion.

For asymptotically flat and stationary solutions,
the ADM mass MADM is known to coincide with
the so-called Komar mass [17.57], whose simple and
coordinate-invariant expression is

MKomar D
�"

�c2

Z

S2
1

?dK[ : (17.226)

There exist various proofs in the literature showing
MKomar DMADM; see, e.g., [17.58–60] and [17.61, The-
orem 4.13].

Last but not least, we mention the positive-mass the-
orem (for Lorentzian signature "D�1), which states
that for any pair .h; �/ of initial data satisfying the
constraints, MADM � 0, with equality only if the data
are that of Minkowski space. Note that the expression
(17.223) for MADM is a functional of h alone, but that
in the formulation of the positive-mass theorem given
here it is crucial that for h there exists a � so that
the pair .h; �/ solves the constraint. Otherwise it is
easy to write down 3-metrics with negative ADM mass;
take e.g. (17.232) (see below) for negative r0, suitably
smoothed out for smaller radii so as to avoid the sin-
gularity at rD�r0. Since the ADM mass only depends
on the asymptotic behavior, it is completely indepen-
dent of any alterations to the metric in the interior. If
one wishes to make the positive-mass theorem a state-
ment about metrics alone without any reference to the
constraints, one has to impose positivity conditions on
the scalar curvature. But that also imposes topological
restrictions due to the result of Gromov and Lawson
[17.32] mentioned at the end of Sect. 17.6. The positive-
mass theorem is discussed in detail in Chap. 18.

In passing, we remark that the positive-mass theo-
rem in combination with the equality MADM DMKomar

gives a simple proof of the absence of gravitational
solitons, i. e. stationary asymptotically flat solutions
to Einstein’s equations on †DR3. This follows from
(17.226) and d ? dK[ / ikRic. The vacuum equation
RicD 0 then implies that MADM DMKomar D 0, which
implies that spacetime is flat Minkowski. This theorem
was originally shown for static spacetimes (i. e. hyper-
surface orthogonal K) by Einstein and Pauli [17.62]
and later generalized to the stationary case by Lich-
nerowicz [17.63]. The result of this theorem cannot be
circumvented by trying more complicated topologies
for †. As soon as † becomes nonsimply connected
(which, in view of the validity of the Poincaré conjec-
ture, will be the case for any one-ended manifold other
than R3), we know from Gannon’s theorem [17.64]
that the evolving spacetime will inevitably develop
singularities.

Finally, we mention that under suitable fall-off con-
ditions we can find the Poincaré group as an asymptotic
symmetry group [17.65]. It will emerge from (17.219)
as equivalence classes of all hypersurface deforma-
tions, including those in which ˛ and ˇ asymptotically
approach rigid translations, rotations, or boosts. The
quotient is taken with respect to those deformations
which are generated by the constraints, in which ˛
and ˇ tend to zero at spatial infinity. There are var-
ious subtleties and fine tunings involved for the pre-
cise fall-off conditions that are necessary in order to
exactly obtain a 10-dimensional symmetry as a quo-
tient of two infinite-dimensional objects. This is par-
ticularly true for asymptotic boosts, for which one
needs to tilt the hypersurface, corresponding to asymp-
totic lapse functions ˛ / r. (Boosted hypersurfaces are
known to exist in the development of asymptotically
flat initial data [17.66].) But, leaving the analytic de-
tails aside, the qualitative picture is quite generic for
gauge field theories with long-ranging field config-
urations [17.67]: a proper physical symmetry group
arises as a quotient of a general covariance group with
respect to a proper normal subgroup, the latter be-
ing defined to be that object that is generated by the
constraints.

17.10 Black-Hole Data

In this section, we discuss some simple solutions to
the vacuum Einstein equations without cosmological
constant. We first specify to the simplest case of time-

symmetric conformally flat data. Time symmetry means
that the initial extrinsic curvature vanishes, K D 0.
The corresponding Cauchy surface will then be totally
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geodesic in the spacetime that emerges from it. The vec-
tor constraint (17.131a) is identically satisfied and the
scalar constraint (17.131b) reduces to scalar flatness

R.h/D ScalD D 0 : (17.227)

Conformal flatness means that

hD�4ı ; (17.228)

where ı is the flat metric. From (17.112a), we infer that
(17.227) is equivalent to � being harmonic

�ı�D 0 ; (17.229)

where �ı is the Laplacian with respect to the flat met-
ric ı. We seek solutions� which are asymptotically flat
for r!1 and give rise to complete manifolds in the
metric structure defined by g. The only spherically sym-
metric such solution is

�.r/D 1C
r0

r
; (17.230)

where the integration constant r0 can be related to the
ADM mass (17.223) by

MADM D 2c2r0=G : (17.231)

This solution is defined on †DR3 �f0g. The metric
on † so obtained is

hD
�

1C
r0

r

	4 �
dr2C r2.d2C sin2  d'2/

�
:

(17.232)

It admits the following isometries

I1.r; ; '/ WD
�
r2

0=r; ; '
�
; (17.233a)

I2.r; ; '/ WD
�
r2

0=r; � � ; 'C�
�
: (17.233b)

Note that the second is just a composition of the first
with the antipodal map .r; ; '/ 7! .r; � � ; 'C�/,
which is well defined on R3 �f0g. This makes I2

a fixed-point free action. The fixed-point set of I1 is
the 2-sphere rD r0. Note that generally a submanifold
that is the fixed-point set of an isometry is necessar-
ily totally geodesic (has vanishing extrinsic curvature).
To see this, consider a geodesic that starts on and tan-
gentially to this submanifold. Such a geodesic cannot

r = r0

Fig. 17.4 Cauchy surface with time-symmetric initial data
and two isometric asymptotically flat ends separated by
a totally geodesic 2-sphere

leave the submanifold, for if it did we could use the
isometry to map it to a different geodesic with identical
initial conditions, in contradiction to the uniqueness of
solutions for the geodesic equation. Hence, the 2-sphere
rD r0 has vanishing extrinsic curvature and is, there-
fore, in particular, a minimal surface (has vanishing
trace of the extrinsic curvature). The geometry inside
the sphere rD r0 is isometric to that outside it. This is
depicted in Fig. 17.4.

For the data .hD (17.232), K D 0/ on †DR3 �

f0g, we actually know its maximal time evolution:
it is the Kruskal spacetime [17.68, 69], which max-
imally extends the exterior Schwarzschild spacetime.
Figure 17.5 shows a conformal diagram of Kruskal
spacetime.

In Kruskal coordinates (Kruskal [17.68] uses .v; u/,
Hawking and Ellis [17.69] .t0; x0/ for what we call
.T;X/) .T;X; ; '/, where T and X each range in
.�1;1/ obeying T2 �X2 < 1, the Kruskal metric
reads (as usual, we write d�2 for d2C sin2  d'2)

gD
8r2

0

r
exp.�r=r0/

�
�dT2C dX2

�
C r2 d�2 ;

(17.234)

where r is a function of T and X, implicitly defined by

..r=r0/� 1/ exp.r=r0/D X2 �T2 : (17.235)

The metric is spherically symmetric and allows for the
additional Killing field

K D .X@T CT@X/ ; (17.236)

which is timelike for jXj> jTj and spacelike for jXj<
jTj.
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i+

i0i0

i+

T = 0 T = 0

X
 =

 0
X

 =
 0

white-hole singularity

black-hole singularity

i–i–

–

+

–

+

Fig. 17.5 Conformally compactified Kruskal spacetime.
The T axis points up vertically, the X axis horizontally
to the right. The Cauchy surface of Fig. 17.4 corresponds
to the hypersurface T D 0. The various infinities are: i0
spacelike, i

˙

future/past timelike, and I
˙

future/past light-
like infinity. The diamond-shaped region at the right of the
figure corresponds to the usual exterior Schwarzschild so-
lution containing one asymptotically flat end

Both maps (17.233) extend to the Kruskal manifold.
The fixed-point free action (17.233b) has the extension

J W .T;X; ; '/ 7! .T;�X; � � ; 'C�/ : (17.237)

It generates a freely acting group Z2 of smooth isome-
tries which preserve space as well as time orientation.
Hence, the quotient is a smooth space- and time-
orientable manifold, that is sometimes called the RP3-
geon. It represents the maximal time evolution of the
data (hD (17.232), K D 0) as above, but now defined
on the initial quotient manifold †D .R3 � f0g/=I2. It
has only one asymptotically flat end and the topology of
a once-punctured real projective space RP3. Note that
the map J preserves the Killing field (17.236) only up to
sign. Had one chosen J0 W .T;X; ; '/ 7! .�T;�X; � �
; 'C�/ as in [17.70, 71], one would have preserved K
but lost time orientability.

Within the set of conformally flat and time-
symmetric initial data we can easily generalize the
solution (17.230) to (17.229) to include more than one
monopole term on a multipunctured R3. For two terms,
we get

�.r/D 1C
a1

r1
C

a2

r2
; (17.238)

where ri D kEx�Ecik. This represents two black holes
without spin and orbital angular momentum momentar-
ily at rest. The manifold has three ends, one for r!1
and one each for ri! 0. For each end we can calculate

the ADM mass and get

M D 2.a1C a2/c
2=G ; (17.239a)

M1 D 2

�
a1C

a1a2

r12

�
c2

G
; (17.239b)

M2 D 2
�

a2C
a1a2

r12

�
c2

G
; (17.239c)

where r12 WD kEc1�Ec2k. Here M is the total mass associ-
ated with the end r!1 and Mi is the individual hole
mass associated with the end ri! 0. The binding en-
ergy is the overall energy minus the individual ones.
One obtains

�E WD .M�M1 �M2/c
2 D�G

M1M2

r12
C : : : ;

(17.240)

where the dots stand for corrections of quadratic and
higher powers in GMi=c2r12. This can be easily gener-
alized to any finite number of poles. Note that the initial
manifolds are all complete, i. e. all punctures lie at infi-
nite metric distance from any interior point.

Other generalizations consist in adding linear and
angular momenta. This can be done using the confor-
mal method, which we briefly describe. We maintain
conformal flatness (17.228) and set for the extrinsic cur-
vature

Kab D�
�2 NKabC

1
3�

4ıab
 ; (17.241)

where 
 is constant. The vector constraint in vacuum
and for 	D 0 is then satisfied if NK is transverse and
traceless with respect to the flat metric ı

ıab NKab D 0 ; (17.242a)

@a NKab D 0 : (17.242b)

Once such a NK is found, the scalar constraint determines
the conformal factor � via

�"�ı�C
1
8�
�7 NKab NKab�

1
12�

5
2 D 0 ; (17.243)

which follows from the scalar constraint once the ansatz
(17.241) is inserted and the conformal flatness of h
is used to express the scalar curvature according to
(17.112). Existence and uniqueness of this equation



Dynamical and Hamiltonian Formulation of General Relativity 17.11 Further Developments, Problems, and Outlook 359
Part

C
|17.11

for the Lorentzian case "D�1 will be discussed in
Chap. 16.

It is remarkable that the ADM (17.224) can be
calculated without knowing �. Hence, we can param-
eterize solutions to (17.242) directly by the momenta
without solving (17.243) first. Two solutions are the
Bowen–York data [17.34, 72]

NK.1/ab D r�2 .�aAbC �bAa � .ıab� �a�b/�cAc/ ;
(17.244)

NK.2/ab D r�3 .�a"bcdC �b"acd/Bc�d ; (17.245)

where �a WD xa=r and A and B are constant vectors. One
verifies directly that these NK are transverse traceless.
Using (17.224), one shows that (17.244) has vanishing
angular momentum and a linear momentum with com-

ponents

Pa D
2c3

3G
Aa ; (17.246)

whereas (17.245) has vanishing linear momentum and
an angular momentum with components

Ja D
c3

3G
Ba : (17.247)

They can be combined to give data for single holes
with nonzero linear and angular momenta and also be
superposed in order to give data for multi-black-hole
configurations. Such data, and certain modifications of
them, form the essential ingredient for present-day nu-
merical simulations of black-hole scattering and the
subsequent emission of gravitational radiation.

17.11 Further Developments, Problems, and Outlook

In this contribution we have explained in some de-
tail the dynamical and Hamiltonian formulation of GR.
We followed the traditional ADM approach in which
the basic variables are the Riemannian metric h of
space and its conjugate momentum � , which is es-
sentially the extrinsic curvature that † will assume
once the spacetime is developed and † is isometri-
cally embedded in it. Attempts to establish a theory of
quantum gravity based on the Hamiltonian formulation
of GR suggest that other canonical variables are bet-
ter suited for the mathematical implementation of the
constraints and the ensuing construction of spaces of
states and observables [17.23, 73, 74]. These variables
are a (suitably densitized) orthonormal 3-bein field E
on † and the Ashtekar–Barbero connection. We have
already seen that orientable † are parallelizable so that
global fields E do indeed exist. Any field E determines
a Riemannian metric h, which in turn determines its
Levi-Civita connection. The Ashtekar–Barbero covari-
ant derivative, D, differs from the Levi-Civita connec-
tion D of h by the endomorphism-valued 1-form which
associates to each tangent vector X the tangent-space
endomorphism Y 7! �Wein.X/� Y , where � is a di-
mensionless constant, the so-called Barbero–Immirzi
parameter. Hence, we have

DXY DDXYC �Wein.X/� Y : (17.248)

The multiplication � is the standard three-dimensional
vector product with respect to the metric h. It is defined

as follows

X � Y WD Œ?.X[ ^ Y[/�] ; (17.249)

where the isomorphisms [ and ] are with respect to h
(cf. (17.1)). The product� obeys the standard rules: it is
bilinear, anti-symmetric, and X� .Y �Z/D h.X; Z/Y�
h.X;Y/Z. Moreover, for any X, the endomorphism Y 7!
X � Y is anti-symmetric with respect to h, i. e. h.X �
Y; Z/D�h.Y;X�Z/, and hence it is in the Lie algebra
of the orthogonal group of h. In particular, this is true
for Y 7!Wein.X/� Y , showing that D is again metric,
i. e. obeys DhD 0 once its unique extension to all ten-
sor fields is understood. Clearly, unlike D, the torsion
of D cannot be zero

TD.X;Y/DDXY �DYX� ŒX; Y�

D � .Wein.X/� Y �Wein.Y/�X/ :

(17.250)

Using (17.66) and index notation, the curvature tensor
for D is

RDabcd D RD
abcd

C "� .DcKdn�DdKcn/ "
n

ab

� �2 .KacKbd �KadKbc/ : (17.251)

From this, the scalar curvature follows

ScalD D ScalDC �2GabcdKabKcd : (17.252)
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Comparison with (17.131a) shows that for �2 D "
the gravitational part of the scalar constraint is just ("
times) the scalar curvature of D. This striking simplifi-
cation of the scalar constraint formed the original mo-
tivation for the introduction of D by Ashtekar [17.75].
However, for "D�1 one needs to complexify the ten-
sor bundle over † for � D˙i to make sense, and sub-
sequently impose reality conditions which re-introduce
a certain degree of complication; see, e.g., [17.76] for
a compact account not using spinors. The usage of D
in the real case was then proposed by Barbero in
[17.77] and forms the basic tool in loop quantum grav-
ity [17.73], which has definite technical advantages over
the metric-based traditional approach.

On the other hand, the traditional approach is well
suited to address certain conceptual problems [17.37],
like e.g. the problem of time that emerges in those
cases where the Hamiltonian (17.205) has no bound-

ary terms and is therefore just a sum of constraints.
This happens in cosmology based on closed †. The
motions generated by the Hamiltonian are then just
pure gauge transformations and the question arises of
whether and how motion and change are to be recovered
(compare Chap. 36). Dynamical models in cosmology
often start from symmetry assumptions that initially re-
duce the infinitely many degrees of freedom to finitely
many ones (so-called mini-superspace models). Other
modes are then treated perturbatively in an expansion
around the symmetric configurations. In these cases
quantization in the metric representation can be per-
formed, with potentially interesting consequences for
observational cosmology, like the modification of the
anisotropy spectrum of the cosmic microwave back-
ground [17.78, 79]. All these attempts make essential
use of the Hamiltonian theory as described in this
contribution.
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18. Positive Energy Theorems in General Relativity

Sergio Dain

At the end of the nineteenth century light was
regarded as an electromagnetic wave propagating
in a material medium called ether. The speed c
appearing in Maxwell’s wave equations was the
speed of light with respect to the ether. Therefore,
according to the Galilean addition of velocities, the
speed of light in the laboratory would differ from c.
The measure of such a difference would reveal the
motion of the laboratory (the Earth) relative to the
ether (a sort of absolute motion). However, the
Earth’s absolute motion was never evidenced.

Galileo addition of velocities is based on the
assumption that lengths and time intervals are
invariant (independent of the state of motion).
In this way of thinking, the spacetime emanates
from our daily experience and lies at the heart
of Newton’s classical mechanics. Nevertheless, in
1905 Einstein defied Galileo addition of veloci-
ties by postulating that light travels at the same
speed c in any inertial frame. In doing so, Einstein
extended the principle of relativity to the electro-

18.1 Theorems .............................................. 363

18.2 Energy .................................................. 365

18.3 Linear Momentum ................................. 372

18.4 Proof. .................................................... 374

18.5 Further Results and Open Problems ........ 378

References ..................................................... 379

magnetic phenomena described by Maxwell’s
laws. In Einstein’s special relativity the ether
does not exist and the absolute motion is de-
void of meaning. The invariance of the speed
of light forced the replacement of Galileo trans-
formations with Lorentz transformations. Thus,
relativistic length contractions and time dila-
tions entered our understanding of spacetime.
Newtonian mechanics had to be reformulated,
which led to the discovery of the mass–energy
equivalence.

18.1 Theorems

The aim of this chapter is to present an introduction
and also an overview of some of the most relevant re-
sults concerning positivity energy theorems in general
relativity. These theorems provide the answer to a long
standing problem that has been proved remarkably dif-
ficult to solve. They constitute one of the major results
in classical general relativity and they uncover a deep
self-consistence of the theory.

In this introductory section we would like to present
the theorems in a complete form but with the least pos-
sible amount of technical details, in such a way that the
reader can have a rough idea of the basic ingredients.
The examples that illustrate the hypothesis of the theo-
rems are discussed in the following sections.

An isolated system is an idealization in physics that
assumes that the sources are confined to a finite region
and the fields are weak far away from the sources. This
kind of system is expected to have finite total energy.
In general relativity there are several ways of defining
isolated systems. For our purpose the most appropri-
ate definition is through initial conditions for Einstein
equations. The reasons for this are twofold. First, the
notion of total energy has been discovered and formu-
lated using a Hamiltonian formulation of the theory
which involves the study of initial conditions. We re-
fer the reader to Chap. 17 for this topic. Second, the
proofs of the positive mass theorem are mainly given in
terms of initial conditions. For a discussion of the ini-
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tial value formulation of Einstein equations we refer to
Chap. 16.

Initial conditions for Einstein equations are charac-
terized by an initial data set given by .S;hij;Kij; �; ji/,
where S is a connected three-dimensional manifold, hij

a (positive definite) Riemannian metric, Kij a symmetric
tensor field, � a scalar field, and ji a vector field on S,
such that the constraint equations

DjK
ij �DiK D�8� ji ; (18.1)

R�KijK
ijCK2 D 16�� ; (18.2)

are satisfied on S. Here D and R are the Levi-Civita
connection and scalar curvature associated with hij, and
K D Kijhij. In these equations the indices i; k; : : : are
three-dimensional indices; they are raised and lowered
with the metric hij and its inverse hij. The matter fields
are assumed to satisfy the dominant energy condition

��

q
jjjj : (18.3)

The initial data model an isolated system if the
fields are weak far away from sources. This physi-
cal idea is captured in the following definition of an
asymptotically flat initial data set. Let BR be a ball of
finite radius R in R3. The exterior region U DR3 nBR

is called an end. On U we consider Cartesian coor-
dinates xi with their associated Euclidean radius rD�P3

iD1.x
i/2
	1=2

and let ıij be the Euclidean metric

components with respect to xi. A three-dimensional
manifold S is called Euclidean at infinity, if there exists
a compact subset K of S such that S nK is the disjoint
union of a finite number of ends Uk. The initial data set
.S;hij;Kij; �; ji/ is called asymptotically flat if S is Eu-
clidean at infinity and at every end the metric hij and the
tensor Kij satisfy the following fall-off conditions

hij D ıijC �ij ; Kij DO.r�2/ ; (18.4)

where �ij DO.r�1/, @k�ij D O.r�2/, @l@k�ij D O.r�3/
and @kKij DO.r�3/. These conditions are written in
terms of Cartesian coordinates xi attached at every end
Uk. Here @i denotes partial derivatives with respect to
these coordinates.

At first sight it could appear that the notion of
asymptotically flat manifold with multiple ends Uk

is a bit artificial. Certainly, the most important case
is when SDR3, for which this definition trivializes
with K D BR and only one end U DR3 nBR. Initial
data for standard configurations of matter like stars

or galaxies are modeled with SDR3. Also, gravita-
tional collapse can be described with this kind of data.
However, initial conditions with multiple ends and non-
trivial interior K appear naturally in black hole initial
data as we will see. In particular, the initial data for the
Schwarzschild black hole has two asymptotic ends. On
the other hand, this generalization does not imply any
essential difficulty in the proofs of the theorems.

Only conditions on hij and Kij are imposed in (18.4)
and not on the matter fields � and ji, however since they
are coupled by the constraint equations (18.1)–(18.2)
the fall-off conditions (18.4) impose fall-off conditions
also on .�; ji/.

The fall-off conditions (18.4) are far from being the
minimal requirements for the validity of the theorem.
This is a rather delicate issue that has important conse-
quences in the definition of the energy. We will discuss
this point in Sect. 18.2. We have chosen these particu-
lar fall-of conditions because they are simple to present
and they encompass a rich family of physical models.

For asymptotically flat initial data the total energy
and linear momentum of the spacetime are defined as
integrals over two-spheres at infinity at every end by
the following expressions

ED
1

16�
lim

r!1

I
Sr

.@jhij � @ihjj/s
i ds0 ; (18.5)

Pi D
1

8�
lim

r!1

I
Sr

.Kik �Khik/ sk ds0 ; (18.6)

where si is its exterior unit normal and ds0 is the
surface element of the two-sphere with respect to the
Euclidean metric. We emphasize that for every end Uk

we have a corresponding energy and linear momentum
E.k/;Pi

.k/, which can have different values. We will dis-
cuss examples of this in Sect. 18.2.

The quantities E and Pi are defined on the asymp-
totic ends and they depend only on the asymptotic
behavior of the fields hij and Kij. However, since hij

and Kij satisfy the constraint equations (18.1)–(18.2),
and the dominant energy condition (18.3) holds, these
quantities, in fact, carry information of the whole initial
conditions.

The energy E and the linear momentum Pi are
components of a four-vector Pa D .E;Pi/ (indices
a; b; c; : : : are four-dimensional). We will discuss this
in Sect. 18.3. The total mass of the spacetime is defined
by

M D
q

E2 �PiPjıij : (18.7)
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We have all the ingredients to present the positive
energy theorem.

Theorem 18.1 Positive energy theorem
Let .S;hij;Kij; �; ji/ be an asymptotically flat (with
many possible asymptotic ends), complete initial data
set, such that the dominant energy condition (18.3)
holds. Then the energy and linear momentum .E;Pi/
defined by (18.5)–(18.6) satisfy

E �
q

PiPjıij � 0 ; (18.8)

at every end. Moreover, ED 0 at any end if and only if
the initial data correspond to the Minkowski spacetime.

The word complete means that .S;hij/ as a Rieman-
nian manifold is complete. That is, no singularities are
present on the initial conditions. However, the space-
time can be singular since singularities can developed
from regular initial conditions, for example, in the grav-
itational collapse. We will discuss this in more detail in
Sect. 18.2.

Note that Theorem 18.1 allows the vector Pa to be
null and nontrivial. However, it was shown in [18.1] that
if the energy momentum vector Pa is null, then it van-
ishes identically.

One remarkable aspect of this theorem is that it is
nontrivial even in the case where SDR3 and no mat-
ter fields �D ji D 0 are present. This corresponds to
the positivity of the energy of the pure vacuum gravi-
tational waves. We present explicit examples of this in
Sect. 18.2.

For spacetimes with black holes there are space-like
surfaces that touch the singularity. For that kind of ini-

tial condition Theorem 18.1 does not apply. Physically
it is expected that it should be possible to prove a posi-
tivity energy theorem for black holes without assuming
anything about what happens inside the black hole. That
is, it should be possible to prove an extension of the
positive energy theorem for initial conditions with inner
boundaries if the boundary represents a black hole hori-
zon. The following theorem deals precisely with that
problem.

Theorem 18.2 Positive energy theorem with black
hole inner boundaries
Let .S;hij;Kij/ be an asymptotically flat, complete ini-
tial data set, with SDR3 nB, where B is a ball. Assume
that the dominant energy condition (18.3) holds and
that @B is a black hole boundary. Then the energy mo-
mentum E;Pi defined by (18.5)–(18.6) satisfies

E �
p

PiPi � 0 : (18.9)

Moreover, ED 0 if and only if the initial data corre-
spond to the Minkowski spacetime.

We will explain what are black hole inner boundary
conditions in Sect. 18.2.

The plan of this chapter is the following. In
Sect. 18.2 we discuss the concept of the energy E and
present examples that illustrate the hypothesis of the
positive energy theorem. In Sect. 18.3 we analyze the
linear momentum Pi and describe its transformation
properties. In Sect. 18.4 we review the main steps of the
proof of theorems 18.1 and 18.2. Finally, in Sect. 18.5
other recent related results are discussed and the rele-
vant current open problems are presented.

18.2 Energy

A remarkable feature of the asymptotic conditions
(18.5) is that they imply that the total energy can
be expressed exclusively in terms of the Riemannian
metric hij of the initial data (and the linear momen-
tum in terms of hij and the second fundamental form
Kij). Hence the notion of energy can be discussed in
a pure Riemannian setting, without mentioning the sec-
ond fundamental form. Moreover, as we will see, there
is a natural corollary of the positive energy theorem for
Riemannian manifolds. This corollary is relevant for
several reasons. First, it provides a simpler and more
relevant setting to prove the positive energy theorem.

Second, and what is more important, it has surpris-
ing applications in other areas of mathematics. Finally,
we will deal first with the Riemannian metric and
then, in the next section, with the second fundamen-
tal form to incorporate the linear momentum, to reveal
the different mathematical structures behind the energy
concept.

In the previous section we introduced the notion of
an end U, the energy was defined in terms of Rieman-
nian metrics on U. To emphasize this important point
we isolate the notion of energy defined in the theorems
in the following definition.
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Definition 18.1 Energy
Let hij be a Riemannian metric on an end U given in the
coordinate system xi associated with U. The energy is
defined by

ED
1

16�
lim

r!1

I
Sr

.@jhij� @ihjj/s
i ds0 : (18.10)

Note that in this definition there is no mention of the
constraint equations (18.1)–(18.2). Also, the definition
only involves an end U, there are no assumptions on the
interior of the manifold.

In the literature it is customary to call E the total
mass and denote it by m or M. In this article, in order
to emphasize that E is, in fact, the zero component of
a four-vector we prefer to call it energy and reserve the
name mass to the quantity M defined by (18.7). When
the linear momentum is zero, both quantities coincide.

The definition of the total energy has three main in-
gredients: the end U, the coordinate system xi, and the
Riemannian metric hij. The metric is always assumed to
be smooth on U; we will deal with singular metrics but
these singularities will be in the interior region of the
manifold and not on U.

There exist two potential problems with the defini-
tion 18.1. The first one is that the integral (18.10) could
be infinite. The second, and more subtle, problem is
that the mass seems to depend on the particular coor-
dinate system xi. Both problems are related with fall-of
conditions for the metric. In the previous section, we
introduced an example of this kind of condition in equa-
tion (18.4). These conditions are probably sufficient to
model most physically relevant initial data. However, it
is interesting to study the optimal fall-of conditions that
are necessary to have a well-defined notion of energy
and such that the energy is independent of the coordi-
nate system.

To study this problem, we first introduce a general
class of fall-of conditions as follows. Given an end U
with coordinates xi and an arbitrary real number ˛, we
say that the metric hij on U is asymptotically flat of
degree ˛ if the components of the metric with respect
to these coordinates have the following fall off in U as
r!1

hij D ıijC �ij ; (18.11)

with �ij D O.r�˛/ and @k�ij D O.r�˛�1/. The subtle
point is to determine the appropriate ˛ decay. To un-
derstand the meaning of this coefficient let us discuss

the following relevant example given in [18.2] (see also
[18.3]). Take the Euclidean metric ıij in Cartesian coor-
dinates xi and consider coordinates yi defined by

yi D
�

r
xi ; (18.12)

where � is defined by

rD �C c�1�˛ ; (18.13)

for some constants c and ˛.

Note that �D
�P3

iD1.y
i/2
	1=2

. The components g0ij of

the Euclidean metric in coordinates yi have the follow-
ing form

g0ij D ıijC �ij ; (18.14)

where �ij satisfies the decay conditions (18.11) with
the arbitrary ˛ prescribed in the coordinate definition
(18.13). That is, the metric in the new coordinate sys-
tem yi is asymptotically flat of degree ˛.

We calculate the energy in the coordinates yi using
the definition (18.10). We obtain

ED

8̂<
:̂
1 ; ˛ < 1=2 ;

c2=8 ; ˛ D 1=2 ;

0 ; ˛ > 1=2 :

(18.15)

Of course, we expect that the energy of the Euclidean
metric should be zero in any coordinate system. The in-
teresting point of this example is the limit case ˛ D 1=2;
the example shows that if the energy has any chance to
be coordinate independent, then we should impose ˛ >
1=2. The following theorem, proved in [18.4, 5], says
that this condition is also sufficient.

Theorem 18.3
Let U be an end with a Riemannian metric hij such that
is satisfies the fall-of conditions (18.11) with ˛ > 1=2.
Also assume also that the scalar curvature R is inte-
grable in U, that is,

Z
U

jRjdv<1 : (18.16)

Then the energy defined by (18.10) is unique and it is
finite.
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In this theorem unique means that if we calculate the
energy in any coordinate system for which the metric
satisfies the decay conditions (18.11) with ˛ > 1=2, we
obtain the same result. This theorem ensures that the en-
ergy is a geometrical invariant of the Riemannian metric
in the end U. Historically, this theorem was proved af-
ter the positive energy theorems. In the original proofs
of the positive energy theorems different decay condi-
tions for the metric were used. The decay conditions
are usually formulated in terms of integrals of deriva-
tives (i. e., Sobolev spaces) [18.4], which are more
flexible for many applications. This particular formula-
tion (which is simpler to present) of theorem 18.3 was
taken from [18.6]. The decay conditions with ˛ > 1=2,
together with the condition (18.16) on the scalar cur-
vature, are called mass decay conditions. The freedom
in the coordinates xi is only a rigid motion at infin-
ity [18.4].

Theorem 18.3 completes the geometric character-
ization of the energy at the end U. We now turn to
positivity. It is clear that the energy can have any sign
on U. The model example is given by the initial data for
the Schwarzschild black hole, with metric on U given
by

hij D  
4ıij ; (18.17)

where  is the following function

 D 1C
C

2r
; (18.18)

with C an arbitrary constant. Computing the energy for
this metric we obtain ED C. The constant C can, of
course, have any sign. It is, however, important to em-
phasize that theorem 18.3 asserts that the energy is well
defined and it is an invariant of the geometry of the end,
even when it is negative.

To ensure the positivity of the energy we need to im-
pose two important conditions. One is a local condition:
the positivity of the local energy given by the dominant
energy condition (18.3). The other is a global condition
on the manifold: the manifold should be complete or
should have black hole boundaries.

Initial conditions with

Kij D 0 ; (18.19)

are called time symmetric initial data. That is, time
symmetric initial data are characterized only by a Rie-
mannian metric hij. Conversely, any Riemannian metric

can be interpreted as time symmetric initial data. How-
ever, an arbitrary metric will not satisfy the dominant
energy condition (18.3). In effect, inserting condition
(18.19) in the constraint equation (18.2) and using the
dominant energy condition (18.18), we obtain

R� 0 : (18.20)

Only metrics that satisfy (18.20) can be interpreted
as time symmetric initial data for which the domi-
nant energy condition holds. But then, any metric such
that (18.20) holds satisfies the dominant energy con-
dition and is a good candidate for the positive energy
theorem. Hence we obtain the following corollary of
theorem 18.1.

Corollary 18.1 Riemannian positive mass theorem
Let .S;hij/ be a complete, asymptotically flat, Rie-
mannian manifold. Assume that the scalar curvature is
non-negative (i. e., condition (18.20)). Then the energy
is non-negative at every end and it is zero at one end if
and only if the metric is flat.

This corollary was proved with the optimal decay con-
ditions for the metric in [18.4, 7].

The interesting mathematical aspect of this corol-
lary is that there is no mention of the constraint equa-
tions, the second fundamental form, or the matter fields.
This theorem is a result in pure Riemannian geome-
try. It has surprising applications in the solution of the
Yamabe problem (see the review article [18.7] and ref-
erences therein).

Note that it is not necessary to impose that the whole
second fundamental form is zero to have (18.20); from
equation (18.2) it is clear that it is enough to have
K D 0. This class of initial data are called maximal and
they have important properties (Chap. 16). In particular,
positive energy theorems for this kind of data are easier
to prove (mainly because condition (18.20) holds) than
for general initial data.

Let us discuss some examples of corollary 18.1. We
begin with the case with one asymptotic end and triv-
ial topology, namely SDR3. For arbitrary functions ,
metrics of the form (18.17) are called conformally flat;
they provide a very rich family of initial conditions
which have many interesting applications (for example,
initial data for black hole collisions, see the review arti-
cle [18.8]). The scalar curvature for this class of metrics
is given by

RD�8 �5� ; (18.21)
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where � is the Euclidean Laplacian. If  satisfies the
fall-of conditions

 D 1C u ; uD O.r�1/ ; @kuDO.r�2/ ;

(18.22)

then the energy for this class of metric is given by

ED�
1

2�
lim

r!1

I
Sr

@r ds0 : (18.23)

For  given by (18.18) we obtain RD 0, and then
the metric satisfies the local condition (18.20) for any
choice of the constant C. However, this metric cannot
be extended to R3 since the function  is singular at
rD 0 and hence, as expected, Corollary 18.1 does not
apply to this case. Let us try to prescribe a function with
the same decay (and hence identical energy) but such
that it is regular at rD 0. For example,

 D 1C
C

2
p

r2CC2
: (18.24)

Using (18.23) we again obtain that ED C. For any
value of C the function  is strictly positive and
bounded on R3, and hence the metric is smooth on R3.
That is, it satisfies the completeness assumption in
corollary 18.1. Using (18.21) we compute the scalar
curvature

RD 12 �5 C3

.r2CC2/5=2
: (18.25)

We have R� 0 if and only if C � 0. Also, in this exam-
ple the mass is zero if and only if the metric is flat.

Other interesting examples can be constructed with
conformally flat metrics as follows. Let  be a solution
of the Poisson equation

� D�2� Q� ; (18.26)

which satisfies the decay conditions (18.22), where Q�
is a non-negative function of compact support in R3.
Solution of (18.26) can be easily constructed using the
Green function of the Laplacian. By equation (18.21),
the scalar curvature of the associated conformal metric
(18.17) will be non-negative and the function Q� is re-
lated to the matter density � by

�D
R

16�
D Q� �5 : (18.27)

Note that, in this example, we cannot prescribe exactly
the matter density �; we prescribe a conformal rescal-
ing of �. However, it is enough to control the support
of �. The support of � represents the localization of
the matter sources. Outside the matter sources the scalar
curvature (for time symmetric data) is zero.

For conformally flat metrics in R3 there is a very
simple proof of corollary 18.1. We write equation
(18.21) as

R

8
D�@i

�
@i 

 5

�
� 5
j@ j2

 6
: (18.28)

Integrating this equation in R3, using the Gauss the-
orem for the first term on the right-hand side, the
condition  ! 1 as r!1 and the expression (18.23)
for the energy, we finally obtain

ED
1

2�

Z
R3

�
R

8
C 5
j@ j2

 6

�
dv0 ; (18.29)

where dv0 is the flat volume element. This formula
proves that for metric of the form (18.17) we have E � 0
if R� 0 and ED 0 if and only if hij D ıij. This proof
easily generalizes to conformally flat maximal initial
data.

Asymptotically flat initial conditions in R3 with no
matter sources (i. e., �D ji D 0) represent pure gravita-
tional waves. They are conceptually important because
they describe the dynamic of pure vacuum, independent
of any matter model. Note that in that case the energy
condition (18.3) is trivially satisfied.

In the previous examples the only solution with pure
vacuum RD 0 in R3 is the flat metric, because by equa-
tion (18.21) we obtain� D 0, and the decay condition
(18.22) implies  D 1. In order to construct pure waves
initial data we allow for a more general kind of confor-
mal metrics, let hij be given by

hD e	


e�2q.d�2C dz2/C �2 d'2

�
; (18.30)

where .�; z; '/ are cylindrical coordinates in R3 and the
functions q and � depend only on .�; z/. That is, the
metric hij given by (18.30) is axially symmetric.

The scalar curvature of the metric (18.30) is given
by

�
1

8
Re.	�2q/ D

1

4
��C

1

16
j@� j2�

1

4
�2q ; (18.31)

where �, as before, is the three-dimensional flat Lapla-
cian and �2 is the two-dimensional Laplacian in cylin-
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drical coordinates given by

�2qD @2
�qC @2

z q : (18.32)

If we impose RD 0, equation (18.31) reduces to

� �
1

4
�2qD 0 ; (18.33)

where  4 D e	 . To construct metrics of the form
(18.30) that satisfies RD 0 a function q is prescribed
and then the linear equation (18.33) is solved for . The
function q cannot be arbitrary, it should satisfy a global
condition (which is related with the Yamabe problem
mentioned above), see [18.9] for details. This kind of
metric is called Brill waves. These were used by D. Brill
in one of the first proofs of the positive energy theorem
[18.10]. Let us discuss this proof.

In order to be smooth at the axis the metric (18.30)
should satisfy qD 0 at �D 0. For simplicity we also
impose a strong fall-of condition on q at infinity,
namely qD O.r�2/, @iqD O.r�2/. For � we impose
� D O.r�1/ and @i� DO.r�2/. Using these decay as-
sumptions it is straightforward to check that the energy
of the metric (18.30) is given by

ED�
1

8�
lim

r!1

I
Sr

@r� ds0 : (18.34)

With the Gauss theorem, using that qD 0 at the axis
and the fall-of condition of q at infinity, we obtain that

Z
R3

�2qdv0 D 0 : (18.35)

Integrating equation (18.31) in R3, using (18.35)
and using the expression (18.34) for the energy we ob-
tain

ED
1

8�

Z
R3

�
1

2
j@� j2CRe	�2q

�
dv0 : (18.36)

That is, R� 0 implies E � 0. In particular for vacuum
RD 0, we have

ED
1

16�

Z
R3

j@� j2 dv0 : (18.37)

This positivity proof can be extended in many ways, in
particular it has applications for the inequality between

energy and angular momentum discussed in Sect. 18.5
(see the review article [18.11] and the lectures notes
[18.6, 12], and references therein).

We turn now to manifolds with many asymptotic flat
ends and interior K with non-trivial topology defined
in Sect. 18.1. Let us first present some basic example of
the definition of asymptotic Euclidean manifold, with-
out mentioning the metric.

Taking out a point in R3, the manifold SDR3 n f0g
is asymptotic Euclidean with two ends, which we de-
note by U0 and U1. In effect, let B2 and B1 be two balls
centered at the origin with radius 2 and 1, respectively.
Define K as the annulus centered at the origin B2 nB1.
Then S nK has two components U0 and U1, where
U0 DR3 nB2 and U1 D B1 n f0g. The set U0 is clearly
an end. The set U1 is also an end since a ball minus
a point is diffeomorphic to R3 minus a ball. This can be
explicitly seen using Cartesian coordinates centered at
the origin xi; then the map given by the inversion

yi D r�2xi ; (18.38)

provides the diffeomorphism between R3 nB1 and
B1 n f0g.

In the same way R3 minus a finite number N of
points ik is a Euclidean manifold with NC 1 ends. For
each ik take a small ball Bk of radius r.k/, centered at ik,
where r.k/ is small enough such that Bk does not con-
tain any other ik0 with k0 ¤ k. Take BR, with large R,
such that BR contains all points ik. The compact set K
is given by K D BR n

PN
kD1 Bk and the open sets Uk

are given by Bk n ik, for 1	 k 	 N, and U0 is given by
R3 nBR.

Another example is a torus T 3 minus a point i0.
Take a small ball B centered at i0. Then the mani-
fold is asymptotic Euclidean withK D T 3 nB and only
one end U D B n i0. This is an example of a Euclidean
manifold with one asymptotic end but non-trivial K.
More generally, given any compact manifold, if we
subtract a finite number of points we obtain an asymp-
totically Euclidean manifold with multiple ends. Note
that the topology of the compact core K can be very
complicated.

Let us consider now Riemannian metrics on these
asymptotic Euclidean manifolds. Consider the mani-
fold SDR3 n f0g and the metric given by (18.17) and
(18.18). The function  is smooth on S for any value
of the constant C, however if C < 0 then  vanishes
at rD�2=C, and hence the metric is not defined at
those points. That is, the metric hij is smooth on S only
when C � 0. We have seen that S has two asymptotic
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ends, let us check that the metric hij is asymptotically
flat (i. e., that it satisfies the decay conditions (18.4)) at
both ends U0 and U1. On U0, the metric in the coor-
dinates xi is clearly asymptotically flat. However, note
that in these coordinates the metric is not asymptoti-
cally flat at the end U1 (which, in these coordinates is
represented by a neighborhood of r D 0), in fact, the
components of the metric are singular at rD 0. How-
ever, using a coordinate an inversion of coordinates like
(18.38) is straightforward to prove that the metric is
asymptotically flat also at rD 0. More precisely, con-
sider the coordinate transformation

yi D

�
C

2

�2 1

r2
xi ; �D

�
C

2

�2 1

r
: (18.39)

In terms of these coordinates the metric has the form

h0ij D

�
1C

C

2�

�4

ıij : (18.40)

We have chosen the constant factor in the coordinate
transformation (18.40) in such a way that the transfor-
mation it is, in fact, the well known isometry of this
metric, this choice, however, is not essential. The met-
ric (18.40) is clearly asymptotically flat at U1. Note that
we have two energies, one for each end; the two are
equal and given by the constant C. In this example, the
positivity of the mass is enforced purely by the global
requirement of completeness of the metric (the energy
condition is satisfied for arbitrary C). It is this condi-
tion that fails when C < 0. In that case the metric is
defined on a manifold with boundary SDR3 nB

�2=C,
and the metric vanishes at the boundary @B

�2=C. In
particular, the two-surface @B

�2=C has zero area. This
motivated the concept of zero area singularities intro-
duced in [18.13], where interesting results are presented
concerning negative energy defined on this class of sin-
gular metrics.

In the previous example the energies at the differ-
ent ends are equal. It is straightforward to construct an
example for which the two energies are different. Con-
sider the following function

 D 1C
C

2r
C g ; (18.41)

where g is a smooth function on R3 such that gD
O.r�2/ as r!1 and g.0/D a. Making the same cal-
culation we obtain that the energy at one end is E0 D C
(here we use the decay conditions on g, otherwise the

function g will contribute to the energy at that end).
However, at the other end the components of the metric
in the coordinates yi are given by

h0ij D

�
1C

C.1C g/

2�

�4

ıij ; (18.42)

and hence we have that

E1 D C.1C a/ : (18.43)

Note that in order to satisfy the energy condition
(18.20) g (and hence a) cannot be arbitrary, we must
impose the following condition on g

�g	 0 : (18.44)

Using (18.44), the decay assumption on g and the max-
imum principle for the Laplacian (see, for example, the
version of the maximum principle in the Appendix of
[18.14]) it is easy to prove that g� 0 and then a� 0.

Consider the manifold SDR3 nfi1g; fi2g with three
asymptotic ends. Also consider the function given by
(this nice example was constructed in [18.15])

 D 1C
C1

2r1
C

C2

2r2
; (18.45)

where r1 and r2 are the Euclidean radius centered at the
points i1 and i2, respectively, and C1 and C2 are con-
stant. Note that � D 0 and hence the metric defined
by (18.17) has RD 0. As before, only when C1;C2 � 0
the metric is smooth on S. Also, using a similar calcula-
tion as in the case of two ends it is not difficult to check
that the metric is asymptotically flat on the three ends.
Moreover, the energies of the different ends are given
by

E0 D C1CC2 ; E1 D C1C
C1C2

L
;

E2 D C2C
C1C2

L
; (18.46)

where L is the Euclidean distance between i1 and i2. We
see that they are all positive and, in general, different.
These initial conditions model a head on collision of
two black holes and they have been extensively used in
numerical simulations of black hole collisions (see, for
example, [18.16] and references therein).

We analyze the case of the wormhole [18.17], which
is an example of K with more complicated topology.
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Consider the metric on the compact manifold SD S1 �

S2 given by

� D d�2C .d2C sin2  d'2/ ; (18.47)

where the coordinate ranges are �� < �	 � , and the
sections �D const are two-spheres. Let hij be given by

hij D  
4�ij ; (18.48)

where the function  is

 D

nD1X
nD�1

Œcosh.�C 2n�/��1=2 : (18.49)

This function blows up at �D 0. Hence, the metric
hij is defined on S minus the point �D 0. We have
seen that this is an asymptotic Euclidean manifold with
one asymptotic end. It can be proved that the metric is
asymptotically flat at that end (see [18.17] for details).
Also, the function  is chosen in such a way that the
scalar of the hij curvature vanished. Moreover, the en-
ergy is given by

ED 4
1X

nD1

.sinh.n�//�1 ; (18.50)

which is positive.
Finally, consider the initial data for the Reissner–

Nördstrom black hole given by a metric of the form
(18.17) with  given by

 D
1

2r

p
.qC 2rCC/.�qC 2rCC/ ; (18.51)

where C and q are constant. The scalar curvature of this
metric is given by

RD
2q2

 8r4
: (18.52)

Which is non-negative for any value of the constants.
When C > jqj, the metric is asymptotically flat with two
ends U0 and U1 as in the example (18.18). The energy
on both ends is given by ED C. The positive energy
theorem applies to this case. If C < jqj then the met-
ric is singular, there is only one end U0, and the energy
on that end is given by C. Note that in this case it is
still possible to have positive energy 0< C < jqj, but
the positive energy theorem does not apply because it
is a singular metric. The borderline case CD jqj repre-
sents the extreme black hole. The manifold is R3 minus
a point and the metric is smooth on that manifold. How-
ever, the metric is asymptotically flat only at the end U0,

on the other end it is asymptotically cylindrical. Hence
this version of the positive energy theorem does not ap-
ply for these data. The asymptotically cylindrical end
is a feature of all extreme black holes. For discussions
on this kind of geometry, see [18.11] and references
therein.

So far, we have discussed complete manifolds with-
out boundaries or manifolds with boundaries in which
the metric is singular at the boundaries. We now analyze
the important case of black hole boundaries.

Black hole boundaries are defined in terms of
marginally trapped surfaces. A marginally trapped sur-
face is a closed two-surface such that the outgoing null
expansion�

C

vanishes (more details on this important
concept can be seen in [18.18]). If such a surface is em-
bedded on a space-like three-dimensional surface, then
the expansion �

C

can be written in terms of the initial
conditions as follows

�
C

D H�Kijs
isjCK ; (18.53)

where

H DDis
i ; (18.54)

is the mean curvature of the surface. Here si is the unit
normal vector to the surface. For time symmetric initial
data, condition�

C

D 0 reduces to

H D 0 : (18.55)

Surfaces that satisfy condition (18.55) are called min-
imal surfaces, because (18.55) is satisfied if and only
if the first variation of the area of the surface van-
ishes. These kinds of surfaces have been extensively
studied in Riemannian geometry (see the book [18.19]
for an introduction to the subject). We have seen that
a marginally trapped surface on time symmetric initial
data is a minimal surface. That is, black hole boundaries
translate, for these kinds of data, into a pure Rieman-
nian boundary condition. Then, we have the following
corollary of theorem 18.2.

Corollary 18.2 Black holes in Riemannian geometry
Let .S;hij/ be a complete, asymptotically flat, Rieman-
nian manifold with compact boundary. Assume that the
scalar curvature is non-negative (i. e., condition (18.20))
and that the boundary is a minimal surface (i. e., it sat-
isfies (18.55)). Then the energy is non-negative and it is
zero at one end if and only if the metric is flat.
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Let us give a very simple example that illustrate this
theorem. Consider the function given by (18.18). It is
well known that the surface rD C=2 is a minimal sur-
face (it represents the intersection of the Schwarzschild
black hole event horizon with the spacetime surface
tD constant in Schwarzschild coordinates). To verify,
that we compute H for the two-surfaces rD constant
for the metric (18.17). The unit normal vector is given
by

si D  �2

�
@

@r

�i

: (18.56)

Then we have

H D Dis
i D

4

 3

�
@r C

 

2r

�
: (18.57)

Then condition (18.55) is equivalent to

0D @r C
 

2r
D

1

2r
�

C

4r2
; (18.58)

and hence for r D C=2 we have a minimal surface.
Note that C must be positive in order to have a min-
imal surface. Previously we discussed this example in
the complete manifold, without boundaries, R3 n f0g.
In that case corollary 18.1 applies. We can also con-
sider the same metric but in the manifold with boundary
Rt nBC=2. Since we have seen that @BC=2 is a minimal
surface, then corollary 18.2 applies to that case. To em-
phasize the scope of this corollary, we slightly extend
this example in the following form. Consider  given
by

 D

�
1C

C

2r

�
�.r/ ; (18.59)

where �.r/ is a function such that is �D 1 for r > C=2
and arbitrary for r < C=2. Corollary 18.2 applies to this
case, since again the boundary is a minimal surface.
Note that inside the minimal surface the function � is
arbitrary, in particular it can blow up and it does not
need to satisfy the energy condition. Corollary 18.1 cer-
tainly does not apply to this case.

18.3 Linear Momentum

The total mass M defined by (18.7) in terms of the en-
ergy and linear momentum (18.5)–(18.6) represents the
total amount of energy of the spacetime. The first basic
question we need to address is in what sense M is inde-
pendent of the choice of initial conditions that describe
the same spacetime. That is, given a fixed spacetime we
can take different space-like surfaces on it, on each sur-
face we can calculate the initial data set and hence we
have a corresponding M, do we obtain the same result?
We will see that the answer to this question strongly
depends on the fall-of conditions (18.4).

To illustrate that, let us consider the Schwarzschild
spacetime. We recall that in the following examples the
spacetime is fixed and we only chose different space-
like surfaces on it. The spacetime metric is given in
Schwarzschild coordinates .t; rs; ; �/ by

ds2 D�

�
1�

2C

rs

�
dt2C

�
1�

2C

rs

�
�1

dr2
s

C r2
s .d2C sin2  d�2/ :

(18.60)

These coordinates are singular at rs D 2C and hence
they do not reveal the global structure of the surfaces

tD constant. The most direct way to see that these sur-
faces are complete three-dimensional manifolds is to
use the isotropic radius r defined by

rs D r

�
1C

C

2r

�2

: (18.61)

In isotropic coordinates the line element is given by

ds2 D�

 
1� C

2r

1C C
2r

!2

dt2

C

�
1C

C

2r

�4

.dr2C d2C r2 sin2  d�2/ :

(18.62)

The initial data on the slice tD constant are given by

hij D

�
1C

C

2r

�4

ıij ; Kij D 0 : (18.63)

These are the time symmetric initial data studied in
Sect. 18.2. The linear momentum of these data is ob-
viously zero, then the total mass M is equal to the
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energy E calculated in the previous section, and we ob-
tain the expected result M D C.

We take another foliation of space-like surfaces.
We write the metric (18.62) in the Gullstrand–Painlevé
coordinates .tgp; rs; ; �/ (see [18.20] and references
therein). We obtain

ds2 D�

�
1�

2C

rs

�
dt2

gpC 2

s
2C

rs
dtgp drs

C dr2
s C r2

s d2C r2
s sin2  d�2 : (18.64)

The slices tgp D constant in these coordinates have the
following initial data

hij D ıij ; Kij D

p
2m

r3=2
s

�
ıij �

3

2
sisj

�
; (18.65)

where si is the radial unit normal vector with respect
to the flat metric ıij. We see that the intrinsic metric
is flat and hence the energy E is clearly zero. The lin-
ear momentum is also zero, because if we calculate
the integral (18.6) at a sphere of finite radius (note
that the limit is in danger to diverge because the ra-
dial dependence of Kij in (18.65)) the angular variables
integrate to zero. Hence we obtain that for these sur-
faces the total mass M is zero. What happens is that the
second fundamental form (18.65) does not satisfy the
decay condition (18.4) since it falls off like O.r�3=2/.
It can be proved that any initial conditions that sat-
isfy (18.4) in the same spacetime give the same total
mass M.

We consider another foliation which reveals the
Lorentz transformation properties of .E;Pi/. Let
.x; y; z/ be the associated Cartesian coordinates of the
isotropic coordinates .r; ; �/, that is,

xD r cos� sin  ;

yD r sin� cos  ;

zD r cos  : (18.66)

We consider the line element (18.62) written in terms of
the coordinates .t; x; y; z/ and we perform the following
change of coordinates which represents a boost in the

z direction

OtD ��1.t� vz/ ; (18.67)

OzD ��1.�vtC Oz/ ; (18.68)

OxD x ; (18.69)

OyD y ; (18.70)

where v is a constant and � D
p

1� v2. Consider a sur-
face OtD constant in these coordinates. The intrinsic
metric is given by

hD  4.d Ox2C d Oy2/C ��2.�N2v2C 4/dOz2 ;

(18.71)

where

 D 1C
C

2r
; N D

1� C
2r

1C C
2r

: (18.72)

The radius r can be written in terms of the hat coordi-
nates as follows

r D
p

x2C y2C z2

D

q
Ox2C Oy2C ��2.vOtC Oz/2 : (18.73)

One can check that the metric h given by (18.71) is
asymptotically flat in the coordinates .Ox; Oy; Oz/. Then, we
can compute the energy of this metric and we obtain

ED ��1C : (18.74)

To obtain the linear momentum we need to compute the
second fundamental form of the slice. The calculations
are long (see, for example, [18.21] for details), the final
result is the following

Px D 0 ; Py D 0 ; Pz D vC��1 : (18.75)

Using (18.74) and (18.75) we obtain

M D
q

E2 �PiPjıij D C : (18.76)

That is, the quantities E;Pi transform like a four-
vector under asymptotic Lorentz transformations of
coordinates.



Part
C

|18.4

374 Part C Spacetime Structure and Mathematics

18.4 Proof

In Sect. 18.2 we have presented two proofs of the
positive energy theorem for two particular cases, for
other proofs that apply to other relevant particular cases
(like spherical symmetry and the weak field limit), see
[18.6, 12, 22] and references therein.

The first general proof of the positive energy the-
orem was done by Schoen and Yau [18.23]. Shortly
afterwards it was followed by a proof by Witten [18.24],
who used completely different methods. The proof of
the Penrose inequality by Huisken and Illmanen in
[18.25] (we briefly discuss this work in Sect. 18.5) also
provided a new proof of the positive energy theorem
(which is based on an idea of Geroch [18.26])

The simplest of all these proofs is, by far, that of
Witten. Moreover, it resembles other positivity proofs
in physics: the total energy is written as a positive defi-
nite integral in the space. In this section we review this
proof. The aim is to present all the relevant steps in the
most elementary way.

This proof uses, in an essential way, spinors. We re-
fer the reader to Chap. 15 for an introduction to this
subject. We will follow the notation of that chapter in
this section.

There exists various reformulations of the original
proof by Witten; in this section we essentially follow
references [18.27–30].

The proof uses only spinors defined on the space-
like surface, however it is more transparent to begin
with spinor fields in the spacetime and then, at the very
end, to restrict them to the space-like surface. Also,
this way of constructing the proof easily generalizes to
the proof of the positivity of the energy at null infinity
(Bondi mass) [18.30].

Let .M; gab/ be a four-dimensional Lorentzian man-
ifold with connection ra. In this section we use the
signature .C���/ to be consistent with the literature
on spinors. Unfortunately this signature gives a nega-
tive sign to the Riemannian metrics on the space-like
surfaces used in the previous sections.

Let 	A be a spinor field in the spacetime; the spin
connection is denoted by rAA0 , and we use the standard
notation aD AA0 to identify spinor indices with tenso-
rial indices.

The proof of the positive energy theorem is based
on the remarkable properties of a two-form � called
the Nester–Witten form [18.24, 31], defined as follows.
The computations of this section involve integration on
different kind of surfaces and hence it is convenient to
use differential forms instead of ordinary tensors. We

will denote them with boldface and no indices (for an
introduction to forms see, for example, Appendix B in
[18.18], we will follow the notation and convention of
this reference).

Consider the following complex tensor

�ab D�i N	B0rAA0	B : (18.77)

From this tensor we construct the complex 2-form� by

�D�Œab
 : (18.78)

Explicitly we have

�D
i

2

�
N	A0rBB0	A� N	B0rAA0	B

�
: (18.79)

The forms used in the following are always tensor
fields (usually complex) but they are constructed out of
spinors, as in the case of �. In order to define these
forms we need to antisymmetrize tensorial indices, to
avoid a complicated notation we will always define
first the tensor field in terms of spinors (as in equation
(18.77)) and then define the form antisymmetrizing the
tensor indices (as in (18.78)). When there are more than
two tensorial indices the explicit expression of the dif-
ferential form (like (18.79)) can be lengthy and it is not
usually needed. The spinor 	A has an associated (future
directed) null vector �a given by

�a D 	A N	A0 : (18.80)

Note that the� cannot be written in terms of derivatives
of pure tensors fields like �a and ra.

The strategy of the proof is the following. Consider
the exterior derivative d� (which is a three-form) and
integrate it on a space-like, asymptotically flat, three-
surface S. Using Stoke’s theorem we obtain

X
k

lim
r!1

I
Sr

�D

Z
S

d� : (18.81)

We assume that S is an asymptotically Euclidean man-
ifold with k asymptotic ends Uk. The two-form � has
two important properties. The first one is that the left-
hand side of (18.81) gives the total energy-momentum
of a prescribed asymptotic end. The second is that
the integrand of the right-hand side is non-negative.
Both properties depend on the way in which the spinor
field 	A is prescribed.
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We begin with the first property. Note that the in-
tegrand on the left-hand side of (18.81) is complex.
However, the imaginary part of� is given by

�� N�D irŒa�b
 D id� ; (18.82)

where, to be consistent with our notation, we write � for
the the one-form �a. That is, the imaginary part is the
exterior derivative of a one-form and hence its integral
over a closed two-surface is zero. Hence the boundary
integral is always real, for arbitrary spinors 	A.

To prove the desired property, we need to impose
fall-of conditions on the spinor 	A. Fix one arbitrary
end k (from now on we will always work on that end and

hence we suppress the label k). Let V	A be an arbitrary
constant spinor; we require that the spinor 	A satisfies
on that end

	A D V	AC �A ; �A D O.r�1/ : (18.83)

We also assume that the partial derivatives of �A are
O.r�2/ and we require that 	A decays to zero at every
other end.

The idea is to prove that at the chosen end we have

Pa
V�a D

1

8�
lim

r!1

I
Sr

� ; (18.84)

where Pa D .E;Pi/, with E and Pi defined by (18.5)–

(18.6), and V�a is the constant null vector determined by

the constant spinor V	A by

V�a D V	A VN	A0 : (18.85)

Note that the boundary integral on the right-hand side of
(18.84) determines both the energy and the linear mo-
mentum of the end.

To prove (18.84) the most important step is to prove
that the value of the integral depends only on the con-

stant spinor V	A and not on �A. We emphasize, as we will
see, that a naive counting of the fall behavior of the dif-
ferent terms in �, under the assumption (18.83), does
not prove this result. Using the decomposition (18.83)
we write� as

�D V�C� ; (18.86)

where

V�ab D�i VN	B0rAA0
V	B ; V�D V�Œab
 ; (18.87)

and

(ab D�i
�
VN	B0rAA0�BC N�B0rAA0

V	BC N�B0rAA0�B

�
;

� D (Œab
 :

(18.88)

That is, V� depends only on V	A.
We would like to prove that � D O.r�3/ and hence

it does not contribute to the integral at infinity (18.84).
Consider the third term in (18.88). The covariant deriva-
tive rAA0�B has two terms, the first one contains partial
derivatives of �B which, by assumption, are O.r�2/. The
second term contains products of �B and the connec-
tions coefficients of the spacetime metric gab evaluated
at the asymptotic end of the space-like surface S. These
coefficients are first derivatives of gab, they can be
written as first derivatives of the intrinsic Riemannian
metric and the second fundamental form of the surfaces
and hence, by assumption (recall that S is asymptot-
ically flat and hence we have the fall-of conditions
(18.4)) they are O.r�2/. We conclude that rAA0�B D

O.r�2/ and hence N�B0rAA0�B D O.r�3/. We proceed in

a similar way for the second term: since V	A is constant

the covariant derivative rAA0
V	B contains connection co-

efficients times constants and hence we have rAA0
V	B D

O.r�2/, and then N�B0rAA0
V	B D O.r�3/. However, us-

ing the same argument we obtain that the first term in
(18.88) is O.r�2/ and then it can contribute to the inte-
gral. However, we can re-write (ab as follows

(ab D�i

�
rBB0

�
�A
VN	A0

�
� �ArBB0

V	A

C N�B0rAA0
V	BC N�B0rAA0�B

�
: (18.89)

The first term in (18.89), which is the problematic one,
contributes to � with the derivative of a one-form, and
hence it integrates to zero over a closed two-surface.
The new second term in (18.89) is clearly O.r�3/. We
have proved that

lim
r!1

I
Sr

�D lim
r!1

I
Sr

V� : (18.90)

Note that V� is O.r�2/, and hence the integral con-

verges. Also, the asymptotic value of V� at infinity con-
tains a combination of the first derivative of the intrinsic
metric and the second fundamental form of the sur-
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face S multiplied by the constants V	A. It can be proved,
essentially by an explicit calculation, that this combina-
tion is precisely Pa�

a (see [18.24, 31] and also [18.32]).
We turn to the second property of�. Recall that the

exterior derivative of a p-form is given by

d�D .pC 1/rŒa�b1���bp
 : (18.91)

We have

d�D ˛Cˇ ; (18.92)

where ˛ and ˇ are the following three-forms

˛abc D�i N	C0rarb	C ; ˛D ˛Œabc
 ; (18.93)

and

ˇabc D�ira
N	C0rb	C ; ˇ D ˇŒabc
 : (18.94)

That is, ˛ has second derivatives of the spinor 	A and ˇ
has squares of first derivatives of 	A.

We first compute ˛. Observe that there is a commu-
tator of covariant derivatives and hence we can replace
it by the curvature tensor. However, what is surprising
is that precisely the Einstein tensor appears. To see this,
it is easier to work with the dual of ˛ defined by

�˛D
1

3Š
�abcd˛

abc : (18.95)

We use the commutator relations

2rŒarb
	C D��A0B0XABC
E	E � �A B Å0B0C

E	E ;

(18.96)

where XABCD and Å0B0CD are the curvature spinors.
These spinors are defined in terms of the Riemann ten-
sor Rabcd D RAA0BB0CC00DD00 by

XABCD D
1

4
RAX0B

X0
CY0D

Y0 ;

ÅBC0D0 D
1

4
RAX0B

X0
YC0

Y
D0 : (18.97)

See [18.33] for further details on the curvature spinors.
The Einstein tensor is given by

Gab D�6�gab�˚ab ; (18.98)

where � is given by

�D
1

6
XAB

AB : (18.99)

We also use the identities

XABC
B D 3��AC ; (18.100)

and

�abcd D i .�AC�BD�A0D0�B0C0 � �AD�BC�A0C0�B0D0/ :

(18.101)

Then we obtain

�˛D�
1

2 � 3Š
�eGef ; (18.102)

and hence

˛D�
1

2 � 3Š
�eGef �fabc : (18.103)

The expressions (18.102) and (18.103) are pure tenso-
rial expressions.

To compute ˇ we proceed in a similar form. We
work first with the dual

�ˇ D
1

3Š
�abcdˇ

bcd : (18.104)

It is important (we will see why later) to split the
covariant derivative ra into its temporal and spatial
component. Let ta denote the unit time-like normal to
the surface S and hab be the intrinsic metric of the sur-
face. We define the spatial Da derivative as

Da D ha
brb : (18.105)

Note that Da is not the covariant derivative D of the
intrinsic metric h used in the previous sections; they are
related by the equation

DAB	C DDAB	CC
1
p

2
�ABC

D	D ; (18.106)

where �ABCD D �.AB/.CD/ is the spinor representation of
the second fundamental form of the surface.

From equation (18.105) we obtain

ra DDa � tatbrb : (18.107)

We replace the derivative ra by (18.107) in the defi-
nition of ˇ given by (18.94) and we compute the dual
defined by (18.104) to obtain

�ˇ D�i
1

3Š
�abcd

�
Db N	C0Dd	C

	
CWa ; (18.108)
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where

Wa D i
1

3Š
�abcd

�
tbtfrf

N	C0Dd	CC tdtfrf	
CDb N	C0

	
:

(18.109)

Note that Wa satisfies

taWa D 0 : (18.110)

Using the identity (18.101) we further decompose the
first term on the right-hand side of (18.108)

� i�abcdDb N	C0Dd	C

DDb N	B0DBA0	A�Db N	A0DAB0	B ; (18.111)

DDC0B
N	C0DB

A0	ACDCB0	
CDB0

A
N	A0

�Db	ADb N	A0 ; (18.112)

where in the second line we have used the spinorial
identity

�AB�CDC �BC�ADC �CA�BD D 0 : (18.113)

Combining (18.108) and (18.111), we finally obtain

�ˇ DDC0B
N	C0DB

A0	ACDCB0	
CDB0

A
N	A0

�Db	ADb N	A0 CWa : (18.114)

We are now in the position to perform the integral
over S of d�. Using (18.92), (18.103), and (18.114) we
obtain

Z
S

d�D
Z
S

�
4�Tab�

bCDC0B
N	C0DB

A0	A

CDCB0	
CDB0

A
N	A0 �Db	ADb N	A0

	
� ta dv ;

(18.115)

where we have used Einstein equations

Gab D 8�Tab ; (18.116)

to replace the Einstein tensor by the energy-momentum
tensor in the expression (18.103) for ˛. Note that the
term Wa in (18.114) does not appear in the integral be-
cause it is orthogonal to ta (18.110).

Assuming that the spinor 	A has the fall-off be-
havior (18.83), then the identity (18.84) holds; using

Stoke’s theorem (18.81) (note that by (18.83) all other
boundary integrals vanish) we finally obtain the famous
Witten identity

Pa
V�a D

1

8�

Z
S

�
4�Tab�

bCDC0B
N	C0DB

A0	A

CDCB0	
CDB0

A
N	A0 �Db	ADb N	A0

	
� ta dv :

(18.117)

If we assume that the energy-momentum tensor Tab sat-
isfies the dominant energy condition, then we have

Tab�
atb � 0 ; (18.118)

and hence the first term in the integrand of (18.117)
is non-negative. The last term in (18.117) is also non-
negative since it involves the contraction with the Rie-
mannian metric (which is negative definite) and the
time-like vector tAA0 . To handle the second and third
terms we impose the following equation on 	A, which
is called the Sen–Witten equation, [18.24, 34]

DAB	
A D 0 : (18.119)

Let us assume for the moment that there is a solution to
this equation with the fall-off behavior (18.83). Then,
from (18.117) we obtain

Pa
V�a � 0 : (18.120)

However, the constant null vector V�a is arbitrary, and
hence it follows that Pa should satisfy (18.8). To prove
the rigidity part of theorem 18.1 the key ingredient is
that ED 0 implies, again by the identity (18.117), that
the spinor satisfies the equation

DAB	C D 0 ; (18.121)

that is, it is a covariant constant in the whole manifold.
From this equation it can be deduced that the initial data
on the surface correspond to the Minkowski spacetime
(see [18.35] for the details of this argument).

It remains to discuss the solutions of equation
(18.119). The existence of a solution to this equa-
tion under the required fall-off conditions (18.83) was
proved in [18.30, 35, 36]. The main point is that equa-
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tion (18.119) constitutes an elliptic system of first order
for the two complex components of the spinor (this can
be easily seen using the standard definition of ellipticity
for systems, see, for example, [18.37] where this spe-
cific example is discussed). Hence this equation can,
essentially, be handled as a Poisson equation. Solutions
under weak decay conditions on the data of equation
(18.119) was proved in [18.32].

Finally, let us discuss the proof of Theorem 18.2.
This was done in [18.30, 38]. Remarkably, the proof is
very similar, the only extra ingredient is that in Stoke’s
theorem we need to include an extra internal boundary
term. This term has the form [18.30]

Z
@B

�D

Z
@B

�
�
C

	0 N	00 � �0	1 N	10

C	10Ä	0� N	0 NÄ	1
	

ds : (18.122)

In this equation �
C

is the null expansion defined pre-
viously by (18.53). The coefficient �0 represents the
ingoing null expansion on the surface, it is not im-
portant for our purposes. The functions 	0 and 	1 are
the components of 	A in an appropriated spinorial diad
adapted to the two-surface @B. Finally, Ä is a tangential
differential operator to the two-surface. It can be shown
that the appropriate inner Dirichlet boundary for equa-
tion (18.119) is to prescribe one of the components 	0

or 	1 (but not both) (this is a consequence of the elliptic
character of this equation; see, for example [18.37] for
an elementary treatment of this). If we prescribe 	1 D 0
on @B and use that, by hypothesis this surface satisfies
�
C

D 0, then the boundary term (18.122) vanishes and
we can proceed in the same way as above to prove the
positivity of the energy. Note that without the condition
�
C

D 0 it is not possible to make the boundary term
zero.

18.5 Further Results and Open Problems

In this article we have discussed only the positive en-
ergy theorem in three space dimensions. The spinorial
proof presented in Sect. 18.4 works in any dimension
[18.35], however in higher dimensions the existence of
a spin structure involves restrictions on the topology of
the manifold S. In Sect. 18.4 we used Weyl spinors,
which are well adapted to four spacetime dimensions.
For higher dimensions Dirac spinors are usually used.
Other currently available proofs [18.23, 25] do not work
in arbitrary high dimensions. To prove the positive en-
ergy theorem in all dimensions is one of the relevant
open problems in this area.

The positive energy theorem can be refined to in-
corporate other physically relevant parameters. For ex-
ample, using a similar argument as in Witten’s proof it
is possible to prove [18.38, 39] that the total mass M
satisfies

M � jqj ; (18.123)

where q is the electric charge and the non-electromag-
netic part of the energy momentum tensor must satisfy
the appropriate conditions.

Recently, for axially symmetric black holes the fol-
lowing inequality was proved

M �
p
jJj ; (18.124)

Here J is the angular momentum of the black hole (see
the review article [18.11] and references therein). The
equality in (18.124) is achieved only for the extreme
Kerr black hole. This inequality is proved for one black
hole; a relevant open problem is to prove it for multiple
black holes.

Another important extension is the Penrose inequal-
ity for black holes. The Riemannian black hole positiv-
ity theorem 18.2 can be generalized to include the area
of the minimal surface, namely,

M �

r
A

16�
; (18.125)

with equality only for the Schwarzschild black hole.
This result was proved by [18.25, 40]. The general case
remains open, see the review article [18.41].

Finally, we have discussed the concept of total en-
ergy and linear momentum of an isolated system. It
would be very desirable to have a quantity that mea-
sures the energy of a finite region of the spacetime.
These kinds of quantities are called quasi-local mass.
For a comprehensive review on this important open
problem, see [18.28]. The following related, pure quasi-
local, inequality for axially symmetric black holes has
recently been proved

A� 8� jJj ; (18.126)
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where A is the area and J is the quasi-local angular mo-
mentum of the black hole (see the review article [18.11]
and references therein). The equality in (18.126) is
achieved if and only if the local geometry of the black
hole is equal to the extreme Kerr black hole local geom-

etry. For non-axially symmetric black holes it is difficult
to define the quasi-local angular momentum J [18.28].
An important open problem is to generalize the inequal-
ity (18.126) for non-axially symmetric black holes (or
to find suitable counterexamples).
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19. Conserved Charges in Asymptotically (Locally)
AdS Spacetimes

Sebastian Fischetti, William Kelly, Donald Marolf

When a physical system is complicated and non-
linear, global symmetries and the associated
conserved quantities provide some of the most
powerful analytic tools to understand its behav-
ior. This is as true in theories with a dynamical
spacetime metric as for systems defined on a fixed
spacetime background. Chapter 17 has already dis-
cussed the so-called Arnowitt–Deser–Misner (ADM)
conserved quantities for asymptotically flat dy-
namical spacetimes, exploring in detail certain
subtleties related to diffeomorphism invariance.
In particular, it showed that the correct notion
of global symmetry is given by the so-called
asymptotic symmetries; equivalence classes of dif-
feomorphisms with the same asymptotic behavior
at infinity. It was also noted that the notion of
asymptotic symmetry depends critically on the
choice of boundary conditions. Indeed, it is the
imposition of boundary conditions that causes the
true gauge symmetries to be only a subset of the
full diffeomorphism group and thus allows the
existence of nontrivial asymptotic symmetries at
all.

This chapter will explore the asymptotic sym-
metries and corresponding conserved charges of
asymptotically anti-de Sitter (AdS) spacetimes
(and of the more general asymptotically locally
AdS spacetimes). There are three excellent reasons
for doing so. The first is simply to gain further
insight into asymptotic charges in gravity by in-
vestigating a new example. Since empty AdS space
is a maximally symmetric solution, asymptotically
AdS spacetimes are a natural and simple choice.
The second is that the structure one finds in the
AdS context is actually much richer than that in
asymptotically flat space. At the physical level, this
point is deeply connected to the fact (see, e.g.,
[19.1]) that all multipole moments of a given field
in AdS space decay at the same rate at infinity. So
while in asymptotically flat space the far field is
dominated mostly by monopole terms (with only

subleading corrections from dipoles and higher
multipoles) all terms contribute equally in AdS.
It is therefore useful to describe not just global
charges (e.g., the total energy) but also the local
densities of these charges along the AdS boundary.
In fact, it is natural to discuss an entire so-called
boundary stress tensor T ij

bndy rather than just the
conserved charges it defines. For this reason, we
take a somewhat different path to the construc-
tion of conserved AdS charges than was followed
in Chap. 17. In particular, we will use covariant as
opposed to Hamiltonian methods below, although
we will show in Sect. 19.3 that the end results for
conserved charges are equivalent.

The third reason to study conserved charges in
AdS is their fundamental relation to the AdS/CFT
correspondence [19.2–4], which may well be the
most common application of general relativity in
twenty-first century physics. While this is not the
place for a detailed treatment of either string the-
ory or AdS/CFT, no Handbook of Spacetime would
be complete without presenting at least a brief
overview of the correspondence. It turns out that
this is easy to do once we have become familiar
with T ij

bndy and its cousins associated with other
(nonmetric) fields. So at the end of this chapter
(Sect. 19.4) we will take the opportunity to do so.
We will introduce AdS/CFT from the gravity side
without using tools from either string theory or
CFT.

We will focus on such modern applications be-
low, along with open questions. We make no effort
to be either comprehensive or historical. Neverthe-
less, the reader should be aware that conserved
charges for asymptotically AdS spacetimes were
first constructed in [19.5], where the associated
energy was also argued to be positive definite.

The plan for this chapter is as follows. Af-
ter defining and discussing AdS asymptotics in
Sect. 19.1, we construct variational principles for
asymptotically AdS spacetimes in Sect. 19.2. This
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allows us to introduce the boundary stress tensor
T ij

bndy and a similar so-called response func-
tion ˚bndy for a bulk scalar field. The conserved
charges QŒ�� constructed from T ij

bndy are discussed
in Sect. 19.2.4, and we comment briefly on posi-
tivity of the energy in Sect. 19.2.5.

Section 19.3 then provides a general proof that
the QŒ�� do indeed generate canonical transfor-
mations corresponding to the desired asymptotic
symmetries. As a result, they agree (up to a possible
choice of zero-point) with corresponding ADM-like
charges HŒ�� that would be constructed via the
AdS-analogs of the Hamiltonian techniques used
in Chap. 17. The interested reader can find such
a Hamiltonian treatment in [19.6–8]. Below, we
generally consider AdS gravity coupled to a sim-
ple scalar matter field. More complete treatments
allowing more general matter fields can be found
in e.g., [19.9–11]. Section 19.4 then defines the
algebra Abndy of boundary observables and pro-
vides the above-mentioned brief introduction to
AdS/CFT.
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19.1 Asymptotically Locally AdS Spacetimes

This section discusses the notion of asymptotically lo-
cally AdS spacetimes. We begin by introducing the
empty AdS space itself in Sect. 19.1.1 as a maximally-
symmetric solution to the Einstein equations. We then
explore the asymptotic structure of AdS, and in par-
ticular its conformal boundary. This structure is used
to define the notions of asymptotically AdS (AAdS)
and asymptotically locally AdS (AlAdS) spacetimes in
Sect. 19.1.3. Section 19.1.4 then discusses the associ-
ated Fefferman–Graham expansion, which provides an
even more detailed description of the asymptotics and
which will play a critical role in constructing variational
principles, the boundary stress tensor, and so forth in the
rest of this chapter. Finally, Sect. 19.1.5 describes how
the above structures transform under diffeomorphisms
and introduces the notion of an asymptotic Killing vec-
tor field.

19.1.1 Anti-de Sitter Space

Let us begin with a simple geometric description of
.dC 1/-dimensional AdS space (AdSdC1) building on
the reader’s natural intuition for flat geometries. We
will, however, need to begin with a flat spacetime M2;d

of signature .2;d/ having two time-directions and d
spatial directions, so that in natural coordinates
T1; T2;X1; : : : ;Xd the line element takes the form

ds2 D�.dT1/2�.dT2/2C.dX1/2C� � �C.dXd/2 :

(19.1)

Consider the .dC1/-dimensional hyperboloidH of
events in M2;d satisfying

.T1/2C .T2/2�

dX
iD1

.Xi/2 D `2 ; (19.2)
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R

T 2

T 1

Fig. 19.1 The hyperboloid (19.2) embedded in M2;d ,
defining AdS space

which thus lie at a proper distance ` from the origin;
see Fig. 19.1. This hyperboloid is sometimes known
as the dC 1 AdS space AdSdC1, although we will
follow a more modern tradition and save this name for
a closely related (but much improved) spacetime that
we have yet to introduce.

The isometries of H are given by symmetries
of M2;d preserved by (19.2). Such isometries form
the group SO.d;2/, generated by the rotation in the
T1;T2 plane together with two copies of the Lorentz
group SO.d;1/ that act separately on T1;X1; : : : ;Xd

and T2;X1; : : :Xd . This gives .dC1/.dC2/=2 indepen-
dent symmetries so thatH is maximally symmetric.

A simple way to parametrize the hyperboloid
is to write T1 D

p
`2CR2 cos.
=`/ and T2 Dp

`2CR2 sin.
=`/, with R2 D
P
.Xi/2, so that the

induced line element on H becomes

ds2
AdSdC1

D�

�
R2

`2
C 1

�
d
2C

dR2

R2

`2 C 1

CR2 d˝2
d�1 : (19.3)

OnH , the coordinate 
 is periodic with period 2� . But
this makes manifest that H contains closed time-like
curves such as, for example, the worldline RD 0. It is
thus useful to unwrap this time direction by passing
to the universal covering space of H or, more con-
cretely, by removing the periodic identification of 

(so that 
 now lives on R instead of S1). We will re-
fer to this covering space as the AdS space AdSdC1

with scale `. Of course, the line element remains that
of (19.3). Since any Killing field of H lifts readily to
the covering space, AdSdC1 remains maximally sym-
metric with isometry group given by (a covering group
of) SO.d;2/.

The coordinates used in (19.3) are called global co-
ordinates, since they cover all of AdS. We can introduce
another useful set of coordinates, called Poincaré co-
ordinates, by setting zD `2=.T1CXd/, tD `T2=.T1C

Xd/, and xi D `Xi=.T1CXd/ for iD 1; : : : ; d� 1. The
metric then becomes

ds2
AdSdC1

D
`2

z2

 
�dt2C

d�1X
iD1

�
dxi
�2
C dz2

!
:

(19.4)

Poincaré coordinates take their name from the fact that
they make manifest a (lower dimensional) Poincaré
symmetry associated with the d coordinates t; xi. As
is clear from their definitions, these coordinates cover
only the region of AdS where T1CXd > 0. This re-
gion is called the Poincaré patch. While we will not
make significant use of (19.4) below, we mention these
coordinates here since they arise naturally in many dis-
cussions of AdS/CFT which the reader may encounter
in the future.

Since AdS is maximally symmetric, its Riemann
tensor can be written as an appropriately symmetrized
combination of metric tensors

R��	� D
1

d.dC 1/
R.g�	g��� g��g�	 / : (19.5)

A computation shows that the scalar curvature of AdS
is RD�d.dC 1/=`2 and thus that AdS solves the
vacuum Einstein field equations with cosmological con-
stant �D�d.d� 1/=2`2

R�� �
1
2 Rg�� C�g�� D 0 : (19.6)

In this sense, AdS is a generalization of flat space
to �< 0.

19.1.2 Conformal Structure
and Asymptotic Symmetries of AdS

We now turn to the asymptotic structure of AdS, which
was seen in Chap. 17 to be a crucial ingredient in the
construction of conserved charges. It is useful to intro-
duce a new radial coordinate r

�

D arctan.R=`/, so that
the line element becomes

ds2
AdSdC1

D
`2

cos2.r
�

/

�

�
�

d
2

`2
C dr2

�

C sin2.r
�

/d˝2
d�1

�
:

(19.7)
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Fig.19.2a,b Conformal diagrams of AdSdC1, showing
both the global spacetime and the region covered by the
Poincaré patch. In both figures, the 
 direction extends in-
finitely to the future and to the past. In (a), a full Sd�1 of
symmetry has been suppressed, leaving only the 
 , r

�

co-
ordinates of (19.7). The dotted line corresponds to r

�

D 0.
In (b), one of the angular directions has been shown explic-
itly to guide the reader’s intuition; the axis of the cylinder
corresponds to the dotted line in (a). The Poincaré patch
covers a wedge-shaped region of the interior of the cylinder
which meets the boundary at the lines marked I˙ and the
points marked i˙; i0. These loci form the null, time-like,
and space-like infinities of the associated region (confor-
mal to Minkowski space) on the AdS boundary

We can immediately identify r
�

D �=2 as a conformal
boundary, leading to the conformal diagrams shown in
Fig. 19.2. (For readers not familiar with such diagrams,
Chap. 25 will give a brief introduction.)

It is evident from the conformal diagram that AdS
is not globally hyperbolic. In order to evolve initial data
on some space-like surface ˙ arbitrarily far forward
(or backward) in time, one needs to supply additional
information in the form of boundary conditions at the
conformal boundary. Such boundary conditions will be
discussed in detail in Sect. 19.2, where they will play
critical roles in our discussion of conserved charged.

Although the line element (19.7) diverges at r
�

D

�=2, the rescaled metric

OgD
cos2.r

�

/

`2
gAdSdC1 (19.8)

defines a smooth manifold with boundary. In particu-
lar, the metric induced by Og at r

�

D �=2 is just that of
the flat cylinder R� Sd�1, also known as the Einstein

static universe (ESU). The manifold with boundary will
be called M and the boundary itself (at r

�

D �=2) will
be called @M. Of course, we could equally well have
considered the more general rescaled metric

Og0 D
cos2.r

�

/

`2
e2	gAdSdC1 ; (19.9)

where � is an arbitrary smooth function on M. This
metric is also nonsingular at r

�

D �=2, but the induced
geometry on @M is now only conformal to R� Sd�1.
The choice of a particular rescaled metric (19.9) (or,
equivalently, of a particular rescaling factor cos2.r

�

/

`2 e2	 )
determines a representative of the corresponding con-
formal class of boundary metrics. This choice (which
still allows great freedom to choose � away from @M)
is known as the choice of conformal frame. We shall of-
ten call this representative the boundary metric, where
it is understood that the above choices must be made for
this term to be well defined.

Although it is not critical for our discussion below,
the reader should be aware of the asymptotic structure
of the Poincaré patch and how it relates to that of global
AdS as discussed above. From (19.4) we see that the
conformal boundary lies at zD 0. The rescaled metric

OgD
z2

`2
gAdSdC1 (19.10)

is regular at zD 0, where the induced metric is
just d-dimensional Minkowski space. Now, it is well
known [19.12] that Minkowski space M1;d�1 is con-
formally equivalent to a patch of the Einstein static uni-
verse R�Sd�1. We conclude that zD 0 of the Poincaré
patch is a diamond-shaped piece of @M, as shown on
the right-hand side in Fig. 19.2.

In the interior of AdS the Poincaré patch covers
a wedge-shaped region. This can be thought of as fol-
lows: future-directed null geodesics fired from i� in
Fig. 19.2 are focused onto i0; these geodesics are gener-
ators of a null hypersurface, which we shall call the past
Poincaré horizon H�Poincaré. Likewise, future-directed
null geodesics fired from i0 are focused onto iC,
generating the future Poincaré horizon HCPoincaré. The
Poincaré patch of AdS is the wedge enclosed by these
horizons.

19.1.3 A Definition of Asymptotically Locally
AdS Spacetimes

As we saw in Chap. 17, when the spacetime met-
ric is dynamical the choice of boundary conditions
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plays an especially key role in constructions of con-
served charges. In this chapter we consider boundary
conditions which force the spacetime to behave asymp-
totically in a manner at least locally similar to (19.3).
It turns out to be useful to proceed by using the notion
of a conformally rescaled metric Og, which extends suf-
ficiently smoothly to the boundary (see Chap. 25 for a
further discussion of this technique). After imposing the
equations of motion, this Og will allow us to very quickly
define both asymptotically AAdS and AlAdS. Below,
we follow [19.9, 13–18].

To begin, recall that our discussion of pure AdS
above made use of the fact that the unphysical met-
rics defined in (19.8) and (19.10) could be extended to
the conformal boundary @M of AdS. We can general-
ize this notion by considering any manifold M (often
called the bulk) with boundary @M and allowing met-
rics g which are singular on @M but for which but
there exists a smooth function ˝ satisfying ˝j@M D 0,
.d˝/j@M ¤ 0 (where j@M denotes the pull-back to @M),
and ˝ > 0 on all of M, such that

OgD˝2g (19.11)

can be extended to all of M as a sufficiently smooth non-
degenerate metric for which the induced metric on @M
has a Lorentz signature. We will discuss what is meant
by sufficiently smooth in more detail in Sect. 19.1.4, but
for the purposes of this section one may take Og to be C2

(so that its Riemann tensor is well defined). Note that Og
is not unique; given any allowed ˝ one is always free
to choose

˝0 D e	˝ ; (19.12)

for arbitrary smooth � on M. Thus, as before, the notion
of a particular boundary metric on @M is well defined
only after one has chosen some conformal frame. How-
ever, the bulk metric g does induce a unique conformal
structure on @M. The function˝ is termed the defining
function of the conformal frame. The above structure
is essentially that of Penrose’s conformal compactifica-
tions [19.19], except that the Lorentz signature of @M
forbids M to be fully compact. In particular, future and
past infinity are not part of @M.

In vacuum Einstein–Hilbert gravity with cosmolog-
ical constant (19.6), we define an asymptotically locally
AdS spacetime to be a spacetime .g;M/ as above that
solves the Einstein equations (19.6). A key feature of
this definition is that it makes no restriction on the con-
formal structure, or even the topology of the boundary,

save that it be compatible with having a Lorentz sig-
nature metric. For an AlAdS spacetime to be what we
will call AAdS, the induced boundary metric must be
conformal to R� Sd�1. The reader should be aware
that in the literature, the term AAdS is sometimes used
synonymously with AlAdS. Here we emphasize the dis-
tinction between the two for pedagogical purposes, as
only AAdS spacetimes can truly be said to approach
global AdS near @M.

To show that AlAdS spacetimes do, in fact, ap-
proach (19.5) requires the use of the Einstein equations.
By writing g�� D˝�2 Og�� , a straightforward calcula-
tion then shows [19.17] that near @M we have

R��	� D� jd˝j
2
Og .g�	g��� g�	g��/

CO.˝�3/ ; (19.13)

where

jd˝j2
Og � Og

��@�˝@�˝ (19.14)

extends smoothly to @M. Note that since g has a second-
order pole at @M, the leading-order term in (19.13) is of
order˝�4. The Einstein field equations then imply that

jd˝j2
Og D

1

`2
on @M : (19.15)

It follows that Riemann tensor (19.13) of an AlAdS
spacetime near @M looks like that of pure AdS (19.5).
Further details of the asymptotic structure (and of the
approach to (19.3) for the AAdS case) are elucidated
by the Fefferman–Graham expansion near @M, to which
we now turn.

19.1.4 The Fefferman–Graham Expansion

The term asymptotically (locally) AdS suggests that the
spacetime metric g should (locally) approach (19.3),
at least with a suitable choice of coordinates. This is
far from manifest in the definitions above, but it turns
out to be a consequence of the Einstein equations. In
fact, these equations imply that the asymptotic structure
is described by a so-called Fefferman–Graham expan-
sion [19.20].

The basic idea of this expansion is to first choose
a convenient set of coordinates and then to attempt
a power-series solution to the Einstein equations. Since
the Einstein equations are second order, this leads to
a second-order recursion relation for the coefficients of
the power series. For, say, simple ordinary differential
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equations, one would expect the free data in the power
series to be parametrized by two of the coefficients.
The structure that emerges from the Einstein equations
is similar, except for the presence of constraint equa-
tions similar to those described in Chap. 17. As we
will briefly describe below, the constraint equations
lead to corresponding constraints on the two otherwise
free coefficients. We continue to consider the vacuum
case (19.6).

Let us begin by introducing the so-called Fef-
ferman–Graham coordinates on some finite neighbor-
hood U of @M. To do so, note that since the defining
function ˝ is not unique it is possible to choose a �
in (19.12) such that the modified defining function z WD
˝0 obeys

jdzj2
Og D

1

`2
(19.16)

on U, where OgD z2g. In fact, we can do so with � j@M

D 1, so that we need not change the conformal frame.
We can then take the defining function z to be a co-
ordinate near the boundary; the notation z is standard
for this so-called Fefferman–Graham radial coordinate.
We choose the other coordinates xi to be orthogonal to z
in U (according to the metric Og). The metric in these
so-called Fefferman–Graham coordinates will then take
the form

ds2 D
`2

z2

�
dz2C �ij.x; z/dxi dxj

�
; (19.17)

where iD 0; : : : ; d. By construction, �ij can be extended
to @M, so it should admit an expansion (at least to some
order) in nonnegative powers of z

�ij.x; z/D �
.0/
ij .x/C z� .1/ij .x/C � � � : (19.18)

Note that � .0/ij defines the metric � .0/ on @M in this con-
formal frame.

Since the Einstein equations are second- order par-
tial differential equations, plugging in the ansatz (19.18)
leads to a second-order recursion relation for the � .n/.
For odd d this recursion relation admits solutions for
all � .n/. After specifying � .0/, one finds that all � .n/

with n< d are uniquely determined (and, in fact � .n/

vanishes for all odd n< d). For example, for d > 2 one
finds [19.18]

�
.2/
ij D

�1

d� 2

�
Rij �

1

2.d� 1/
R� .0/ij

�
; (19.19)

where R;Rij are, respectively, the Ricci tensor and
Ricci scalar of � .0/.

However, new data enters in � .d/. This new data
is subject to constraints that are analogous to those
discussed in the Hamiltonian formalism in Chap. 17.
Indeed, these constraints may be derived by consid-
ering the analogs of the Hamiltonian and momentum
constraints on surfaces with zD constant. They deter-
mine the trace and divergence of � .d/ (again for d odd)
through

.� .0//ij�
.d/
ij D 0 ; .� .0//kiDk�

.d/
ij D 0 ; (19.20)

where Dk is the � .0/-compatible derivative operator
on @M (where we think of all � .n/ as being defined). We
will give a short argument for (19.20) in Sect. 19.2.4.
Once we have chosen any � .d/ satisfying (19.20), the
recursion relation can then be solved order-by-order to
express all higher � .n/ in terms of � .0/ and � .d/. Of
course, the series (19.17) describes only the asymptotic
form of the metric. There is no guarantee that there is,
in fact, a smooth solution in the interior matching this
asymptotic data, or that such a smooth interior solution
is unique when it exists.

The situation is slightly more complicated for
even d, where the recursion relations for the ansatz
(19.18) break down at the order at which � .d/ would
appear. To proceed, one must allow logarithmic terms
to arise at this order and use the more general ansatz

�ij.x; z/D �
.0/
ij C z2�

.2/
ij C � � �C zd�

.d/
ij

C zd N�
.d/
ij log z2C � � � ; (19.21)

where, since the structure is identical for all d up to or-
der nD d, we have made manifest that � .n/ D 0 for all
odd n< d. The higher-order terms represented by � � �
include both higher even powers of z and such terms
multiplied by log z. One finds that N� .d/ is fully deter-
mined by � .0/ and satisfies

.� .0//ij N�
.d/
ij D 0 ; .� .0//kiDk N�

.d/
ij D 0 : (19.22)

For example, for dD 2, 4, one obtains [19.18]

N�
.2/
ij D 0 ; (19.23)

N�
.4/
ij D

1
8RikjlRkl� 1

48 DiDjR
C 1

16 D2Rij �
1

24RRij

C
�
�1
96 D2RC 1

96R
2 � 1

32RklRkl
�
�
.0/
ij ;

(19.24)
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where Rijkl is the Riemann tensor of � .0/ and indices
are raised and lowered with � .0/. However, � .d/ may
again be chosen freely subject to dimension-dependent
conditions that fix its divergence and trace. As exam-
ples, one finds [19.18]

dD 2W .� .0//ij�
.d/
ij D

�1
2 R ; Di�

.d/
ij D

�1
2 DjR ;

(19.25)

dD 4W .� .0//ij�
.d/
ij D

1
16

�
RijRij �

2

9
R2

�
;

(19.26)

Di�
.d/
ij D

1
8Ri

kDiRkj �
1

32 Dj
�
RikRik

�
C 1

288RDjR :
(19.27)

The higher terms in the series are again uniquely deter-
mined by � .0/, � .d/.

In general, the terms � .n/ become more and more
complicated at each order. However, the expansion sim-
plifies when � .0/ij is conformally flat and � .d/ij D 0. In
this case, one finds [19.21] that the recursion relation
can be solved exactly and terminates at order z4. In
particular, the bulk metric so obtained is also confor-
mally flat and is thus locally AdSdC1. For d D 2, the
Fefferman–Graham expansion can be integrated exactly
for any � .0/, � .d/ and always terminates at order z4 to
define a metric that is locally AdS3.

19.1.5 Diffeomorphisms and Symmetries
in AlAdS

The reader of this Handbook is by now well aware
of the important roles played by diffeomorphisms in
understanding gravitational physics. Let us, therefore,
pause briefly to understand how such transformations
affect the structures defined thus far. We are interested
in diffeomorphisms of our manifold M with bound-
ary @M. By definition, any such diffeomorphism must
map @M to itself; i. e., it also induces a diffeomor-
phism of @M. As usual in physics, we consider dif-
feomorphisms (of M) generated by vector fields �; the
corresponding diffeomorphism of @M is generated by
some O� , which is just the restriction of � to @M (where
by the above it must be tangent to @M).

Of course, the metric g transforms as a tensor un-
der this diffeomorphism. However, if we think of the
diffeomorphism as acting only on dynamical variables
of the theory then the defining function zD˝ does not

transform at all, and in particular does not transform
like a scalar field. This means that the rescaled metric
OgD z2g does not transform like a tensor, and neither
does the boundary metric � .0/. Instead, the diffeomor-
phism induces an additional conformal transformation
on @M, i. e., a change of conformal frame.

We can make this explicit by considering diffeo-
morphisms that preserve the Fefferman–Graham gauge
conditions, i. e., which satisfy

ıgzz D 0D ıgiz (19.28)

for

ıg�� D £�g�� Dr���Cr��� ; (19.29)

where we use £� to denote Lie derivatives along �
and r� is the covariant derivative compatible with the
metric g on M. Let us decompose the components ıg��
into

£�gzz D
2`

z
@z

�
`

z
�z

�
; (19.30)

£�giz D
`2

z2

�
@i�

zC �ij@z�
j
�
; (19.31)

£�gij D
`2

z2

�
£
O�
�ijC z2@z

�
z�2�ij

�
�z
	
; (19.32)

where £
O�

is the Lie derivative with respect to O� on @M.
These conditions can be integrated using (19.28) to ob-
tain

�z D z O�z.x/ ; (19.33)

� i D O� i.x/� @j
O�z

zZ
0

z0� ji.z0/dz0 ; (19.34)

where O�z and O� i are an arbitrary function and vector field
on @M (which we may transport to any zD constant
surface by using the given coordinates to temporarily
identify that surface with @M). In particular, for O� i D 0
we find

gijC ıgij D
`2

z2
.1� 2 O�z/�

.0/
ij CO.z0/ : (19.35)

Thus the boundary metric transforms as � .0/!

e�2 O�z
�
.0/
ij . Such transformations are called conformal

transformations by relativists and Weyl transformations
by particle physicists; we will use the former, but the
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reader will find both terms in various treatments of
AlAdS spacetimes. This is precisely the change of con-
formal frame mentioned above.

Let us now turn to the notion of symmetry. As in
Chap. 17, we might be interested either in an exact sym-
metry of some metric g, generated by a Killing vector
field (KVF) satisfying r.���/ D 0, or in some notion
of asymptotic symmetry. We will save the precise def-
inition of an asymptotic symmetry for Sect. 19.2.3 as,
strictly speaking, this first requires the construction an
appropriate variational principle and a corresponding
choice of boundary conditions. However, we will dis-
cuss the closely related (but entirely geometric) notion
of an asymptotic Killing field below.

Suppose first that � is, indeed, a KVF of g so that
£�gD 0. It is clear that there are two cases to consider.
Either £�˝ D 0 (in which case we say that � is compat-
ible with˝) or £�˝ ¤ 0 (in which case we say that � is
not compatible with ˝). In the former case we clearly
have £� OgD £�.˝2g/D 0 so that � is also a Killing field
of Og. However, more generally we have seen that the
corresponding diffeomorphism changes Og by a confor-
mal factor. The generators of such diffeomorphisms are
called conformal Killing fields of Og (see, e.g., [19.12,
Appendix C.3]) and satisfy

£� Og�� D .£� ln˝2/Og��) 2br.���/
D

2

dC 1

�br	�	
	
Og�� ; (19.36)

where br is the covariant derivative compatible with Og
and indices on �� are lowered with Og�� . Note that
the induced vector field O� on @M is again a conformal
Killing field of � .0/.

This suggests that we define an asymptotic Killing
field to be any vector field � that satisfies (19.36) to
leading order in˝ at @M. If we ask that � also preserve
Fefferman–Graham gauge we may then expand (19.33)
and (19.34) and insert into (19.36) to obtain

�z D z O�z.x/ ; (19.37)

� i D O� i.x/� 1
2 z2.� .0//ij@j

O�zCO.z4/ ; (19.38)

£
O�
�
.0/
ij �

2

dC 1

�
Dk
O�kC O�z

	
�
.0/
ij D 0 : (19.39)

Taking the trace of the condition (19.39) shows that
O�z D 1

d Di
O� i, so (19.39) is the conformal Killing equa-

tion for O� with respect to � .0/. In other words, con-
formal Killing fields O� of � .0/ are in one-to-one cor-
respondence with asymptotic Killing fields of g which
preserve Fefferman–Graham gauge, where the equiva-
lence relation is given by agreement to the order shown
in (19.37).

19.1.6 Gravity with Matter

Our treatment above has focused on vacuum gravity. It
is useful to generalize the discussion to include mat-
ter fields, both to see how this influences the above
result and also to better elucidate the general struc-
ture of asymptotically AdS field theory. Indeed, readers
new to dynamics in AdS space will gain further insight
from Sect. 19.1.4 if they re-read it after studying the
treatment of the free scalar field below. We use a sin-
gle scalar as an illustrative example of matter fields;
see [19.9, 10] for more general discussions.

For simplicity, we first consider a massive
scalar field in a fixed AlAdSdC1 gravitational back-
ground, which we take to be in Fefferman–Graham
form (19.17). This set-up is often called the probe
approximation as it neglects the back-reaction of the
matter on the spacetime. The action is as usual

SBulk
� D� 1

2

Z
ddC1x

p
jgj
�
g��@��@��Cm2�2

�
:

(19.40)

We study the behavior of solutions near the bound-
ary zD 0 by seeking solutions which behave at leading
order like z� for some power �. The equation of mo-
tion

.��Cm2/� D 0 (19.41)

then requires .m`/2 D�.�� d/, yielding two in-
dependent small-z behaviors z�˙ . Here we have
defined �

˙

D d=2˙ �, with � �
p
.d=2/2C .m`/2.

A priori, it seems that we should consider only � � �min

for some �min > 0, since one might expect .m`/2 � 0.
However, it can be shown [19.22] that scalar fields
with small tachyonic masses in AdSdC1 are stable as
long as the mass satisfies the so-called Breitenlohner–
Freedman (BF) bound .m`/2 ��d2=4DW m2

BF; we,
therefore, consider � � 0. The essential points here are:
i) It is only for j.m`/2j � 1 that the flat-space approx-
imation must hold, so for small j.m`/2j the behavior
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can differ significantly from that of flat space; and ii)
as noted above, the fact that AdS is not globally hyper-
bolic means that we must impose boundary conditions
at @M. These boundary conditions generally require �
to vanish on @M. So even for m2 D 0 we would exclude
the zero mode � D constant. For a given boundary con-
dition, the spectrum of modes turns out to be discrete.
As a result, we may lower m2 a finite amount below zero
before a true instability develops.

The asymptotic analysis above suggests that we
seek a solution of the form

�.x; z/D z��.�.0/C z2�.2/C � � � /

C z�C.�.2�/C z2�.2�C2/C � � � / :

(19.42)

For noninteger � the equation of motion can be solved
order-by-order in z to uniquely express all coefficients
in terms of �.0/ and �.2�/. However, for integer � the
difference �

C

��
�

is an even integer and the two
sets of terms in (19.42) overlap. This notational issue is
connected to a physical one: keeping only even-integer
powers of z (times z��) does not allow enough free-
dom to solve the resulting recursion relation; there is no
solution at order d�2�

�

. To continue further we must
introduce a logarithmic term and write

�.x; z/D z��.�.0/C z2�.2/C � � � /

C z�C log z2. .2�/C z2 .2�C2/C � � � / :

(19.43)

The recursion relations then uniquely express all coef-
ficients in terms of the free coefficients �.0/ and �.2�/.
As an example, we note for later purposes that (for any
value of �)

�.2/ D 1
4.��1/�

.0/�.0/ ; (19.44)

where �.0/ is the scalar wave operator defined by � .0/

on @M. Dimensional analysis shows that the higher
coefficients �.n/ for integer n< 2�

C

� d involve n
derivatives of �.0/.

We now couple our scalar to dynamical gravity us-
ing

SD SgravC SBulk
� ; (19.45)

where Sgrav is the action for gravity. We will postpone
a discussion of boundary terms to Sect. 19.2; for now,
we simply focus on solving the resulting equations of
motion

R�� �
1
2 Rg�� C�g�� D 8�GT.matter/

�� : (19.46)

As in the vacuum case we write the metric in the
form (19.17), and as in the solution for nondynamical
gravity we write the scalar field as in (19.43). Note that
we keep the logarithmic term in (19.21) for all d as, de-
pending on the matter content, it may be necessary even
for odd d. (When it is not needed, the equations of mo-
tion force its coefficient N�d to vanish.) The stress tensor
of the scalar field then behaves like

T.matter/
�� dx� dx�

D�
�

z2.�
�

�1/

�

�
d

2
.�.0//2 dz2C z�.0/@i�

.0/ dzdxi

C �.�.0//2�
.0/
ij dxi dxjC � � �

i
: (19.47)

For�
�

< 0 and �.0/ ¤ 0, the matter stress tensor turns
out to diverge too rapidly at zD 0 for the equations
of motion to admit an AlAdS solution. So for �

�

< 0
the only scalar field boundary condition consistent with
the desired physics is �.0/ D 0. However, for �

�

� 0
the equations of motion do admit AlAdS solutions with
�.0/ ¤ 0 and further input is required to determine the
boundary conditions. We will return to this issue in
Sect. 19.2.2.

Evidently, the equations of motion admit solutions
of the forms (19.17) and (19.43) only if the components
of the matter stress tensor in Fefferman–Graham co-
ordinates diverge as 1=z2 or slower. This result allows
us to generalize our definition of asymptotically locally
AdS spacetimes to include matter: an AlAdS spacetime
with matter is a manifold M as above with fields satis-
fying the equations of motion and the requirement that
˝2T�� admits a continuous limit to @M.
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19.2 Variational Principles and Charges

Noether’s theorem teaches us that variational principles
provide a powerful link between symmetries and con-
servation laws, allowing the latter to be derived without
detailed knowledge of the equations of motion. This
procedure works as well for gravitational theories as
for systems defined on a fixed spacetime background,
though there is one additional subtlety. In more familiar
theories, it is often sufficient to consider only variations
of compact support so that all boundary terms arising
from variations of an action can be discarded. How-
ever, as shown in Chap. 17 in the asymptotically flat
context, when the gravitational constraints (which are
just certain equations of motion!) are satisfied the grav-
itational charges become pure boundary terms with no
contributions from the bulk. Discarding all boundary
terms in Noether’s theorem would thus lead to triv-
ial charges and we will instead need to treat boundary
terms with care. It is in part for this reason that we refer
to variational principles as opposed to mere actions, the
distinction being that all variations of the former vanish
when the equations of motion and boundary conditions
hold, even including any boundary terms that may arise
in computing the variations. Constructing a good varia-
tional principle generally requires that we add boundary
terms to the familiar bulk action, and that we tailor the
choice of such boundary terms to the boundary condi-
tions we wish to impose on @M.

19.2.1 A Toy Model of AdS: Gravity in a Box

We have seen that AlAdS spacetimes are conformally
equivalent to manifolds with time-like boundaries. This
means that (with appropriate boundary conditions) light
signals can bounce off of @M and return to the inte-
rior in finite time, boundary conditions are needed for
time evolution, and indeed much of physics in AlAdS
spacetimes is indeed like field theory in a finite-sized
box. This analogy also turns out to hold for the study of
conservation laws in theories with dynamical gravity. It
will, therefore, prove useful to first study conservation
laws for gravity on a manifold M with a finite-distance
time-like boundary @M, which will serve as a toy model
for AlAdS gravitational dynamics. This subject, which
we call gravity in a box, was historically studied for
its own sake by Brown and York [19.23]. We largely
follow their approach below. For simplicity we will
assume that @M is globally hyperbolic with compact
Cauchy surfaces as shown in Fig. 19.3, although the
more general case can typically be treated by impos-

ing appropriate boundary conditions in the asymptotic
regions of @M.

Out first task is to construct a good variational
principle. However, noted above this will generally
require us to add boundary-condition-dependent bound-
ary terms to the bulk action. It is thus useful to have
some particular boundary condition (or, at least, a class
of such conditions) in mind before we begin. In scalar
field theory, familiar classes of boundary conditions in-
clude the Dirichlet condition (�j@M fixed, so ı�j@M D

0), the Neumann condition (which fixes the normal
derivative), or the more general class of Robin condi-
tions (which fix a linear combination of the two). All
of these have analogs for our gravity in a box system,
but for simplicity we will begin with a Dirichlet-type
condition. Recall from Chap. 16 that, when discussing
the initial value problem, the natural initial data on
a Cauchy surface consists of the induced metric and the
extrinsic curvature (or, equivalently, the conjugate mo-
mentum as described in Chap. 17). Since the equations
of motion are covariant, the analysis of possible bound-
ary conditions on time-like boundaries turns out to be
very similar, so that the natural Dirichlet-type condition
is to fix the induced metric hij on @M.

An important piece of our variational principle
will, of course, be the Einstein–Hilbert action SEH D

1
2�

R p
�g R (with � D 8�G). However, SEH is not suf-

ficient by itself as a standard calculation gives

ıSEH D ı

0
@ 1

2�

Z
M

p
�gR

1
A

D
�1

2�

Z
M

p
�g

�
R�� � 1

2 Rg��
�
ıg��

C
1

2�

Z
@M

p
jhjOr�G����r�ıg�� ; (19.48)

where Or� is the outward pointing unit normal to @M and

G���� D g�.�g�/� � g��g�� : (19.49)

In (19.48) we have discarded boundary terms not asso-
ciated with @M (i. e., boundary terms in any asymptotic
regions of M) as they will play no role in our analysis.
Nevertheless, the second term in (19.48) (the boundary
term) generally fails to vanish for useful boundary con-
ditions, so that SEH is not fully stationary on solutions.

However, when ıhij D 0 this problem term turns
out to be an exact variation of another boundary term,
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C

Fig. 19.3 A sketch of the spacetime M. The codimension
two surface C is a Cauchy surface of the boundary @M

known as the Gibbons–Hawking term, given by the in-
tegral of the trace of the extrinsic curvature of @M.
(For related reasons the addition of this term is nec-
essary when constructing a gravitational path integral,
see [19.24]). As a result, enforcing the boundary condi-
tion ıhij D 0 guarantees that all variations of the action

SDirichlet in a box D SEHC SGH

D
1

2�

Z
M

p
�gR�

1

�

Z
@M

p
jhjK ;

(19.50)

where K D hijKij is the trace of the extrinsic curvature
on @M, vanish precisely when the bulk equations of
motion hold. Thus (19.50) gives a good variational prin-
ciple for our Dirichlet problem.

Now, Noether’s theorem teaches us that every con-
tinuous symmetry of our system should lead to a conser-
vation law (although the conservation laws associated
with pure gauge transformations are trivial). Gravity in
a box is defined by the action (19.50) and by the choice
of some Lorentz-signature metric hij on @M. The first
ingredient, the action (19.50), is manifestly invariant
under any diffeomorphisms of M. Such diffeomor-
phisms are generated by vector fields � on M that are
tangent to @M at the boundary (so that the diffeomor-
phism maps @M to itself). As before, we use O� to denote
the induced vector field on @M. The associated diffeo-
morphism of M will preserve hij if O� is a Killing field
on the boundary. As discussed in Chap. 17, a diffeo-
morphism supported away from the boundary should be
pure gauge. So it is natural to expect that the asymptotic
symmetries of our system are classified by the choice of
boundary Killing field O�, with the particular choice of
a bulk extension � being pure gauge.

This set-up should remind the reader of (nongravi-
tational) field theories on fixed spacetime backgrounds.
There one finds conservation laws associated with each
Killing field of the background metric. Here again the
conservation laws are associated with Killing fields of
the background structure, although now the only such
structure is the boundary metric hij.

Pursuing this analogy, let us recall the situation
for field theory on a fixed (nondynamical) spacetime
background. There, Noether’s theorem for global sym-
metries (e.g., translations along some Killing field �KVF)
would instruct us to vary the action under a space-time
generalization of the symmetry (e.g., diffeomorphism
along f .x/�KVF for general smooth functions f .x/, or
more generally under arbitrary diffeomorphisms). It is
clear that the analog for gravity in a box is just to vary
(19.50) under a general diffeomorphism of M.

It turns out to be useful to do so in two steps. Let
us first compute an arbitrary variation of (19.50). By
construction, it must reduce to a boundary term when
the equations of motion hold, and it must vanish when
ıhij D 0. Thus it must be linear in ıhij. A direct calcula-
tion [19.12, Appendix E]) gives

ıSDirichlet in a box D
1

2

Z
@M

p
jhj
 ijıhij ; (19.51)

where 
 ij D ��1.Kij �Khij/. This 
 ij is sometimes re-
ferred to as the radial conjugate momentum since it has
the same form as the (undensitized) conjugate momen-
tum introduced on space-like surfaces in Chap. 17. This
agreement, of course, follows from general principles of
Hamilton–Jacobi theory. The reader should recall that
for field theory in a fixed spacetime background the
functional derivative of the action with respect to the
metric defines the field theory stress tensor. By analogy,
the object 
 ij defined above is often called the boundary
stress tensor (or the Brown–York stress tensor) of the
gravitational theory.

Let us now specialize to the case where our varia-
tion is a diffeomorphism of M. As we have seen, � also
induces a diffeomorphism of the boundary @M gener-
ated by some O� . Then ıhij DDi

O�jCDj
O�i, where Di is the

covariant derivative compatible with hij. Using the sym-
metry of 
 ij D 
 ji we find

ıSDirichlet in a box D

Z
@M

p
jhj
 ijDi

O�j

D�

Z
@M

p
jhj O�jDi


ij ; (19.52)
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where in the last step we integrate by parts and take O�
to have compact support on @M so that we may discard
any boundary terms. Since O� is otherwise arbitrary, we
conclude that

Di

ij D 0 I (19.53)

i. e., 
 ij is covariantly conserved on @M when the equa-
tions of motion hold in the bulk. In fact, since 
 ij

is the radial conjugate momentum, it should be clear
from Chap. 17 that (19.53) can also be derived directly
from the equations of motion by evaluating the radial-
version of the diffeomorphism constraint on @M. (The
radial version of the Hamiltonian constraint imposes
another condition on 
 ij that can be used to deter-
mine the trace 
 D 
 ijhij in terms of the traceless part
of 
 ij.)

If we now take O� to be a boundary Killing field,
we find Di.


ij O�j/D 0, so that the so-called Brown–York
charge

QBYŒ�� WD �

Z
C

p
qni


ij O�j (19.54)

is independent of the choice of Cauchy surface C in @M.
Here ni is a unit future-pointing normal to C and

p
q

is the volume element induced on C by hij. Although
these charges were defined by methods quite different
from the Hamiltonian techniques of Chap. 17, we will
argue in Sect. 19.3 below that the end result is identi-
cal up to a possible choice of zero-point. Once again,
the argument will turn out to be essentially the same as
one would give for field theory in a fixed nondynamical
background.

Before proceeding to the AdS case, let us take
a moment to consider other possible boundary con-
ditions. We see from (19.51) that the action (19.50)
also defines a valid variational principle for the bound-
ary condition 
 ij D 0. Of course, with this choice the
charges (19.54) all vanish. But this should be no sur-
prise. Since the condition 
 ij D 0 is invariant under all
diffeomorphisms of M, there is no preferred subset
of nontrivial asymptotic symmetries; all diffeomor-
phisms turn out to generate pure gauge transformations.
One may also study more complicated boundary con-
ditions by adding additional boundary terms to the
action (19.50), although we will not pursue the details
here.

19.2.2 Variational Principles
for Scalar Fields in AdS

As the reader might guess, our discussion of AlAdS
gravity will follow in direct analogy to the above treat-
ment of gravity in a box. Indeed, the only real difference
is that we must work a bit harder to construct a good
variational principle. We will first illustrate the relevant
techniques below by constructing a variational princi-
ple for a scalar field on a fixed AdS background, after
which we will apply essentially identical techniques to
AdS gravity itself in Sect. 19.2.3.

We will construct our variational principle using the
so-called counterterm subtraction approach pioneered
in [19.25, 26] and further developed in [19.17, 18]. Our
discussion below largely follows [19.17], with minor
additions from [19.11]. We begin with the bulk action
SBulk
� of (19.40) and compute

ıSBulk
� D�

Z
@M

p
jhjOr�@��ı� ; (19.55)

where Or� is the outward-pointing unit normal to @M so
that Or�@� D� z

`
@z. The form of (19.55) might appear

to suggest that SBulk
� defines a good variational principle

for any boundary condition that fixes � on @M. How-
ever, the appearance of inverse powers of z means that
we must be more careful, and that SBulk

� will suffice only
when ı� vanishes sufficiently rapidly.

It is, therefore, useful to write (19.55) in terms of
the finite coefficients �.2n/; �.2.�Cn// of (19.42) (or the
corresponding coefficients in (19.43)). The exact ex-
pression is not particularly enlightening, and for large �
there are many singular terms to keep track of. What
is useful to note, however, is that all of the singular
terms turn out to be exact variations. In particular, us-
ing (19.44) one may show for noninteger � < 2 that the
action

S� D SBulk
� C

Z
@M

p
jhj

�

�
�
�
�

2`
�2C

`

4.�� 1/
hij@i�@j�

�

(19.56)

satisfies

ıS� D 2�`d�1
Z
@M

q
j� .0/j�.2�/ı�.0/ : (19.57)
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Since the boundary terms in (19.56) are each divergent
in and of themselves, they are known as counterterms in
analogy with the counterterms used to cancel ultraviolet
divergences in quantum field theory. These divergences
cancel against divergences in SBulk

� and the full action
S� is finite for any field of the form (19.42) with non-
integer � < 2. Similar results hold for noninteger � > 2
if additional higher-derivative boundary terms are in-
cluded in (19.56). We will comment on differences for
integer � at the end of this section.

It is clear that S� provides a good variational prin-
ciple so long as the boundary conditions either fix �.0/

or set �.2�/ D 0. We may now identify

˚bndy WD 2�`d�1�.2�/ (19.58)

as an AdS scalar response function analogous
to the boundary stress tensor 
 ij introduced in
Sect. 19.2.1. Note that adding an extra boundary termR p

� .0/WŒ�.0/� to S� allows one to instead use the
Robin-like boundary condition

�.2�/ D�
`

2�
W 0Œ�.0/� ; (19.59)

where W 0 denotes the derivative of W with respect to its
argument.

Recall from Sect. 19.1.6 that requiring the energy
to be bounded below restricts � to be real (in which
case we take � nonnegative). That there are further im-
plications for large � can also be seen from (19.56).
Note that the final term in (19.56) is a kinetic term
on @M and that for � > 1 it has a sign opposite to
that of the bulk kinetic term. Counting powers of z
shows that this boundary kinetic term vanishes at @M
for � < 1, but contributes for � > 1. In this case, for
any perturbation that excites �.0/ and which is sup-
ported sufficiently close to @M, the boundary kinetic
term in (19.56) turns out to be more important than
the bulk kinetic term. Thus the perturbation has nega-
tive kinetic energy. One says that the theory contains
ghosts, and any conserved energy is expected to be un-
bounded below [19.11]. For this reason, for � > 1 one
typically allows only boundary conditions that fix �.0/.
Of course, as noted in Sect. 19.2.2, for � > d=2 cou-
pling the theory to dynamical gravity and requiring
the spacetime to be AlAdS will further require �.0/ D
0. On the other hand, for real 0 < � < 1 all of the
above boundary conditions lead to ghost-free scalar
theories.

The story of noninteger � > 2 is much the same as
that of � 2 .1; 2/. Adding additional higher-derivative
boundary terms to (19.56) again leads to an action that
satisfies (19.57). While one can find actions compati-
ble with general boundary conditions (19.59), the only
ghost-free theories fix �.0/ on @M. The story of inte-
ger � is more subtle; the factors of ln z arising in that
case from (19.43) mean that we can find a good varia-
tional principle only by including boundary terms that
depend explicitly on the defining function˝ of the cho-
sen conformal frame. Doing so again leads to ghosts
unless �.0/ is fixed as a boundary condition [19.11].

19.2.3 A Variational Principle
for AlAdS Gravity

We are now ready to construct our variational princi-
ple for AlAdS gravity. As for the scalar field above,
we will start with a familiar bulk action and then add
boundary terms. One may note that in the scalar case
our final action (19.56) consists essentially of adding
boundary terms to SBulk

� which i) are written as inte-
grals of local scalars built from � and its tangential
derivatives along @M and ii) precisely cancel divergent
terms in SBulk

� . This motivates us to follow the strategy
of [19.18] for the gravitational case in which we first
identify divergent terms in a familiar action and write
these terms as local scalars on @M. We may then con-
struct a finite so-called renormalized action by adding
boundary counterterms on @M to cancel the above di-
vergences. At the end of this process we may check
that this renormalized action yields a good variational
principle for interesting boundary conditions. In anal-
ogy with Sect. 19.2.1, for simplicity in the remainder
of this chapter we take the induced (conformal) metric
on @M to be globally hyperbolic with compact Cauchy
surfaces.

Let us begin with an action containing the stan-
dard Einstein–Hilbert and cosmological constant terms
in the bulk, along with the Gibbons–Hawking term.
It will facilitate our discussion of divergent terms to
consider a regulated action in which the boundary has
effectively been moved in to zD �. For the moment, we
choose some �0 > � and impose the Fefferman–Graham
gauge (19.17) for all z < �0, so that this gauge holds
in particular at the regulated boundary. This gauge fix-
ing at finite z is merely an intermediate step to simplify
the analysis. We will be able to loosen this condi-
tion once we have constructed the final action. We let
hij D .`=z/2�ijjzD� be the induced metric on this regu-
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lated boundary and study the action

Sreg D
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�dC2a.2/C : : :

C ��2a.d�2/� log.�2/a.d/
	

C .finite/ ;

(19.60)

where K D hijKij is the trace of the extrinsic curvature
of the regulated boundary @M� at zD � and the form
of the divergences follows from (19.21). The coeffi-
cient a.d/ vanishes for odd d. For even d it is called
the conformal anomaly for reasons to be explained
below.

In analogy with the scalar field results of
Sect. 19.2.2, one finds that the coefficients a.n/ which
characterize the divergent terms are all local scalars
built from �

.0/
ij and its derivatives along @M. This fol-

lows directly from the fact that all terms � .n/ with
n	 d in the Fefferman–Graham expansion (19.21) are
local functions of � .0/ij and its derivatives along @M. Di-
mensional analysis shows that a.n/ involves precisely
2n derivatives and the detailed coefficients a.n/ can be
found to any desired order by direct calculation. For ex-
ample, for n¤ d the a.n/ are given by (see e.g. [19.18])

a.0/ D�2.d� 1/ ; a.2/ D
.d� 4/R
2.d� 2/

;

a.4/ D�
d2 � 9dC 16

4.d� 4/

�

�
dR2

4.d� 2/2.d� 1/
�
RijRij

.d� 2/2

�
; : : : ;

(19.61)

where as in Sect. 19.1.4,R and Rij are the Ricci scalar
and Ricci tensor of � .0/ on @M. For dD 2, 4, the log
terms are given by

dD 2W a.2/ D
�R

2
;

dD 4W a.4/ D

�R2

24
�
RijRij

8

�
: (19.62)

As foreshadowed above, we now define the renor-
malized action

Sren D lim
�!0

.SregC Sct/ ; (19.63)

where
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�dC2a.2/C : : :

C ��2a.d�2/� log.�2/a.d/
	

(19.64)

is constructed to precisely cancel the divergent terms
in Sren. The representation (19.64) makes the degree
of divergence in each term manifest. However, the use
of � in defining Sct suggests a stronger dependence on
the choice of defining function ˝ (and thus, on the
choice of conformal frame) than is actually the case.
To understand the true dependence, we should use the
Fefferman–Graham expansion to instead express Sct

directly in terms of the (divergent) metric h induced
on @M by the unrescaled bulk metric g as was done
in [19.26]. Dimensional analysis and the fact that each
a.n/ involves precisely 2n derivatives shows that this
removes all explicit dependence on � save for the loga-
rithmic term in even d. In particular, formally taking �
to zero we may write

Sct D
`

2�

Z
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p
jhj

�

�
�

2.d� 1/

`2
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.d� 2/
C : : :

�
�d log.�2/a.d/

`2

�
; (19.65)

where the Rh (Ricci scalar of h) term only appears for
d � 3 and the dots represent additional terms that ap-
pear only for d � 5.

In general, the coefficients in (19.65) differ from
those in (19.60) due to subleading divergences in
a given term in (19.65) contributing to the coefficients
of seemingly lower-order terms in (19.60). However,
the logarithmic term has precisely the same coefficient
a.d/ in both (19.65) and (19.60). Since the logarithmic
term in (19.21) is multiplied by zd , only the lead-
ing � 2.d�1/

`2

p
jhj term in (19.65) could contribute to
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any discrepancy. However, the first variation of a de-
terminant is a trace, and the trace of the logarithmic
coefficient N� .d/ij vanishes by (19.22).

Thus for d odd (where the log term vanishes) the
renormalized action Sren can be expressed in a fully
covariant form in terms of the physical metric g; all
dependence on the defining function ˝ (and so on the
choice of conformal frame) has disappeared. We, there-
fore, now drop the requirement that any Fefferman–
Graham gauge be imposed for odd d. However, for
even d, the appearance of log.�2/ in (19.65) indicates
that Sren does, in fact, depend on the choice of defining
function˝ (and thus on the choice of conformal frame).
In analogy with quantum field theory, this dependence
is known as the conformal anomaly. By replacing �
with ˝ in (19.65), we could again completely drop the
requirement of Fefferman–Graham gauge in favor of
making explicit the above dependence on ˝. However,
an equivalent procedure is to require that the expan-
sion (19.21) hold up through order � .d/ and to replace �
in (19.65) by the Fefferman–Graham coordinate z. We
will follow this latter approach (which is equivalent to
imposing Fefferman–Graham gauge only on the stated
terms in the asymptotic expansion) as it is more com-
mon in the literature.

We are finally ready to explore variations of Sren.
Since Sren was constructed by adding only boundary
terms to the usual bulk action, we know that ıSren must
be a pure boundary term on solutions. As before, we
will discard boundary terms in the far past and future
of M and retain only the boundary term at @M. Since
@M is globally hyperbolic with compact Cauchy sur-
faces, performing integrations by parts on @M will yield
boundary terms only in the far past and future of @M.
Discarding these as well allows us to write

ıSren D

Z
@M

S��ıg�� ; (19.66)

for some S�� . However, let us now return to the
Fefferman–Graham gauge and use it to expand ıg�� ,
as in (19.21). Since Sren is finite, ıSren must be finite as
well, but the leading term in ıg�� is of order z�2. So
the leading term in S�� must be of order z2. It follows
that only these leading terms can contribute to (19.66).
Since the leading term in ıg�� involves ı� .0/ij , we may
write

ıSren D
1
2

Z
@M

p
j�0j Tij

bndyı�
.0/
ij (19.67)

for some finite so-called boundary stress tensor Tij
bndy on

@M. For odd d, the fact that Sren is invariant under ar-
bitrary changes of conformal frame ı� .0/ij D e�2	�

.0/
ij

immediately implies that the boundary stress tensor is
traceless: Tbndy WD �

.0/
ij Tij

bndy D 0. In even dimensions,
the trace is determined by the conformal anomaly of
Sren (i. e., by the logarithmic term in either (19.60) or
(19.65)) and one finds Tbndy D�`

d�1a.d/=�. This result
may also be derived by considering the radial version of
the Hamiltonian constraint from Chap. 17 and evaluat-
ing this constraint at @M.

Comparing with Sect. 19.2.1, it is clear that we may
write

Tij
bndy D lim

�!0

�
`

�

�dC2 �

 ijC 


ij
ct

	
; (19.68)

where again 
ij D �
�1.Kij�Khij/ and the new term 


ij
ct

comes from varying Sct. In Fefferman–Graham gauge
one finds by explicit calculation that for d odd

Tij
bndy D

d`d�1

2�
� .d/

ij
: (19.69)

For d even there are extra contributions associated with
the conformal anomaly, which are thus all determined
by � .0/; e.g. [19.18]

� For dD 2:

Tij
bndy D

`

�

�
� .2/

ij
C 1

2R�
.0/ij

	
; (19.70)

� For dD 4:

Tij
bndy D

2`3

�

h
� .4/

ij
� 1

8

�
.� .2//2 � � .2/

kl
�
.2/
kl

	
� .0/

ij

� 1
2�
.2/ ik� .2/k

j
C 1

4�
.2/� .2/

ij
C

3

2
N� .4/ij

�
;

(19.71)

where � .2/, N� .4/ are given by (19.19), (19.23),
(19.24). In all cases, we see that we may use � .0/ij ;Tij

bndy
to parametrize the free data in the Fefferman–Graham
expansion.

The reader should note that the particular value of
Tij

bndy on a given solution depends on the choice of a rep-

resentative � .0/ and thus on the choice of conformal
frame. For d odd this dependence is a simple scaling,
although it is more complicated for d even.
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Yet this does not diminish the utility of Tij
bndy. For

example, we see immediately from (19.67) that Sren de-
fines a good variational principle whenever i) � .0/ is
fixed as a boundary condition or ii) d is odd, so that
Tij

bndy is traceless, and we fix only the conformal class

of � .0/.
We close this section with some brief comments on

other possible boundary conditions. We can see from
(19.67) that Sren is also a good variational principle if
we fix Tij

bndy D 0. As in Sect. 19.2.2, one may obtain
variational principles for more complicated boundary
conditions by adding further finite boundary terms to
(19.65); see [19.27] for details. However, just as for
scalar fields with � > 1, boundary conditions that al-
low � .0/ to vary generally lead to ghosts [19.11] (with
the exception that for d odd no ghosts arise from al-
lowing � .0/ to vary by a conformal factor). For this
reason we consider below only boundary conditions
that fix � .0/, or at least its conformal class for d odd.

19.2.4 Conserved Charges for AlAdS Gravity

We are now ready to apply the Brown–York-type pro-
cedure discussed in Sect. 19.2.1 to construct conserved
charges for AlAdS gravity. The key step is again an
argument analogous to (19.52) to show conservation
of Tij

bndy on @M. We give the derivation here in full to
highlight various subtleties of the AdS case. We also
generalize the result slightly by coupling the AlAdS
gravity theory of Sect. 19.2.3 to the scalar theory of
Sect. 19.2.2. For definiteness we assume that the bound-
ary conditions fix both � .0/ and �.0/ (up to conformal
transformations .� .0/ij ; �.0//! .e�2	�

.0/
ij ; e��	�.0//)

for odd d, where the transformation of �.0/ is dictated
by (19.42) and we take � noninteger so that no log terms
arise from the scalar field. However, the more general
case is quite similar [19.10, 27].

We thus consider the action Stotal D SrenC S� . The
reader should be aware that, because the counterterms
in S� explicitly depend on the boundary metric � .0/,
this coupling to matter will change certain formulae in
Sect. 19.2.3. In particular, if we now make the natural
definition

Tij
bndy D

2p
j� .0/j

ıStotal

ı�
.0/
ij

; (19.72)

varying the action under a boundary conformal trans-
formation leads to the more general condition

Tbndy���˚bndy�
.0/ D�

`d�1a.d/
�

; (19.73)

which reduces to the trace constraint of Sect. 19.2.3
only for ˚bndy D 0, �.0/ D 0, or �

�

D 0: Recall that
˚bndy is given by (19.58).

The coupling to S� similarly modifies the diver-
gence condition (19.52) of Sect. 19.2.1. Using the
definition (19.72), we find

ıStotal D

Z
@M

q
j� .0/j

�
1
2 Tij

bndyı�
.0/
ij C˚bndyı�

.0/
	
:

(19.74)

Let us consider the particular variation associated with
a bulk diffeomorphism � . It is sufficient here to con-
sider bulk diffeomorphisms compatible with whatever
defining function ˝ we have used to write (19.74);
i. e., for which £�˝ D 0. As described in Sect. 19.1.5,
other diffeomorphisms differ only in that they also in-
duce a change of conformal frame. Since we already
extracted the information about Tij

bndy (and in particular,
about its trace) that can be obtained by changing confor-
mal frame in Sect. 19.2.3; we lose nothing by restricting
here to vector fields with £�˝ D 0.

As described in Sect. 19.1.5, we then find ı� .0/ D
£
O�
� .0/, ı�.0/ D £

O�
�.0/, where O� is the vector field in-

duced by � on @M. Thus (19.74) reads

ı�Sren D 0D
Z
@M

q
j� .0/j

�
TijDi

O�jC
ıSren

ı�.0/
£
O�
�.0/

�

D�

Z
@M

q
j� .0/j O�j

�
DiT

ij �˚bndyDj�.0/
	
;

(19.75)

where Di is again the covariant derivative on @M com-
patible with � .0/, all indices are raised and lowered
with � .0/, and we have dropped the usual surface terms
in the far past and future of @M. Recalling that all O� i

can arise from bulk vector fields � compatible with any
given˝, we see that (19.75) must hold for any O�j. Thus,

DiT
ij
bndy D ˚bndyDj�.0/ I (19.76)

i. e., Tij
bndy is conserved on @M up to terms that may be

interpreted as scalar sources. These sources are anal-
ogous to sources for the stress tensor of, say, a scalar
field on a fixed spacetime background when the scalar
field is also coupled to some background potential. Here
the role of the background potential is played by �.0/,
which we have fixed as a boundary condition. As in
Sect. 19.2.1, the divergence condition (19.76) may also
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be derived from the radial version of the diffeomor-
phism constraint from Chap. 17 evaluated on @M. For
�.0/ D 0 and d odd one immediately arrives at (19.20)
using (19.76) and (19.69).

We wish to use (19.76) to derive conservation laws
for asymptotic symmetries. Here it is natural to say that
a diffeomorphism � of M is an asymptotic symmetry if
the there is some conformal frame in which the induced
vector field O� on @M is i) a Killing field of � .0/ and ii)
a solution of £

O�
�.0/ D 0. Due to the transformations of

� .0/; �.0/ under boundary conformal transformations,
this is completely equivalent to first choosing an arbi-
trary conformal frame and then requiring

£
O�
�
.0/
ij D�2�� .0/ij ; £

O�
�.0/ D�

�

��.0/ :

(19.77)

The first requirement says that O� is a conformal Killing
field of � .0/ij with 1

d Di
O� i D�� and the second says that

it acts on �.0/ like the corresponding infinitesimal con-
formal transformation.

For even d, we must also preserve the boundary
condition that � .0/ be fixed (even including the confor-
mal factor) and the requirement of Sect. 19.2.3 that the
Fefferman–Graham gauge hold to the first few orders in
the asymptotic expansion. An analysis similar to that of
Sect. 19.1.5 then shows that we must have �z D z

d Di
O� i

to leading order near @M. In particular, for Di
O� i ¤ 0 an

asymptotic symmetry � must be noncompatible with ˝
is just the right way to leave � .0/ invariant.

As a side comment, we mention that the trivial
asymptotic symmetries (the pure gauge transforma-
tions) are just those with O� D 0. This means that they
act trivially on both Tij

bndy and ˚bndy of Sect. 19.2.2,
so that both Tij

bndy and ˚bndy are gauge invariant. This
conclusion is obvious in retrospect, as these response
functions are functional derivatives of the action with
respect to the boundary conditions � .0/ij and �.0/. Since
both the action and any boundary conditions are gauge
invariant by definition, so too must be the functional
derivatives Tij

bndy and ˚bndy.
Returning to our construction of charges, note that

for any asymptotic symmetries as above we may com-
pute

Di

�
Tij

bndy
O�j

	
D��

�
Tbndy ���˚bndy�

.0/
	

D �
`d�1a.d/

�
; (19.78)

where in the final step we have used (19.73).

In analogy with Sect. 19.2.1, we now consider the
charges

QŒ��D�
Z
C

p
qniT

ij
bndy�j ; (19.79)

where C is a Cauchy surface of @M,
p

q is the volume
element induced on C by � .0/, and ni is the unit future
pointing normal to C with respect to � .0/. It follows
from (19.78) that these charges can depend on C only
through a term built from the conformal anomaly a.d/.

It is now straightforward to construct a modified
charge QQŒ�� which is completely independent of C. The
essential point here is to recall that a.d/ depends only
on the boundary metric � .0/. Since we have fixed � .0/

as a boundary condition, the dependence on C is the
same for any two allowed solutions. Thus on a given
solution s we need only define

QQŒ��.s/D QŒ��.s/�QŒ��.s0/ ; (19.80)

where s0 is an arbitrary reference solution satisfying
the same boundary condition and which we use to set
the zero-point. The construction (19.80) is sufficiently
trivial so that one often refers to QŒ�� itself as being
conserved.

Our construction of the charges QŒ��, QQŒ�� depended
on the choice of some conformal frame. However, it is
easy to see that the charges are, in fact, independent of
this choice for d odd. In that case, the factors

p
q, ni,

and Tij
bndy all simply scale under a boundary conformal

transformation, and dimensional analysis shows that the
combination (19.79) is invariant. For even d there are
additional terms in the transformation of Tij

bndy. How-

ever, as usual these depend only on � .0/ so that they
cancel between the two terms in (19.80). Thus even in
this case for fixed s0 the charges (19.80) are indepen-
dent of the conformal frame.

To make the above procedure seem more concrete,
we now quickly state results for the AdS3 and AdS4

Schwarzschild solutions

ds2 D�

�
1�

2cdGM

�d�2
C
�2

`2

�
d
2

C
d�2

1� 2cdGM
�d�2 C

�2

`2

C �2 d˝2
.d�2/ ; (19.81)

where c3 D 1 and c4 D
4

3� . The boundary stress tensor
may be calculated by converting to Fefferman–Graham
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coordinates, say for the conformal frame defined by
˝ D ��1. (Note that the Fefferman–Graham radial co-
ordinate z will agree with � only at leading order.) One
then finds the energy

QŒ�@� �D

8<
:

M; dD 3

MC
3�`2

32G
; dD 4 ;

(19.82)

where we remind the reader that energies ED�QŒ@� �
D QŒ�@� � are conventionally defined in this way with
an extra minus sign to make them positive. We see that
for dD 3 we recover the expected result for the en-
ergy of the spacetime. For d D 4 we also recover the
expected energy up to a perhaps unfamiliar choice of
zero-point which we will discuss further in Sect. 19.3.4.

19.2.5 Positivity of the Energy
in AlAdS Gravity

Thus far we have treated all charges QŒ�� on an equal
footing. However, when O� is everywhere time like and
future-directed on @M, it is natural to call ED QŒ���
an energy and to wonder whether E is bounded be-
low. Such a result was established in Chap. 18 for
the ADM energy of asymptotically flat spacetimes,
and the Witten spinor methods [19.28, 29] discussed
there generalize readily to asymptotically AdS (AAdS)
spacetimes as long as the matter fields satisfy the dom-
inant energy condition and decay sufficiently quickly
at @M [19.30]. In particular, this decay condition is
satisfied for the scalar field of Sect. 19.2.2 with m2 �

m2
BF when �.0/ is fixed as a boundary condition. Ex-

tensions to more general scalar boundary conditions
can be found in [19.31–35]. Here the details of the
boundary conditions are important, as boundary condi-
tions for which the W of (19.59) diverges sufficiently
strongly in the negative direction tend to make any
energy unbounded below (see, e.g., [19.36] for exam-
ples). This is to be expected from the fact that, as

discussed in Sect. 19.2.2, this W represents an addi-
tion to the Lagrangian and thus to any Hamiltonian,
even if only as a boundary term. As for �D 0, the
above AAdS arguments were inspired by earlier argu-
ments based on quantum supergravity (see [19.37, 38]
for the asymptotically flat case and [19.5] for the AAdS
case).

The above paragraph discussed only AAdS space-
times. While the techniques described there can also
be generalized to many AlAdS settings, it is not
possible to proceed in this way for truly general
choices of M and @M. The issue is that the methods
of [19.28, 29] require one to find a spinor field satisfy-
ing a Dirac-type equation subject to certain boundary
conditions. However, for some M; @M we can show
that no solution exists. In particular, this obstruction
arises when @M D S1�Rd�1 and the S1 is contractible
in M [19.39].

The same obstruction also arises with zero cosmo-
logical constant in the context of Kaluza–Klein theories
(where the boundary conditions may again involve an
S1 that is contractible in the bulk). In that case, the exis-
tence of so-called bubbles of nothing demonstrates that
the energy is, in fact, unbounded below and that the sys-
tem is unstable even in vacuum [19.40, 41]. However,
what is interesting about the AlAdS context with @M D
S1 �Rd�1 is that there are good reasons [19.39] to be-
lieve that the energy is, in fact, bounded below – even
if there are there are some solutions with energy lower
than what one might call empty AdS with @M D S1�

Rd�1 (by which we mean the quotient of the Poincaré
patch under some translation of the xi). Perhaps the
strongest such argument (which we will not explain
here) comes from AdS/CFT. Another is that [19.42]
identified a candidate lowest-energy solution (called the
AdS soliton) which was shown [19.39] to at least lo-
cally minimize the energy. Proving that the AdS soliton
is the true minimum of the energy, or falsifying the
conjecture, remains an interesting open problem, whose
solution appears to require new techniques.

19.3 Relation to Hamiltonian Charges

We have shown that the charges (19.80) are conserved
and motivated their definition in analogy with familiar
constructions for field theory in a fixed curved space-
time. It is natural to ask whether the charges (19.80), in
fact, agree with more familiar Hamiltonian definitions
of asymptotic charges constructed, say, using the AdS
generalization of the Hamiltonian approach described

in Chap. 17. Denoting these latter charges by HŒ��, the
short answer is that they agree as long as we choose
s0 in (19.80) to satisfy HŒ��.s0/D 0; i. e., they agree
as long as we choose the same (in principle arbitrary)
zero-point for each notion of charge. We may equiva-
lently say that the difference QŒ���HŒ�� is the same for
all solutions in our phase space, although for conformal
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charges it may depend on the choice of Cauchy sur-
face C for @M. As above, for simplicity we take @M to
be globally hyperbolic with compact Cauchy surfaces.

This result may be found by direct computation
(see [19.43] for simple cases). A more elegant, more
general, and more enlightening argument can be
given [19.10] using a covariant version of the Poisson
bracket known as the Peierls bracket [19.44]. The
essence of the argument is to show that QŒ�� generates
the canonical transformations associated with the
diffeomorphisms � . This specifies all Poisson brackets
of QŒ�� to be those of HŒ��. Thus QŒ���HŒ�� must
be a c-number in the sense that all Poisson brackets
vanish. However, this means that it is constant over the
phase space.

After pausing to introduce the Peierls bracket, we
sketch this argument below following [19.10]. As in
Sect. 19.2.4, we suppose for simplicity that the only
bulk fields are the metric and a single scalar field
with noninteger � and we impose boundary conditions
that fix both �

.0/
ij and �.0/. However, the argument

for general bulk fields is quite similar [19.10]. While
this material represents a certain aside from our main
discussion, it will provide insight into the algebraic
properties of conserved charges, the stress tensor itself,
and a more general notion of so-called boundary ob-
servables that we will shortly discuss.

19.3.1 The Peierls Bracket

The Peierls bracket is a Lie bracket operation that acts
on gauge-invariant functions on the space of solutions S
of some theory. As shown in the original work [19.44],
this operation is equivalent to the Poisson bracket un-
der the natural identification of the phase space with
the space of solutions. However, the Peierls bracket
is manifestly spacetime covariant. In particular, one
may directly define the Peierls bracket between any
two quantities A and B located anywhere in spacetime,
whether or not they may be thought of as lying on the
same Cauchy surface. In fact, both A and B can be
highly nonlocal, extending over large regions of space
and time. These features make the Peierls bracket ideal
for studying the boundary stress-tensor, which is well
defined on the space of solutions but is not a local func-
tion in the bulk spacetime.

To begin, consider two functions A and B on S,
which are, in fact, defined as functions on a larger
space H , which we call the space of histories. This
spaceH is the one on which the action is defined; i. e.,
the solution space S consists of those histories in H on

which the action S is stationary. One may show that the
Peierls bracket on S depends only on A;B on S and not
on their extensions to H .

The Peierls bracket is defined by considering the ef-
fect on one gauge-invariant function (say, B) when the
action is deformed by a term proportional to another
such function (A). One defines the advanced (DCA B)
and retarded (D�A B) effects of A on B by comparing the
original system with a new system given by the action
S� D SC �A, but associated with the same space of his-
tories H . Here � is a real parameter which will soon be
taken to be infinitesimal, and the new action is associ-
ated with a new space S� of deformed solutions.

Under retarded (advanced) boundary conditions for
which the solutions s 2 S and s� 2 S� coincide in the
past (future) of the support of A, the quantity B0 D B.s/
computed using the undeformed solution s will in gen-
eral differ from B˙� D B.s�/ computed using s� and
retarded .�/ or advanced .C/ boundary conditions (see
Fig. 19.4). For small epsilon, the difference between
these quantities defines the retarded (advanced) effect
D�A B (DCA B) of A on B through

D˙A BD lim
�!0

1

�
.B˙� �B0/ ; (19.83)

which is a function of the unperturbed solution s. Sim-
ilarly, one defines D˙B A by reversing the roles of A
and B above. Since A;B are gauge invariant, D˙B A is
a well-defined (and again gauge-invariant) function on
the space S of solutions as long as both A and B are first-
differentiable on H . This requirement may be subtle if

J = εA

Bε
– = B(sε)

Fig. 19.4 An illustration of the definition of B�� . A source
term J D �A is added to the action and the gauge-invariant
function B is calculated for the deformed solution s� sub-
ject to the boundary conditions that s and s� coincide in the
far past. Dashed lines indicate the boundary of the causal
future of J. Only functions B which have support in this
region can have B.s�/¤ B.s/. For visual clarity we have
chosen our gauge-invariant function A and B to have com-
pact support, although this is not required
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the spacetime supports of A and B extend into the far
past and future, but is straightforward for objects like
Tij

bndy.x/, ˚bndy.x/ that are well localized in time.
The Peierls bracket [19.44] is then defined to be the

difference of the advanced and retarded effects

fA;Bg DDCA B�D�A B : (19.84)

As shown in [19.44], this operation agrees with the
Poisson bracket (suitably generalized to allow A;B at
unequal times). This generalizes the familiar result that
the commutator function for a free scalar field is given
by the difference between the advanced and retarded
Green’s functions. In fact, it is enlightening to write the
Peierls bracket more generally in terms of such Green’s
functions. To do so, let us briefly introduce the nota-
tion �I for a complete set of bulk fields (including the
components of the bulk metric) and the associated ad-
vanced and retarded Green’s functions G˙IJ .x; x

0/. Note
that we have

DCA BD
Z

dx dx0
ıB

ı˚ I.x/
GCIJ .x; x

0/
ıA

ı˚ J.x0/

D

Z
dx dx0

ıB

ı� j.x0/
G�JI .x

0; x/
ıA

ı� j.x/

D D�B A ;

(19.85)

where we have used the identity GCIJ .x; x
0/D G�JI .x

0; x/.
Thus, the Peierls bracket may also be written in the
manifestly antisymmetric form

fA;Bg DD�B A�D�A BD DCA B�DCB A : (19.86)

The expressions (19.85) in terms of G˙IJ .x; x
0/ are also

useful in order to verify that the Peierls bracket de-
fines a Lie–Poisson algebra. In particular, the derivation
property fA;BCg D fA;BgCCfA;CgB follows immedi-
ately from the Leibnitz rule for functional derivatives.
The Jacobi identity also follows by a straightforward
calculation, making use of the fact that functional
derivatives of the action commute (see, e.g., [19.45,
46]). If one desires, one may use related Green’s func-
tion techniques to extend the Peierls bracket to a Lie
algebra of gauge-dependent quantities [19.47].

19.3.2 Main Argument

We wish to show that the charges QŒ�� generate the
appropriate asymptotic symmetry for any asymptotic

Killing field � . Since this is true by definition for any
Hamiltonian charge HŒ��, it will then follow that QŒ���
HŒ�� is constant over the space of solutions S. We first
address the case where � is compatible with˝ and then
proceed to the more general case where O� acts only as
a conformal Killing field on the boundary.

Showing that QŒ�� generates diffeomorphisms
along � amounts to proving a certain version of
Noether’s theorem. Recall that the proof of Noether’s
theorem involves examining the change in the action
under a spacetime-dependent generalization of the de-
sired symmetry. The structure of our argument below is
similar, where we consider both the action of a given
asymptotic symmetry � and the spacetime-dependent
generalization f � defined by choosing an appropriate
scalar function f on M. It turns out to be useful to
choose f on M (with restriction Of to @M) such that:

� f D 0 in the far past and f D 1 in the far future.
� Of D 0 to the past of some Cauchy surface C0 of @M,

and Of D 1 to the future of some Cauchy surface C1

of @M.

Suppose now that � is an asymptotic symmetry
compatible with ˝. Then the bulk and boundary fields
transform as

ı� D £�� ; ıg�� D £�g�� ;

ı�
.0/
ij D £

O�
�
.0/
ij D 0 ; ı�.0/ D £

O�
�.0/ D 0 :

(19.87)

The key step of the argument is to construct a new
transformation �f ;� on the space of fields such that the
associated first-order change �f ;�S in the action gener-
ates the asymptotic symmetry �� . We will first show
that the above property turns out to hold for

�f ;� WD .£f� � f £�/ ; (19.88)

and then verify that �f ;�SD�QŒ��. The form of �f ;�S
is essentially that suggested in [19.48] using Hamilton–
Jacobi methods, so our argument will also connect QŒ��
with [19.48].

An important property of (19.88) is that the changes
�f ;�g�� and �f ;�� are algebraic in � and g�� ; i. e.,
we need not take spacetime derivatives of g�� ; � to
compute the action of �f ;� . Furthermore, �f ;�� and
�f ;�g�� are both proportional to raf , and so vanish in
both the far future and the far past. This guarantees that
�f ;�S is a differentiable function on H . In particular,
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solutions to the equations of motion resulting from the
deformed action SC��f ;�S are indeed stationary points
of SC ��f ;�S under all variations which preserve the
conditions and vanish in the far future and past.

It is important to note that the quantity �f ;�S is
gauge-invariant when the equations of motion hold.
This is easy to see since by definition on S all variations
of S become pure boundary terms. Boundary terms in
the far past and future vanish due to the observations
above, and since � .0/ij ; �.0/ are fixed by boundary con-
ditions the boundary terms on @M depend on the bulk
fields only through the gauge-invariant quantities Tij

bndy
and ˚bndy. Thus, we may take the Peierls bracket of
�f ;�S with any other observable A.

We proceed by considering the modified action

QSŒ�; g�� �D SŒ�;g���C ��f ;�SŒ�;g�� �

D SŒ�C ��f ;��;g�� C ��f ;�g��� ;

(19.89)

where the last equality holds to first order in � (and,
in fact, defines �f ;�SŒ�;g���). Since QS is just S with
its argument shifted by ��f ;� , the stationary points s1

of QS are precisely the oppositely-shifted versions of the
stationary points s of S; i. e., we may write s1 D .1�
��f ;�/s for some s 2 S.

We should, of course, ask if s1 satisfies the de-
sired boundary conditions on @M. Since � is compatible
with ˝, the boundary fields shift in the same way
as their bulk counterparts; i. e., those of s1 have been
shifted by ���f ;� relative to those of s. Since � is an
asymptotic symmetry, its action preserves the boundary
fields. Now, the reader will note that there is a non-
trivial effect from the £f� term in �f ;� . This term is
a pure diffeomorphism, and since all boundary terms
are covariant on @M the action QS is invariant under all
diffeomorphisms compatible with ˝ (i. e., which pre-
serve the given conformal frame), even those that act
nontrivially on the boundary. So the history

s2 D .1C �£f�/s1 D .1C �f £�/s (19.90)

has

�.0/js2 D �
.0/js ; g�� js2 D g��js ; (19.91)

and again solves the equations of motion that follow
from QS.

This observation allows a straightforward compu-
tation of the advanced and retarded changes D˙

�f ;�SA

for any gauge-invariant quantity A. We first consider
the retarded change evaluated on a solution s as above.
We require a solution s�� of the perturbed equations
of motion which agrees with s in the far past. Since
the infinitesimal transformation f £� vanishes in the far
past, we may set s�� D s2 as defined (19.90) above; i. e.,
s�� D .1C �f £�/s. Thus, the retarded effect on A is just
D�
�f ;�SAD f £�A.

To compute the advanced effect, we must find a so-
lution sC� of the perturbed equations of motion which
agrees with s in the far future. Consider the history
sC� D .1� �£�/s�� D .1C .f � 1/�£�/s. Since this dif-
fers from s�� by the action of a symmetry compatible
with ˝, it again solves the desired equations of motion
(to first order in �) and induces the required boundary
fields (19.91). In addition, sC� and s agree in the far fu-
ture (where f D 1). Thus, we may use sC� to compute
the advanced change in any gauge-invariant A

DC
�f ;�SAD .f � 1/£�A : (19.92)

Finally, we arrive at the Peierls bracket

f�f ;�S;Ag D DC
�f ;�SA�D��f ;�SAD�£�A : (19.93)

As desired ��f ;�S generates a diffeomorphism along
the asymptotic symmetry � .

All that remains is to relate �f ;�S to QŒ��; this is
straightforward. Since f vanishes in the far past and fu-
ture we have

�f ;�SD
Z
M

�
ıS

ı�
�f ;��C

ıS

ıg��
�f ;�g��

�

C 1
2

Z
@M

q
� .0/Tij

bndy�f ;��
.0/
ij

C

Z
@M

q
� .0/˚bndy�f ;��

.0/ : (19.94)

However, the bulk term vanishes on solutions s 2 S, and
from (19.87) we find �f ;��

.0/ D .£
Of O� �
Of £
O�
/�.0/ D 0.

So only the term containing Tij
bndy contributes to (19.94).

To compute the remaining term note that

�f ;��
.0/
ij D .£Of O� �

Of £
O�
/�
.0/
ij D

O�i@jOf C O�j@iOf : (19.95)

Since (19.95) vanishes when f is constant, we may re-
strict the integral over @M to the region V between C0
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and C1 and use the symmetry Tij
bndy D Tji

bndy to obtain

�f ;�SD
Z
V

q
j� .0/jTij

bndy�i@jf

D

Z
C1

p
qnjT

ij
bndy�i �

Z
V

q
j� .0/jfDi

�
Tij

bndy�j

	

D�QC1 Œ�� : (19.96)

Here we used the fact that Of D 0 on C0 to drop contribu-
tions from C0 and the fact that O� is a Killing field of the
boundary metric along with (19.78) to show that the

R
V

term in the second line vanishes.
Thus, ��f ;�S agrees (on solutions) with the charge

QŒ�� evaluated on the cut C1. Since QŒ�� is conserved,
this equality also holds on any other cut of @M. Hav-
ing already shown by (19.93) that the variation �f ;�S
generates the action of the infinitesimal symmetry ��
on observables, it follows that QŒ�� generates the action
of �

fQŒ��;Ag D £�A ; (19.97)

as desired.

19.3.3 Asymptotic Symmetries
not Compatible with ˝

We now generalize the argument to asymptotic symme-
tries � that are not compatible with˝, so that O� satisfies
(19.77). The field content and boundary conditions are
the same as above. However, the nontrivial action of �
on ˝ means that there are now are additional terms
when a diffeomorphism acts on the boundary fields
�.0/; �

.0/
ij

ı£f��
.0/ D £

Of O��
.0/��

�

Of��.0/ ;

ı£f��
.0/
ij D £

Of O��
.0/
ij C 2Of�� .0/ij : (19.98)

Combining (19.77) and (19.98) we see that ı£� acts

trivially on the boundary data � .0/ij ; �.0/, as it must
since asymptotic symmetries were defined to leave the
boundary conditions invariant. Thus the histories s˙�
identified above (see, e.g., (19.90)) again satisfy the
same boundary conditions as s.

In contrast to Sect. 19.3.2 the operation £f� now
acts nontrivially on ˝ and thus on S. However, since

this is only through the conformal anomaly term a.d/ in
(19.65), £f�S depends only on the boundary metric � .0/

and is otherwise constant on H . So the equations of
motion are unchanged and the histories s˙� again solve
the equations of motion for QS.

It remains to repeat the analog of the calculation
(19.96), but here the only change is that the

R
V term

on the second line no longer vanishes. Instead, it con-
tributes a term proportional to a.d/. Since this term is
constant on the space of solutions S, it has vanishing
Peierls brackets, and we again conclude that QC1 Œ��
generates the asymptotic symmetry � . (This comment
corrects a minor error in [19.47].) Moreover, since
QCŒ�� depends on the Cauchy surface C only through
a term that is constant on S, the same result holds for
any C. Thus, even when O� is only a conformal symme-
try of the boundary, QCŒ���HŒ�� is constant over the
space S of solutions.

19.3.4 Charge Algebras and Central Charges

We saw above that our charges QŒ�� generate the desired
asymptotic symmetries via the Peierls bracket. This im-
mediately implies what is often called the representa-
tion theorem that the algebra of the charges themselves
matches that of the associated symmetries up to pos-
sible so-called central extensions. This point is really
quite simple. Consider three vector fields �1; �2; �3 re-
lated via the Lie bracket through f�1; �2g D �3: Now
examine the Jacobi identity

fQŒ�1�; fQŒ�2�;AggC fQŒ�2�; fA;QŒ�1�gg

C fA; fQŒ�1�;QŒ�2�gg D 0 ; (19.99)

which must hold for any A. Since fQŒ�i�;Bg D £�iB for
any B, we may use (19.99) to write

£�3AD £�1.£�2A/� £�2.£�1A/

D ffQŒ�2�;QŒ�1�g;Ag : (19.100)

The left-hand-side is also fQŒ�3�;Ag, so we conclude
that fQŒ�1�;QŒ�2�g generates the same transformation as
QŒ�3�. This means that they can differ only by some
K.�1; �2/, which is constant across the space of solu-
tions (i. e., it is a so-called c-number)

fQŒ�1�;QŒ�2�g DQŒf�1; �2g�CK.�1; �2/ : (19.101)

For some symmetry algebras one can show that
any such K.�i; �j/ can be removed by shifting the zero-
points of the charges QŒ��. In such cases the K.�i; �j/ are
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said to be trivial. Nontrivial K.�i; �j/ are classified by
a cohomology problem and are said to represent central
extensions of the symmetry algebra.

It is easy to show that K.�i; �j/ may be set to zero
in this way whenever there is some solution (call it s0)
which is invariant under all symmetries. The fact that
it is invariant means that fQŒ�i�;Ag.s0/D 0; i. e., the
bracket vanishes when evaluated on the particular so-
lution s0 for any �i and any A. So take AD QŒ�j�, and
set the zero-points of the charges so that QŒ��.s0/D 0.
Evaluating (19.101) on s0 then gives K.�i; �j/.s0/D
0 for all � . However, since K.�i; �j/.s0/ is constant
over the space of solutions, this means that it vanishes
identically.

For asymptotically flat spacetimes the asymptotic
symmetries generate the Poincaré group, which are
just the exact symmetries of Minkowski space. Thus
one might expect the asymptotic symmetries of .dC
1/-dimensional AlAdS spacetimes to be (perhaps a sub-
group of) SO.d; 2/ in agreement with the isometries of
AdSdC1 compatible with the boundary conditions on
@M. Since (at least when it is allowed by the boundary
conditions) empty AdSdC1 is a solution invariant under
all symmetries, one might expect that the corresponding
central extensions are trivial.

This turns out to be true for d > 2. Indeed, any
Killing field of AdSdC1 automatically satisfies our defi-
nition of an asymptotic symmetry (at least for boundary
conditions �.0/ D 0 and � .0/ij the metric on the Einstein
static universe). However, for d D 2 there are additional
asymptotic Killing fields that are not Killing fields of
empty AdS3. This is because all dD 2 boundary met-
rics � .0/ij take the form ds2 D guv dudv when written
in terms of null coordinates, making manifest that any
vector field O�u D f .u/, O�v D g.v/ is a conformal Killing
field of � .0/ij . This leads to an infinite-dimensional
asymptotic symmetry group, which is clearly much
larger than the group SO.2;2/ of isometries of AdS3.

Thus as first noted in [19.8] there can be a nontriv-
ial central extension for d D 2. In this case, one can
show that up to the above-mentioned zero-point shifts
all central extensions are parametrized by a single num-
ber c called the central charge. (When parity symmetry
is broken, there can be separate left and right central
charges cL; cR.) Reference [19.8] calculated this central
charge using Hamiltonian methods, but we will fol-
low [19.26] and work directly with the boundary stress
tensor.

Since the charges QŒ�� generate (bulk) diffeomor-
phisms along � , and since the charges themselves are

built from Tij
bndy, the entire effect is captured by comput-

ing the action of a bulk diffeomorphism � on Tij
bndy. As

noted in Sect. 19.1.5, the action of � on boundary quan-
tities generally involves both a diffeomorphism O� along
the boundary and a change of conformal frame. More-
over, as we have seen, for even d changes of conformal
frame act nontrivially on Tij

bndy. For guv D�1 a direct
calculation gives

Tbndy uu! Tbndy uu

C
�
2Tbndy uu@u�

uC �u@uTbndy uu
�

�
c

24�
@3

u�
u

Tbndy vv! Tbndy vv

C
�
2Tbndy vv@v�

vC �v@vTbndy vv
�

�
c

24�
@3

v�
v ; (19.102)

where cD 3`=2G. The term in parenthesis is the ten-
sorial part of the transformation, while the final (so-
called anomalous) term is associated with the confor-
mal anomaly a.2/ D�.c=24�/R.

It is traditional to Fourier transform the above com-
ponents of the stress tensor to write the charge algebra
as the (double) Virasoro algebra

ifLm; Lng D .m� n/LmCnC
c

12
m.m2 � 1/ımCn;0 ;

(19.103)

if NLm; NLng D .m� n/ NLmCnC
c

12
m.m2 � 1/ımCn;0 ;

(19.104)

where fLn; NLmg D 0 and

Ln D�
1

2�

Z
S1

eiunTbndy uu du ;

NLn D�
1

2�

Z
S1

eivnTbndy vv dv : (19.105)

Here we have take @M D S1�R so that the dynamics
requires both Tuu and Tvv to be periodic functions of
their arguments. We have taken this period to be 2� .

The anomalous transformation of Tij
bndy leads to in-

teresting zero-points for certain charges. Suppose, for
example, that we take Tij

bndy to vanish for the Poincaré
patch of empty AdS3 in the conformal frame where the
boundary metric is (uncompactified) Minkowski space.



Part
C

|19.4

404 Part C Spacetime Structure and Mathematics

Then, since S1�R is (locally) conformal to Minkowski
space, we can use the conformal anomaly to calculate
Tij

bndy for empty AdS3 with the Einstein static uni-
verse boundary metric. One finds that the resulting en-
ergy does not vanish. Instead, Eglobal AdS3

D�c=12`D

�1=8G so that ED 0 for the so-called M D 0 Bañados-
Teitelboim–Zanelli (BTZ) black hole [19.49, 50]. The
offset in (19.82) arises from similarly setting Tij

bndy D 0
for empty AdS5 in the conformal frame where the
boundary metric is (uncompactified) Minkowski space.

19.4 The Algebra of Boundary Observables
and the AdS/CFT Correspondence

We have shown above how the boundary stress tensor
can be used to construct charges QŒ�� associated with
any asymptotic symmetry � of a theory of asymptoti-
cally locally AdS spacetimes. The QŒ�� are conserved
(perhaps, up to c-number anomaly terms) and gener-
ate the asymptotic symmetry � under the action of
the Peierls bracket (or equivalently, under the Poisson
bracket). Therefore, QŒ�� are equivalent to the Hamil-
tonian charges that we could derive using techniques
analogous to those described in Chap. 17 for asymp-
totically flat spacetimes. Conversely, boundary stress
tensor methods can also be applied in the asymptot-
ically flat context [19.51–53]. Readers interested in
direct Hamiltonian approaches to AdS charges should
consult [19.6–8]; see also [19.5, 13, 14, 54–57] for other
covariant approaches.

We chose to use boundary stress tensor methods
for two closely related reasons. The first is that, in
addition to its role in constructing conserved charges,
the local boundary field Tij

bndy turns out to contain
useful information on its own. For example, it plays
a key role in the hydrodynamic description of large
AdS black holes known as the fluid/gravity correspon-
dence [19.58] (which may be considered a modern in-
carnation of the so-called membrane paradigm [19.59]).
The extra information in Tij

bndy appears at the AdS
boundary @M due to the fact that all multipole mo-
ments of a given field decay near @M with the same
power law; namely, the one given by the � .d/ term
in the Fefferman–Graham expansion (19.21). This is
in striking contrast with the more familiar situation
in asymptotically flat spacetimes where the large r
behavior is dominated by the monopole terms, with
subleading corrections from the dipole and higher or-
der multipoles. Indeed, while as noted above similar
boundary stress tensor techniques can be employed in
asymptotically flat spacetimes, the asymptotically flat
boundary stress tensor contains far less information.

The second reason is that both Tij
bndy and ˚bndy

play fundamental roles in the AdS/CFT correspon-

dence [19.2] (see especially [19.4]). Any treatment of
asymptotic AdS charges would be remiss without at
least mentioning this connection, and we take the op-
portunity below to give a brief introduction to AdS/CFT
from the gravity side. This turns out to be straightfor-
ward using the machinery described thus far. Indeed,
the general framework requires no further input from
either string theory or CFT and should be readily ac-
cessible to all readers of this volume. As usual, we
consider bulk gravity coupled to a single bulk scalar
and fix both � .0/ij and �.0/ as boundary conditions. We
refer to � .0/ij and �.0/ as boundary sources below. More
general boundary conditions may be thought of as be-
ing dual to CFTs with additional interactions [19.60] or
coupled to additional dynamical fields [19.27, 61, 62],
although we will not go into the details here.

The only new concept we require is that of the al-
gebra Abndy of boundary observables, which is just the
algebra generated by Tij

bndy and ˚bndy under the Peierls
bracket. Here we mean that we consider the smallest al-
gebra containing both Tij

bndy and ˚bndy, which is closed
under finite flows; i. e., under the classical analog of the
quantum operation eiABe�iA. A key property of Abndy

follows from the fact that the bulk equations of motion
are completely independent of the choice of conformal
frame ˝. Thus, up to the usual conformal anomalies,
under any change of conformal frame the boundary
observables transform only by rescaling with a particu-
lar power of e�	 known as the conformal dimension
(d for Tij

bndy, and �
C

for ˚bndy), with the boundary
sources transforming similarly with conformal weights
zero for � .0/ij and �

�

for �.0/. (In defining the confor-
mal dimension it is conventional not to count the ˙2
powers of e�	 associated with the indices on Tij

bndy
and � .0/ij .) In this sense the theory of Abndy is invari-
ant (or, perhaps better, covariant) under all changes of
boundary conformal frame. Of course we have already
shown that when the boundary observables admit a con-
formal Killing field O� , the corresponding transformation
is generated by the associated QŒ�� from (19.79). Now
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since the charges QŒ�� are built from Tij
bndy and ˚bndy

they also lie in the algebraAbndy. When O� can be chosen
to be everywhere time like, this immediately implies
thatAbndy is also closed under time evolution. This last
property can also be shown much more generally; see,
e.g., [19.63].

We now extract one final property of the alge-
bra Abndy. From the expression (19.85) in terms of
Green’s functions, it is clear that the Peierls bracket
fA;Bg of two observables vanishes on any solution s
for which A;B are outside each other’s light cones; i. e.,
when the regions on which A;B are supported cannot be
connected by any causal curve. Furthermore, as shown
in [19.64] the null energy condition implies that two
boundary points x; y can be connected by a causal curve
through the bulk only when they can also be connected
by a causal curve lying entirely in the boundary. It fol-
lows that the algebraAbndy satisfies the usual definition
of locality for a field theory on @M; namely that Peierls
brackets vanish outside the light cones defined by the
boundary metric � .0/ij .

Although we have so far worked entirely at the clas-
sical level, let us now assume that all of the above
properties persist in the quantum theory. We then have
a conformally covariant algebra of operatorsAbndy with
closed dynamics, local commutation relations on @M,
and a stress tensor Tij

bndy that generates all conformal
symmetries. In other words, we have a local CFT on @M.

This is the most basic statement of the AdS/CFT
correspondence. Any bulk AlAdS quantum gravity the-
ory in which the above classical properties continue
to hold defines a CFT through its algebra Abndy of
boundary observables. Now, we should remark that the
AdS/CFT correspondence as used in string theory goes
one step further. For certain specific bulk theories it
identifies the so-called dual CFT as a particular known
theory defined by its own Lagrangian with a definite
field content. For example, when the bulk is type IIB
string theory [19.65] asymptotic to a certain AdS5� S5

solution, the corresponding CFT is just N D 4 super-
Yang–Mills. We will not go into further details here,

although the interested reader may consult various re-
views such as [19.66–68].

On the other hand, even without having a separate
definition of the CFT, the above observations already
have dramatic implications for the bulk quantum grav-
ity theory. In particular, the statement that Abndy is
closed under time evolution runs completely counter
to one’s usual intuition regarding field theory with
a boundary. We usually think that most of the dynamical
degrees of freedom live in the bulk spacetime, with per-
haps only a small subset visible on the boundary at any
time. In particular, we expect any signal present on the
boundary at time t0 to then propagate into the bulk and
(at least for some time) to essentially disappear from
the algebra of boundary observables. Since Abndy is
closed under time evolution, it is clear that this is simply
not the case in our quantum gravity theory. The differ-
ence arises precisely from the fact that the gravitational
Hamiltonian (and more generally any QŒ��) is a pure
boundary term. This property was called boundary uni-
tarity in [19.63]. See also [19.69] for further discussion
of this point.

The reader should take care to separate boundary
unitarity from the possible claim that Abndy captures
the complete set of bulk observables. The two ideas are
logically separate, as there can, in principle, be addi-
tional bulk observables Aother as long as they do not
mix dynamically with those in Abndy. One says that
the possible values of Aother define superselection sec-
tors with respect to Abndy [19.70]. However, any such
additional observables are clearly very special. The re-
quirement that they not affect Abndy strongly suggests
that at least semi-classically such observables have to
do only with properties of spacetime hidden from the
boundary behind both past and future horizons [19.71].
In particular, any degrees of freedom that determine
whether black holes are connected by (nonreversible)
wormholes seem likely to lie in Aother. On the other
hand, in perturbation theory about empty AdS (or even
about solutions that are empty AdS in the far past) one
may show that Aother is, indeed, empty [19.63].
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20. Spacetime Singularities

Pankaj S. Joshi

We give here an overview of our basic under-
standing of and recent developments in spacetime
singularities in the Einstein theory of gravity. Sev-
eral issues related to physical significance and
implications of singularities are discussed. The na-
ture and existence of singularities are considered
which indicate the formation of super ultra-dense
regions in the universe as predicted by the general
theory of relativity. Such singularities develop dur-
ing the gravitational collapse of massive stars and
in cosmology at the origin of the universe. Possi-
ble astrophysical implications of the occurrence of
singularities in the spacetime universe are indi-
cated. We discuss in some detail the profound and
key fundamental issues that the singularities give
rise to, such as the cosmic censorship and pre-
dictability in the universe, naked singularities in
gravitational collapse and their relevance in black
hole physics today, and their astrophysical im-
plications in modern relativistic astrophysics and
cosmology.
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20.1 Space, Time and Matter

After Einstein proposed the general theory of relativity
describing the gravitational force in terms of space-
time curvatures, the proposed field equations related the
spacetime geometry to the matter content of the uni-
verse. The early solutions found for these equations
were the Schwarzschild metric and the Friedmann mod-
els. While the first represented the gravitational field
around an isolated body such as a spherically symmet-

ric star, the later solutions described the geometry of the
universe. Both these models contained a spacetime sin-
gularity where the curvatures as well as the matter and
energy densities diverged and became arbitrarily high,
and the physical description would then break down.
In the Schwarzschild solution such a singularity was
present at the center of symmetry rD 0, whereas for
the Friedmann models it was found at the epoch tD 0,
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which is the beginning of the universe and origin of
time where the scale factor for the universe vanishes
and all objects are crushed to a zero volume due to infi-
nite gravitational tidal forces.

Even though the physical problem posed by the
existence of such a strong curvature singularity was
realized immediately in these solutions, which turned
out to have several important implications for the ex-
perimental verification of the general relativity theory,
initially this phenomenon was not taken seriously. It
was generally thought that the existence of such a sin-
gularity must be a consequence of the very high degree
of symmetry imposed on the spacetime while these so-
lutions were being derived and obtained. Subsequently,
the distinction between a genuine spacetime singular-
ity and a mere coordinate singularity became clear and
it was realized that the singularity at r D 2m in the
Schwarzschild spacetime was only a coordinate singu-
larity which could be removed by a suitable coordinate
transformation. It was clear, however, that the genuine
curvature singularity at r D 0 cannot be removed by
any coordinate transformations. The hope was then that
when more general solutions to the field equations are
considered with a lesser degree of symmetry, such sin-
gularities will be avoided.

This issue was sorted out when a detailed study
of the structure of a general spacetime and the associ-
ated problem of singularities was taken up by Hawking,
Penrose, and Geroch (see, for example, [20.1] and
references therein). It was shown by this work that
a spacetime will admit singularities within a rather
general framework provided that it satisfies certain rea-
sonable physical assumptions such as the positivity of
energy, a suitable causality assumption and a condi-
tion implying strong gravitational fields, such as the
existence of trapped surfaces. It thus followed that the
spacetime singularities form a general feature of the rel-
ativity theory. In fact, these considerations ensure the
existence of singularities in other theories of gravity,
which are also based on a spacetime manifold frame-
work and satisfy the general conditions such as those
stated above.

Therefore, the scenario that emerges is the follow-
ing: essentially for all classical spacetime theories of
gravitation, the occurrence of singularities forms an
inevitable and integral part of the description of the

physical reality. In the vicinity of such a singularity, typ-
ically the energy densities, spacetime curvatures, and
all other physical quantities would blow up, thus indi-
cating the occurrence of super ultra-dense regions in the
universe. The behavior of such regions may not be gov-
erned by the classical theory itself, which may break
down having predicted the existence of the singular-
ities, and a quantum gravitation theory would be the
most likely description of the phenomena created by
such singularities.

Further to the general relativity theory in 1915,
gravitation physics was a relatively quiet field with
few developments until about the 1950s. However, the
1960s saw the emergence of new observations in high
energy astrophysics, such as quasars and high energy
phenomena at the center of galaxies such as extremely
energetic jets. These observations, together with im-
portant theoretical developments such as studying the
global structure of spacetimes and singularities, led to
important results in black hole physics and relativistic
astrophysics and cosmology.

Our purpose here is to review some of these
rather interesting as well as intriguing developments,
in a somewhat pedagogic and elementary fashion to
provide a broad perspective. Specifically, we would
like to highlight here several recent issues and chal-
lenges that have emerged related to spacetime singu-
larities, which appear to have a considerable physical
significance and may have interesting astrophysical im-
plications. We take up and consider here important
topics such as what is meant by a singular spacetime
and specify the notion of a singularity. It turns out
that it is the notion of geodesic incompleteness that
characterizes a singularity in an effective manner for
a spacetime and enables their existence to be proved
by means of certain relatively general theorems. We
highlight here several recent developments which deal
with certain exciting current issues related to space-
time singularities on which research in gravitation and
cosmology is being carried out today. These include
the work on final end states of gravitational collapse,
cosmic censorship, and black holes and naked singu-
larities. Related major cosmic conundrums such as the
issue of predictability in the universe are discussed and
observational implications of naked singularities are
indicated.
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20.2 What Is a Singularity?

In the Einstein theory of gravitation, the universe is
modeled as a spacetime with a mathematical structure
of a four-dimensional differentiable manifold. In that
case, locally the spacetime is always flat in a sufficiently
small region around any point, but on a larger scale this
need not be the case and it can have a rich and var-
ied structure. An example of a differentiable manifold is
a sphere, which is flat enough in the vicinity of any sin-
gle point on its surface, but has a global curvature. For
a more detailed discussion on spacetime manifolds and
their key role in general relativity, we refer to [20.2].

When should we say that a spacetime uni-
verse .M; g/, which is a differentiable manifold with
a Lorentzian metric, has become singular? What we
need is a specification and a specific criterion for the
existence of a singularity for any given universe model
in general relativity.

As stated above, several examples of singular be-
havior in spacetime models of general relativity are
known. Important exact solutions such as the Fried-
mann–Robertson–Walker (FRW) cosmological mod-
els and Schwarzschild spacetime contain a singularity
where the energy density or curvatures diverge strongly
and the usual description of the spacetime breaks down.
In the Schwarzschild spacetime there is an essen-
tial curvature singularity at rD 0 in that along any
nonspace-like trajectory falling into the singularity, the
Kretschmann scalar ˛ D RijklRijkl!1. Also, all future
directed nonspace-like geodesics which enter the event
horizon at rD 2m must fall into this curvature singular-
ity within a finite value of the proper time, or finite value
of the affine parameter, so all such curves are future
geodesically incomplete. Similarly, for FRW models, if
�C3p > 0 at all times, where � is the total energy den-
sity and p the pressure, there is a singularity at tD 0
which could be identified as the origin of the universe.
Then along all the past directed trajectories meeting
this singularity, �!1 and the curvature scalar RD
RijRij!1. Again, all the past directed nonspace-like
geodesics are incomplete. This essential singularity at
tD 0 cannot be transformed away by any coordinate
transformations. Similar behavior was generalized to
the class of spatially homogeneous cosmological mod-
els by Ellis and King [20.3] which satisfy the positivity
of energy conditions.

Such singularities, where the curvature scalars and
densities diverge imply a genuine spacetime pathology
where the usual laws of physics break down. The ex-
istence of the geodesic incompleteness in these space-

times implies, for example, that a time-like observer
suddenly disappears from the spacetime after a finite
amount of proper time. Of course, singular behavior
can also occur without bad behavior of curvature. For
example, consider Minkowski spacetime with a point
deleted. Then there will be time-like geodesics running
into the hole which will be future incomplete. Clearly,
this is an artificial situation one would like to rule out
by requiring that the spacetime is inextendible, that is,
it cannot be isometrically embedded into another larger
spacetime as a proper subset. However, one could give
a nontrivial example of singular behavior where a coni-
cal singularity exists (see, e.g., [20.4]). Here spacetime
is inextendible but curvature components do not diverge
near the singularity, as in a Weyl-type solution. The
metric is given by

ds2 D�dt2C dr2C r2.d2C sin2  d�2/ ;

with coordinates given by �1 < t <1; 0< r <
1; 0<  < � with 0< � < a, with � D 0 and � D a
identified and a¤ 2� . There is a conical singularity at
rD 0 through which the spacetime cannot be extended
and the singular boundary is related to the time-like
two-plane rD 0 of Minkowski spacetime.

An important question, then, is whether such singu-
larities develop even when a general model is consid-
ered, and if so under what conditions. To answer this,
it is first necessary to characterize precisely what one
means by a spacetime singularity for a general space-
time. Then it is seen that singularities must exist for
a very wide class of spacetimes under a reasonable gen-
eral set of conditions. Such singularities may develop as
the end state of the gravitational collapse of a massive
star, or in cosmological situations such as the origin of
the universe.

The first point to note here is by very definition, the
metric tensor must be well-defined at all regular points
of the spacetime. This is no longer true at a spacetime
singularity such as those discussed above and a singu-
larity cannot be regarded as a regular point of spacetime
but is a boundary point attached to M. This causes
difficulties when one tries to characterize a singular-
ity by the criterion that the curvatures must blow up
near the singularity. The trouble is, since the singu-
larity is not part of the spacetime, it is not possible
to define its neighborhood in the usual sense to dis-
cuss the behavior of curvature quantities in that region.
One may try to characterize a singularity in terms of
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the divergence of components of the Riemann curva-
ture tensor along nonspace-like trajectories. Then the
trouble is that the behavior of such components will,
in general, change with the frames used, so this is not
of much help. One can try the curvature scalars or the
scalar polynomials in the metric and the Riemann tensor
and require them to achieve unboundedly large values.
This is encountered in Schwarzschild and Friedmann
models. However, it is possible that such a divergence
occurs only at infinity for a given nonspace-like curve.
In general, it looks reasonable to demand that some
sort of curvature divergence must take place along
the nonspace-like curves which encounter a singular-
ity. However, a general characterization of singularity
in terms of the curvature divergence runs into various
difficulties.

Considering these and similar situations, the oc-
currence of nonspace-like geodesic incompleteness is
generally agreed upon as the criterion for the existence
of a singularity for a spacetime. This may not cover all

types of singular behaviors possible, but it is clear that
if a spacetime manifold contains incomplete nonspace-
like geodesics, there is a definite singular behavior
present, as a time-like observer or a photon suddenly
disappears from the spacetime after a finite amount
of proper time or after a finite value of the affine pa-
rameter. The singularity theorems which result from an
analysis of gravitational focusing and global properties
of a spacetime prove this incompleteness property for
a wide class of spacetimes under a set of rather general
conditions.

Physically, a singularity in any physics theory typ-
ically means that the theory breaks down either in the
vicinity or at the singularity. This means that a broader
and more comprehensive theory is needed, demanding
a revision of the given theory. Similar reasoning apply
to spacetime singularities, which may be taken to im-
ply that a quantum gravity description is warranted in
those regions of the universe, rather than using merely
a classical framework.

20.3 Gravitational Focusing

Simple model solutions such as Schwarzschild and
FRW universes give very useful indications as to what
is possible in general relativity, as opposed to Newto-
nian gravity. In particular, these solutions are important
indicators on the existence and nature of the spacetime
singularities.

The key to occurrence of singularities in these solu-
tions is really the gravitational focusing that the matter
fields and spacetime curvature cause in the congruences
of null and time-like curves, which represent the light
paths and the material particle trajectories in any given
spacetime universe. It would then be important to know
how general and generic such a feature and property is
for a general spacetime.

The matter fields with positive energy density which
create the curvature in spacetime affect the causality re-
lations in a spacetime and create focusing in families of
nonspace-like trajectories. The phenomenon that occurs
here is that matter focuses the nonspace-like geodesics
of the spacetime into pairs of focal points or conju-
gate points. The property of conjugate points is that
if p; q are two conjugate points along a nonspace-like
geodesic, then p and q must be time-like related. Now,
there are three-dimensional null hypersurfaces such as
the boundary of the future of an event such that no two
points of such a hypersurface can be joined by a time-
like curve. Thus, the null geodesic generators of such

surfaces cannot contain conjugate points and they must
leave the hypersurface before encountering any conju-
gate point. This puts strong limits on such null surfaces
and the singularity theorems result from an analysis of
such limits.

If we consider a congruence of time-like geodesics
in the spacetime, this is a family of curves and through
each event there passes precisely one time-like geodesic
trajectory. Choosing the curves to be smooth, this de-
fines a smooth time-like vector field on the spacetime.
The rate of change of volume expansion for a given con-
gruence of time-like geodesics can be written as

d

d

D�RlkVlVk � 1

3
2 � 2�2C 2!2 ;

where, for a given congruence of time-like (or null)
geodesics, the quantities  , � , and ! are expansion,
shear, and rotation tensors, respectively. The above
equation is called the Raychaudhuri equation [20.5],
which describes the rate of change of the volume expan-
sion as one moves along the time-like geodesic curves
in the congruence.

We note that the second and third term on the right-
hand side involving  and � are always positive. For the
term RijViVj, by Einstein equations this can be written
as

RijV
iVj D 8�



TijV

iVjC 1
2 T
�
:
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The term TijViVj above represents the energy density
measured by a time-like observer with unit tangent Vi,
which is the four-velocity of the observer. For all rea-
sonable classical physical fields this energy density is
generally taken as nonnegative and we may assume for
all time-like vectors Vi

TijV
iVj � 0 :

Such an assumption is called the weak energy con-
dition. It is also considered reasonable that the matter
stresses will not be so large as to make the right-hand
side of the equation above negative. This will be sat-
isfied when the following is satisfied: TijViVj � � 1

2 T .
Such an assumption is called the strong energy con-
dition and it implies that for all time-like vectors Vi,
RijViVj � 0. By continuity it can be argued that the
same will then hold for all null vectors as well. Both
the strong and weak energy conditions will be valid for
well-known forms of matter such as the perfect fluid
provided that the energy density � is nonnegative and
there are no large negative pressures which are bigger
or comparable to �.

With the strong energy condition, the Raychaudhuri
equation implies that the effect of matter on spacetime
curvature causes a focusing effect in the congruence

of time-like geodesics due to gravitational attraction.
This causes neighboring geodesics in the congruence
to cross each other to give rise to caustics or conju-
gate points. Such a separation between nearby time-
like geodesics is governed by the geodesic deviation
equation

D2Zj D�Rj
kilV

kZiVl ;

where Zi is the separation vector between nearby
geodesics of the congruence. Solutions of the above
equation are called the Jacobi fields along a given time-
like geodesic.

Suppose now that � is a time-like geodesic, then two
points p and q along � are called conjugate points if
there exists a Jacobi field along � which is not identi-
cally zero but vanishes at p and q. From the Raychaud-
huri equation given above it is clear that the occurrence
of conjugate points along a time-like geodesic is closely
related to the behavior of the expansion parameter 
of the congruence. In fact, it can be shown that the
necessary and sufficient condition for a point q to be
conjugate to p is that for the congruence of time-like
geodesics emerging from p, we must have  !�1 at q
(see, for example, [20.1]). The conjugate points along
null geodesics are also similarly defined.

20.4 Geodesic Incompleteness

It was widely believed that for more general solutions of
the Einstein equations which incorporate several other
physical features and are not necessarily symmetric, the
existence of singularities would be avoided (see, e.g.,
[20.6]; and for recent development and reviews we refer
to [20.7] and [20.8]). Further investigations, however,
showed that singularities in the form of geodesic in-
completeness do exist for general spacetimes. These
results used the gravitational focusing considerations
mentioned above and global properties of a general
spacetime.

The behavior of the expansion parameter  is gov-
erned by the Raychaudhuri equation as pointed out
above. Consider, for example, the situation when the
spacetime satisfies the strong energy condition and the
congruence of time-like geodesics is hypersurface or-
thogonal. Then !ij D 0 and the corresponding term
!2 vanishes. Further, the expression for the covariant
derivative of !ij implies that it must vanish for all fu-
ture times as well. It follows that we must then have
d=d
 	�.2=3/, which means that the volume ex-
pansion parameter must be necessarily decreasing along

the time-like geodesics. If 0 denotes the initial ex-
pansion then the above can be integrated as �1 �

�1
0 C 
=3. It is clear from this that if the congruence

is initially converging and 0 is negative, then  !�1
within a proper time distance 
 	 3= j 0 j.

It then follows that if M is a spacetime satisfy-
ing the strong energy condition and S is a space-like
hypersurface with  < 0 at p 2 S, then if � is a time-
like geodesic of the congruence orthogonal to S passing
through p there exists a point q conjugate to S along �
within a proper time distance 
 	 3= j  j. This is pro-
vided that � can be extended to that value of the proper
time.

The basic implication of the above results is that
once a convergence occurs in a congruence of time-
like geodesics, the conjugate points or the caustics
must develop in the spacetime. These can be inter-
preted as the singularities of the congruence. Such
singularities could occur even in Minkowski space-
time and similar other perfectly regular spacetimes.
However, when combined with certain causal structure
properties of spacetime, the results above imply the
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existence of singularities in the form of geodesic incom-
pleteness. One could similarly discuss the gravitational
focusing effect for the congruence of null geodesics
or for null geodesics orthogonal to a space-like two-
surface.

There are several singularity theorems available
that establish nonspace-like geodesic incompleteness
for a spacetime under different sets of conditions and
are applicable to different physical situations. How-
ever, the most general of these is the Hawking–Penrose
theorem [20.9], which is applicable in both the col-
lapse situation and cosmological scenario. The main
idea of the proof of such a theorem is the following.
Using the causal structure analysis it is shown that there
must be maximal length time-like curves between cer-
tain pairs of events in the spacetime. Now, a causal
geodesic which is both future and past complete must
contain pairs of conjugate points if M satisfies an en-
ergy condition. This is then used to draw the necessary
contradiction to show that M must be nonspace-like
geodesically incomplete.

Theorem 20.1
A spacetime .M; g/ cannot be time-like and null
geodesically complete if the following are satisfied:

1. RijKiKj � 0 for all nonspace-like vectors Ki.
2. The generic condition is satisfied, that is, every

nonspace-like geodesic contains a point at which
KŒiRj
elŒmKn
KeKl ¤ 0, where K is the tangent to the
nonspace-like geodesic.

3. The chronology condition holds on M; that is, there
are no closed time-like curves in the spacetime.

4. There exists in M either a compact achronal set
(i. e., a set no two points of which are time-like
related) without edge or a closed trapped surface,
or a point p such that for all past directed null
geodesics from p, eventually  must be negative.

The main idea of the proof is the following. One
shows that the following cannot hold simultaneously:

a) Every inextendible nonspace-like geodesic contains
pairs of conjugate points.

b) The chronology condition holds on M.
c) There exists an achronal set S in M such that EC.S/

or E�.S/ is compact.

In the above, EC and E� indicate the future and
past horismos for the set S (for further definitions
and details we refer to Hawking and Ellis [20.1], or
Joshi [20.10]).

We note that while geodesic incompleteness, as
a definition of spacetime singularities, allows various
theorems to be proved on the existence of singularities,
it does not capture all possible singular behaviors for
a spacetime. It also does not imply that the singularity
predicted is necessarily a physically relevant powerful
curvature singularity. It does, of course, include many
cases where that will be the case. Below, we discuss
such a scenario and the criterion for the singularity to
be physically relevant and important.

20.5 Strong Curvature Singularities

As we saw above, the existence of an incomplete non-
space-like geodesic or the existence of an inextendible
nonspace-like curve which has a finite length as mea-
sured by a generalized affine parameter, implies the
existence of a spacetime singularity. The generalized
affine length for such a curve is defined as [20.1]
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ds ;

which is a finite quantity. The Xis are the components
of the tangent to the curve in a parallel propagated
tetrad frame along the curve. Each such incomplete
curve defines a boundary point of the spacetime which
is a singularity.

The important point now is, in order to call this
a genuine physical singularity, one would typically
like to associate such a singularity with unboundedly
growing spacetime curvatures. If all the curvature com-
ponents and the scalar polynomials formed out of the
metric and the Riemann curvature tensor remained fi-
nite and well-behaved in the limit of approach to the
singularity along an incomplete nonspace-like curve,
it may be possible to remove such a singularity by
extending the spacetime when the differentiability re-
quirements are lowered [20.11].

There are several ways in which such a requirement
can be formalized. For example, a parallely propagated
curvature singularity is the one which is the end point
of at least one nonspace-like curve on which the com-
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ponents of the Riemann curvature tensor are unbounded
in a parallely propagated frame. On the other hand,
a scalar polynomial singularity is the one for which
a scalar polynomial in the metric and the Riemann ten-
sor takes an unboundedly large value along at least one
nonspace-like curve which has a singular end point.
This includes cases such as Schwarzschild singularity,
where the Kretschmann scalar RijklRijkl blows up in the
limit as r! 0.

What is the guarantee that such curvature singulari-
ties will at all occur in general relativity? The answer
to this question for the case of parallely propagated
curvature singularities is provided by a theorem of
Clarke [20.12], which establishes that for a globally hy-
perbolic spacetime M which is C0� inextendible, when
the Riemann tensor is not very specialized in the sense
of not being type-D and electrovac at the singular end
point, then the singularity must be a parallely propa-
gated curvature singularity.

Curvature singularities to be characterized below,
also arise for a wide range of spacetimes involving
gravitational collapse. This physically relevant class of
singularities, called the strong curvature singularities
was defined and analyzed by Tipler [20.13], Tipler
et al. [20.14], and Clarke and Królak [20.15]. The idea
here is to define a physically all embracing strong cur-
vature singularity in such a way so that all the objects
falling within the singularity are destroyed and crushed
to zero volume by the infinite gravitational tidal forces.
The extension of spacetime becomes meaningless for
such a strong singularity which destroys to zero size
all the objects terminating at the singularity. From
this point of view, the strength of singularity may be
considered crucial to the issue of classically extending
the spacetime, thus avoiding the singularity. This is
because for a strong curvature singularity defined in the
above sense, no continuous extension of the spacetime
may be possible.

20.6 Can We Avoid Spacetime Singularities?

Given the scenario above, it is now clear that space-
time singularities are an inevitable feature for most of
the physically reasonable models of universe and grav-
itational systems within the framework of the Einstein
theory of gravity. It is also seen that near such a space-
time singularity, the classical description that predicted
it must itself break down. The existence of singulari-
ties in most of the classical theories of gravity, under
reasonable physical conditions, imply that in a sense
the Einstein gravity itself predicts its own limitations,
namely that it predicts regions of the universe where
it must breakdown and a new and revised physical de-
scription must take over.

As the curvatures and all other physical quantities
must diverge near such a singularity, the quantum ef-
fects associated with gravity are very likely to dominate
such a regime. It is possible that these may resolve the
classical singularity itself. However, we currently do
not have any viable and consistent quantum theory of
gravity despite serious attempts. Therefore, the issue
of resolution of singularities as produced by classical
gravity remains open.

The other possibility is, of course, that some of the
assumptions of the singularity theorems may be vio-
lated so as to avoid the singularity occurrence. Even
when these are fairly general, one could inquire whether

some of them could actually breakdown and do not
hold in physically realistic models. This could save us
from the occurrence of singularities at the classical level
itself. Such possibilities mean a possible violation of
causality in the spacetime, or no trapped surfaces oc-
curring in the dynamical evolution of the universe, or
possible violation of energy conditions.

The singularity theorem stated above and also other
singularity theorems contain the assumption of causal-
ity or strong causality, or some other suitable causality
condition. Then the alternative is that causality may
be violated rather than a singularity occurring in the
spacetime. So the implication of the singularity theo-
rem stated above is that when there is enough matter
present in the universe, either the causality is violated
or a boundary point must exist for the spacetime. In
the cosmological case, such stress-energy density will
be provided by microwave background radiation, or
in the case of stellar collapse trapped surfaces may
form [20.16], providing a condition leading to the for-
mation of a singularity.

The Einstein equations by themselves do not rule
out causality violating configurations which really de-
pend on the global topology of the spacetime. Hence
the question of causality violations versus spacetime
singularity needs a careful examination as to whether
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causality violation could offer an alternative to sin-
gularity formation. Similarly, it must also be inquired
whether the violation of energy conditions or nonoc-

currence of trapped surfaces may be realized so as to
achieve singularity avoidance in a spacetime. We briefly
discuss some of these points below.

20.7 Causality Violations

The causal structure in a spacetime specifies what
events can be related to each other by means of time-
like or light signals. A typical causality violation would
mean that an event could be in its own past, which is
contrary to our normal understanding of time, and that
of past and future. This has been examined in consid-
erable detail in general relativity, and that no causality
violation takes place in the spacetime is one of the
important assumptions used by singularity theorems.
However, general relativity allows for situations where
causality violation is permitted in a spacetime. The
Gödel solution [20.17] allows the existence of a closed
time-like curve through every point of the spacetime.

One would, of course, like to rule out if possible
causality violations on physical grounds, treating them
as very pathological behavior in that in such a case one
would be able to enter one’s own past. However, as they
are allowed in principle in general relativity, so one
must rule them out only by an additional assumption.
The question then is, can one avoid spacetime singular-
ities if one allows for the violation of causality? This
has been considered by researchers and it was seen that
the causality violation in its own right creates spacetime
singularities again under certain reasonable conditions.
Thus, this path of avoiding spacetime singularities does
not appear to be very promising.

Specifically, the question of finite causality viola-
tions in asymptotically flat spacetime was examined by
Tipler [20.13, 18, 19]. This showed that the causal-
ity violation in the form of closed time-like lines is
necessarily accompanied by incomplete null geodesics,
provided the strong energy condition is satisfied for all
null vectors and the generic condition is satisfied. It was
assumed that the energy density � has a positive mini-
mum along past directed null geodesics.

There is, in fact, a hierarchy of causality condi-
tions available for a spacetime. It may be causal in
the sense of having no closed nonspace-like curves.
However, given an event, future directed nonspace-like
curves from the same event could return to its arbi-
trarily close neighborhood in the spacetime. This is
as bad as a causality violation itself. The higher-order
causality conditions such as strong causality and sta-

ble causality rule out such behavior. Of the higher-order
causality conditions, much physical importance is at-
tached to stable causality, which ensures that if M is
causal, its causality should not be disturbed with small
perturbations in the metric tensor. Presumably, gen-
eral relativity is a classical approximation to some, as
yet unknown, quantum theory of gravity in which the
value of the metric at a point will not be exactly known
and small fluctuations in the value must be taken into
account.

Results on causality violations and higher-order
causality violations with reference to occurrence of sin-
gularities were obtained by Joshi [20.20], and Joshi and
Saraykar [20.21], who showed that the causality viola-
tions must be accompanied by singularities even when
the spacetime is causal but the higher-order causality
conditions are violated. Thus we know that for a causal
spacetime, the violations of higher-order causality con-
ditions give rise to spacetime singularities. Another
question examined was that of the measurement of
causality violating sets when such a violation occurs. It
turns out that in many cases, the causality violating sets
in a spacetime will have a zero measure, and thus such
a causality violation may not be taken very seriously.
Also, Clarke and Joshi [20.22] studied global causality
violation for a reflecting spacetime and the theorems of
Kriele [20.23] improved some of the conditions under
which the results on chronology violations implying the
singularities have been obtained. Also, global causality
violating spacetimes were studied by Clarke and de Fe-
lice [20.24]. What we discussed above implies that if
the causality of M breaks down with the slightest per-
turbation of the metric, then this must be accompanied
by the occurrence of spacetime singularities.

As a whole, the above results imply that violat-
ing either causality or any of the higher-order causality
conditions may not be considered a good alternative
to the occurrence of spacetime singularities. There are
also philosophical problems connected with the issue
of causality violation, such as entering one’s own past.
However, even if one allowed for the causality viola-
tions, the above results show that these are necessarily
accompanied by spacetime singularities again.
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20.8 Energy Conditions and Trapped Surfaces
Another possibility to avoid singularities is a possible
violation of energy conditions. This is another of the
assumptions in the proofs for singularity theorems. In
fact, this possibility has also been explored in some de-
tail and it turns out that as long as there is no gross
or very powerful violation of energy conditions over
global regions in the universe, this would not help avoid
singularities either.

For example, the energy condition could be violated
locally at certain spacetime points, or in certain regions
of spacetimes due to peculiar physics there. However,
as long as it holds on an average, in the sense that the
stress-energy density is positive in an integrated sense,
then spacetime singularities still occur (for a discussion
and references, see, e.g., [20.10]).

On a global scale, there is evidence now that the uni-
verse may be dominated by a dark energy field. There
is no clarity as to what exactly such a field would be
and what would be its origin. It could be due to scalar
fields or ghost fields floating in the universe, or due to
a nonzero positive cosmological constant present in the
Einstein equations. In such a case, the weak or strong
energy conditions may be violated depending on the
nature of these exotic fields. However, in the earlier uni-
verse of a matter dominated phase, the positive matter
fields would again dominate, thus respecting the en-
ergy conditions even if they are violated at the present
epoch.

Again, the above discussion is in the context of
a cosmological scenario. When it comes to the gravi-
tational collapse of massive stars, clearly their density
and overall energy content are dominated by the or-
dinary matter fields with which we are much more

familiar. Such matter certainly respects the energy con-
ditions modulo with some minor violations if at all any.
Thus for gravitational collapse of massive stars, one
would expect the energy conditions to hold and the con-
clusions on singularity occurrence stated above would
apply.

Yet another possibility to avoid singularity is to
avoid trapped surfaces occurring in the spacetime. In-
deed, such a route can give rise to geodesically com-
plete spacetimes, as was shown by Senovilla [20.25].
As for the cosmological scenario, basically this means
and amounts to the condition that the matter energy
densities must fall off sufficiently rapidly on any given
space-like surface, and in an averaged sense, in order to
avoid the cosmological trapped surfaces. Whether such
a condition is realizable in the universe would have to
be checked through observational tests. A sufficiently
uniform energy density, such as, say, the microwave
background radiation could in turn cause cosmic trap-
ping. As for massive stars, the densities are, of course,
very high indeed and would only grow, for example, in
a gravitational collapse. Therefore, in collapse scenar-
ios, the trapped surfaces are unlikely to be avoided.

Further to the above considerations, if we accept
on the whole that spacetime singularities do occur un-
der fairly general conditions in the framework of the
Einstein theory of gravity, or for classical gravity in
general, then we must consider physical implications
and consequences of such a scenario for physics and
cosmology. As we noted earlier, two main arenas of
physical relevance where spacetime singularities will be
of interest are the cosmological situation and the gravi-
tational collapse scenarios.

20.9 Fundamental Implications and Challenges

The existence of spacetime singularities in Einstein
gravity and other classical theories of gravitation poses
intriguing challenges and fundamental questions in
physics as well as cosmology. These would have far-
reaching consequences for our current understanding of
the universe and how we try to model it further, as we
shall try to bring out in rest of this article.

The inevitable existence of singularities for wide
classes of rather general models of spacetimes means
that the classical gravity evolutions necessarily give rise
to regions in the spacetime universe where the densities

and spacetime curvatures would really grow arbitrarily
high without any bounds, and where all other relevant
physical parameters would also diverge.

To take the first physical scenario, such a phe-
nomenon in cosmology would correspond to a singu-
larity that will represent the origin of the universe.
Secondly, whenever locally a large quantity of matter
and energy collapses under the force of its own grav-
ity, a singularity will occur. This later situation will be
effectively realized in the gravitational collapse of mas-
sive stars in the universe, which collapse and shrink
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catastrophically under their self-gravity, when the star
has exhausted its nuclear fuel within that earlier sup-
plied the internal pressures to halt the infall due to
gravity.

Over the past decades, once the existence of space-
time singularities was accepted, there have been major
efforts to understand the physics in the vicinity of the
same. In the cosmological case, this has given rise to
an entire physics of the early universe, which depicts
the few initial moments immediately after the big bang
singularity from which the universe is supposed to have
emerged. The complexities in this case have been enor-
mous, both physics-wise, and conceptually. The physics
complexities arise because when trying to understand
physics close to the hot big bang singularity, we are
dealing with the highest energy scales, never seen ear-
lier in any laboratory physics experiments. Our particle
physics theories are then to be stretched to the extreme
where there is no definite or unique framework avail-
able to deal with these phenomena. Understanding early
universe physics has, of course, very big consequences
in that it governs the most important physical phenom-
ena such as the later galaxy formation in the universe
and other issues related to the large-scale structure of
the universe.

As for the conceptual issues, simultaneous big bang
singularity gives rise to a host of problems and puzzles.
One of these is the horizon problem which arises due to
the causal structure of this spacetime. Distinct regions
of the universe simply cannot interact with each other
due to the cosmic horizons and it becomes extremely
difficult to explain the average overall current homo-
geneity of the universe on a large enough scale. There
are also other issues such as why the current universe
looks so flat, which is called the flatness problem. As
a possible means to resolve these dilemmas inflationary
models for the early universe have been proposed, vari-
ous facets of which are still very much under an active
debate.

The key issue, as far as big bang singularity is con-
cerned, is that it happened only once in the past and
there is no way to probe it any further other than current
observations on the universe and their extrapolation in
the past. One must look deeper and deeper into space
and back into time to understand the nature and physics
of this early universe singularity.

As we mentioned above, the other class of such
spacetime singularities will occur in the gravitational
collapse of massive stars in the universe. Unlike the big

bang, such a singularity will occur whenever a massive
star in the universe collapses. This is, therefore, more
amenable to observational tests.

There are rather fundamental cosmic conundrums
associated with singularities of gravitational collapse.
One of the most intriguing of these is the question of
whether such a singularity will be visible to external
faraway observers in the universe. The big bang singu-
larity is visible to us in principle, as we get to see the
light from the same. However, as we discuss below, the
singularity of collapse can sometimes be hidden below
the event horizons of gravity, and are therefore not visi-
ble. The possibility that all singularities of collapse will
be necessarily hidden inside horizons is called the cos-
mic censorship conjecture. As we discuss below this is
not yet proved, and, in fact, singularities of collapse can
be visible under many physical circumstances.

When visible or naked singularities develop in grav-
itational collapse, they give rise again to extremely
intriguing physical possibilities and problems. The op-
portunity offered in that case is that we may have the
possibility to observe the possible ultra-high energy
physical processes occurring in such a region of the
universe, including quantum gravity effects. Such ob-
servations of ultra-high energy events in the universe
could provide observational tests and guide our efforts
for a possible quantum theory of gravity. However, a co-
nundrum that is presented is whether this would break
the so-called classical predictability of the spacetime
universe. We shall discuss this further below. On the
other hand, even when the singularity is necessarily hid-
den within a black hole, this still gives rise to profound
puzzles such as the information paradox, issues with
unitarity and other such problems. So the point is that,
even if the cosmic censorship was correct and all sin-
gularities were hidden inside black holes only, we shall
still be faced with many deep paradoxes, which are not
unique to naked singularities only.

It would be only reasonable to say that all these deep
physical as well as conceptual issues are closely con-
nected with the existence and formation of spacetime
singularities in the dynamical gravitational processes
taking place in the universe. While the big bang singu-
larity happened only once in the past, the singularities
of collapse have, in fact, a repeated occurrence, and
hence they possess an interesting observational per-
spective and potential. We shall, therefore, discuss the
same in some detail below, while also providing the key
ingredients of black hole physics in the process.
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20.10 Gravitational Collapse
When a massive star of more than about ten solar
masses exhausts its internal nuclear fuel, it is believed to
enter the stage of continual gravitational collapse with-
out any final equilibrium state. The star then goes on
shrinking in its radius, reaching higher and higher den-
sities. What would be the final fate of such an object
according to the general theory of relativity? This is one
of the central questions in relativistic astrophysics and
gravitation theory today. It is suggested that the ultra-
dense object that forms as a result of the collapse could
be a black hole in space and time from which not even
light rays escape. Alternatively, if an event horizon of
gravity fails to cover the final super ultra-dense crunch,
it could be a visible singularity in the spacetime which
could causally interact with the outside universe and
from which region the emissions of light and matter
may be possible.

The issue is of importance from both the theo-
retical as well as the observational point of view. At
the theoretical level, working out the final fate of col-
lapse in general relativity is crucial to the problem
of asymptotic predictability, namely, whether the sin-
gularities forming as the collapse end state will be

necessarily covered by the event horizons of gravity.
Such a censorship hypothesis remains fundamental to
the theoretical foundations of black hole physics and its
many recent astrophysical applications. These include
the area theorem for black holes, laws of black hole
thermodynamics, Hawking radiation, predictability in
a spacetime, and on the observational side the accre-
tion of matter by black holes, massive black holes at the
center of galaxies, etc. On the other hand, the existence
of visible or naked singularities offers a new approach
to these issues requiring modification and reformulation
of our usual theoretical conception of black holes.

We mention and discuss below some of the recent
developments in these directions, examining the pos-
sible final fate of gravitational collapse. To investigate
this issue, dynamical collapse scenarios have been ex-
amined in the past decade or so for many cases such
as clouds composed of dust, radiation, perfect fluids,
or matter with more general equations of state (see,
e.g., [20.26] for references and details). We discuss
these developments and the implications for a possible
formulation of cosmic censorship are indicated, men-
tioning the open problems in the field.

20.11 Spherical Collapse and the Black Hole

To understand the final fate of a massive gravitationally
collapsing object we first outline here the spherically
symmetric collapse situation. Although this is an ide-
alization, the advantage is that one can solve the case
analytically to obtain exact results when matter is ho-
mogeneous dust. In fact, the basic motivations for the
idea and theory of black holes come from this col-
lapse model, first worked out by Oppenheimer and
Snyder [20.27] and Datt [20.28].

Consider a gravitationally collapsing spherical mas-
sive star. The interior solution for the object depends
on the properties of matter, equations of state, and the
physical processes taking place within the stellar inte-
rior. However, assuming the matter to be pressureless
dust allows us to solve the problem analytically, which
provides important insights. The energy–momentum
tensor is given by Tij D �uiuj and the Einstein equa-
tions are to be solved for the spherically symmetric
metric. The metric potentials can be solved and the
interior geometry of the collapsing dust ball is given

by

ds2 D�dt2CR2.t/

�
dr2

1� r2
C r2 d˝2

�
;

where d˝2 D d2C sin2  d�2 is the metric on the
two-sphere. The interior geometry of the cloud matches
at the boundary r D rb with the exterior Schwarzschild
spacetime.

The basic features of such a configuration are given
in Fig. 20.1. The collapse is initiated when the star sur-
face is outside the Schwarzschild radius rD 2m and
a light ray from the surface of the star can escape to
infinity. However, once the star has collapsed below
rD 2m, a black hole region of no escape develops in
the spacetime which is bound by the event horizon
at rD 2m. Any point in this empty region represents
a trapped surface, a two-sphere for which both the out-
going and ingoing families of null geodesics emitted
from this point converge and thus no light comes out
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Fig. 20.1 The gravitational collapse of a spherically sym-
metric homogeneous dust cloud. The event horizon forms
prior to the singularity and the collapse end state is a black
hole

of this region. Then, the collapse to an infinite density
and curvature singularity at rD 0 becomes inevitable
in a finite proper time as measured by an observer on
the surface of the star. The black hole region in the
resulting vacuum Schwarzschild geometry is given by
0< r < 2m with the event horizon as the outer bound-
ary at which the radial outwards photons stay where
they are but all the others are dragged inwards. No in-
formation from the black hole can propagate outside
rD 2m to observers far away. We thus see that the col-
lapse gives rise to a black hole in the spacetime which

covers the resulting spacetime singularity. The ultimate
fate of the star undergoing such a collapse is an infi-
nite curvature singularity at rD 0, completely hidden
within the black hole. No emissions or light rays from
the singularity go out to an observer at infinity and the
singularity is causally disconnected from the outside
spacetime.

The question now is whether one could generalize
these conclusions on the occurrence of spacetime sin-
gularity in collapse for more general forms of matter or
for nonspherical situations, or possibly for small per-
turbations away from spherical symmetry. It is known
using the stability of Cauchy development in general
relativity that the formation of trapped surfaces is in-
deed a stable property when departures from spherical
symmetry are taken into account. The argument essen-
tially is the following. Considering a spherical collapse
evolution from given initial data on a partial Cauchy
surface S, we find the formation of trapped surfaces T
in the form of all the spheres with r < 2m in the exte-
rior Schwarzschild geometry. The stability of Cauchy
development then implies that for all initial data suf-
ficiently near the original data in the compact region
JC.S/\J�.T/, where JC and J� denote the causal fu-
tures or pasts of S, respectively, the trapped surfaces still
must occur. Then, the curvature singularity of spherical
collapse also turns out to be a stable feature, as im-
plied by the singularity theorems which show that the
closed trapped surfaces always imply the existence of
a spacetime singularity under reasonable relatively gen-
eral conditions.

20.12 Cosmic Censorship Hypothesis

Real stars in the universe are not made of pressureless
homogeneous dust. They are inhomogeneous, typically
with density higher at the center, may have nontrivial
matter with an equation of state that is as yet un-
known, and there is spin. Will a physically realistic
collapse of such a star necessarily end up in the black
hole final state only, just as in the idealized case of
the Oppenheimer–Snyder–Datt model above? In other
words, while more general gravitational collapse will
also end up in a spacetime singularity, the question is
whether the singularity will be again necessarily cov-
ered inside an event horizon of gravity.

In fact, there is no proof available that such a sin-
gularity will continue to be hidden within a black hole
and remain causally disconnected from outside ob-

servers, even when the collapse is not exactly spherical
or when the matter does not have the form of exact ho-
mogeneous dust. Therefore, in order to generalize the
notion of black holes to more general gravitational col-
lapse situations, it becomes necessary to rule out such
naked or visible singularities by means of an explicit
assumption. This is stated as the cosmic censorship
hypothesis [20.29], which essentially says that if S is
a partial Cauchy surface from which the collapse com-
mences, then there are no naked singularities to the
future of S which could be seen from the future null
infinity. This is true for spherical homogeneous dust
collapse, where the resulting spacetime is future asymp-
totically predictable and the censorship holds. In such
a case, the breakdown of physical theory at the space-
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time singularity does not disturb prediction in future for
the outside asymptotically flat region.

The corresponding scenario for other more gen-
eral collapse situations, when inhomogeneities or non-
sphericity and such other physically realistic features
are allowed for must be investigated. The answer in
general is not known either as a proof of the future
asymptotic predictability for general spacetimes or in
the form of any general theorem on cosmic censorship.
It is clear that the assumption of censorship in a suitable
form is crucial to the basic results in black hole physics.
Actually when one considers the gravitational collapse
in a generic situation, the very existence of black holes
requires this hypothesis.

To establish censorship by means of a rigorous
proof certainly requires a much more precise formu-
lation of the hypothesis. The statement that the result
of complete gravitational collapse must be a black hole
only and not a naked singularity, or all singularities of
collapse must be hidden inside black holes, is not rigor-
ous enough. Because under general circumstances, the
censorship or asymptotic predictability is false as one
could always choose a spacetime manifold with a naked
singularity which would be a solution to Einstein’s
equations if we define Tij � .1=8�/Gij. So certain con-
ditions on the stress–energy tensor are required at the
minimum, say, for example, an energy condition. How-
ever, to obtain an exact set of conditions on matter fields
to prove the censorship hypothesis turns out to be an
extremely difficult task that has as yet not been accom-
plished.

The requirements in black hole physics and gen-
eral predictability have led to several different possible
formulations of cosmic censorship hypothesis, none of
which has been proved as yet. Weak cosmic censor-
ship, or asymptotic predictability, postulates that the
singularities of gravitational collapse cannot influence
events near the future null infinity. The other version
called the strong cosmic censorship is a general pre-
dictability requirement on any spacetime, stating that all
physically reasonable spacetimes must be globally hy-
perbolic (see, e.g., [20.30]). Global hyperbolicity here
means that we must be able to predict the entire fu-
ture and past evolutions in the universe by means of
the Einstein equations, given the initial data on a three-
dimensional space-like hypersurface in spacetime.

However, on further analysis it becomes clear that
such formulations need much more sharpening if any

concrete proof is to be obtained at all. In fact, as for
the cosmic censorship, it is a major problem in itself
to find a satisfactory and mathematically rigorous for-
mulation of what it is physically desired to achieve.
Presently, there is no general proof available for any
suitably formulated version of weak censorship. The
main difficulty seems to be that the event horizon is
a feature depending on the whole future behavior of the
solution over an infinite time period, but the present the-
ory of quasi-linear hyperbolic equations guarantees the
existence and regularity of solutions over only a finite
time internal. It is clear that even if true, any proof for
a suitable version of weak censorship seems to require
much more knowledge on general global properties of
Einstein equations than is currently known.

To summarize the situation, cosmic censorship is
clearly a crucial assumption underlying all of black hole
physics and gravitational collapse theory, and related
important areas. The first major task here would be to
formulate rigorously a satisfactory statement for cos-
mic censorship, which if not true would throw black
hole dynamics into serious doubt. This is why censor-
ship is one of the most important open problems for
gravitation theory today. No proof, however, seems pos-
sible unless some major theoretical advances by way of
mathematical techniques and understanding the global
structure of Einstein equations are made, and the direc-
tion needed for such theoretical advances is far from
clear at present.

We, therefore, conclude that the first and foremost
task at the moment is to carry out a detailed and careful
examination of various gravitational collapse scenarios
to examine for their end states. It is only such an in-
vestigation of more general collapse situations which
could indicate what theoretical advances to expect for
any proof, and what features to avoid while formulat-
ing the cosmic censorship. Basically, we still do not
have sufficient data and information available on the
various possibilities for gravitationally collapsing con-
figurations so as to decide one way or other on the issue
of censorship.

In recent years, many investigations have been car-
ried out from such a perspective on gravitational col-
lapse, either for inhomogeneous dust collapse or with
more general matter fields. It turns out that the collapse
outcome is not always a black hole and the naked singu-
larity final state can arise in a variety of situations. In the
next sections we discuss some of these developments.
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20.13 Inhomogeneous Dust Collapse
Since we are interested in collapse, we require that the
spacetime contains a regular initial space-like hyper-
surface on which the matter fields as represented by
the stress-energy tensor Tij have compact support and
all physical quantities are well-behaved on this sur-
face. Also, the matter should satisfy a suitable energy
condition and the Einstein equations. We say that the
spacetime contains a naked singularity if there is a fu-
ture directed nonspace-like curve which reaches a far
away observer at infinity in future, which in the past
terminates at the singularity.

As an immediate generalization of the Oppen-
heimer–Snyder–Datt homogeneous dust collapse, one
could consider the collapse of inhomogeneous dust and
examine the nature and structure of resulting singularity
with special reference to censorship and the occurrence
of black holes and naked singularities. The main moti-
vation to discuss this situation is that it provides a clear
picture in an explicit manner of what is possible in grav-
itational collapse. One could ask how the conclusions
given above for homogeneous collapse are modified
when the inhomogeneities of matter distribution are
taken into account. Clearly, it is important to include ef-
fects of inhomogeneities because typically a physically
realistic collapse would start from an inhomogeneous
initial data with a centrally peaked density profile.

This question of inhomogeneous dust collapse has
attracted the attention of many researchers and it is
seen that the introduction of inhomogeneities leads to
a rather different picture of gravitational collapse. It
turns out that while homogeneous collapse leads to
black hole formation, the introduction of any physically
realistic inhomogeneity, e.g., the density peaked at the
center of the cloud and slowly decreasing away, leads
to a naked singularity final state for the collapse. This
is certainly an intriguing result implying that the black
hole formation in gravitational collapse may not be such
a stable phenomenon as was thought to be the case.

The problem was investigated in detail using the
Tolman–Bondi–Lemaître models, which describe grav-
itational collapse of an inhomogeneous spherically
symmetric dust cloud [20.31]. This is an infinite dimen-
sional family of asymptotically flat solutions of Ein-
stein equations, which is matched to the Schwarzschild
spacetime outside the boundary of the collapsing star.
The Oppenheimer–Snyder–Datt model is a special case
of this class of solutions.

It is seen that the introduction of inhomogeneities
leads to a rather different picture of gravitational

collapse. The metric for spherically symmetric col-
lapse of inhomogeneous dust, in comoving coordinates
.t; r; ; �/ is given by

ds2 D�dt2C
R02

1C f
dr2CR2.d2C sin2  d�2/

Tij D �ıi
tı

j
t; � D �.t; r/D

F0

R2R0
;

where Tij is the stress–energy tensor, � is the energy
density, and R is a function of both t and r given by

PR2 D
F

R
C f :

Here the dot and prime denote partial derivatives with
respect to the parameters t and r, respectively. As we are
considering collapse, we require PR.t; r/ < 0: The quan-
tities F and f are arbitrary functions of r and 4�R2.t; r/
is the proper area of the mass shells. The physical
area of such a shell at rD const. goes to zero when
R.t; r/D 0. For the gravitational collapse situation, we
take � to have compact support on an initial space-like
hypersurface and the spacetime is matched at some rD
const.D rc to the exterior Schwarzschild field with the
total Schwarzschild mass m.rc/DM enclosed within
the dust ball of coordinate radius of rD rc. The appar-
ent horizon in the interior dust ball lies at RD F.r/.

Using this framework, the nature of the singular-
ity RD 0 can be examined. In particular, the problem
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Fig. 20.2 The gravitational collapse of a spherical but in-
homogeneous dust cloud with a density profile peaked at
the center. The event horizon no longer forms prior to the
singularity and the collapse end state is a naked singularity
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of nakedness or otherwise of the singularity can be
reduced to the existence of real, positive roots of an al-
gebraic equation V.X/D 0, constructed out of the free
functions F and f and their derivatives, which consti-
tute the initial data of this problem. If the equation
V.X/D 0 has a real positive root, the singularity could
be naked. In order to be the end point of null geodesics
at least one real positive value of X0 should satisfy the
above. If no real positive root of the above is found,
the singularity is not naked. It should be noted that
many real positive roots of the above equation may ex-
ist which give the possible values of tangents to the
singular null geodesics terminating at the singularity
in the past. Suppose now X D X0 is a simple root to
V.X/D 0. To determine whether X0 is realized as a tan-
gent along any outgoing singular geodesics to give
a naked singularity, one can integrate the equation of
the radial null geodesics in the form rD r.X/ and it
is seen that there is always at least one null geodesic
terminating at the singularity tD 0; rD 0, with X D
X0. In addition, there would be infinitely many inte-
gral curves as well, depending on the values of the
parameters involved, which terminate at the singular-

ity. It is thus seen that the existence of a positive
real root of the equation V.X/D 0 is a necessary and
sufficient condition for the singularity to be naked. Fi-
nally, to determine the curvature strength of the naked
singularity at tD 0, rD 0, one may analyze the quan-
tity k2RabKaKb near the singularity. Standard analysis
shows that the strong curvature condition is satisfied,
in that the above quantity remains finite in the limit of
approach to the singularity. The spacetime picture for
a collapse terminating in a naked singularity is given
in Fig. 20.2.

The assumption of vanishing pressures, which could
be important in the final stages of the collapse, may
be considered as the limitation of dust models. On the
other hand, it is also argued sometimes that in the fi-
nal stages of collapse the dust equation of state could
be relevant and at higher and higher densities the mat-
ter may behave much more like dust. Further, if there
are no large negative pressures (as implied by the va-
lidity of the energy conditions), then the pressure might
also contribute gravitationally in a positive manner to
the overall effect of dust and may not alter the final
conclusions.

20.14 Collapse with General Matter Fields

It is clearly important to consider collapse situations
which consider matter with nonzero pressures and with
reasonable equations of state. It is possible that pres-
sures may play an important role for the later stages
of collapse and one must investigate the possibility
whether pressure gradients can prevent the occurrence
of naked singularity.

Many collapse scenarios have been considered by
now with nonzero pressures and physically reasonable
equations of state. What one needs to examine here
again is the existence, the termination of future directed
nonspace-like geodesic families at the singularity in the
past, and the strength of such a singularity for collapse
with nonzero pressure.

A useful insight into this issue is provided by
self-similar collapse for a perfect fluid with a linear
equation of state pD k�. A numerical treatment of self-
similar perfect fluid collapse was given by Ori and
Piran [20.32], and the analytic consideration for the
same was given by Joshi and Dwivedi [20.33]. It can
be seen that the collapse evolutions as allowed by the
Einstein equations permit both the black hole and naked
singularity final states. If in a self-similar collapse a sin-

gle null radial geodesic escapes the singularity, then,
in fact, an entire family of nonspace-like geodesics
would also escape provided the positivity of energy
density is satisfied. It also follows that no families of
nonspace-like geodesics would escape the singularity,
even though a single null trajectory might, if the weak
energy condition is violated. The singularity will be
globally visible to faraway observers in the spacetime
for a wide set of conditions. These results show that
naked singularity is not avoided by the introduction of
nonzero pressures or a reasonable equation of state.

Actually, consideration of matter forms such as di-
rected radiation, dust, perfect fluids, etc., imply that
a similar general pattern emerges, as far as the final out-
come of collapse is concerned. Basically, the result that
emerges is that, depending on the nature of the regular
initial data in terms of the density and pressure profiles,
the Einstein equations permit both classes of dynamical
evolutions, those leading to either of the black hole or
naked singularity final states.

Hence one could ask the question whether the final
fate of collapse would be independent of the form of the
matter under consideration. An answer to this is useful
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Fig. 20.3 For a generic collapse of a general matter field, the col-
lapse final state can be either a black hole or a naked singularity
depending on the dynamical evolution chosen as allowed by the
Einstein equations

because it was often thought that once a suitable form of
matter with an appropriate equation of state, also satis-
fying energy conditions, is considered then there may
be no naked singularities. Of course, there is always
a possibility that during the final stages of collapse the
matter may not have any of the forms such as dust or
perfect fluids considered above, because such relativis-
tic fluids are phenomenological and perhaps one must
treat matter in terms of some fundamental field, such
as, for example, a massless scalar field. In that con-
text, a naked singularity is also seen to form for the
scalar field collapse [20.34], although for fine-tuned ini-
tial data.

In the above context, it is worth mentioning efforts
in the direction of understanding collapse final states
for general matter fields, which generalize the above
results on perfect fluid to matter forms without any re-
striction on the form of Tij, with the matter satisfying
the weak energy condition. A consideration to a gen-
eral form of matter was given by Lake [20.35] and by
Szekeres and Iyer [20.36], who do not start by assuming
an equation of state, but consider a class of metric coef-
ficients with a certain power law behavior. Also, Joshi
and Dwivedi [20.37] and Goswami and Joshi [20.38],
and Giambo et al. [20.39] had results in this direction.
The main argument is along the following lines. It was

pointed out above that naked singularities could form
in gravitational collapse from regular initial data from
which nonzero measure families of nonspace-like tra-
jectories come out. The criterion for the existence of
such singularities was characterized in terms of the ex-
istence of real positive roots of an algebraic equation
constructed out of the field variables. A similar proce-
dure is developed now for the general form of matter.
In comoving coordinates, the general matter can be
described by three free functions, namely the energy
density and radial and tangential pressures. The ex-
istence of naked singularity is again characterized in
terms of the real positive roots of an algebraic equa-
tion, constructed from the equations of nonspace-like
geodesics which involve the three metric functions. The
field equations then relate these metric functions to the
matter variables and it is seen that for a subspace of this
free initial data in terms of matter variables, the above
algebraic equation will have real positive roots, produc-
ing a naked singularity in the spacetime. When no such
roots exist, the end state is a black hole.

It follows that the occurrence or otherwise of naked
singularity is basically related to the choice of initial
data to the Einstein field equations as determined by the
evolutions allowed. Therefore, these occur from regular
initial data within the general context considered, sub-
ject to the matter satisfying the weak energy condition.
The condition on initial data which leads to the forma-
tion of black hole is also characterized.

It would then appear that the occurrence of naked
singularity or a black hole is more a problem of the
choice of the initial data for field equations rather than
that of the form of matter or the equation of state
(Fig. 20.3).

Such a conclusion has an important implication for
cosmic censorship in that in order to preserve the same,
one must avoid all such regular initial data causing
naked singularity, and hence a much deeper under-
standing of the initial data space is required in order
to determine such initial data and the kind of physi-
cal parameters they would specify. In other words, this
classifies the range of physical parameters to be avoided
for a particular form of matter. Such an understand-
ing would also pave the way for black hole physics
to use only those ranges of allowed parameter values
which produce black holes only, thus putting black hole
physics on a firmer footing.
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20.15 Nonspherical Collapse and Numerical Simulations

Basically, the results and detailed studies such as the
above on gravitational collapse show that cosmic cen-
sorship cannot hold in an unqualified general form. It
must be properly fine-tuned and the black holes will
form only under certain suitably restrictive conditions
on collapse.

An important question at the same time is: what will
be the final fate of gravitational collapse which is not
spherically symmetric? The main phases of spherical
collapse of a massive star would be typically instabil-
ity, implosion of matter, and subsequent formation of
an event horizon and a spacetime singularity of infinite
density and curvature with infinite gravitational tidal
forces. This singularity may or may not be fully cov-
ered by the horizon, as we discussed above.

As noted, small perturbations over the sphericity
would leave the situation unchanged in the sense that
an event horizon will continue to form in the ad-
vanced stages of the collapse. The next question then
is, do horizons still form when the fluctuations from the
spherical symmetry are high and the collapse is highly
nonspherical? It was shown by Thorne [20.40], for ex-
ample, that when there is no spherical symmetry, the
collapse of infinite cylinders gives rise to naked singu-
larities in general relativity, which are not covered by
horizons. This situation motivated Thorne to propose
the hoop conjecture for finite systems in an asymptot-
ically flat spacetime for the final fate of nonspherical
collapse. The horizons of gravity form when and only
when a mass M gets compacted in a region whose cir-
cumference in every direction obeys C 	 2�.2GM=c2/.
Thus, unlike cosmic censorship, the hoop conjecture
does not rule out all naked singularities but only makes
a definite assertion on the occurrence of event hori-
zons in gravitational collapse. The hoop conjecture is
concerned with the formation of event horizons and
not with naked singularities. Thus, even when event
horizons form, say, for example, in the spherically sym-
metric case, it does not rule out the existence of naked
singularities, or it does not imply that such horizons
must always cover the singularities.

When the collapse is sufficiently aspherical, with
one or two dimensions being sufficiently larger than the
others, the final state of collapse could be a naked singu-
larity, according to the hoop conjecture. Such a situation
is inspired by the Lin et al. [20.41] instability considera-
tion in Newtonian gravity, where a nonrotating homoge-
neous spheroid collapses maintaining its homogeneity
and spheroidicity but with growing deformations. If the

initial condition is that of a slightly oblate spheroid, the
collapse results in a pancake singularity through which
the evolution could proceed. However, for a slightly
prolate spheroidal configuration, the matter collapses to
a thin thread which results into a spindle singularity.
The gravitational potential and the tidal forces blow up
as opposed to only density blowing up so it is a seri-
ous singularity. Even in the case of an oblate collapse,
the passing of matter through the pancake causes pro-
lateness and, subsequently, a spindle singularity again
results without the formation of any horizon.

It is clear though that the nonspherical collapse sce-
nario is rather complex to understand, and a recourse to
the numerical simulations of evolving collapse models
may greatly enhance our understanding of possible final
collapse states in this case. In such a context, the nu-
merical calculations of Shapiro and Teukolsky [20.42]
indicated conformity with the hoop conjecture. They
evolved collissionless gas spheroids in full general rela-
tivity, which in all cases collapse to singularities. When
the spheroid is sufficiently compact a black hole may
form, but when the semimajor axis of the spheroid is
sufficiently large, a spindle singularity forms without
the formation of an apparent horizon. This gives rise to
the possibility of the occurrence of naked singularities
in the collapse of finite systems in asymptotically flat
spacetimes which violate weak cosmic censorship but
are in accordance with the hoop conjecture.

We note that the Kerr black hole is believed to be
the unique stationary solution in Einstein gravity when
mass and rotation parameters are included. However, it
is to be noted that while the Schwarzschild black hole
is the final end state of homogeneous dust collapse, we
have no interior solution for a rotating collapsing cloud.
In other words, an exterior Kerr geometry has no in-
ternal solution in general relativity. We, therefore, do
not really know the final fate of gravitational collapse
with rotation. To understand the same, numerical sim-
ulations in full general relativity will be of great value.
There are many such numerical programs in the making
currently to deal with this problem of modeling a rotat-
ing collapsing massive star. The idea here is to include
rotation in collapse and then to let the Einstein equa-
tions evolve the collapse to see if the Kerr black hole
necessarily emerges as a final state (see, e.g., [20.43]
and references therein). It is worth noting that numeri-
cal simulations in higher dimensions have also recently
produced some very intriguing naked singularity forma-
tion scenarios (Lehner and Pretorius [20.44]).
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We finally note that apart from such numerical
simulations, certain analytic treatments of aspherical
collapse are also available. For example, the non-
spherical Szekeres models for irrotational dust without
any Killing vectors, generalizing spherical Tolman–
Bondi–Lemaître collapse, were studied by Joshi and

Królak [20.45] to deduce the existence of strong curva-
ture, naked singularities. While this indicates that naked
singularities are not necessarily confined to spherical
symmetry only, it is to be noted that dynamical evo-
lution of a nonspherical collapse still remains a largely
uncharted territory.

20.16 Are Naked Singularities Stable and Generic?

Naked singularities may develop in gravitational col-
lapse, either spherical or otherwise. However, if they
are not either generic or stable in some suitable sense,
then they may not be necessarily physically relevant.
An important question then is the genericity and sta-
bility of naked singularities arising from regular initial
data. Will the initial data subspace, which gives rise to
naked singularity as end state of collapse, have a vanish-
ing measure in a suitable sense? In that case, one would
be able to reformulate more suitably the censorship hy-
pothesis, based on the criterion that naked singularities
could form in collapse but may not be generic.

We note here that the genericity and stability of the
collapse outcomes, in terms of black holes and naked
singularities need to be understood carefully and in fur-
ther detail. It is by and large well accepted now that
the general theory of relativity allows and gives rise
to both black holes and naked singularities as the final
fate of a continual gravitational collapse, evolving from
regular initial data and under reasonable physical condi-
tions. What is not fully clear as yet is the distribution of
these outcomes in the space of all allowed outcomes of
collapse. The collapse models discussed above and the
considerations we have given here would be of some
help in this direction and may throw some light on the
distribution of black holes and naked singularity solu-
tions in the initial data space. For some considerations
on this issue, especially in the context of scalar field
collapse, we refer to Christodoulou [20.46] and Joshi
et al. [20.47], and references therein, for further discus-
sion. For the case of inhomogeneous dust collapse, the
black hole and naked singularity spaces are shown in
Fig. 20.4.

The important point, however, is that in general rel-
ativity there is no well-defined concept or formulation
as to what to call generic and stable outcomes, unlike
the Newtonian case. In other words, there are no well-
defined criteria or definitions available as to what is
meant by stability in general relativity. The ambiguity
mainly arises because of nonunique topologies on the

space of all Lorentzian metrics on a given spacetime
manifold and a similar nonuniqueness of measures. In
this situation there is no easy way to answer the ques-
tion in any unique and definite manner, and people
generally resort to the physical meaningfulness of the
collapse scenario, which gives rise to either the black
hole or the naked singularity outcome.

From such a perspective, it is natural and meaning-
ful to ask here, what is really the physics that causes
a naked singularity to develop in collapse, rather than
a black hole? We need to know how at all parti-
cles and energy are allowed to escape from extremely
strong gravity fields. We have examined this issue in
some detail to bring out the role of inhomogeneities
and spacetime shear towards distorting the geometry of
horizons that form in collapse (Fig. 20.5).

In Newtonian gravity, it is only the matter density
that determines the gravitational field. In Einstein the-
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Fig. 20.4 Initial data leading to black holes and naked
singularities shown in the spaces of mass and energy
functions
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Fig. 20.5 The apparent horizon formation is delayed de-
pending on the amount of inhomogeneity present as the
collapse proceeds (after [20.48])

ory, however, density is only one attribute of the overall
gravitational field, and the various curvature compo-
nents and scalar quantities play an equally important

role to dictate what the overall nature of the field is.
What we have shown is that once the density is inho-
mogeneous or higher at the center of the collapsing
star, this rather naturally delays the trapping of light
and matter during collapse, which can in principle es-
cape. This is a general relativistic effect to imply that
even if the densities are very high, there are paths
available for light or matter to escape due to inho-
mogeneously collapsing matter fields. These physical
features then naturally lead to a naked singularity for-
mation [20.48].

As it turns out, it is the amount of inhomogene-
ity that counts towards distorting the apparent horizon
formation. If it is very small, below a critical limit,
a black hole will form, but with sufficient inhomogene-
ity the trapping is delayed to cause a naked singularity.
This criticality also comes out in the Vaidya class of
radiation collapse models, where it is the rate of col-
lapse, that is how fast or slow the cloud is collapsing,
which determines the black hole or naked singularity
formation.

20.17 Astrophysical and Observational Aspects

It is clear that the black hole and naked singularity out-
comes of a complete gravitational collapse for a mas-
sive star are very different from each other physically
and would have quite different observational signatures.
In the naked singularity case, if it occurs in nature, we
have the possibility to observe the physical effects oc-
curring in the vicinity of the ultra-dense regions that
form in the very final stages of collapse. However, in
a black hole scenario, such regions are necessarily hid-
den within the event horizon of gravity.

There have been attempts where researchers ex-
plored physical applications and implications of the
naked singularities (see, e.g., [20.49] and references
therein). If we could find astrophysical applications of
the models that predict naked singularities as collapse
final fate and possibly try to test these through observa-
tional methods and the signatures predicted, this could
offer a very interesting avenue to obtain further insight
into the problem as a whole. An attractive recent possi-
bility in this connection is to explore naked singularities
as possible particle accelerators [20.50], where the pos-
sibility also emerges that the Cauchy horizons may not
be innocuous, and high energy collisions could occur in
the vicinity of the same if they are generated by naked
singularity (Fig. 20.6).

Also, the accretion discs around a naked singular-
ity, wherein the matter particles are attracted towards or
repulsed away from the singularities with great veloci-
ties could provide an excellent venue to test such effects
and may lead to predictions of important observational
signatures to distinguish the black holes and naked
singularities in astrophysical phenomena. It is then nec-
essary to investigate the question of what observational

A B

Naked singularity

Collision
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horizon

Fig. 20.6 Very high energy particle collisions can occur
in the vicinity of the Cauchy horizon emerging from the
naked singularity
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signatures would then emerge and to distinguish the
black holes from naked singularities, and we must ex-
plore what special astrophysical consequences the latter
may have.

One may ask several intriguing questions such as:
Where could the observational signatures of naked sin-
gularities lie? If we look for the sign of singularities
such as the ones that appear at the end of collapse, we
must consider explosive and high energy events. In fact,
such models expose the ultra-high density region at the
time of the formation of the singularity while the outer
shells are still falling towards the center. In such a case,
shock waves emanating from the superdense region at
scales smaller than the Schwarzschild radius (which
could be due to quantum effects or repulsive classical
effects) and collisions of particles near the Cauchy hori-
zon could have effects on the outer layers. These would
be considerably different from those appearing during
the formation of a black hole. If, on the other hand, we
consider singularities such as the super-spinning Kerr
solution we can look for different kinds of observational
signatures. Among these the most prominent features
deal with the way the singularity may affect incoming
particles, either in the form of light bending, such as
in gravitational lensing, particle collisions close to the
singularity, or properties of accretion disks.

Essentially what we ask is: Could we test censor-
ship using astronomical observations? With so many
high technology power missions to observe the cosmos,
can we not just observe the skies carefully to deter-
mine the validity or otherwise of cosmic censorship? In
this connection, several proposals to measure the mass
and spin ratio for compact objects and for the galactic
center have been made by different researchers. In par-
ticular, using pulsar observations it has been suggested
that gravitational waves and the spectra of x-ray bina-
ries could test the rotation parameter for the center of
our galaxy. Also, the shadow cast by the compact ob-
ject can be used to test the same in stellar mass objects,
or the x-ray energy spectrum emitted by the accretion
disk can be used. Using certain observable properties
of gravitational lensing that depend upon rotation has
also been suggested (for references, see [20.49]).

The basic issue here is that of sensitivity, namely
how accurately and precisely we can measure and deter-
mine these parameters. A number of present and future
astronomical missions may be of help. One of these
is the Square-Kilometer Array (SKA) radio telescope,
which will offer a possibility here, with a collecting area
exceeding a factor of 100 compared to existing ones.
SKA astronomers point out they will have the sensitiv-

ity desired to measure the required quantities to very
precisely determine vital fundamental issues in gravita-
tion physics, such as cosmic censorship, and to decide
on its validity or otherwise. Other missions that could in
principle provide a huge amount of observational data
are those that are currently hunting for gravitational
waves. Gravitational wave astronomy has yet to claim
its first detection of waves, nevertheless in the coming
years it is very likely that the first observations will
be made by experiments such as LIGO and VIRGO,
which are currently still below the threshold for obser-
vation. Then gravitational wave astronomy will become
an active field with possibly large amounts of data to be
checked against theoretical predictions, and it appears
almost certain that this will have a strong impact on
open theoretical issues such as the cosmic censorship
problem.

There are three different kinds of observations that
one could devise in order to distinguish a naked sin-
gularity from a black hole. The first one relies on
the study of accretion disks. The accretion properties
of particles falling onto a naked singularity would be
very different from those of black hole of the same
mass (see, for example, [20.51]), and the resulting ac-
cretion disks would also be observationally different.
The properties of accretion disks have been studied
in terms of the radiant energy, flux, and luminosity,
in a Kerr-like geometry with a naked singularity, and
the differences from a black hole accretion disk have
been investigated. Also, the presence of a naked sin-
gularity gives rise to powerful repulsive forces that
create an outflow of particles from the accretion disk
on the equatorial plane. This outflow that is otherwise
not present in the black hole case, could, in princi-
ple, be distinguished from the jets of particles that
are thought to be ejected from a black hole’s polar
region and which are due to strong electromagnetic
fields. Also, when charged test particles are considered
the accretion disk’s properties for the naked singular-
ity present in the Reissner–Nordstrom spacetime are
seen to be observationally different from those of black
holes.

The second way of distinguishing black holes from
naked singularities relies on gravitational lensing. It is
argued that when the spacetime does not possess a pho-
ton sphere, the lensing features of light passing close
to the singularity will be observationally different from
those of a black hole. This method, however, does not
appear to be very effective when a photon sphere is
present in the spacetime. Assuming that a Kerr-like so-
lution of Einstein equations with massless scalar field
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Fig. 20.7 An equilibrium configuration can be obtained
from gravitational collapse which halts asymptotically and
which would contain a central naked singularity

exists at the center of galaxies, its lensing properties are
studied and it was found that there are effects due to
the presence of both the rotation and scalar field that
would affect the behavior of the bending angle of the

light ray, thus making those objects observationally dif-
ferent from black holes.

Finally, a third way of distinguishing black holes
from naked singularities comes from particle collisions
and particle acceleration in the vicinity of the singu-
larity. In fact, it is possible that the repulsive effects
due to singularity can deviate a class of infalling par-
ticles, making these outgoing eventually. These could
then collide with some ingoing particle, and the energy
of collision could be arbitrarily high, depending on the
impact parameter of the outgoing particle with respect
to the singularity. The net effect is thus the creation of
a very high energy collision that resembles that of an
immense particle accelerator and that would be impos-
sible in the vicinity of a Kerr black hole.

It was pointed our recently by Joshi et al. [20.52]
that one could obtain equilibrium configurations as the
final outcome of a gravitational collapse. If such an
object arises without trapped surfaces but with a sin-
gularity at the center (see Fig. 20.7) then again the
accretion disk properties are very different from a black
hole of the same mass.

20.18 Predictability and Other Cosmic Puzzles

What then is the status of naked singularities versus
censorship today? Can cosmic censorship survive in
some limited and specialized form, and firstly, can we
properly formulate it after all these studies on gravi-
tational collapse in recent years? While this continues
to be a major cosmic puzzle, recent studies on the for-
mation of naked singularities as collapse end states for
many realistic models have brought to forefront some
of the most intriguing basic questions, both at clas-
sical and quantum levels, which may have significant
physical relevance. Some of these are: can the super
ultra-dense regions forming in a physically realistic col-
lapse of a massive star be visible to far away observers
in spacetime? Are there any observable astrophysical
consequences? What is the causal structure of space-
time in the vicinity of singularity as decided by the
internal dynamics of collapse which evolves from regu-
lar initial data at an initial time? How early or late will
the horizons actually develop in a physically realistic
gravitational collapse, as determined by the astrophysi-
cal conditions within the star? When a naked singularity
forms, is it possible to observe the quantum gravity ef-
fects taking place in the ultra-strong gravity regions?
Can one possibly envisage a connection to observed

ultra-high energy phenomena such as cosmic gamma-
ray bursts?

A continuing study of collapse phenomena within
a general and physically realistic framework may be
the only way to find answers to some of these issues.
This could lead us to novel physical insights and possi-
bilities emerging out of the intricacies of gravitational
force and the nature of gravity, as emerging from exam-
ining the dynamical evolutions as allowed by Einstein
equations.

Apart from their physical relevance, the collapse
phenomena also have profound philosophical impli-
cations such as on the issue of predictability in the
universe. Below, we summarize a few arguments for
and against this in classical general relativity.

It is sometimes argued that the breakdown of cen-
sorship means violation of predictability in spacetime,
because we have no direct handle to know what a naked
singularity may radiate and emit unless we study the
physics in such ultra-dense regions. One would then not
be able to predict the universe in the future of a given
epoch of time as would be the case, for example, in
the case of the Schwarzschild black hole that devel-
ops in Oppenheimer–Snyder collapse. A concern that
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is usually expressed is if naked singularities occurred
as the final fate of gravitational collapse, predictabil-
ity is violated in spacetime because naked singularity
is characterized by the existence of light rays and par-
ticles that emerge from the same. Typically, in all the
collapse models discussed above, there is a family of
future directed nonspace-like curves that reach external
observers, and when extended in the past they met the
singularity. The first light ray that comes out from the
singularity marks the boundary of the region that can
be predicted from a regular initial Cauchy surface in the
spacetime, and this is called the Cauchy horizon for the
spacetime. The causal structure of spacetime would dif-
fer significantly in the two cases when there is a Cauchy
horizon and when there is none.

In general relativity, a given epoch of time is some-
times represented by a space-like surface, which is
a three-dimensional space section. For example, in the
standard Friedmann models of cosmology, there is such
an epoch of simultaneity, from which the universe
evolves in future, given the physical variables and initial
data on this surface. The Einstein equations govern this
evolution of universe, and there is thus a predictability
which one would expect to hold in a classical theory.
The concern then is that one would not be able to predict
the future of naked singularity, and that unpredictable
inputs may emerge from the same.

Given regular initial data on a space-like hyper-
surface, one would like to predict the future and past
evolutions in spacetime for all times (see, for exam-
ple, [20.1]). Such a requirement is termed the global
hyperbolicity of the spacetime. A globally hyperbolic
spacetime is a fully predictable universe; it admits
a Cauchy surface, which is a three-dimensional space-
like surface, the data on which can be evolved for all
times in the past as well as in the future. Simple enough
spacetimes such as Minkowski or Schwarzschild are
globally hyperbolic, but Reissner–Nordstrom or Kerr
geometries are not globally hyperbolic. For further de-
tails on these issues, we refer to [20.26].

The key role that the event horizon of a black hole
plays is that it hides the super ultra-dense region formed
in collapse from us. So the fact that we do not under-
stand such regions has no effect on our ability to predict
what happens in the universe at large. However, if no
such horizon exists, then the ultra-dense region might,
in fact, play an important and even decisive role in the
rest of the universe, and our ignorance of such regions
would become of more than merely academic interest.

Yet such an unpredictability is common in general
relativity and not always directly related to censorship

violation. Even black holes themselves need not fully
respect predictability when they rotate or have some
charge. For example, if we drop an electric charge
into an uncharged black hole, the spacetime geome-
try changes radically and is no longer predictable from
a regular initial epoch of time. A charged black hole ad-
mits a naked singularity that is visible to an observer
within the horizon, and a similar situation holds when
the black hole is rotating. There has been an important
debate in recent years whether one could over-charge or
over-rotate a black hole so that the singularity visible to
observers within the horizon would also become visible
to external far away observers (see, e.g., [20.53]).

Also, if such a black hole were big enough on a cos-
mological scale, the observer within the horizon could,
in principle, survive happily for millions of years with-
out actually falling into the singularity, and would thus
be able to observe the naked singularity for a long time.
Thus, only the purest of pure black holes with no charge
or rotation at all respects the full predictability, and all
other physically realistic ones with charge or rotation
actually do not. As such, there are many models of the
universe in cosmology and relativity that are not totally
predictable from a given space-like hypersurface in the
past. In these universes, the spacetime cannot be neatly
separated into space and time foliation so as to allow
initial data at a given moment of time to fully determine
the future.

Actually the real breakdown of predictability is the
occurrence of spacetime singularity itself we could say,
which indicates the true limitation of the classical grav-
ity theory. It does not matter really whether or not it is
hidden within an event horizon. The real solution of the
problem would then be the resolution of singularity it-
self, through either a quantum theory of gravity or in
some way at the classical level.

In fact, the cosmic censorship way to predictabil-
ity, that of hiding the singularity within a black hole,
and then thinking that we restored the spacetime pre-
dictability may not be the real solution, or at best it
may be only a partial solution to the key issue of
predictability in spacetime universes. It may be just
shifting the problem elsewhere, and some of the cur-
rent major paradoxes faced by black hole physics such
as the information paradox, the various puzzles regard-
ing the nature of Hawking radiation, and other issues
could also be a manifestation of the same.

No doubt, the biggest argument in support of cen-
sorship is that it would justify and validate the extensive
formalism and laws of black hole physics and the as-
trophysical applications made so far. Censorship has
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Fig. 20.8 If the star could radiate away very considerable
mass, especially through negative quantum pressures close
to the classical singularity, this may effectively resolve the
singularity

been the foundation for the laws of black holes such
as the area theorem and others, and their astrophysi-
cal applications. However, these are not free of major
paradoxes. Even if we accept that all massive stars
would necessarily turn into black holes, this still creates
some major physical paradoxes. Firstly, all the matter
entering a black hole must of necessity collapse into
a spacetime singularity of infinite density and curva-
tures, where all known laws of physics break down,
which is some kind of instability at the classical level
itself. This was a reason why many gravitation theo-
rists of the 1940s and the 1950s objected to black hole
formation, and Einstein also repeatedly argued against
such a final fate of a collapsing star, writing a paper in
1939 to this effect. Also, as is well known and has been
widely discussed in the past few years, a black hole,
by potentially destroying information, appears to con-
tradict the basic principles of quantum theory. In that
sense, the very formation of a black hole itself with
a singularity within it appears to come laden with inher-
ent problems. It is far from clear how one would resolve
these basic troubles even if censorship were correct.

In view of such problems with the black hole
paradigm, a possibility worth considering is the delay
or avoidance of horizon formation as the star collapses
under gravity. This happens when collapse to a naked
singularity takes place, namely, where the horizon does
not form early enough or is avoided. In such a case,
if the star could radiate away most of its mass in the

late stages of collapse, this may offer a way out of the
black hole conundrum, while also resolving the singu-
larity issue, because now there is no mass left to form
the singularity. While this may be difficult to achieve
purely classically, such a phenomenon could happen
when quantum gravity effects are taken into account
(Fig. 20.8, see also the next section for a further dis-
cussion).

What this means is that such an unpredictability is
somewhat common in general relativity. For example, if
we drop a slight charge in a Schwarzschild black hole,
the spacetime geometry completely changes into that of
a charged black hole that is no longer predictable in the
above sense. A similar situation holds when the black
hole is rotating. In fact, there are very many models of
universe in use in relativity that are not globally hyper-
bolic, that is, not totally predictable in the above sense
where space and time are neatly separated so as to allow
initial data to fully determine the future for all times.

In any case, a positive and useful feature that
has emerged from work on collapse models so far
is, we already now have several important constraints
for any possible formulation of censorship. It can be
seen that several versions of censorship proposed ear-
lier would not hold, because explicit counter-examples
are now available. Clearly, analyzing gravitational col-
lapse plays a crucial role here. Only if we understand
clearly why naked singularities develop as collapse end
states in many realistic models, could there emerge any
pointer or lead to any practical and provable version of
censorship.

Finally, it may be worth noting that even if the
problem of singularity were resolved somehow, possi-
bly by invoking quantum gravity which may smear the
singularity, we still have to mathematically formulate
and prove the black hole formation assuming an ap-
propriate censorship principle, which is turning out to
be a most difficult task with no sign of resolution. As
has been discussed, the detailed collapse calculations
of recent years show that the final fate of a collapsing
star could be a naked singularity in violation of cen-
sorship. Finally, as is well known and has been widely
discussed by now, a black hole creates an information
loss paradox, violating unitarity and contradicting basic
principles of quantum theory. It is far from clear how
one would resolve these basic troubles even if censor-
ship were correct.
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20.19 A Lab for Quantum Gravity–Quantum Stars?

It is believed that when we have a reasonable and
complete quantum theory of gravity, all spacetime sin-
gularities, whether naked or those hidden inside black
holes, will be resolved. As of now, it remains an open
question whether quantum gravity will remove naked
singularities. After all, the occurrence of spacetime sin-
gularities could be a purely classical phenomenon and
whether they are naked or covered should not be rel-
evant, because quantum gravity will possibly remove
them all anyway. It is possible that in a suitable quan-
tum gravity theory the singularities will be smeared out,
although this has not been realized so far.

In any case, the important and real issue is whether
or not the extreme strong gravity regions formed due to
gravitational collapse are visible to faraway observers.
It is quite clear that gravitational collapse would cer-
tainly proceed classically, at least until quantum gravity
starts governing and dominating the dynamical evolu-
tion at scales of the order of the Planck length, i. e.,
until the extreme gravity configurations have already
been developed due to collapse. The point is that it is
the visibility or otherwise of such ultra-dense regions
that is under discussion, whether they are classical or
quantum (see Fig. 20.9).

What is important is that classical gravity necessar-
ily implies the existence of ultra-strong gravity regions,
where both classical and quantum gravity come into
their own. In fact, if naked singularities develop in
gravitational collapse, then in a literal sense we come
face-to-face with the laws of quantum gravity whenever
such an event occurs in the universe.

In this way, the gravitational collapse phenomenon
has the potential to provide us with a possibility of ac-
tually testing the laws of quantum gravity. In the case
of a black hole developing in the collapse of a finite
sized object such as a massive star, such strong gravity
regions are necessarily hidden behind an event horizon
of gravity, and this would be well before the physical
conditions become extreme near the spacetime singu-
larity. In that case, the quantum effects, even if they
cause qualitative changes closer to singularity, will be
of no physical consequence as no causal communica-
tions are then allowed from such regions. On the other
hand, if the causal structure were that of a naked singu-
larity, then the communications from such a quantum
gravity dominated extreme curvature ball would be vis-
ible in principle. This would be so either through direct
physical processes near a strong curvature naked singu-
larity, or via the secondary effects, such as the shocks

produced in the surrounding medium. It is possible that
a spacetime singularity basically represents the incom-
pleteness of the classical theory and when quantum
effects are combined with the gravitational force, the
classical singularity may be resolved.

Therefore, more than the existence of a naked sin-
gularity, the important physical issue is whether the
extreme gravity regions formed in the gravitational col-
lapse of a massive star are visible to external observers
in the universe. An affirmative answer here would mean
that such a collapse provides a good laboratory to study
quantum gravity effects in the cosmos, which may pos-
sibly generate clues for an as yet unknown theory of
quantum gravity. Quantum gravity theories in the mak-
ing, such as string theory or loop quantum gravity, in
fact, are badly in need of some kind of an observational
input, without which it is nearly impossible to constrain
the plethora of possibilities.

We could say quite realistically that a laboratory
similar to that provided by the early universe is created
in the collapse of a massive star. However, the big bang,
which is also a naked singularity in that it is, in princi-
ple, visible to all observers, occurred only once in the
life of the universe and is, therefore, a unique event.
However, a naked singularity of gravitational collapse
could offer an opportunity to explore and observe the
quantum gravity effects every time a massive star in the
universe ends its life.

The important questions one could ask are the fol-
lowing: If in realistic astrophysical situations the star
terminates as a naked singularity, would there be any
observable consequences which reflect the quantum
gravity signatures in the ultra-strong gravity region? Do
naked singularities have physical properties different
from those of a black hole? Such questions underlie our
study of gravitational collapse.

In view of recent results on gravitational collapse,
and various problems with the black hole paradigm,
a possibility worth considering is the delay or avoid-
ance of horizon formation as the star evolves collapsing
under gravity. This happens when collapse to a naked
singularity takes place, where the horizon does not form
early enough or is avoided. In such a case, in the late
stages of collapse if the star could radiate away most
of its mass, then this may offer a way out of the black
hole conundrum, while also resolving the singularity
issue, because now there is no mass left to form the cur-
vature singularity. The purpose is to resolve the black
hole paradoxes and avoid the singularity, either vis-
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Fig. 20.9 Naked singularity may be
resolved by quantum gravity effects
but the ultra-strong gravity region
that developed in gravitational col-
lapse will still be visible to external
observers in the universe

ible or within a black hole, which actually indicates
the breakdown of physical theory. The current work on
gravitational collapse suggests possibilities in this di-
rection.

In this context, we considered a cloud that col-
lapsed to a naked singularity final state, and in-
troduced loop quantum gravity effects [20.54] (see
also [20.55]). It turned out that the quantum effects
generated an extremely powerful repulsive force within
the cloud. Classically the cloud would have termi-
nated into a naked singularity, but quantum effects
caused a burst-like emission of matter in the very last
phases of collapse, thus dispersing the star and dis-
solving the naked singularity. The density remained
finite and the spacetime singularity was eventually
avoided. One could expect this to be a fundamen-
tal feature of other quantum gravity theories as well,
but more work would be required to confirm such
a conjecture.

For a realistic star, its final catastrophic collapse
takes place in a matter of seconds. A star that lived mil-
lions of years thus collapses in only tens of seconds. In
the very last fraction of a microsecond, almost a quarter
of its total mass must be emitted due to quantum ef-
fects, and, therefore, this would appear like a massive,
abrupt burst to an external observer far away. Typically,
such a burst will also carry with it specific signatures
of quantum effects taking place in such ultra-dense re-
gions. In our case, these included a sudden dip in the
intensity of emission just before the final burst-like
evaporation due to quantum gravity. The question is,
whether such unique astrophysical signatures can be de-
tected by modern experiments, and if so, what they tell
us about quantum gravity, and if there are any new in-

sights into other aspects of cosmology and fundamental
theories such as string theory. The key point is that be-
cause the very final ultra-dense regions of the star are
no longer hidden within a horizon as in the black hole
case, the exciting possibility of observing these quan-
tum effects now arises, independently of the quantum
gravity theory used. An astrophysical connection to ex-
treme high energy phenomena in the universe, such as
the gamma-ray bursts that have defied any explanations
so far, may not be ruled out.

Such a resolution of naked singularity through
quantum gravity could be a solution to some of the
paradoxes mentioned above (see also [20.56]; for other
possibilities on singularity resolution). Then, whenever
a massive star undergoes a gravitational collapse, this
might create a laboratory for quantum gravity in the
form of a quantum star (see, e.g., [20.53]), that we
may possibly be able to access. This would also sug-
gest intriguing connections to high energy astrophysical
phenomena. The present situation poses one of the most
interesting challenges that has emerged through the re-
cent work on gravitational collapse.

We hope the considerations here have shown that
gravitational collapse, which is essentially the investi-
gation of dynamical evolutions of matter fields under
the force of gravity in spacetime, provides one of the
most exciting research frontiers in gravitation physics
and high energy astrophysics. In our view, there is
scope, therefore, for both theoretical as well as numeri-
cal investigations in these areas, which may have much
to tell for our quest on basic issues in quantum gravity,
fundamental physics, and gravity theories, and towards
the expanding frontiers of modern high energy astro-
physical observations.
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20.20 Concluding Remarks
We have considered here several aspects of spacetime
singularities and the physical scenarios where these
may be relevant because they play an interesting and
intriguing role. We hope this creates a fairly good view
of the exciting new physics that the spacetime singular-
ities are leading us to, presenting a whole spectrum of
new possibilities towards our search of the universe.

After discussing their existence and certain key ba-
sic properties, we discussed in some detail the gravita-
tional collapse scenarios and the useful conclusions that
have emerged so far in this context. In the first place,
singularities not covered fully by the event horizon oc-
cur in several collapsing configurations from regular
initial data, with reasonable equations of state such as
those describing radiation, dust, or a perfect fluid with
a nonzero pressure, or also for general forms of mat-
ter. These naked singularities are physically significant
in that densities and curvatures diverge powerfully near
the same. Such results on the final fate of collapse,
generated from the study of different physically rea-
sonable collapse scenarios, may provide useful insights
into black hole physics and may be of help for any pos-
sible formulation of the cosmic censorship hypothesis.

An insight that seems to emerge is that the final state
of a collapsing star, in terms of either a black hole or
a naked singularity, may not really depend on the form
or equation of state of collapsing matter, but is actually
determined by the physical initial data in terms of the
initial density profiles and pressures.

As an example, for inhomogeneous dust collapse,
the final fate could be a black hole or a naked sin-
gularity depending on the values of initial parameters.
The collapse ends in a naked singularity if the lead-
ing nonvanishing derivative of density at the center is
either the first one or the second one. There is a tran-
sition from the naked singularity phase to the black
hole phase as the initial density profile is made more
and more homogeneous near the center. As one pro-
gresses towards more homogeneity, and hence towards
a stronger gravitational field, there first occurs a weak
naked singularity, then a strong naked singularity, and
finally a black hole.

The important question then is the genericity and
stability of such naked singularities arising from regular
initial data. Will the initial data subspace giving rise to
naked singularity have zero measure in a suitable sense?
In that case, one would be able to reformulate more suit-
ably the censorship hypothesis, based on a criterion that
naked singularities could form in collapse but may not

be generic. As we pointed out, the answer is far from
clear due to ambiguities in the definitions of measures
and the stability criteria.

One may try to evolve some kind of a physical for-
mulation for cosmic censorship, where the available
studies on various gravitational collapse scenarios such
as the above may provide a useful guide. The various
properties of naked singularities may be collectively
studied as they emerge from the studies so far, and one
would then argue that objects with such properties are
not physical. However, the way forward is again far
from clear.

One could also invoke quantum effects and quantum
gravity. While naked singularities may form in classical
general relativity, quantum gravity presumably removes
them. The point is that even though the final singular-
ity may be removed in this way, there would still be
very high density and curvature regions in the classical
regime which would be causally communicating with
outside observers, as opposed to the black hole case.
If quantum effects could remove the naked singularity,
this would then be some kind of quantum cosmic cen-
sorship.

We hope the considerations here have shown that
gravitational collapse, which essentially is the investi-
gation of dynamical evolutions of matter fields under
the force of gravity in spacetime, provides one of the
most exciting research frontiers in gravitation physics
and high energy astrophysics. There are issues here
which have deep relevance both for theory as well as
observational aspects in astrophysics and cosmology.
Also these problems are of relevance for the basics of
gravitation theory and quantum gravity, and these in-
spire a philosophical interest and inquiry into the nature
and structure of spacetime, causality, and profound is-
sues such as predictability in the universe, as we have
indicated here.

Research is already taking place in many of these
areas as the discussion here has pointed out. Some
of the most interesting questions from the author’s
personal perspective are: genericity and stability of col-
lapse outcomes, examination of the quantum gravity
effects near singularities, observational and astrophys-
ical signatures of the collapse outcomes, and other
related issues. In particular, one of the most interest-
ing questions would be, if naked singularities which
are hypothetical astrophysical objects, did actually form
in nature, what distinct observational signatures would
they present? That is, how one distinguishes black holes
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from naked singularities would be an important issue.
There have been some efforts on this issue in recent
years, as we indicated above. The point is that there are
already very high energy astrophysical phenomena be-
ing observed today, with several observational missions
working both from ground and space. The black holes
and naked singularities, which are logical consequences
of star collapse in general relativity, would appear to
be the leading candidates to explain these phenomena.
The observational signatures that each of these would

present, and their astrophysical consequences would be
of much interest for future theoretical and computa-
tional research, and for their astrophysical applications.

In our view, there is, therefore, a scope for both
theoretical as well as numerical investigations in these
frontier areas, which may have much to say for our
quest on basic issues in quantum gravity, fundamental
physics, and gravity theories, and towards the expand-
ing frontiers of modern high energy astrophysical ob-
servations.

References

20.1 S.W. Hawking, G.F.R. Ellis: The Large Scale Structure
of Spacetime (Cambridge Univ. Press, Cambridge
1973)

20.2 R. Wald: General Relativity (Univ. Chicago Press,
Chicago 1984)

20.3 G.F.R. Ellis, A. King: Was the big bang a whimper?,
Commun. Math. Phys. 38, 119 (1974)

20.4 G.F.R. Ellis, B. Schmidt: Singular spacetimes, Gen.
Relativ. Gravit. 8, 915 (1977)

20.5 A.K. Raychaudhuri: Relativistic cosmology, Phys.
Rev. 98, 1123 (1955)

20.6 V.A. Belinskii, I.M. Khalatnikov, E.M. Lifshitz:
A general solution of the Einstein equations with
a time singularity, Adv. Phys. 31, 639–667 (1982)

20.7 C. Uggla, H. van Elst, J. Wainwright, G.F.R. Ellis: Past
attractor in inhomogeneous cosmology, Phys. Rev.
D 68, 1–22 (2003)

20.8 C. Uggla: Recent developments concerning generic
spacelike singularities, Gen. Relativ. Gravit. 45,
1669–1710 (2013)

20.9 S.W. Hawking, R. Penrose: The singularities of grav-
itational collapse and cosmology, Proc. R. Soc. A
314, 529 (1970)

20.10 P.S. Joshi: Global Aspects in Gravitation and Cos-
mology (Oxford Univ. Press, Oxford 1993)

20.11 C.J.S. Clarke: Singularities: Global and local aspects.
In: Topological Properties and Global Structure of
Space-time, ed. by P.G. Bergmann, V. de Sabbata
(Plenum, New York 1986)

20.12 C.J.S. Clarke: Singularities in globally hyperbolic
spacetimes, Commun. Math. Phys. 41, 65 (1975)

20.13 F. Tipler: Singularities in conformally flat space-
times, Phys. Lett. A 64, 8 (1977)

20.14 F. Tipler, C.J.S. Clarke, G.F.R. Ellis: Singularities and
horizons. In: General Relativity and Gravitation,
Vol. 2, ed. by A. Held (Plenum, New York 1980) pp.
97–206

20.15 C.J.S. Clarke, A. Królak: Conditions for the occur-
rence of strong curvature singularities, J. Geo. Phys.
2, 127 (1986)

20.16 R. Schoen, S.-T. Yau: The existence of a black hole
due to condensation of matter, Commun. Math.
Phys. 90, 575 (1983)

20.17 K. Gödel: An example of a new type of cosmological
solution of Einsteins field equations of gravitation,
Rev. Mod. Phys. 21, 447 (1949)

20.18 F. Tipler: Causality violations in asymptotically flat
spacetimes, Phys. Rev. Lett. 37, 879 (1976)

20.19 E. Minguzzi: Chronological spacetimes without
lightlike lines are stably causal, Commun. Math.
Phys. 288, 801–819 (2009)

20.20 P.S. Joshi: On higher order causality violations,
Phys. Lett. A 85, 319 (1981)

20.21 P.S. Joshi, R.V. Saraykar: Cosmic censorship and
topology change in general relativity, Phys. Lett. A
120, 111 (1987)

20.22 C.J.S. Clarke, P.S. Joshi: On reflecting spacetimes,
Class. Quantum Gravity 5, 19 (1988)

20.23 M. Kriele: Causality violations and singularities,
Gen. Relativ. Gravit. 22, 619 (1990)

20.24 C.J.S. Clarke, F. de Felice: Globally non-causal
spacetimes, J. Phys. A 15, 2415 (1982)

20.25 J.M.M. Senovilla: New class of inhomogeneous
cosmological perfect-fluid solutions without big-
bang singularity, Phys. Rev. Lett. 64, 2219 (1990)

20.26 P.S. Joshi: Gravitational Collapse and Spacetime
Singularities (Cambridge Univ. Press, Cambridge
2008)

20.27 J.R. Oppenheimer, H. Snyder: On continued gravi-
tational contraction, Phys. Rev. 56, 455 (1939)

20.28 B. Datt: Über eine Klasse von Lösungen der Gravi-
tationsgleichungen der Relativität, Z. Phys. 108, 314
(1938)

20.29 R. Penrose: Gravitational collapse: the role of
general relativity, Riv. Nuovo Cimento (Numero
Speziale) I, 257–276 (1969)

20.30 R. Penrose: Singularities and time asymmetry. In:
General Relativity – an Einstein Centenary Survey,
ed. by S.W. Hawking, W. Israel (Cambridge Univ.
Press, Cambridge 1979)



Part
C

|20.20

436 Part C Spacetime Structure and Mathematics

20.31 P.S. Joshi, I.H. Dwivedi: Naked singularities in
spherically symmetric inhomogeneous Tolman–
Bondi dust cloud collapse, Phys. Rev. D 47, 5357
(1993)

20.32 A. Ori, T. Piran: Naked singularity in self-similar
spherical gravitational collapse, Phys. Rev. Lett. 59,
2137 (1987)

20.33 P.S. Joshi, I.H. Dwivedi: The Structure of naked
singularity in self-similar gravitational collapse,
Commun. Math. Phys. 146, 333 (1992)

20.34 M.W. Choptuik: Universality and scaling in gravita-
tional collapse of a massless scalar field, Phys. Rev.
Lett. 70, 9 (1993)

20.35 K. Lake: Precursory singularities in spherical
gravitational collapse, Phys. Rev. Lett. 68, 3129
(1992)

20.36 P. Szekeres, V. Iyer: Spherically symmetric singular-
ities and strong cosmic censorship, Phys. Rev. D 47,
4362 (1993)

20.37 P.S. Joshi, I.H. Dwivedi: Initial data and the
end state of spherically symmetric gravita-
tional collapse, Class. Quantum Gravity 16, 41
(1999)

20.38 R. Goswami, P.S. Joshi: Spherical gravitational col-
lapse in N-dimensions, Phys. Rev. D 76, 084026
(2007)

20.39 R. Giambo, F. Giannoni, G. Magli, P. Piccione: Naked
singularities formation in the gravitational collapse
of barotropic spherical fluids, Gen. Relativ. Gravit.
36, 1279 (2004)

20.40 K.S. Thorne: Non-spherical gravitational collapse:
A short review. In: Magic without Magic – John
Archibald Wheeler, ed. by J. Clauder (Freeman, New
York 1972)

20.41 C.C. Lin, L. Mestel, F.H. Shu: The gravitational col-
lapse of a uniform spheroid, Astrophys. J. 142, 1431
(1965)

20.42 S.L. Shapiro, S.A. Teukolsky: Formation of naked
singularities: The violation of cosmic censorship,
Phys. Rev. Lett. 66, 994 (1991)

20.43 B. Giacomazzo, L. Rezzolla, N. Stergioulas: Collapse
of differentially rotating neutron stars and cosmic
censorship, Phys. Rev. D 84, 024022 (2011)

20.44 L. Lehner, F. Pretorius: Black strings, low viscosity
fluids, and violation of cosmic censorship, Phys.
Rev. Lett. 105, 101102 (2010)

20.45 P.S. Joshi, A. Królak: Naked strong curvature sin-
gularities in Szekeres spacetimes, Class. Quantum
Gravity 13, 3069 (1996)

20.46 D. Christodoulou: The instability of naked singular-
ities in the gravitational collapse of a scalar field,
Ann. Math. 149, 183 (1999)

20.47 P.S. Joshi, D. Malafarina, R.V. Saraykar: Genericity
aspects in gravitational collapse to black holes and
naked singularities, Int. J. Mod. Phys. D 21, 1250066
(2012)

20.48 P.S. Joshi, N. Dadhich, R. Maartens: Why do naked
singularities form in gravitational collapse?, Phys.
Rev. D 65, 101501 (2002)

20.49 P.S. Joshi, D. Malafarina: Recent developments in
gravitational collapse and spacetime singularities,
Int. J. Mod. Phys. D 20, 2641 (2011)

20.50 M. Patil, P.S. Joshi: Kerr naked singularities as par-
ticle accelerators, Class. Quantum Gravity 28, 235012
(2011)

20.51 D. Pugliese, H. Quevedo, R. Ruffini: Motion
of charged test particles in Reissner–Nordstrom
spacetime, Phys. Rev. D 83, 104052 (2011)

20.52 P.S. Joshi, D. Malafarina, R. Narayan: Equilibrium
configurations from gravitational collapse, Class.
Quantum Gravity 28, 235018 (2011)

20.53 P.S. Joshi: Naked singularities, Sci. Am. 300, 36
(2009)

20.54 R. Goswami, P.S. Joshi, P. Singh: Quantum evapo-
ration of a naked singularity, Phys. Rev. Lett. 96,
031302 (2006)

20.55 T. Harada, H. Iguchi, K. Nakao: Naked singularity
explosion, Phys. Rev. D 61, 101502 (2000)

20.56 T. Biswas, E. Gerwick, T. Koivisto, A. Mazumdar: To-
wards singulary and ghost free theories of gravity,
Phys. Rev. Lett. 108, 031101 (2012)



Singularities
437

Part
C

|21.1

21. Singularities in Cosmological Spacetimes

Beverly K. Berger

Theorems state that gravitational collapse from
generic but non-singular initial conditions results
in some type of singular behavior. Here the na-
ture of the resultant approach to the singularity is
examined in spatially homogeneous, anisotropic,
vacuum cosmological spacetimes. The approach
to the singularity in these spacetimes is either
(asymptotically) Kasner-like or Mixmaster-like.
It has been conjectured that spatially inhomo-
geneous cosmological spacetimes approach the
singularity through Kasner-like or Mixmaster-like
dynamics at every spatial point. Several examples
of such cosmologies are explored numerically and
heuristically. The current status of a rigorous state-
ment of this conjecture and possible approaches
to a proof are discussed. This chapter will focus on
singularities in cosmological spacetimes.

21.1 Basic Concepts . ...................................... 437
21.1.1 Overview .................................... 437

21.1.2 FRW Models
in the Collapse Direction .............. 439

21.1.3 Singularity Theorems ................... 440

21.2 Spatially Homogeneous Cosmological
Spacetimes ............................................ 441
21.2.1 Introduction to Bianchi Type

Spacetimes ................................. 441
21.2.2 Matter (Usually) Does Not Matter... 443
21.2.3 Examples . ................................... 443

21.3 Spatially Inhomogeneous Cosmologies ... 450
21.3.1 The BKL Conjecture ...................... 450
21.3.2 Method of Consistent Potentials ... 450
21.3.3 Mathematical, Heuristic,

and Numerical Approaches
for Specific Spacetimes ................ 451

21.4 Summary .............................................. 457

21.5 Open Questions ..................................... 458

References ..................................................... 458

21.1 Basic Concepts

21.1.1 Overview

Rather than reserve the word cosmology only for mod-
els to describe the actual universe, we shall generalize
the concept to include spacetimes that are solutions to
Einstein’s equations and share the properties that distin-
guish a universe from, say, a binary black hole system.
In the former, the matter is everywhere rather than
localized. In addition, there is no asymptotically flat re-
gion outside the matter where, e.g., the binary’s mass
may be measured. Most of the following discussion will
explore singularities in cosmological spacetimes that
bear no relation to the actual universe. However, these
spacetimes will provide theoretical laboratories to study
issues related to singularities arising in generic, physi-
cal spacetimes.

To illustrate the meaning of singularities as they
arise in cosmological spacetimes, we first consider
a simple example. Spherical Bessel functions of order
zero are defined to be solutions to

d2y

dt2
C

2

t

dy

dt
C yD 0 ; (21.1)

with the general solution

yD A
cos t

t
CB

sin t

t
; (21.2)

for A and B arbitrary constants. Taylor expansions
of cos t and sin t are used to show that the first term on
the right-hand side of (21.2)!˙1 as t! 0 while the
second term has the finite value B. Figure 21.1 shows
the structure of this singularity in the solutions to (21.1).
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sin(t)/t
cos(t)/t

0 1 2 3–3 –2 –1
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Fig. 21.1 Example of a singularity. The functions sin.t/=t
(brown) and cos.t/=t (black) are shown for t in the interval
Œ��;��

In a sense, the singularity at tD 0 represents a boundary
to the evolution of solutions to (21.1), since a solution
starting at t0 > 0 (t0 < 0) cannot reach t < 0 (t > 0). We
further notice that any solution to (21.1) with A¤ 0 has
a singularity at tD 0. Such a solution is called generic.
The special, nonsingular, solutions with AD 0 are said
to be nongeneric since they represent a one-dimensional
set within the two-dimensional parameter space defined
by A and B. This simple example also illustrates that it
is possible to use numerical methods to study singulari-
ties. Numerical evolution of, say, (21.1) cannot proceed
if any simulation variable becomes infinite. Yet, it is
possible to find the nongeneric solution numerically as
is shown in Fig. 21.2. Here one takes advantage of the
sign change in cos.t/=t as it approaches the singularity
to zoom in on the special case sin.t/=t.

Singularities are of more than mathematical in-
terest when they occur in the evolution of equations
for physical systems that start from well-behaved
initial conditions. In principle, a singularity represents
a breakdown in the equations that produce it. In the
two examples from physics that follow, singularities
do not present fundamental issues because they can
be removed by replacing the singular equations with
different ones that describe the physics on a finer scale.
In the first example, shocks in fluids are discontinuities
in fluid parameters that can occur, say, as the boundary
of the wake of a projectile moving supersonically.
While the shocks represent singularities in the fluid
equations, they do not concern us in a fundamental way
since the underlying particles composing the fluid do
not individually have discontinuous or singular param-

0.6 0.8 10 0.2 0.4

1
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0.8

1.4
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6 8 100 2 4

0.5

0

1

Fig. 21.2 Numerical search for a nongeneric solution. The
horizontal axis is t and the vertical axis y.t/. Equa-
tion (21.1) is integrated from yD y0 at tD 10 in the
direction of tD 0, i. e., backwards in time. The initial
velocity dy=dt is adjusted to approach the nongeneric so-
lution proportional to sin.t/=t. The inset is an enlargement
of the region near tD 0

eters. The second well-known singular behavior is that
exhibited by a classical system consisting of a negative
point particle orbiting an equal and oppositely charged
massive central particle. This motion produces elec-
tromagnetic radiation that causes the orbiting particle
to spiral into the central particle. This phenomenon
became a crisis for classical electromagnetism when it
was discovered that the distribution of mass and charge
in atoms follows this model. The predicted collapse of
the classical atom would make it impossible for matter
to exist. Fortunately, as we now know, atoms described
by the laws of quantum mechanics do not collapse,
resolving this crisis.

Singularities also arise in the simplest solutions
in general relativity. The static Schwarzschild solu-
tion [21.1, 2] describes the spacetime outside a spher-
ically symmetric mass M. If the system under study is
a black hole, in terms of the coordinate r that labels
each two-sphere, as measured by an observer at rD1,
various quantities such as a redshift behave badly at the
event horizon, rD 2GM=c2. This coordinate singularity
may be removed by transforming to Kruskal coordi-
nates [21.2, Section 6.4]. In Kruskal coordinates it is
easy to see that an observer falling through the horizon
would experience infinite tidal force as r! 0 as mea-
sured by the Riemann tensor. This type of singularity
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is called curvature blow-up since nonzero, coordinate-
invariant quantities formed from the Riemann tensor
become infinite as r! 0. Because, inside the event
horizon, r is a time-like variable, the singularity occurs
on a space-like hypersurface.

The simplest cosmological solutions, the Fried-
mann–Robertson–Walker (FRW) cosmologies [21.1,
2], assume that the metric and matter variables depend
only on time and that any observer at fixed spatial co-
ordinates would measure the same values of all the
variables such as density and expansion rate indepen-
dent of spatial location or direction of observation.
Such solutions are said to be spatially homogeneous
and isotropic. When evolved backward in time, in the
collapsing direction defined by the decrease of any fidu-
cial volume with time, density, temperature, and tidal
force become infinite after a finite time. This singular-
ity, the big bang, creates a boundary to the evolution in
the collapse direction and thus represents a past bound-
ary to evolution in the expansion direction. In terms
of classical general relativity, there is no way to ask
what came before the big bang. The big bang is also
a curvature blow-up singularity occurring on a space-
like hypersurface.

Both the Schwarzschild and FRW solutions are
physically relevant; the former to describe nonrotating
black holes and the latter as a model for the universe on
the largest scales. Both solutions have curvature blow-
up singularities that occur on a space-like hypersurface.
As we shall see in the following sections of this chap-
ter, an important question is whether these simplest
solutions are typical in the character of their singular-
ities. Theorems developed originally by Penrose and
Hawking [21.2] state that singular behavior should be
expected in generic collapse once gravity becomes suf-
ficiently strong. However, the theorems do not provide
any details of the singularities one should expect in any
particular case. In the following, we shall start with
the FRW solutions and add increasing complexity by
eliminating the restrictions to isotropy and spatial ho-
mogeneity. A combination of mathematical, heuristic,
and numerical methods can be used to explore the be-
havior to be expected generically in these models. How
worried one should be about the proliferation of sin-
gular behavior in general relativity is an area of active
research. Unresolved questions include the detailed na-
ture of generic singularities, whether or not singularities
can form in our universe, and whether they have ob-
servational consequences. It is also not known if the
appeal to an underlying quantum gravity theory will
resolve singularities as quantum mechanics (or quan-

tum electrodynamics) has done for electromagnetism.
Promising results along these lines are discussed else-
where in this volume.

21.1.2 FRW Models in the Collapse Direction

Discussions of cosmology are found elsewhere in this
volume. The brief introduction given here, including
the equations given in this subsection, may be found in
most general relativity textbooks, such as [21.1]. Not
too long after Einstein introduced the general theory
of relativity, the first cosmological solutions were ob-
tained. The goal of these solutions was to model the
universe itself as characterized by stars and galaxies dis-
tributed everywhere and in all directions. At the time,
the simplest assumptions to make were to look for so-
lutions of Einstein’s equations that depended only on
time – to look for solutions that were identical at all
spatial points and for all directions – spatially homoge-
neous and isotropic. Solutions of this type were quickly
found but had two odd properties that made them
seem unphysical. First, for reasonable matter such as
pressureless particles (e.g., stars) called dust, no static
solution was possible. This led Einstein to propose
the cosmological constant to force a balance. He later
abandoned the constant when it was discovered that
the universe was indeed not static, but was expanding.
Much more recently, the observed acceleration of the
universe has led to the return of the cosmological con-
stant in the guise of dark energy. The metric is given by

ds2 D�dt2CR.t/2

�

�
dr2

1� kr2
C r2 d2C r2 sin2  d�2

�
;

(21.3)

where t is comoving proper time, the time measured
by observers at rest in the spatial coordinates, and r, ,
and � are polar coordinates. R.t/, often called a.t/
in the literature, is the scale factor that measures the
proper length of any spatial coordinate distance. The
spatial topology is determined by the value of k which
is �1, 0, or C1 for open, flat, and closed models, re-
spectively. The matter in these models may be assumed
for simplicity to satisfy a perfect fluid equation of state
with energy density �.t/ and pressure p.t/. The Bianchi
identities for the stress–energy tensor then yield, e.g.,

�dust D �0

�
R0

R

�3

I �radiation D �0

�
R0

R

�4

;

(21.4)
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for dust (pD 0) and radiation (pD 1
3�), respectively,

where p is the pressure of the fluid. Given the equation
of state of the matter, the dynamics of these models
may be obtained from one of Einstein’s equations, the
energy-like Hubble’s equation, namely

 
PR

R

!2

C
k

R2
�
�

3
D

8�

3
� ; (21.5)

where the constants G and c have been set equal to
unity and� is the cosmological constant. The solutions
have the form R/ t2=3 for dust and R/ t1=2 for
radiation if, e.g., kD 0D�.

The second odd property of these models was the
singularity apparent in the limit as t! 0 for t the time
variable given in (21.3). In this limit, any fiduciary vol-
ume vanishes while the density becomes infinite a finite
time in the past, namely, R3! 0 as t! 0. We note
further from (21.4) and (21.5) that radiation dominates
dust and both dominate over the curvature term k=R2

and� as t! 0. More formal definitions of singular be-
havior [21.2] demonstrate that the local tidal force as
measured from invariants of the Riemann tensor also
becomes singular. If we assume that FRW cosmolo-
gies describe our actual universe, the singular behavior
occurs a finite time in the past and no solution exists
before that time. The spacetime cannot be extended
through the singularity within classical general relativ-
ity. Note that the singularity occurs everywhere in the
space-like hypersurface described by (r; ; �) in (21.3).

21.1.3 Singularity Theorems

In the 1960s, Penrose and Hawking separately and
jointly published papers proving that for reasonable
matter starting from well-behaved initial conditions, if
the gravitational field becomes sufficiently strong, the
future evolution will yield some type of singular be-
havior. Precise statements and original references may
be found in [21.2]. These theorems mean that singu-
larities are a generic feature of general relativity. There
are many ways to state the difficulties posed by such
singularities. For example, singularities are a barrier to
the indefinite evolution of spacetimes from well-posed
initial data. Furthermore, the breakdown of general rel-
ativity at a singularity means that, were one to form in
our universe, its influence on the surrounding spacetime
would be unpredictable.

Of course, the well-known example of flat space-
time is nonsingular. However, it is not generic. While
genericity of a spacetime is somewhat in the eye of

Fig. 21.3 The Penrose conformal diagram for the extended
Schwarzschild spacetime is shown [21.2]. The light grey
arrow represents an infalling light ray. The singularity at
r D 0 is shown by the brown dashed line, the event hori-
zon at r D 2M by the light brown line with long and short
dashes, and null infinity by the brown dash-dot-dot line.
Note that the only way to detect the presence of such
a space-like singularity is to fall into it

Fig. 21.4 The Penrose conformal diagram for the extended
Reissner–Nordstrom spacetime [21.2]. The horizontal line
represents space-like initial data. The singularity is time-
like, represented by vertical dashed lines (brown). The
outer horizon is the brown line with long and short dashes.
The light brown dash-dot line is the inner horizon. The
gray small dash-dot line is a Cauchy horizon, marking the
boundary of causality of the initial data. The light brown
curve represents a typical infalling observer that can detect
the presence of the singularity via the (light grey) light ray
emitted by it

the beholder, one usually requires the initial condi-
tions to comprise an open set in a parameter space
that is as large as possible and to lack any special
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symmetry. A related consideration would be the effect
of a singularity on our universe if one either formed
or existed from the beginning. These concerns are
addressed in Penrose’s cosmic censorship conjectures
(see, e.g., [21.2]). The cosmological application of the
weak cosmic censorship conjecture states that singular-
ities in our universe are only found as an unreachable
past big bang. In the noncosmological, black hole sce-
nario, weak cosmic censorship requires singularities to
be hidden from the external world by a horizon. We
could feel free to ignore big bang cosmological singu-
larities and black hole singularities in practice, although
not in principle.

Penrose introduced conformal diagrams to illus-
trate the properties of singularities. A conformal factor
changes lengths and times in the spacetime metric but
leaves the paths of light rays invariant. Thus these
diagrams emphasize the paths of light rays in the space-
time. Examples of Penrose diagrams for the extended
Schwarzschild and Reissner–Nordstrom spacetimes are
given in Figs. 21.3 and 21.4, respectively (see also
[21.2, Chap. 12]). In both figures, the light rays prop-
agate at ˙45ı. For the extended Schwarzschild space-

time, the figure shows the space-like singularity at rD 0
and the null or light-like event horizon. Light rays can-
not propagate forward in time from the singularity so
a time-like or null observer will receive no information
from the singularity before falling into it. In contrast,
as shown in Fig. 21.4, the singularities in Reissner–
Nordstrom (and Kerr) spacetimes are time-like. Light
rays emitted by the singularity can impinge upon an in-
falling time-like observer.

The strong cosmic censorship conjecture would, if
true, rule out time-like singularities that arise generi-
cally. Such a singularity could be detected by an ob-
server falling into it. Problematical time-like singular-
ities are found in the interiors of Kerr, Kerr–Newman,
and Reissner–Nordstrom black holes. In contrast, the
singularities in Schwarzchild black holes and in the
FRW cosmology are space-like, in agreement with cos-
mic censorship. None of these examples address the
question of cosmic censorship in generic models. Since
the focus in this chapter is cosmological singulari-
ties, we will emphasize the question of whether or not
generic singularities are space-like as the relevant as-
pect of cosmic censorship.

21.2 Spatially Homogeneous Cosmological Spacetimes

21.2.1 Introduction to Bianchi Type
Spacetimes

If, in the spatial metric, we relax the assumption of
isotropy, we find that there are many spatially homoge-
nous cosmologies. While this may appear surprising,
such spacetimes need only be solutions to Einstein’s
equations where the spatial variables do not appear
in the Einstein equations although they may appear
in the metric. An example of a two-dimensional ho-
mogeneous space with a spatially dependent metric in
a coordinate basis is the two-sphere where the metric
can be written as dl2 D d2Csin2  d�2. It is clear that
all points on the surface of the sphere are equivalent.

Three-dimensional, spatially homogeneous spaces
were classified by Bianchi and include most of the inter-
esting spatially homogeneous spaces. We are including
a discussion of the classification for completeness. The
details are not necessary for the exploration of par-
ticular homogeneous spaces. For precise definitions of
Bianchi’s classification, see [21.2]. For a detailed dis-
cussion of his classification and the resultant Bianchi
types, see [21.3, 4]. The classification identifies the

three Killing vectors �i for iD 1; 2; 3 of the homoge-
neous space and is determined by the commutators (or
Lie group) that relates them, namely

Œ�i; �j�D Ck
ij�k ; (21.6)

where the properties of the structure constants Ck
ij de-

termine the Bianchi type. One can also describe these
spaces in terms of an invariant coordinate basis Xi such
that ŒXi;Xj�D�Ck

ijXk and the dual 1-forms � i such that

d� k D Ck
ij�

i ^ � j : (21.7)

See, e.g., [21.5, p. 110], for more details. To construct
a cosmological spacetime from any of the Bianchi type
homogeneous spaces, scale the space with an over-
all time-dependent factor of the spatial volume and
add the t� t component of the metric. It should be
emphasized here that the Bianchi type homogeneous
spaces are constructed from the one-forms � i accord-
ing to the prescription given by the structure constants
in (21.7). A representation in a coordinate basis as,
e.g., � i D ai

x.x; y; z/dxCai
y.x; y; z/dyCai

z.x; y; z/dz can
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yield a spatially dependent metric. However, geometri-
cal quantities appearing in Einstein’s equations such as
the Ricci tensor and the spatial scalar curvature will de-
pend only on time.

Under some circumstances, it might be convenient
to add a lapse N and/or shift Ni to allow a more general
time variable in the metric as written in a coordinate
basis

ds2 D�N2 dt2C 2Ni dt dxiC gij dxi dxj : (21.8)

Several of the cosmological spacetimes constructed
from Bianchi type spaces are useful for the study of cos-
mological singularities. In this context, it is convenient
to describe the homogeneous spaces through a spatial
metric that will emphasize the anisotropy. The compo-
nents of the spatial metric will be written as functions
of time multiplying the one-forms � i. As an example,
the flat FRW model’s spatial metric

dl2FRW D R2.t/.dx2C dy2C dz2/ ; (21.9)

will become for an anisotropically expanding, flat
model

dl2 D R2
x.t/dx2CR2

y .t/dy2CR2
z .t/dz2 : (21.10)

To study the anisotropic cosmologies, it is convenient
to replace the anisotropic scale factors fRx;Ry;Rzg

with f˝;ˇ
C

; ˇ
�

g, where, in this example, ˝ D
ln.RxRyRz/

1=3 measures a fiducial spatial volume while
ˇ
C

D 1
6 ln.RyRz=R2

x/ and ˇ
�

D 1
2
p

3
ln.RyRz/ measure

the anisotropic shear. For the cosmological spacetimes
discussed below, these variables allow the evolution of
the cosmology to be treated as a trajectory in an ab-
stract space called minisuperspace (MSS) with axes
f˝;ˇ

C

; ˇ
�

g [21.5].
MSS was introduced originally by Misner [21.6].

Superspace in this context (there are other com-
pletely different uses of this term) is an abstract
space wherein each point represents a three-geometry.
A three-geometry generalizes the concept of a space to
take into account that many apparently different spaces
are actually the same space written in different coor-
dinates. A three-geometry is the equivalence class of
such spaces – the coordinate invariant underlying three-
dimensional space. A trajectory in superspace may be
interpreted as the evolution of a space in time. For
example, the FRW cosmology may be represented in
superspace by a single parameter, e.g., the spatial vol-
ume. A straight line trajectory could then represent

the evolution of the volume with time. In principle,
however, superspace is infinite dimensional where an
arbitrary space may be specified (modulo coordinate
transformations) by the set of numbers representing,
e.g., the metric values at each spatial point. MSS is
the restriction of these infinite degrees of freedom to
the finite degrees of freedom (e.g., the metric coeffi-
cients valid everywhere) of a spatially homogeneous
cosmology. It is useful to analyze spatially homoge-
neous cosmologies through their dynamics in MSS,
especially through Hamiltonian methods using the dy-
namical variables f˝;ˇ

C

; ˇ
�

g and their conjugate
momenta fp˝ ; pC; p�g.

Without the restriction to flat space, the spatial met-
ric is given by

dl2 D
�

e2ˇ
	

ij
� i� j ; (21.11)

where ˇij is called the anisotropy matrix and � i is the
basis of one-forms in (21.7). The anisotropy matrix is
constructed to be traceless since the trace appears in
the determinant of the spatial metric (21.11), which is,
in fact, the volume density. A cosmology is then con-
structed by adding an overall isotropic scale factor e2˝

where ˝ is proportional to the logarithm of the spatial
volume. It should be noted that the sign of ˝ varies in
the literature. Thus, we obtain the metric

ds2 D�N2 d
2C e2˝.e2ˇ/ij�
i� j ; (21.12)

where we have called the coordinate time 
 and added
an arbitrary lapse N.
/. For certain of these models,
called class A [21.4], Einstein’s equations may be ob-
tained by variation of a Hamiltonian

2H D�p2
˝Cp2

C

Cp2
�

Ce4˝V.ˇ
C

; ˇ
�

/ ; (21.13)

where p˝ ; p
˙

are canonically conjugate to ˝;ˇ
˙

, the
potential V.ˇ

C

; ˇ
�

/ arises from the spatial scalar cur-
vature, and H D 0 is the Hamiltonian constraint for
these models. The equations obtained by the variation
of the Hamiltonian (21.13) can be interpreted to de-
scribe a trajectory in MSS that we shall see can be
treated in detail as a scattering off the MSS potential
e4˝V.ˇ

C

; ˇ
�

/. We note here that Einstein’s equations
can be formulated in terms of first-order-in-time evo-
lution equations and constraints. The constraint equa-
tions, once solved initially, are preserved for all time by
the evolution equations. In the spatially homogeneous
cosmologies discussed in this chapter, the Hamiltonian
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constraint also provides the Hamiltonian whose varia-
tion yields the evolution equations. It should be noted
that the preservation of the constraints by the evolution
equations is not guaranteed in a numerical evolution.

While there are other spatially homogeneous space-
times that may be interpretable as cosmologies, most
features of generic singularities may be captured
through only three Bianchi types – I, II, and IX. Each of
these will be described in detail in subsequent sections.

21.2.2 Matter (Usually) Does Not Matter

To study the approach to the singularity, consideration
of the vacuum case is usually sufficient. This is defi-
nitely not true for FRW models where no solution to
Einstein’s equations exists in the absence of matter (or
of a cosmological constant in place of matter). How-
ever, as we show in the following section, anisotropy
can substitute for matter to construct a solution. The key
to understanding the influence of matter on the dynam-
ics of the approach to the singularity is the power-law
dependence of the matter’s energy density on the scale
factor R.t/ as discussed above, where the fastest growth
in the density is proportional to R�4 for radiation. We
shall see below that an effective energy density due to
anisotropy behaves as R�6 in the same variables. Thus,
anisotropy will dominate as the scale factor goes to zero
so that dust, radiation, or any other power law depen-
dence that grows more slowly than anisotropy can be
neglected. While the dust and radiation equations of
state describe approximate behaviors of known mat-
ter, it is also possible that scalar fields play a role in
the early universe. These approach the singularity with
the same power law dependence on the scale factor as
anisotropy energy density and thus cannot be neglected.
In addition, neglecting matter – studying singularities
in vacuum spacetimes – allows avoidance of nongrav-
itational singularities such as shocks in fluids that can
arise in the matter even in flat spacetime.

21.2.3 Examples

In this section, three examples of spatially homoge-
neous, anisotropic, vacuum cosmologies will be con-
sidered. We will treat these models as dynamical sys-
tems described as particle trajectories in MSS. Here
anisotropy contributes the kinetic energy and spatial
scalar curvature (present in all Bianchi types except I)
contributes the potential energy. Hamiltonian methods
can be used to derive Einstein’s equations to yield the
dynamics of a free particle that bounces off potential

energy walls. While the three examples we will dis-
cuss allow this type of analysis, in general, Hamiltonian
methods that assume symmetries such as spatial ho-
mogeneity prior to variation do not necessarily yield
the correct Einstein’s equations. Bianchi-type models in
class B [21.4] require this more general treatment and
will not be discussed here.

The Kasner Spacetime
The simplest vacuum, anisotropic, spatially homoge-
neous cosmological spacetime is the solution to Ein-
stein’s equations first described by Kasner [21.7], also
known as Bianchi type I. The spatial coordinates may
be either Cartesian or the equivalent angular variables
on T3. Rather than the single, isotropic FRW scale
factor, the Kasner solution has three orthogonal scale
factors Rx;Ry, and Rz. The metric is given by

ds2 D�dt2C

3X
iD1

t2ai dx2
i ; (21.14)

where the exponents ai satisfy two relations, namely

3X
iD1

ai D 1D
3X

iD1

a2
i ; (21.15)

and t is comoving proper time. Equations (21.15) imply
that the three exponents may be replaced by a single
parameter, u, where [21.8]

a1 D
�u

u2C uC 1
I

a2 D
uC 1

u2C uC 1
I

a3 D
u.uC 1/

u2C uC 1
(21.16)

for 1	 u <1. It is clear from (21.16) that, in the direc-
tion of a collapsing universe, two scale factors will be
decreasing and one increasing. Note, however, that the
overall spatial volume is proportional to ta1Ca2Ca3 D t
and thus goes to zero at the big bang singularity in these
models. The special case uD1 yields a1 D a2 D 0,
a3 D 1. With these values of the Kasner indices, the
metric (21.14) is really flat spacetime in different co-
ordinates. To see this, substitute .T;X/ for .t; x3/ in
(21.14), where

T D t cosh x3 I X D t sinh x3 : (21.17)
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To interpret the dynamics of anisotropic cosmolo-
gies, it is convenient to use the anisotropy and volume
variables given in (21.12). In particular, we replace the
Kasner metric (21.14) by

ds2 D�e6˝ d
2C e2˝.e2ˇ/ij dxi dxj ; (21.18)

where we have chosen N D e3˝ as the lapse while the
anisotropy is parametrized by the diagonal matrix

ˇij D diag
�
�2ˇ
C

; ˇ
C

C
p

3ˇ
�

; ˇ
C

�
p

3ˇ
�

	
;

(21.19)

and the time 
 is defined by the choice of lapse. The
set of variables .˝; ˇ

C

; ˇ
�

/ define the axes in MSS.
Within MSS then, these variables are useful because
Einstein’s equations can be obtained by variation of the
Hamiltonian

2H D�p2
˝ C p2

C

C p2
�

; (21.20)

where p˝ and p
˙

are canonically conjugate to ˝ and
ˇ
˙

, respectively. The resultant Hamiltonian (21.20)
is equivalent to that for a free, relativistic particle
in a three-dimensional MSS with axes .˝; ˇ

C

; ˇ
�

/.
For this model, H D 0 is, in fact, the Hamiltonian
constraint of general relativity (see, e.g., [21.2], Sec-
tion 10.2 and elsewhere in this volume) and is one of
the Einstein equations. Of course, it is important to keep
in mind that MSS is an abstract space so a free particle
within it is an abstraction of the dynamics of a physical
universe.

In terms of RD e˝ , dtD e3˝ d
 and (from vari-
ation of H ) d˝=d
 D�p˝ . The Hubble equation
(21.5) may be rewritten as

�
d˝

dt

�2

D
�
p2
C

C p2
�

�
e�6˝ ; (21.21)

where the left-hand side is just R�1 dR=dt and p
˙

are
constants. The right-hand side of (21.21) is an energy-
like source for the evolution of the volume e3˝ . It is
clear that anisotropy can replace matter in these vacuum
models and that the kinetic energy of the anisotropy
can dominate ordinary matter as t! 0, since radiation
evolves as e�4˝ and dust as e�3˝ as ˝!�1.

Note that variation of the Hamiltonian (21.20)
yields the equations of motion for a relativistic particle
in an MSS of two spatial dimensions. It is convenient

to solve the Hamiltonian constraint H D 0 by defining
new parameters v

˙

D p
˙

=p˝ to yield

v2
C

C v2
�

D 1 ; (21.22)

which is immediately parametrizable in terms of  as
v
C

D cos  and v
�

D sin  (since ˇ
C

and ˇ
�

are taken
as the horizontal and vertical axes, perpendicular to
the ˝-axis in MSS). Note also that (21.22) defines
a unit-radius circle in the space with axes p

˙

=p˝ . Any
Kasner solution resides at a point on this Kasner circle.
One can rewrite  (nonuniquely) in terms of the previ-
ously mentioned parameter u [21.9]. Equations (21.20)
and (21.22) may be combined to show that the Kasner
solution may be represented by an arbitrary straight line
in MSS, namely

ˇ
˙

D ˇ0
˙

� v
˙

˝ ; (21.23)

for ˇ0
˙

constants of integration. As the cosmology
evolves, the anisotropy and volume of the model evolve
along the straight line.

It is also possible to calculate curvature invariants
built out of the Riemann tensor for this model (see,
e.g., [21.1]). The first nonzero invariant is

� D R���	R���	 D
16

t4

u2.uC 1/2

.u2C uC 1/3
; (21.24)

that is seen to blow up as comoving proper time t! 0
for any finite value of u. This defines a curvature blow-
up singularity in this model. Note that the singularity
occurs at a fixed value of t (or˝) and is thus space-like
in character. The special case uD1, flat spacetime in
disguise, is, as expected, nonsingular, since the coeffi-
cient of 16=t4 vanishes.

The approach to the singularity in Kasner (Bianchi
type I) models is called velocity term dominated
(VTD) [21.10] because the dynamics is described by
the kinetic energy (velocity terms) of a free particle in
MSS.

The Bianchi Type II (Taub) Models
The metric of the Taub [21.11] or Bianchi type II space-
times may be written as (21.18) with � i� j replacing
dxi dxj for d�1 D �2^�3; d�2 D 0; d�3 D 0: The spa-
tial dependence necessary to enforce the group structure
of the � i disappears from Einstein’s equations (indicat-
ing that the model is, indeed, spatially homogeneous)
that are derivable from the Hamiltonian

2H D�p2
˝ C p2

C

C p2
�

C �2e4˝�8ˇ
C ; (21.25)
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for � an arbitrary constant, which we will set equal to
unity for convenience. The collapsing direction is in-
dicated by ˝!�1 and H D 0 is the Hamiltonian
constraint. In the direction toward the singularity, we
may assume that ˝ < 0 and that the potential term in
(21.25) may be written as

V D e4j˝j.1C2ˇ
C

=j˝j/ : (21.26)

The exponential V attains its largest value in the al-
lowed region

ˇ
C

j˝j
� �

1

2
; (21.27)

when the equality holds. If the equality does not hold,
V � e�4j˝j� , where � > 0 and is thus exponentially
small. As j˝j !1, the difference between V at � D 0
and at � > 0 is amplified. Thus V becomes an ever
sharper wall at ˇC

j˝j
D� 1

2 .
If the potential term is vanishingly small, the dy-

namics reverts to the Kasner solution. Because the
potential term is exponential, it becomes ever smaller
except where the exponent � 0 as ˝!�1. Where
the potential is exponentially small, the Kasner solution
becomes an excellent approximation. Equation (21.25)
describes the standard classical mechanics problem of
scattering off an exponential potential, so that an ex-
plicit solution may be obtained. More important for the
purposes of analyzing the approach to the singularity is
to use conservation of momentum far from the potential
where the potential can be neglected to relate the outgo-
ing Kasner model to the incoming one. The key element
of the calculation in this case is to rewrite (21.25) in
terms of the variable zD˝ �2ˇ

C

appearing in the ex-
ponential and an orthogonal (in a sense to be described)
variable yD a˝C cˇ

C

, where a and c are determined
so that y; z, and their canonically conjugate momenta
py; pz satisfy

pyPyC pzPzD p˝ P̋ C p
C

P̌
C

; (21.28)

where the overdot denotes d=d
 . This allows one to
write .py; pz/ in terms of .p

C

; p˝/. In terms of these
variables, the potential appears only in the z-direction so
that the bounce law is obvious, namely pz must change
sign while py (and also, obviously, p

�

) remain constant.
One then rewrites the Hamiltonian (21.25) in terms of
.y; z/ and their conjugate momenta. To take the form
of an energy equation for scattering off the potential
e4z requires cD�a=2 in the definition of y. One then

rewrites .p0
C

; p0
˝
/ after the bounce in terms of the post-

bounce .p0y; p
0

z/D Œpy.pC; p˝/;�pz.pC; p˝/� to yield
the bounce law (in terms of v

C

for convenience)

v0
C

D�
5v
C

C 4

4v
C

C 5
: (21.29)

(The parameter a does not contribute to the bounce law
and thus need not be determined.) Finally, we note that
a rotation of the ˇ

˙

axes in MSS is equivalent to ori-
enting the potential wall for this model in an arbitrary
direction. This allows the conclusion that the dynamics
of the Taub model is described as an incoming Kasner
bouncing off an exponential wall in MSS to yield an
outgoing Kasner with the change in Kasner parameter
obtained from the bounce law (21.29) for v

C

and the
constancy of v

�

with v
˙

rotated appropriately accord-
ing to the orientation of the Taub potential wall in MSS.
Note that this behavior can also be described as a tra-
jectory from one point on the Kasner circle to another.
The Taub approach to the (Kasner-like) singularity is
called asymptotically velocity term dominated (AVTD)
because, after the bounce, the dynamics becomes arbi-
trarily close to the VTD Kasner solution.

The Bianchi Type IX (Mixmaster) Models
In the context of singularity behavior, one might
argue that the vacuum, diagonal, Bianchi type IX
model, first described by Belinski, Khalatnikov, Lif-
shitz (BKL) [21.8] and dubbed Mixmaster by Mis-
ner [21.12], holds the most interest. We note here, but
will not discuss further, that similar behavior exists
for corresponding Bianchi type VIII models and for
Bianchi type VI0 models with magnetic fields. A re-
view is given in [21.13]. The Mixmaster metric is given
by (21.12) with anisotropy matrix (21.19), where the � i

satisfy

d� i D �i
jk�

j ^� k ; (21.30)

and where �i
jk is zero if any two indices are identical,C1

if they are in cyclic order, and �1 if they are anticyclic.
Therefore, the symmetry group generated by the Killing
vectors � i is SO.3/. Realization of this model requires
the spatial topology S3. In an appropriate coordinate ba-
sis, the dynamics can be expressed in terms of three
logarithmic scale factors (LSFs) that correspond to the
logarithms of the three scale factors, ln Rx; ln Ry; ln Rz,
in the Kasner model. For Bianchi type IX, the LSFs are

˛ D˝ � 2ˇ
C

;

� D˝Cˇ
C

C
p

3ˇ
�

;

� D˝Cˇ
C

�
p

3ˇ
�

: (21.31)
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In any Kasner epoch between bounces, two LSFs de-
crease and one increases in the direction toward the sin-
gularity. In subsequent epochs, the most negative LSF
decreases monotonically while the other two exchange
roles after each bounce. When the era ends as indicated
by the BKL map given below for u from (21.16), one
of the oscillating LSFs becomes the monotonically de-
creasing one while the other two now oscillate. The
LSFs are proportional to the logarithms of the dominant
potential terms described in the Hamiltonian treatment
given next.

The detailed dynamics may be found from varia-
tion of the Hamiltonian (21.13) where the potential V is
given by

V.ˇ
C

; ˇ
�

/

D e�8ˇ
C C e4ˇ

C

C4
p

3ˇ
� C e4ˇ

C

�4
p

3ˇ
�

� 2
�

e4ˇ
C C e�2ˇ

C

�2
p

3ˇ
� C e�2ˇ

C

C2
p

3ˇ
�

	
:

(21.32)

Under most circumstances, the first three terms domi-
nate. Note that these terms are equivalent to three copies
of the Taub potential rotated with respect to each other
by 2

3� . The subdominant terms become significant only
in the corners of the potential shown in Fig. 21.5. The
approximate behavior of this model is a sequence of
Kasner epochs related by the so-called BKL map [21.8]
except when, in MSS, the system point runs into one
of the corners of the potential. This yields a different
dynamical picture as described in, e.g., [21.14]. Even-
tually, the system will exit the corner and patch onto
the generic, sequential Kasner dynamics. If the trajec-
tory bounces from the center of an exponential wall
precisely down the center of the corner (e.g., a bounce
at ˇ
�

D 0 with p
�

D 0), no further bounces will oc-
cur. This not only corresponds to the Taub solution
but the final Kasner is the exceptional flat spacetime
case, uD1. To analyze the behavior of Mixmaster dy-
namics, it is useful to follow the behavior of the BKL
parameter u defined for each Kasner segment, or epoch,
via (21.16). The successive values of u obey a discrete
map, the BKL map, describing the evolution of u, be-
tween Kasner epochs labeled by n and nC 1

unC1 D

8<
:

un� 1 un � 2
1

un� 1
1	 un 	 2

: (21.33)

A detailed treatment of an updated version of the four-
parameter BKL map is given in [21.15]. It is shown
there that one can construct an approximate Mixmaster

Fig. 21.5 The contours of the Mixmaster potential from
(21.32) are shown using a logarithmic scale, log V.ˇ

C

;

ˇ
�

/, where the horizontal axis is ˇ
C

and the vertical ˇ
�

with the range Œ�5; 5�. The potential is negative in the re-
gion appearing white in the figure. The straight walls of
the equipotentials meet at corners. As˝!�1, the Mix-
master trajectory reaches ever larger ˇ

˙

so that the walls
become steeper and the corners narrower for successive
epochs

trajectory from the map and, in [21.16], that the ap-
proximation improves as the singularity is approached.
See Fig. 21.6 and the discussion in [21.16]. The map
for u has been analyzed in great detail by several au-
thors [21.17]. Each Kasner epoch is related to the
previous one by unC1 D un� 1. This set of epochs con-
stitutes an era as long as un > 2. The eras themselves
are related by the so-called Gauss map uNC1 D 1=.uN�

ŒuN �/, where ŒuN � is the integer part of uN . Here, N
labels the eras rather than the epochs within an era.
The Gauss map is sensitive to initial conditions due to
the subtraction in the denominator. This is one of the
characteristics of chaotic dynamics. For several years,
there was extensive discussion of the relationship of
this property to chaos and its various definitions. The
conclusion one may draw is that this is really just a se-
mantic question with the answer that the Gauss map
is sensitive to initial conditions whether or not this is
labeled chaos. The Gauss map has other interesting
properties, including a fixed point at the golden mean
(uD .1C

p
5/=2) and period-n solutions that relate to

the Fibonacci series [21.9]. This countable set within
the continuum of u-values complicates proofs of the
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Fig. 21.6 Accuracy of the BKL map for u. The map
(21.33) is calculated to 60 significant figures using Math-
ematica (shown by crosses) and compared to u ob-
tained from numerical simulations with double precision
(squares) and quadruple precision (circles) using the al-
gorithm of [21.16]. The horizontal axis shows the epoch
number n and the vertical axis the value of u. While all
these calculations agree initially, sensitivity to initial con-
ditions eventually causes disagreement. The sequences of
u-values from the simulations begin to disagree with the
highest precision calculation when the information about
the initial value of u is lost. The degree of initial informa-
tion depends on the precision with which it is provided.
The double precision simulation loses its initial precision
at nD 98 and the quadruple at nD 113. Once the ini-
tial information is lost the subsequent evolutions differ
qualitatively, where qualitative difference means that the
sequences of integer parts of u begin to differ

nature of the dynamics. Especially problematic are pre-
cisely integer values of u, which lead exactly to the
Taub solution’s special case of the flat spacetime Kas-
ner mentioned above.

Numerical methods have been brought to bear to
solve the ordinary differential equations for this model
from its earliest history. Typically, only a few Kasner
epochs have been shown due to loss of accuracy and
the need to reduce the computational time step dur-
ing a bounce. The best numerical method now in use
was developed by Garfinkle et al. [21.16] and is based
on a symplectic algorithm related to that first applied
to cosmological singularities in [21.18]. A brief dis-
cussion of symplectic numerical methods will be given
next.

Following the discussion in [21.19], we review sym-
plectic numerical methods for a system with one degree
of freedom q with conjugate momentum p described by
a Hamiltonian

H D
1

2
p2CV.q/ : (21.34)

To illustrate the method, we choose

H DH1.p/CH2.q/ : (21.35)

If the vector X D .p;q/ defines the variables at time t,
then the time evolution is given by

dX

dt
D fH;XgPB � AX ; (21.36)

where f gPB is the Poisson bracket. The usual exponen-
tiation yields an evolution operator

eA�t D eA1.�t=2/eA2�teA1.�t=2/CO.�t3/ ; (21.37)

where AD A1CA2 is the generator of the time evolu-
tion. This method is useful when exact solutions for the
sub-Hamiltonians are known. For the split given in this
example, variation of H1 yields the solution

qD q0C p0�t ; pD p0 ; (21.38)

while that of H2 yields

qD q0 ; pD p0�
dV

dq

ˇ̌̌
ˇ
q0

�t : (21.39)

Note that H2 is exactly solvable for any potential V no
matter how complicated. One evolves from t to tC�t
using the exact solutions to the sub-Hamiltonians ac-
cording to the prescription given by the approximate
evolution operator (21.37).

The optimal application to Mixmaster models re-
quires the Hamiltonian to be split as H1 D HtaubIH2 D

Hother where Htaub is (21.13) using the largest expo-
nential term in (21.32) for V, while Hother contains
the remaining terms. Evolution with H1 uses the exact
Taub solution while the evolution with H2 is straight-
forward since no momenta are involved. Since H2 is
exponentially small in this case, the accuracy of the
method is exponential rather than that of the nominal
order of the symplectic scheme (Fig. 21.7). Essentially,
one evolves the system as a sequence of Taub mod-
els. This method allows evolution through hundreds
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Fig. 21.7 Performance of the algorithm described
in [21.16] (where a version of this figure appears). A typi-
cal Mixmaster bounce is shown. First triangles and circles
indicate every tenth point in, respectively, fourth-order
Runge–Kutta and sixth-order symplectic (split into kinetic
and potential sub-Hamiltonians) integration schemes. In
contrast, the solid squares show every point using the new
algorithm. The inset shows the bounce in more detail.
Because the bounces are built in, the new algorithm can
continue to increase the time step to match the increase in
magnitude of ˝, ˇ

˙

. In standard methods, the time step
must be decreased to follow the details of the bounce

of epochs with ever-increasing accuracy. The accu-
racy improves because the neglected terms become
exponentially smaller as the singularity is approached.
A typical trajectory obtained with this algorithm and us-
ing rescaled coordinates ˇ

˙

=j˝j is shown in Fig. 21.8.
It shows the ergodic nature of the dynamics in that the
trajectory appears to reach every part of the available
region in the rescaled MSS.

It should be noted at this point that attempts to ex-
ploit the Mixmaster behavior to explain features of our
universe have failed. This is because any fiducial time
indicator such as the ratio  of the Hubble time to the
Planck time fails to allow more than a few bounces,
not enough to, e.g., isotropize the universe or wash out
any special initial conditions [21.12]. The change in the
relevant time variable, e.g., �˝ in the approach to the
singularity, is the logarithm of  and reaches at most of
order 103, while on the order of 250 bounces to allow
loss of information about initial conditions corresponds
to �˝ � 1060.

It is also worth mentioning that the Mixmaster
bounces end during the evolution toward the singular-
ity in the presence of a scalar field [21.20, 21]. Unlike
dust or radiation, the kinetic energy of the scalar field

�– / |Ω|

�+/ |Ω|

Fig. 21.8 A typical Mixmaster trajectory with � 250
bounces. In these rescaled variables, the potential walls are
fixed with, e.g., the wall due to the term e4˝�8ˇ

C fixed at
ˇ
C

=j˝j D � 1
2

enters the Hamiltonian constraint with the same power-
law dependence on the volume as the anisotropy energy
to yield a Hamiltonian

2H D�p2
˝ C p2

C

C p2
�

C p2
' C e4˝V.ˇ

C

; ˇ
�

/

C e6˝m2'2 ;

(21.40)

where '; p' are, respectively, a minimally coupled
scalar field of mass m and its canonically conjugate
momentum and H D 0 is the Hamiltonian constraint.
Equation (21.40) implies that the scalar field momen-
tum can influence the dynamics of the approach to the
singularity because the term p2

' is not suppressed by
factors of e˝ as ˝!�1. What happens is that the
Kasner-like terms in the kinetic energy in (21.40) that
dominate between bounces no longer satisfy the Hamil-
tonian constraint by themselves. The kinetic energy is
also shared by the scalar field. The system point in
MSS with coordinates .˝; ˇ

C

; ˇ
�

/ no longer moves
fast enough to hit the potential wall so the bounces
come to an end. Thus Bianchi type IX models with min-
imally coupled scalar fields are AVTD. An example is
shown in Fig. 21.9 and additional details can be found
in [21.21].

It is important to mention here that the Hamiltonian
constraintH D 0 must be preserved during the simula-
tion in models with Mixmaster-like behavior (including
the spatially inhomogeneous models to be discussed
later). See [21.22] for more details. For example, if
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Fig. 21.9 Trajectory of a Mixmaster model with a scalar
field ends. The Kasher circle defined by v2

C

C v2
�

D 1 is
shown. Two Mixmaster trajectories are shown, one with
(red with dots) and one without (blue) a scalar field. Both
start near (a). The nonscalar-field trajectory returns to the
Kasner circle after each bounce. The scalar-field trajectory
has v2

C

C v2
�

D 1� v2
' and fails to reach the Kasner circle

after a few bounces. The scalar-field trajectory begins to
deviate from the nonscalar-field one at (b) and ends at the
point labeled c. A version of this figure appears in [21.21]

we consider Mixmaster evolution using (21.13) with
(21.32) for H , the constraint can be enforced by solv-
ing H D 0 for p˝ at every N-th time step rather than
using p˝ obtained via the numerical evolution algo-
rithm. Results from the method of [21.16] are not very
sensitive to the value chosen for N, although the pre-
cision and information loss shown in Fig. 21.6 will
depend on N after a large number of bounces. As ˝!
�1, the bounces become ever sharper so that the sys-
tem spends most of the time on the Kasner circle. Thus
the value of K D v2

C

Cv2
�

on the Kasner circle (defined
by K D 1) may be used to test the validity of the simu-
lation. This is shown in Fig. 21.10.

For spatially homogeneous models, the mathemat-
ical status of Mixmaster dynamics is reasonably com-
plete. The simpler cases with VTD or AVTD singulari-
ties such as Bianchi types I and II present no difficulties.

Kconstrained

Kunconstrained

12 13 14 1510 11
log10 τ

1

0.9

0.8

0.7

0.6

Fig. 21.10 Preserving the constraint in Mixmaster simu-
lations. The value of K D v2

C

C v2
�

versus computational
time 
 is shown for a typical simulation with enforce-
ment of the Hamiltonian constraint H D 0 (red) and
nonenforcement (blue). Between bounces, the true solution
should have K D 1. This indicates that failure to preserve
the constraint during numerical evolutions can yield spuri-
ous results

However, Bianchi types VIII and IX with Mixmaster
behavior have proven to be much more challenging.
In this context, Ringström has proven that, if the ini-
tial data are not Taub, the diagonal, Bianchi VIII and
IX, vacuum models have curvature blow-up singular-
ities [21.23]. A similar proof was given by Weaver
for the approach to the Mixmaster-like singularity in
magnetic Bianchi VI0 [21.24]. Wainwright and collab-
orators [21.25] developed a framework to unify the
Bianchi types. The spirit of this framework is an alter-
native view of the Bianchi type models as dynamical
systems with the structure focusing on the Kasner cir-
cle defined by (21.22) rather than as dynamics within
the MSS potential. With these variables and extensions
thereof, it has been possible to prove [21.26, 27] that the
behavior described above – the unending sequence of
Kasner epochs related to each other by the BKL map –
characterizes generic Bianchi type IX models as the sin-
gularity is approached.
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21.3 Spatially Inhomogeneous Cosmologies
In this section, we shall determine to what extent the
behaviors in the approach to the space-like singularity
of spatially homogeneous cosmological spacetimes are
relevant in the presence of spatial inhomogeneity. While
these models will be no closer to the actual universe
than those in the previous section, they will serve as
theoretical laboratories to explore generic properties of
solutions to Einstein’s equations.

21.3.1 The BKL Conjecture

BKL’s primary motivation to understand the behavior
of the Mixmaster universe was as a prelude to un-
derstanding the generic behavior of the full Einstein
equations. In a series of papers, reviewed by the authors
in [21.28], that were unfortunately poorly understood
by others, they studied the evolution in the collapsing
direction of a spatially inhomogeneous cosmology with
variation in only one spatial direction and time. They
determined that such a model was unstable to varia-
tions in the other spatial directions and concluded that
one would eventually obtain an evolution behaving as
a separate spatially homogeneous Mixmaster model at
every spatial point. This conclusion requires the even-
tual dynamics to be dominated at every spatial point by
time derivatives (i. e., kinetic energy-like terms) rather
than spatial gradients. In special cases, the asymptotic
behavior could be Kasner-like rather than Mixmaster-
like at every spatial point. A simple way to visualize
the BKL conjecture is that, after some time (which may
be different at different spatial points), the partial dif-
ferential equations of general relativity may be replaced
by separate ordinary differential equations at every spa-
tial point and that the ordinary differential equations are
those for spatially homogeneous cosmologies. There
has been extensive criticism of the BKL conjecture
over the years (see, for example, [21.29]). One major
concern has been the apparent dependence of their ap-
proach on the existence of an appropriate separation or
slicing of the spacetime into space and time. Whether
or not it is possible to make the necessary choice of
time variable in all cases is not yet known. In support of
the BKL conjecture, as we shall see below, are numer-
ical simulations that appear to show the dominance of
either Kasner-like or Mixmaster-like behavior at each
spatial point [21.30]. Of course, such simulations also
make a choice of spacetime slicing. Recent numerical
studies [21.31] indicate that there may be phenomena
in the approach to the singularity that do not align with

the BKL conjecture. Later, we shall discuss frameworks
that have been developed to allow a rigorous formu-
lation of the BKL conjecture and to offer a possible
path toward a proof. See [21.32, 33] and the references
therein. A (toy) realization of the BKL conjecture is
shown in Fig. 21.11 where a different Mixmaster sim-
ulation has been run at each spatial point. The artificial
spatial dependence was induced by slowly varying the
initial Kasner-circle momenta over the spatial grid.

21.3.2 Method of Consistent Potentials

The method of consistent potentials (MCP) was em-
ployed originally by Moncrief and Grubišić [21.34] to
argue for the qualitative behavior of spatially inhomo-
geneous cosmologies. MCP may also be regarded as
a simplification of BKL’s arguments. To employ MCP,
one first identifies a Kasner-like solution in the variables
of the model at each spatial point. The remaining terms,
usually from the spatial scalar curvature, may be treated
as potentials. If, as the model evolves toward the singu-
larity, the potential terms become exponentially small,
the model becomes asymptotically Kasner-like. In spa-
tially homogeneous models, one literally constructs the
Kasner solution and compares the asymptotic behavior

0.8

0.4

0

–0.4

Fig. 21.11 A realization of the BKL conjecture. Mixmaster
simulations as in [21.16] were begun with slowly varying
initial conditions along the horizontal spatial grid to create
fictitious spatial dependence in one direction. This caused
the initial u-parameter to vary over the grid and to create
bounces at different times at different spatial points. This
in turn created ever smaller spatial structure. The evolution
toward the singularity is upward. The variable plotted is
ˇ
C

=j˝j with arbitrary color scale
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to it. In the spatially inhomogeneous case, the parame-
ters of the Kasner-like solution depend on space but not
on time. We shall refer to the Kasner-like asymptotic
behavior as AVTD. The term quiescent singularity has
also been used.

To illustrate MCP, consider the Taub model’s
Hamiltonian (21.25). The Kasner solution (21.23),
when substituted in the exponential e4˝�8ˇ

C , yields
the conditions for growth or decay of that term. We find

e4˝�8ˇ
C! e4˝.1C2v

C

/ : (21.41)

This shows that if the velocity parameter v
C

< � 1
2 , the

exponential will grow as ˝!�1, the direction of
the singularity. Otherwise, the potential will be expo-
nentially small. Now consider the bounce rule (21.29)
relating v0

C

for the outgoing Kasner to the ingoing v
C

.
It is easy to see that, if v

C

< � 1
2 , v0
C

> � 1
2 , and no

further bounces will occur. While the Kasner solu-
tion epitomizes VTD, the Taub model has at most one
bounce making it AVTD. A realization of this behavior
in the Taub model is shown in Fig. 21.12. Note that the
potential is significant only when v

C

is in the range to
cause a bounce.

If we extend the Taub MCP analysis to the Mixmas-
ter model, we find that the three Mixmaster potentials

–40 –60 –80–20
Ω

υ+ V

–0.35

–0.5

–0.65

0.0001

0

Fig. 21.12 Illustration of MCP. The approach to the sin-
gularity in the Taub model (as ˝!�1) shows an ini-
tial Kasner solution described by v

C

< � 1
2 (left vertical

scale). The trajectory then bounces off the growing po-
tential V D e4˝�8ˇ

C (right vertical scale) into a second
Kasner regime with v

C

> � 1
2 while the potential becomes

exponentially small. The trajectory is shown in brown and
the potential in light grey

cover the full range of v
˙

. There is no value of v
˙

(ex-
cept those corresponding to Taub initial data) where all
the potential terms remain exponentially small. Thus,
there is no last bounce. The Mixmaster model is not
AVTD. We shall call collapsing spacetimes with no last
bounce Mixmaster-like. Note that when a minimally
coupled scalar field is added, collapsing Bianchi type
IX models are AVTD.

MCP is easily applied to spatially inhomogeneous
models (see subsequent sections) when Einstein’s equa-
tions may be derived from a Hamiltonian. The Hamil-
tonian formulation of general relativity developed by
Arnowitt, Deser, and Misner (ADM) (see [21.2] and
elsewhere in this volume) rewrites Einstein’s equations
as derivable from the variation of the constraints with
suitable lapse and shift. Schematically, the Hamiltonian
constraint takes the form ([21.2] p. 465)

H D
Np

3g

�
� ij�ij �

1

2
�2 � 3g.3R/

�

CNirj

 
� jip

3g

!
; (21.42)

where the �ij (with trace �) are related to the time
derivatives of the spatial metric 3gij , 3R is the spatial
scalar curvature, the covariant derivative is formed from
3g, and N;Ni are the lapse and shift. In general, the ki-
netic part of the Hamiltonian constraint may be used
to develop a Kasner-like solution at every spatial point.
MCP is then implemented by checking the behavior
of the spatial scalar curvature term in the approach to
the singularity. Specific examples will be given later. It
must be emphasized that MCP is a heuristic approach. It
is possible to conclude from it that, for a given spatially
inhomogeneous cosmology, the approach to the singu-
larity is or is not locally Kasner-like (or AVTD). One
cannot conclude that any non-Kasner-like behavior is,
in fact, Mixmaster-like.

21.3.3 Mathematical, Heuristic,
and Numerical Approaches
for Specific Spacetimes

As mentioned previously, the mathematics of Mixmas-
ter dynamics is highly nontrivial. Proofs exist only in
the spatially homogeneous case. The apparently AVTD
spacetimes based on MCP have been analyzed mathe-
matically. Several methods have been employed. One
was developed originally by Kichenasamy and applied
to a variety of cosmological spacetimes by himself and
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many others. For a review, see [21.35]. The basic idea
is to choose variables to allow an asymptotic expansion
starting at the singularity and proceeding away from
it. One can then prove existence and other properties
based on the expansion. For example, one can prove
the existence of an open set of solutions to the Gowdy
model Einstein equations with the AVTD property al-
most everywhere. In this section, we shall consider
several examples of spatially inhomogeneous, (mostly)
vacuum, cosmological spacetimes, how MCP may be
applied, what the simulations show, and any mathemat-
ical statements that can be made.

The Gowdy Model on T 3 � R
Gowdy discovered that if one interchanges the role of
time and space in Einstein–Rosen waves, the resultant
spacetimes may be interpreted as spatially inhomoge-
neous, vacuum cosmologies with spatial topologies T3,
S3, and S2� S1 [21.36]. (In the first case, the topology
may equally be taken to be R3.) The approach to the
singularity has been studied extensively in the first case
(see below) and also for the last case [21.37]. The sim-
plest spatially inhomogeneous cosmology is the Gowdy
spacetime on T3 �R. The metric variables depend only
on time 
 and the periodic spatial coordinate  . The
model has two spatial Killing fields in the directions
orthogonal to  . In convenient variables, the metric is
given by [21.18, 38]

ds2 D e�=2e�=2.�e�2� d
2C d2/

C e�� ŒeP d�2C 2ePQd� dı

C .ePQ2C e�P/dı2� ; (21.43)

where 	, P, and Q are periodic functions of  and
evolve in 
 . The time choice is called areal and has been
arranged so that the spatial volume! 0 as 
!1. Ein-
stein’s equations for this model split into two groups.
The first consists of nonlinearly coupled wave equations
for P and Q (where ;aD @=@a)

P;�� �e2�P;�� D e2P
�
Q;2� �e2�Q;2�

�
; (21.44)

Q;�� �e2�Q;�� D�2
�
P;� Q;� �e2�P;� Q;�

�
:

(21.45)

The second contains the Hamiltonian and  -momentum
constraints, which can be expressed respectively as
equations for 	;� and 	;� in terms of P and Q

	;� D�


P;2� Ce�2�P;2� Ce2P.Q;2� Ce�2�Q;2� /

�
;

(21.46)

	;� C2.P;� P;� Ce2PQ;� Q;� /D 0 : (21.47)

This means that 	 may be constructed after a solu-
tion for P and Q has been obtained. This decoupling
is an enormous simplification both numerically and
mathematically. One may interpret these equations as
follows: P and Q are related, respectively, to the ampli-
tudes of the C and � polarizations of the gravitational
waves, while 	 controls the background spacetime. The
volume density

p
3g depends only on 	 (and 
). The

separability of the equations for P;Q from that for 	
makes it convenient to define a Hamiltonian which
yields the equations for P and Q

H D
1

2

2�Z
0

d
�
�2

P C e�2P�2
Q

�

C
1

2

2�Z
0

d


e�2�

�
P;2� C e2PQ;2�

��

D HK CHV : (21.48)

Note that this Hamiltonian, H, is not the Hamiltonian
constraint.

Polarized Gowdy T3 models [21.39] are obtained by
setting Q and �Q equal to zero, an initial condition that
is preserved by the evolution equations. The remaining
wave equation for P has the explicit solution, written as
a Fourier series

PD P0C�
0
P
 C

1X
nD1

�nZ0.ne��/ cos.n C �n/ ;

(21.49)

where Z0 is any zero-order Bessel function and �n and
�n are constants. The zero mode in the solution is just
the Kasner solution (21.23) in these variables, while
(21.43) with QD 0 and without  dependence is just
a rewriting of the Kasner metric. As 
!1, (21.49)
becomes (for a generic Bessel function of order zero)

P� P0C

"
�0

P C

1X
nD1

N�n cos.n C�n/

#

 : (21.50)

The polarized Gowdy model has the asymptotic solu-
tion P� v./
 as 
 !1, where v./ is the term in
brackets in (21.50). In addition, 	 may be constructed
from (21.46) restricted to the polarized case. In the
limit as 
!1, we obtain 	��v2./
 , where v./
is the same as for P. Clearly this approximate solution
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represents a different Kasner solution at every spatial
point. This is clearly the VTD solution and demon-
strates that the polarized Gowdy model is AVTD. The
A appears because the local Kasner behavior is only
valid as the singularity is approached. The mathemat-
ics of this model’s approach to the singularity is well
understood.

The generic Gowdy model also has a VTD solution.
Variation of the Hamiltonian (21.48) keeping only the
terms in HK yields

PD P0C ln .cosh v
 C cos sinh v
/ ! v


as 
 !1 ;

QDQ0C
e�P0 sin tanh v


1C cos tanh v

! Q

1

as 
 !1 ;

�P D v
tanh v
 C cos 

1C cos tanh v

! v as 
 !1 ;

�Q D eP0 v sin � �0
Q ; (21.51)

with a different solution at each spatial point (where
the constants v,  , P0, and Q0 depend on  but not
on 
). We shall focus on the limit as 
!1 given here.
Note that there is an overall factor of e�2� in front of
HV in (21.48). This suggests, but does not prove, that
the influence of the terms containing spatial derivatives
will decrease as 
 !1. It is important to note that the
Hamiltonian HK from (21.48) contains a potential-like
term V1 D �

2
Qe�2P that appears in the generic (unpolar-

ized) case. It can be shown [21.40] that this term can be
removed by a transformation of variables. However, the
formulation used here yields a clearer MCP analysis.

Unlike in the polarized case, the potentials

V1 D e�2P�2
Q I V2 D e2P�2�Q;2� (21.52)

are present and affect the dynamics. Invocation of MCP
by substituting the limiting VTD solution

PD v./
 I �P D �
0
P./ I

QD Q0./ I �Q D �
0
Q./ (21.53)

into the potentials (21.52) yields the conditions that V1

will become exponentially small if v./ > 0, while V2

will become exponentially small if v./ < 1. Both con-
ditions are satisfied if 0< v./ < 1. However, the initial
conditions (constructed to satisfy the momentum con-
straint) are not required to yield v within that range. As
shown in Fig. 21.13 and as discussed in [21.38], just as
in MSS, the potential terms act as walls causing the sys-

P

V1

V2

40 6 8 1020
τ

P log10 V
2

0

–2

–4

1

0

–1

–2

–3

Fig. 21.13 Illustration of MCP at a typical spatial point in
a Gowdy T3 simulation. P (red solid line) initially has jv./j > 1.
Subsequent bounces off V1 (dotted blue line) and V2 (dash-dot
green line) drive v./ into the range .0; 1/. A version of this fig-
ure appeared in [21.38]

tem point to bounce. Conservation of momentum yields
the bounce laws v!�v off V1 and v! 2� v off V2.
Successive bounces drive v into the range .0;1/ and no
further bounces occur. Thus the MCP prediction is that
generic Gowdy models are AVTD in their approach to
the singularity.

The mathematical results agree with this prediction.
Kichenassamy and others [21.35] have shown that an
open set of AVTD solutions exist in the vicinity of the
singularity. Ringström has gone further to show that one
can connect such behavior to the initial data away from
the singularity [21.41].

τ = 12.4

τ = 18.6

2.935 2.9452.925
θ

Fig. 21.14 The evolution of a spike in P shown at subse-
quent times (for 
 increasing toward the singularity) in the
simulation of a Gowdy T3 model. The spike becomes ever
narrower as bounces occur at  values ever closer to the
nongeneric point at the centroid of the spike. A version of
this figure appeared in [21.38]
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AVTD behavior for this model is thus seen nu-
merically, understood via MCP, and confirmed math-
ematically. However, the simulations also reveal spiky
features. These may be understood as arising near the
spatial points where the coefficients �2

Q and Q2
�

of the
potential terms (21.52) vanish. The actual points where
they vanish are a set of measure zero in  and in the so-
lution. In the MCP picture, the spikes occur because the
bounces to drive v into the allowed range do not occur.
In the vicinity of these special points n it takes longer
and longer for the bounce to occur as j � nj ! 0.
The narrowing of the spikes as the singularity is ap-
proached is observed in the simulations [21.18, 38]. See
Fig. 21.14 for an example.

Gowdy spikes are, in fact, completely under-
stood [21.40]. The V1-related spikes can be transformed
away. Analytic expressions, called spike solutions, can
be formulated for the V2-related spikes. In addition, the
spike solutions may be used to explain the evolution of
v./ in the vicinity of the spike.

Generic T 2-Symmetric Models
However, the Gowdy models are not the most gen-
eral T2-symmetric vacuum spacetimes. (These space-
times are also called G2-symmetric after their two-
dimensional spatial isometry group.) One can add addi-
tional off diagonal ( � x and  � y) metric components
to (21.43). Einstein’s equations severely restrict the
functional form obtained from the more general met-
ric to the addition of two spacetime-independent twist
constants. These may be reduced to a single twist con-
stant � without loss of generality. Details and some
mathematical results related to the existence of par-
ticular choices of time coordinate may be found, e.g.,
in [21.42]. Details of this class of models, especially as
presented here may be found in [21.43]. Without loss of
generality, the metric may be written as

ds2 D�e.��3�/=2 d
2C e.�C�C�/=2 d2

C eP��

2
4d� CQdı

C

0
@
�Z
.Q�/�Q

�Z
�

1
A d

3
5

2

C e�P��

2
4dı�

0
@
�Z
�

1
A d

3
5

2

; (21.54)

where

� D �e�=4e.�C2PC3�/=2 : (21.55)

Einstein’s equations may be obtained by variation of the
Hamiltonian density

H D
1

4��

n
�2

P C e�2P�2
QC e�2�.@�P/2

C e2.P��/.@�Q/2
o

C �2��e.�C2PC3�/=2 ; (21.56)

with

���
1

2
e
�
4 D 0 ; (21.57)

and subject to the momentum constraint

�PP;� C�QQ;� C��	;� D 0 : (21.58)

The Hamiltonian constraint is the equation for 	;� ob-
tained from the variation of (21.56) with respect to ��.
The Gowdy model is recovered for �� D

1
2 and � D 0.

Note that, in contrast to the Gowdy models, the wave
amplitudes P and Q are no longer decoupled from
a constituent equation for 	. We now have three poten-
tials

V1 D
e�2P�2

Q

4��
I

V2 D
e2.P��/.Q;� /2

4��
I

V3 D �
2��e.�C2PC3�/=2 : (21.59)

The VTD solution is, as 
 !1, fQ; �P; �Q; ��g !
fQ0./; �

0
P./; �

0
Q./; �

0
�
./g and, for

wD
�0

P

2�0
�

(21.60)

the limiting behavior as 
!1 is

P! w
 ;

	!�w2
 : (21.61)

Application of MCP to these models yields the Gowdy
conditions that V1 is exponentially small if w> 0, that
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Fig. 21.15 Validation of the bounce laws for generic T2-
symmetric models. Simulation data at three adjacent spa-
tial points are shown. The label N numbers subsequent
bounces at a given spatial point and then switches to the
next, adjacent point. The vertical scale shows the differ-
ence between the prediction from any of the bounce laws
and from the simulation for the NC 1-st value of w. The
different bounce laws are color coded. Alternating red dots
and green squares indicate that alternate bounces off V1

and V2 from (21.59) become an increasingly good descrip-
tion of the behavior. The initial data were arranged to begin
each sequence with a twist bounce off V3 (plus in square).
A version of this figure appeared in [21.43]

V2 is exponentially small if w< 1 and a new condi-
tion that V3 is exponentially small as 
!1 if w< �1
or w> 3 but not if 0< w< 1. Thus, according to the
MCP, there is no value of w where bounces would cease
and the models are not AVTD. The bounce laws for
each potential are given in Table III in [21.43]. The
bounce laws are compared to typical behavior at given
spatial points and seen to describe the behavior to high
accuracy as shown in Fig. 21.15 [21.43]. Whether this
corresponds to local Mixmaster dynamics is not entirely
clear since the connection between the observed bounce
laws and the BKL map for Mixmaster dynamics has not
been made. See, however, [21.44] for a discussion of an
indirect connection.

Unlike the Gowdy model spikes, spiky features in
these generic T2-symmetric models are not at fixed
spatial points but rather move around and disappear
and reappear during the evolution. Lim et al. [21.31]
have shown that the simulations of these models con-
tain embedded recurrent spikes described by an explicit
function. They argue that this goes beyond BKL’s con-

jecture. See also [21.45] for a more detailed treatment.
However, BKL did not explicitly state their conjec-
ture so that one might be able to relate the recurrent
spikes to, e.g., special values of the parameter u (see
(21.33)). While the T2-symmetric models have been
studied mathematically, these analyses do not address
the nature of the approach to the singularity except in
the case where a scalar field is added to suppress the
oscillations [21.46].

The approach to the singularity of polarized T2-
symmetric models was studied recently by Ames
et al. [21.47]. Application of MCP suggests that these
models are AVTD, since bounces off V1 will occur if
w< 0 and off V3 if �1 < w< 3. Thus, MCP predicts
that bounces will not occur if w> 3. Ames et al. use
Fuchsian methods to prove that AVTD solutions exist
in these models.

U.1/ Symmetric Cosmologies
If the symmetry group is reduced from G2 to U.1/ –
that is, there is now only one spatial Killing field – we
obtain a class of models described by the metric

ds2 D e�2'
h
�e2� d
2C e�eab.x; z/d�a d�b

i

C e2'
�

d�3Cˇa dxa d

�2
; (21.62)

where a; bD 1; 2 and ';�; x; z; and ˇa depend on spa-
tial variables �1; �2; and time 
 . The explicit form of eab

is given in [21.48, 49] as is the discussion of a canoni-
cal transformation to replace the twists ˇa with a single
twist potential !. The following details for this class of
models may be found in [21.50]. Einstein’s equations
are obtained from variation of the Hamiltonian density

H D
�

1
8 p2

z C
1
2 e4zp2

xC
1
8 p2C 1

2 e4'r2 � 1
2 p2
�

�
C .e�eab/;ab �.e

�eab/;a�;b

C e�


.e�2z/;u x;v �.e

�2z/;v x;u
�

C 2e�eab';a ';bC
1
2 e�e�4'eab!;a !;b ;

(21.63)

where H D 0 is the Hamiltonian constraint and p' , r,
p�, pz, and px are canonically conjugate to ', !, �, z,
and x. The VTD solution in these variables is

zD�vz
 ; xD x0 ; pz D�4vz ;

px D p0
x ; ' D�v'
 ;

! D !0 ; pD�4v' ; r D r0 ;

�D�0C .2� v�/
 ; p� D v� ; (21.64)
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where vz, v' , x0, p0
x , !0, r0, �0, and v� > 0 are func-

tions of �1 and �2 but independent of 
 . (The sign of v�
is fixed to ensure collapse.)

Polarized U.1/-symmetric models (! D 0D r)
have been examined both numerically [21.49] and an-
alytically, where the case has been made that the sin-
gularity is AVTD. See, for example, [21.51] and the
references therein for the mathematical results.

The generic (vacuum) U.1/ models are not AVTD
according to MCP and numerical simulations. To date,
the simulations have been too crude for detailed studies
since too few Mixmaster-like bounces occur before the
codes fail. MCP predicted that bounces would occur (in
these variables) between two potentials [21.50]. We first
notice that the Gowdy-like terms [21.18]

Vz D
1
2 p2

xe4z ; V1 D
1
2 r2e4' ; (21.65)

inHK become, in the limit of 
 !1, upon substitution
of (21.64)

Vz!
1
2 p2

xe�4vz� ; V1!
1
2 r2e�4v'� ; (21.66)

and are exponentially small only if vz > 0 and v' > 0.
(As in the Gowdy case [21.38], nongeneric behavior can
arise at isolated spatial points where px and/or r vanish.)
The remaining term is

V2 D
1

2
e�2�C�e�4'eab!;a !;b ; (21.67)

which becomes upon substitution of (21.64)

V2 � F.x;r!/e.�v�C2vzC4v'/� ; (21.68)

where F includes all terms in the coefficient. The coef-
ficients of 
 in (21.66) and (21.68) are restricted by the
VTD form of the Hamiltonian constraint (as 
 !1)

H 0 �� 1
2 v2
�C 2v2

z C 2v2
' � 0 ; (21.69)

obtained by substitution of (21.64) into (21.63). As dis-
cussed in [21.49], (21.69) implies that v� > 2vz, so that
(21.66) decays exponentially for vz > 0 for any v' . On
the other hand, for V2 to become exponentially small
with vz and v' > 0, we require v2

�
> .2vzC 4v'/2,

which is inconsistent with (21.69). Since there is no
way to make V1 and V2 both exponentially small with
the same value of v' , the MCP predicts that either V1 or
V2 will always grow exponentially. (Again, nongeneric
behavior can result at isolated spatial points where the
coefficient of V2 happens to vanish.)

One might wonder if the U.1/ models actually
show local Mixmaster dynamics given that bounces

occur between two potentials rather than the three
present in Bianchi IX models. An interesting conjec-
ture can be found by writing the Bianchi IX metric
in the U.1/ variables. For this purpose, it is pos-
sible to neglect the different topologies of the two
model classes. As is discussed in detail in [21.44],
the U.1/ variable ' may be identified at any time 

with the largest of the Mixmaster LSFs from (21.31).
Thus the observed bounces off V1 and V2 from (21.65)
and (21.67) in the U.1/ models may be identified as
tracking all the Mixmaster bounces. The U.1/ vari-
able z, on the other hand, was not observed to undergo
bounces in [21.52]. Yet, in terms of the Mixmaster
LSFs, z exhibits a bounce whenever a Mixmaster era
ends. In the short simulations of [21.52], era changes
might be too rare to occur. They have subsequently
been sought by exploring a variety of initial condi-
tions in the hope that a short era would occur at one
or more spatial points. A possible example of a z-
bounce is shown in Fig. 21.16. Longer simulations,
if possible, could reveal more structure related to this
phenomenology.

There are no mathematical results for generic U.1/
models relating to the nature of the approach to the sin-
gularity.
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Fig. 21.16 A possible z-bounce in a U.1/-symmetric
model. The U.1/ variables ' (dotted light grey, right-
hand scale) and z (brown, left-hand scale) from (21.63)
are shown versus time 
 . The singularity is in the direc-
tion of increasing 
 . Simulations in [21.52] do not show
bounces in z. From the BKL map for u, it is easy to show
that short eras with, say 3=2 < u< 2 are likely to be fol-
lowed by a second short era. Thus the two bounces seen
in z are plausible. Note that the corresponding oscillations
in ' are also shown
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Generic Models with No Symmetries
The goal of the research described in this chapter is
to elucidate the approach to the singularity in generic
spacetimes. For generic spacetimes, there appears to
be no particular advantage to using symmetry adapted
variables as those used in the cases with symmetries de-
scribed above. For simulations performed to date, it is
convenient to use a modified version of the variables
introduced by Wainwright and collaborators [21.25].
In terms of these variables, it is possible to construct
invariants that reveal the nature of the dynamics. For
example, in the variables of [21.33], one can identify
the BKL parameter u in generic collapse of a vac-
uum spacetime with T3 topology [21.53]. Figure 21.17
taken from [21.53] provides numerical evidence of lo-
cal Mixmaster dynamics in generic collapse. In this
simulation, u followed the BKL map (21.33) to some
accuracy. However, the simulations had relatively low
spatial resolution and further research in this direction
is desirable.

On the other hand, if one considers a generic space-
time with T3 �R topology with a scalar field, it can
be proven that AVTD solutions exist on an open set
close to the singularity [21.54]. The function of the
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Fig. 21.17 The parameter u at a typical spatial point in
a generic, collapsing, vacuum spacetime on T3 �R. This
figure is taken from [21.53] where details may be found.
Evolution toward the singularity is leftward. The apparent
spikes occur during the bounces while the value of u is
changing

scalar field is to suppress Mixmaster-like oscillations
in the same way as in the spatially homogeneous
case.

21.4 Summary

In this chapter, we have focused on three classes of spa-
tially homogeneous, vacuum cosmological spacetimes,
described their behavior as dynamics in MSS, and char-
acterized their approach to the singularity. Bianchi type
I (Kasner) solutions formed the basic building block –
the (fictitious) free particle in MSS. The next step, the
Bianchi type II (Taub) solution, added a single poten-
tial wall in MSS. The dynamics could be completely
understood through development of a bounce law re-
lating the Kasner trajectory after the bounce to the one
before. Since, in MSS, the Kasner models have no po-
tential, they are called VTD. The Taub model has at
most a single bounce and is thus asymptotically VTD
or AVTD. Both these models approach the singular-
ity to end in a curvature blow-up space-like singularity.
The final complication arises in Bianchi type IX (Mix-
master) where one wall in MSS is replaced by three
to form what appears to be an enclosed triangle. Nu-
merical evidence and MCP indicate that these models
continue to bounce forever in their approach to the
singularity. Mathematical proofs now exist that demon-
strate that the approach to the singularity in Bianchi
type IX and other models with Mixmaster-like be-

havior, in fact, have this behavior all the way to the
singularity ending in a curvature blow-up space-like
singularity.

BKL long ago conjectured that the approach to
the singularity in spatially inhomogeneous cosmolo-
gies followed the path of the spatially homogeneous
models at every spatial point – the solutions were lo-
cally AVTD or Mixmaster-like at almost every spatial
point. MCP and numerical studies have provided sup-
port for this picture in a variety of spacetimes. In
cases where the conjectured and observed behaviors ap-
pear to be AVTD, mathematical support exists in the
form of proofs that open sets of solutions have the
required character in the vicinity of the curvature blow-
up space-like singularity. The Mixmaster-like case is
more complicated. The numerical evidence is support-
ive although non-Mixmaster-like behavior has been
observed in the approach to the singularity of generic
T2-symmetric models. Mathematical proofs do not ex-
ist for non-AVTD spacetimes, although several groups
are working on frameworks to allow a precise formula-
tion of the BKL conjecture with the eventual possibility
of proof – one way or the other.
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21.5 Open Questions
We shall conclude this chapter with a discussion of
open questions. The approach to the singularity in spa-
tially homogeneous cosmologies appears to be under
control both mathematically and numerically. There
has been recent research in higher dimensions and in
the influence of matter that behaves comparably to
anisotropy energy (e.g., scalar fields with a variety of
potentials [21.13, 20], cosmological constants, and, per-
haps, dark energy or inflatons).

The spatially inhomogeneous models and the BKL
conjecture are less well understood. In particular, there
are no rigorous mathematical results for the nature
of the approach to the singularity in models where
one expects local Mixmaster dynamics (or something
else which is not AVTD). Two competing frameworks
have been developed. The first by Damour and col-
laborators [21.46] focuses on billiards, an approach to
dynamical systems that can be studied as system points
bouncing within sharp walls. They attempt to apply
what is known mathematically about such systems to
what essentially becomes a field of billiards. This is one
way to formalize and make precise the BKL conjecture.
In contrast, Uggla and collaborators [21.55] consider
the extension of the Wainwright approach to spatially
inhomogeneous models. This approach focuses on the
Kasner circle with potential walls appearing (at every
spatial point) as structures imposed on the Kasner circle
at that spatial point. This approach also has the aim of
development of a rigorous statement and analysis of the
BKL conjecture. There has been some recent progress
in rigorous statement of the BKL conjecture using these
methods and in relating the two approaches [21.33]. So
far, neither approach has achieved mathematical results
for spatially inhomogeneous models that are not AVTD
comparable to those found in the AVTD case. A re-

cent development, motivated by loop quantum gravity,
is a reformulation of the description of spatially inho-
mogeneous cosmological spacetimes to allow rigorous
statement of the BKL conjecture [21.32].

It should be noted that, even for spatially inhomoge-
neous cosmologies with AVTD behavior, the theorems
already proven are somewhat limited to existence of
solutions with the desired behavior. Stronger results
would be useful for more classes of spacetimes.

Of course, singularities also develop in noncosmo-
logical spacetimes, most notably in the interiors of
black holes. It is still unclear what happens to the
Cauchy horizon in the interiors of charged and rotating
black holes and under what circumstances the asymp-
totic behavior resembles the approach to the space-like
singularities discussed in this chapter. See [21.19] and
elsewhere in this volume for further discussion of this
topic.

A related issue is the phase-transition-like critical
behavior that was first discovered numerically by Chop-
tuik in the collapse of a spherically symmetric scalar
field to form a black hole or to disperse. Similar behav-
ior has been found in a variety of other systems. For
reviews, see [21.19, 56]. It is also of interest to consider
what happens in more than three spatial dimensions,
particularly in models motivated by string theory and/or
supersymmetry.

Finally, we note that collapsing gravitational sys-
tems that become singular in a finite time signal a fail-
ure of general relativity. It has long been hoped that
these singularities can be removed when quantum me-
chanical effects (either through quantum field theory
in curved spacetime or quantum gravity) are included.
Progress on this topic is discussed elsewhere in this
volume.
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In this contribution we assess the current exper-
imental status of special and general relativity.
Particular emphasis is put on putative extensions
of these theories and on how these could be de-
tected experimentally.
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22.1 Introductory Remarks
Special relativity (SR) was proposed more than 100
years ago and has allowed for a profound change in
our perspective of the fundamental building blocks of
physics, namely space and time, which until then had
been regarded as immutable and absolute.

The generalization of SR to encompass general co-
ordinate transformations and, through the equivalence
principle, to also incorporate gravity, has led to an
inevitable connection to the mathematics of curved

spaces, putting general relativity (GR) in a unique
standing among physical theories; GR is a theory of
space and time, thus setting the tools to describe the
dynamics and the evolution of the Universe as a whole.

From the conceptual point of view, Relativity was
a major step forward; the pressure to unravel putative
extensions to this theory of gravity leads one to care-
fully test the foundational principles of SR and GR
(see [22.1–3] and references therein).

22.2 Experimental Tests of Special Relativity

More than a century ago, Einstein put forward his rev-
olutionary special theory of relativity (SR), so called
because it accounted only for phenomena seen from
inertial reference frames, which move with constant
relative velocity. Although several reformulations have
arisen in the intervening years, with added clarity
and mathematical precision [22.4], Einstein resorted
to two fundamental postulates in order to derive
SR:

� The principle of relativity, which states that physical
laws are independent of the inertial reference frame
used to infer them.

� The constancy of the speed of light, which is always
propagated in empty space at c� 3�108 m=s, inde-
pendently of the state of motion of its source.

Both postulates may be shown to lead to the concept
of Lorentz invariance, i. e., that the laws of physics are
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invariant with respect to the Lorentz transformations;
if one takes two inertial frames S and S0 with relative
speed v in the x-axis, these amount to the well-known
relations between time and space coordinates

x0 D
x� vtq
1� v2

c2

;

y0 D y ;

z0 D z ;

t0 D
t� vx

c2q
1� v2

c2

: (22.1)

These transformations were known to leave Max-
well’s equations invariant, while the Galileo transfor-
mations, which leave mechanics invariant, did not.
However, it was Einstein who first understood that they
could not be framed in a classical, Newtonian world-
view, accompanied by a suitable aether medium, but
instead required a fundamental rethinking of the con-
cepts of space and time. The eponymous experiments
carried out by Michelson and Morley in 1887 where
taken not only as a disproof of this luminous aether,
but as an observational evidence for the constancy of
the speed of light.

Notice that the above postulates do not make any
claim concerning the equivalence between mass and en-
ergy, since they are of a kinematic (or geometric) nature
alone. However, Einstein’s derivation of this relation-
ship resorts to a putative Lorentz invariance, used to
establish the Lorentz invariant .cp/2 D E2 �m2c4 in-
volving momentum, energy and rest mass.

The above introduction serves not only as a histor-
ical introduction, but helps to assess what are the most
likely signals of Lorentz violation: privileged frame ef-
fects, variations in the speed of light [22.5], or failure
of the Lorentz transformations altogether; other con-
sequences include deviations from the p2 D E2 �m2c4

dispersion law, or maximum attainable speeds ci ¤ c for
different matter species.

In the realm of theories of gravity, competing the-
ories to the de facto gold standard GR are usually
experimentally assessed via the so-called PPN formal-
ism [22.1], discussed later in this text: for now, it
suffices to state that this formalism relies on an ex-
pansion of the dynamical metric field g�� in terms
of suitable potentials, and the ensuing identification
of a set of PPN parameters signaling deviation from
GR. Since SR is restricted to inertial frames and neg-

ligible gravitational fields, thus assuming the a priori
Minkowski metric g�� D ��� , such a tool is not valid
when addressing the issue of Lorentz symmetry break-
ing in SR.

Nevertheless, one may resort to a similar expan-
sion of some fundamental relation or quantity, with
the expansion coefficients being related to alternative
theories to SR, that breaks Lorentz invariance. The
brief discussion above serves to better settle the three
candidates that arise prominently: the Lorentz trans-
formations themselves, the speed of light c, and the
dispersion relation p2 D p2.E;m; �/ (where � symbol-
izes additional properties or fields not present in the
equivalent SR relation).

Each of these test subjects leads to a widely differ-
ent formalism, which also reflects whether its motiva-
tion is one of the following:

� Kinematic, i. e., a relatively straightforward descrip-
tion of deviations from SR in the motion of massive
bodies, propagation of light, causality, observabil-
ity, light cone considerations, etc.

� Dynamical, in which case it attempts to formu-
late the intrinsic behavior of fields and fundamental
equations in terms of Lorentz breaking quantities,
thus allowing one to capture other relativistic be-
havior such as the clock rates of physical clocks
(e.g., atomic clocks), light polarization effects,
etc.

Given the variety of kinematic and dynamical for-
malisms available, it is somewhat difficult to compare
them directly, either in terms of constraints to their
defining observables, or when attempting to address
a particular theoretical Lorentz breaking construction
(see [22.6] for a discussion).

22.2.1 The Robertson–Sexl–Mansouri
Formalism

Historically, this was the first attempt to put forward
a formalism embodying the possibility of Lorentz sym-
metry breaking through the deviation of some free
parameters from their SR values [22.7]; this is ad-
dressed by assuming that a privileged frame ˙.T;X/
exists (usually considered the cosmological frame, de-
fined as that where the cosmic microwave background
radiation appears isotropic and homogeneous at large
scales), so that transforming from this to another iner-
tial frame S.t;x/ with relative velocity v is achieved via
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the deformed transformations

T D
t� � � x

a
; X D

x
d
�

�
1

d
�

1

b

�
v � x
v2

vC
vt

a
:

(22.2)

Comparing this with (22.1), one finds that in SR

aD b�1 D

s
1�

v2

c2
; dD 1 : (22.3)

The vector �, although not uniquely determined,
does not add any further information concerning a pu-
tative breaking of Lorentz invariance, but reflects the
chosen clock synchronization procedure: momentary
external synchronization leads to �D 0, while Einstein
synchronization implies �D�av=b.1�v2/; slow trans-
port of clocks leads to .rva/=b, although additional
complications due to clock rate variations between
spacetime points can arise from dynamical effects on
the clock mechanism (i. e., shifts in atomic transition
frequencies). As a result, physical observables do not
depend on the particular choice of �, with the natural
exception of those experiments which directly depend
upon a particular synchronization method (see [22.1]
for a discussion).

It is advantageous to resort to a set of numeri-
cal coefficients to parameterize the extent of violation
of Lorentz symmetry, instead of using the functional
form of a and b: since most conceivable experiments
involve massive bodies endowed with nonrelativistic
speeds, one may attain this by expanding these quan-
tities around .v=c/2 to second order, thus obtaining

a.v/D 1C
�
˛� 1

2

� �v

c

	2
C
�
˛2 �

1
8

� �v

c

	4
;

b.v/D 1C
�
ˇC 1

2

� �v

c

	2
C
�
ˇ2C

3
8

� �v

c

	4
;

d.v/D 1C ı
�v

c

	2
C ı2

� v

c

	4
;

�D .�� 1/

�
1C �2

�v

c

	2
�

v : (22.4)

The choice of expansion coefficients is made so that,
upon comparison with (22.3), one finds that SR yields
all vanishing parameters except � and �2, as discussed
above; Einstein synchronization, the usual procedure
followed in SR, also yields � D �2 D 0.

Using the above expressions, one may derive a con-
voluted expression for the speed of light,

cD 1� � cos 
v

c

�


ı� ˛C .ˇ� � C �2/ cos2 

� �v

c

	2

C
˚
ˇ�˛C �2 � �Œ2.˛C ı/C �2�

� �Œ2.ˇ� ı/C �2� cos2 
�

cos 
�v

c

	3

C

�
ı2 � ˛2 � ˛

�
1
2 C ı�˛

�

C


ˇ2 � ı2 �ˇ

�
1C 3ˇ

2
C ˛� 3ıC 2�

�
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; (22.5)

where  is the angle between the velocity v of the frame
of reference and the path of light; the independence of
experiments not relying on a specific synchronization
method on the related parameters � and �2 becomes ap-
parent if one computes the relative shift in the two-way
speed of light c2.; v/,

c2.; v/

c2.0; v/
� 1

D sin2 


.ı�ˇ/

�v

c

	2

�

�
3ı2 �ˇ2

4
Cˇ2 �

ˇ

2
.1C ı/

�ı2C
3
4 .ˇ� ı/

2 cos 2
��v

c

	4
�
:

(22.6)

Similarly, the phase shift (not shown here for brevity),
which can be measured by interferometry, is also inde-
pendent on � and �2 (see [22.6] for details).

An experimental determination of any nonvanishing
parameters would immediately indicate that the under-
lying physical theory is not Lorentz invariant. However,
second-order tests (i. e., obtained by disregarding terms
O.v4/ above) have yielded impressive bounds on these
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quantities: the most recent Michelson–Morley experi-
ment probing the dependence of the speed of light on
its orientation with respect to a preferred frame yielded
.ˇ�ı/D .4˙8/�10�12 [22.8], while a modification of
its setup (the Kennedy–Thorndike experiment) showed
no signal of any effect of c on the velocity of the ap-
paratus, .˛�ˇ/D�4:8.3:7/�10�8 [22.9]; finally, the
most precise relativistic Doppler effect measurement
has shown that time dilation as predicted by SR is valid
down to a precision of j˛j 	 8:4�10�8 [22.10]. Thus,
no violation of SR or any of its foundational principles
has been detected so far.

22.2.2 The c2 Formalism

Another formalism to address the possibility of break-
ing Lorentz invariance arises if one disregards the
postulate of the constancy of the speed of light. (For
clarity, one does not assume in this paragraph the natu-
ral system of units, in which cD 1.) This is best attained
by resorting to the so-called TH�� framework [22.11],
an alternative to the PPN formalism when parameteriz-
ing gravity theories that deviate from GR [22.1].

This formalism is well suited to describe the inter-
action between charged particles in an external static
and spherically symmetric gravitational field resulting
from some metric theory of gravity: the field T D g00

describes the temporal component of the metric g�� ,
while isotropy allows one to express the spatial part
as gij D H�ij. The � and � parameters act as a gener-
alization of the magnetic permeability �0 and electric
permittivity �0 of a medium; depending on the under-
lying physical theory, these may depend on internal
structure or the effect of other bodies.

The TH�� formalism is able to signal deviations
from metricity via a set of appropriately defined param-
eters

�0 D�c2
0
@

@U
ln

"
�

r
T

H

#
;

�0 D�c2
0
@

@U
ln

"
�

r
T

H

#
;

)0 D 1�
T

H
�� ; (22.7)

which vanish if the EP is valid. More rigorously, the
Einstein equivalence principle (EP), which comprises
weak EP, local Lorentz invariance and local position
invariance. In the above, c0 D

p
T=H is shown to be

the limiting speed of material test particles; the latter

contrasts with the speed of light cD 1=
p
��, which

follows the usual definition stemming from Maxwell’s
equations; however, both speeds c0 and c allow for
a spacetime and/or constitution dependency, that is,
a nonconstant c breaks Einstein’s second postulate of
SR, while EP is broken if c¤ c0 (even if c0 D const: is
the same for all matter species).

Since SR is obtained by taking the flat spacetime
limit of GR, one may extract a suitable formalism to
address Lorentz symmetry breaking in negligible grav-
itational fields and inertial frames by considering the
same limiting case of the TH�� formalism: this is
achieved by considering the c2 formalism [22.1], and
is attained by removing the spacetime dependence of
the eponymous set of parameters, as if the dynamics of
the gravitational field are disregarded. As a result, one is
left with the possibility of deviations between c and c0.

22.2.3 Modified Dispersion Relation

A more phenomenological, straightforward way of
breaking Lorentz invariance is to assume that the SR
dispersion relation E2 D p2c2Cm2c4 is generalized to
E2 D F.p;E/, due to some underlying physical theory.
Knowing the latter, one should also be able to establish
the conservation laws for energy and momentum; in the
absence of full knowledge of its inner workings, one
may assume that both quantities are conserved, or resort
to another phenomenological dependency for�E.p;E/
and �p.p;E/.

Since SR has withstood all tests so far, one knows
that its dispersion relation must be a very good approx-
imation, at least for the experimental regime available
v� c. Thus, it is natural that the putative full depen-
dence E2 D F.p;E/ allows a Taylor expansion around
vD 0, of the form

E2 D m2C p2CMPf .1/i piC f .2/ij pipjC
f .3/ijk

MP
pipjpk

C : : : ;

(22.8)

setting cD 1, for simplicity; the coefficients f .n/ are di-
mensionless, having factored out the Planck mass MP,
the assumed scale at which relevant Lorentz symmetry
breaking effects should arise due to some fundamen-
tal theory. These coefficients must be related to the
underlying physical theory, and could be spacetime or
position-dependent. More evolved modifications of the
dispersion relation may arise if one assumes that space-
time is discretized [22.12, 13] or stochastic [22.14].
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22.2.4 Dynamical Framework

The previous formalisms address the phenomenolog-
ical implications of breaking Lorentz invariance via
deformed relations for the coordinate transformations,
the dispersion relation or the speed of light or limit-
ing velocity of massive bodies. In stark contrast, one
may conceive dynamical schemes that attempt to model
Lorentz breaking extensions via an effective theory,
valid at the low-energy, low-velocity regime.

Since one is dealing with the issue of testing Lo-
rentz invariance at low energies, i. e., probing the va-
lidity of SR, gravity may be discarded from such an
extension. The first setup in flat space is the minimal
standard model extension (mSME) [22.15]; in this, the
interactions of the standard model are enriched by a set
of renormalizable Lorentz breaking operators involv-
ing fermions and the gauge bosons compatible with
the internal gauge symmetry of QED. One may read-
ily extend this to Yang–Mills theories, including models
of the electromagnetic, weak and strong forces with
an appropriate covering group. Gravity can also be in-
cluded, as well as an embedding of our worldsheet
into higher-dimensional braneworlds. Naturally, this
dynamical framework encompasses the previously con-
sidered Robertson–Sexl–Mansouri formalism [22.16].

One focuses attention on the minimal QED exten-
sion, as it provides a sufficiently broad framework for
the bulk of experimental tests of SR that involve elec-
trons and light propagation. Further imposing SU.2/
gauge symmetry breaking, one can write the relevant
additional terms to the Lagrangian density describing
fermions and the electromagnetic field as [22.17]

�LD 1
2
N ��
$

@� � N M C 1
2 .�F/˛ˇ��F˛ˇF�� ;

(22.9)

where F�� D @�A� � @�A� is the usual field strength
tensor. In the fermionic sector, one introduces a gener-
alized mass term

M � mC a��
�C b��5�

�C 1
2 H���

�� ; (22.10)

where m is the bare mass, as well as generalized gamma
matrices

�� � ��C c���
�C d���5�

�C e�C if��5

C 1
2 g˛���

˛� ;

(22.11)

where the a�, b�, c�� , d�� , e� , f� , ��� , and H��
are parameters that should arise from the underlying

high energy theory. It is worthwhile to notice that if
the breaking of Lorentz invariance is spontaneous, i. e.,
this is an exact symmetry of the latter, then these
parameters are related to vacuum expectation values
of Lorentz tensors and must be CPT-invariant. A toy
model where a suitable number of vectors couple to
the Ricci curvature introduces, when the former ac-
quire a vacuum expectation value, spontaneous Lorentz
symmetry breaking into the gravity sector and yields
interesting astrophysical implications [22.18, 19]. Her-
miticity of L also implies that they are real.

Dropping higher-order operators, which should not
be as relevant in the low-energy limit, one expects
a fermionic (odd) term of the form

.�AF/
˛�˛ˇ��AˇF�� I

however, since this gives rise to negative contributions
to the canonical energy and may lead to instabilities in
the theory [22.20, 21], it is usually considered to vanish,
kAF D 0 – which is experimentally supported.

Given the suggestive notation above, one naturally
obtains a generalized Dirac equation

.i� �@� �M/ D 0 ; (22.12)

together with generalized inhomogeneous Maxwell
equations (without sources)

@�F�� C .�F/
�
�˛ˇ@

�F˛ˇ D 0 ; (22.13)

while the homogeneous Maxwell equations remain the
same. The full set may be suggestively recast into the
usual counterpart, @�F�� D 0, but with the deformed
constitutive relations for the medium

�
D
H

�
D

0
@�0.Q�rC �DE/

q
�0
�0
�DBq

�0
�0
�HE ��1

0 . Q��1
r C �HB/

1
A�E

B

�
;

(22.14)

where Q�r and Q�r are the electric permittivity and mag-
netic permeability matrices, respectively (proportional
to the 3�3 identity matrix for linear, homogeneous and
isotropic mediums), and one defines

�DE
ij D�2�F

0i0j ;

�HB
ij D 1

2�
ikl�jmn�F

klmn ;

�DB
ij D��HE

ji D �F
0ikl�jkl : (22.15)

Hence, one has the ingredients to perform a thor-
ough analysis of a possible breaking of Lorentz invari-
ance involving charged particles and light.



Part
D

|22.3

468 Part D Confronting Relativity Theories with Observations

In four spacetime dimensions, renormalizability
of standard model operators requires that these have
a mass dimension d 	 4; however, in principle, Lorentz
breaking operators with any mass dimension d could
also appear in the Lagrangian of the effective field the-
ory extending the standard model at low energies.

If the lower-dimensional operators d 	 4 are not
adequately suppressed at low-energy scales, they dom-
inate the higher-dimensional ones and lead to unac-
ceptably high corrections to the deformed dispersion
relation and have the form f .n/pnM2�n

P , with f .n/ � 1.
Moreover, radiative corrections lead to additional linear
and quadratic terms of the form MPpC f .n/p2.

Since it is known experimentally that the dispersion
relation of SR holds with great accuracy (Sect. 22.3.3),
one requires an unnatural fine-tuning of the dimen-
sionless coefficients affecting these operators [22.22],
so that additional linear and quadratic terms in the
deformed dispersion relation cancel out. An explicit
computation of the dispersion relation from the mSME
for fermions can be found in [22.23].

As it turns out, one may resort to partial discrete sym-
metries that remain after the main one is broken: a nat-
ural candidate is CPT, as the odd Lorentz-invariant op-
erators of the mSME are restricted (and thus made com-
patible with the experimental bounds) if one enforces
this symmetry in the theory. Even operators may also be
suppressed if one invokes supersymmetry as a natural
invariance of Nature, although consistency requires that
allowed Lorentz symmetry breaking operators involving
supersymmetric partners are also considered, and even
operators remain dangerously unrestricted.

The kinetic and dynamic formalisms presented
above are all naturally intertwined, and may be corre-
lated although the underlying physical theory remains
unknown – that is, a particular Lorentz breaking con-
tribution to the effective field theory envisaged in the
dynamical framework naturally translates into specific
modified dispersion relations [22.24, 25], while phe-
nomenological terms considered in the kinetic approach
can, in principle, be traced back to relevant operators at
the low-energy level [22.17].

22.3 Testing General Relativity

Having discussed above how the foundational princi-
ples of SR can be tested, one now focuses on GR
and its current experimental status. The first experi-
mental confirmation of GR appeared in 1915, when
it successfully accounted for the discrepancy with the
Newtonian estimate for the advance of the perihelion
precession of Mercury’s orbit with no adjustable pa-
rameters. Shortly after, the famous 1919 expedition
by Eddington produced observations of stellar lines-
of-sight during a solar eclipse that confirmed another
prediction of GR, namely that the deflection angles due
to light bending around the gravitational field of the
Sun should be twice the value obtained from Newtonian
and EP arguments. This propelled GR into notoriety
and turned its creator into the first scientific star of the
world.

Since then, GR has been extensively tested in the
Solar System, with all data obtained so far being con-
sistent with its predictions. As time has gone by, these
tests have grown more and more precise: from the �
0:2 accuracy of microwave ranging to the Viking Lan-
der on Mars in 1976 [22.26–28] and 0:15 accuracy of
spacecraft and planetary radar observations [22.29] to
an order of magnitude gain via the astrometric obser-
vations of quasars on the solar background performed

with very-long baseline interferometry [22.30–32] and
lunar laser ranging precision measurements of the lu-
nar orbit (with accuracies of � 0:045 and � 0:011,
respectively) [22.33–39]. This was pushed even fur-
ther by the 2003 experiments with the Cassini space-
craft, which improved the testing accuracy down to
� 0:0023 [22.40].

Observations of binary millisecond pulsars lend fur-
ther support for GR; indeed, the physical processes
occurring in the strong gravitational field regime within
these relativistic object are of considerable interest,
given the possibility of testing relativity in a distinct
dynamical environment. Pulsar tests of strong-field
gravity were first formulated in [22.41], with initial
tests being performed with PSR1534 [22.42]. Strong-
field gravitational tests and their theoretical rationale
were examined in [22.43–45]. Pulsar data were re-
cently analyzed to test GR to� 0:04 at a 3� confidence
level [22.46].

22.3.1 Metric Theories of Gravity
and PPN Formalism

In this section, we present the formalism used to in-
terpret observations in weak field and slow motion
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approximation, conditions found in the Solar System;
this formalism provides a rigorous framework to study
increasingly accurate experiments and to establish strin-
gent constraints on deviations from GR and its funda-
mental tenets.

The distribution of matter in this approximation is
commonly represented by a perfect fluid model [22.47–
50] with an energy-momentum tensorbTmn given by

bTmn D
p
�g .Œ�0.1C˘/C p� umun � pgmn/ ;

(22.16)

where �0 is the mass density of the ideal fluid in co-
ordinates of the comoving frame of reference, uk are
the components of invariant four-velocity of a fluid el-
ement, and p.�/ is the isentropic pressure connected
with the energy density by an equation of state pD
p.�/. The quantity �˘ is the density of internal en-
ergy of an ideal fluid; the definition of ˘ arises from
the first law of thermodynamics, according to the equa-
tion un

�
˘
InC p .1=b�/

In

�
D 0, where b�Dp�g�0u0 is

the conserved mass density [22.1, 49–51]. Considering
the energy–momentum tensor, the solutions of the grav-
itational field equations for a given theory of gravity can
be found.

An alternative methodology, valid for both weak
and strong regimes of GR and an arbitrary energy–
stress tensor, builds upon a Maxwell-like expansion of
the metric and the Blanchet–Damour multipole frame-
work [22.52–56]; the study of a general N-body prob-
lem in a weak-field and slow motion approximation was
developed in [22.57].

Despite the widely different principles underlying
metric theories of gravity, they all share the feature
that the gravitational field directly affects the matter
through the metric tensor gmn, which is determined
from the field equations. Thus, the metric expresses the
properties of a particular gravitational theory and car-
ries information about the bodies’ gravitational field –
contrasting with the flat metric of Newtonian grav-
ity and its interpretation in terms of forces acting at
a distance.

The so-called PPN formalism generalizes the phe-
nomenological parameterization of the gravitational
metric tensor field first discussed by Eddington in a lim-
ited context [22.58–60]. This method assumes slowly
moving bodies and weak inter-body gravity, and is
valid for a broad class of metric theories. The PPN
parameters that appear in the expansion of the metric
characterize each theory of gravity and are individually

associated with the underlying symmetries and laws
of invariance. If, for simplicity, one assumes Lorentz
and local position invariance and conservation of total
momentum conservation, the metric tensor in four di-
mensions in the PPN-gauge is given by

g00 D�1C 2U� 2ˇU2 � 2�˚W

C .2� C 2C ˛3C �1 � 2�/˚1

C 2.3� � 2ˇC 1C �2C �/˚2C 2.1C �3/˚3

C 2.3� C 3�4 � 2�/˚4 � .�1 � 2�/A
� .˛1 � ˛2 �˛3/w

2U� ˛2wiwjUij

C .2˛3 �˛1/w
iViCO.�3/ ;

g0i D�
1
2 .4� C 3C˛1 � ˛2C �1 � 2�/Vi

� 1
2 .1C ˛2 � �1C 2�/Wi

� 1
2 .˛1 � 2˛2/w

iU�˛2wjUijCO.�5=2/ ;

gij D .1C 2�U/ıijCO.�2/ ; (22.17)

setting „ D cD GD 1 and using the metric signature
convention .�CCC/.

The order of magnitude of the various terms is
determined according to the estimates U � v2 �˘ �
p=�� �, vi � jd=dtj=jd=dxj � �1=2, and all possi-
ble potentials are considered up to the desired post-
Newtonian order. Considering (22.16), these general-
ized gravitational potentials, of the same order as U2,
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Fig. 22.1 The progress in determining the PPN parameters � and ˇ
for the last 30 y (After [22.61])
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are given by

U D
Z

�0

jx� x0j
d3x0 ;

Uij D

Z
�0.x� x0/i.x� x0/j
jx� x0j3

d3x0 ;

˚W D

Z
�0�00.x� x0/
jx� x0j3

�

�
x0 � x00

jx� x00j
�

x� x00

jx0� x00j

�
d3x0 d3x00 ;

AD
Z
�0Œv0 � .x� x0/�2

jx� x0j3
d3x0 ;

˚1 D

Z
�0v0

2

jx� x0j
d3x0 ;

˚2 D

Z
�0U0

jx� x0j
d3x0 ;

˚3 D

Z
�0˘ 0

jx� x0j
d3x0 ;

˚4 D

Z
p0

jx� x0j
d3x0 ;

Vi D

Z
�0v0i
jx� x0j

d3x0 ;

Wi D

Z
�0Œv0 � .x� x0/�.x� x0/i

jx� x0j3
d3x0 : (22.18)

A particular metric theory of gravity in the PPN for-
malism is fully characterized by means of the 11 PPN
parameters shown in (22.17) [22.1, 62]: these have clear
physical meaning and concern a particular symmetry,
conservation law, or fundamental tenet of the structure
of spacetime: the parameter ˇ is the measure of the non-
linearity of the law of superposition of the gravitational
fields (or its metricity) in a theory of gravity, while �
represents the measure of the curvature of the space-
time created per unit rest mass; the group of parameters
˛1; ˛2; ˛3 quantify the violation of Lorentz invariance
(i. e., the existence of the privileged reference frame),
the parameter � quantifies the violation of local po-
sition invariance, and the parameters ˛3; �1; �2; �3; �4

indicate a possible violation of the conservation of total
momentum.

Since GR satisfies all of the above principles, it
is naturally signaled by the vanishing of all PPN pa-
rameters except ˇ and � . Brans–Dicke theory [22.63],
perhaps the best known of the alternative theories of
gravity, endowed with an additional scalar field and ar-
bitrary coupling constant !, yields a decreasing space-

time curvature per unit rest mass, while preserving the
remaining symmetries: its nonvanishing PPN parame-
ters are thus ˇ D 1, � D .1C!/=.2C!/. More general
scalar tensor theories yield values of ˇ different from
unity [22.64].

The PPN metric tensor, given by (22.17)–(22.18), is
used to generate the equations of motion for the bodies
under scrutiny (planets, satellites, etc.), which are trans-
lated into orbit determination numerical codes [22.62,
65–67], as well as used in the analysis of gravitational
experiments in the Solar System [22.1, 61]. Table 22.1
and Fig. 22.1 show the latest bounds on the Eddington
parameters ˇ and � and the history of increasingly ac-
curate experiments.

The foundations of GR and the current experimental
verification of their validity are now discussed. For this,
one recalls its basic tenets:

1. Weak equivalence principle (WEP) (also known
as the principle of universality of the free fall):
freely falling bodies have the same acceleration in
the same gravitational field, independently of their
compositions (see Sect. 22.3.2).

2. Local Lorentz invariance (LLI): the rate of clocks
is independent of the velocity of the clock
(Sect. 22.3.3).

3. Local position invariance (LPI): the rate of clocks is
independent of the spacetime position of the clock
(see Sect. 22.3.4).

22.3.2 The Equivalence Principle (EP)

Almost every theory of gravitation has addressed the
issue concerning the equivalence between inertial and
passive gravitational mass, starting with Newton him-
self. Almost one century ago, Einstein followed through
by declaring that all nongravitational laws should be-
have in free-falling frames as if gravity were ab-
sent. This postulate implies that identical accelerations
should be experienced by objects with different com-
positions in the same gravitational field – so that grav-
ity becomes a geometrical property of spacetime, as
posited by GR. As it turns out, this EP can be cast in
both a weak and a strong version, as addressed below.

The Weak Equivalence Principle (WEP)
The weak form of EP states that the gravitational
properties of all interactions except gravity obey the
EP. The concerned charges are the nuclear-binding
energy differences between test masses, their neutron-
to-proton ratios or atomic charges, amongst others. The
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Table 22.1 Accuracy of determination of the PPN parameters � and ˇ [22.2, 39, 61]

PPN parameter Experiment Result

� � 1 Cassini 2003 spacecraft radio-tracking 2:3�10�5

Observations of quasars with astrometric VLBI 3�10�4

ˇ� 1 Helioseismology bound on perihelion shift 3�10�3

LLR test of the SEP, assumed: �D 4ˇ� � � 3 and the Cassini result for PPN � 1:1�10�4

equivalence between gravitational and inertial masses
implies that distinct neutral massive test bodies have
the same free fall acceleration in an external gravita-
tional field [22.68], with the latter inducing only a tidal
force [22.69].

According to GR, the spacetime curvature caused
by a massive body scatters light rays passing in its
vicinity achromatically. The Sun is the dominating con-
tributor to this effect in the Solar System, deflecting the
light by as much as 1:7500 � .R

ˇ

=b/, where R
ˇ

is the so-
lar radius and b is the impact parameter. In 1919, the
famous Eddington expedition confirmed that photons
fall freely according to the predictions of GR; although
the original experiment had only a 10% accuracy, the
light bending measured in a solar conjunction by the
Cassini spacecraft has improved this type of measure-
ment to the current figure of 0:0023% [22.40].

WEP also implies a Doppler frequency shift ��
induced on light by the variation of the gravitational po-
tential. This was confirmed in 1960 by the eponymous
Pound–Rebka experiment, which produced

��

�
D

gH

c2
D .2:57˙ 0:26/� 10�15 ; (22.19)

where g is the acceleration of gravity and H the height
of the fall [22.70, 71].

Notwithstanding some formidable experimental ob-
stacles, the free fall of antiprotons and antihydrogen (or
other antiparticles) could provide yet another test of the
WEP (see [22.72] for a thorough review). This would
allow one to probe as to what extent gravity respects the
CPT symmetry of local quantum field theories – specif-
ically, if antiparticles fall as particles in a gravitational
field. The ATHENA (Apparatus for High Precision
Experiments on Neutral Antimatter) and the ATRAP
(antihydrogen trap) collaborations at CERN (European
Organization for Nuclear Research) have developed the
capability of storing antiprotons and creating an antihy-
drogen atom [22.73, 74], but no experiment along these
lines has been performed so far.

A test of WEP involving neutral kaons was per-
formed by the CPLEAR ring (charge parity low-energy

antiproton ring) collaboration [22.75], producing limits
of 6:5, 4:3 and 1:8�10�9, respectively, for scalar, vec-
tor, and tensor potentials originating from the Sun with
a range much greater than 1 AU acting on kaons and
antikaons. These relevant results do not probe possi-
ble baryon number-dependent interactions, and are thus
complementary to the desirable antiprotons and antihy-
drogen atom experiments mentioned above.

Most metric theories of gravitation inherently up-
hold WEP, although some predict additional forces
that lead to composition-dependent deviations from
geodesic motion (e.g., if a nonminimal coupling be-
tween matter and curvature is present [22.76, 77]).
Similarly, almost all extensions to the standard model
of particle physics predict new forces that induce appar-
ent violations of EP [22.78, 79]; this is most apparent if
macroscopic-range fields are present, so that exchange
forces that couple to generalized charges arise, rather
than just to mass/energy as with gravity [22.80, 81].

Laboratory tests of WEP can be made by compar-
ing the free fall accelerations a1 and a2 of different test
bodies. If these are at the same distance from the source
of the external gravitational field, the breaking of the
WEP is elegantly gauged through the quantity

�a

a
D

2.a1� a2/

a1C a2
D

�
MG

MI

�
1
�

�
MG

MI

�
2

D�

�
MG

MI

�
; (22.20)

where MG and MI are, respectively, the gravitational and
inertial masses of each body.

Other tests conducted so far have validated WEP for
elementary particles. For the neutron, an interferometry
experiment showed that a neutron beam split by a sili-
con crystal and traveling through different gravitational
paths interferes as predicted by quantum mechanics,
with a gravitational potential given by Newtonian grav-
ity – providing a striking confirmation of WEP using
an elementary hadron [22.82]. Since then, gravitational
atom interferometric measurements have probed WEP
down to a precision of 3�10�8 [22.83].
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The ratio of gravitational to inertial masses of test
bodies has been determined, with an upper limit for
j1�MG=MIj of � 10�11 in 1964 [22.84], � 10�12 in
1972 (reconfirmed in 1994) [22.85, 86] and, more re-
cently, 1:4�10�13 [22.87] (see [22.88] for a review).
These increasingly precise experiments further show
that strong, weak, and electromagnetic interactions con-
tribute equally to the passive gravitational and inertial
masses of test bodies.

One decade ago, gravitational bound states of neu-
trons were confirmed by Nesvizhevsky and collabora-
tors [22.89, 90], who set up a realization of a conceptual
experiment proposed in 1978 [22.91]. In this experi-
ment, ultracold neutrons from a source at the Institute
Laue–Langevin reactor in Grenoble fall under the in-
fluence of the Earth’s gravitational field towards a hor-
izontal mirror, with a minimum measurable energy of
1:4�10�12 eV corresponding to a vertical velocity of
1:7 cm=s (a more intense beam and an enclosure mir-
rored on all sides could lower the latter by six orders of
magnitude). The neutrons were found not to fall contin-
uously; rather, they jumped between different vertical
levels, as predicted by quantum mechanics.

Improved experiments probing gravity through
quantum systems clearly open the possibility of test-
ing novel concepts related to the unification of GR and
quantum mechanics (in the low-energy regime), such
as noncommutative formulations of the latter [22.92] –
as well as detecting the transition between the classical
and quantum description of a system as a function of its
dimensions [22.93].

An analysis of the lunar laser ranging data showed
the absence of any composition-dependent accelera-
tion effects [22.94]. In astronomical measurements, one
should consider the gravitational self-energy contribu-
tions to the inertial and gravitational masses of the
bodies [22.58], whereas these are negligible in test
masses used in laboratory environments. Considering
the gravitational self-energy leads one to scrutinize the
strong equivalence principle, as is discussed below.

The Strong Equivalence Principle (SEP)
The strong formulation of EP addresses the gravita-
tional behavior arising from gravitational energy itself,
thus expressing the nonlinearity of gravitation. It states
that not only the outcome of gravitational experiments,
but indeed any measurement concerning other interac-
tions, are independent of the velocity and position of
the laboratory. Being an integral part of EP, SEP is en-
forced by GR. However, many theories of gravity do
not respect this assumption: for instance, scalar-tensor

theories typically violate SEP [22.33, 58, 95, 96], e.g.,
by positing different couplings between these fields
and different species of matter. This leads not only to
a difference in free fall and related tests, but also in non-
gravitational experiments.

The fractional contributions to the mass by the grav-
itational self-energy of a body is the most relevant
quantity for probing the validity of SEP. The previously
described PPN formalism is particularly suited to the
description of astronomical tests; using it, one may cast
this quantity as

�

�
MG

MI

�
SEP
D �

�
˝

Mc2

�
; (22.21)

where Mc2 is the total mass–energy of the test body,
˝ its negative gravitational self-energy, and � a dimen-
sionless constant for SEP violation [22.33, 58, 95]. It
is expressed by a combination of PPN parameters, so
that in fully-conservative, Lorentz-invariant theories of
gravity [22.1, 2], it reads �D 4ˇ� � � 3 (so that the
values ˇ D � D 1 characterizing GR yield �D 0).

The self-energy of a body B is given by

�
˝

Mc2

�
B

D�
G

2MBc2

Z
B

d3xd3y
�.x/�.y/
jx� yj

: (22.22)

A sphere with a radius R and uniform density has
˝=Mc2 D�3GM=5Rc2 D�.3=10/.vE=c/2, where vE

is its escape velocity. A more realistic value may be ob-
tained by numerically integrating the expression above
using its known structural features; in the case of the
Sun, this yields .˝=Mc2/

ˇ

��3:52�10�6 [22.97],
which should be compared with the typical magnitude
� 10�25 for laboratory-sized bodies. Thus, while an ex-
perimental accuracy of 10�13 [22.87] is sufficient to
significantly constrain violations of WEP, it does not
allow for a stringent test of SEP – hence the need
for planetary-sized extended bodies, where the ratio
(22.22) is much larger.

Several Solar System experiments have been sug-
gested in order to probe the validity of SEP [22.33,
58, 98], from lunar measurements to the study of the
motion of Trojan asteroids (performed more than two
decades ago [22.99, 100]) or the analysis of binary pul-
sar data [22.101] – which takes advantage of a strong
(self-)gravity regime [22.43, 44], albeit no sufficiently
accurate measurements are yet available [22.102, 103].
Interplanetary spacecraft provide yet another testbed for
SEP [22.68, 104].
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So far, the most competitive assessment of the va-
lidity of SEP stems from the Earth-Moon-Sun sys-
tem, through the analysis of lunar laser ranging (LLR)
data [22.39] yielding �.MG=MI/SEP D .�2:0˙ 2:0/�
10�13 (from a general breaking of EP of �.MG=MI/EP

D .�1:0˙1:4/�10�13) – implying a SEP violation pa-
rameter �D 4ˇ� � � 3D .4:4˙ 4:5/� 10�4.

22.3.3 Local Lorentz Invariance (LLI)

Invariance under Lorentz transformations states that the
laws of physics are independent of the velocity of the
frame. This is the basic tenet of SR, as discussed be-
fore, and holds only locally in GR. Although current
theories obey this symmetry, some results arising from
string field theory hint that it may be spontaneously bro-
ken [22.105, 106], due to open string interactions and its
implications at low-energy physics. If so, many impli-
cations are expected: for instance, if the contribution of
Lorentz-violating interactions to the vacuum energy is
approximately half of the critical density, one expects
that very weak tensor-mediated interactions arise in the
range� 10�4 m [22.107]. Furthermore, these string in-
teractions are the privileged contributors to the Lorentz
violating terms of mSME.

The effect of our velocity relative to a putative
preferred reference frame may be phenomenologically
described by considering a cosmological vector field
that acquires a nonvanishing minima due to a sponta-
neous symmetry breaking induced by a suitable poten-
tial [22.108]; a model allowing for such a spontaneous
breaking of LLI has been proposed [22.109–111], lead-
ing to interesting scenarios where the inverse square law
for gravity is modified by the spacetime direction cho-
sen by the vector field [22.19].

Considerations on the dynamics of the renormaliza-
tion group ˇ-function of nonabelian gauge theories also
hint that Lorentz invariance might be just a low-energy
symmetry [22.112]. Lorentz violation may also induce
the breaking of conformal symmetry; together with in-
flation, this could explain the primordial magnetic fields
needed to account for the observed galactic magnetic
field [22.113]. A modified gravity-induced wave dis-
persion derived from a violation of Lorentz invariance
could be probed by astrophysical observations of dis-
tant sources of gamma radiation [22.114, 115].

A violation of this fundamental symmetry of
GR is also possible with noncommutative field theo-
ries [22.116], although it may hold (at least) at first
nontrivial order in perturbation theory of the non-
commutative parameter [22.117–121]. Other theories

that may entail a breaking of Lorentz invariance in-
clude loop quantum gravity [22.122, 123], spacetime
foam scenarios [22.124, 125], and models exhibiting
a spacetime variation of fundamental coupling con-
stants [22.126, 127] (see [22.128] for a review of
high-energy Lorentz symmetry breaking).

A violation of Lorentz invariance could break the
fundamental CPT symmetry of local quantum field the-
ories [22.129, 130] – a prospect that can be tested
in neutral-meson [22.131, 132] experiments, Penning-
trap measurements [22.133, 134], and hydrogen-
antihydrogen spectroscopy [22.135]. This CPT break-
ing could also be induced by nonlinearities in quantum
mechanics, perhaps stemming from a quantum the-
ory of gravity; the latter possibility has been probed
by the CPLEAR Collaboration [22.136]. Whatever the
cause, the spontaneous breaking of CPT symmetry pro-
vides, along with the violation of the baryon number,
an interesting mechanism for the generation of the ob-
served baryon asymmetry in the Universe: after the
CPT and baryon number symmetries are broken in
the early Universe, tensor–fermion interactions arising
from string field theory give rise to a chemical potential
that creates a baryon-antibaryon asymmetry in equilib-
rium [22.137].

Modifications of the Michelson–Morley experiment
using laser interferometry are very useful for testing
Lorentz symmetry breaking, by comparing the velocity
of light and the maximum attainable velocity of massive
particles, ci – with a current experimental constraint of
jc2=c2

i � 1j< 10�9 [22.138] (see Sect. 22.2).
The more accurate Hughes–Drever experiment

probes a possible time dependence of the quadrupole
splitting of nuclear Zeeman levels along Earth’s or-
bit [22.139, 140], yielding an impressive limit of jc2=c2

i
� 1j< 3�10�22 [22.141] – with a follow-up study
showing that a gain of up to eight orders of magnitude
in accuracy is possible [22.142].

As stated before, astronomical tests are best ana-
lyzed through the use of the PPN formalism, with the
˛3 parameter being related to violation of momentum
conservation and the existence of a preferred reference
frame (˛3 D 0 in GR). The study of (millisecond) pul-
sars yields the extremely accurate limit j˛3j< 2:2�
10�20 [22.2, 143, 144].

An analysis of the interaction between the most en-
ergetic cosmic-ray particles and the photons from the
cosmic microwave background radiation has shown that
the propagation of ultra-high-energy nucleons is limited
by inelastic collisions with the latter, preventing parti-
cles with energies above 5�1019 eV from reaching Earth
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from beyond 50�100 Mpc – the so-called Greisen–
Zatsepin–Kuzmin (GZK) cut-off [22.145, 146]. Events
where the cosmic primaries have an estimated energy
above the GZK cut-off were observed by different col-
laborations [22.147–153]; although the HI-RES (high
resolution fly’s eye) [22.154] and Auger [22.155] col-
laborations results have been interpreted as being con-
sistent with the validity of this cutoff, and hence of
Lorentz symmetry.

Processes such as the resonant scattering reaction
pC �2:73K!�1232 have been shown to be suppressed
by energy-dependent effects arising from small viola-
tions of Lorentz invariance [22.156–159]. This can be
used to analyze the putative existence of events above
the GZK cutoff, yielding the strongest constraint of
jc2=c2

i � 1j< 1:7�10�25 [22.23, 160, 161].

22.3.4 Local Position Invariance (LPI)

A violation of LPI indicates that the rates of a free
falling clock and one on the surface of the Earth should
differ. As the WEP and LLI principles of GR benefit
from the stringent bounds addressed before, experi-
ments on the universality of the gravitational red-shift
primarily probe the validity of the LPI. This may be
quantified by the parameter � measuring the deviation
in the relative shift in frequency ��=� D .1C�/U=c2

when compared with GR (where �D 0).
The already discussed Pound–Rebka experiment

(22.19) yields �' 10�2. An accurate verification of
LPI was achieved through the comparison between
hydrogen-maser frequencies on Earth and of a rocket
flying to altitude of 10 000 km [22.162], leading to
j�j< 2�10�4. Further considerations allow for an im-
provement by two orders of magnitude, � < .0:1˙
1:4/� 10�6 [22.163].

22.3.5 The Pioneer and Flyby Anomalies

Although not quite a direct test of SR or GR per se, the
Pioneer and flyby anomalies have arisen in the literature
as phenomena that, at least at a first look, challenged
the common wisdom about gravity. These unaccounted
behaviors of spacecraft, derived from the analyses of
tracking data, have led many theoreticians to the draw-
ing board, with suggestions that these anomalies em-
body new physical phenomena that could encompass
a putative breaking of the basic tenets of relativity.

The Pioneer anomaly stood out as an open question
in physics for more than a decade; its existence was first
discussed in 1998 [22.164], when a JPL team showed

that the deep tracking of the Pioneer 10 and 11 probes
disagreed with the predictions of a detailed orbital de-
termination model including GR and all relevant effects
and ephemerides – but was statistically consistent with
a fit to the latter plus a constant Sun-bound acceleration
aP D .8:74˙ 1:33/� 10�10 m=s2 [22.165].

This anomalous behavior was independently con-
firmed through alternative data analyses [22.166–168],
with the first pair of studies allowing for a decreas-
ing acceleration, instead of a constant one. Indeed, 10
years ago it was pointed out that this was compati-
ble with an exponentially decreasing acceleration with
a timescale compatible with the decay rate of the plu-
tonium present in the radiothermal generators (RTG)
and powering the spacecraft. Nonetheless, and despite
studies pointing at a conventional origin for the Pioneer
anomaly [22.169, 170], more specifically onboard ther-
mal effects, this possibility was strongly rejected by the
JPL team and explanations resorting to new physics ap-
peared (see [22.76, 171–173] and references therein). It
was also shown that the most considered models for the
mass distribution of the Kuiper belt could not cause the
anomalous acceleration [22.174] (see also [22.175]).

It was only in 2008 that a clear numerical indication
that the Pioneer anomaly was of thermal origin ap-
peared, with the radiation emitted from the RTG and the
main compartment providing the additional, decaying
thrust that deviated the twin probes from its predicted
trajectories [22.176]. This possibility gained strength
with the following independent studies [22.177–180],
culminating in a recent study showing that the observed
anomaly falls squarely into the predictions yielded
by a model that also considers the reflection of the
radiation on the parabolic dish of the high-gain an-
tenna [22.181] – a result confirmed by a subsequent
study by other teams [22.182, 183].

Thus, the Pioneer anomaly is no more and now
serves as a cautionary tale against the dangers of ex-
trapolating poorly understood conventional effects as
revolutionary evidence of deviations from SR and GR.
With this is mind, the more recent flyby anomaly is
viewed with added scepticism, although it has so far de-
fied any conventional explanation.

The Flyby Anomaly
The flyby anomaly is an unexpected velocity change
disclosed by the analysis of several Earth gravity-
assist maneuvers of the Galileo, NEAR, Cassini, and
Rosetta spacecraft [22.184–186]. Following flybys of
the Galileo and Rosetta missions raised some expecta-
tion of obtaining a confirmation of this phenomenon.
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Table 22.2 Summary of orbital parameters of the considered Earth flybys

Mission Date e Perigee .km/ v1 .km=s/ �v1 .mm=s/ �v1=v1 .10�6/

Galileo 1990 2:47 959:9 8:949 3:92˙ 0:08 0:438

Galileo 1992 3:32 303:1 8:877 � 0 �0:518

NEAR 1998 1:81 538:8 6:851 13:46˙ 0:13 1:96

Cassini 1999 5:8 1173 16:01 �2˙ 1 �0:125

Rosetta 2005 1:327 1954 3:863 1:80˙ 0:05 0:466

MESSENGER 2005 1:360 2347 4:056 0:02˙ 0:01 0:0049

Rosetta 2007 3:562 5322 9:36 � 0 –

Rosetta 2009 2:956 2483 9:38 � 0 –

However, these events yielded no further evidence of
such a flyby anomaly (see Table 22.2) – in the case of
the second Galileo flyby, due to the high uncertainty
of the atmospheric drag, enhanced due to the very low
perigee altitude of� 300 km.

With the exception of the Cassini spacecraft, the
involved spacecraft had no deep space network track-
ing during perigee passage, leading to an approximate
4 hr gap. The 10 s sampling interval for the remain-
ing period produced a very coarse-grained distribution
of data points, disabling an accurate characterization
of the effect in terms of an additional force affecting
the spacecraft. Thus, the flyby anomaly is signaled by
the inability to fit a single hyperbolic arc to the whole
flyby maneuver: two distinct incoming and outgoing
arcs must be considered, with the small difference be-
tween them being interpreted as an additional boost�v
at perigee.

Despite the difficulty to assign a well-defined
value, an averaged acceleration of the order of aF �

10�4 m=s2 may be used as a figure of merit for the
flyby anomaly [22.185]. This figure allows for a com-
parison with several possible causes: Earth’s oblate-

Table 22.3 List of orders of magnitude of possible error
sources during Earth flybys

Effect Order of Magnitude .m=s2/

Earth’s oblateness 10�2

Other Solar System bodies 10�5

Relativistic effects 10�7

Atmospheric drag 10�7

Ocean and Earth tides 10�7

Solar pressure 10�7

Earth’s infrared emissions 10�7

Spacecraft charge 10�8

Earth’s albedo 10�9

Solar wind 10�9

Magnetic moment 10�15

ness, other Solar System bodies, relativistic corrections,
atmospheric drag, Earth’s albedo and infrared emis-
sions, ocean or solid tides, solar pressure, spacecraft
charging, magnetic moments, solar wind, spin-rotation
coupling [22.185, 187], dark matter [22.186], etc. (Ta-
ble 22.3).

Clearly, all these effects are much smaller than the
considered value for aF , with the exception of Earth’s
oblateness. However, accurate knowledge of the gravi-
tational model of the Earth means that the origin of the
flyby anomaly cannot be due to some minor deviation
in the latter [22.185].

The empirical formula proposed in [22.184] is per-
haps the most prominent attempt to account for the
reported flyby anomalies; it proposes that the variation
in magnitude and direction of the anomalous velocity
change reflects the declinations of the incoming and
outgoing asymptotic velocity vectors, ıi and ıo, respec-
tively,

�V
1

V
1

D
2!ERE

c
.cos ıi� cos ıo/ ; (22.23)

where !E is the Earth’s rotation velocity and RE its
radius. This identification is suggestive, given its sim-
ilarity with the term present in the outer metric due to
a rotating body [22.188]
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with
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�2

; (22.25)

where d˝2 D d2C sin2  d�2 and V0 is the Newto-
nian potential V.r/ at the equator.
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However, any reasoning attempting to derive
(22.23) from GR is faulty, as all relativistic effects (em-
bodied in the above metric) have been calculated to be
much lower than the typical order of magnitude aF of
the flyby anomaly – namely those induced by the ro-
tation of the Earth: the de Sitter precession effect and
frame dragging.

Furthermore, the application of (22.23) to the subse-
quent two flybys by the Rosetta probe in 2007 and 2008
predicted an anomalous increase in V

1

of, respectively,
0:98 and 1:09 mm=s [22.189], but the analysis of the
tracking data was not consistent with any flyby anomaly
whatsoever.

Similarly to what occurred with the Pioneer ano-
maly, a conventional explanation for the flyby anomaly
should not be dismissed. Indeed, some yet unmodeled
aspect of the affected spacecrafts could lead to the ob-
served anomalous �v; if this is the case, the widely
different designs and gravitational assists of the stud-
ied spacecrafts would naturally lead to the variations of
the latter.

The opposite possibility might be more enticing,
namely that the flyby anomaly is the signature of new or
exotic physics at play. Its confirmation as a new physical
force would have implications to a wide range of phe-
nomena such as planetary orbits, and potentially lead
to deepening our understanding of gravity. However,
no clear-cut fundamental motivation exists for such
a short-ranged force (see [22.187, 190] for an overview
of some proposed physical mechanisms).

In order to settle the issue, a clear-cut confir-
mation of this effect is mandatory. Given the sparse
number of gravitational assists available, a recent pro-
posal [22.190] suggested that a thorough characteriza-
tion of the flyby anomaly could be achieved by studying
the behavior of a spacecraft in a highly elliptic orbit,
such that the velocity and altitude at perigee is simi-
lar to the values depicted in Table 22.2. Such a mission
could come at a low cost and would provide the desired
repetition of flybys; a detailed study of its design fea-
tures (e.g., thermal modeling, atmospheric drag) would
allow for a clear discrimination of competing perturba-

tions, and the use of global navigation satellite system
(GNSS) tracking would provide the required tracking
accuracy.

This concept could be realized via a dedicated
small or micro-satellite, or as an add-on to an ex-
isting mission [22.190]. The STE-QUEST mission,
currently under consideration by the European Space
Agency, could provide the latter, given its highly el-
liptic orbit and use of GNSS precise orbit determina-
tion [22.191].

22.3.6 Conclusion

As was seen in the preceding sections, all of the avail-
able constraints on the validity of the founding prin-
ciples of SR and GR have so far failed to crack any
faults in these century-old theories, which thus remain
the standard against all competitors so far.

The available experimental data fit quite well with
GR, while allowing for the existence of putative ex-
tensions, provided any new effects are small at the
post-Newtonian scale [22.1]. However, despite its im-
pressive experimental success, GR cannot be regarded
as a fully satisfactory theory, given its inadequacy in
what concerns issues such as the existence of singular-
ities, the cosmological constant problem (see [22.192]
and references therein) and the incompatibility with ex-
isting quantization schemes.

At the largest scales, GR is compatible with cos-
mological data if and only if dark matter dominates at
galactic and cluster scales, while the dynamics of the
accelerating expansion of the Universe is controlled by
dark energy.

At a more conceptual level, it was recently sug-
gested that gravity, and GR in particular, is an emerging
property arising from more fundamental tenets such
as the holographic principle and Bekenstein’s entropy-
energy limit [22.193].

This perspective leads to new challenges and may
imply, for instance, that WEP might be violated
if spacetimes admit a phase-space noncommutative
geometry [22.194].
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23. Observational Constraints
on Local Lorentz Invariance

Robert T. Bluhm

Local Lorentz invariance is a fundamental space-
time symmetry in the standard model of particle
physics and in general relativity. However, in a
quantum theory of gravity, mechanisms have been
found to arise that might allow small violations of
Lorentz invariance to occur. An effective field the-
ory known as the standard model extension has
been developed to search for these violations. The
standard model extension incorporates Lorentz-
violating interaction terms involving particle fields
and gravitational fields, and it includes all terms
that could arise from a process of spontaneous
Lorentz violation as well as terms that explic-
itly break Lorentz symmetry. In this chapter, an
overview of the standard model extension is pre-
sented, including its motivations and construction.
A partial survey of high-precision experimental
tests of local Lorentz invariance for the different
particle sectors in the standard model and with
gravity is presented as well.
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The standard model (SM) of particle physics and the
theory of general relativity (GR) are currently the best
theories describing the four fundamental forces of na-
ture: electromagnetism, strong and weak nuclear forces,
and gravity. There are no known experimental con-
flicts with predictions from either of these theories.
Nonetheless, they are fundamentally different in that
the SM is a quantum theory, while GR is a classi-
cal geometrical theory. It remains an open issue as
to how to merge or reconcile the SM and GR into
a unified theory that presumably contains a quantum
description for gravity. The relevant scale for a quan-
tum theory of gravity is typically taken as the Planck
scale, which is approximately 1019 GeV. Promising can-
didates for a quantum theory of gravity include string
theory and loop quantum gravity. These and other ideas
for quantizing gravity can involve new features such
as, for example, higher dimensions of space and time,

braneworld scenarios, noncommutative geometries, and
spacetime-varying fields or couplings. It is also possible
that in merging GR into a quantum theory of gravity, the
laws of relativity might not hold exactly at all energy
scales.
Searching for experimental evidence of a quantum
theory of gravity is challenging because conducting ex-
periments at the Planck scale is not possible. However,
suppressed effects emerging from a more fundamental
theory might be observable in highly-sensitive low-
energy experiments or in interferometry experiments
with extremely long baselines. One candidate set of
Planck-scale-suppressed signals is relativity violations
associated with small breaking of local Lorentz sym-
metry. It has been shown, for example, that mechanisms
arising in the context of string theory and other quantum
theories of gravity might lead to violation of Lorentz
symmetry. It is for this reason that considerable inter-
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est in the possibility of Lorentz violation has emerged
in recent years, and a number of new high-precision ex-
perimental tests of local Lorentz invariance have been
performed.

A key development in the investigation of Lorentz
violation was the formulation of a comprehensive the-
oretical framework known as the standard model ex-
tension (SME) [23.1–5]. It contains both the SM and
generalized theories of gravity (including GR) as well
as all possible observer-independent Lorentz-violating
interactions involving particle and gravitational fields.
The SME has been used extensively to test for Lorentz
violation in high-precision experiments. It also has
theoretical features that are important for understand-
ing the different types of processes that might lead to
Lorentz violation.

In this overview, the focus is on using the SME
to investigate the possibility of Lorentz violation both
theoretically and experimentally. An underlying as-
sumption in using the SME is that at low energies
(compared to the Planck scale) Lagrangian-based field
theory gives what is currently the best description of el-
ementary particles and their interactions. Therefore, if

some new type of physics, such as Lorentz violation,
goes beyond the SM and GR, then according to this
assumption its leading-order corrections should be de-
scribable in the context of effective field theory. It is
for this reason that the SME is suitable as a framework
for investigating signals of Lorentz violation in experi-
ments. However, in the search for a consistent quantum
theory of gravity, it is also possible to consider ideas
that fall outside the domain of Lagrangian-based field
theory. These include ideas such as the breakdown of
quantum mechanics, or where spacetime becomes dis-
crete or noncontinuous at the quantum-gravity scale.
Many of these ideas also lead to Lorentz violation.
To the extent that they can be described at the level
of effective field theory at low energies, then they
should give rise to effects that are contained in the
SME framework. However, if these alternative theories
cannot be described using Lagrangian-based effective
field theory, then it may not be possible to investi-
gate their effects using the SME. In those cases, one
would need to work within the context of the given
model in order to investigate possible signals of Lorentz
violation.

23.1 Spacetime Symmetries in Relativity

In special relativity, the equations of motion for parti-
cles and fields are invariant under Lorentz transforma-
tions. The Lorentz symmetry in this case is a global
symmetry, with the transformations being the same at
each point in the spacetime. The geometry of spe-
cial relativity is that of a flat spacetime or Minkowski
spacetime. In contrast, in GR, the effects of gravity are
described by the curvature of spacetime, and the geom-
etry is Riemannian. Lorentz symmetry still holds in GR,
but only locally, e.g., in instantaneous infinitesimal in-
ertial frames. In these local frames, called local Lorentz
frames, the laws of special relativity are assumed to
hold according to the equivalence principle. The sym-
metry in this case is local Lorentz invariance (LLI).

Curved spacetime in GR is described by the met-
ric tensor, g�� , the Riemann curvature tensor, R�

���
,

and its contractions, including the Ricci tensor, R�� ,
and the curvature scalar R. These quantities appear
in the Einstein field equations along with the energy-
momentum tensor for the matter fields, T��M , which acts
as the source of the spacetime curvature. The Einstein
equations are invariant under a set of spacetime trans-
formations (defined mathematically in a later section)

known as diffeomorphisms, which consist of mappings
of the curved spacetime manifold back onto itself.

In particle physics described using special relativ-
ity, the matter fields often have additional symmetries,
such as internal gauge symmetry or discrete spacetime
symmetries. The latter include parity, P, charge conju-
gation, C, and time reversal, T. In the SM of particle
physics, many of these symmetries are broken either
explicitly or through a process of spontaneous sym-
metry breaking. For example, spontaneous breaking of
gauge symmetry is an essential feature of the Higgs
mechanism in the electroweak model. In addition, all
of the discrete symmetries C, P, and T are broken by
the weak interactions, including the combination CP,
which is broken in certain meson interactions. How-
ever, a theorem in particle physics, known as the CPT
theorem, states that the combination of all three of the
discrete spacetime symmetries, CPT, must hold for all
local interactions of point-like particles in the context
of quantum field theory [23.6–9]. An essential assump-
tion of the CPT theorem is that Lorentz symmetry must
hold. This is important in investigations of Lorentz vi-
olation because it implies that if Lorentz symmetry is



Observational Constraints on Local Lorentz Invariance 23.1 Spacetime Symmetries in Relativity 487
Part

D
|23.1

broken, then CPT breaking could occur as well because
the conditions for the theorem to hold would not ap-
ply. This opens up another avenue of investigation of
Lorentz violation in that high-precision tests of CPT
symmetry can be used as well to test for Lorentz vio-
lation. Another theorem in the context of quantum field
theory strengthens this connection. It states that in real-
istic effective field theories, interactions that break CPT
also break Lorentz symmetry [23.10]. Evidently, there
is a strong link between CPT violation and Lorentz vi-
olation, and any experiment looking for CPT violation
can also be viewed as a Lorentz test in the context of
quantum field theory.

The SM of particle physics can be combined with
GR to describe all four of the fundamental forces. This
involves using a curved background with a metric g��
to describe the physical spacetime in which the SM par-
ticles move and interact. The resulting theory is a hybrid
theory in which the SM fields are quantum fields with
local SU.3/�SU.2/�U.1/ gauge symmetry. However,
the metric field is not quantized, and the pure gravity
sector of the theory remains a classical theory. A classi-
cal Lagrangian can be written down for the full theory
as a sum of an SM sector and a gravity sector,

LD LSMCLGR : (23.1)

Derivatives of fields included in these expressions must
be both gauge covariant and gravitationally covariant.
The latter involves the introduction of a spacetime con-
nection � �

��
. The classical action of the theory is then

given by the integral

SD
Z
p
�gLd4x ; (23.2)

where the factor involving the determinant of the met-
ric, g, ensures that the spacetime volume element in
the integral is covariant under general coordinate trans-
formations. The Einstein field equations are obtained
by variation of the action with respect to the metric.
The SM fields appear in the Einstein equations by con-
tributing to the energy-momentum tensor for the matter
fields, T��M . Both the action and the field equations are
invariant under diffeomorphism transformations.

In most particle physics experiments, the gravi-
tational interactions are irrelevant. In this case, the
contributions from LGR are dropped and the metric is
set equal to the Minkowski metric, ��� . The theory
can then be treated in the context of quantum field
theory, where special relativity alone suffices. With-
out gravity, the relevant symmetries are global Lorentz

symmetry and the local gauge symmetry of the SM,
SU.3/�SU.2/�U.1/. However, with gravity included,
the relevant symmetries of the theory change. Lorentz
symmetry becomes a local symmetry, and diffeomor-
phism symmetry becomes important as well.

To observe the LLI of a theory in a curved space-
time, one approach is to make a coordinate transfor-
mation to a local Lorentz frame at each point in the
spacetime manifold. In this way, the metric in the lo-
cal coordinate system at each point reduces to ��� ,
the connection vanishes, and locally the laws of spe-
cial relativity apply. The choice of local Lorentz frame
is not unique, however, since a Lorentz transformation
at a given point leaves ��� unchanged.

An alternative approach keeps the spacetime frame
fixed with metric g�� , but also reveals the LLI at the
same time. In this approach, four vector fields, e a

� , with
labels aD 0; 1; 2; 3 are introduced. They are called vier-
bein or tetrad fields. They relate tensor components in
the space-time frame (labeled by Greek indices) to the
corresponding components in a local Lorentz frame (la-
beled by Latin indices). For example, the metric obeys

g�� D e a
� e b

� �ab : (23.3)

Since the metric is a symmetric field obeying g�� D
g��, it has at most ten independent degrees of freedom.
In contrast, the vierbein, e a

� , has a total of sixteen in-
dependent degrees of freedom. The six extra degrees of
freedom are associated with the LLI.

There are several advantages to studying possible
violations of LLI in a vierbein formalism. One is that
fermions can more readily be introduced. In GR, par-
ticles form tensor representations under the group of
linear transformations associated with general coordi-
nate transformations, and there are no representations
for spin-half fermions. Thus, it is not possible to de-
fine Dirac gamma matrices or covariant derivatives of
spinor fields in a spacetime manifold in GR. However,
with a vierbein formalism it is possible to extend the
usual definitions of these quantities in special relativity
into curved spacetime. Another advantage of a vierbein
formalism is that it allows the local Lorentz symmetry
and diffeomorphism symmetry to be treated in a man-
ner similar to local gauge symmetry in particle physics.
However, to do this in a general way requires that an
additional geometrical quantity called torsion be in-
troduced into the theory. Geometrically, theories with
torsion allow a twisting of coordinate axes as the axes
are transported along a curve. This twisting cannot be
described by the curvature tensor alone. The resulting
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geometry when torsion is included is called Riemann–
Cartan geometry. (For reviews describing torsion and
Riemann–Cartan geometry, see [23.11, 12]). For these
reasons, many investigations of Lorentz violation use
a vierbein formalism and work in a generalized geome-
try, such as Riemann–Cartan geometry.

The use of a vierbein also involves the introduction
of a spin connection. It enters in covariant derivatives
acting on local tensor components and plays the role
of the gauge field for the Lorentz symmetry. In con-
trast, excitations of the metric field can be viewed as
the gauge fields for the diffeomorphism symmetry. The
relationship between the vierbein and spin connection is
often a reflection of the type of spacetime geometry be-
ing considered. For example, in a Riemannian geometry
(with no torsion), the spin connection is nondynamical
and does not propagate. However, in a Riemann–Cartan
geometry (with nonzero torsion), the spin connection
must be treated as independent degrees of freedom that
can propagate in principle. These different types of ge-
ometry can have effects on mechanisms that occur when
Lorentz symmetry is violated. This is especially the
case when Lorentz symmetry is spontaneously broken.

23.1.1 Lorentz Transformations
and Diffeomorphisms

In special relativity, the Lorentz transformations consist
of three rotations and three boosts. They are con-
stant linear transformations that leave the Minkowski
metric, ��� , invariant. Mathematically, they can be im-
plemented by contracting the tensors in a theory with
a transformation matrix� ˛

� . In Cartesian coordinates,
the transformation matrix obeys,

��� D�
˛
� � ˇ

� �˛ˇ : (23.4)

It is often useful to consider infinitesimal Lorentz
transformations, which can be written as� ˛

� ' ı
˛

� C

�
˛

� , where the six parameters, � ˛
� D��˛�, generate

infinitesimal rotations and boosts. Under an infinites-
imal particle Lorentz transformation, a tensor T������

transforms as,

T������! T������C ���T������

C ���T������C ���T������C � � � :
(23.5)

In a theory with LLI, the action describing the theory
and the equations of motion are left unchanged when

all of the tensor fields in the theory are transformed by
infinitesimal Lorentz transformations.

In the presence of gravity, the vierbein can be used
to relate tensor components in a local Lorentz frame to
the corresponding components in the space-time frame.
A vierbein field appears for each tensor index. For ex-
ample, for the tensor T������,

T������ D e�ae�be�c � � �T
abc���C � � � : (23.6)

A local Lorentz transformation acts on the tensor com-
ponents defined with respect to the local frame, e.g.,
Tabc���. For a local infinitesimal transformation, the six
Lorentz parameters are written as �ab. These depend on
the spacetime coordinates at a given point. Under a lo-
cal Lorentz transformation, the vierbein transforms as
a vector,

e a
� ! e a

� C �
a
de d
� : (23.7)

Typically, in a gravitational theory with LLI, the
six degrees of freedom associated with the local
Lorentz symmetry are used to gauge away the six anti-
symmetric components in the vierbein. The remaining
ten components are symmetric and can be written in
terms of field excitations h a

� D ha
�. For small excita-

tions about a flat Minkowski background, the form of
the vierbein can then be written as

e a
� D ı

a
� C

1
2 h a
� : (23.8)

Substituting this into (23.3) yields the usual expres-
sion for the metric in terms of small excitations about
a Minkowski background, g�� D ��� C h�� .

Diffeomorphisms are mappings from one differen-
tiable manifold to another. In GR, the mappings are
from the spacetime manifold back to itself. Vectors and
tensors transform in prescribed ways under diffeomor-
phisms, and diffeomorphism invariance in GR is the
statement that the same physics is described by the
spacetime manifold, metric, and matter fields both be-
fore and after a diffeomorphism is performed.

As with local Lorentz symmetry, diffeomorphism
symmetry can be used to eliminate additional degrees
of freedom. Under infinitesimal diffeomorphism trans-
formations, points x� on the space-time manifold are
mapped to neighboring points x�C ��, where the four
parameters �� are spacetime dependent. Under in-
finitesimal diffeomorphisms, the metric transforms as

g��! g�� � @��� � @��� : (23.9)
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By gauge fixing the four diffeomorphism degrees of
freedom, the metric can be reduced from ten down to six
independent degrees of freedom. The excitations h��
then have six degrees of freedom as well after gauge fix-
ing. These represent the six possible excitation modes
for gravitational radiation that can occur in a general-
ized theory of gravity. For the case of Einstein’s GR,
the kinetic terms in the action are chosen so that four
of these degrees of freedom do not propagate as phys-
ical modes and instead are called auxiliary modes. As
a result, in Einstein’s GR only two gravitational modes
propagate, which are both massless transverse modes.

23.1.2 Particle and Observer
Transformations

In investigations of possible Lorentz violation, it is im-
portant to distinguish between observer and particle
transformations [23.2, 3]. Observer transformations are
essentially changes of coordinate systems, where the
tensors describing particles and fields in the system
are left physically unchanged. Lorentz transformations
that transform between different local or global inertial
frames are examples of observer transformations. Alter-
natively, Lorentz transformations can be performed di-
rectly on the tensor fields in a system, while leaving the
observer frame (coordinate system) unchanged. When
performed this way, the transformations are called par-
ticle transformations.

Similarly, in GR, general coordinate transforma-
tions can be performed, which correspond to a change
of observer frame. These are observer transformations,
which leave the equations of motion covariant in form.
In contrast, diffeomorphisms are particle transforma-
tions performed with respect to a fixed observer, or in
a fixed coordinate frame. The particles and fields of
the system, including for example the metric, are trans-
formed under diffeomorphisms in a prescribed way that
leaves the equations of motion unchanged.

It is common to hear observer and particle transfor-
mations referred to, respectively, as passive and active
transformations. In theories without spacetime sym-
metry breaking, these transformations are essentially
inverses of each other in terms of how they act on tensor
quantities. However, when a symmetry is broken, this is
no longer the case, and it is important to make a clearer
distinction between these two types of transformations.

It is reasonable to assert that a physical interac-
tion should not depend on the choice of coordinates of
a particular observer. As a result, any physical theory
should be invariant under the relevant set of observer

transformations for that theory. It is for this reason
that observer transformations are not particularly mean-
ingful as symmetry transformations. The physically
important symmetry transformations are the particle
transformations, which can be performed in a fixed ar-
bitrary observer frame.

Even in a theory with interactions that break
a spacetime symmetry, the resulting physical descrip-
tion should still not depend on any particular observer
or choice of coordinates. Thus, in theories with bro-
ken Lorentz symmetry, the Lagrangian and equations of
motion should be unchanged when an observer Lorentz
transformation is performed. However, with Lorentz-
violating interactions, the particle transformations are
no longer symmetries of the theory. In a given observer
frame, the physics can therefore change when a particle
or field is transformed under a particle Lorentz transfor-
mation.

For example, consider a scattering experiment in
special relativity. If Lorentz symmetry is violated, there
may be preferred spatial orientations or speeds for the
incoming and outgoing particles. As a result, parti-
cles scattered in different directions or with different
speeds, with respect to a given observer, may be-
have differently. Nonetheless, the theory remains fully
observer-independent. If a different observer measures
the same scattering events, the resulting physical ef-
fects will be unaffected. All that happens in an ob-
server Lorentz transformation is that the same physical
events are expressed with respect to a different Lorentz
frame.

According to this approach, when LLI is broken, it
is only the particle Lorentz transformations that are bro-
ken. The theory remains Lorentz observer-independent
at all times. Likewise, in an extension of GR that in-
corporates spacetime symmetry breaking, the relevant
transformations are particle local Lorentz transforma-
tions and diffeomorphisms. If either of these are broken,
the theory should still be covariant under observer local
Lorentz transformations and observer general coordi-
nate transformations.

23.1.3 Lorentz Violation

Lorentz symmetry is fundamental in both the SM and
in GR. It should, therefore, be tested as accurately as
possible as a way of testing the validity of these the-
ories. In addition, it has been shown in the context
of quantum-gravity theories that small violations of
Lorentz symmetry might occur. For example, in string
field theory mechanisms can occur that might lead to
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spontaneous breaking of Lorentz symmetry [23.13–19].
Indeed, it was this idea that led to the development of
the SME, which, in turn, has stimulated a variety of new
experimental tests of LLI. (For reviews of various ex-
perimental and theoretical approaches to Lorentz and
CPT violation see [23.20–23]).

In string field theory, a string state can be expanded
as a sum of tensor-valued particle states, where the
particle masses increase with the order of the tensor.
String interactions provide couplings between the parti-
cle states. Spontaneous Lorentz violation can occur in
this context when a string field theory has a nonper-
turbative vacuum that can lead to one or more of the
tensor-valued fields, T , acquiring nonzero vacuum ex-
pectation values or vevs, hTi ¤ 0. When this occurs,
the low-energy effective theory can contain terms of the
form

L� 	

mk
P

hTi� N .i@/k� ; (23.10)

where k is an integer power, 	 is a coupling constant,
� is a generalized Dirac matrix, mP is the Planck
mass, and  and � are fermion fields. Note that the
higher-dimensional (k > 0) derivative couplings are ex-
pected to be balanced by additional inverse factors of
the Planck mass mP.

In this expression, the tensor vev, hTi, carries space-
time indices, which are not written out in this notation.
This vev is effectively a set of background functions or
constants that are fixed in a given observer frame. As
tensor-valued backgrounds, these coefficients can have
preferred directions in spacetime or velocity depen-
dence. In other words, they induce Lorentz violation.
A more general interaction term can be defined by ab-
sorbing all of the couplings and inverse mass factors
into the vev. The Lorentz-violating interactions then
have the form

L� t.k/� N .i@/k� ; (23.11)

where the coefficients t.k/ carry spacetime indices and
act as fixed Lorentz-violating background fields. In ad-
dition to interactions with fermions, additional terms
involving gauge-field couplings and gravitational inter-
actions are possible as well.

The SME is a generalization of these types of in-
teractions to include all possible contractions of known
SM and gravitational fields with fixed background co-
efficients t.k/ [23.1–5]. This includes all arbitrary di-
mension interaction terms inducing Lorentz violation

in effective field theory. The coefficients for Lorentz vi-
olation, t.k/, are examples of SME coefficients. They
are assumed to be heavily suppressed, presumably by
inverse powers of the Planck mass. In fact, since no
Lorentz violation has been observed in nature, these
SME coefficients must be small.

By developing the SME in this generalized way,
a framework that is particularly well suited for phe-
nomenology results. In this approach, the Lorentz-
violating SME coefficients are treated as quantities to
be bounded in experiments. They can be thought of as
vevs arising in a process of spontaneous Lorentz viola-
tion or simply as being due to explicit Lorentz violation
from some unknown mechanism.

The interactions in (23.10) can also be used to study
other processes related to Lorentz and CPT violation.
For example, terms of this form have been shown to
induce a form of CPT-violating baryogenesis [23.24].

Another example of Lorentz violation comes from
noncommutative field theory [23.25]. These are theo-
ries with noncommuting coordinates Œx�; x� �D i�� .
It has been shown that this type of geometry can occur
naturally in string theory and that it leads to Lorentz
violation [23.26–30]. The fixed parameters �� break
Lorentz symmetry and act effectively as fixed back-
ground tensors. For example, in an effective field theory
with a U.1/ gauge field in a noncommutative geometry,
interaction terms of the form

L� iq˛ˇF˛ˇ N �
�D� (23.12)

can arise. Here, F˛ˇ is the field strength, q is the charge,
and D� is a gauge-covariant derivative. As in (23.12)
the interaction takes the form of a scalar-valued product
of known particle fields, derivative operators, and a set
of fixed background functions. It is straightforward to
write these interactions in terms of SME couplings.

There are a number of other examples of theories
with Lorentz violation that have been put forward in
recent years. These include models with spacetime-
varying fields, quantum gravity models, multiverses,
and braneworld scenarios. See, for example, [23.31–
43]. It is also possible to construct models with spe-
cific types of Lorentz violation. These include models
that maintain spatial rotational invariance while break-
ing only boost transformations, models with Lorentz-
violating dispersion relations constructed using higher-
order derivative interactions, and vector-tensor models
in gravity that spontaneously break Lorentz symme-
try. To the extent that these types of models can be
described wholly or in part using Lagrangian-based ef-
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fective field theory, they can be investigated using the
SME. However, some ideas for quantum-gravity theo-
ries contain new features that are not readily described
in the context of effective field theory. Examples in-
clude ideas such as spacetime foam, causal sets, and
relative locality. See, for example, [23.44–47]. In these
types of models, many of the signals of Lorentz viola-
tion that arise are not suitable for investigation using the
SME and instead must be studied in the context of the
specific theory.

A number of phenomenological frameworks in-
volving certain kinds of Lorentz violation have been
used by experimentalists in the past. These include
the Robertson–Mansouri–Sexl framework and the PPN
formalism [23.48–50]. In some cases, these and other

theories describe parameterized equations of motion or
dispersion relations that do not originate from a scalar
Lagrangian. However, to the extent that these mod-
els can be described by effective field theory defined
by a scalar Lagrangian, they are compatible with
the SME and direct links between their parameter-
izations and the SME coefficients can be obtained.
Since CPT violation in field theory is associated with
Lorentz violation, it follows as well that any observer-
independent effective field theory describing CPT vio-
lation should also be contained within the SME. Since
CPT can be tested to very high precision in experi-
ments comparing matter and antimatter, this type of
experiment is also ripe as a testing ground for Lorentz
violation.

23.2 Standard Model Extension (SME)

Currently, there is no consistent quantum theory of
gravity that can be used in detailed examinations of
the phenomenology of Lorentz violation at accessi-
ble energies. Nonetheless, progress can still be made
using effective field theory. To be realistic, an effec-
tive field theory must contain the SM and a theory
of gravity (such as GR), and it must be compatible
with observations. It must also maintain observer in-
dependence. The standard model extension (SME) is
defined to be the most general effective field theory of
this type incorporating arbitrary observer-independent
Lorentz violation.

The SME Lagrangian by definition contains all
observer-scalar terms that consist of products of the
SM and gravitational fields with each other as well
as with additional couplings that introduce violations
of Lorentz symmetry. In principle, there are an infin-
ity of terms in the SME, including nonrenormalizable
terms of arbitrary dimension. Most of these terms are
expected to be suppressed by large inverse powers of
the Planck scale. The question of how to extract a use-
ful finite subset of terms from the full SME to analyze
a given experiment becomes relevant, and there are
a number of different ways to proceed. Perhaps the most
natural approach is to follow the direction indicated by
the experiments testing Lorentz violation. While these
tend to be highly interdisciplinary, and include exper-
iments in astrophysics, gravity, atomic, nuclear, and
particle physics, as well as laboratory experiments with
macroscopic media and space-based tests, several pri-
mary divisions and classifications can be made.

One important split is between experiments that can
ignore the effects of gravity from those that cannot. For
this reason, a distinction is made between limits of the
SME that do not include gravity (where special relativ-
ity and global Lorentz invariance are paramount) from
those where gravity is included (where Lorentz symme-
try acts as a local symmetry in a curved spacetime). It
is expected that the nongravitational limits of the SME
will, in general, be subsets of larger SME limits that in-
clude gravity. For example, if the curvature is set to zero
and the metric is replaced by the Minkowski metric, an
SME limit with gravity should reduce to a correspond-
ing SME limit in which gravity is excluded. Starting
from the ground up in constructing explicit limits of the
SME, it is, therefore, natural to ignore gravity at first
and then to generalize the resulting theories to incorpo-
rate gravity.

In the absence of gravity, a second primary divi-
sion between subsets of the SME can be made based on
the types of SM fields and interactions (especially their
dimensionality) that are included. Since the SM itself
is a renormalizable and gauge-invariant theory, a first
step in constructing a useful SME limit is to incorporate
Lorentz violation while maintaining these features. This
limit restricting the SME to power-counting renormal-
izable and gauge-invariant terms is called the minimal
SME (MSME). An advantage of working with the
mSME is that each particle sector has a finite inde-
pendent set of mSME coefficients that can be probed
experimentally. Indeed, in recent years, experimental-
ists have adopted using bounds on mSME coefficients
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as the primary means of reporting sensitivity of their
experiments to Lorentz violation.

Many of the low-energy experiments testing
Lorentz violation involve only electromagnetic interac-
tions between charged particles and photons. For this
reason, it is useful as well to define a minimal QED sec-
tor of the SME. In a field theory with charged fermions,
the minimal QED Lagrangian consists of the standard
Dirac and Maxwell terms supplemented by Lorentz-
violating terms that maintain U.1/ gauge symmetry and
power-counting renormalizability.

If leading order effects are of primary interest, then
SME limits at the level of relativistic quantum me-
chanics can be constructed. This is particularly useful
in investigations of low-energy atomic systems, where
small corrections to atomic energy levels can result
from Lorentz breaking at leading order. Experiments
using particle traps, masers, and high-precision spec-
troscopy can then be analyzed in a straightforward
manner using perturbation theory.

On the other hand, if first-order effects can be
ruled out in an experiment, it will be necessary to
construct limits of the SME that include nonrenormal-
izable terms. In some scenarios for Lorentz violation,
it might happen that Lorentz violation only stems from
terms of dimension greater than 4 in the Lagrangian.
Alternatively, if the SME coefficients at leading or-
der are known to have experimental bounds at levels
suppressed by two powers of the Planck scale, then it
becomes appropriate to look for signals of Lorentz vi-
olation at subleading order as well. For these reasons,
limits of the SME that contain higher-dimension non-
renormalizable terms are of interest.

In some experiments, particular types of particle
behaviors play a major role in attaining sensitivity to
Lorentz violation. Examples include spin-precession
effects, interference, or flavor-changing oscillations. In
these situations it can be advantageous to build spe-
cific types of models out of subsets of the SME.
Such models can then be used as frameworks for
phenomenology. It is also useful to consider com-
plementary tests of Lorentz violation when different
experiments only have sensitivity to combinations of
SME experiments. An example of this involves CPT
tests. These experiments with particles and antiparticles
are typically sensitive at leading order to combinations
of the CPT-odd terms in the SME. At the same time,
different experiments with the particles alone might
have leading-order sensitivity to different combinations
of both CPT-even and CPT-odd terms. However, by
analyzing both sets of experiments in terms of SME

coefficients in a complementary manner, it becomes
possible to place more stringent bounds on individual
types of Lorentz violation.

23.2.1 Constructing SME

The SME contains the SM, a gravity sector, and
all possible observer-independent interactions of these
conventional fields with fixed Lorentz-violating back-
grounds, which are referred to as SME coefficients. As
is typically done in field theory, the SME can be con-
structed in terms of a Lagrangian. The equations of
motion are then obtained by variations of the action
with respect to the fundamental fields in the theory. The
SME Lagrangian has three primary sectors, including
one for the SM, one for gravity, and a Lorentz-violating
sector,

LSME D LSMCLGRAVCLLV : (23.13)

The full SME with gravity is defined using a vierbein
formalism. This permits a natural distinction between
the spacetime manifold and local Lorentz frames.

The observer independence of the SME requires
that all of the terms in the Lagrangian be observer
scalars under both general coordinate transformations
and local Lorentz transformations. This means that ev-
ery spacetime index and every local Lorentz index must
be fully contracted in the Lagrangian.

The SME is not invariant under particle diffeo-
morphisms and particle local Lorentz transformations.
The four infinitesimal parameters �� comprise the
diffeomorphism degrees of freedom, while the six in-
finitesimal parameters �ab D��ba carry the six Lorentz
degrees of freedom. In total, there are ten relevant
spacetime symmetries. Violation of these symmetries
occurs when an interaction term in the Lagrangian con-
tains SME coefficients that remain fixed under a particle
local Lorentz transformation or diffeomorphism.

23.2.2 Minimal SME

Since the SM works remarkably well to describe non-
gravitational particle interactions at accessible energies,
it makes sense initially to construct a minimal extension
beyond the SM that contains only those interactions for
which experiments are likely to have the greatest sensi-
tivity. These are the interactions that break LLI while
maintaining all of the other desirable features of the
SM, such as gauge invariance and renormalizability.
The mSME is the restriction of the SME to these power-
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counting renormalizable and gauge-invariant terms in
the absence of gravity.

The mSME Lagrangian can be separated into
Lorentz-invariant and Lorentz and CPT-violating parts:

LSME,min D LSMCLLV,min : (23.14)

The Lorentz-invariant sector is identified with the usual
Lagrangian for the minimal SM. The Lorentz-violating
Lagrangian is the restriction to terms of mass dimen-
sion 3 and 4 in LLV that maintain SU.3/�SU.2/�U.1/
gauge symmetry.

The first component, LSM, describes the usual in-
teractions for the strong and electroweak interactions.
The matter fields consist of three generations of quarks
and leptons. These interact through exchange of gauge
fields. A Higgs sector is needed to provide mass terms
for the W and Z bosons in the weak interactions
through the Higgs mechanism, and Yukawa couplings
are needed to give the quarks and leptons mass terms
as well. The Lagrangian LSM can be split into five parts
corresponding to these different sectors:

LSM D LleptonCLquarkCLYukawa

CLHiggsCLgauge : (23.15)

For illustration purposes, the form of the terms for the
lepton sector are given here:

Llepton D
1
2 iLA�

�
$

D�LAC
1
2 iRA�

�
$

D�RA : (23.16)

In this notation, the left-handed and right-handed lepton
multiplets are denoted as

LA D

�
�A

lA

�
L

; RA D .lA/R : (23.17)

The index AD 1; 2; 3 labels the three flavors, with lA D
.e; �; 
/ denoting the electron, muon, and tau particles,
and �A D .�e; ��; �� / labeling the three corresponding
neutrinos. The gauge-covariant derivative is denoted
D�, and the notation

A
$

@� B� A@�B� .@�A/B

is adopted. For the remaining terms in LSM, see [23.2,
3].

The Lorentz and CPT-violating part of the La-
grangian LLV,min can also be written as a sum of terms
distinguishing the contributions from the lepton, quark,

Yukawa, Higgs, and gauge sectors. These partial La-
grangians can be further separated into CPT-even and
CPT-odd parts. Each of these terms consists of contrac-
tions of the SM fields with the SME coefficients.

To illustrate for the lepton sector, the Lorentz-
violating terms are:

LCPT-even
lepton D 1

2 i.cL/��ABLA�
�
$

D� LB

C 1
2 i.cR/��ABRA�

�
$

D� RB ;

(23.18)

LCPT-odd
lepton D�.aL/�ABLA�

�LB

� .aR/�ABRA�
�RB :

(23.19)

In these expressions, the SME coefficients a� have di-
mensions of mass, while c�� are dimensionless and
traceless. It is these quantities that act as fixed back-
ground fields under particle Lorentz transformations
and induce the breaking of Lorentz symmetry.

23.2.3 QED Extension

The QED limit of the SME is useful for specific
applications involving charged particle and photon in-
teractions. It contains the leading-order Lorentz- and
CPT-violating terms that maintain U.1/ gauge invari-
ance. For a single Dirac fermion  of mass m the La-
grangian is LQED, min D LfermionCLphoton. The fermion-
sector piece can be written as

Lfermion D
1
2 i � �

$

D�  � M ; (23.20)

where the gauge-covariant derivative is D� D @�C
iqA� and � � and M are defined by

� � D ��C c����C d���5��C e�

C if ��5C
1
2 g������ ;

(23.21)

M D mC a��
�C b��5�

�C 1
2 H����� : (23.22)

These equations contain the usual QED terms for
a single fermion. The nonstandard terms violate Lorentz
symmetry, and most have analogs in mSME. However,
the dimensionless coefficients e� , f � , g��� have no
analogue in mSME because they are incompatible with
SU.2/�U.1/ symmetry. They are included in the min-
imal QED extension because they are compatible with
U.1/ invariance and could emerge from terms in the ef-
fective action involving the Higgs field.
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The Lagrangian in the photon sector is

Lphoton D�
1

4
F��F�� �

1

4
.kF/����F��F��

C 1
2 .kAF/

������A�F�� : (23.23)

For simplicity here, any total derivative terms are ne-
glected, as is a possible term of the form .kA/�A� . Some
discussion of the latter can be found in [23.2, 3].

In these expressions, the terms with coefficients a�,
b�, e�, f�, g��� , and .kAF/� are odd under CPT,
while those with H�� , c�� , d�� , and .kF/���� pre-
serve CPT. All ten terms break Lorentz symmetry.
Typically, experiments can have different sensitivities
to different types of Lorentz violation and can involve
different particle species. For this reason, superscript la-
bels are added to the SME coefficients in the fermion
sector to denote the particle species. Lagrangian terms
of the same form are expected to describe protons and
neutrons in QED systems as well, but there the SME
coefficients represent composites stemming from quark
and gluon interactions.

23.2.4 Extensions in Quantum Mechanics

Many of the sharpest tests of Lorentz symmetry are
conducted in high-precision particle and atomic experi-
ments. Typically, static electric and magnetic fields are
used in these experiments to trap or control charged
particles, while the frequencies of particle transitions
between different energy levels are measured with ex-
ceptional sensitivity. The electric and magnetic fields
can also be manipulated to allow switching between
particles and antiparticles, thereby permitting tests of
CPT. The leading-order shifts in the standard (Lorentz-
and CPT-preserving) energy levels are due to the effects
of the small quantities a�, b�, H�� , c�� , d�� , e�,
f�, and g��� . Lorentz violation stemming from cou-
plings to the photon coefficients .kAF/� and .kF/����
enters only at subleading order for these types of
measurements.

It is often sufficient in calculations describing these
systems to work at the level of relativistic quantum me-
chanics using a modified Dirac equation. It is obeyed by
a four-component spinor field  describing a particle
with charge q and mass m. Calculation of leading-order
energy shifts can be carried out most readily within
a perturbative framework. To do so requires extract-
ing a suitable Dirac Hamiltonian from the Lagrangian.
However, the appearance of time-derivative couplings
in the modified Dirac equation means that the stan-

dard procedure for obtaining the Dirac Hamiltonian
fails to produce a Hermitian quantum mechanical oper-
ator generating time translations on the wave function.
This technical difficulty can be overcome by perform-
ing a field redefinition at the Lagrangian level, chosen to
eliminate the additional time derivatives. Rewriting the
Lagrangian in terms of the new field � does not affect
the physics. However, the modified Dirac wave func-
tion corresponding to � does have conventional time
evolution.

The rewritten Dirac equation takes the form

i@0�D OH� ; (23.24)

with

OH D OH0C OHpert : (23.25)

In this notation, OH0 is a conventional Dirac Hamilto-
nian representing a charged particle in the absence of
Lorentz- and CPT-violating perturbations. The pertur-
bative Hamiltonian OHpert for the particle is linear in the
SME coefficients. The static electromagnetic fields en-
ter in the perturbative treatment at leading order only
through the dependence of the gauge-covariant deriva-
tives on the background potential A�.

In many experiments, energies are probed only
at extremely low energy, where an expansion of the
Hamiltonian in a nonrelativistic limit is appropri-
ate. This can be implemented following a Foldy–
Wouthuysen approach [23.51]. The resulting nonrel-
ativistic perturbative Hamiltonian can be written in
terms of the three-momentum of the particle pj and the
usual Pauli matrices � j obeying Œ� j; � k�D 2i"jkl�

l. The
leading-order terms are

Hnonrel ' mC
p2

2m
C ..a0/�mc00/C

C
�
�bjCmdj0

1
2�jklHkl

�
� j

C Œ�ajCm.cojC cjo/�
pj

m
C � � � : (23.26)

In nonrelativistic experiments with ordinary matter the
primary sensitivity will be to particular combinations of
SME coefficients appearing in these terms. Subleading
contributions can be calculated from expectation values
of the terms involving factors of pj, where the momen-
tum is treated as a quantum-mechanical operator.

For experiments designed to test CPT, which in-
volves measurements of both particles and antiparticles,
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Table 23.1 Transformation properties of dominant SME
terms in the matter QED limit under the discrete symme-
tries C, P, T and their combinations

SME
Coeff.

C P T CT CP TP CPT

a0 � C C � � C �

aj � � � C C C �

b0 C � C C � � �

bj C C � � C � �

H0j � � C � C � C

Hjk � C � C � � C

c00 C C C C C C C

c0j C � � � � C C

cj0 C � � � � C C

cjk C C C C C C C

d00 � � C � C � C

d0j � C � C � � C

dj0 � C � C � � C

djk � � C � C � C

the Dirac Hamiltonian for the antiparticle must also be
obtained. This is accomplished using charge conjuga-
tion. The modified Dirac equation for the antiparticle
differs from that of the particle by the sign of the charge
q and in the sign of any SME coefficients that are
odd under charge conjugation. See Table 23.1 for a list
of transformation properties for some of the dominant
terms in the QED limit of the mSME.

All of the expressions in the quantum-mechanical
limits depend explicitly on the spatial components j; k; l
of the SME coefficients and on the components of var-
ious physical quantities, such as the particle momenta
and the potential A�. These components are defined
with respect to a laboratory frame that must be cho-
sen with a particular orientation. In laboratory frames
fixed with respect to the surface of the Earth, the jD 3
(or z direction) is usually chosen as the relevant quan-
tization axis, typically corresponding to the direction
of a static magnetic field. Alternatively, if a rotation
device is used on Earth’s surface, such as a turntable,
its orientation can be chosen as the jD 3 direction.
In a moving lab, such as in a satellite orbiting the
Earth, a standard configuration defines the jD 3 direc-
tion along the satellite velocity with respect to Earth,
with the jD 1 direction pointing toward Earth and the
jD 2 direction completing the right-handed system. In
certain situations, Earth-based experiments may choose
to use a satellite-based configuration as well, where
the velocity of motion is due to the rotation of the

Earth about its axis. The objective in this case is to
take boost effects into account on the surface of the
Earth, as is done in satellite experiments. Ultimately, no
matter which of these alignments is chosen for the lab
frame directions labeled by j, the laboratory axes must
be referenced to a nonrotating basis that can serve as
a standard, since it is only with such a standard basis
that comparisons across different experiments can be
made. Bounds on components of SME coefficients in
the lab frame must, therefore, be mapped into bounds
on their components with respect to the standard refer-
ence frame.

For the standard reference frame, there are a num-
ber of different choices that could be made. Examples
include reference frames attached to the centers of
mass of the Earth, the Sun, the Milky Way galaxy, and
the cosmic microwave background radiation (CMBR).
With the exception of the Earth, each is approximately
inertial over thousands of years. Typically in exper-
iments, a Sun-centered celestial equatorial frame is
chosen as the standard reference frame. It is used as the
basis for reporting sensitivities to Lorentz violation. In
certain limits, e.g., over short time scales where effects
of boosts can be ignored, the spatial Sun-centered spa-
tial components reduce to corresponding values in an
Earth-based frame. Similarly, observer transformations
from the Sun frame to a galaxy-based or CMBR-based
frame can be made if bounds are desired with respect to
these frames.

23.2.5 Gravity Sector

The gravity sector of the SME uses a vierbein formal-
ism, which gives the theory a close parallel to gauge
theory. Lorentz breaking occurs due to the presence
of SME coefficients, which remain fixed under parti-
cle Lorentz transformations in a local frame. In this
case, the SME coefficients carry Latin indices, e.g., ba

for a vector, with respect to the local basis set. The
conversion to spacetime coordinates is implemented by
the vierbein, giving, e.g., b� D e a

� ba. The Lagrangian
can then be written in terms of fields and SME coef-
ficients defined on the spacetime manifold. A natural
(although not required) assumption is that the SME
coefficients are smooth functions over the manifold.
It is not necessary to require that they be covariantly
constant. In fact, defining covariantly constant tensors
over a manifold places stringent topological constraints
on the geometry. One simplifying assumption, which
could occur naturally in the context of spontaneous
Lorentz breaking, is to assume that the SME coeffi-
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cients are constants in the local frame. However, again,
this is not a requirement in the formulation of the SME
theory.

To construct the mSME including gravity [23.5], the
first step is to incorporate gravitational fields into the
usual SM. This is done by rewriting all of the terms
in the SM Lagrangian with fields and gamma matrices
defined with respect to the local frame (using Latin in-
dices). The vierbein is then used to convert these terms
over to the spacetime manifold. Factors of the deter-
minant of the vierbein e are included as well, so that
integration of the Lagrangian density (giving the ac-
tion) is covariant. Derivatives are understood as well
to be both spacetime and gauge-covariant. With these
changes, (23.16), for example, becomes

Llepton D
1
2 iee�aLA�

a
$

D� LA

C 1
2 iee�aRA�

a
$

D� RA : (23.27)

The other terms for the quark, Yukawa, Higgs, and
gauge sectors follow a similar pattern.

The Lorentz-violating SME terms constructed from
SM fields are obtained in a similar way. The vari-
ous particle sectors can again be divided between CPT
odd and even contributions. Each of the terms in the
Lagrangian is then written using local indices and vier-
beins, which convert the equations over to the spacetime
manifold. As an example, (23.18) becomes

LCPT-even
lepton D� 1

2 i.cL/��ABee�aLA�
a
$

D� LB

� 1
2 i.cR/��ABee�aRA�

a
$

D� RB :

(23.28)

The remaining equations follow the same pattern.
The pure-gravity sector of the mSME consists

of a Lorentz-invariant gravity sector and a Lorentz-
violating sector. The Lorentz-invariant Lagrangian con-
sists of terms that are products of the gravitational
fields. In the general case, this includes terms con-
structed from curvature, torsion, and covariant deriva-
tives. Einstein’s gravity (with or without a cosmological
term) would be a special case in this sector.

The Lorentz-violating Lagrangian terms in the grav-
ity sector of the mSME are constructed by combining
the SME coefficients with gravitational field opera-
tors to produce an observer scalar under local Lorentz
transformations and general coordinate transforma-
tions. These consist of products of the vierbein, the spin

connection, and their derivatives, but for simplicity they
can be written in terms of the curvature, the torsion
T��� , and covariant derivatives. A minimal case (up
to dimension four) has the form:

LLV
e;! D e.kT/

���T��� C e.kR/
����R����

C e.kTT/
˛ˇ���T˛ˇT���

C e.kDT/
����D�T��� :

(23.29)

The SME coefficients in this expression have the sym-
metries of the associated Lorentz-violating operators
that they multiply.

The Lorentz-violating sector introduces additional
gravitational couplings that can have phenomeno-
logical consequences, including effects on cosmol-
ogy, black holes, gravitational radiation, and post-
Newtonian physics. As a starting point for a phe-
nomenological investigation of the gravitational conse-
quences of Lorentz violation, it is useful to write down
the Riemannian limit of the mSME gravity sector. It is
given as [23.5]

Se;!;�

D
1

2�

Z
d4x

h
e.1� u/R� 2e�

C es��R�� C et����R����
i
:

(23.30)

The SME coefficient .kR/
���� has been expanded into

coefficients s�� , t���� , u that distinguish the effects
involving the Riemann, Ricci, and scalar curvatures.
The coefficients s�� have the symmetries of the Ricci
tensor, while t���� has those of the Riemann tensor.
Taking tracelessness conditions into account, there are
19 independent components.

23.2.6 Spontaneous Lorentz Violation

There are a number of theoretical issues concerning
Lorentz violation that can be examined using the SME.
One concerns the nature of the symmetry breaking and
how that affects the interpretation of the SME coef-
ficients. These coefficients, e.g., b�, for the case of
a vector, couple to the SM and gravitational fields as
fixed backgrounds. For the case of a single fermion
field,  , in special relativity, the coupling has the
form, b� �5�� . If this is the only term in the
SME Lagrangian containing the coefficient b�, then the
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symmetry breaking is said to be explicit. Essentially
the coefficient b� appears in the effective field theory
without any underlying dynamics. However, it is also
possible for the SME coefficients to arise through a pro-
cess of spontaneous symmetry breaking. In this case,
the SME coefficients are interpreted as vevs of a dy-
namical tensor field. For example, for a vector B�, the
SME coefficient would arise as a vev, hB�i D b�. The
vev acts as a fixed background field that spontaneously
breaks Lorentz symmetry, but the vector B� remains
fully dynamical.

The process of spontaneous symmetry breaking
is important in particle physics. For example, in the
electroweak theory, the scalar Higgs field � acquires
a nonzero vev, h�i ¤ 0, that spontaneously breaks the
local SU.2/�U.1/ gauge symmetry. For a scalar field,
there is no associated breaking of Lorentz symmetry
because the scalar vev is invariant under Lorentz trans-
formations. However, the SME coefficients have tensor
indices. When these occur as nonzero vevs, Lorentz
symmetry is said to be spontaneously broken.

The standard construction of the SME does not
make a distinction between whether the breaking of
Lorentz symmetry is explicit or spontaneous. Both
types of symmetry breaking can be accommodated,
and both are useful to consider for phenomenologi-
cal investigations of Lorentz violation. However, when
the gravitational sector of the SME is included, which
brings more geometrical considerations into play, it be-
comes important to distinguish these types of symmetry
breaking.

For the case of explicit Lorentz violation, it has
been shown that inconsistencies arise between geomet-
rical constraints (e.g., Bianchi identities) and conditions
stemming from the equations of motion. This was
proved by Kostelecký in a no-go theorem [23.5]. How-
ever, the no-go theorem is evaded if the symmetry
breaking is spontaneous. The crux of the difference has
to do with the fact that if the Lorentz breaking is sponta-
neous, then all of the SME coefficients must be treated
as dynamical fields in field variations.

Because of this, it is often assumed that the SME co-
efficients are, indeed, vevs of dynamical fields that have
undergone a process of spontaneous Lorentz breaking.
Note, however, that if the vevs are associated with very
high energy scales, then in low-energy tests of Lorentz
violation, they will still act primarily as fixed back-
ground fields, and their dynamics at higher energies
will not be relevant. It is for this reason that the form
of the SME or mSME used by most experimentalists
is the same as if the symmetry breaking were explicit.

For purposes of phenomenology, the distinction be-
tween explicit and spontaneous Lorentz breaking is not
crucial. For the case of explicit breaking, it may be
that a different type of geometry is relevant, known as
a Riemann–Finsler geometry (for a review, see [23.52]).
The SME with explicit breaking has been shown to be
linked to Riemann–Finsler geometry [23.53, 54].

It is certainly the case that spontaneous symmetry
breaking is a very elegant form of symmetry breaking.
This is because when a symmetry is spontaneously bro-
ken, it still holds dynamically. However, the vacuum
solution for the theory does not obey the symmetry.
What is often done is that a field redefinition is per-
formed that resets the vacuum values to zero. In this
case, in terms of the new set of fields, the symmetry be-
comes hidden at the level of the equations of motion. It
is for this reason that spontaneous symmetry breaking
is also referred to as hidden symmetry.

From a theoretical point of view, there are well-
known consequences when a symmetry is sponta-
neously broken. For example, when a global continuous
symmetry is spontaneously broken, it has been shown
that massless fields, called Nambu–Goldstone (NG)
fields appear [23.55–57]. On the other hand, if the sym-
metry is local, as in the case of the electroweak model,
then a Higgs mechanism can occur [23.58–60]. In this
case, the would-be NG modes are reinterpreted in a way
that results in the gauge fields acquiring a mass. This is
what happens in the electroweak model, and as a result
the W and Z bosons are massive. However, an unbro-
ken local U.1/ gauge symmetry allows the photons to
remain massless. At the same time, there are excitations
of the Higgs scalar field that are also massive. This re-
sults in a massive Higgs boson, which has recently been
detected at the Large Hadron Collider.

An important theoretical issue to consider is
whether these same types of processes can occur when
it is Lorentz symmetry that is spontaneously broken.
For the case where Lorentz symmetry is global, as in
the context of special relativity, the Goldstone theorem
would suggest that massless NG modes should appear.
If so, they would appear as infinite-range particles and
would have implications for phenomenology. The only
known massless particles in the SM and GR (assum-
ing neutrinos have mass) are the gauge fields, such as
the photon, graviton, and gluons. Thus, it would seem
that there are only two possibilities for the NG modes.
Either the NG modes are known particles, such as pho-
tons or gravitons, or they are unknown fields that have
escaped detection. However, if the Lorentz symmetry is
local, as in a gravitational theory, then the question of
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whether a Higgs mechanism can occur becomes rele-
vant. In this case, the possibility of massive gauge fields
arises (massive photons or massive gravity), and the
question of whether there are additional massive Higgs
fields needs to be addressed as well.

These types of questions have been investigated
both in special relativity and in the context of gravity
using models that are subsets of the SME. Interest-
ingly, some of these investigations occurred before the
process of spontaneous symmetry breaking was fully
understood. For example, Dirac worked with a vec-
tor model that had a constraint that the norm of
the vector be nonzero [23.61]. Nambu later showed
that such a model spontaneously breaks Lorentz sym-
metry [23.62]. Bjorken found a similar model using
a composite theory of fermions that collectively have
a nonzero vector vev [23.63]. It was conjectured that in
these types of models, the NG modes can be interpreted
as photons. This raises the interesting possibility that
photons are massless because they are the NG modes
associated with spontaneous Lorentz breaking, whereas
the conventional idea is that photons are massless be-
cause of local gauge invariance.

In order to impose a constraint that a vector field
has a nonzero vev, the usual process in field theory
is to include a potential term that has a minimum
when the vector field equals its vev. Theories with
a vector field and a potential of this type that induces
spontaneous Lorentz violation are known as bumble-
bee models [23.5, 15, 64–76]. A defining feature of
these theories is that they do not have local U.1/ gauge
invariance. Thus, there is no possibility in these mod-
els for photons to arise because of local U.1/ gauge
symmetry. Recent investigations of bumblebee models
have shown that all of the usual processes associated
with spontaneous symmetry breaking can occur when
the symmetry is Lorentz symmetry. First, however, it
was found that there is a link between local Lorentz
symmetry and diffeomorphisms. In general, if one of
these symmetries is spontaneously broken, then so is
the other. For example, if a vector field has a vev ba

in a local Lorentz frame, which spontaneously breaks
LLI, then it will also have a vev b� in the spacetime
frame, which spontaneously breaks diffeomorphisms.
(Even for a scalar vev with spacetime dependence this
is true, although in this case it is the derivatives of the
scalar that spontaneously break the symmetries). What
this means is that in the context of a gravitational the-
ory with spontaneous Lorentz breaking there can be up
to ten NG modes, six associated with Lorentz breaking,
and four associated with diffeomorphism breaking.

If these symmetries are treated analogously to local
gauge symmetry using a vierbein formalism, then it is
possible to show that the vierbein itself can accommo-
date all ten NG modes when local Lorentz symmetry
and diffeomorphisms are spontaneously broken. It is
also possible to investigate whether a Higgs mechanism
can occur and whether additional massive Higgs modes
can appear. Interestingly, it is found that for a Higgs
mechanism to occur the geometry cannot be Rieman-
nian. This is because the gauge fields associated with
the local Lorentz symmetry are the spin connection, and
in order to have a dynamical spin connection, the the-
ory must include torsion. The geometry must, therefore,
be Riemann–Cartan if a Higgs mechanism is to oc-
cur. There can also be additional massive Higgs modes
that can affect the propagation of metric excitations (or
gravitational radiation). It is for this reason that the-
ories of massive gravity often result from the process
of spontaneous Lorentz violation. In all of these mod-
els, there are stringent conditions that must hold so that
unphysical modes do not appear, such as negative en-
ergy states or tachyons. These constraints very severely
limit the possibilities for making viable models with
massive gravitational fields or massive propagating spin
connection.

A subset of the bumblebee models in which the ki-
netic term for the vector field has a Maxwell form, are
known as Kostelecký–Samuel (KS) models [23.15]. For
these models, it has been shown that in the limit where
the massive Higgs modes becomes extremely massive,
the solutions for the KS model match those of Einstein–
Maxwell theory in a fixed gauge. Thus, the intriguing
idea that photons might arise as NG modes in a the-
ory with spontaneous Lorentz breaking still holds even
when gravity is included.

It is also possible to consider models with other
types of tensor fields that acquire nonzero vacuum val-
ues. Some possibilities include theories with a symmet-
ric two-tensor or alternatively an anti-symmetric two-
tensor [23.77–79]. Just as with a vector, when Lorentz
symmetry in these models is spontaneously broken, NG
modes and massive modes can appear. It is useful to
study these models to see what the various possibili-
ties are for the NG and massive modes. One interesting
case is that of a symmetric two-tensor in a Minkowski
background. In this type of model, known as a cardi-
nal model, the NG modes have properties similar to the
graviton in GR, but in a fixed gauge. This again raises
the intriguing question of whether known massless par-
ticles might occur as a result of Lorentz breaking.
A related consideration is then whether there exist sig-
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natures of the Lorentz breaking that can distinguish KS
and cardinal models from conventional physics. These
types of phenomenological questions can then be suit-
ably addressed in the context of the SME.

In cosmology, models with spontaneous Lorentz
violation have been used to study modifications of grav-
ity that might give rise to effects such as accelerated
expansion of the universe or to introduce anisotropic
features in the cosmic background radiation. Examples

include [23.80–86]. In general, these models, which
incorporate vector or tensor fields that spontaneously
break Lorentz symmetry, are studied as possible al-
ternative theories of dark energy. While these theories
have a number of interesting effects and features, they
do not typically give rise to high-precision observa-
tional constraints on LLI. For this reason, these models
are not considered here, and the reader is referred to the
literature.

23.3 Experimental Tests of Lorentz Violation

If Lorentz invariance is not an exact symmetry due
to mechanisms occurring in the context of a quantum
theory of gravity, then the relevant energy scale is pre-
sumably the Planck scale, since this is the scale where
gravity meets up with quantum physics. At one time,
it was thought unlikely that any physics arising from
the Planck scale would be accessible to experimental
detection. However, with Lorentz violation, the Planck
scale is expected to enter as a suppression factor or in-
verse power in any corrections to conventional physics.
Therefore, instead of needing to accelerate particles to
ultra-high energies that are impossible to obtain, one
can look at extremely high-precision experiments often
at very low energies for signs of Planck-scale physics.
In this approach, Lorentz breaking provides an ideal
signal of new physics, since nothing in the SM permits
violation of Einstein’s theory. That is, no conventional
process could ever mimic or cover up a genuine signal
of Lorentz violation.

The SME serves as a common framework used
by experimentalists and theorists to search for signals
of Lorentz and CPT violation. Planck-scale sensitiv-
ity has been attained to the dominant SME coefficients
in a number of experiments involving different parti-
cle sectors. These include experiments with mesons,
photons, electrons, protons, neutrons, muons, neutrinos,
and in the electroweak sector. Each particle sector has
unique features, and the experimental methods for test-
ing Lorentz and CPT violation can differ case by case.

In some experiments, leading-order sensitivity to
Lorentz and CPT violation exists for more than one
particle species at the same time. This is particularly
true in atomic experiments where bounds involving all
three of the electron, proton, and neutron are often ob-
tained. Likewise, mixtures of flavors in the meson and
neutrino sectors can occur naturally. In these cases, the
experimental bounds obtained are for combinations of

SME coefficients for the different particle sectors. It is,
therefore, important to look for complementary sets of
bounds obtained from different experiments that can be
combined to select out an optimal set of bounds for the
individual particle species.

In a similar manner, experiments can have sensi-
tivity to either both CPT-odd and CPT-even forms of
Lorentz violation, or alternatively they can probe only
the CPT-odd sector. Most bounds obtained typically
involve combinations of both CPT-odd and CPT-even
SME coefficients. However, experiments designed to
test CPT switch between measurements on particles and
similar measurements on the corresponding antiparti-
cles. The bounds in this case are only on CPT-odd SME
coefficients. For a given particle species, performing
both types of experiments provides a natural comple-
mentary approach.

Before looking at specific experiments, it is useful
to examine some general features that are common to
a number of different experiments. For example, in low-
energy atomic tests, the sensitivity stems primarily from
the ability of these experiments to detect extremely
small anomalous energy shifts. In many cases, these
energy shifts result in small frequency shifts that can
be measured with very high precision. It is not uncom-
mon for an atomic experiment to be able to measure
a frequency shift with a precision of 1 mHz or less. In-
terpreting this as being due to an energy shift expressed
in GeV, it corresponds to a sensitivity of approximately
4�10�27 GeV. Such a value is well within the range
of energy one might associate with suppression fac-
tors originating from the Planck scale. While many of
the original atomic experiments were designed to mea-
sure specific quantities, such as charge-to-mass ratios
of particles and antiparticles or differences in g factors,
it turns out that it is more effective for these experi-
ments to investigate the lowest attainable energy levels
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for possible anomalous shifts associated with Lorentz
violation. Many experiments look specifically for side-
real time variations of energy levels of a particle or
atom as the Earth moves. These would result from in-
teractions with the fixed Lorentz-violating background
fields. Alternatively, experiments designed to test CPT
can look for instantaneous differences in the energy
levels of a particle (or atom) and its antiparticle (or an-
tiatom).

Another important general consideration is the
choice of a standard inertial reference frame [23.87].
Laboratory measurements of Lorentz and CPT sym-
metry involve components of SME coefficients defined
with respect to a local laboratory coordinate system.
These components labeled with indices f0; jg change
as the lab frame moves or rotates with respect to an
inertial frame. In order to give measured bounds in
a consistent manner, these laboratory bounds must be
related to bounds on SME coefficients defined with re-
spect to a standard inertial frame. The usual choice for
this frame is a Sun-centered frame that uses celestial
equatorial coordinates. Components with respect to the
Sun-centered frame are denoted using upper-case letters
J;K; L; : : : that run over four independent directions la-
beled as OT , OX, OY , and OZ. The spatial origin of this system
is the Sun’s center, and the unit vector OZ points along the
Earth’s rotation axis, while OX and OY lie in the equatorial
plane with OX pointing towards the vernal equinox in the
celestial sphere. The time T is measured by a station-
ary clock at the origin, with T D 0 taken as the vernal
equinox in the year 2000. The Earth’s orbital plane lies
at an angle �' 23ı with respect to the XY plane.

Earth-based experiments sensitive to sidereal time
variations are sensitive to a combination of coefficients,
which are often denoted collectively using tildes. For
example, for electrons, the combination of spatial com-
ponents in the lab frame

Qbe
j � be

j �mde
j0 �

1
2"jklH

e
kl ; (23.31)

frequently arises in a number of experiments. These
combinations are projected onto the nonrotating frame,
where the components are be

X, be
Y , be

Z , etc. Nonrotating
frame analogs of the coefficient combinations in (23.31)
can be defined as

Qbe
J � be

J �mde
J0�

1
2"JKLHe

KL ; (23.32)

where J;K;L label the spatial directions X; Y; Z in the
nonrotating frame. Ignoring boost effects, the relation
between the laboratory and nonrotating spatial compo-

nents is

Qbe
1 D
Qbe

X cos� cos˝t

C Qbe
Y cos� sin˝t� Qbe

Z sin� ;

Qbe
2 D�

Qbe
X sin˝tC Qbe

Y cos˝t ;

Qbe
3 D
Qbe

X sin� cos˝t

C Qbe
Y sin� sin˝tC Qbe

Z cos� : (23.33)

The angle � is between the jD 3 lab axis and the di-
rection of the Earth’s rotation axis along Z. The angular
frequency˝ ' 2�=.23 h 56 m/ is that corresponding to
a sidereal day.

23.3.1 Data Tables

A wide range of particle sectors has been investi-
gated for Lorentz and CPT violation. Many experiments
achieve very high sensitivity to Lorentz violation and
are able to place stringent bounds on the relevant SME
coefficients. The results for these bounds are too exten-
sive to list here. However, a comprehensive summary
of Lorentz and CPT tests has been published by Kost-
elecký’s group at Indiana University [23.88]. It is also
updated annually in the physics archive.

The data tables in [23.88] provide bounds on
Lorentz violation for ordinary matter (electrons, pro-
tons, and neutrons), photons, mesons, muons, neutri-
nos, the electroweak sector, and gravity. Many tests
compare particles and antiparticles. Low-energy tests
in atomic physics include experiments in Penning traps,
comparisons of atomic clocks and masers, experiments
with atomic fountains, and experiments with antihydro-
gen at CERN. Photon tests have been performed using
astrophysical and cosmological sources as well as res-
onant cavities in the microwave and optical regimes.
Cosmic rays have been investigated for features associ-
ated with Lorentz violation. Experiments with mesons,
muons, and neutrinos have used large accelerators at
high energies. Experiments are planned or underway
on the International Space Station (ISS), in space satel-
lites, or using detectors at the south pole. Experiments
with macroscopic torsion pendula take advantage of
the alignment of large numbers of electron spins to
provide bounds with extremely high sensitivity. To
measure boost effects, some experiments collect data
over long periods of time to enable the Earth’s motion
to be included. Other experiments use rotating plat-
forms to gain sensitivity to a wider range of space-time
directions.
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The extremely tight experimental bounds that have
been obtained on the leading-order SME coefficients
indicate that if Lorentz or CPT violation does occur
in nature, it results in only very small corrections to
the SM and GR at ordinary energies. Since an under-
lying fundamental theory that would permit calculation
of these corrections is lacking, at best only order-of-
magnitude estimates can be given for the leading-order
SME coefficients. One possibility is that the leading-
order Lorentz-violating terms in the SME are sup-
pressed by at least one inverse power of the Planck
scale. If a ratio is formed with a low-energy scale on
the order of 1 GeV with the Planck scale, this results
in a suppression factor on the order of 10�19. Interest-
ingly, many of the recent experiments that test Lorentz
and CPT symmetry have sensitivities that are compa-
rable to or exceed expected order-of-magnitude values
based on this suppression factor. For this reason, it is
important as well to search for Lorentz violation stem-
ming from subleading-order terms that are not included
in the mSME. A systematic treatment of these higher-
dimensional terms in the SME has been developed for
certain particle sectors, and bounds on some of these
coefficients are included in the data tables as well.

23.3.2 Examples

To highlight some of the Lorentz and CPT tests that
have been performed a number of different experi-
mental approaches are described here. In many cases,
bounds on a selective subset of SME coefficients are
given. For a full list of experiments with published
bounds on SME coefficients, the reader is referred to
the data tables in [23.88].

� Penning traps [23.89–93]: Experiments in Penning
traps use electric and magnetic fields to isolate and
study individual particles and antiparticles. There
are two leading-order signals of Lorentz and CPT
violation in the electron sector that have been
probed in these experiments. One looks for side-
real time variations in the electron cyclotron and
anomaly frequencies. The idea here is that the
Lorentz and CPT-violating interactions depend on
the orientation of the quantization axis in the lab-
oratory frame, which changes as the Earth turns
on its axis. As a result, both the cyclotron and
anomaly frequencies have small corrections which
cause them to exhibit sidereal time variations. Such
a signal can be measured using just electrons. Mea-
sured bounds are expressed in terms of compo-

nents in the nonrotating Sun-centered frame for the
combination given in (23.32). Their numerical val-
ues are on the order of j Qbe

Jj. 10�24 GeV for J D
X; Y . The second type of test in a Penning trap is
a traditional CPT test that compares electrons and
positrons directly. It looks for an instantaneous dif-
ference in their anomaly frequencies. Leading-order
sensitivity in this case involves only the CPT-odd
coefficient be

3 (with no tilde), which is the com-
ponent of be

� along the quantization axis in the
laboratory frame. The bound obtained for jbe

3j is on
the order of 10�25 GeV.

� Torsion pendulum [23.94–97]: Experiments using
a spin-polarized torsion pendulum are able to
achieve very high sensitivity to Lorentz violation
because the torsion pendulum has a huge number
of aligned electron spins but a negligible magnetic
field. For example, a pendulum at the University of
Washington is built out of a stack of toroidal mag-
nets, which has a net electron spin S' 1023. The
apparatus is suspended on a rotating turntable and
the time variations of the twisting pendulum are
measured. An analysis of this system shows that in
addition to a signal having the period of the rotat-
ing turntable, the effects due to Lorentz and CPT
violation also cause additional time variations with
a sidereal period caused by the rotation of the Earth.
Sensitivity to the electron coefficients has been ob-
tained at the levels of j Qbe

Jj . 10�31 GeV for J D X; Y
and j Qbe

Zj. 10�30 GeV. By analyzing data over the
course of a year, taking the Earth’s motion around
the Sun into account, sensitivity to Lorentz-boost
violating coefficients has been attained as well.
This involves a suppression by v=c' 10�4, where
v is the velocity of the Earth around the Sun. The
bound on the time-like combination of coefficients
is Qbe

T . 10�27 GeV.
� Clock-comparison tests [23.87, 98–106]: Many of

the sharpest Lorentz bounds for protons and neu-
trons stem from atomic clock-comparison experi-
ments. These involve making high-precision com-
parisons of atomic clock signals as the Earth ro-
tates. The clock frequencies are typically hyperfine
or Zeeman transitions. Experiments have used hy-
drogen masers and two-species noble-gas masers
to achieve the highest sensitivities to Lorentz vi-
olation. For example, a recent experiment with
a K-He3 comagnetometer obtained a bound in the
neutron sector equal to j Qbn

Jj. 10�33 GeV for J D
X; Y [23.107]. Experiments with hydrogen masers
attain exceptionally sharp sensitivity to Lorentz
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and CPT violation in the electron and proton sec-
tors. These experiments use a double-resonance
technique that does not depend on there being
a field-independent point for the transition. The
sensitivity for the proton attained in these exper-
iments is j Qbp

Jj. 10�27 GeV. Due to the simplicity
of hydrogen, this is an extremely clean bound and
is one of the more stringent tests for the proton.
Clock-comparison experiments performed in space
would have several advantages over traditional
ground-based experiments. For example, a clock-
comparison experiment conducted aboard the ISS
would be in a laboratory frame that is both rotating
and boosted. It would, therefore, immediately gain
sensitivity to a wide range of SME coefficients that
are currently untested [23.108, 109]. A European
mission is planned for the ISS, which will compare
atomic clocks and H masers.

� Antihydrogen [23.98, 110, 111]: The ALPHA and
ATRAP experiments underway at CERN are de-
signed to produce antihydrogen and to do high-
precision spectroscopy on it. One objective is to
make high-precision spectroscopic measurements
of the 1S–2S transitions in hydrogen and antihy-
drogen. These are forbidden (two-photon) transi-
tions that have a relative linewidth of approximately
10�15. The ultimate goal is to measure the line
center of this transition to a part in 103 yielding
a frequency comparison between hydrogen and an-
tihydrogen at a level of 10�18. An alternative to
1S–2S transitions is to consider the sensitivity to
Lorentz violation in ground-state Zeeman hyperfine
transitions. It is found that there are leading-order
corrections in these levels in both hydrogen and
antihydrogen. Comparing these measurements for
hydrogen and antihydrogen will provide a direct
CPT test.

� Photon tests [23.112–124]: The relevant leading-
order terms for the photon sector in the SME are the
kAF and kF terms in (23.23). For the coefficient kAF ,
which is odd under CPT, it is found theoretically
that this term leads to negative energy contributions
and is a potential source of instability in the the-
ory unless it is set to zero [23.125]. In addition,
very stringent experimental constraints that come
from studying the polarization of radiation from dis-
tant radio galaxies also exist and are consistent with
kAF � 0. The terms with coefficients kF are even un-
der CPT and provide positive energy contributions.
There are 19 independent components in the kF co-
efficients. Ten of these lead to birefrigence of light.

Bounds on these coefficients of order 10�32 have
been obtained from spectropolarimetry of light from
distant galaxies. The remaining nine coefficients
have been bounded in a series of laboratory pho-
ton experiments. These include experiments using
optical and microwave cavities, an Ives–Stilwell ex-
periment, and experiments using rotating platforms.
Sensitivities ranging from 10�9 up to 10�17 have
been attained for these coefficients.

� Cosmic rays [23.126–128]: Cosmic rays provide
the highest-energy particles available experimen-
tally and can be used to study LLI. In the presence
of Lorentz violation, the maximal attainable veloc-
ity for a cosmic ray in vacuum can be different from
the speed of light by a small amount. In princi-
ple, it can even exceed the speed of light. Effects
of this difference include the possibility of pho-
ton decay into electron–positron pairs or vacuum
Cerenkov radiation by ultra-high energy electrons,
both of which are forbidden in the SM. Another
effect is the prediction in the context of the SM
and special relativity that an upper energy limit
known as the Greisen–Zatsepin–Kuzmin, or GZK
limit [23.129, 130], should hold for cosmic rays
emitted from distant sources. This theoretical limit
is set by interactions with the cosmic microwave
background radiation over long distances. However,
in the presence of Lorentz violation, it is possible
for high-energy cosmic rays from distant sources to
exceed the GZK limit. This, therefore, provides an
opportunity for testing LLI and obtaining bounds on
the relevant SME coefficients. Recent experiments
at the high resolution fly’s eye (HiRes) and Pierre
Auger Observatory have searched for ultra-high en-
ergy cosmic rays above the GZK limit, and their
results appear to confirm the existence of the GZK
cutoff.

� Meson tests [23.131–137]: Experiments involving
neutral meson oscillations provide very sharp tests
of Lorentz and CPT symmetry. These investigations
attain high sensitivity to the CPT-odd a� coeffi-
cients in the SME for the K, D, Bd , and Bs meson
systems. The time evolution of a meson and its
antimeson can be described by an effective Hamil-
tonian in a description based on the Schrödinger
equation. The dominant Lorentz and CPT-violating
contributions to the effective Hamiltonian can be
calculated as expectation values of interaction terms
in the SME. The results depend on the velocity
of the meson with respect to the laboratory frame
and the combinations of SME coefficients �a�,
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which vary with sidereal time as the Earth rotates.
Recent analyses have attained bounds on the or-
der of 10�21 GeV for neutral kaons, 10�15 GeV in
the D system, 10�14 GeV for Bd oscillations, and
10�12 GeV for Bs oscillations.

� Muon tests [23.138–140]: Lorentz and CPT tests
with muons involve second-generation leptons and
are independent of the tests involving electrons.
Several different types of experiments with muons
have been conducted, including muonium exper-
iments and g� 2 experiments with muons. In
muonium, experiments measuring the frequencies
of ground-state Zeeman hyperfine transitions in
a strong magnetic field have the greatest sensitiv-
ity to Lorentz and CPT violation. A recent analysis
has searched for sidereal time variations in these
transitions. A bound on SME coefficients, j Qb�J j, has
been obtained at a level of 10�23 GeV. In relativistic
g�2 experiments using positive and negative muons
bounds on Lorentz-violation SME coefficients have
been obtained at a level of 10�24 GeV.

� Collider tests [23.141–144]: High energy experi-
ments at colliders provide opportunities for testing
Lorentz and CPT violation in the QED and quark
sectors. Sensitivity for Lorentz violation in cross
sections and decay rates has been investigated in
electron-positron scattering. Effects include varia-
tions in observed cross sections with periodicities
controlled by Earth’s sidereal rotation frequency.
In a recent experiment using the D0 detector at
the Fermilab Tevatron Collider, a search for vi-
olation of Lorentz invariance in the top quark-
antiquark production cross section was carried out,
and bounds on SME coefficients for the top quark
were obtained.

� Neutrino tests [23.145–155]: The experimental ob-
servation that neutrinos change flavor when they
propagate through space cannot be explained by
the SM. The conventional explanation for these
neutrino oscillations is that the particles have very
small masses. However, at the same time, the high-
precision sensitivity of neutrino oscillation experi-
ments, stemming from their interferometric nature,
offers possibilities for a range of new tests of LLI.
The neutrino sector of the mSME contains Lorentz-
violating interactions for left-handed neutrinos and
right-handed antineutrinos. For the left-handed neu-
trinos, sensitivity at leading order is to the SME
coefficients .aL/

� and .cL/
�� . The resulting sig-

nals include ones with the usual L=E dependence,

where E is the energy and L is the oscillation
length or baseline of the experiment. However, with
Lorentz violation other dependences, such as ones
with L or LE are possible as well. These lead
to unique signatures of Lorentz violation that can
occur in neutrino experiments. These include os-
cillation, time of flight, and threshold effects. For
example, it has been shown that a Lorentz-violating
seesaw mechanism can occur, which allows for os-
cillatory behavior even in the absence of mass. The
coefficients for Lorentz violation can also couple
to the four-momentum of the neutrino. In terres-
trial experiments, the direction of the neutrino beam
changes as the Earth rotates, which leads to side-
real time variations in the oscillation data when
LLI is broken. The mSME has been applied to
a number of neutrino experiments, including both
short-baseline and long-baseline experiments. An
extensive list of bounds on SME coefficients in the
neutrino sector are given in the data tables [23.88].
For the coefficients .aL/

�, bounds at the level of
10�20�10�23 GeV have been obtained, while for
the .cL/

�� coefficients, the sensitivity ranges from
10�17 to 10�27.

� Gravity tests [23.156–163]: Lorentz violation in the
gravity sector stems from both matter–gravity cou-
plings and pure gravity couplings. In some cases,
the matter–gravity couplings can lead to sensitivity
to forms of Lorentz violation that would other-
wise go undetected in the absence of gravity. The
leading-order SME terms for both these sectors
in a linearized gravity regime involve expectation
values denoted as Na�, Nc�� and Ns�� . At leading
order, matter–gravity tests are sensitive to Na� and
Nc�� , while pure gravity tests are sensitive to Ns�� .
The matter–gravity tests include gravimeter, atom
interferometry, and weak equivalence principle ex-
periments. Bounds on Na� have been obtained at
levels of 10�6�10�11 GeV and on Nc�� at the levels
of 10�6�10�8. Tests sensitive to the pure gravity
couplings include experiments with atom interfer-
ometers, torsion pendula, and lunar and satellite
laser ranging experiments. Bounds on Ns�� coeffi-
cients at levels of 10�6�10�9 have been obtained.
In addition to these gravity tests, highly sensi-
tive tests attempting to detect spacetime torsion
can be achieved by searching for its couplings to
fermions [23.164]. Bounds on torsion components
down to levels of 10�31 GeV have been obtained in
this way.
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23.4 Summary and Conclusions

Interest in the idea of Lorentz violation has steadily
increased over the past two decades. This is due to the-
oretical advances showing that Lorentz breaking can
provide unique signals of Planck-scale physics and
quantum-gravity effects as well as to experimental ad-
vances that have led to new high-precision tests of LLI.
The development and use of the SME as the theoretical
framework describing Lorentz violation in the context
of field theory has led to a comprehensive and multidis-
ciplinary approach to testing LLI that spans most of the
particle sectors in the SM.

The underlying premise of the ME is that field the-
ory and the SM are correct descriptions of particle in-
teractions at low energies. Therefore, any indications of
Lorentz violation should show up as small corrections
in the context of effective field theory. The SME is con-
structed as the most general effective field theory that
incorporates Lorentz violation. It contains all known
particle fields and gravitational interactions as well as
all observer-independent terms that break LLI. As an
incremental first step, the mSME and its QED limit,
which maintain gauge invariance and power-counting
renormalizability, were constructed in the 1990s. These
have been used extensively to search for leading-order
signals of Lorentz and CPT violation. More recently,
a systematic approach to constructing the nonminimal
sectors of SME have been worked out for certain parti-
cle species, and experimental bounds of these terms are
being obtained as well [23.165, 166].

As a comprehensive theoretical framework, the
SME allows for investigations of theoretical issues re-
lated to the idea of Lorentz violation. Specifically, for
the case of spontaneous Lorentz breaking, investiga-
tions of the fate of the NG modes and the possibility
of Higgs masses and a Higgs mechanism have been car-
ried out. It has been shown that spontaneous Lorentz vi-
olation is accompanied by spontaneous diffeomorphism
breaking, and up to 10 NG modes can appear in princi-
ple. These modes can comprise 10 of the 16 degrees of
freedom of the vierbein, which in a Lorentz-invariant
theory are gauge degrees of freedom. The fate of the
NG modes is found to depend on the type of spacetime

geometry in the underlying theory. At leading order in
Minkowski and Riemann spacetimes, it is found that
the NG modes can propagate like photons in a fixed ax-
ial gauge. However, in Riemann–Cartan spacetimes, the
possibility exists that the spin connection can absorb the
NG modes in a gravitational version of the Higgs mech-
anism. In addition, the potential inducing spontaneous
Lorentz violation can provide mass terms for the met-
ric excitations. These features create new possibilities
for constructing models with spontaneous Lorentz vio-
lation in the context of massive gravity.

The main application of the SME has been in
phenomenological investigations of Lorentz and CPT
symmetry. High precision tests have been performed in
most of the primary particle sectors in the SM. These
include experiments in QED and atomic systems, as-
trophysical tests, and laboratory tests at nuclear and
particle facilities. The generality of the SME allows
comparisons across different types of experiments in-
volving the same particle species. These tests have
greatly improved the sensitivity to which Lorentz and
CPT symmetry is known to hold, although many par-
ticle sectors, particularly those beyond leading order,
remain to be probed. As a comparison of some of the
bounds obtained to date at leading order, a summary of
some bounds on QbJ coefficients in the minimal SME is
given in Table 23.2. These bounds are within the range
of sensitivity associated with suppression factors aris-
ing from the Planck scale. A more complete set of tables
for the full SME has been published in the Indiana Uni-
versity data tables [23.88].

Table 23.2 Summary of leading-order bounds for the co-
efficient QbJ

Experiment Sector Parameter
(JD X;Y/

Bound
(GeV)

Penning trap Electron Qbe
J 10�24

K-He dual maser Neutron Qbn
J 10�33

H maser Proton Qbp
J 10�27

Muonium Muon Qb�J 10�23

Spin pendulum Electron Qbe
J 10�31
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24. Relativity in GNSS

Neil Ashby

Global navigation satellite systems (GNSS) use ac-
curate, stable atomic clocks in satellites and on the
ground to provide world-wide position, velocity,
and time to millions of users. Orbiting clocks have
gravitational and motional frequency shifts that
are so large that, without carefully accounting for
numerous relativistic effects, the systems would
not work. The basis for navigation using GNSS,
founded on special and general relativity, includes
relativistic principles, concepts and effects such
as the constancy of the speed of light, relativity
of synchronization, coordinate time, proper time,
time dilation, the Sagnac effect, the weak equiva-
lence principle, and gravitational frequency shifts.
Additional small relativistic effects such as the co-
ordinate slowing of light speed and the effects of
tidal potentials from the moon and the sun may
need to be accounted for in the future. Examples of
new navigation systems that are being developed
and deployed are the European GALILEO system
and the Chinese BEIDOU system; these will greatly
widen the impact of GNSS. This chapter discusses
applications of relativistic concepts in GNSS.
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Since the first deployment of high-performance atomic
clocks in satellites in 1977, position, navigation, and
timing have been revolutionized world-wide. The Uni-
ted States’ global positioning system (GPS), the Rus-
sian global navigation satellite system (GLONASS –
globalnaya navigatsionnaya sputnikovaya sistema), the
European GALILEO system, and China’s BEIDOU
system will soon provide 100 or more satellites with
synchronized clocks in precisely determined orbits.
Each system consists of approximately 30 satellites, ca-
pable of transmitting messages that enable a receiver
to accurately compute its position, velocity, and time

anywhere near earth’s surface. There are also numerous
augmentation systems designed to provide improved re-
liability and accuracy. Examples are the US’s WAAS
(wide area augmentation system), which uses geosyn-
chronous satellites to broadcast GPS-like signals over
the continental United States, and Japan’s QZSS system
that uses satellites in highly eccentric orbits, enabling
them to spend considerable time directly over an area
of particular interest. These systems together are gener-
ally referred to as GNSS.
A vast infrastructure supports these systems: world-
wide networks of receivers and organizations to mon-
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itor and estimate the satellite orbits and clocks; en-
sembles of high-performance clocks on the ground to
provide time references; industries to design, manufac-
ture, and launch the satellites; and hundreds of millions
of users with receivers of varying degrees of complexity
and expense. The GPS infrastructure has been ade-
quately described elsewhere [24.1].

The remarkable positioning precision achieved by
GNSS is due to careful accounting for a number of
systematic effects that would otherwise greatly degrade
the results and eventually render the system useless.
Among these effects are signal delays due to water
vapor in the troposphere, free electrons in the iono-
sphere, and reflections of signals from surfaces near
the receiver antenna. Unless relativistic concepts and
effects on clocks and radio signals in the GNSS are

taken into account, the systems will not work. This
article discusses the fundamental principles of special
and general relativity that provide the basis for posi-
tioning in the GNSS. The principle of equivalence is
discussed in Sect. 24.2, where it is shown that to a first
approximation, gravitational potentials due to the sun
and the moon can be neglected in the GNSS. Relative
motions of clocks and the rotation of the earth leads
to the discussion of coordinate time and the Sagnac
effect in Sect. 24.3. In Sect. 24.4 we discuss interna-
tional atomic time (TAI) and universal coordinated time
(UTC). Sections Sect. 24.5 through Sect. 24.9 discuss
relativistic effects on ground-based clocks and orbiting
clocks and how such effects are accounted for. Addi-
tional effects that are currently neglected are described
in Sect. 24.10.

24.1 The Principle of Equivalence

The weak equivalence principle is based on the ob-
served universality of free fall, namely that all objects
fall with equal accelerations in a given gravitational
field, independent of their internal structure, mass, or
composition. Thus in a freely falling laboratory of suffi-
ciently small extent, no experiment performed locally –
entirely within the laboratory – can tell that the labora-
tory is in free fall. Although this has been tested only to
a certain, very high level of precision [24.2], it means
that even if there is no gravitational field due to nearby
masses, then in a uniformly accelerating laboratory an
induced gravitational field will appear that can in no
way, by local measurements only, be distinguished from
a real gravitational field.

Some have been tempted to think that clocks in
satellites, which are momentarily on the side of the
earth nearest the sun, are affected more by the sun than
satellites on the side of earth away from the sun; one
implication that has been put forward numerous times
is that clocks in satellites nearer the sun suffer a greater
shift in frequency toward the red than do clocks on the
opposite side of the earth. By the principle of equiva-
lence, however, this picture is erroneous.

The earth and its satellites are in free fall about the
sun, moon, and other solar system bodies. Locally, the
gravitational field due to external bodies causes accel-
eration, which in turn induces an equal but opposite
fictitious gravitational field; these can be superimposed
and they cancel to high precision near earth’s center of
mass. Let the total gravitational potential in the neigh-
borhood of the earth be denoted by ˚.r/; it will be the

sum of earth’s potential, V.r/, plus the potential due to
external sources, �ext.r/

˚.r/D V.r/C �ext.r/ ; (24.1)

where rD fx1; x2; x3g is a vector from the center of
mass of the earth to the point of observation. We take
the origin of spatial coordinates to be earth’s center of
mass. The distance rD jrj is small compared to the dis-
tance to any external source, so we may imagine a series
expansion of the external potential about earth’s center
of mass

˚.r/D �.r/C �ext.0/

C

3X
iD1

xi @�ext

@xi

ˇ̌
ˇ̌̌
0

C
1

2
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i;jD1

xixj @
2�ext

@xi@xj

ˇ̌
ˇ̌̌
ˇ
0

C : : : :

(24.2)

The term �ext.0/ represents a constant potential every-
where near the earth and affects all physical objects in
the same way. It cannot be detected and thus can be
ignored. The linear terms on the second line of (24.2)
represent the strength of the gravitational field due to
external sources and are canceled by the induced grav-
itational field due to the acceleration. This is not easy
to prove from first principles but proofs can be found
in the literature [24.3–5]. Evidence for this result is that
the linear term would exert a huge effect on the oceans,
whereas it is only the last term in (24.2) that gives rise
to the ocean tides. For most purposes in the GNSS tidal
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effects on clocks are small and can at first be neglected.
The tidal effects will be discussed further in Sect. 24.9.
We conclude that for GNSS, to a high degree of approx-
imation the only gravitational potential of significance
is that of the earth itself. Although the earth and its
satellites fall freely in the gravitational fields of external

sources, one can introduce coordinate axes with origin
at earth’s center of mass and axes pointing toward dis-
tant references in the cosmos; this defines a reference
system which is locally very nearly inertial. In such
a system clocks can be synchronized using constancy
of the speed of light.

24.2 Navigation Principles in the GNSS
The principles of position determination and time trans-
fer in the GNSS can be very simply stated. Let there
be four synchronized atomic clocks which transmit
sharply defined pulses from the positions rj at times tj,
with jD 1; 2; 3;4 an index labeling the different trans-
mission events.

Then from the principle of the constancy of the
speed of light

c2.t� tj/
2 D jr� rjj

2 ; jD 1; 2; 3; 4 ; (24.3)

where the defined value of c is exactly 299 792 458 m=s.
These four equations can be solved for the unknown
space-time coordinates of the reception event, fr; tg.
Hence the principle of the constancy of c finds appli-
cation as the fundamental concept on which navigation
and timing in the GNSS is based. Obviously, it is nec-
essary to specify carefully the reference frame in which
the transmitter clocks are synchronized, so that (24.3)
is valid.

Equation (24.3) is nonlinear. Typically solutions
are obtained by linearizing, solving approximately, and
then iterating until a solution converges. For example,
if one guesses that the solution is rD r0C ı.r/; ctD
ct0C ı.ct/, where the corrections ı.r/ and ı.ct/ are
small, then linearizing the navigation equations gives

Nj � ı.r/� ı.ct/D c.t0 � tj/� jr0 � rjj ; (24.4)

where Nj is a unit vector from the j-th satellite to
the assumed receiver position. Four such equations
can be written in matrix form and the matrix equa-
tion can be solved for the corrections; iteration of
the calculation usually converges very rapidly because

the distances between receiver and satellites are large
compared to the distance from earth’s center to the
receiver.

Equation (24.4) also allows one to estimate position
uncertainties arising from uncertainties in determining
the propagation time intervals or from poor satellite
geometry. For example, suppose a receiver is at the geo-
metric center of a tetrahedral satellite configuration and
that timing errors from the satellites are uncorrelated
and are each 10 ns (1 nsD 10�9 s); 10 ns corresponds
to a position error of 3 m in each direction resulting in
an estimated position which is within a sphere of radius
4:7 m. In real navigation situations such ideal tetra-
hedral symmetry cannot be achieved since the earth’s
presence forces the received signals to come from
somewhat less than 2� steradians of the sky above. The
position error then crucially depends on the indepen-
dence of the vectors Nj; if these vectors should all lie
close to some plane then the position uncertainty can be
many times larger. Thus, the navigation equations play
an important role in design of the satellite configuration
so that such errors are minimized.

Signals transmitted to users from the satellites are
right circularly polarized. Usually information is trans-
mitted by encoding the high frequency carriers with
phase reversals. The timing signals in question can then
be thought of as places in the transmitted wave trains
where there is a particular phase reversal of the circu-
larly polarized electromagnetic signals. At such places
the electromagnetic field tensor passes through zero;
these are relativistically invariant events and, therefore,
provide relatively moving observers with sequences of
events that they can agree on in principle.

24.3 Rotation and the Sagnac Effect

Almost all users of GNSS are at fixed locations on
the rotating earth, or else are moving very slowly
over earth’s surface. This led to an early design deci-
sion in the GPS to broadcast the satellite ephemerides

in a model earth-centered, earth-fixed reference frame
(ECEF frame), in which the model earth rotates
about a fixed axis with a defined rotation rate, !E D

7:292115�10�5 rad s�1. This reference frame is desig-
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nated by the symbol WGS-84; the station coordinates
used to define this system have been updated several
times since 1984 [24.6–8]. The latest realization is
termed WGS-84(G1150) and is generally assumed to
be identical to the International Terrestrial Reference
Frame ITRF00 [24.8]. The differences among these
frames are only a few centimeters. Other GNSS sys-
tems use their own earth-fixed reference systems. The
Galileo terrestrial reference frame (GTRF) is an inde-
pendent realization of the International Terrestrial Ref-
erence System (ITRS) established by the Central Bu-
reau of the International Earth Rotation Service (IERS).
For discussions of relativity, the particular choice of
ECEF frame is immaterial. Also, the fact that the earth
truly rotates about a slightly different axis with a vari-
able rotation rate has little consequence for relativity
and will not be discussed here. We shall simply re-
gard the ECEF frame of the appropriate GNSS system
as closely related to, or determined by, the ITRF es-
tablished by the International Bureau of Weights and
Measures (BIPM).

It should be emphasized that the transmitted navi-
gation messages provide the user only with a function
from which the satellite position can be calculated in
the ECEF as a function of the transmission time. Usu-
ally, the satellite transmission times tj are unequal, so
the coordinate system in which the satellite positions
are specified changes orientation from one measure-
ment to the next. Therefore, to implement (24.3), the
receiver must generally perform a different rotation for
each measurement made, into some common inertial
frame, so that (24.3) apply. After solving the propaga-
tion delay equations, a final rotation must usually be
performed into the ECEF to determine the receiver’s
position. This can become exceedingly complicated and
confusing. A technical note [24.9] discusses these is-
sues in considerable detail.

Although the ECEF frame is of primary interest for
navigation, it is simpler to describe many physical pro-
cesses (such as electromagnetic wave propagation) in
an inertial reference frame. Certainly, inertial reference
frames are needed to express (24.3), whereas it would
lead to serious error to assert (24.3) in the ECEF frame.
A conventional inertial frame is frequently discussed,
whose origin coincides with earth’s center of mass,
which is in free fall with the earth in the gravitational
fields of other solar system bodies, and whose z-axis
coincides with the angular momentum axis of earth at
the epoch J2000.0. Such a local inertial frame may be
related by a transformation of coordinates to the so-
called international celestial reference frame (ICRF), an

inertial frame defined by the coordinates of about 500
stellar radio sources. The center of this reference frame
is the barycenter of the solar system.

Let us, therefore, consider the simplest instance of
a transformation from an inertial frame, in which the
space-time is Minkowskian, to a rotating frame of refer-
ence. Ignoring gravitational potentials for the moment,
the metric in an inertial frame in cylindrical coordinates
is

�ds2 D�.cdt/2C dr2C r2 d�2C dz2 ; (24.5)

and the transformation to a coordinate system
ft0; r0; �0; z0g rotating at the uniform angular rate !E is

tD t0 ; rD r0 ;

� D �0C!Et0 ; zD z0 :
(24.6)

This results in the following well-known metric
(Langevin metric) in the rotating frame

�ds2 D�

�
1�

!2
Er02

c2

�
.cdt0/2

C 2!Er02 d�0 dt0C .d� 0/2 ;

(24.7)

where the abbreviated expression .d� 0/2 D .dr0/2C
.r0 d�0/2C .dz0/2 for the square of the coordinate dis-
tance has been used.

The time transformation tD t0 in (24.6) is deceiv-
ingly simple. It means that in the rotating frame the time
variable t0 is really determined in the underlying inertial
frame. It is an example of coordinate time. A similar
concept is used in the GNSS.

Consider a process in which observers in the rotat-
ing frame attempt to use Einstein synchronization (that
is, the principle of the constancy of the speed of light) to
establish a network of synchronized clocks. Light trav-
els along a null worldline, so we may set ds2 D 0 in
(24.7). Also, it is sufficient for this discussion to keep
only terms of first order in the small parameter !Er0=c.
Then

.cdt0/2 �
2!Er02 d�0.cdt0/

c
� .d� 0/2 D 0 ; (24.8)

and solving for .cdt0/,

cdt0 D d� 0C
!Er02 d�0

c
: (24.9)

The quantity r02 d�0=2 is just the infinitesimal
area dA0z in the rotating coordinate system swept out
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by a vector from the rotation axis to the light pulse and
projected onto a plane parallel to the equatorial plane.
Thus the total time required for light to traverse some
path is

Z
path

dt0 D
Z

path

d� 0

c
C

2!E

c2

Z
path

dA0z [light] : (24.10)

Observers fixed on the earth, who were unaware of earth
rotation, would use just

R
d� 0=c for synchronizing their

clock network. Observers at rest in the underlying in-
ertial frame would say that this leads to significant
path-dependent inconsistencies, which are proportional
to the projected area encompassed by the path. Con-
sider, for example, a synchronization process which
follows earth’s equator eastward around the globe. For
earth, 2!E=c2 D 1:6227� 10�21 s/m2 and the equato-
rial radius is a1 D 6 378 137 m, so the area is �a2

1 D

1:27802� 1014 m2 . Thus the last term in (24.10) is

2!E

c2

Z
path

dA0z D 207:4 ns : (24.11)

Traversing the equator once eastward, the last clock in
the synchronization path would lag the first clock by
207:4 ns. Traversing the equator once westward, the last
clock in the synchronization path would lead the first
clock by 207:4 ns. From the underlying inertial frame,
this can be regarded as the additional travel time re-
quired by light to catch up to the moving reference
point. Simple-minded use of Einstein synchronization
in the rotating frame gives only

R
d� 0=c and thus leads

to a significant error.
In an inertial frame a portable clock can be used to

disseminate time. The clock must be moved so slowly
that changes in the moving clock’s rate due to time di-
lation, relative to a reference clock at rest on earth’s
surface, are extremely small. On the other hand, ob-
servers in a rotating frame who attempt this find that the
proper time elapsed on the portable clock is affected by
earth’s rotation rate. Factoring (24.7), the proper time
increment d
 on the moving clock is given by

.d
/2 D

�
ds

c

�2

D dt02
"

1�
�
!Er0

c

�2

�
2!Er02 d�0

c2 dt0
�

�
d� 0

cdt0

�2
#
:

(24.12)

For a slowly moving clock .d� 0=cdt0/2 << 1, so the
last term in brackets in (24.12) can be neglected.
Also, keeping only first-order terms in the small quan-
tity !Er0=c

d
 D dt0 �
!Er02 d�0

c2
; (24.13)

which leads to
Z

path

dt0 D
Z

path

d
 C
2!e

c2

Z
path

dA0z [portable clock] :

(24.14)

This should be compared with (24.10). Path-dependent
discrepancies in the rotating frame are thus inescapable
whether one uses light or portable clocks to disseminate
time, while synchronization in the underlying inertial
frame using either process is self-consistent.

Equations (24.10) and (24.14) can be reinterpreted
as a means of realizing coordinate time t0 D t in
the rotating frame, if after performing a synchro-
nization process appropriate corrections of the form
C2!E

R
path dA0z=c2 are applied. It is remarkable how

many different ways this can be viewed. For exam-
ple, from the inertial frame it appears that the reference
clock from which the synchronization process starts is
moving, requiring light to traverse a different path than
it appears to traverse in the rotating frame. The Sagnac
effect can be regarded as arising from the relativity of
simultaneity in a Lorentz transformation to a sequence
of local inertial frames comoving with points on the ro-
tating earth. It can also be regarded as the difference
between proper times of a slowly moving portable clock
and a reference clock fixed on earth’s surface.

This was recognized in the early 1980s by the Con-
sultative Committee for the Definition of the Second
and the International Radio Consultative Committee,
who formally adopted procedures incorporating such
corrections for the comparison of time standards lo-
cated far apart on earth’s surface. For GNSS it means
that synchronization of the entire system of ground-
based and orbiting atomic clocks is performed in the
local inertial frame, or ECI coordinate system [24.10].

Satellite clocks can be used to compare times on
two earth-fixed clocks when a single satellite is in view
from both locations. This is the common-view method
of comparison of Primary standards, whose locations
on earth’s surface are usually known very accurately in
advance from ground-based surveys. Signals from a sin-
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gle GPS satellite in common view of receivers at the
two locations provide enough information to determine
the time difference between the two local clocks. The

Sagnac effect is very important in making such com-
parisons, as it can amount to hundreds of nanoseconds,
depending on the geometry.

24.4 Coordinate Time and TAI

For GNSS the time variable t0 D t becomes a coordi-
nate time in the rotating frame of the earth, which is
realized by applying appropriate corrections while per-
forming synchronization processes. Synchronization is
thus performed in the underlying inertial frame in which
self-consistency can be achieved.

With this understanding, we next describe the grav-
itational fields near the earth due to the earth’s mass
itself. Assume for the moment that earth’s mass distri-
bution is static, and that there exists a locally inertial,
nonrotating, freely falling coordinate system with ori-
gin at the earth’s center of mass, and write an approx-
imate solution of Einstein’s field equations in isotropic
coordinates

�ds2 D�

�
1C

2V

c2

�
.cdt/2

C

�
1�

2V

c2

�

� .dr2C r2 d2C r2 sin2  d�2/ ;

(24.15)

where fr; ; �g are spherical polar coordinates and
where V is the Newtonian gravitational potential of the
earth, given approximately by

V D�
GME

r

�
1� J2

�a1

r

	2
P2.cos /

�
: (24.16)

In (24.16), GME D 3:986004418�1014 m3 s�2 is the
product of earth’s mass times the Newtonian grav-
itational constant, J2 D 1:0826300�10�3 is earth’s
quadrupole moment coefficient, and a1 D 6:3781370�
106 is earth’s equatorial radius. (WGS-84(G1150) val-
ues of these constants are used in this article [24.8].)
The angle  is the polar angle measured downward
from the axis of rotational symmetry; P2 is the Leg-
endre polynomial of degree 2. In using (24.15), it is
an adequate approximation to retain only terms of first
order in the small quantity V=c2. Higher multipole mo-
ment contributions to (24.16) have very small effect on
relativity in GNSS.

One additional expression for the invariant interval
is needed, the transformation of (24.16) to a rotating,

ECEF coordinate system by means of transformations
equivalent to (24.6). The transformations for spherical
polar coordinates are

tD t0 ; rD r0 ;

 D  0 ; � D �0C!Et0 :
(24.17)

Upon performing the transformations, and retaining
only terms of order 1=c2, the scalar interval becomes

�ds2 D�

"
1C

2V

c2
�

�
!Er0 sin  0

c

�2
#
.cdt0/2

C 2!Er02 sin2  0 d�0 dt0

C

�
1�

2V

c2

�

� .dr02C r02 d 02C r02 sin2  0 d�02/ :

(24.18)

To the order of the calculation, this result is a simple
superposition of the metric, (24.15), with the correc-
tions due to rotation expressed in (24.17). The metric
tensor coefficient g000 in the rotating frame is

g000 D�

"
1C

2V

c2
�

�
!er0 sin  0

c

�2
#

��

�
1C

2˚

c2

�
;

(24.19)

where ˚ is the effective gravitational potential in the
rotating frame, which includes the static gravitational
potential of the earth and a centripetal potential term.

24.4.1 The Earth’s Geoid

In (24.16) and (24.17), the rate of coordinate time is de-
termined by atomic clocks at rest at infinity. The rate of
coordinate time used in GNSS, however, is closely re-
lated to international atomic time (TAI), which is a time
scale computed by the (BIPM) in Paris on the basis of
inputs from hundreds of primary time standards, hydro-
gen masers, and other clocks from all over the world. In
producing this time scale, corrections are applied to re-
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duce the elapsed proper times on the contributing clocks
to earth’s geoid, a surface of constant effective gravita-
tional equipotential at mean sea level in the ECEF.

Universal coordinated time (UTC) is a time scale
that differs from TAI by a whole number of leap sec-
onds. These leap seconds are inserted every so often
into UTC so that UTC continues to correspond to time
determined by earth’s rotation. Time standards orga-
nizations which contribute to TAI and UTC generally
maintain their own time scales. For example, the time
scale of the US Naval Observatory, based on an en-
semble of hydrogen masers and Cs clocks, is denoted
UTC(USNO). GPS time is steered so that, apart from
the leap second differences, it stays within 100 ns of
UTC(USNO). Usually this steering is so successful that
the difference between GPS time and UTC(USNO) is
of order 10 ns. Receiver equipment cannot tolerate leap
seconds, as such sudden jumps in time would cause re-
ceivers to lose their lock on transmitted signals, and
other undesirable transients would occur.

To account for the fact that reference clocks for
GNSS are not at infinity, We need to consider the rates
of atomic clocks at rest on the earth’s geoid. These
clocks move because of the earth’s spin; also, they are
at varying distances from the earth’s center of mass
since the earth is slightly oblate. In order to proceed one
needs a model expression for the shape of this surface
and a value for the effective gravitational potential on
this surface in the rotating frame.

For this calculation, (24.18) in the ECEF is relevant.
For a clock at rest on earth, (24.18) reduces to

�ds2 D�

 
1C

2V

c2
�
!2

e r02 sin2  0

c2

!
.cdt0/2 :

(24.20)

with the potential V given by (24.16).
This equation determines the radius r0 of the effec-

tive equipotential geoid surface as a function of polar
angle  0. The numerical value of ˚0 at the geoid can be
determined at the equator where  0 D �=2 and r0 D a1.
This gives

˚0

c2
D�

GME

a1c2
�

GMEJ2

2a1c2
�
!2

Ea2
1

2c2

D�6:95348�10�10

� 3:764�10�13� 1:203�10�12

D�6:96927�10�10 :

(24.21)

There are thus three distinct contributions to this ef-
fective potential: a simple 1=r contribution due to the

earth’s mass; a more complicated contribution from the
quadrupole potential, and a centripetal term due to the
earth’s rotation. The main contribution to the gravi-
tational potential arises from the mass of the earth,
the centripetal potential correction is about 500 times
smaller, and the quadrupole correction is about 2000
times smaller. These contributions have been divided
by c2 in the above equation since the time increment
on an atomic clock at rest on the geoid can be easily
expressed thereby. In recent resolutions of the Inter-
national Astronomical Union [24.11] a terrestrial time
scale (TT) has been defined by defining the value˚0=c2

D 6:969290134�10�10. Equation (24.21) agrees with
this definition to within the accuracy needed for the
GNSS.

From (24.18), for clocks on the geoid,

d
 D
ds

c
D dt0

�
1C

˚0

c2

�
: (24.22)

Clocks at rest on the rotating geoid run slow com-
pared to clocks at rest at infinity by about seven
parts in 1010. These effects sum to about 10 000 times
larger than the fractional frequency stability of a high-
performance cesium clock. The shape of the geoid in
this model can be obtained by setting ˚ D ˚0 and solv-
ing (24.19) for r0 in terms of  0. The first few terms
in a power series in the variable x0 D sin  0 can be ex-
pressed as

r0 D 6 356 742:025C 21 353:642x02C 39:832x04

C 0:798x06C 0:003x08m :

(24.23)

This treatment of the gravitational field of the oblate
earth is limited by the simple model of the gravitational
field. Actually (24.23) estimates the shape of the so-
called reference ellipsoid, from which the actual geoid
is conventionally measured.

Better models can be found in the literature of geo-
physics [24.12–14]. The next term in the multipole
expansion of the earth’s gravity field is about a thousand
times smaller than the contribution from J2; although
the actual shape of the geoid can differ from (24.23) by
as much as 100 m, the effects of such terms on timing
in GNSS are small. Incorporating up to 20 higher zonal
harmonics in a calculation ˚0 affects the value only in
the sixth significant figure.

Observers at rest on the geoid define the unit of time
in terms of the proper rate of atomic clocks. In (24.22),
˚0 is a constant. On the left-hand side of (24.22), d

is the increment of proper time elapsed on a standard
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clock at rest, in terms of the elapsed coordinate time
dt. Thus the very useful result has emerged that ideal
clocks at rest on the geoid of the rotating earth all beat
at the same rate. This is reasonable since the earth’s
surface is a gravitational equipotential surface in the ro-
tating frame. (It is true for the actual geoid, whereas
here we constructed a model.) Considering clocks at
two different latitudes, the one further north will be
closer to the earth’s center because of the flattening – it
will, therefore, be more redshifted. However, it is also
closer to the axis of rotation and goes more slowly, so
it suffers less second-order Doppler shift. The earth’s
oblateness gives rise to an important quadrupole cor-
rection. This combination of effects cancels exactly on
the reference surface.

Since all clocks at rest on the geoid beat at the same
rate, it is advantageous to exploit this fact to redefine
the rate of coordinate time. Equation (24.15) defines the
rate of coordinate time in terms of the rate of standard
clocks at rest at infinity. What is needed instead is to
define the rate of coordinate time by standard clocks at
rest on earth’s geoid. Therefore, we define a new coor-
dinate time t00 by means of a constant rate change

t00 D .1C˚0=c2/t0 D .1C˚0=c2/t : (24.24)

The correction is about seven parts in 1010 (see (24.21)).
When this time scale change is made, the metric of

(24.18) in the earth-fixed rotating frame becomes
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�
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� .dr02C r02 d 02C r02 sin2  0 d�02/ :

(24.25)

where only terms of order c�2 have been retained.
Whether dt0 or dt00 is used in the Sagnac cross term
makes no difference since the Sagnac term is very small
anyway. The same time scale change in the nonrotating
ECI metric, (24.15), gives

�ds2 D�

�
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2.V �˚0/

c2

�
.cdt00/2

C

�
1�

2V

c2

�

� .dr2C r2 d2C r2 sin2  d�2/ :

(24.26)

Equations (24.25) and (24.26) imply that the proper
time elapsed on clocks at rest on the geoid (where
˚ D ˚0) is identical with the coordinate time t00. This
is the correct way to express the fact that ideal clocks at
rest on the geoid provide all of our standard reference
clocks.

24.5 The Realization of Coordinate Time

We are now able to address the real problem of clock
synchronization within GNSS. In the remainder of this
paper we drop the primes on t00 and just use the sym-
bol t, with the understanding that unit of this time is
referenced to one of the realizations of UTC on the ro-
tating geoid, but with synchronization established in an
underlying, locally inertial, reference frame. The metric
(24.26) will henceforth be written as

�ds2 D�

�
1C

2.V �˚0/

c2

�
.cdt/2

C

�
1�

2V

c2

�

� .dr2C r2 d2C r2 sin2  d�2/ :

(24.27)

The difference .V�˚0/ that appears in the first term of
(24.27) arises because in the underlying earth-centered,

locally inertial (ECI) coordinate system in which the
equation is expressed, the unit of time is determined
by moving clocks in a spatially dependent gravitational
field.

Obviously (24.27) contains within it the well-
known effects of time dilation (the apparent slowing of
moving clocks) and frequency shifts due to gravitation.
Due to these effects, which have an impact on the net
elapsed proper time on an atomic clock, the proper time
elapsing on the orbiting GNSS clocks cannot simply be
used to transfer time from one transmission event to an-
other. Path-dependent effects must be accounted for.

On the other hand, according to general relativity
the coordinate time variable t of (24.27) is valid in
a coordinate patch large enough to cover the earth and
the GNSS satellite constellations. Equation (24.27) is
an approximate solution of the field equations near
the earth, which include the gravitational fields due
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to earth’s mass distribution. In this local coordinate
patch, the coordinate time is single-valued. (It is not
unique, of course, because there is still gauge freedom,
but (24.27) represents a fairly simple and reasonable
choice of gauge.) It is natural, therefore, to propose that
the coordinate time variable t of (24.27) and (24.25) be
used as a basis for synchronization in the neighborhood
of the earth.

To see how this works for a slowly moving atomic
clock, solve (24.26) for dt as follows. First factor out
.cdt/2 from all terms on the right-hand side

� ds2

D�

"
1C

2.V �˚0/

c2

�

�
1�

2V

c2

�
dr2C r2 d2C r2 sin2  d�2/

.cdt/2

#

� .cdt/2 :

(24.28)

Simplify by writing the velocity in the ECI coordinate
system as

v2 D
dr2C r2 d2C r2 sin2  d�2

dt2
: (24.29)

Only terms of order c�2 need be kept so the potential
term modifying the velocity term can be dropped. Then
upon taking a square root, the proper time increment on
the moving clock is approximately

d
 D
ds

c
D

�
1C

.V �˚0/

c2
�

v2

2c2

�
dt : (24.30)

Finally, solving for the increment of coordinate time
and integrating along the path of the atomic clock,

Z
path

dtD
Z

path

d


�
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.V �˚0/

c2
C

v2

2c2

�
: (24.31)

The relativistic effect on the clock, given in (24.30), is
thus corrected by (24.31).

Suppose for a moment there were no gravitational
fields. Then one could picture an underlying nonrotat-
ing reference frame, a local inertial frame, unattached
to the spin of the earth, but with its origin at the center
of the earth. In this nonrotating frame, a fictitious set of
standard clocks is introduced, available anywhere, all of
them being synchronized by the Einstein synchroniza-
tion procedure, and running at agreed upon rates such
that synchronization is maintained. These clocks read
the coordinate time t. Next one introduces the rotating
earth with a set of standard clocks distributed around
upon it, possibly roving around. One applies to each
of the standard clocks a set of corrections based on
the known positions and motions of the clocks, given
by (24.31). This generates a coordinate clock time in
the earth-fixed, rotating system. This time is such that
at each instant the coordinate clock agrees with a fic-
titious atomic clock at rest in the local inertial frame,
whose position coincides with the earth-based standard
clock at that instant. Thus coordinate time is equivalent
to time which would be measured by standard clocks at
rest in the local inertial frame [24.15].

When the gravitational field due to the earth is con-
sidered, the picture is only a little more complicated.
There still exists a coordinate time which can be found
by computing a correction for gravitational redshift,
given by the first correction term in (24.31).

24.6 Effects on Satellite Clocks

For atomic clocks in satellites it is most convenient to
consider the motions as they would be observed in the
local ECI frame. Then the Sagnac effect becomes ir-
relevant. (The Sagnac effect on moving ground-based
receivers must still be considered.) Gravitational fre-
quency shifts and second-order Doppler shifts must be
taken into account together. The term ˚0 in (24.30) in-
cludes the scale correction needed in order to use clocks
at rest on the earth’s surface as references. Earth’s
quadrupole contributes to ˚0 in the term �GMEJ2=2a1

in (24.21); there it contributes a fractional rate correc-
tion of �3:76�10�13. This effect must be accounted
for in GNSS. Also, V is the earth’s gravitational po-
tential at the satellite’s position. Fortunately the earth’s
quadrupole potential falls off very rapidly with dis-
tance, and up until very recently its effect on satellite
vehicle (SV) clock frequency was neglected. This will
be discussed in a later section, for the present we only
note that earth’s quadrupole potential effect on orbiting
GNSS clocks is only about one part in 1014.
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24.6.1 Satellite Orbits

Let us assume that the satellites move along Keple-
rian orbits. This is a good approximation for GNSS
satellites, but poor if the satellites are at low altitude.
This assumption yields relations with which to simplify
(24.31). Since the quadrupole (and higher multipole)
parts of the earth’s potential are neglected, in (24.31)
the potential is V D�GME=r. Then the expressions can
be evaluated using what is known about the Newtonian
orbital mechanics of the satellites. Denote the satel-
lite’s orbit semimajor axis by a and eccentricity by e.
Then the solution of the orbital equations is as fol-
lows: [24.16] the distance r from the center of the earth
to the satellite in ECI coordinates is

rD a.1� e2/=.1C e cos f / : (24.32)

The angle f , called the true anomaly, is measured from
perigee along the orbit to the satellite’s instantaneous
position. The true anomaly can be calculated in terms
of another quantity E called the eccentric anomaly, ac-
cording to the relationships

cos f D
cos E� e

1� e cos E
; (24.33)

sin f D
p

1� e2
sin E

1� e cos E
: (24.34)

Then another way to write the radial distance r is

rD a.1� e cos E/ : (24.35)

To find the eccentric anomaly E, one must solve the
transcendental equation

E� e sin ED

r
GME

a3
.t� tp/ ; (24.36)

where tp is the coordinate time of perigee passage.
In Newtonian mechanics, the gravitational field is

a conservative field and total energy is conserved. Us-
ing the above equations for the Keplerian orbit, one can
show that the total energy per unit mass of the satellite
is

1

2
v2 �

GME

r
D�

GME

2a
: (24.37)

Inserting (24.37) for v2 into (24.31) results in the
following expression for the elapsed coordinate time on

the satellite clock
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(24.38)

The first two constant rate correction terms in
(24.38) for GPS have the values

3GME

2ac2
C
˚0

c2
DC2:5046�10�10

� 6:9693�10�10

D�4:4647�10�10 :

(24.39)

The negative sign in this result means that the stan-
dard clock in orbit is beating too fast, primarily because
its frequency is gravitationally blueshifted. In order for
the satellite clock to appear to an observer on the geoid
to beat at the chosen frequency of 10:23 MHz, the satel-
lite clocks are adjusted lower in frequency so that the
proper frequency is

Œ1� 4:4647�10�10�� 10:23 MHz

D 10:22999999543MHz :
(24.40)

This adjustment is accomplished on the ground before
the clock is placed in orbit. Five sources of relativis-
tic effects contribute to this frequency offset. This
effect is formally incorporated into the GPS speci-
fications [24.17] and into GLONASS [24.18] but is
not mentioned in the formal GALILEO signal-in-space
specifications [24.19].

For GNSS systems other than GPS, typically some
choice is made concerning the nominal period re-
quired for the satellite’s ground track to repeat. For
GLONASS, the satellite periods are 16/17 of the GPS
satellite periods, while for GALILEO, the ground track
repeats after 17 orbits, which takes 10 days. For BEI-
DOU it appears that the satellites in medium earth orbit
(MEO) will have repeating ground tracks after 13 or-
bits in 10 days. Table 24.1 gives the nominal semimajor
axes and the fractional frequency offsets for several of
the systems.

The purpose of this frequency offset is to make cor-
rections applied by the receiver smaller, so the job of
the receiver is easier. Typically navigation messages
from the satellites contain three coefficients that enable
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Table 24.1 Nominal values of SV clock frequency offsets

GNSS system a (km) 1010��f=f

GPS 26 562.76 �4:46473

GLONASS 25 509.64 �4:36144

GALILEO 29 601.31 �4:72191

BEIDOU (MEO) 27 910.20 �4:58538

Geosynchronous 42 164.17 �5:39151

the receiver to make corrections for satellite clock er-
rors. These coefficients are denoted by a0; a1, and a2;
a0 is a time or synchronization error correction, a1 is
a frequency correction, and a2 is a frequency drift cor-
rection. The coefficient a2 is seldom used. Although it is
quite possible to implement a system in which this fac-
tory frequency offset is not applied before launch, the
transmitted navigation messages would have to trans-
mit a much larger a1 coefficient, in which the first few
bits are always the same. This would be wasteful of re-
sources and would limit the number of bits available for
real variations in the actual frequency offsets.

Figure 24.1 shows a histogram of 271 values of the
a1 coefficient transmitted by the GLONASS satellites,
sampled from the GLONASS broadcast ephemeris at
the beginning of each year for the last 7 years. The av-
erage of this sample is very nearly zero, with an RMS
variation of about 1:6�10�12. In an ideal world this
number would be zero. Thus for GLONASS the fre-
quency offsets achieved are within about 4% of the
desired value.

Small frequency shifts can arise from clock drift,
launch vibrations, environmental changes, and other

1012 × 

Number of occurrences

–100 –50 0 50 100

50

40

30

20

10

0

f
Δf

Fig. 24.1 Histogram of transmitted fractional frequency
shift corrections for GLONASS. The horizontal axis is in
units of 10�12

unavoidable effects such as the inability to launch the
satellite into an orbit with precisely the desired semi-
major axis. Because of such effects, it is difficult to
use GNSS clocks to measure relativistic frequency
shifts.

24.6.2 The Eccentricity Correction

The last term in (24.38) may be integrated exactly by
using the following expression for the rate of change of
eccentric anomaly with time, which follows by differ-
entiating (24.36)

dE
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D

p
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1� e cos E
: (24.41)

A relativistic correction is being computed, so
ds=c' dt and
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(24.42)

The constant of integration in (24.42) can be
dropped since this term is lumped with other clock
offset effects in the process of estimating the clock
correction. The net correction for clock offset due to
relativistic effects which vary in time is

�tr DC4:4428�10�10 s
p

m
�1

e
p

a sin E : (24.43)

This correction of (24.43) is called the eccentricity cor-
rection; it is of the same form for all orbiting clocks
and is ordinarily made by the receiver software. It repre-
sents a correction to the coordinate time as transmitted
by the satellite. For a satellite of eccentricity eD 0:01,
the maximum size of this term for GALILEO is about
24 ns. The correction is needed because of a combina-
tion of effects on the satellite clock due to gravitational
frequency shift, and second-order Doppler shift, which
vary due to orbit eccentricity. For the QZS-1 satellite,
the amplitude of this effect is about 200 ns. Figure 24.2
gives a plot of the relativistic effect – the negative of the
correction.
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Fig. 24.2 Relativistic correction for orbital eccentricity ef-
fect, for a semimajor axis of 26 600 km

Equation (24.43) can be expressed without approx-
imation in the following form, which is valid for Kep-
lerian orbits,

�tr DC
2r � v

c2
; (24.44)

where r and v are the position and velocity of the satel-
lite at the instant of transmission. This may be proved
using the expressions (24.33)–(24.36) for the Keplerian
orbits of the satellites. This latter form is usually used
in implementations of the receiver software.

It is not necessary, in a navigation satellite sys-
tem, that the eccentricity correction be applied by the
receiver. It appears that the clocks in the GLONASS
satellite system do have this correction applied before
broadcast. In fact historically, this was dictated in the
GPS by the small amount of computing power available
in the early GPS satellite vehicles. It would actually
make more sense to incorporate this correction into the
time broadcast by the satellites; then the broadcast time
events would be much closer to coordinate time – that
is, GPS system time. It may now be too late to re-
verse this decision because of the investment that many
dozens of receiver manufacturers have in their products.
However, it does mean that receivers are supposed to
incorporate the relativity correction; therefore if appro-
priate data can be obtained in raw form from a receiver
one can measure this effect [24.20].

24.7 Doppler Effect
Since orbiting clocks have had their rate adjusted so
they beat coordinate time, and since responsibility for
correcting for the periodic relativistic effect due to ec-
centricity has been delegated to receivers, one must take
extreme care in discussing the Doppler effect for signals
transmitted from satellites. Even though second-order
Doppler effects have been accounted for, for earth-
fixed users there will still be a first-order (longitudinal)
Doppler shift, which has to be dealt with by receivers.
As is well known, in a static gravitational field coordi-
nate frequency is conserved during propagation of an
electromagnetic signal along a null geodesic. If one
takes into account only the monopole and quadrupole
contributions to earth’s gravitational field, then the field
is static and one can exploit this fact to discuss the
Doppler effect.

Consider the transmission of signals from rate-
adjusted transmitters orbiting on GPS satellites. Let the
gravitational potential and velocity of the satellite be
V.rj/� Vj, and vj, respectively. Let the frequency of
the satellite transmission, before the rate adjustment is
done, be f0. After taking into account the rate adjust-
ment discussed previously, it is straightforward to show
that for a receiver of velocity vR and gravitational po-

tential VR (in ECI coordinates), the received frequency
fR is given by

fR� f0
f0

D

�
�VRC v2

R=2C˚0C 2GME=aC 2Vj

c2

�

�
.1�N � vR=c/�

1�N � vj=c
� ;

(24.45)

where N is a unit vector in the propagation direction
in the local inertial frame. For a receiver fixed on the
earth’s rotating geoid, this reduces to
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��
.1�N � vR=c/�

1�N � vj=c
� :

(24.46)

The correction term in square brackets gives rise to the
eccentricity effect. The longitudinal Doppler shift fac-
tors are not affected by these adjustments; they will be
of order 10�5, while the eccentricity effect is of order
e� 10�10.
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24.8 Relativity and Orbit Adjustments
To deal with satellite failures, it is common to have
spares parked out of the way in orbits close to the nom-
inal satellite orbits of the system. Performance of the
clocks in these spares are monitored but not broadcast
to the general user. As these spare satellites are raised
or lowered in altitude to place them in assigned slots
or take them out of service, their clocks suffer relativis-
tic frequency changes from a combination of velocity
changes and gravitational frequency shifts. If the initial
and final orbits can be described as Keplerian orbits,
(24.38) gives for the fractional frequency effect (the
negative of the correction)

f � f0
f0
D�

3GME

2c2a
�˚0 : (24.47)

The defined potential on the geoid, ˚0, does not de-
pend on satellite position. If the semimajor axis changes
by a small amount ıa, there will be a change in the
frequency that can be adequately described by differ-

entiating (24.47)
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f � f0
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�
DC

3GME

2c2a2
ıa : (24.48)

This simple equation has been very successful in pre-
dicting frequency shifts due to small changes in the
semimajor axis. For a discussion of several measure-
ments of such shifts, see [24.20]. The magnitudes of
frequency shifts induced by such orbit changes are typ-
ically a few parts in 1013.

The factor 3=2 in (24.48) arises from the combined
effect of second-order Doppler and gravitational fre-
quency shifts. If the semimajor axis increases, the satel-
lite will be higher in earth’s gravitational potential and
will be gravitationally blueshifted more, while at the
same time the satellite velocity will be reduced, reduc-
ing the size of the second-order Doppler shift (which is
generally a redshift). The net effect would make a pos-
itive contribution to the fractional frequency shift.

24.9 Effects of Earth’s Quadrupole Moment

Perturbations of GNSS orbits due to earth’s quadrupole
mass distribution are a significant fraction of the change
in the semimajor axis associated with the orbit change
discussed above. This raises the question whether it
is sufficiently accurate to use a Keplerian orbit to de-
scribe GPS satellite orbits and estimate the semimajor
axis change as though the orbit were Keplerian. In this
section, we estimate the effect of earth’s quadrupole
moment on the orbital elements of a nominally circu-
lar orbit. Previously, such an effect on the SV clocks
was neglected, and indeed it does turn out to be small.
However, the effect is of the same order as the stability
of the best orbiting clocks, so it is significant.

To see how large such quadrupole effects may
be, we use exact calculations available in the liter-
ature, for the perturbations of the Keplerian orbital
elements [24.16]. For the semimajor axis, if the ec-
centricity is very small the dominant contribution has
a period twice the orbital period and has amplitude
3J2a2

1 sin2 i=.2a/, where a1 is earth’s equatorial radius
and i is the inclination of the satellite orbit. The ampli-
tude can be more than a kilometer.

The oscillation in the semimajor axis would signifi-
cantly affect calculations of the radius at any particular

time. This suggests that (24.37) needs to be reexamined
in light of the periodic perturbations on the semimajor
axis. Therefore, in this section we develop an approx-
imate description of a satellite orbit, for small eccen-
tricity, taking into account earth’s quadrupole moment
to first order. Terms of order J2 � e will be neglected.
This problem is nontrivial because the perturbations
themselves (see, for example, the equations for mean
anomaly and altitude of perigee) have factors 1=e,
which blow up as the eccentricity approaches zero. This
problem is a mathematical one, not a physical one. It
simply means that the observable quantities – such as
coordinates and velocities – need to be calculated in
such a way that finite values are obtained.

24.9.1 Conservation of Energy

The gravitational potential of a satellite at position
.x; y; z/ in equatorial ECI coordinates in the model un-
der consideration here is

V.x; y; z/D�
GME

r

�
1�

J2a2
1

r2

�
3z2

2r2
�

1

2

��
:

(24.49)
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Since the force is conservative in this model (solar ra-
diation pressure, thrust, etc., are not considered), the
kinetic plus potential energy is conserved. Let � be the
energy per unit mass of an orbiting mass point. Then

� D constant

D
v2

2
CV.x; y; z/

D
v2

2
�

GME

r
CV0.x; y; z/ ;

(24.50)

where V0.x; y; z/ is the perturbing potential due to the
earth’s quadrupole potential.

It is shown in textbooks [24.16] that, with the help
of Lagrange’s planetary perturbation theory, the conser-
vation of energy condition can be put in the form

� D�
GME

2a
CV0.x; y; z/ ; (24.51)

where a is the perturbed (osculating) semimajor axis. In
other words, for the perturbed orbit,

v2

2
�

GME

r
D�

GME

2a
: (24.52)

On the other hand, the net fractional frequency shift rel-
ative to a clock at rest at infinity is determined by the
second-order Doppler shift (a redshift) and a gravita-
tional redshift. The total relativistic fractional frequency
shift (relative to a reference at infinity) is

�f

f
D�

v2

2
�

GME

r
CV0.x; y; z/ : (24.53)

The conservation of energy condition can be used to
express the second-order Doppler shift in terms of
the potential. Therefore, from perturbation theory we
need expressions for the square of the velocity, for
the radius r, and for the perturbing potential. We now
proceed to derive these expressions. We refer to the lit-
erature [24.16] for the perturbed osculating elements.
These are exactly known, to all orders in the eccen-
tricity, and to first order in J2. We shall need only the
leading terms in eccentricity e for each element.

24.9.2 Perturbed Semimajor Axis

From [24.16], the perturbed semimajor axis in the limit
of negligible eccentricity is

aD amC
3J2a2

1

2am
sin2 i cos.2ntC 2!/ ; (24.54)

where nD
p

GME=a3
m is the unperturbed mean motion,

am is the mean semimajor axis, i the mean inclination,
nD

p
GME=a3

m the unperturbed mean motion, and !
the mean altitude of perigee.

24.9.3 Perturbed Radius

The orbit radius depends on the combination e cos E
where E is the eccentric anomaly. The eccentric
anomaly depends on the mean anomaly; perturbation
equations for the mean anomaly have terms with a fac-
tor e�1, so one must take extra care in computing the
product e cos E in order to obtain a meaningful result in
the limit of small eccentricity. For the perturbed radius
we then obtain

rD am.1� em cos Em/

�
3J2a2

1

2am
sin2 i cos.2ntC 2!/ :

(24.55)

24.9.4 Perturbed Velocity

Then conservation of energy, (24.50) gives the follow-
ing expression for the velocity

v2

2
D

GME.1C em cos Em/

2am.1� em cos Em/

C
3GMEJ2a2

1

2a3
m

�
1�

3

2
sin2 i

�

C
GMEJ2a2

1

2a2
m

sin2 i cos.2ntC 2!/ :

(24.56)

24.9.5 Evaluation
of the Perturbing Potential

Since the perturbing potential contains the small factor
J2, to leading order, we may substitute unperturbed val-
ues for r and z in V0.x; y; z/ which yields the expression

V0.x; y; z/D�
GMEJ2a2

1

2a3
m

�
1�

3

2
sin2 i

�

�
3GMEJ2a2

1 sin2 i

4a3
m

cos.2ntC 2!/ :

(24.57)

24.9.6 Fractional Frequency Shift

The fractional frequency shift calculation is very similar
to the calculation of the energy, except that the second-
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order Doppler term contributes with a negative sign.
The result is

�f

f
D�

v2

2c2
�

GME

c2r
C

V0

c2

D�
3GME

2amc2
�

2GME

c2am

em cos Em

1� em cos Em

�
7GMeJ2a2

1

2a3
mc2

�
1�

3

2
sin2 i

�

�
GMEJ2a2

1 sin2 i

a3
mc2

cos.2ntC 2!/ :

(24.58)

The first term, when combined with the reference po-
tential at earth’s geoid gives rise to the factory frequency
offset. The second term gives rise to the eccentricity ef-
fect. The third term can often be neglected. The angle
of inclination for which the third term vanishes exactly
is iD 55ı. For good coverage in the temperate zones,
the orbits of most satellite navigation systems have in-
clinations very close to this value. For GPS the last term
has an amplitude

GMEJ2a2
1 sin2 i

a3
mc2

D 6:95�10�15 : (24.59)

The best clocks in orbit in the GPS have stabilities of
around 5 parts in 1015 at 1 day; this is only slightly
less than the quadrupole effect, suggesting that this de-
terministic effect should be included in the systematic
error budget.

The last periodic term in (24.58) is of a form similar
to that which gives rise to the eccentricity correction,
which is applied by GNSS receivers. Considering only
the last periodic term, the additional time elapsed on the
orbiting clock will be given by

ıtJ2 D

Z
path

dt

"
�

GMEJ2a2
1 sin2 i

a3
mc2

� cos.2ntC 2!/

#
: (24.60)

Upon integrating and dropping the constant of integra-
tion (assuming as usual that such constant time offsets
are lumped with other contributions) gives the periodic
relativistic effect on the elapsed time of the SV clock

due to earth’s quadrupole moment

ıtJ2 D�

s
GME

a3
m

J2a2
1 sin2 i

2c2

� sin.2ntC 2!/ :

(24.61)

The correction which should be applied by the receiver
is the negative of this expression

ıtJ2.correction/D

s
GME

a3
m

J2a2
1 sin2 i

2c2

� sin.2ntC 2!/ :

(24.62)

The phase of this correction is zero when the satellite
passes through earth’s equatorial plane going north-
wards.

24.9.7 Effect of Other Solar System Bodies

One set of effects that has been rediscovered many
times are the redshifts due to other solar system bodies.
The principle of equivalence implies that sufficiently
near the earth, there can be no linear terms in the ef-
fective gravitational potential due to other solar system
bodies, because the earth and its satellites are in free
fall in the fields of all these other bodies. The net effect
locally can only come from tidal potentials, the third
terms in the Taylor expansions of such potentials about
the origin of the local freely falling frame of reference.
Such tidal potentials from the sun, at a distance r from
earth, are of order GM

ˇ

r2=R3, where R is the earth-
sun distance [24.3]. The gravitational frequency shift
of most GNSS satellite clocks from such potentials is
a few parts in 1016. However, this potential causes or-
bit perturbations of GNSS satellites that change both
the radius in the main potential term �GM

ˇ

=r and in
the velocity; thus there are three contributions to the net
frequency shift arising from this tidal potential. The ge-
ometry is complicated because earth’s equatorial plane,
the satellite orbital plane, and the ecliptic are inclined
with respect to each other. Furthermore, there is a sim-
ilar set of contributions from the moon’s tidal potential
that is larger and that can add to or subtract from so-
lar tidal effects in a time-dependent manner. The net
fractional frequency shift on a GALILEO satellite is es-
timated to be about five parts in 1015.
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24.10 Secondary Relativistic Effects

There are several additional significant relativistic ef-
fects which must be considered at the level of accuracy
of a few centimeters (which corresponds to 100 ps of
delay). Many investigators are modeling systematic ef-
fects down to the millimeter level, so these effects,
which are currently not sufficiently large to affect navi-
gation, may have to be considered in the future.

24.10.1 Signal Propagation Delay

The Shapiro signal propagation delay may be easily
derived in the standard way from the metric, (24.25),
which incorporates the choice of coordinate time rate
expressed by the presence of the term in ˚0=c2. Setting
ds2 D 0 and solving for the increment of coordinate
time along the path increment

d� D
q

dr2C r2 d2C r2 sin2  d�2

gives

dtD
1

c

�
1�

2V

c2
C
˚0

c2

�
d� : (24.63)

The time delay is sufficiently small that quadrupole
contributions to the potential (and to ˚0) can be ne-
glected. Integrating along the straight line path a dis-
tance l between the transmitter and receiver gives for
the time delay

�tdelay D
˚0

c2

l

c
C

2GME

c3
ln

�
r1C r2C l

r1C r2 � l

�
; (24.64)

where r1 and r2 are the distances of transmitter and re-
ceiver from earth’s center. The second term is the usual
expression for the Shapiro time delay. It is modified for
GNSS by a term of opposite sign (˚0 is negative), due
to the choice of coordinate time rate, which tends to
cancel the logarithm term. The net effect for a satellite
to earth link is less than 2 cm and for most purposes can
be neglected. One must keep in mind, however, that in
the main term, l=c, l is a coordinate distance and further
small relativistic corrections are required to convert it
to a proper distance.

24.10.2 Effect on Geodetic Distance

At the level of a few millimeters, spatial curvature
effects should be considered. For example, using the
metric (24.26), the proper distance between a point at
radius r1 and another point at radius r2 directly above
the first is approximately

r2Z
r1

dr

�
1C

GME

c2r

�
D r2 � r1

C
GME

c2
ln

�
r2

r1

�
:

(24.65)

Between earth’s surface and the radius of a geosyn-
chronous satellite, the difference between proper dis-
tance and coordinate distance, and between the earth’s
surface and the radius of GPS satellites, is approxi-
mately 8 mm. Effects of this order of magnitude would
enter, for example, in the comparison of laser ranging to
GPS satellites, with numerical calculations of satellite
orbits based on relativistic equations of motion using
coordinate times and coordinate distances.

24.10.3 Phase Wrap-Up

Transmitted signals from GNSS satellites are right cir-
cularly polarized and thus have negative helicity. For
a receiver at a fixed location, the electric field vector ro-
tates counterclockwise, when observed facing into the
arriving signal. Let the angular frequency of the signal
be ! in an inertial frame, and suppose the receiver spins
rapidly with angular frequency ˝, which is parallel to
the propagation direction of the signal. The antenna and
signal electric field vector rotate in opposite directions
and thus the received frequency will be !C˝. In the
literature this is described in terms of an accumulation
of phase called phase wrap-up. This effect has been
experimentally measured with receivers spinning at ro-
tational rates as low as 8 Hz [24.21, 22]. It is similar to
an additional Doppler effect; it does not affect naviga-
tion if four signals are received simultaneously by the
receiver as in (24.1).
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24.11 Conclusions
GNSS is a remarkable laboratory for applications of the
concepts of special and general relativity. It is also valu-
able as an outstanding source of pedagogical examples.
It is particularly important to confirm that the basis for
synchronization is on a firm conceptual foundation.

Plans are being made to put a laser-cooled clock
having stability of 5�10�14=

p

 and accuracy of 1�

1016, on the international space station [24.23]. This
will open up additional possibilities for testing relativity
as well as for making improvements in GNSS.
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25. Quasi-local Black Hole Horizons

Badri Krishnan

This chapter introduces the subject of quasi-local
horizons at a level suitable for graduate students
who have taken a first course on general relativ-
ity. It reviews properties of trapped surfaces and
trapped regions in some simple examples, fol-
lowed by general properties of trapped surfaces
including their stability properties. This is fol-
lowed by a discussion of dynamical-, trapping-,
and isolated-horizons with some illustrative ap-
plications.
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25.1 Overview

The first conception of a black hole was due to Michell
and Laplace in the 18th century. They viewed it as a star
whose gravitational field is so strong that the Newto-
nian escape velocity

p
2GM=R (with M and R being the

mass and radius of the star, respectively) is larger than
the speed of light. The condition on the escape velocity
leads to the inequality R	 2GM=c2, which, remark-
ably, also holds in general relativity. While such a star
would have the property that not even light can escape
from it, this is however a nonrelativistic concept. The
speed of light is not privileged in prerelativistic physics,
and a moving observer would not necessarily see it as
a dark object. A more complete account of this history
is given by Hawking and Ellis [25.1] including reprints
of the original articles.

The history of black holes proper dates back to
just after the discovery of general relativity. The first
nontrivial exact solution to the Einstein equations dis-
covered by Schwarzschild in 1916 and named after him
was, in fact, a black hole. It was however more than four
decades before its properties were fully appreciated.
The Kruskal–Szekeres extension of the Schwarzschild
solution was discovered only in 1960. This was shortly
followed by the discovery of the Kerr solution in 1963
representing spinning black holes. Its global properties
were explained by Carter in 1966. The Kerr–Newman
solution representing charged, spinning black holes was
discovered in 1965. It was in 1964 that the phrase
black hole was first coined by John Wheeler. Dur-
ing the same time, there were seminal developments
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in understanding the general properties of black holes
beyond specific examples. This includes the study of
the global properties of black hole spacetimes, the
definition of event horizons, and crucially for the devel-
opments to be discussed here, the singularity theorems
of Penrose and Hawking and the introduction of trapped
surfaces by Penrose. This was soon followed by the
understanding of black hole thermodynamics by Beken-
stein, Bardeen, Carter, and Hawking in 1973, and the
discovery of Hawking radiation in 1974. The cosmic
censorship hypothesis was formulated by Penrose in
1979. The question of whether this is valid, i. e., if ev-
ery singularity that results from the future evolution
of generic, regular initial conditions is hidden behind
an event horizon, is not settled and is one of the key
unsolved questions in classical general relativity. The
black hole uniqueness theorems which showed that the
Kerr–Newman solutions are the unique globally station-
ary black hole solutions in Einstein–Maxwell theory in
four dimensions was established in the 1980s following
the work of Israel, Carter, and Robinson.

More recently, black holes have been the subject of
intense study in quantum gravity where the calculation
of black hole entropy has been seen as a key mile-
stone for string theory and loop quantum gravity. There
have also been important developments on the classi-
cal side where the long-standing problem of calculating
the gravitational wave signal from the the merger of two
black holes was finally solved numerically in 2005 by
Pretorius. In an astrophysical context, black holes are
believed to be engines for some of the most violent
events in out universe, such as active galactic nuclei.
Astronomers have succeeded in locating a large num-
ber of black hole candidates with masses ranging from
a few to billions of solar masses, and the direct detection
of gravitational waves from binary black hole systems
is expected later this decade.

Most of these seminal developments have relied
on event horizons to characterize the boundary of the
black hole region (the singularity theorems are a no-
table exception). This is completely reasonable when
we are dealing with stationary situations, but can lead
us astray in dynamical situations. As we shall elabo-
rate later, event horizons are global notions and it is
in principle not possible for a mortal observer to lo-
cate them. One possible alternative is to use the notion
of trapped surfaces introduced by Penrose. While not
entirely local since they are closed spacelike surfaces,
these provide a quasi-local alternative which an ob-
server could, in principle, locate in order to detect the
presence of a black hole. Trapped surfaces lead logi-

cally to various kinds of quasi-local horizons including
isolated, dynamical, and trapping horizons. The goal of
this chapter is to motivate and explain the quasi-local
approach to studying black hole horizons, and to re-
view some recent results. Somewhat surprisingly, we
shall see there is still a major gap in our understand-
ing of classical black holes in dynamical spacetimes.
If we accept black holes as bonafide astrophysical ob-
jects, we still do not have a satisfactory notion of what
the surface of a black hole is. Event horizons are not
satisfactory because of their global properties, but there
is as yet no established quasi-local alternative.

The style of this chapter will typically be to start in-
formally with simple examples and to use them as guid-
ance for developing general concepts and definitions. In
Sect. 25.2, we shall start with the simplest black hole,
i. e., the spherically symmetric Schwarzschild space-
time, and understand the properties of its black hole
region. This naturally motivates the fundamental no-
tions of event horizons and trapped surfaces, and to the
boundary of the trapped region. As we shall see, the
different reasonable definitions of the black hole hori-
zon agree in Schwarzschild. This will not be the case
in more general situations. Perhaps the simplest exam-
ple is the imploding Vaidya spacetime which shall be
our second example in Sect. 25.2.2. We shall see that
at least in this simple spherically symmetric example,
the location of the trapped surfaces can be determined.
These two examples are then followed by general def-
initions of event horizons, and trapped surfaces in
Sect. 25.3 which formalizes many notions introduced
in Sect. 25.2. Some properties of trapped surfaces un-
der deformations and time evolution are then discussed
in Sect. 25.3.3, and this leads naturally to the notions
of marginally trapped tubes, and trapping and dynami-
cal horizons. We then restrict our attention to isolated
horizons which describes the equilibrium case, when
no matter or radiation is falling into the black hole
(but the rest of spacetime is allowed to be dynami-
cal). This is now well understood and we review the
general formalism in Sect. 25.4 with the Kerr black
hole as the prototypical example. In particular, we dis-
cuss two applications: black hole thermodynamics and
the spacetime in the neighborhood of an isolated black
hole. Section 25.5 reviews some results and applica-
tions for dynamical horizons, and finally Sect. 25.6
provides a summary and some open issues.

The discussion of this chapter will be mostly self-
contained; though digressions into the relevant mathe-
matical concepts will be necessarily brief. Useful refer-
ences for black holes and general relativity are [25.2, 3],
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and for more mathematically inclined readers [25.4]
is recommended as a useful introduction to the rele-
vant concepts in differential geometry. The discussion
is meant to be accessible to physics graduate students
who have taken a first course in general relativity (cov-
ering, say, the first part of the textbook by Wald [25.3]).
In the same spirit, the list of references is not meant to
be exhaustive in any sense, and is mostly biased toward
reviews and pedagogical material. The selection of top-
ics is not meant to be exhaustive; this contribution is
not to be viewed as a broad review article. It is rather
a combination of pedagogically useful examples, and
a brief description of some recent results. This material
will hopefully what the reader’s appetite and motivate
him/her to delve further into the subject.

Some words on notation are in order. A space-
time is a smooth four-dimensional manifold M with
a Lorentzian metric gab with signature .�CCC/. We
shall use a combination of index-free notation and
Penrose’s abstract index notation for tensors [25.5];
lower-case Latin letters a; b; c; : : : will denote space-
time indices. Symmetrization of indices will be de-
noted by round brackets, e.g., X.ab/ WD .XabCXba/=2,

and antisymmetrization by square brackets: XŒab
 WD

.Xab�Xba/=2. The derivative-operator compatible with
gab will be denoted by ra, and the Riemann ten-
sor Rabcd will be defined by 2rŒarb
Xc D Rabc

dXd for
an arbitrary 1-form Xa. The Ricci tensor and scalar
are, respectively, Rab D Racb

c and RD gabRab. The co-
ordinate derivative operator will be denoted by @.
The exterior derivative will be either denoted by in-
dices, such as rŒaXb
, or in index-free notation as
dX. The Lie derivative of an arbitrary tensor field
T along a vector field X will be denoted by LXT .
Where no confusion is likely to arise, we shall often
not explicitly include the indices in geometric quan-
tities. Unless otherwise mentioned, we shall work in
geometrical units with GD 1 and cD 1. We shall
often deal with submanifolds of M; a submanifold
of unit codimension will be called a hyper-surface
while lower dimensional manifolds (typically these will
be 2-spheres topologically) will be called surfaces.
All submanifolds shall be assumed to be sufficiently
smooth. Unless mentioned otherwise, we shall be work-
ing with standard general relativity in four spacetime
dimensions.

25.2 Simple Examples

25.2.1 The Trapped Region
in Schwarzschild Spacetime

We shall start by studying the gravitational field in
the vicinity of a time-independent massive spherically
symmetric body. In this section, we recall some basic
properties of the Schwarzschild solution.

The Schwarzschild metric is a static, spherically
symmetric solution of the vacuum Einstein equations
Rab D 0. It is usually presented as

ds2 D�

�
1�

2M

r

�
dt2C

�
1�

2M

r

�
�1

dr2

C r2.d2C sin2  d�2/ :

(25.1)

Here r is a radial coordinate such that the area of
spheres at fixed r and t is 4�r2; these spheres can
be obtained invariantly by applying rotational isome-
tries to a given initial point in the manifold. Each of
these spheres is isometric to the standard round spheres
in Euclidean space, and .; �/ are the usual polar co-
ordinates. The time coordinate is t, and the metric is

explicitly time independent in these coordinates. The
parameter M is the mass, and in nongeometrical units,
we would have the replacement M! GM=c2. This
metric turns out to be an excellent approximation to,
say, the gravitational field in our solar system with the
sun treated as a point mass and with �.r/D GM=c2r
being its Newtonian gravitational potential. The quan-
tity Rs WD 2GM=c2 is known as the Schwarzschild ra-
dius, and for the sun Rs � 3 km (which agrees with the
Michell–Laplace idea mentioned at the very beginning
of this chapter).

The metric as written above is regular and non-
degenerate for 2M < r <1 and �1< t <1. The
singularity at r D 2M is not a true physical singular-
ity [25.3] and can be removed by the transformation
.t; r/! .v; r/ where

dvD dtC

�
1�

2M

r

�
dr : (25.2)

In these coordinates (the ingoing Eddington–
Finkelstein coordinates) the metric becomes

ds2 D�

�
1�

2M

r

�
dv2C2dvdrCr2 d˝2 ; (25.3)
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where d˝2 WD d2Csin2  d�2. The metric is now reg-
ular for r > 0 and �1 < v<1. We could extend the
solution further by going to double null coordinates, but
this shall suffice for now.

Consider now the vector fields

`D
@

@v
C

1

2

�
1�

2M

r

�
@

@r
; nD�

@

@r
: (25.4)

It is easy to check that these (future directed) vector
fields are both null, i. e., ` �`D n �nD 0, and ` �nD�1.
By convention, we take ` to be outward pointing and n
to be inward pointing; we have designated r!1 to be
outward.

Let us pause to recall the notions of expansion and
shear of a vector field. For a timelike vector field � , the
set of vectors orthogonal to � form a three-dimensional
plane at each point. If A is an infinitesimal area element
in this plane and 	 the affine parameter along � , then
the expansion of � is defined as

�.�/ D
1

A

dA

d	
: (25.5)

Since a null vector field is orthogonal to itself, it is easy
to show that any vector field V satisfying V � � D 0 can
be written as a linear combination V D ˛� Cˇe.1/C
�e.2/ where e.1/ and e.2/ are mutually orthogonal unit
spacelike vectors orthogonal to � , and ˛; ˇ; � are real
numbers. The expansion of � is then defined as in (25.5)
above except that the relevant area element A is in the
two-dimensional plane spanned by e.1/ and e.2/. An al-
ternate expression for the expansion which is usually
more useful is

�.�/ D qabra�b ; (25.6)

where qab is the (inverse of) the Riemannian metric in
the .e.1/; e.2// plane. The trace of ra�b after projection

Fig. 25.1 From left to right, an illustration of expansion, shear, and
twist, respectively, in the .e.1/; e.2// plane transverse to �a, as illus-
trated by the effect on circles in this plane. The expansion �.�/ is
an isotropic expansion, the shear is an expansion, and contraction
in orthogonal directions with the area being preserved, and the twist
is a rotation

is the expansion. The symmetric trace-free part and the
antisymmetric parts give the shear �ab and twist !ab,
respectively

�ab D
�
r.a�b/

�
>

� 1
2�.�/qab ; !ab D

�
rŒa�b


�
>

;

(25.7)

where the symbol .� � � /> indicates a projection in the
.e.1/; e.2// plane. The operators �ab and !ab are re-
sponsible for transforming vectors in the .e.1/; e.2//
plane. Consider now a set of neighboring null geodesics
generated by �a. Let �a be a connecting vector, i. e.,
it is transverse to �a and is Lie dragged along �a:
L��

a D Œ�; ��a D �brb�
a� �brb�

a D 0. We get the ef-
fect of the expansion, shear, and twist as operators in
the .e.1/; e.2// plane leading to the evolution of �a in
time

P�>b WD .�
ara�b/

> D �a .ra�b/
>

D
�
�abC!abC

1
2�.�/qab

�
�a : (25.8)

The effect of expansion, shear, and twist on �a is il-
lustrated in Fig. 25.1. A particularly important result is
the Raychaudhuri equation which gives the time deriva-
tive of the expansion for affinely parameterized null
geodesics

d�.�/
d	

D� 1
2�

2
.�/ � �ab�

abC!ab!
ab�Tab�

a�b :

(25.9)

This is a particular component of the Einstein field
equations and a derivation and applications can be
found in, e.g., [25.1, 3]. We shall have occasion to use
it at various points during the course of this chapter.

Returning to the vector fields `a and na defined in
(25.4), we see that they are manifestly orthogonal to the
constant .v; r/ spheres. Thus their expansions must in-
volve area elements on these spheres, and it is in fact
easy to calculate their expansions

�.`/.r/D
r� 2M

r2
; �.n/.r/D�

2

r
: (25.10)

For spheres outside the black hole region, i. e., spheres
with r > 2M, we see that �.`/ > 0 and �.n/ < 0. This
is how a round sphere in flat space behaves. However,
for spheres in the black hole region, we get both expan-
sions to be negative. Such spheres are known as trapped
surfaces and play a fundamental role in black hole the-
ory and, in particular, in the singularity theorems. The
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Fig. 25.2 Penrose–Carter conformal diagram for the ex-
tended Schwarzschild spacetime. See the text for details

spheres on the rD 2M hyper-surface have �.`/ D 0,
�.n/ < 0 and are called marginally trapped surfaces.
Thus, we see that the r D 2M hyper surface separates
the region where the spherically symmetric trapped sur-
faces live and are a signature of a black hole spacetime.
It is worth noting that the presence of trapped surfaces
is not necessarily a signature of strong field gravity. The
Riemann tensor (and thus the tidal force) is proportional
to M=r3. Thus at rD 2M, it is / 1=M2, and large black
holes have a correspondingly weaker curvature at their
Schwarzschild radius. In this sense, trapped surfaces are
a nonperturbative phenomenon in general relativity. An
observer falling into a sufficiently large black will not
notice anything out of the ordinary.

The role of the rD 2M hyper-surface as the bound-
ary of the region containing trapped surfaces (known
as the trapped region) is typically not emphasized in
standard textbooks on the subject. What is emphasized
is instead the fact that starting from a point with r <
2M, there exist no timelike or null curves which can
cross the rD 2M hyper-surface. This is easiest to vi-
sualize in a Penrose–Carter conformal diagram shown
in Fig. 25.2. This is a convenient way of visualizing
the r–t part of the Schwarzschild metric. Just as we
had extended the Schwarzschild metric in (25.1) across
rD 2M by using ingoing null coordinates, we can ex-
tend the metric of (25.3) further by going to double null
coordinates .u; v/ where

duD dt�

�
1�

2M

r

�
dr ;

dvD dtC

�
1�

2M

r

�
dr : (25.11)

Figure 25.2 is then obtained by performing a further
rescaling of coordinates and a conformal transforma-
tion which brings infinity to a finite distance. Details

can be found in [25.3, 6] or in other standard textbooks
on the subject. The original Schwarzschild metric is re-
gion I in this diagram, while (25.3) corresponds to I and
II. Regions III and IV are mirror images of I and II, re-
spectively. In this figure, null curves are straight lines
at 45ı, i0 is spatial infinity, iC is future timelike infin-
ity and i� is past timelike infinity. Future directed null
curves in this figure end up either at the future singu-
larity at rD 0 (marked with a dashed line) or at future
null infinity labeled as IC (I� is past null infinity). It
is also worth pointing out that if region I is defined to
be the outside world so that `a is the outward point-
ing null normal (this is merely a matter of convention),
then �.`/ < 0 in regions II and III. However, region III
has �.n/ > 0 so that only region II has both expansions
negative. Similarly, only region IV has both expansions
positive.

It is then clear that no point in region II can be con-
nected with region I (or III) by a causal curve and thus
justifies the term black hole for region II. The bound-
ary of this region occurs at rD 2M and is called an
event horizon. Note that the boundary of region IV also
occurs at rD 2M but region IV is a time-reversed ver-
sion of II; it has the property that no future directed
causal curve can stay within it. Thus, region IV is called
a white hole. In the rest of this chapter, we shall only
consider the portion of the r D 2M hyper-surface which
bounds the black hole, i. e., region II. In a physical grav-
itational collapse situation, the white hole (and region
III) does not actually exist and is covered up by the mat-
ter fields which constitute the star; this will soon be seen
explicitly when we study the Vaidya metric.

We thus have two different routes for describing
a black hole: trapped surfaces versus event horizons
(though one might suspect a priori that the two might be
intimately related). Trapped surfaces seem to be more
local than event horizons. To know that a particular null
geodesic will not leave a particular region of spacetime,
one might need to know the properties of the spacetime
far away from the starting point of the geodesic. On the
other hand, for trapped surfaces, in the Schwarzschild
case we have just needed the computations of the ex-
pansions in (25.10) at a fixed value of .v; r/. However,
one should not forget that the computations of the ex-
pansions are not at just a single spacetime point, but are
instead to be performed at all points over a sphere. This
issue is irrelevant for spherically symmetric trapped
surfaces in spherically symmetric spacetimes, but it is
an important point that one cannot identify a trapped
surface by examining only a part of it. For this reason,
the trapped surface condition is said to be quasi-local.
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Fig. 25.3 A nonspherically symmetric spatial hyper-
surface in the Schwarzschild spacetime depicted as a set
of curves

In any case, for Schwarzschild, the two descriptions of
the black hole region agree: the rD 2M hyper-surface
is both the event horizon and also the boundary of the
region of spacetime which contains trapped surfaces.

Visualizing nonspherically symmetric trapped sur-
faces is harder, even in a spacetime as simple as
Schwarzschild. As in many numerical investigations
in general relativity, let us try to locate such surfaces
on three-dimensional spatial hyper-surfaces. The equa-
tion �.`/ D 0 turns into a minimization problem, and
to a second-order elliptic equation in three-dimensional
space (we shall have more to say on this matter later).
The spatial hyper-surfaces depicted in Fig. 25.2 were
all spherically symmetric, and thus a single curve in the
Penrose diagram suffices for them. However, if we wish
to depict nonspherically symmetric hyper-surfaces, we
will need a collection of such curves, say one for each
value of .; �/. An example is shown in Fig. 25.3.
In this example, the spatial hyper-surface starts from
iC on region III (but this detail is not important for
our purposes and we could also have started from i0

on the left edge of region III). What is important is
that the spatial hyper-surfaces, or alternatively all the
curves shown in Fig. 25.3, intersect the event horizon.
As we shall see later, due to the somewhat nonintu-
itive properties of such null surfaces, the intersection
of such a spatial hyper-surface with the r D 2M hyper-
surface is still a marginally trapped surface though now
a nonsymmetric one. More specifically, it turns out that
`a is covariantly constant on the rD 2M surface so
that ra`b, projected onto the rD 2M surface, vanishes
identically (see the discussion around (25.56) and in
Sect. 25.4.4). This means that all closed cross-sections
of the rD 2M surface are marginally trapped.

There would of course generally be nonspherically
symmetric trapped surfaces on these spatial hyper-

surfaces lying inside the marginally trapped one. Each
spherically symmetric trapped and marginally trapped
surface can be found by such a procedure. This con-
struction clearly shows that there are many more non-
symmetric trapped surfaces than symmetric ones; each
spherically symmetric hyper-surface can be deformed
in an infinite number of ways and still contain trapped
and marginally trapped surfaces.

We finally note that it is possible to come up with
examples where part of the spatial hyper-surface ex-
tends arbitrarily close to the future singularity, but part
of it is still outside the black hole region so that its inter-
section with the event horizon is not a complete sphere.
There would then exist no marginally trapped surfaces
on such a spatial hyper-surface [25.7].

25.2.2 The Vaidya Spacetime

As we have just seen, for a Schwarzschild black hole,
all the natural definitions of the surface of a black hole
agree. Thus, the rD 2M surface is both the boundary of
the trapped region and also the event horizon. This has
led to a widespread belief that the notion of a black hole
and its surface is unambiguous. Matters are however not
so simple in dynamical situations. Let us now look at
what is perhaps the simplest example of a dynamical
black hole, namely the spherically symmetric Vaidya
spacetime [25.8].

The Vaidya solution is obtained by starting with the
Schwarzschild metric in ingoing Eddington–Finkelstein
coordinates of (25.3), and replacing the constant M by
a nondecreasing function M.v/

ds2 D�

�
1�

2M.v/

r

�
dv2C 2dvdrC r2 d˝2 :

(25.12)

The stress energy tensor for this metric is

Tab D
PM.v/

4�r2
ravrbv ; where PM.v/ WD

dM.v/

dv
:

(25.13)

This represents the collapse of null dust to form a black
hole and if PM.v/� 0, then Tab satisfies the domi-
nant energy condition. If we choose a mass function
which is nonzero only for v> v0 and constant after
vD v1, then we will have (portions of) Minkowski and
Schwarzschild spacetimes for v< v0 and v> v1, respec-
tively. The Penrose–Carter diagram for this spacetime
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Fig. 25.4 Penrose–Carter conformal diagram for the
Vaidya spacetime. The region shaded in brown is flat and
the region in light brown is isomorphic to a portion of
Schwarzschild. The event horizon is labeled EH and is
seen to be distinct from the rD 2M.v/ surface. The two
agree only in the final Schwarzschild portion

is shown in Fig. 25.4. A suitable set of null normals or-
thogonal to the constant .r; v/ spheres are
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; nD�

@

@r
;

(25.14)

and their expansions are, respectively, found to be

�.`/.v; r/D
r� 2M.v/

r2
; �.n/.v; r/D�

2

r
:

(25.15)

Thus, in this case, there are no spherically symmetric
trapped surfaces outside the rD 2M.v/ surfaces, and as
in Schwarzschild, the spheres with rD 2M.v/ and fixed
v are marginally trapped surfaces.

The event horizon is also not difficult to locate.
Consider the outgoing null geodesics generated by the
vector field ` above. Some of these geodesics will
reach infinity, while others will terminate at the sin-
gularity. The event horizon is the boundary between
the two cases. If we assume that the mass function
reaches a finite final steady-state value M

1

, then the

final black hole is a portion of Schwarzschild, and
thus the condition rD 2M

1

defines the final state of
the event horizon. Thus, we want to find the outgo-
ing null geodesic generated by `a defined in (25.14)
for which r! 2M

1

when v!1. Subject to this fi-
nal state boundary condition, we need to solve

dr

dv
D

1

2

�
1�

2M.v/

r

�
: (25.16)

This is fairly easy to solve numerically for a generic
mass function.

Let us now note a few properties of this event hori-
zon. A typical case is shown in Fig. 25.4. First note that
the event horizon extends to the flat region. A mortal
observer in the flat region who has no way of knowing
that the gravitational collapse will occur at some time
in the future, might actually be living near an event
horizon. The existence of the event horizon has really
no consequences for any physical experiment or ob-
servations that the observer can conduct locally, and
contrary to popular belief, the observer can cross the
event horizon without feeling anything out of the ordi-
nary. Furthermore, even an observer in the intermediate
region v0 < v< v1, who can witness gravitational col-
lapse occurring cannot know the true location of the
event horizon. To illustrate this, consider Fig. 25.5.
Here the mass function is nonzero for v< v0 as before,
however, there are two phases. The mass function first
reaches a constant value at v1 but restarts again at a later
time v2. The observer with v< v2 cannot know the value
of M
1

and can thus never know the true location of the
event horizon.

Examples of Nonsymmetric Trapped Surfaces. In
contrast to the event horizon, the rD 2M.v/ surface
seems to have the right properties. It bounds the region
which has spherically symmetric trapped surfaces, it
does not extend into the flat region, it grows only when
PM > 0, it can be located quasi-locally, i. e., by checking

the conditions for a trapped surface on a sphere, and it
does not care about what happens to M.v/ at late times.
However, nonspherically symmetric trapped surfaces
are not so well behaved. While there are no marginally
trapped surfaces which lie completely within the flat re-
gion, we shall see that portions of them can extend into
the flat region.

One can try to find marginally trapped surfaces nu-
merically. The standard procedure is to start with a par-
ticular spatial hyper-surface ˙ , and to find a surface
S in ˙ for which �.`/ D 0. Let hab be the Rieman-
nian metric on ˙ induced by gab. If the unit normal
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Fig. 25.5 Another Penrose–Carter conformal diagram for
the Vaidya spacetime. The region shaded in brown is again
the flat region. The mass function here has two phases
where it is increasing. An observer with v< v2 could in
principle locate the solid line marked EH old but will not
know that the mass function will increase again and that
the true event horizon is in fact given by the surface (indi-
cated by a dotted line in this figure) marked EH

on ˙ is bta, the unit spacelike normal to S on ˙ isbra with `a D .btaCbra/=
p

2 (see Fig. 25.6). With this
choice, noting that the metric on S is qab D hab�brabrb D

gabCbtabtb�brabrb, the condition�.`/ D 0 can be written
as

p
2�.`/ D

p
2qabra`b D DabraCKabbrabrb�K D 0 :

(25.17)

r a

na =

(Σ , hab , Kab)

1 (t a – r a)
2

t a l a =

S

1 (r a + t a)
2

Fig. 25.6 A closed marginally outer trapped surface on a spatial
Cauchy surface ˙ with intrinsic metric hab and extrinsic curvature
Kab. The unit timelike normal to˙ isbta and the outward unit spatial
normal to S isbra. A particular choice of the out- and in-going null
normals are 1

p

2
.bta˙bra/

Here Kab D hc
ahd

brcbtd is the extrinsic curvature, K is
its trace, and D is the derivative operator on ˙ (we
shall explain these concepts in more detail later in
Sect. 25.3.2). Taking coordinates .r; ; �/ on S and
assuming that the surface is given by the equation
r D f .; �/, the above equation becomes a nonlinear
second-order partial differential equation for f which
can be solved numerically. Typical methods assume that
the surface is star-shaped, i. e., every ray from the ori-
gin r D 0 intersects the surface exactly once; for a more
complete description of this and other methods, we re-
fer to [25.9].

We then choose a particular mass function and a ˙
defined through a particular nonaxisymmetric time co-
ordinate and attempt to locate surfaces with �.`/ D 0.
Let us review an illustrative result from a study reported
in [25.10] (see also [25.11] for another such study). The
particular mass function chosen corresponds to a short
pulse of radiation

M.v/D

8<
:

0 for v	 0 ;
M0v2

v2CW2
for v> 0 :

(25.18)

The parameter M0 is the final mass and W determines
the time-scale of the radiation pulse. We choose M0 D 1
and W D 0:1. The nonspherically symmetric time coor-
dinate is taken to be

NtD v� r.1C ˛ cos / : (25.19)

The constant ˛ determines the degree of asymmetry,
and we choose ˛ D 10=11. As in Fig. 25.3, spatial
hyper-surfaces of constant Nt correspond to different sets
of curves (one for each  ) in the Penrose–Carter dia-
gram. Figure 25.7 shows the marginal surface found on
the NtD�0:3 spatial hyper-surface. It shows the section
in the x–z plane. The blue dotted line is the marginal
surface, the green dashed line encloses the intersection
of the flat region with the hyper-surface, and the solid
red curve shows the intersection with the rD 2M.v/
surface (which is not a marginal surface). Thus, we
see that the marginal surface extends in the flat region,
though in this example it is planar with �.n/ D 0 (so it
is not, strictly speaking, a marginally trapped surface).
The marginal surface is seen to be only partially inside
the rD 2M.v/ surface.

The Trapped Region. Having looked at particular ex-
amples of trapped surfaces in a Vaidya spacetime, let
us consider the trapped region, i. e., the portion of the



Quasi-local Black Hole Horizons 25.2 Simple Examples 535
Part

D
|25.2

–1–1.5 2–0.5 0
x

z

0.5 1 1.5–2

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2

Horizon
Flat region
MS

Fig. 25.7 A nonsymmetric closed surface in a particular
Vaidya spacetime with �.`/ D 0 and �.n/ 	 0. The solid
red curve is the intersection of the spatial hyper-surface
with the r D 2M.v/ surface, the green dotted line is the
boundary of the flat region, and the blue dashed line is the
marginal surface located on this spatial hyper-surface

manifold which contains trapped surfaces. The trapped
region for the Vaidya spacetime can in fact be stud-
ied analytically. The starting point for this goes back
to a conjecture by Eardley in 1998 [25.12]: The outer
boundary of the region containing outer trapped sur-
faces is the event horizon (an outer trapped surface has
�.`/ < 0 and no restriction on�.n/). One the one hand,
it is known that trapped surfaces cannot cross the event
horizon. On the other hand, in dynamical situations like
Vaidya, the event horizon is growing in area and its
cross-sections are not marginally trapped. Thus, while
the outer trapped surface might get arbitrarily close to
the event horizon, the limiting process is not trivial. The
Vaidya spacetime provides a relatively simple setting to
study this phenomenon.

Recent works in this direction have been [25.10, 13–
15]). For any point p in the flat portion of the black
hole region of the Vaidya spacetime, Ben-Dov showed
[25.13] that there exists an outer trapped surface S
which contains p. This works even when p is arbitrar-
ily close to the event horizon. In this case, most of the
trapped surface actually lies inside the rD 2M.v/ sur-
face in the far future where v is large. There is a narrow
tendril which is almost null for a large portion, and yet
stretches from the far future right down to the flat por-
tion within the event horizon. This is precisely the kind
of trapped surface whose existence was conjectured
by Eardley in [25.12]. It is not clear that such highly
nonsymmetric trapped surfaces would be present in typ-

ical spatial hyper-surfaces used in numerical relativity
simulations, or in fact, whether the standard numeri-
cal methods currently employed would be able to locate
such a surface even if it were present.

It is also possible to locate the boundary of closed
future trapped surfaces (i. e., surfaces with �.`/ < 0
and �.n/ < 0) in Vaidya spacetimes. The first result
was obtained by Ben-Dov [25.13], but the strongest
results known at present are due to Bengtsson and Sen-
ovilla [25.14, 15]. Bengtsson and Senovilla have proved
a number of results regarding the properties of trapped
surfaces in spherically symmetric spacetimes, but here
we shall only illustrate them by describing the past
spacelike barrier for trapped surfaces in the Vaidya case.
To this end, we need the following result [25.15, Theo-
rem 4.1]: In a regionR of a spacetime, let �a be a future
pointing hyper-surface orthogonal vector field so that
�a D�FraNt for some F > 0 and some Nt which increases
to the future. If S is a future trapped surface which in-
tersects R (but is not necessarily contained within R),
then S cannot contain a local minimum of Nt at points
with qabL�gab � 0.

In a region R with a time coordinate such as Nt, the
significance of this results is that once a future trapped
surface enters such a region with initially decreasing
Nt, (i. e., if the surface is initially bending downward in
time), then Nt must continue decreasing. If R is bounded
in the past by the event horizon, then clearly this result
forces S to continue till it reaches the event horizon.
Since S cannot cross the event horizon (or even touch
it), it becomes clear that the region R cannot contain
even portions of future trapped surfaces which are bend-
ing downward in time. In Vaidya, an appropriate � is the
so-called Kodama vector

�a D

�
@

@v

�a

H) �a Drar�

�
1�

2M.v/

r

�
rav :

(25.20)

Since �a�
a D�.1�2M.v/=r/ it is clear that �a is future

directed to the past of the r D 2M.v/ surface. Further-
more, it is easy to check that

L�gab D 2 PM.v/`a`b : (25.21)

Thus, qabL�gab � 0 if PM � 0. The surfaces of constant
Nt, denoted by˙Nt, are spherically symmetric and defined
by

dv

dr
D

�
1�

2M.v/

r

�
�1

: (25.22)
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Fig.25.8a,b Surfaces of constant Kodama time for a Vaidya spacetime with � WD limv!0 M.v/=v > 1=8. In this case ḃ
lies partially in the flat region. A future trapped surface which extends in the flat region is depicted as S. It required to
enter the r > 2M.v/ region with increasing Nt. Panel (b) is similar to panel (a), but in this case ḃ does not extend into
the flat region. This happens for �	 8. A similar picture also works when M.v/ asymptotes to a finite value for v!1
(after [25.15, Fig. 15])

If M.v/ is constant for v> v1, then there is a value of
NtDbt such that ˙Nt coincides with the event horizon for
v> v1. Alternatively, if M.v/ asymptotes to a constant
value, then there is a value of NtDbt such that ˙Nt also
asymptotes to the event horizon. In both these cases, let
us denote these ˙Nt as ḃ . In the flat region, ˙Nt are hor-
izontal lines in the Penrose diagrams. The behavior ofḃ depends sensitively on M.v/. In particular, it depends
on the quantity� WD limv!0 M.v/=v. When � > 1=8, it
is shown in [25.15] that ḃ will enter the flat region, but
in other cases it may not. These cases are depicted in
Fig. 25.8 along with ˙Nt for some other values of Nt. Any
trapped surface which extends outside the rD 2M.v/
surface must do so with increasing Nt and it must never
bend downward in time. If it does not do so, then the
above result shows that it must continue downward till it
hits the event horizon where it must cease to be smooth
if the condition �.`/ < 0 is to be maintained (the event
horizon is expanding and thus has positive expansion).
It cannot terminate smoothly because this would imply
the existence of a point on the trapped surface where Nt
is a local minimum.

A little thought then shows that ḃ must then be
a past barrier which future trapped surfaces cannot

cross. Furthermore, it is also clear that there cannot
be any compact future trapped surface contained en-
tirely in the region to the past of ḃ , and bounded
between ḃ and the event horizon; if there were, again
there would have to be a point on the trapped surface
where Nt is a local minimum. The boundary of the re-
gion containing trapped surfaces has thus been located.
This boundary ḃ is of course spherically symmetric
(as one can prove on general grounds). However, it is
not foliated by marginally trapped surfaces. Thus, as
with the limit of outer trapped surfaces to the event
horizon, it is clear that the limit of marginally trapped
surfaces to this boundary cannot be smooth. ḃ is not
a quasi-local object; it is as nonlocal as the horizon.
Moreover, as far as we know, it does not have any
features which might distinguish it as a black hole
horizon.

Lessons from Spherical Symmetry. After this exten-
sive discussion of the Schwarzschild and the Vaidya
examples, let us summarize the situation in spheri-
cal symmetry. We have seen the complications that
can arise from having to consider nonspherically sym-
metric trapped surfaces in dynamical situations. In
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Schwarzschild there are no major surprises and any
trapped surface can extend right up to the event hori-
zon. This is not so in Vaidya; the obvious generalization
of the r D 2M surface from Schwarzschild does not co-
incide with the event horizon. We need nonspherically
symmetric trapped surfaces to fill the gap between the
rD 2M.v/ surface and the event horizon. It however
turns out to be possible to study the trapped region
in detail and to obtain a fairly complete understand-
ing of where trapped surfaces can (and cannot) occur.
There turns out to be a difference between future-
and outer-trapped surfaces (i. e., whether or not we
consider the �.n/ < 0 condition). Outer trapped sur-
faces can extend all the way to the event horizon, but
understanding how such surfaces limit to the event
horizon is subtle; there is a separate past barrier for fu-
ture trapped surfaces which is distinct from the event
horizon.

What does this study tell us about nonspherically
symmetric dynamical spacetimes? We note that the es-
sential complication here, as noted by Eardley [25.12],
is not that the black hole is nonspinning etc. Rather, the
problem is to consider trapped surfaces which do not
share the symmetry of the spacetime and to understand
what happens to them as they are deformed toward the
event horizon which will generally have positive expan-
sion in dynamical situations. We might still expect outer
trapped surfaces to extend to the event horizon in a simi-
lar fashion, but there is, in general, probably no separate
barrier for future trapped surfaces.

The next step in this chapter will be to study how
marginally trapped surfaces evolve in time and un-
der general deformations, and this leads to the subject
of quasi-local horizons. However, before doing so, we
shall first formalize many of the ideas introduced in this
section with some general definitions and results.

25.3 General Definitions and Results: Trapped Surfaces, Stability
and Quasi-local Horizons

25.3.1 Event Horizons

The surface of a black hole is traditionally defined in
terms of an event horizon which is the boundary of the
region from where massive or mass-less particles can
reach the outside world. The formal definition is how-
ever more involved, with the main difficulty being in
how the outside world is to be defined. It is worthwhile
to briefly sketch the various technical ingredients that
go into the precise formal definition, if only to highlight
once again the truly global nature of event horizons; see,
e.g., [25.1, 3] for details.

This requires one to attach future and past null in-
finity I˙ as boundaries to the physical spacetime and
to consider the causal past of IC. This causal past is the
region of spacetime R from which causal signals can
escape to infinity and represents the outside world. The
future boundary ofR is the event horizon. In Fig. 25.2,
the region R is the union of regions I, II, and III, the
black hole is of course region II and the portion of the
rD 2M surface which divides region II from I and III
is the event horizon. A little thought shows that in or-
der for this notion to capture the physical idea we have
in mind, it is necessary to ensure that IC is complete
in an appropriate sense. For example, if we were to
look at the causal past of just a portion of IC even for

Minkowski space, we would erroneously conclude the
presence of a black hole in Minkowski space [25.16].
Similarly for Schwarzschild, we could end up with the
wrong location of the event horizon if we looked at only
a portion of IC (see again Fig. 25.2).

Since we need to construct a complete IC and its
global past in this definition, it is clear that the event
horizon is a very global and teleological notion. There
may in fact be an event horizon forming and growing
in the room you are reading this chapter right now, be-
cause of possible events which might occur a billion
years from now. An example is an observer in the flat
region of the Vaidya spacetime in Fig. 25.4. This dis-
cussion also illustrates that formally, the notion of an
event horizon cannot be used in a cosmological space-
time such as the one we inhabit, since it fails to be
asymptotically flat.

In practice, the principle of calculating event hori-
zons in numerical simulations is to start from an edu-
cated guess at late times, and to integrate a null geodesic
or a null surface backward in time [25.9, 17]. The ba-
sis for these methods is the fact that when we integrate
forward in time, a small initial error will cause the null
geodesic or surface to diverge exponentially from the
true solution and end up either in the singularity or at
infinity. This implies that by integrating backward from
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even a reasonable guess at late times one will converge
to the true solution exponentially.

25.3.2 Trapped Surfaces

Let us begin with the standard definitions of the first and
second fundamental form of a smooth nondegenerate
submanifold eM embedded in a spacetime .M;gab/; our
discussion mostly follows [25.4]. The first fundamental
form is just the induced metric metric hab on eM so that
for any vectors Xa and Yb tangent to eM

habXaYb WD gabXaYb : (25.23)

If hab is nondegenerate, we can decompose the tangent
space TpM at any point p 2 eM as

TpM D Tp eM˚T?p eM ; TpeM\ T?p eMD f0g ;
(25.24)

where Tp eM is the tangent space to eM and the subspace
T?p eM is normal to it. Thus, an arbitrary nonvanish-
ing vector field � defined at points of eM can be split
uniquely into a tangential and normal part

� D �>C �? where �? �X D 0 ; (25.25)

for any vector X tangent to eM. Then, for any X; Y tan-
gent to eM we have

rXY D .rXY/>C .rXY/? : (25.26)

The intrinsic covariant derivative on eM is then defined
as DXY WD .rXY/>. The second fundamental tensor ˘
is an operator which takes two vectors tangent to eM
and produces a vector in the normal-subspace: TpeM�
Tp eM! T?p eM

˘.X; Y/ WD .rXY/? : (25.27)

It is easy to show that D defined this way is a legitimate
derivative operator, and that the second fundamental
form is symmetric:˘.X; Y/D˘.Y;X/. The symmetry
of ˘ is especially easy

˘.X; Y/�˘.Y;X/D .rXY �rY X/? D ŒX; Y�?

D 0 :

(25.28)

In the last step we have used the Frobenius theorem
which says that for a smooth submanifold eM, if X; Y
are tangent to eM, then so is their commutator.

When eM is a hyper-surface, i. e., when it has codi-
mension 1, then Np is one-dimensional and spanned by
the unit-normal Na. Thus we can define the extrinsic
curvature Kab via

˘.X;Y/c WD �.KabXaYb/Nc : (25.29)

The symmetry of ˘ implies that Kab D Kba. The most
important case for us is however when the submanifold
S is two-dimensional and spacelike; the first funda-
mental form, denoted by qab here, is a Riemannian
metric on S. We can again make the decomposition
TpMD TpS˚ T?p S. The normal space T?p S is a 1C 1-
dimensional Minkowski space. It will be convenient to
choose two null vectors ` and n to span T?p S. We are of
course free to rescale ` and n independently by scalars,
but we choose to use a normalization ` � nD�1 which
cuts down the rescaling freedom to

`! A` ; n! A�1n : (25.30)

We will always choose .`; n/ to be future directed and
` and n as outward and inward pointing, respectively.
The mean curvature vector Ka is the trace of the second
fundamental form

Kc WD qab˘ab
c D��.n/`

c ��.`/n
c : (25.31)

The coefficients appearing here turn out to be precisely
the expansions�.`;n/ discussed earlier. Under a rescal-
ing of the kind in (25.30), Ka remains invariant.

The different kinds of trapped surfaces correspond
to properties of Ka. Two useful definitions are:

� Future trapped surface (�.`/ < 0, �.n/ < 0): Ka is
timelike and future-directed.

� Marginally future trapped surface (�.`/ D 0,
�.n/ < 0): Ka is null and future-directed.

Furthermore, we shall consider only closed sur-
faces; this is an important condition as it, among other
things, excludes trivial planar surfaces in flat space.

It is also useful to remark on the physical sig-
nificance of the condition �.n/ < 0. This condition
holds for round spheres in flat space and also, as
we have seen, for round spheres in the trapped re-
gion of Schwarzschild (see (25.10)). However, this may
not be true for nonspherically symmetric trapped sur-
faces even in Schwarzschild. Furthermore, there are
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explicit black hole solutions found by Geroch and Har-
tle [25.18] which represent black holes distorted by
surrounding matter fields which do not satisfy�.n/ < 0
at all points on the horizon (but its average value over
the horizon is still negative). In fact, for a number of key
results that we shall mention below, it is not necessary
to impose �.n/ < 0. Surfaces with the vanishing out-
ward expansion �.`/ D 0, with no restrictions on the
sign of �.n/ will be called marginally outer trapped
surfaces, usually abbreviated to MOTS. A surface with
�.`/ < 0 and no condition on �.n/ will be said to be
outer trapped. We have seen in the Vaidya example that
there are differences in the location of trapped and outer
trapped surfaces.

The collection of closed future-trapped surfaces
form the trapped region of the spacetime. More pre-
cisely, the trapped region T consists of spacetime
points which lie on a closed future-trapped surface.
The boundary B of T is the trapping boundary. It is
also common to consider these concepts restricted to
a spacelike surface ˙ , typically a Cauchy surface in
an initial value problem set-up. The trapped T˙ region
on ˙ is the set of points on ˙ which lie on a closed
future-trapped surface contained entirely on ˙ . The
boundary of T˙ is denoted by B˙ , and each connected
component of B˙ is called an apparent horizon if it
is the outermost such boundary on ˙ . Since B˙ ex-
cludes trapped surfaces not contained in ˙ , it is clear
that B˙ 
B

T
˙ . It is important to not confuse the

trapped region T or its boundary B with the black hole
region B defined in Sect. 25.3.1 and the event hori-
zon. It can be shown [25.19] that with some additional
regularity conditions, each connected component of the
apparent horizon B˙ is actually a closed marginally
trapped surface. The same result was proved in [25.20]
with the regularity assumptions removed. In practice,
this fact is what is used to locate the apparent horizon
in numerical simulations.

25.3.3 The Stability of Marginally Trapped
Surfaces, Trapping,
and Dynamical Horizons

Let us now go beyond individual trapped/marginally
trapped surfaces and look at their time evolutions. Con-
sider a region of spacetime foliated by smooth spacelike
surfaces ˙ t depending on a real time parameter t.
Start with initial data (the first and second fundamental
forms) at tD 0 and evolve it using the Einstein and mat-
ter field equations. This way, we obtain a solution to the
field equations locally in time near ˙0. The first ques-

tion we wish to address is: If˙0 contains an MOTS S0,
does it persist under time evolution and does it evolve
smoothly? If it does evolve smoothly, then the union
of all the MOTS St will form a smooth 3-surface H
which we shall call a marginally trapped tube (MTT).
A related question is then: How doesH depend on the
foliation ˙ t? If we start with the same ˙0 but choose
the surfaces differently for t > 0 (still requiring ˙ t to
form a smooth foliation), then will we still end up with
a smooth MTT H 0? If it exists, is it different from
H ? In numerical simulations, it is found that the ap-
parent horizon can evolve discontinuously. Can this be
understood analytically? It turns out that the answers
to the above questions are intimately connected with
the stability of S0 with respect to variations on ˙0. To
this end, we need to define the notion of the geometric
variation of a 2-surface S which is embedded in a space-
time M [25.21–24]. Such a variation is a very general
concept; it includes evolving in time, and an evolu-
tion following Einstein equations is a particular case.
A smooth variation of a submanifold S is defined as
a one-parameter family of surfaces S� (where 	 is a real
parameter and takes values in some interval .��; �/)
such that: S0 is identical to S, each S� is a smooth sur-
face, and each point on S moves on a smooth curve as 	
is varied. We can then define a vector field qa as the tan-
gent to these curves. This is depicted in Fig. 25.10. We
could also perform the variation along null directions or
spatial directions in a given spacetime and of course, the
variations do not need to be uniform on S and different

r a

la

na

ra

t (time)

τa
Σ t

Σ0
S0

St

Fig. 25.9 The evolution of an MOTS in time. Start at tD 0 with
an MOTS S0 on a spatial hyper-surface ˙0. Evolve the data on
˙0 using the Einstein equations. If the evolution of the MOTS is
smooth in time, then S will evolve to an MOTS St on ˙ t at time
t > 0. The collection of all the St will then form a smooth 3-surface
H . We shall see that H will usually be spacelike so that the future
null vectors `a and na orthogonal to St (and the future null cone)
will point inward on H . The vectorbra is the unit outward normal
to St on ˙ t
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points on S can move at very different speeds depending
on qa.

If we have a relevant geometric quantity on S, we
can compute it on each S� and differentiate it with re-
spect to 	, and the derivative is called the variation of
that geometric quantity. If O� is such a geometric quan-
tity (e.g., the expansion�.`/ on each S�), then we shall
define ıqO WD @�O�j�D0. It is also important to keep in
mind that for a function f , in general the variation is not
linear: ıfqO¤ f ıqO.

For an MOTS defined on a spatial hyper-surface˙ ,
the relevant variation is alongbra, the unit normal to S.
The stability of S is meant to capture the idea that if
S is deformed outward, it becomes untrapped, and an
inward deformation leads to �.`/ < 0. No condition on
�.n/ is assumed. More precisely, the MOTS S is said to
be stably outermost if there exists a function f � 0 on S
such that ı

fbr�.`/ � 0. S is strictly stably outermost if in
addition ı

fbr�.`/ ¤ 0 somewhere on S.
With this background, we can state the following

result [25.23, 24]: If S0 is a smooth MOTS on ˙0, and
S0 is strictly stably outermost on ˙0, then S0 evolves
smoothly into smooth MOTSs St on ˙ t at time t at
least for sufficiently small (but nonzero) t. Furthermore,
the union of the St forms a smooth 3-surface which we
shall call H . This holds at least as long as the St con-
tinue to remain strictly stable outermost. In addition, if
Gab`

a`b > 0 somewhere on S or if `a has nonvanish-
ing shear somewhere on S, then H is spacelike. More

qa

S0

Sλ

λ

Fig. 25.10 The variation of a surface S viewed as a set
of surfaces S�. The initial surface is S0. Each point on S
moves along a smooth curve and qa is the tangent to these
curves

generally, if the null energy condition holds then H is
either spacelike or null.

These results answer several of the questions raised
at the beginning of this subsection. If we were to start
with the same ˙0 but choose different ones at later
times, the MTT would still exist at least for some small
time interval since the stability condition still holds
at tD 0. However, H 0 and H would not necessarily
coincide. The jumps that are observed in numerical sim-
ulations are because of the outermost condition: while
an individual MTT can continue to evolve smoothly,
a new MTT can appear further outward. While not all
MOTSs satisfy the stability condition, in all the cases
that the author is aware of in numerical simulations, the
MTTs continue to evolve smoothly. This suggests that
the mathematical results could be strengthened.

Having seen that there is a physically interesting
class of MOTSs which evolve smoothly in time, it is
reasonable to impose additional conditions on an MTT
to capture the fact that they are black hole horizons.
The first is the notion of a trapping horizon defined by
Hayward [25.25, 26] in 1994: A future-outer-trapping
horizon (FOTH) is a smooth three-dimensional mani-
fold H foliated by compact 2-manifolds St such that:

1. The surfaces S are marginally trapped surfaces
(�.`/ D 0, �.n/ < 0),

2. The directional derivative of �.`/ along na van-
ishes: Ln�.`/ < 0.

Historically, this was the first systematic definition
of a quasi-local horizon and it played a key role in
spurring further developments. At the time, it was not
known whether an MOTS would evolve smoothly in
time and if trapped surfaces would limit smoothly to the
boundary of the trapping region (as we have seen in the
Vaidya example, they in fact do not and this possibility
was recognized in [25.25]). Using this definition, Hay-
ward showed that H would be generically spacelike
and is null if and only if the matter flux and the shear
of `a vanish identically (the result from [25.23, 24]
quoted previously is stronger). Hayward also showed
that it was possible to assign a surface gravity to the
black hole, and to have versions of the laws of black
hole mechanics applicable to H . The second condition
seems similar to the stability condition defined above,
but in fact the two may not necessarily agree. A FOTH
requires implicitly that `a and na have been extended
smoothly in a neighborhood of S and does not refer to
the variation of S.

A dynamical horizon [25.27, 28] is defined simi-
larly, but it is designed explicitly for the case when the
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horizon is spacelike: A smooth three-dimensional man-
ifold H is said to be a dynamical horizon (DH) if it is
foliated by compact two-dimensional manifolds St such
that:

1. The surfaces St are marginally trapped (�.`/ D 0,
�.n/ < 0).

2. H is spacelike.

The first condition is the same as for a FOTH, but
the second condition specifies a priori the causal nature
of H without any additional conditions on fields trans-
verse to H . Even though the definitions of a FOTH
and a DH are similar, neither implies the other. We
shall return to dynamical and trapping horizons later in
Sect. 25.5, but before that, we shall discuss the equilib-
rium case when the MTT is null in some detail.

25.4 The Equilibrium Case: Isolated Horizons

Having discussed some general properties of trapped
surfaces and their evolutions, we shall now consider
a special case that is nevertheless of significant interest
for various applications, namely when the black hole
is in equilibrium with its surroundings and there is no
matter or radiation falling into it. Since the work of the
late 1990s and the subsequent years, our understanding
of this special case has matured and we can now con-
sider it be well understood. All the well-known globally
stationary solutions in four-dimensions, i. e., the Kerr–
Newman black holes, are included in this analysis. Also
included are the dynamical cases when the black hole
is itself in equilibrium but when the time dependent
fields are relatively far away from the black hole. An
example is a system of binary black holes when the
separation of the black holes is much larger than ei-
ther of the masses; to a very good approximation each
black hole can be treated as being in equilibrium with
its surroundings locally. In the same system, once the
two black holes have coalesced, the final black hole
will soon reach equilibrium after it’s ringdown phase.
The assumption of global stationarity obviously does
not hold in these cases. Each of these cases is well mod-
eled by the framework of isolated horizons that we shall
now describe. We shall start with a prototypical exam-
ple namely, the structure of the horizon of a Kerr black
hole. This shall be followed by a general definitions and
a summary of some key results. We shall conclude with
two applications: the near horizon geometry and the
mechanics of isolated horizons. It will be convenient to
use the Newman–Penrose formalism in this discussion,
and therefore we start with a short digression to discuss
this formalism.

We note that strictly speaking, it is not essential to
use this formalism for many of the results that we will
discuss later. However, it does prove to be very useful in
a number of cases. For our purposes, we discuss it here
because it makes calculations very explicit and is thus

useful for pedagogically; there are no tensor indices and
all geometric quantities are expressed in terms of scalar
functions which have clear geometric and physical in-
terpretations. Since we wish to start with the Kerr black
hole as an example, this formalism is particularly useful
for studying its properties explicitly.

25.4.1 The Newman–Penrose Formalism

The Newman–Penrose formalism [25.29, 30] is a tetrad
formalism where the tetrad elements are null vectors,
which makes it especially well suited for studying null
surfaces. See [25.2, 5, 6] for pedagogical treatments
(note that these references take the spacetime metric to
have a signature of .C���/ which is different from
ours). Start with a null tetrad .`; n;m; Nm/ where ` and n
are real null vectors, m is a complex null vector and Nm
its complex conjugate. The tetrad is such that ` �nD�1,
m � NmD 1, with all other inner products vanishing. The
spacetime metric is thus given by

gab D�`anb � na`bCma NmbC Nmamb : (25.32)

Directional derivatives along the basis vectors are de-
noted as

D WD `ara ; � WD nara ;

ı WD mara ; Nı WD Nmara :
(25.33)

We shall see that the Newman–Penrose formalism em-
ploys almost all the Greek symbols, and therefore
often leads to conflicts in notation. An example is the
symbol� which is used for both the directional deriva-
tive along na and the isolated horizon itself; we will
soon have other such examples. Hopefully the notation
should be clear from the context.

The components of the connection are encoded in
12 complex scalars, the spin coefficients, defined via
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the directional derivatives of the tetrad vectors:

D`D .�C N�/`� N�m� � Nm ; (25.34a)

DnD�.�C N�/nC�mC N�m ; (25.34b)

DmD N�`� �nC .�� N�/m ; (25.34c)

�`D .� C N�/`� N
m� 
 Nm ; (25.34d)

�nD�.� C N�/nC �mC N� Nm ; (25.34e)

�mD N�`� 
nC .� � N�/m ; (25.34f)

ı`D . N̨ Cˇ/`� N�m� � Nm ; (25.34g)

ınD�. N̨ Cˇ/nC�mC N	 Nm ; (25.34h)

ımD N	`� �nC .ˇ� N̨ /m ; (25.34i)

NımD N�`� �nC .˛� Ň/m : (25.34j)

While this kind of expansion may seem to some like
a backward step to the days before efficient tensor no-
tation was developed, it is actually very convenient in
cases where null vectors and null surfaces are involved.
The use of complex functions is also efficient because
it cuts down the number of quantities by half.

Many of the spin coefficients have a clear geomet-
ric meaning. First note that (25.34a) implies that `a

is geodesic if and only if � D 0. Furthermore, it will
be affinely parameterized if �C N� D 0. Similarly, from
(25.34e), we see that na is geodesic if and only if � D 0
and it is affinely parameterized if � C N� D 0. Impor-
tant for us in particular are the coefficients � and �
which are related to the expansion, shear and twist de-
fined earlier in Sect. 25.2.1. Let `a be tangent to a null
geodesic congruence, let it be affinely parameterized,
and let �a be a connecting vector for the congruence (it
is transverse to `a and satisfies Œ`; ��D 0). As in (25.8),
we need to look at ra`b projected in the .m; Nm/ plane.
Note that in this plane, the metric is qab D 2m.a Nmb/, the
antisymmetric area form is 2� D 2imŒamb
, and the two-
dimensional space of symmetric trace-free second-rank
tensors is spanned by mamb and Nma Nmb. From the above
definitions, it is easy to show that

�.`/ D qabra`b D ma Nı`aC Nm
aı`a D�2 Re � ;

(25.35)

mŒa Nmb
ra`b D Im � ; mambra`b D�� : (25.36)

Thus, we see that �2 Re � is the expansion, Im � is re-
lated to the twist, and � is the shear of `. Similarly, the
real and imaginary parts of � gives the expansion and
twist of na, while 	 yields its shear. It is also easy to

verify that

Œm; Nm�a D . N���/`aC . N�� �/na

C .˛� Ň/maC .ˇ� N̨/ Nma : (25.37)

Thus, using the Frobenius theorem, we see that m and Nm
can be integrated to yield a smooth surface if `a and na

are twist free. Furthermore, since the projection of ım
is determined by ˇ� N̨ , it is clear that this determines
the connection, and thus the curvature of this surface.

Since the null tetrad is typically not a coordinate
basis, the above definitions of the spin coefficients lead
to nontrivial commutation relations

.�D�D�/f D .�C N�/�f C .� C N�/Df

� . N
 C�/ıf � .
 C N�/ Nıf ;
(25.38a)

.ıD�Dı/f D . N̨ Cˇ� N�/Df C ��f

� . N�C �� N�/ıf � � Nıf ;
(25.38b)

.ı���ı/f D�N�Df C .
 � N̨ �ˇ/�f

C .�� � C N�/ıf C N	 Nıf ;
(25.38c)

. Nıı� ı Nı/f D . N���/Df C . N�� �/�f

C .˛� Ň/ıf � . N̨ �ˇ/ Nıf :
(25.38d)

The Weyl tensor Cabcd breaks down into five complex
scalars

�0 D Cabcd`
amb`cmd ; (25.39a)

�1 D Cabcd`
amb`cnd ; (25.39b)

�2 D Cabcd`
amb Nmcnd ; (25.39c)

�3 D Cabcd`
anb Nmcnd ; (25.39d)

�4 D Cabcd Nm
anb Nmcnd : (25.39e)

Similarly, the Ricci tensor is decomposed into four real
and three complex scalars ˚ij:

˚00 D
1
2 Rab`

a`b ;

˚11 D
1
4 Rab.`

anbCma Nmb/ ;

˚22 D
1
2 Rabnanb ;

�D
R

24
;

(25.40a)

˚01 D
1
2 Rab`

amb ;

˚02 D
1
2 Rabmamb ;

˚12 D
1
2 Rabmanb ;

N̊ ij D j̊i :

(25.40b)
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We are allowed to make transformations of the null
tetrad while preserving their inner products, thereby
leading to a representation of the proper Lorentz group.
The allowed transformations are parameterized by two
real parameters .A;  / and two complex numbers .a;b/
(a total of six real parameters in all, as expected):

i) Boosts: `! A` ; n! A�1n ; m! m
ii) Spin rotations in the m� Nm plane:

m! ei m, `! `, n! n
iii) Null rotations around `: `! `, m! mC a`, n!

nC NamC a NmCjaj2`
iv) Null rotations around n: n! n, m! mC b`, `!

`C NbmC b NmCjbj2n

The transformations of the spin coefficients and cur-
vature components under these transformations are not
difficult to work out. Again, we refer to [25.2, 5, 6] for
a more complete discussion.

The relation between the spin coefficients and the
curvature components leads to the so-called Newman–
Penrose field equations which are a set of 16 complex
first-order differential equations. The Bianchi identities,
rŒaRbc
de D 0, are written explicitly as eight complex
equations involving both the Weyl and Ricci tensor
components, and three real equations involving only
Ricci tensor components. See [25.2, 5, 6] for the full
set of field equations and Bianchi identities.

25.4.2 The Kerr Spacetime
in the Newman–Penrose Formalism

As the prototypical example for an isolated horizon, we
now describe the structure of the Kerr black hole hori-
zon. This will also illustrate the utility of the Newman–
Penrose formalism when dealing with null surfaces.
A detailed study of the various intricate properties of the
Kerr spacetime can be found in [25.2]. Here we shall be
brief and focus on the essential properties of the hori-
zon.

The Kerr metric with mass M and spin a is usually
presented in textbooks as (this is however not the form
that Kerr originally derived it)

ds2 D�

�
1�

2Mr

�2

�
dt2C

�2

�
dr2

�
4aMr sin2 

�2
dt d�C �2 d2

C
˙2 sin2 

�2
d�2 ; (25.41)

where

�2 D r2C a2 cos2  ;

�D r2� 2MrC a2 ;

˙2 D .r2C a2/�2C 2a2Mr sin2  : (25.42)

This metric has two Killing vectors: a timelike one
�a D .@v/

a, and a spacelike rotational one 'a D .@�/
a.

Based on the behavior of the metric at large distances,
one can assign a mass M

1

DM and angular momen-
tum J

1

D aM to the spacetime. There are multiple
ways to justify this. Because of the existence of the two
Killing vectors, the clearest definition is through the so-
called Komar integrals [25.31] based on the two Killing
vectors (see also [25.3]). Moreover, again based on the
behavior of the gravitational field at infinity, one can
assign two sets of higher multipole moments Mk and Jk

[25.32–34] which turn out to be fully determined by M
and a: MkC iJk DM.ia/k, kD 2; 3; : : :.

As in the original Schwarzschild metric, there are
coordinate singularities when �D 0. This happens
when

rD r
˙

DM˙
p

M2 � a2 : (25.43)

These can be removed by a coordinate transformation
.t; r; ; �/! .v; r; ; '/

dvD dtC
r2C a2

�
dr ; d' D d� �

a

�
dr :

(25.44)

This yields the metric in .v; r; ; '/ candidate

ds2 D�

�
1�

2Mr

�2

�
dv2C 2dvdr� 2a sin2  dr d'

�
4aMr sin2 

�2
dvd'

C �2 d2C
˙2 sin2 

�2
d'2 : (25.45)

The horizon is the three-dimensional surface rD r
C

which we shall denote by �. The intrinsic metric qab

on � in .v; ; '/ coordinates is obtained by setting
rD r

C

and dropping the dr terms in this metric. Re-
arranging terms we get

qab D
a2 sin2 

�2
C

�
rav�˝�1 d'

� �
rbv�˝�1 d'

�

C �2
C

rarb ;

(25.46)
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where �2
C

WD r2
C

C a2 cos2  and ˝ D a=2Mr
C

D

a=.r2
C

Ca2/. It is easy to verify that this metric has sig-
nature .0CC/ with the degenerate direction being

`ara D
@

@v
C˝

@

@'
: (25.47)

Thus, the null normal to� acquires an angular velocity
term in the presence of spin.

The cross-sections of this manifold, i. e., the sur-
faces of constant v, are spheres with a Riemannian
metriceqab. The area of such a sphere is time indepen-
dent: a� D 4�.r2

C

C a2/. It is easy to verify that if we
choose a different coordinate v0 with the cross-sections
still being complete spacelike spheres, the area of each
cross-section is still a�.

A suitable choice of the ingoing and outgoing future
directed null vectors are

nara D�

�
r2C a2

�2

�
@

@r
;

`ara D
@

@v
C

a

r2C a2

@

@'
C

�

2.r2C a2/

@

@r
:

(25.48)

On �`a one agrees with the null direction given in
(25.47). The other null vector na is clearly null because
the metric does not have a dr2 term, and the scalar fac-
tor in na is chosen to ensure ` � nD�1. The covariant
versions are

na D
r2C a2

�2
.�ravC a sin2 ra'/ ;

`a D�
�

2.r2C a2/
ravC

�2

r2C a2
rar

C
�a sin2 

2.r2C a2/
ra' : (25.49)

A suitable choice for ma is

ma D�
a sin 
p

2e� ravC
.r2C a2/ sin 
p

2e� ra'

C
i
p

2
Ne�ra ;

mara D
a sin 
p

2e�
@

@v
C

1
p

2e� sin 

@

@'

C
i
p

2e�
@

@
:

(25.50)

Here we have defined e� WD rC ia cos  , so that �2 D

je�j2. It is unfortunate that the notation can be confus-
ing. For example the �2 used in the Kerr metric is not
to be confused with the spin coefficient �. This should
hopefully not cause confusion because the spin coef-
ficient � will vanish identically, and unless mentioned
otherwise, �2 will refer to r2C a2 sin2  .

We can now compute the spin coefficients at �
and for the moment we shall restrict our attention to
those spin coefficients which are intrinsic to �, i. e.,
do not require any derivatives transverse to �. These
are: �; �; �; ˛; ˇ; �; �; �; 	. As is typical in tetrad for-
malisms, we do not need to compute any Christoffel
symbols in order to compute any of the spin coeffi-
cients; the exterior derivative suffices. Using the defi-
nitions of (25.34) we can write the exterior derivatives
of `a;ma; na in terms of the exterior products of the ba-
sis vectors. The spin coefficients are then combinations
of contractions of the exterior derivatives with the basis
vectors. As an example, the acceleration of `a and its
value at the Kerr horizon is

�C N� D `bna � 2rŒa`b
 D
r
C

�M

2Mr
C

D

p
M2 � a2

2M.MC
p

M2 � a2/
: (25.51)

The other spin coefficients at the horizon turn out to be

� D � D �D 	D � D 0 ;

� D ˛C Ň

D �

p
2ar sin 

�2 Ne� : (25.52)

Some of these can be understood on general grounds.
First, since `a is tangent to a smooth surface, it must
be hyper-surface orthogonal which means that we must
have Im�D 0. Furthermore, if a null vector is hyper-
surface orthogonal, it can be shown to be tangent to
a geodesic. This implies � D 0. The important condition
on physical grounds is that the expansion of `a van-
ishes: Re�D 0. Thus, as we saw for a Schwarzschild
black hole, the cross-sections of� are marginally outer
trapped surfaces. Now let us turn to the Weyl tensor. It
can be shown that the only nonzero component is

�2 D�
M

.r� ia cos /3
: (25.53)

Can we now extract from these results general proper-
ties of a null surface which should behave like a black
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hole horizon in equilibrium? Can we assign physi-
cal quantities such as surface gravity, mass, angular
momentum, and higher multipole moments? We shall
answer these questions in the next subsection. Regard-
ing angular momentum, we note that the spin coefficient
which vanishes for aD 0 is � . In fact, from the values
of the spin coefficient, we can check that for any Xa

tangent to the horizon, Xara`
b D Xa!a`

b where

!a WD �.�C N�/naC�maC N� Nma : (25.54)

We shall see that the angular part of !a yields the angu-
lar momentum of the horizon.

25.4.3 A Primer on Null Hyper-Surfaces

The fundamental geometric objects in the theory of iso-
lated horizons are null surfaces. Let us therefore start
with with a discussion of the geometry of null surfaces
in a Lorentzian manifold. The horizon of a Kerr black
hole is a special kind of null surface, namely an expan-
sion and shear-free null surface. Such null surfaces are
rather special from a geometrical point of view as we
shall now explain.

Consider a smooth submanifold eM of a spacetime
.M;gab/. As earlier in Sect. 25.3.2, we define the first
fundamental tensor of eM, i. e., the induced metric hab as
the restriction of gab to eM: habXaYb WD gabXaYb for any
two arbitrary vector fields Xa and Yb tangent to eM. The
submanifold eM is said to be null when hab is degen-
erate. In the nondegenerate case, the ambient covariant
derivative operator r induces a natural derivative oper-
ator D on eM. Furthermore, D is the unique derivative
operator compatible with hab, i. e., Dahbc D 0.

Can we repeat the steps described in Sect. 25.3.2 for
defining the fundamental forms and intrinsic connec-
tion on a null surface? When eM is a null hyper-surface,
we shall call `a a null normal if it is along the de-
generate direction of hab, so that hab`

a D 0. We thus
encounter a problem in the very first step, i. e., in the
decomposition of (25.24). The null normal `a is also
tangent to eM so that Tp eM\T?p eM¤ f0g. The other
route to defining D, namely finding the unique deriva-
tive operator compatible with hab, does not work either
because a degenerate metric does not uniquely de-
termine a derivative operator. We can still define an
intrinsic derivative operator D if we pick a particular
subspace of TpM transverse to eM. Following [25.35],
we first pick a spacelike subspace Sp of Tp eM; for the
Kerr horizon, a natural choice would be vectors tan-
gent to the spherical cross-sections of fixed v. There

will be two one-dimensional subspaces of null vectors
orthogonal to Sp. One of them is Np eM, the null direc-
tion of hab, and the other will be transverse toM which
we shall call N0p eM, and we can decompose TpM as
Tp eM˚NpeM˚N0p eM. Associated with a particular null
normal `a we shall pick a vector na in the transverse
direction by requiring that ` � nD�1. We can then de-
compose � as

� D �>C �? where

(
�> WDe�C˛`
�? WD ˇn

: (25.55)

Here ˛ and ˇ are scalars, e� is in Sp at each p. We
can then define the intrinsic derivative operator as be-
fore: DXY D .rXY/>. However, D would depend on
our choice of Sp, and unlike in the nondegenerate case,
there is in general no natural canonical choice. There
is however one case when this is not an issue, namely
when the second fundamental form vanishes,rXY is al-
ways tangential to eM and there is no need to decompose
rXY . This happens when

`aXbrbYa D�XaYbra`b D 0 ; (25.56)

for any Xa;Ya tangent to eM. Thus, `a is covariantly
constant on the null surface.

An alternative way to state the same result (empha-
sized in e.g., [25.36]) is: if we start with a vector tangent
to� and parallel transport it using the spacetime deriva-
tive operatorr along a curve lying on�, then the vector
remains tangent to �. Since the parallel transport of Ya

along Xa is defined by XaraYb D 0, this alternative cri-
terion is also equivalent to `aXbrbYa D 0. We shall see
that (25.56) is satisfied for the various kinds of horizons
that we shall now define.

25.4.4 Nonexpanding, Weakly Isolated
and Isolated Horizons

Having understood null surfaces, we are now ready to
define different kinds of isolated horizons with increas-
ingly stronger conditions. We shall start with the min-
imum set of conditions, namely a marginally trapped
tube which is null, and no condition on the ingoing ex-
pansion. A smooth three-dimensional null surface � is
said to be a nonexpanding horizon if:

� � has topology S2�R, and if $ W S2 �R! S2 is
the natural projection, then $�1.x/ for any x 2 S2

are null curves on �.
� The expansion �.`/ WD qabra`b of any null normal

`a of � vanishes.
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� The Einstein field equations hold at �, and the mat-
ter stress-energy tensor Tab is such that for any
future directed null normal `a, �Ta

b `
b is future

causal.

We shall consider only null tetrads adapted to �
such that, at the horizon, `a coincides with a null normal
to �. We shall also consider a foliation of the horizon
by spacelike spheres Sv with v a coordinate on the hori-
zon which is also an affine parameter along `: L`vD 1;
S shall denote a generic spherical cross-section of �.
Null rotations about `a correspond to changing the foli-
ation.

This deceptively simple definition of a nonexpand-
ing horizon leads to a number of important results
which we state here without proof, most of which are
however well illustrated by the Kerr example discussed
earlier:

1. Any null normal `a is a symmetry of the intrinsic
degenerate metric qab on�: L`qab D 0.

2. The null normal of � is only given to be expansion
free. However, a nonexpanding horizon is also shear
free. To show this, we use the Raychaudhuri

L`�` D �`�.`/ �
1
2�

2
.`/ � j� j

2�Rab`
a`b :

(25.57)

Setting �.`/ D 0, and observing that the energy
condition implies Rab`

a`b � 0, we get that the sum
of two nonnegative quantities must vanish.

j� j2CRab`
a`b D 0 : (25.58)

This can only happen if � D 0 and Rab`
a`b D 0 on

the horizon. Thus, the full projection of ra`b on �
vanishes, and as we saw in Sect. 25.4.3, this is just
the condition required to ensure that the induced
derivative operator on � is well defined.

3. The Weyl tensor components �0 and �1 vanish on
the horizon. This implies that �2 is an invariant on
� as long as the null tetrad is adapted to the hori-
zon; it is automatically invariant under boosts and
spin rotations (it has spin weight 0), and it is invari-
ant under null rotations around ` because �0 and �1

vanish. Similarly, the Maxwell field component �0

vanishes on the horizon, and �1 is invariant on �.
Both �2 and �1 are also time independent on the
horizon.

4. There exists a 1-form !a such that, for any vector
field Xa tangent to �,

Xara`
b D Xa!a`

b : (25.59)

The 1-form !a plays a fundamental role in what fol-
lows. The pullback of !a to the cross-sections S will
be denoted by Q!a.

5. The surface gravity of ` is

Q�.`/ D `
a!a : (25.60)

We will say that � is extremal if Q�.`/ D 0 and
nonextremal otherwise. Here we shall always as-
sume that � is nonextremal. The curl and diver-
gence of ! carry important physical information.
The curl is related to the imaginary part of the Weyl
tensor on the horizon

d! D Im Œ�2�
2� ; (25.61)

and its divergence specifies the foliation of � by
spheres [25.37].

6. By the geometry of �, we shall mean the pair
.qab;Da/. Clearly, qab yields a Riemannian metriceqab on the cross-sections of �. In turn, Da is deter-
mined by !a and by the unique derivative operatoreDa compatible witheqab.

We need to strengthen the conditions of a nonex-
panding horizon for various physical situations. The
minimum extra condition required for black hole ther-
modynamics and to have a well-defined action principle
with � as an inner boundary of a portion of spacetime,
is formulated as a weakly isolated horizon [25.38]:
A weakly isolated horizon .�; Œ`�/ is a nonexpanding
horizon equipped with an equivalence class of null nor-
mals Œ`� related by constant positive rescalings and such
that

L`!a D 0 : (25.62)

If we rescale `! f `, !a transforms as !a! !aC

@a ln f . It is thus invariant under constant rescalings and
there is a unique !a corresponding to the equivalence
class Œ`�.

The zeroth law holds on weakly isolated horizons,
i. e., Q�.`/ D `a!a is constant on �

L`!a D `
b2DŒb!a
CDa.`

b!b/DDa Q�.`/ :

(25.63)

In the second step we have used (25.61) to conclude
that `b � 2DŒb!a
 D Im `b Œ�2�

2�ba D 0. Note that un-
der a rescaling `a! f `a, !a transforms as !a! !aC

Da ln f so that it is invariant under constant rescalings.
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Any nonexpanding horizon can be made into
a weakly isolated horizon by suitably scaling the null
generators. Thus, the restriction to weakly isolated hori-
zons is not a genuine physical restriction. One could go
ahead and impose further physical restrictions on the in-
trinsic horizon geometry by requiring that not only !a,
but also the full connection Da on � is preserved by
`a: An isolated horizon .�; Œ`�/ is thus a nonexpanding
horizon equipped with a equivalence class of null nor-
mals related by constant positive rescalings such that
ŒL`;D�D 0 [25.37].

It can be shown that the gauge-invariant geome-
try of an axisymmetric isolated horizon can be fully
specified by the area a� and two sets of multipole mo-
ments Mn; Jn for nD 0; 1; 2; : : : [25.39]. In contrast to
the field multipole moments defined at infinity, Mn and
Jn are the source multipole moments. We shall not dis-
cuss these moments here in any detail, except to say
that in the vacuum case, the moments are essentially
obtained by decomposing �2 at � into spherical har-
monics based on preferred coordinates adapted to the
axial symmetry. As at infinity, the Kerr horizon cor-
responds to a specific choice of these multipoles, but
due to the nonlinearity of general relativity, the field
and source moments will not generally agree. See, e.g.,
[25.40–43] for some applications of these multipole
moments.

25.4.5 The Near Horizon Geometry

In a number of astrophysical applications where black
holes play a role, it is not directly the horizon which
is involved but rather the spacetime in the vicinity of
the black hole. A especially interesting example of rel-
evance to gravitational wave observations is the case of
a binary system consisting of a stellar mass black hole
or star orbiting around a much larger black hole (see,
e.g., [25.44] for a review of the astrophysics of such
systems). As the small particle orbits the large black
hole, it effectively maps the spacetime in the vicinity of
the large black hole, much as the motion of satellites
around Earth enables us to map Earth’s gravitational
potential and therefore its shape. If carried out to suf-
ficient precision, a measurement of gravitational waves
from such a system would enable us to determine the
gravitational field in the vicinity of the large black hole
(see, e.g., [25.45, 46]). One expects that the black hole
is well approximated by a Kerr spacetime and we can
seek to measure deviations from it thereby testing an
important prediction of general relativity. Typical stud-
ies on this subject assume the black hole to be Kerr,

which is entirely reasonable to a very good approxima-
tion (nearby stars or other matter fields might distort
the black hole somewhat, but this is expected to be
a small effect). However, for mathematical purposes,
we could pose the question from a different viewpoint:
If we specify the intrinsic geometry of the horizon,
then to what extent is the near horizon spacetime de-
termined by the horizon geometry? If we assume the
large black hole to be in equilibrium (an excellent ap-
proximation for the case we have just described), then
it seems reasonable to model the black hole as an iso-
lated horizon. So the question then is: Can we find
solutions to the Einstein field equations which admit
a generic isolated horizon as an inner boundary? If so,
then what is the extra data (beyond the intrinsic horizon
geometry) that needs to be specified? (A full solution
to the problem would require us to go beyond isolated
horizons and to consider small deviations from equi-
librium, but we shall not discuss this generalization
here.)

It turns out that these questions can be clearly an-
swered if we use the characteristic initial value formula-
tion of Einstein’s equations where free data is specified
on a set of intersecting null hyper-surfaces [25.6, 47–
49]. Consider N dependent variables  I .I D 1; : : : ;N/
on a spacetime manifold with coordinates xa. We shall
be concerned with hyperbolic first-order quasi-linear
equations of the form

NX
JD1

Aa
IJ.x;  /@a JCFI.x;  /D 0 : (25.64)

S

r
Δ

υ

S0

i

Fig. 25.11 The near horizon coordinates. The isolated hori-
zon is � and the transverse null surface is N . The affine
parameter along the outgoing null geodesics on N is r,
and v is a coordinate along the null generators on �, and
x1 are coordinates on the cross-sections of �
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In the standard Cauchy problem, one specifies the  I at
some initial time. A solution is then guaranteed to be
unique and to exist at least locally in time. The charac-
teristic formulation considers a pair of null surfaces N0

and N1 whose intersection is a codimension-2 space-
like surface S. It turns out to be possible to specify
appropriate data on the null surfaces and on S such that
the above system of equations is well posed and has
a unique solution, at least locally near S.

In our case, the appropriate free data is specified on
the horizon and on an outgoing past light cone origi-
nating from a cross-section of the horizon. Such a con-
struction in the context of isolated horizons was first
studied by Lewandowski [25.50] who characterized the
general solution of Einstein equations admitting an iso-
lated horizon. This was worked out in detail in [25.51]
which we follow here; similar results from a some-
what different perspective are discussed in [25.52]. The
general scenario is sketched in Fig. 25.11. We con-
sider a portion of the horizon � which is isolated, in
the sense that no matter and/or radiation is falling into
this portion of the horizon. For a cross-section S, the
past-outgoing light cone is denoted by N . The null
generators of � and N are parameterized by v and
r, respectively; xi are coordinates on S. This leads to
a coordinate system .v; r; xi/ which is valid till the
null geodesics on N start to cross. The field equa-
tions are solved in a power series in r away from the
horizon.

Let us now assume that the vacuum Einstein equa-
tions hold in a neighborhood of the horizon �. Fol-
lowing [25.53], we introduce a coordinate system and
null tetrad in the vicinity of � analogous to the Bondi
coordinates near null infinity. See Fig. 25.11. Choose
a particular null normal `a on �. Let v be the affine
parameter along `a so that `aravD 1. Let Sv denote
the spheres of constant v. Introduce coordinates xi (iD
2; 3) on any one Sv (call this sphere S0) and require
them to be constant along `a: `araxi D 0; this leads
to a coordinate system .v; xi/ on �. Let na be a future
directed inward pointing null vector orthogonal to the
Sv and normalized such that ` � nD�1. Extend na off
� geodesically, with r being an affine parameter along
�na; set rD 0 at�. This yields a family of null surfaces
Nv parameterized by v and orthogonal to the spheres
Sv. Set .v; xi/ to be constant along the integral curves of
na to obtain a coordinate system .v; r; xi/ in a neighbor-
hood of�. Choose a complex null vector ma tangent to
S0. Lie drag ma along `a

L`ma D 0 on � : (25.65)

We thus obtain a null tetrad .`; n;m; Nm/ on �. Finally,
parallel transport ` and m along �na to obtain a null
tetrad in the neighborhood of �. This construction is
fixed up to the choice of the xi and ma on an initial cross-
section S0. We are allowed to perform an arbitrary spin
transformation m! ei m on S0.

With the Bondi-like coordinate system in hand, we
can now in principle use the coordinate basis vectors
in the .v; r; xi/ coordinates to construct an arbitrary
null tetrad near the horizon. The evolution equations
for the component functions of the null tetrad will fol-
low from the above construction. Let us start with na

and na. We have the family of null surfaces Nv pa-
rameterized by v; na is normal to the Nv, and r is an
affine parameter along �na. This implies that we can
choose

na D�@av and nara WD�D�
@

@r
: (25.66)

To satisfy the inner-product relations `ana D�1 and
mana D 0, the other basis vectors must be of the
form

`ara WD DD
@

@v
CU

@

@r
CXi @

@xi
;

mara WD ı D˝
@

@r
C � i @

@xi
: (25.67)

The frame functions U;Xi are real while˝; � i are com-
plex. We wish to now specialize to the case when
`a is a null normal of � so that the null tetrad is
adapted to the horizon. Since @v is tangent to the
null generators of �, this clearly requires that U;Xi

must vanish on the horizon. Similarly, we want ma

to be tangent to the spheres Sv at the horizon, so ˝
should also vanish on �. Thus, U;Xi;˝ are all O.r/
functions.

To expand the metric in powers of r, we start with
the frame fields, and the radial frame equations de-
rived from the commutation relations. The strategy is
the same as for the spin coefficients. The radial equa-
tions give us the first radial derivatives by substituting
the horizon values on the right-hand side, and taking
higher derivatives leads to the higher order terms. The
calculations are straightforward and lead to the follow-
ing expansions

U D r Q�C r2

�
2
ˇ̌ˇ�.0/ˇ̌ˇ2CRe

h
�
.0/
2

i�
CO.r3/ ;

(25.68a)
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˝ D r N�.0/C r2
�
�.0/ N�.0/C N	.0/�.0/C 1

2
N�
.0/
3

	

CO.r3/ ; (25.68b)

Xi D N̋ � i
.0/C˝

N� i
.0/CO.r3/ ; (25.68c)

� i D
h
1C r�.0/C r2

�
.�.0//2Cj	.0/j2

	i
� i
.0/

C
h
r N	.0/C r2

�
2�.0/ N	.0/C 1

2
N�
.0/
4

	i
N� i
.0/

CO.r3/ : (25.68d)

The contravariant metric is seen to be given in terms of
the frame fields as follows:

grr D 2.UCj˝j2/ ; gvr D 1 ; (25.69a)

gri D XiC N̋ � iC˝ N� i ; gij D � i N� jC N� i� j :
(25.69b)

The null cotetrad can be calculated easily up to O.r2/

nD�dv ; (25.70)

`D dr�
�
Q�rCRe

h
�
.0/
2

i
r2
	

dv

�
�
�.0/rC 1

2�
.0/
3 r2

	
�
.0/
i dxi

�
�
N�.0/rC 1

2
N�
.0/
3 r2

	
N�
.0/
i dxi ;

(25.71)

mD�
�
N�.0/rC 1

2�
.0/
3 r2

	
dv

C .1��.0/r/�.0/i dxi

�
�
N	.0/rC 1

2
N�
.0/
4 r2

	
N�
.0/
i dxi :

(25.72)

Here �
.0/
i are defined by the relations �

.0/
i � i

.0/ D 0

and �.0/i
N� i
.0/ D 1; it will be convenient to set m.0/a WD

�
.0/
i @axi. In powers of r, the metric is

gab D�2`.anb/C 2m.a Nmb/

D g.0/ab C g.1/ab rC 1
2 g.2/ab r2C � � � ; (25.73)

where

g.0/ab D 2@.ar@b/vC 2m.0/
.a Nm

.0/
b/ ; (25.74)

g.1/ab D�
�

2 Q�@.av@b/vC 4�.0/m.0/
.a @b/v

C 4 N�.0/ Nm.0/
.a @b/vC 4�.0/m.0/

.a Nm
.0/
b/

C 2	.0/m.0/
.a m.0/b/ C 2 N	.0/ Nm.0/

.a Nm
.0/
b/

	
;

(25.75)

g.2/ab D 4
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.a Nm

.0/
b/ :

(25.76)

Iterating this procedure to higher orders is, in princi-
ple, straightforward. This calculation provides a starting
point for a number of ongoing works in applying
isolated and quasi-local horizons to astrophysical sit-
uations.

25.4.6 Angular Momentum, Mass,
and the First Law
for Isolated Horizons

The first law for black holes, and black hole thermo-
dynamics in general, was developed by Bekenstein
[25.54], and by Bardeen et al. [25.55] in 1973 in
analogy with the laws of thermodynamics. The zeroth
law says that the surface gravity is constant over the
black hole horizon. We have already seen that this is
true for a weakly isolated horizon: the surface gravity
�` D `

a!a is constant on �. The main difference
with the standard formulation for a globally stationary
surface gravity refers to the globally defined stationary
Killing vector which is normalized to have unit norm
at infinity. A weakly isolated horizon does not refer
to any globally defined Killing vector. The standard
formulation of the second law says that the area of the
event horizon can never decrease in time. The area of
a nonexpanding horizon is constant, thus the second
law is trivial in this context.

Let us now turn to the first law. The standard formu-
lation for a stationary black hole is

ıM D
�

8�
ıaC˝ıJ : (25.77)

Here M is the mass measured at spatial infinity, � is the
surface gravity at the event horizon but using a vector
field normalized at infinity, a is the area of the horizon,
˝ is the angular velocity at the horizon, and J is the an-
gular momentum at infinity. Electromagnetic fields can
also be included and leads to additional terms. This is
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reasonable when applied to a globally stationary space-
time, but clearly needs to be refined for a black hole in
equilibrium locally in an otherwise dynamical space-
time. It turns out that it is possible to formulate the
first law for isolated horizons using quantities defined
only at the horizon, without reference to the behavior of
fields at infinity [25.36, 38, 56, 57]. The setup is a varia-
tional problem in a portion of spacetime bounded inside
by an axisymmetric weakly isolated horizon .�; Œ`a�/
(the extension to multiple horizons is straightforward).

Before talking about the first law, we need to first
have suitable notions of the horizon angular momen-
tum and mass. We begin with angular momentum. Fix
an axial symmetry 'a at the horizon. This means that 'a

must preserve (i) the equivalence class Œ`a� of null nor-
mals that is prescribed for the weakly isolated horizon,
(ii) the intrinsic metric qab, and (iii) the 1-form !a. Fur-
thermore, 'a should commute with `a and it should look
like a rotational vector field in that it should have closed
integral curves, an affine length of 2� , and should van-
ish at exactly two null horizon generators. Consider
then a rotational vector field �a in spacetime such that
at � it is equal to the fixed symmetry: �aj� D '

a.
At infinity, we require that it approach some fixed ro-
tational symmetry of the asymptotic flat metric. We
then need to find the Hamiltonian H� (Recall that in
a phase space, a Hamiltonian is responsible for generat-
ing time evolution via the Poisson bracket. Thus, for
any function F in a phase space, PF D fH;Fg. In the
present case, the phase space consists of gravitational
(and other) fields which satisfy the appropriate bound-
ary conditions.) which generates motions along �a. The
Hamiltonian can be shown to reduce to integrals over
the boundaries at the horizon and at infinity. The term
at � is identified with the angular momentum of�

J�� D�
1

8�

I
S

'a!a
2� : (25.78)

Similarly, the notion of energy corresponds to time
translations. Thus, we consider time evolution vector
fields ta on spacetime such that at the horizon, it ap-
proaches a general symmetry vector A`aC˝'a. Here
the coefficients A and ˝ are constants on �, but are al-
lowed to vary in phase space. The strategy is then again
to compute the surface term at � in the Hamiltonian Ht

which generates motions along ta, and the surface term
at � is to be identified as the energy E�t . Surprisingly,
it turns out that motions along ta are not always Hamil-
tonian, and in fact, the Hamiltonian exists if and only

if

ıE�t D
�t

8�
ıa�C˝tıJ� : (25.79)

This is just the first law, and a vector field ta is said to
be permissible if the first law for E�t is satisfied. If the
first law is satisfied, it is easy to see that �t; ˝t can de-
pend only on the horizon quantities .a�; J�/, and must
satisfy integrability condition

@�t.a�; J�/

@J�
D
@˝.a�; J�/

@a�
: (25.80)

This ensures that the right-hand side of (25.79) can be
integrated to yield an exact variation, and to thus have
a well-defined E�t .

A preferred choice of ta at the horizon can be ob-
tained by choosing �.a�; J�/ and ˝.a�; J�/ to have
the same functional dependence on .a�; J�/ as in the
Kerr spacetime

� D
R4
�
� 4J2

�

2R3
�

q
R4
�
C 4J2

�

; ˝ D
2J�

R�
q

R4
�
C 4J2

�

:

(25.81)

This leads to the horizon mass

M� D
1

2R�

q
R4
�
C 4J2

�
: (25.82)

Finally, we note that J�' is independent of the choice
of cross-section S, and even though it requires a weakly
isolated horizon to carry out the Hamiltonian compu-
tation, formula (25.78) itself is well defined even on
a nonexpanding horizon. If a cross-section S of � is
contained within a spatial hyper-surface ˙ , and ifbra is
the unit spacelike normal to S in ˙ and Kab is the ex-
trinsic curvature of ˙ , then we can rewrite J�' as

J'
�
D

1

8�

I
S

Kab'
abrb 2� : (25.83)

This is particularly convenient in numerical relativity
where one routinely located MTSs on spatial Cauchy
surfaces, and would like to use them to characterize the
properties of a black hole in real time while the simula-
tion is in progress [25.58]. The computation of angular
momentum is a surface integral over the MTS and the
mass is just an algebraic expression. These methods are
now in common use in numerical simulations.



Quasi-local Black Hole Horizons 25.5 Dynamical Horizons 551
Part

D
|25.5

25.5 Dynamical Horizons

25.5.1 The Area Increase Law

The second law for event horizons states that the area
of an event horizon can never decrease in time. This
was first suggested by Bekenstein and is the starting
point for associating the area of a black hole horizon
with entropy. We have thus far not talked about the area
increase law for quasi-local horizons except in the con-
text of isolated horizons where it is essentially trivial.
For a dynamical horizon, the area increase law follows
easily from the fact that �.n/ < 0. Let H be a dynam-
ical horizon and S a generic MTS on it. Let ra be the
spacelike unit normal to S within H ; this is not to be
confused with the unit normal bra to S which lies on
a spatial hyper-surface intersecting H as in Fig. 25.9.
Let 
a be the unit-timelike vector normal toH . We also
assume that ra points outward, in the sense that ifbra is
the outward normal to S on a spatial hyper-surface ˙ ,
then rabra > 0. Finally, let H be bounded by the cross-
sections S1 and S2. Then, the suitable choices for the
out- and ingoing null normals to S are

`a D

aC ra

p
2

; 
a D

a � ra

p
2

: (25.84)

Then, if qab is the intrinsic Riemannian metric on S,
p

2qabrarb D qabra.`
a � 
a/D�.`/ ��.n/ > 0 :

(25.85)

Thus, the area element on S and thus its area increases
along ra. (Though we shall not pursue this further, one
could imagine relaxing the requirement �.n/ < 0 by an
average on S and still obtain the same result.) This is the
area increase law for dynamical horizons.

We can go further and ask whether it is possible to
obtain a physical process version of the area increase
law which relates the increase in area from an initial
cross-section S1 to a later time S2 to the amount of en-
ergy or radiation falling into the black hole between S1

and S2. An early result along these lines was proved by
Hartle and Hawking in 1972 [25.59] for perturbations
of the event horizon. We note however that such a law
does not exist for event horizons in general. A case
in point being the Vaidya solution, which as we have
seen, grows in flat space when nothing falls into the
black hole. Let us then consider the area increase law
on a dynamical horizon H . Let us first consider angu-
lar momentum and the change in angular momentum
from S1 to S2.

Since H is a spacelike hyper-surface we have, as
discussed earlier, the induced metric hab, the associated
derivative operator Da, and the extrinsic curvature Kab.
As before, let 
a be the unit timelike normal to H and
let ra be the unit spacelike normal to a cross-section
S within H . The Einstein equations then show that
.hab;Kab/ cannot be specified freely, but must satisfy
the Hamiltonian and momentum constraint equations
(see, e.g., [25.3]). The momentum constraint is

Db.K
ab �Khab/D 8�Tbcnch

a
b : (25.86)

Contracting both sides with a rotational vector field 'a

and integrate by parts to obtain

1

8�

I
S2

Kab'
arb d2V �

1

8�

I
S1

Kab'
arb

D

Z
H

�
Tab


a'bC
1

16�
PabL'hab

�
; (25.87)

where Pab D Kab �Khab. We then identify the angular
momentum of a cross-section S as

J.'/S D�
1

8�

Z
S

Kab'
arb d2V : (25.88)

Equation (25.87) is thus a balance law for angular
momentum [25.27, 28]. It relates J.'/S2

� J.'/S1
with the

gravitational and matter flux crossing the horizon be-
tween S2 and S1. We note that if 'a is a Killing vector of
the metric hab, then the gravitational contribution van-
ishes identically.

A similar (but more involved calculation) leads to
a balance law for the change in area, or rather for the
area radius R defined as RD

p
a=4� [25.27, 28]

R2

2
�

R1

2
D

Z
H

Tab

a�b d3V

C
1

16�

Z
H

Nr
�
j� j2C 2j�j2

�
d3V :

(25.89)

Here j� j2 WD �ab�
ab with �ab being the shear of the out-

going null vector `a D 
aC ra; j�j2 WD �a�
b where �a D

habrcrc`b; and Nr WD jDaRDaRj1=2. Equation (25.89) is
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the desired area balance law. Again the flux terms con-
sist of a matter and gravitational contributions. The in-
tegrand in the gravitational part is manifestly local and
nonnegative, and the matter contribution is positive if
the dominant energy condition holds. The gravitational
contribution in fact vanishes in spherical symmetry as
it should. Along similar lines, Jaramillo and Gourgoul-
hon obtained a second-order differential equation for
the area [25.60] which leads to a causal evolution of
the area subject to initial conditions (the analogous evo-
lution of the area of an event horizon [25.61] turns
out to be teleological in the sense that it requires one
to specify a boundary condition near future timelike
infinity).

Let us conclude with few words about angular mo-
mentum. We have identified (25.88) with the angular
momentum of a cross-section of the dynamical hori-
zon, while earlier we had identified (25.83) with the
angular momentum of a cross-section of an isolated
horizon. It can be shown that when 'a is a symmetry
of the intrinsic metric, then the two agree. Recently, it
was shown by Jaramillo et al. [25.62], that for an ax-
isymmetric MOTS which is stably outermost, and if the
spacetime satisfies the dominant energy condition, then
the angular momentum J defined as above, satisfies the
inequality jJj 	 a=8� where a is the area of S. Here, ax-
isymmetry is imposed only at S and not globally. This
surprising result further validates the identification of
(25.88) as the angular momentum.

25.5.2 Uniqueness Results
for Dynamical Horizons

In earlier sections, we have already discussed the lo-
cation and time evolution of trapped and marginally
trapped surfaces. We now discuss further results ob-
tained by Ashtekar and Galloway [25.63] related to the
issue of uniqueness of marginally trapped surfaces in
the dynamical case.

The first result, proved in [25.63], concerns the
uniqueness of the foliation of a dynamical horizon by

marginally trapped surfaces. Let H be a dynamical
horizon foliated by a set marginally trapped surfaces
St with t being a continuous real parameter taking val-
ues within an open interval. Let S be a weakly trapped
surface in H , i. e., both of its expansions are non-
positive: �.`/ 	 0, �.n/ 	 0 (in particular, S could be
a marginally trapped surface). Then S must in fact be
a marginally trapped surface and must coincide with
one of the St. This shows that the foliation of H by
the St must be unique. As a corollary, consider, as
in Fig. 25.9, an MTT generated by MTSs St which
lie in spacelike surfaces ˙t. This is a situation com-
mon in numerical relativity where one uses ˙t for time
evolution, and one locates MTSs on them. If the inter-
section ˙ 0

TH is not one of the St, then it cannot
be a marginally trapped surface. This is illustrated in
Fig. 25.7 for the Vaidya spacetime. The intersection of
the nonsymmetric spatial hyper-surface with the spher-
ically symmetric dynamical horizon is the red surface,
and it is not a marginally (or weakly) trapped surface.
Thus, if we had a different foliation ˙ 0t0 and we locate
MTSs on these spatial hyper-surfaces, then we would
end up with a different dynamical horizon H 0. We
note again the dramatic difference for an isolated hori-
zon where every spherical cross-section is a marginally
outer trapped surface.

The question then arises: how different can H 0 be
from H ? A partial answer is provided by the next
result [25.63]: There are no weakly trapped surfaces
contained in the past domain of dependence D�.H /
(apart from those which make up H itself). (The past
domain of dependence D�.H / is the set of spacetime
points p such that every future causal curve from p inter-
sectsH .) In particular, this result rules out a dynamical
horizon contained in D�.H /�H . Once again, this
result is illustrated by the Vaidya example discussed
earlier in Fig. 25.4. The nonsymmetric surface S in this
figure is partly inside and partly outside the spherically
symmetric dynamical horizon. More generally, weakly
trapped surfaces lying partly inside D�.H / are not
ruled out.

25.6 Outlook

As discussed in Sect. 25.1, ever since the discovery
of the Schwarzschild solution almost a century ago,
research in black holes has led to seminal develop-
ments in theoretical, observational, and computational
physics. This includes the singularity theorems, black

hole thermodynamics, the uniqueness theorems, the
cosmic censorship hypothesis, black hole entropy cal-
culations in various approaches to quantum gravity,
the various astrophysical phenomena involving black
holes, and the recent results from numerical relativity.
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Fig. 25.12 This situation is ruled out by the uniqueness re-
sults of Ashtekar and Galloway. If there is a dynamical
horizon H , then there cannot be another dynamical hori-
zonH 0 lying completely in the past domain of dependence
D�.H /

The framework of quasi-local horizons, which takes
trapped and marginally trapped surfaces as its starting
point, provides a unified approach for studying vari-
ous aspects of black hole physics. While we have only
touched upon a few aspects and applications of this
framework, the material presented in this chapter will
hopefully motivate the reader to delve further into the
subject. An important theme in this discussion is that
to base our understanding of black holes on lessons
from stationary cases can be misleading. Dynamical
situations have some essentially different features and
intuition from stationary examples can easily lead us
astray. We have illustrated this by the Schwarzschild
and Vaidya examples. In this chapter, we have intro-
duced trapped surfaces and various kinds of quasi-local
horizons through examples. The eventual goal of these
studies (from a physics viewpoint) is to understand
the properties of the surface of a black hole. We have
discussed the inadequacy of event horizons for this
purpose due to its teleological properties, and it is de-
sirable to find a suitable replacement. Penrose’s trapped
surfaces and the boundary of the trapped region seem
ideally suited for this task and lead naturally to the var-
ious definitions of quasi-local horizons. The simplest
example is of course the Schwarzschild black hole. In
this example, the boundary of the trapped region agrees
with the event horizon, and both notions give rise to the
same physical ideas. Difficulties arise however when
we consider nonstationary black holes. We illustrated
this through the imploding Vaidya spacetime. The in-
tuitively obvious horizon, the analog of the rD 2M
hyper-surface in Schwarzschild is a spherically sym-
metry dynamical horizon and it is separated from the

event horizon. However, the nonspherically symmetric
outer trapped surfaces extend up to the event horizon.
To make matters more complicated, trapped surfaces
do not extend all the way to the event horizon. We
used these examples as motivations for general defi-
nitions and we reviewed some basic results regarding
trapped surfaces and quasi-local horizons. We saw that
marginally trapped surfaces are not as ill-behaved as
one might think, and under physically reasonable con-
ditions, they do evolve smoothly. The equilibrium case,
described by isolated horizons, is also of great inter-
est. It covers a wide variety of situations where a black
hole is in equilibrium in a dynamical spacetime and is
the best understood quasi-local horizon. Finally, in the
dynamical case, we saw that one can assign physical
quantities such as mass, angular momentum, and fluxes
through dynamical horizons.

There are a number of topics that we have not
discussed. In particular, we have not discussed the
various applications of these notions in numerical rel-
ativity. Similarly, our discussion has been restricted
to the classical world and we have not talked about,
e.g., the quantization of isolated horizons and the black
hole entropy calculations. Even in the discussion of
the mathematical properties of quasi-local horizons, we
have discussed black hole multipole moments, symme-
tries, and inclusion of various kinds of matter fields only
very briefly. Another significant omission is the discus-
sion of black holes near equilibrium. Reviews of these
topics can be found in, e.g. [25.64–66].

We have seen that the outstanding question in this
field is the nonuniqueness of dynamical horizons. We
have discussed some restrictions on where dynamical
horizons can be located. However, it is a fact that there
are a multitude of smooth marginally trapped tubes and
dynamical horizons in a general black hole spacetime,
and there seems to be no obvious way of picking a pre-
ferred one. While there could be reasonable choices in
specific examples, there does not seem to be any general
solution to this problem. While one can get away with
using event horizons in globally stationary spacetimes,
choosing to live with event horizons in general is not
an option because of its global properties. One could
perhaps consider dealing with the full set of dynamical
horizons and marginally trapped tubes. Many of them
are smooth one can study them individually; e.g., the
dynamical horizon flux formulae apply to all dynam-
ical horizons equally. However, if we wish to assign
physical properties to the black hole such as mass, an-
gular momentum, fluxes, and higher multipoles, which
one should we choose? We will generally get differ-
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ent results depending on our choice. The boundary of
the trapped region could be a reasonable alternative,
but as we have seen, it is generally not a marginally
trapped tube itself. It is also not clear whether one can
use this boundary to study, say, black hole thermody-
namics and other physical phenomena that we believe
are true for black holes, and besides, this boundary also
has a number of global properties and is difficult to lo-
cate (thus making it not better than event horizons in
many regards). An interesting possibility, suggested by
Bengtsson and Senovilla, is the core of the black hole

region, i. e., the portion of the trapped region where all
trapped surfaces penetrate. Removing the core would
then completely eliminate all trapped surfaces. If it is
indeed a proper subset of the trapped region, then is
its boundary a dynamical horizon? There are indica-
tions that the region r 	 2M.v/ of Vaidya is such a core,
and its boundary is the spherically symmetric dynami-
cal horizon. However, the core is not unique and some
cores are not spherically symmetric [25.15]. It is an
interesting open question whether this idea can be de-
veloped further.
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26. Gravitational Astronomy

B. Suryanarayana Sathyaprakash

This chapter is about opening the gravitational
window to observe the Universe. Although the
weakest of all known forces, gravity plays a dom-
inant role in forming stars and galaxies, shaping
the large-scale structure, and driving the expan-
sion of the Universe. Gravity has so far played
a passive role in our understanding. We only wit-
ness its influence indirectly by observing its effect
on star light (Doppler effect, cosmological redshift,
gravitational lensing, etc.). However, we are at
a momentous period that could soon transform our
picture of the Universe by opening the gravitational
window for observational astronomy. Gravitational
waves have already been critical for understanding
how neutron star binaries evolve [26.1, 2]. How-
ever, we have not directly observed the waves
themselves. This will change before the end of this
decade when several different methods of observ-
ing gravitational waves will reach sensitivity levels
at which we should finally begin to unravel some
of the deepest questions in astronomy, cosmology,
and fundamental physics. The chapter by van den
Broeck will deal with the two latter topics. In this
chapter, we will discuss what gravitational waves
are (Sect. 26.2), how they interact with matter
(Sect. 26.3), on-going and future projects aimed at
detecting cosmic gravitational waves (Sect. 26.4),
expected and speculative astronomical sources,
and a list of open problems on which gravitational
astronomy could shed some light (Sect. 26.5).
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26.1 Background and Motivation

Astronomy began with optical telescopes. Galileo’s
seminal observations in ca. 1610 of Jovain moons just
� 30 light minutes away was a massive blow to the geo-
centric view and forever changed our conception of the
Universe. It took another 300 years before technolog-

ical advances made it possible in the early twentieth
century to build telescopes that were able to detect star
light outside the Milky Way and establish that we live
in an expanding Universe. The nineteenth and twenti-
eth centuries also saw another revolution in astronomy,
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namely observations outside the visible part of the elec-
tromagnetic spectrum. Indeed, if our only view of the
Universe was through the visible part of the electro-
magnetic spectrum we would not have discovered that
the Universe started in a big bang as evidenced by the
cosmic microwave background, or that some massive
stars could end their lives as rapidly spinning neutron
stars which emit pulses of radio waves, nor that black
holes could power intense source of x-rays. These are
but a small number of examples to show that stars are

multimessengers that deposit quite a bit of energy in
parts of the electromagnetic spectrum that would go un-
noticed if all we had were optical telescopes. In fact,
at different stages in their evolution stars deposit en-
ergy in infra-red, optical, UV, neutrinos, cosmic rays,
radio, x-rays, gamma rays, and gravitational radiation.
The only way to build a comprehensive picture of the
Universe is to watch it through all of these windows and
the twentieth century paved the way for making obser-
vations in all but one.

26.2 What Are Gravitational Waves?

Gravitational waves are generic to any theory of grav-
ity that is consistent with the special theory of relativity.
In any relativistic theory interactions propagate at a fi-
nite speed and gravity is no exception. In fact, many
attempts were made in the past to incorporate the fi-
nite speed of gravity (most notably by Laplace [26.3]),
and the existence of gravitational waves was envis-
aged by Poincaré well before Einstein developed his
general theory of relativity. In this section we will pro-
vide a heuristic picture, at the risk of a lack of rigor,
of what gravitational waves are, highlighting only the
key results and leaving out all intermediate steps of
calculations.

26.2.1 The Newtonian Picture
and Maxwell’s Equations

In Newtonian gravity the gravitational potential ' gen-
erated by mass density � is given by the Poisson
equation

r2' D 4�G� ; (26.1)

where G is Newton’s gravitational constant. We can
think of this equation as the limit of the wave equation
in which the speed v of the interaction is infinite

�
1

v2

@2'

@t2
Cr2' D 4�G� : (26.2)

In the Newtonian picture, therefore, gravity propagates
at infinite speed and the potential exhibits no wave-like
properties. If this were true, it would have been possi-
ble to build a gravity telegraph that would, in principle,
transmit signals at infinite speed, which would be in-
consistent with special relativity.

On the contrary, Maxwell’s equations of electro-
dynamics are, in the Lorenz gauge [26.4] (most text-
books wrongly attribute these gauge conditions to H.A.
Lorentz; in reality it was L. Lorenz who found them
first, see, for instance, [26.5]), explicit wave equations
in vector and scalar potentials, A and �, respectively

���
@2A
@t2
Cr2AD��J ;

���
@2�

@t2
Cr2� D�

�

�
: (26.3)

Here J and � are the current and charge densities, � is
the permittivity of the medium and � its permeabil-
ity. The general solution to these equations consists
of not only the Coulomb and induction fields that
fall off with distance as r�2 but also radiative fields
that fall off as r�1 and propagate at a finite speed
1=
p
��. Maxwell noticed that in vacuum (permittiv-

ity �0 D 8:854�10�12 F m�1 and permeability �0 D

4� �10�7 H m�1) the speed cD 1=
p
�0�0 D 3:00�

108 m s�1 is the same as the speed of light, which
prompted him to propose that light is a form of elec-
tromagnetic waves – a truly remarkable feat.

26.2.2 Einstein’s Gravity
and Gravitational Waves

Einstein is believed to have been greatly influenced by
the consistency of Maxwell’s equations with special rel-
ativity in developing his new theory of gravity, in which
gravitational interaction has to necessarily propagate at
a finite speed. General relativity differs from Newtonian
theory in other respects too. Firstly, all forms of matter
and energy, including stresses and pressures that could
initially work against gravity, are sources of the field.
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This has the consequence that when objects reach a cer-
tain compactness the very stresses that are needed for
their stability will facilitate gravitational collapse, lead-
ing to the formation of a black hole. (Compactness �
is a measure of an object’s gravitational radius RG D

GM=c2 relative to its actual radius, i. e., � � RG=RD
GM=c2R, where M is the object’s mass.)

Secondly, instead of a single scalar field ', gen-
eral relativity contains ten potentials, the components
of a symmetric second rank tensor g�� , corresponding
to the background metric of spacetime. Far away from
an isolated source the geometry is close to Minkowski
spacetime. It is then possible to write the metric such
that it is only a small perturbation of flat spacetime

g�� D ��� C h�� ; kh��k� 1 : (26.4)

When only linear terms are kept in the metric per-
turbation h�� Einstein equations simplify to wave
equations

�
1

c2

@2h��
@t2

Cr2h�� D 16�GT�� ; (26.5)

where h�� D h�� � .h=2/��� is called the trace-
reverse of h�� and T�� is the energy–momentum
tensor of the source of the gravitational field. As in
the case of Maxwell’s equations, here too the gen-
eral solution consists of a Newtonian field that falls
off as r�2 and a radiative solution that drops off
as r�1. Thus, Einstein’s theory admits wave-like so-
lutions that travel outward from their source at the
speed of light. (Owing to their very weak interaction,
gravitational waves are not easily dispersed or attenu-
ated by the medium in which they travel. As a result
there is no need to introduce the concepts of permit-
tivity and permeability of a medium for gravitational
waves.)

Thirdly, general relativity is a generally covariant
theory and so Einstein equations are the same in all
coordinate frames. Together with the fact that four
of the ten Einstein equations are constraint equations,
general covariance implies that there are only two dy-
namical degrees of freedom in the theory. Similarly,
weak gravitational fields and gravitational waves are
also described by two degrees of freedom, or two po-
larizations. To specify these two degrees of freedom,
it is necessary to choose a specific gauge and coordi-
nate system. A convenient gauge choice is the one that
keeps only the transverse part of the metric perturbation
nonzero (i. e., h��k� D 0, where k� is the wave vector)

and makes it traceless (i. e., h
�
� D 0). For a wave trav-

eling along z axis these conditions imply
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(26.6)

where h
C

� h
TT
xx D�h

TT
yy is called the plus polarization,

h
�

� h
TT
xy is called the cross polarization, and the sym-

bol TT is used to denote that the metric components are
computed in the transverse-traceless gauge.

Gravitational waves are sometimes referred to as
ripples in the very fabric of spacetime. This phrase-
ology stems from the fact that the components of the
curvature tensor themselves exhibit oscillatory behavior
in the presence of gravitational waves. Moreover, the
effect of gravitational waves is in many ways similar
to that of tidal gravitational forces but with one im-
portant difference: the tidal field due to radiation falls
off as r�1, while tidal fields of stationary fields fall off
as r�3.

In Schwarzschild geometry, in a freely falling
frame, the nonzero independent components (a caret on
components indicates that this is a freely falling sys-
tem of coordinates and not the usual Schwarzschild
coordinates) of the Riemann tensor are proportional to
M=r3 [26.6]

ROr
O�Or O� D�R

O�
O' O� O'
D�

2M

r3
;

R
O�
O� O� O�
D R O'

O� O' O� D�R
O�
Or O�Or D�R O'

Or O'Or D
M

r3
;

where M is the mass of the black hole and r is the ra-
dial distance. This is reminiscent of the tidal field in
Newtonian gravity. The effect of this field is to cause
tidal deformation of nearby (radial) geodesics, stretch-
ing the distance between them in the radial direction
and squeezing in the transverse direction due to the op-
posite signs of ROr

O�Or O� and R O�
O� O� O�

. It is important to note
that this field drops off with distance as r�3, and so dis-
tant objects have negligible tidal fields. However, this is
not so in the case of gravitational radiation.

For a plane wave traveling in the z direction, the
nonzero independent components of the curvature ten-
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sor in the TT gauge are

Rx
0x0 D�

1

2
RhTT

xx ;

Ry
0x0 D�

1

2
RhTT

xy ;

Ry
0y0 D�Rx

0x0 ; (26.7)

from which we can see that the components of the cur-
vature tensor fall off as inverse of the distance from
the source as h/ r�1. Even though the stationary part
of the field falls off very rapidly, the radiative part
of the field decreases only as inverse of the distance.
This explains why gravitational waves from a system
can be detected although the stationary part of the
field might be completely negligible. Moreover, since
Ry

0y0 D�Rx
0x0 the effect of gravitational waves is also

to cause a tidal deformation of geodesics. This property
of the waves often dictates the design of a gravitational
wave detector.

26.2.3 Gravitational Wave Luminosity

As stated in Sect. 26.1, for our description of the
Universe gravity plays a key role (formation of stars,
expansion of the Universe, etc.). Under most circum-
stances gravitating systems are nearly stationary and
so emit a negligible amount of gravitational radiation.
However, one expects relativistic sources to be very
powerful emitters of gravitational waves.

In electrodynamics, one of the most common and
powerful ways of relating the nature of radiation from
a system to the geometry and dynamics of the source
is the method of multipole expansion. The expansion
results in a series that consists of monopole, followed
by dipole, quadrupole, octupole, etc. A time-varying
monopole, for example a charged sphere whose radius
oscillates in and out, emits no radiation, a result that fol-
lows from the conservation of charge [26.7]. All other
time-varying multipoles can, in general, give rise to
electromagnetic radiation. The luminosity of the radi-
ation due to the first three multipoles is [26.8, 9]

LD 1

4��0c3

�
2

3
Rdk Rd

kC
2

3
R�k R�

kC
1

20c2
«Dkl «Dkl

�
;

(26.8)

where dD
P

er and �D
P
.e=2c/.r� v/ are the elec-

tric and magnetic dipole moments, respectively, and
Dkl D

P
e.rkrl�

1
3 ıklr2/ is the electric quadrupole mo-

ment. (In these expressions, the sum is over all charges

in the system, e, r, and v are the charges, positions,
and velocities of the particles.) The multipole expan-
sion assumes that the size of the system is much smaller
than the wavelength of radiation, in which case higher-
order terms can be neglected. As we can see, the electric
dipole is the most dominant term in the above expansion
and it is the most efficient way to produce electromag-
netic radiation. The next multipoles of importance are
the magnetic dipole and electric quadrupole, each be-
ing smaller than the dipole by a factor v2=c2, where v is
the typical speed of particles. (The similarity of the first
and second terms is somewhat misleading; note that the
magnetic moment has a factor of v=c in its definition,
and so the contribution of the second term is O.v2=c2/
smaller than the first term.) Thus, in the slow-motion
approximation (another assumption made in deriving
(26.8) for luminosity) the magnetic dipole and electric
quadrupole contributions are very small.

A multipole expansion of the radiative solutions can
be carried out also for gravitational radiation generated
by a system of masses in motion. (Due to the nonlin-
ear nature of general relativity, the full treatment of
the problem of wave generation requires the applica-
tion of a number of different approximation techniques
beyond the multipole expansion. These include the
post-Minkowskian approximation, an expansion in G;
post-Newtonian approximation, an expansion in v=c;
long wavelength approximation, an expansion in size a
of the source; and far field expansion, an expansion in
1=r, where r is the field point. See [26.10] for a re-
cent review.) Just as in electromagnetism, here too the
monopole term is absent – a result that follows from
the conservation of mass. However, in gravity there
is no dipole radiation either as the time derivative of
the mass dipole is nothing but linear momentum and
so its time-derivative will be zero for an isolated sys-
tem of masses. The next most important terms are the
analogs of the magnetic dipole (called current dipole)
and electric quadrupole (called mass quadrupole). The
current dipole is nothing but the angular momentum
LD

P
mr�v. Conservation of angular momentum im-

plies that there will be no current dipole radiation
either [26.9].

The most dominant multipole radiation in gravity
is a time-varying mass quadrupole. The luminosity in
gravitational waves from a system with mass density
�.r; t/ is given by

LD G

5c5
«Qij«Q

ij ;

Qij D

Z
�

�
rirj �

1

3
ıijr

2

�
d3x : (26.9)
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This is the famous quadrupole formula and one of the
earliest formulas to be derived in the context of gravi-
tational wave generation [26.11] (see also [26.8]). The
quantity Qij is called the reduced quadrupole moment
to distinguish it from other similar quantities that ap-
pear in other areas of physics. Several interesting points
emerge from the quadrupole formula:

1. For a spherically symmetric mass distribution the
reduced quadrupole moment is identically zero.
Therefore, it is only nonspherical accelerations of
masses that can produce any radiation. In gen-
eral, axisymmetric motion can produce radiation;
however, an axisymmetric body rotating about its
symmetry axis does not.

2. As in the case of electric quadrupole, the luminos-
ity is suppressed by a factor of c5. Consequently,
only systems with relativistic velocities can be ex-
pected to have appreciable emission of gravitational
radiation.

3. Since the luminosity depends on the third derivative
of the quadrupole, it is not enough for a system to
have a large quadrupole in order to be a good source
of gravitational radiation; the quadrupole must
change rapidly to efficiently convert mechanical en-
ergy into gravitational radiation. For example, a sys-
tem could have a very large quadrupole moment if it
has a large size, but gravitationalwaves will be weak
unless the system is rapidly accelerating.

4. Luminosity grows rapidly as a function of fre-
quency ! or equivalently compactness � and ve-
locity v in the system. Purely from dimensional
analysis (and assuming that only two terms in the
sum in (26.9) survive) we see that for a system
whose frequency scale is ! and physical scale is R,
luminosity grows as L� 2GM2R4!6=.5c5/. Fur-
thermore, for self-gravitating systems!2 � GM=R3

(equivalently the velocity v in the system is v2 �

GM=R) and so

L� 2c5

5G

�
GM!

c3

�10=3

�
2c5

5G
�5 �

2c5

5G

�v

c

	10
:

This shows that systems have to be very com-
pact (i. e., large �) in order for the radiation to
be appreciable. Equivalently, luminosity grows as
a very steep power of the nonspherical velocity in
the system. The constant c5=G' 3:6�1052 J s�1 �

1026L
ˇ

, is the factor needed to go from the di-
mensionless luminosity �5, to one that has physical
dimensions. This is an enormous luminosity, at least
a factor 103 larger than the luminosity in visible

light of all the stars in the Universe. Since it is
multiplied by the fifth power of compactness, most
gravitational wave sources never reach this lumi-
nosity. However, in the case of binary black holes,
for which the compactness can be of order unity,
the luminosity does come close to this stupendous
value independent of the total mass of the system,
although the duration over which the system has
this large luminosity is greater for more massive
systems.

All of the above go on to show why gravitational
waves are not easy to produce: the source must be
relativistic and compact with a strongly time-varying
quadrupole moment. Evidently, all of these conditions
are related to each other in a self-gravitating dynamical
system (e.g., nonspherical collapse of a star or a tight bi-
nary consisting of compact stars), and so when any one
of the conditions is met there is a good chance others
are met too. So we should expect prominent sources of
gravitational waves to be compact, relativistic sources.

How long can a source of gravitational radiation
last? It depends on the total amount of energy that
is available to convert into radiation. For example, in
a binary system of stars on a circular orbit of size R
the available energy is roughly �G�M2=2R, where
M D m1Cm2 is the total mass of the system and � D
m1m2=M2 is the symmetric mass ratio. A source of lu-
minosity L, with energy dE will last for a time dtD
dE=L. The time tC it takes for the system’s energy to
change from Ei to Ef (size Ri to Rf� Ri) is

tC D

EfZ
Ei

dE

L D
RfZ

Ri

1

L
dE

dR
dR'

5G

256c3

M

�
��4

i ;

(26.10)

where �i D GM=.c2Ri/ is the initial compactness of
the source. This equation shows that for noncompact
sources (�i� 1), the gravitational radiation damping
operates on extremely large time scales. Stellar mass
binaries spend millions of years with large orbital peri-
ods of� hours or days, but will only last for a few days
or hours when they reach orbital periods of� seconds.

Let us finally note that the quadrupole formula is
the lowest-order post-Newtonian approximation which
assumes that:

a) The gravitational field inside the source is weak
b) The motion inside the source is slow
c) The size of the system is small compared to the

wavelength of the emitted waves.
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The quadrupole formula has been vindicated by ra-
dio observations of the Hulse–Taylor binary [26.12],
a system comprising of two neutron stars in a tight
orbit. Given the gravitational wave luminosity of the bi-
nary and its energy E, one can use the energy balance
equation LD� dE

dt to compute the orbital evolution of
the system. The energy balance equation simply states
that the gravitational wave luminosity results in loss
in binding energy of the system. The quadrupole for-
mula predicts that the binary should emit gravitational
waves and this loss of energy should cause the binary
orbit to shrink. The observed rate of change of the pe-
riod PPb agrees with the prediction of the quadrupole
formula, PPGR D�2:402531˙0:000014�10�12, to bet-
ter than 0:2%: PPb= PPGR D 0:997˙ 0:002 [26.1, 2].

26.2.4 Wave Amplitudes in Terms
of Source Moments

What is the relationship between the luminosity in grav-
itational waves to the wave amplitudes? How are the
two gravitational wave polarizations related to the mul-
tipole moments of the source? These are important
questions because they would help in calculating the
magnitude of the amplitudes from source luminosities
but also, more importantly, in inferring the dynamics of
a source by observing the radiation that it emits.

The wave amplitudes hTT
ij are related to the

quadrupole tensor Qij of the source by [26.10]

hTT
ij D

2G

c4r
Pijab

d2Qab

dt2
;

Qij D

Z
�

�
xixj �

1

3
.xkxk/ıij

�
d3x ; (26.11)

where rD jrj is the distance to the source, � is the
source density, and Pijab D PiaPjb�

1
2 ıijPijPab is the TT

projection operator, where Pij D ıij�ninj is the operator
that projects orthogonal to the vector On� r=r.

The combination c4=G' 1:2�1044 N has dimen-
sions of force. One can think of the inverse of this
quantity (recall that the coupling of the stress–energy
tensor of matter to the Einstein tensor in the field
equations is 8�G=c4) as a measure of the coupling of
accelerated motion of bodies to the curvature of space-
time. A force of this order of magnitude is required to
cause changes of order unity in the geodesics. This il-

lustrates that spacetime is extremely stiff and enormous
forces are required to change its curvature.

Furthermore, the second derivative of the
quadrupole moment RQij has dimensions of energy; it is
the energy in the nonspherical motion of the system.
For spherically symmetric motions the quadrupole
moment Qij is identically zero. For a system in which
the entire mass M of the system is in nonspherical
motion (a situation that occurs in BBH), components
of RQij are of order !2MR2, where, as before, ! is
the frequency scale of the source. Additionally, for
self-gravitating sources, the frequency is related to
its size R via Kepler’s law: !2 � GM=R3, giving the
maximum one can expect for the amplitude to be

h. GM

c2R
�

GM

c2r
D ��ext ; where �ext D

GM

c2r
:

(26.12)

Thus, for a source at a given distance, the amplitude of
the waves is the greatest for the most compact source,
when it is equal to the external gravitational poten-
tial �ext of the source at the observation point. Black
holes and neutron stars are the most compact objects
in the Universe and interactions involving them are the
primary sources of gravitational waves.

For a binary of total mass M D 10M
ˇ

, at a distance
of 100 Mpc, the amplitude of the source when the bi-
nary is about to coalesce (i. e., � � 1

2 ) is h� 10�21.
Recall that at this stage the luminosity in gravitational
waves would be L� 4�1050 J s�1, a very bright source
indeed. Yet the amplitude is not so large due to the
weak coupling of gravitational waves to matter. It is
useful to obtain a rough idea of how the amplitude of
gravitational waves is related to the source’s luminosity.
Comparing (26.9) and (26.11) and writing PhD !hD
2� fh, where f is the frequency of gravitational waves,
we observe that, as an order of magnitude

L� c3

20G
.r Ph/2 ;

h2 �
20G

c3

L
!2r2

) h�

r
5G

c3

�E

�t

1

� fr
; (26.13)

where �E is the energy in gravitational waves emitted
over a time �t.
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26.3 Interaction of Gravitational Waves with Light and Matter

Understanding the basic effect of the waves on time-like
and null geodesics is essential in appreciating how dif-
ferent schemes designed to detect gravitational waves
work, but also necessary in discovering new methods
of detection. In this section we will discuss how gravi-
tational waves interact with light and matter.

Universality of gravitation and the equivalence
principle imply that it is impossible to distinguish be-
tween noninertial reference frames from gravitational
fields in a small local neighborhood in spacetime:
no experiment restricted to infinitesimally small time
and length scales can differentiate between acceler-
ated reference frames from gravitational fields (see,
e.g., [26.6]). For instance, no local experiment would
detect the presence of the Earth’s gravity in a freely
falling lift. One way to infer the presence of such a field
is to compare the frequency of a standard source of
light as it propagates from one point to another. As light
climbs up a gravitational potential it is redshifted. An-
other way to detect gravitational fields is to watch two
nearby freely falling particles. After some time, the two
particles will be seen to approach each other. The ef-
fect of gravitational waves on light beams and free test
masses is no different from the effect of gravity itself.
We will discuss the two physical effects in the context
of gravitational waves. To this end it will be useful to re-
call the form of the metric for weak gravitational waves
and associated symmetries. The metric of a plane grav-
itational wave traveling in the z direction is given by
(26.6)

ds2 D�c2 dt2C
h
1C h

C

�
t�

z

c

	i
dx2

C
h
1� h

C

�
t�

z

c

	i
dy2

C 2h
�

�
t�

z

c

	
dxdyC dz2 : (26.14)

In null coordinates, defined by � D ctCz and �D ct�z,
the metric takes the form

ds2 D�d� d�C Œ1C h
C

.�/� dx2

C Œ1� h
C

.�/� dy2

C 2h
�

.�/dxdy :

This metric is independent of the coordinates .�; x; y/
and so there are three Killing vectors K1 D @=@� , K2 D

@=@x, and K3@=@y, with components in the .t; x; y; z/ co-

ordinates given by

K�1 D .c; 0;0; 1/ ;

K�2 D .0;1; 0; 0/ ;

K�3 D .0;0; 1; 0/ : (26.15)

We will use these results in the remainder of this section
to discuss the effect of gravitational waves on null and
time-like geodesics.

26.3.1 Doppler Modulation of Light
in the Presence
of Gravitational Waves

The path of light in a gravitational field is described by
null geodesics. This is true even when the background
spacetime is that of a gravitational wave. Just as in
stationary gravitational fields, we can use the Doppler
effect of the field on null geodesics to detect gravita-
tional waves.

Let us consider a beam of light in the field of a grav-
itational wave propagating in the z direction. The beam
is sent from the emitter located at the origin of the coor-
dinate system to a receiver a distance L away from the
emitter, as in Fig. 26.1. The directions of the light beam
and gravitational wave define a plane which we take

x

L

γ

Receiver

Emitter

z

Fig. 26.1 A light beam (dashed line) making an angle �
with the z axis and traveling in the xz plane is sent from
the emitter to a receiver located at a distance L from the
emitter. The frequency of light at the receiver is Doppler
modulated relative to the emitter as it travels in the field of
a gravitational wave propagating in the z direction (whose
wave fronts are shown parallel to the x axis)
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to be the xz plane. Furthermore, let us assume that the
wave consists of only the plus polarization, i. e., h

C

¤ 0
and h

�

D 0. In this case, the metric simplifies to

ds2 D�c2 dt2C
h
1C h

C

�
t�

z

c

	i
dx2

C
h
1� h

C

�
t�

z

c

	i
dy2C dz2 : (26.16)

Although we have assumed a specific polarization and
direction for the propagation of the waves, the final re-
sult can be written in a covariant form.

Let the light beam make an angle � with the z axis.
In flat spacetime such a light beam will be described by
a null vector U� D �.1; c sin �; 0; c cos �/, where � is
the frequency of light. U� parallel transported along
itself defines the path of light and, in flat spacetime,
both � and � remain fixed as the beam propagates.
In a curved spacetime, however, neither will remain
fixed. Following Estabrook and Wahlquist et al. [26.13],
we will compute how the frequency of light is modu-
lated.

Let us denote by �E and �R frequencies, by �E

and �R angles, and by V�E and V�R null vectors, at the
emitter and receiver, respectively. To linear order in the
metric perturbation h˛ˇ , a null vector V� in the per-
turbed spacetime is related to the flat spacetime null
vector U� by V� DU�� 1

2�
�˛h˛ˇUˇ . Using this re-

lation it is easy to see that

V�E D �E

�
1; c sin �E

�
1�

1

2
h
C

.tE/

�
; 0; c cos �E

�

V�R D �R

�
1; c sin �R

�

�
1�

1

2
h
C

�
tR�

L cos �

c

��
; 0; c cos �R

�
;

where tE and tR D tECL=c are the times when the beam
leaves the emitter and is received at the receiver, re-
spectively. Note, however, that the gravitational field at
the receiver is evaluated not at time tR but at an earlier
time tR� L cos �=c; the gravitational wave phase does
not quite catch up with the beam as they travel in differ-
ent directions (for � one can use either �E or �R, as they
differ only by order h).

The null vectors at the emitter and receiver are re-
lated by parallel transport and owing to the existence of
Killing vectors (cf. (26.15)), we have three conserved
quantities: �i � g��V�K�i , for iD 1; 2; 3. This means
that �i computed at the emitter is the same as that com-
puted at the receiver. Due to our choice of geometry �3

is identically zero. For iD 1; 2 we have

�1E D �1R) �E .1� cos �E/D �R .1� cos �R/

�2E D �2R) �E

�
1C

1

2
h
C

.tE/

�
sin �E

D �R

�
1C

1

2
h
C

�
tR�

L cos �

c

��
sin �R :

One can eliminate �R from the above equations and
solve for the Doppler shift in the beam caused by the
wave. Again keeping only terms to linear order in h we
find

�R� �E

�E
D

1C cos �

2

�

�
h
C

.t/� h
C

�
t�

L cos �

c

��
;

(26.17)

where for � one can use either �E or �R. Except when
the beam travels in the same direction as the wave (i. e.,
� D 0; �), Doppler modulation of light can be used to
detect gravitational waves. This is the principle of op-
eration of laser interferometers (on the ground and in
space) and PTA.

An alternative interpretation of (26.17) is that the
rate at which the clocks tick at the receiver is different
from that at the emitter. By writing the rate at which the
clocks at the emitter and receiver tick as�tE D ��1

E and
�tR D ��1

R we have (to first order in h)

�tR
�tE
D 1C

1C cos �

2

�

�
h
C

�
t�

L cos �

c

�
� h
C

.t/

�
: (26.18)

In the presence of gravitational waves clocks at the
emitter and receiver tick at different rates. One can de-
tect a passing gravitational wave by comparing the rate
at which light pulses, sent at a constant rate as measured
by a clock at the emitter, arrive as measured by a local
clock at the receiver. Admittedly, the variation in the ar-
rival rate is very small. It depends on the phase of the
wave when the beam arrives at the receiver compared to
its phase when the beam leaves the emitter, which can
at best be the amplitude of the wave. The best clocks
today are stable to a few parts in 1016 [26.14], which
sets the sensitivity of a detector that uses two clocks to
h� 10�15. This is the sensitivity of a PTA (see below).

Instead of comparing the clocks at the emitter and
receiver one can simply look at the arrival times of
pulses that are sent by the emitter and then reflected
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Fig.26.2a,b The diagram shows the force field and the response of a ring of free particles due to waves of plus ((a),
h
C

D 1:6 cos !t, h
�

D 0) and cross ((b), h
C

D 0, h
�

D 1:6 cos !t) polarizations passing perpendicular to the plane of
the paper. The force field is shown when the phase of the wave is !tD 2n�, n being an integer. The strain ı`=`, where
ı` is the change in the size ` of the ring, is equal to the amplitude h of the wave: ı`=`� h=2. Over one gravitational
wave cycle, the ring deforms from one ellipse through the circle to the other ellipse and back to the first ellipse. The
deformation preserves the area

by the receiver back to the emitter. It is easy to work
out that the rate at which the light pulses return to the
emitter is

�treturn

�tE
D 1C

1

2

�
.1� cos �/h

C

�
tC

2L

c

�

C 2 cos �h
C

�
tC

L.1� cos �/

c

�

� .1C cos �/h
C

.t/

�
:

(26.19)

Sensitivity of even this arrangement would be limited
by how stable the clocks are. Interferometry avoids this
problem by comparing the round trip travel time of
light beams in two orthogonal directions; the round trip
travel time in one arm of the interferometer is used as
a reference clock against which the round trip travel
time along the other arm is compared. This is the basic
principal of operation of interferometric gravitational
wave detectors.

26.3.2 Geodesic Deviation Equation

The foregoing discussion was focussed on the effect
of gravitational waves on null geodesics. We will now
consider the effect of gravitational waves on free test

masses. To this end it is useful to ask how an oscillat-
ing Riemann curvature tensor would affect the motion
of free particles. This is answered by the geodesic de-
viation equation. The vector �� connecting a reference
geodesic and its neighbor obeys the geodesic equation

d2��

d
2
D�R�˛�ˇU˛��Uˇ ; (26.20)

where 
 is the proper time and U˛ is the four-
velocity along the reference geodesic. In flat space-
time, R�˛�ˇ D 0 and so d��=d
 D const. If initially
d��=d
 D 0, then it will continue to remain zero
since there is no acceleration. Thus, the proper distance
between two neighboring geodesics, that are initially
parallel, will remain constant. In the field of a gravita-
tional wave the curvature tensor oscillates about a mean
value of zero. When the curvature is positive, geodesics
become focussed (because of the negative sign on
the right-hand side of (26.20)) and so the proper dis-
tance decreases; when the curvature becomes negative,
geodesics diverge and the proper distance increases
from its mean value. Thus, the effect of the waves is
to cause the proper distance between two neighboring
geodesics to oscillate about its mean value.

To illustrate the effect more clearly, let us suppose
a gravitational wave is traveling in the z direction and
let us consider a system of free particles in the trans-
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verse plane lying on a circular ring of radius ` with the
origin as its center. Using (26.7), for the components
of the Riemann tensor in the field of a gravitational
wave, the geodesic deviation can be solved for an arbi-
trary point on the ring by keeping terms to linear order
in h. Figure 26.2 shows the tidal field produced by plus
(Fig. 26.2a) and cross (Fig. 26.2b) polarized waves and
how they deform a ring of free particles. The change
in length ı` is related to the gravitational wave ampli-

tude by ı`=`� h=2. Gravitational waves from a stellar
mass binary coalescence at 100 Mpc produces a strain
ı`=`� 10�21. Even if the radius of the circle is of order
`D 2 km, the expected maximum change in length is
ı`� 10�18 m, much smaller than the size of an atomic
nucleus. This shows that high precision technology and
control will be required to detect gravitational waves.
Next, we will discuss the various detectors and their
current status.

26.4 Gravitational Wave Detectors

In this section we will discuss current efforts to detect
gravitational waves and future prospects on building de-
tectors of greater sensitivity. The basic principle behind
any detector is to either measure the strain in space
caused by passing gravitational waves or to monitor the
time of flight of light beams as they traverse the variable
curved spacetime geometry produced by gravitational
waves. These principles, of course, are really based on
one and the same effect but the operation of different
detectors is more readily understood by invoking one
rather than the other.

Before we discuss the various efforts to build de-
tectors, let us first note that most gravitational wave
detectors have quite a good sensitivity to sources over
most of the sky. Naturally, they are not good in esti-
mating the sky position of a source. In fact, a single
detector yields only a certain combination of the two
polarizations called the antenna response hA.t/, where A
is an index representing detectors in a network, given
by

hA.tI ; ';  /D FA
C

.; ';  /h
C

.t/

CFA
�

.; ';  /h
�

.t/ : (26.21)

Here FA
C

and FA
�

are the antenna pattern functions (for
a definition see, e.g., [26.15]). (Schutz [26.16] calls F

C

and F
�

antenna amplitude pattern functions to distin-
guish them from F2

C

CF2
�

that he calls antenna power
pattern functions.) They are functions of the source po-
sition .; '/ on the sky and the polarization angle  ;
 is the angle between vector O (which is one of
the basis vectors (On; O; O'/ that is naturally defined in
a coordinate frame best suited to describe a detector)
and the vector OxR (which is one of the basis vectors
.OxR; OyR; OzR/ that is naturally suited to describe the ra-
diation) (Fig. 26.3a). In order to fully reconstruct the
incident radiation, a detector must measure five num-

bers: h
C

; h
�

; ; ', and  . A single detector measures
one amplitude (namely, the response hA given above)
and the arrival time of an event. It cannot disentan-
gle the two polarizations and the three angles, if the
Doppler modulation of the signal due to changing posi-
tion of the source during the course of observations is
unimportant. A long-lived source can, in general, cause
modulation of the amplitude and phase of the waves,
and these modulations depend on the sky position of
the source and also the wave’s polarization. Such mod-
ulations could allow even a single detector to infer the
two polarizations. For transient waves, however, a net-
work of three or more noncollocated detectors would
be necessary to measure the various angles and the two
polarizations, the only exception being a spherical de-
tector (see below).

Figure 26.3 shows how a network of three detec-
tors could determine the sky position of a source by
triangulation. The time delay �tk in the arrival time
of a signal in a given detector pair defines a circu-
lar annulus on the sky for possible source directions,
the thickness of the annulus depending on the error in
the measurement of time-of-arrival of the signal. Three
noncollinear detectors will define, in general, three dis-
tinct circles, which intersect at two points. One of these
is the true direction On to the source and the other On0 is
its mirror reflection in the plane formed by the three de-
tectors [26.17].

Although triangulation does not completely de-
termine the source direction, it turns out that often
individual responses hA, AD 1; 2; 3 are only consis-
tent with one of the two degenerate directions [26.18].
Thus, a network of three detectors completely deter-
mines the direction to a transient source. In order to
obtain the smallest possible error in the sky position,
detectors should be as widely spaced as practical, which
is equal to the diameter of the earth � 14 000 km. The
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Fig. 26.3 (a) The various angles to be determined by a network of detectors. In addition to the sky position .; '/
of the source, the polarization angle  between the detector preferred coordinate axes . O; O'/ and radiation preferred
coordinates .OxR; OyR/ must also be measured. (b) A network of detectors D1;D2;D3 can be used to triangulate the sky
position .; '/ of a gravitational wave source. Arrival times in each detector pair determine only a circular annulus on
the sky for possible source directions; three circles corresponding to the three detector pairs intersect at two points; one
of these is the true direction On and the other, On0, is the mirror image of On in the detector plane

angular resolution of a detector network is roughly
given by the Rayleigh criterion � � 	=D, where 	
is the wavelength of radiation and D is the average
baseline of the detector network. For 	D 3000 km,
which corresponds to a frequency of 100 Hz, and D�
10 000 km,� D 0:3 rad, and so we can expect sources
to be identified within a sky patch of � 300 square
degrees. This would be smaller by a factor equal to
the square of the signal-to-noise ratio (SNR). There-
fore, a transient source that produces an SNR of 8
(the minimum SNR required to confidently claim a de-
tection) could be localized within about 5 square de-
grees by a factor equal to the square of the SNR.
Therefore, a transient source that produces an SNR of
8 (the minimum SNR required to confidently claim
a detection) could be localized within about 5 square
degrees.

26.4.1 Resonant Mass Detectors

In ca. 1959, Joseph Weber built the first gravita-
tional wave detector at the University of Maryland,
USA [26.19]. His device consisted of a cylindri-
cal aluminium bar, termed a resonant bar antenna,
2 m in length and 1 m in diameter. Weber’s experi-
ments generated much interest in gravitational wave
detectors, and resonant mass detectors were built in
Louisiana, Stanford, Rome, CERN, Perugia, Glasgow,

Munich, and Perth (for a recent review of bar detectors,
see [26.20]).

According to the geodesic deviation equation,
a passing gravitational wave would stretch and squeeze
the antenna. The induced vibration in the bar is ampli-
fied by a transducer and recorded. The main source of
noise in resonant antennas is thermal noise and to re-
duce this as much as possible bar detectors are made
of very high-Q, typically Q� 106, and operated at
cryogenic temperatures, T � 100 mK. Bar detectors are
narrow band detectors whose operating frequency is
f � 500 Hz�1:5 kHz and so the root-mean-square am-
plitude of thermal vibrations of a bar of mass M D
103 kg is

p
hı`2i D

p
kT=.4�2f 2MQ/' 6�10�21 m.

Since `� 2 m, a wave of amplitude h causes vi-
brations of amplitude ı`D h`=2D h m, the sensi-
tivity of a bar will be limited to waves of am-
plitude hD 10�

p
hı`2i D 6�10�20, where a factor

of 10 is included to account for the SNR needed
for a detection. Most bar detectors are narrow-
band detectors, with a bandwidth of about 20�50 Hz
near a kHz. They are sensitive to strain amplitudes
h& 10�20 if the source radiates in this frequency
window.

Another type of resonant mass detector that is very
attractive is a spherical antenna. The basic idea here
is the same as that of a bar detector, namely to detect
gravitational waves by monitoring the oscillations in-
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duced in a freely suspended spherical mass in vacuum.
Two significant efforts to build and operate spherical
detectors are the MiniGrail [26.21] and Mario Schen-
berg [26.22] projects. Here too thermal noise is the
most dominant source of noise, which is reduced by
a combination of operating the detector at low temper-
ature and choosing a high-Q material for the sphere.
MiniGrail was in operation for a few years in Hol-
land [26.21] and Mario Schenberg is currently under
construction/commissioning in Brazil [26.22]. From
a purely theoretical point of view spherical antennas are
ideal detectors. A single detector can, in principle, de-
termine the sky position of a source. This is achieved by
measuring its response in five orthogonal directions in
space, orthogonal in the sense of symmetric trace-free
tensors [26.23].

26.4.2 Laser Interferometers

Resonant mass detectors operate at a frequency
of � kHz and their sensitivity bandwidth is typically
20�50 Hz at best. Many astronomical sources are ex-
pected to emit at far lower frequencies and one of
the most important sources, namely coalescing com-
pact binaries, produces a wide band signal. The chance
of detecting gravitational waves is far greater with
a detector that operates at lower frequencies and has
a wide bandwidth. Soon after Weber began operating
his bar detector, and in ca. 1962 Gertsenshtein and
Pustovoit conceived the idea of an interferometric grav-
itational wave detector [26.24]. The basic idea of an
interferometric gravitational wave detector is to com-
pare the time of flight of laser beams in the two arms
of a Michelson interferometer to infer the presence of
gravitational waves. Many such detectors have been
built and operated on the ground and a number of pro-
posals have been made to develop space missions. We
will discuss these in turn.

a) b) c)

Fig.26.4a–c Aerial view of (a) LIGO Livingston, (b) LIGO Hanford, and (c) Virgo detectors

Ground-Based Detectors. Ground-based interferom-
eters operate over a frequency range of 1 Hz to 10 kHz,
with the best sensitivity in the frequency range of 20Hz
to 2 kHz. Given that a compact binary of mass M
has the greatest luminosity just prior to coalescence
when the gravitational wave frequency is fmerge �

200.M=20M
ˇ

/Hz, ground-based detectors are essen-
tially sensitive to stellar mass sources.

There are several sources of noise at different fre-
quencies that must be mitigated to obtain a good sen-
sitivity. The main sources of noise are the photon shot
noise at f > 200 Hz, thermal noise at f � 50�200 Hz,
and seismic noise below� 50 Hz. In fact, at frequencies
below about 1 Hz, gravity gradient noise, i. e., fluctu-
ations in the Newtonian gravitational field, limits the
sensitivity.

Interferometric detectors began with prototypes at
MIT, Caltech, Glasgow, and Munich (for a historical re-
view, see [26.25]). Coincident operation of the Glasgow
and Munich prototypes for 100 h [26.26] was one of the
earliest demonstrations that the technology to build and
operate long-baseline detectors was becoming avail-
able. The Caltech 40 m prototype led to the American
Laser Interferometer Gravitational-Wave Observatory
(LIGO) [26.27]. LIGO consists of three interferome-
ters at two sites: a 4 km interferometer at Livingston,
LA (Fig. 26.4a) and one 4 km and one 2 km interferom-
eters at Hanford, WA (Fig. 26.4b). The French-Italian
Virgo [26.28] is a 3 km baseline interferometer in Pisa,
Italy (Fig. 26.4c), with sensitivity comparable to LIGO.
The Japanese TAMA [26.29] and the British-German
GEO600 [26.30] are 300 m and 600 m interferome-
ters, respectively, with sensitivity levels considerably
smaller than LIGO and Virgo.

These detectors operated between ca. 2003�2010
and took data over several science runs. Although they
did not make any detections, they not only reached very
impressive sensitivity levels [26.31] (Fig. 26.5) but also
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reached important astrophysical milestones. These in-
clude, but are not limited to:

1. Setting the best ever upper limit on the strength of
radiation from the Crab pulsar [26.32].

2. Showing that certain short hard gamma-ray burst
events of extragalactic origin might be soft gamma
repeaters [26.33]

3. Beating the nucleosynthesis bound on the strength
of the stochastic primordial gravitational wave
background [26.34].

4. Demonstrating that ellipticity of many known mil-
lisecond pulsars is less than a few parts per million
(and in some cases less than a few parts per 10 mil-
lion) [26.32].

5. Reaching upper limits on black hole binary coales-
cence rates [26.35] close to astrophysical predic-
tions [26.36]

6. A search for gravitational waves in coincidence
with 154 GRB [26.37] that occurred during the final
data taking of the LIGO and Virgo detectors before
they were shutdown for upgrades.

LIGO and Virgo detectors are being upgraded
with target strain sensitivities for LIGO as shown in
Fig. 26.5 [26.38]. They are expected to reach these
sensitivity levels on the time scale of the next 2�5 yr.
Additionally, Japan is building a new underground de-
tector called KAGRA, which will eventually deploy
cryogenic mirrors to beat the thermal noise – a key tech-
nology for future detectors.

A global network of advanced detectors with sensi-
tivity levels good enough to make first direct detection
of gravitational waves is expected to be operational be-
fore the end of this decade. However, new ideas are
already being pursued in order to improve the base-
line and science return of networks. The LIGO project
is planning to move one of the two detectors at the
Hanford observatory to India [26.39]. A detector in
India, currently under consideration by Indian fund-
ing agencies, will help improve source localization,
break the degeneracy between different physical pa-
rameters (most importantly the distance to a binary
source and the inclination angle of the binary), and
also improve the lifetime of the network [26.16, 39,
40].

Figure 26.6 shows how a network of four grav-
itational wave detectors LIGO-Hanford, LIGO-India,
LIGO-Livingston, and Virgo (HILV) can have quite
good sky coverage and achieve good sky localization

Frequency (Hz)

Sn (| f |)

101 103102

10–21

10–22

10–23

10–24

LIGO Livingston S6 sensitivity
LIGO Hanford S6 sensitivity
Early aLIGO, 2015–16
Mid aLIGO, 2016–17
Near final aLIGO, 2017–18
Final aLIGO

Fig. 26.5 Sensitivity of LIGO detectors during the sixth science
run (top two curves) and expected sensitivity at various stages
during the commissioning of advanced LIGO (aLIGO). Both the
sensitivity level at various stages and the schedule of aLIGO are
tentative and subject to change. (aLIGO sensitivity curves are
from [26.38], sensitivity curves for the sixth science run of initial
LIGO (iLIGO) are from [26.41])

of binary inspiral sources. The diagram on the left-hand
side plots the quantity

F2 �
X

ADH;I;L;V

.FA
C

/2C .FA
�

/2 :

This is a measure of the sensitivity of the network
to different parts of the sky. A single detector has
a quadrupole antenna pattern that has directions along
which the detector is completely blind. A network of
antennas, however, will be sensitive to almost the entire
sky, although its sensitivity will not be isotropic. The
diagram on the right-hand side shows the angular reso-
lution of the HILV network for binary neutron stars at
a distance of 180 Mpc. The angular resolution tends to
be better along directions of good sky sensitivity with
about 50% of the sources resolved to within 20 square
degrees [26.40].

Einstein Telescope. In Europe, a conceptual design
study to build an underground detector, called Einstein
telescope (ET), has just been completed [26.43, 44]. It
will have a triangular topology with 10 km arms and op-
erate three broadband detectors at a single site by using
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Fig. 26.6 Mollweide plot on the left shows the joint antenna pattern of the HILV network, i. e., a network consisting of
LIGO detectors at Hanford, India, and Livingston, and the Virgo detector in Pisa, averaged over the polarization angle  
and source inclination angle $. The network can detect sources almost anywhere in the sky but has different sensitivity to
different directions in the sky, varying from a minimum of 0:6�1:6, where a sensitivity of 1 corresponds to the best sky
sensitivity of a single detector. The plot on the right (slide courtesy S. Fairhurst [26.42]) gives error ellipses on the sky
for the HILV network for BNS sources expected to be observed in the advanced detector network

each arm of the triangle twice. With a strain sensitivity
that is 10 times better than that of advanced detectors,
ET should be able to take a census of stellar mass BBH
up to a redshift z� 17�20, detect intermediate mass
black hole binaries at redshifts of z� 5�7, and BNS at
z� 2�4 [26.45].

Laser Interferometer Space Antenna. Sensitivity of
ground-based detectors below a few Hz will be lim-
ited by gravity gradient noise that arises as a result of
variations in the surface density of Earth due to seis-
mic waves, variations in the density of air caused by
wind and other environmental factors and, more gener-
ally, anthropogenic noise [26.46]. Some of these noise
sources can be reduced by building a deep underground
detector (as KAGRA have done and ET is planned)
where density of air and anthropogenic noise will cease
to be problems and the effect of seismic waves greatly
suppressed.

Another solution to low-frequency noise sources is
to place a detector in space. The Laser Interferometer
Space Antenna (LISA) in Europe and the US [26.47]
and DECIGO in Japan [26.48] are two projects that aim
to have free flying spacecraft in heliocentric orbit, away
from the Earth. For example, LISA constitutes a set of
three spacecraft, separated from each other by 5 million
km, flying in a triangular formation in heliocentric or-
bit. LISA will be sensitive to sources in the frequency
interval of Œ0:01; 100�mHz. Space antennas like LISA
can probe radiation from supermassive black hole bina-
ries from far corners of the Universe as well as galactic
white dwarf binaries [26.15].

26.4.3 Pulsar Timing Arrays

A population of highly stable millisecond pulsars, with
timing accuracies of� 100 ns over several years, could
serve as an array of clocks whose regular ticks would be
coherently modulated due to gravitational waves pass-
ing by the Earth. There is worldwide effort to observe
stable millisecond pulsars and exploit them for detect-
ing gravitational waves, so-called pulsar timing arrays
(PTAs) [26.49–53]. Precise timing of an array of pul-
sars, may detect nanohertz gravitational radiation that
one might expect from merging supermassive black
hole binaries of masses in the range Œ109; 1010�M

ˇ

, but
they may also be sensitive to binaries of lower masses at
an earlier stage in their evolution [26.54, 55]. More im-
portantly, the array will also be sensitive to stochastic
gravitational waves of nanohertz frequencies [26.56].
Indeed, the current best constraints on primordial gravi-
tational wave background are obtained by PTAs [26.57]
at frequencies of � 10�9 Hz to be ˝GW < 2�10�8,
where ˝GW denotes the energy density in gravita-
tional waves compared to the closure density of the
Universe.

Stochastic gravitational waves of still lower fre-
quencies (wavelengths as large as the Hubble radius
of the Universe) might systematically affect the po-
larization patterns of the cosmic microwave back-
ground [26.58]. So far, only upper limits have been
set by CMB experiments, but the Planck satellite could
either detect or set the most stringent limits on the
strength of primordial gravitational radiation produced
in the inflationary era [26.59].
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In summary, there are many opportunities to di-
rectly observe gravitational radiation, and it is widely
expected that this will happen before the end of the
current decade. Gravitational wave observations should
help answer many puzzles in astronomy and cosmol-

ogy, but this new window of observation might reveal
sources and phenomena no one has imagined before.
It is the quest for the unknown that makes the field so
exciting.

26.5 Gravitational Astronomy

Astronomical sources with the greatest compactness
are the most luminous sources of gravitational waves.
Therefore, the brightest sources are neutron stars and
black holes – the most compact objects in the Uni-
verse. Radiation back reaction determines the dynamics
of most luminous systems, either driving them to in-
stability that makes them catastrophically bright (e.g.,
compact binary star coalescences) or causing them to
shut down emission by decreasing the nonspherical mo-
tion in the system (e.g., rotating neutron stars).

In this section we will discuss sources of gravita-
tional radiation, their strengths and how often we expect
to see transient sources. Figure 26.7b plots the strengths
of a number of potential astronomical sources together
with the sensitivity of some of the detectors that have ei-
ther already been built and are being operated (iLIGO)
or currently under construction (aLIGO), and others
that are planned for the future (ET, LISA/eLISA). For
the sake of clarity we have not shown the sensitivi-
ties of initial and advanced Virgo that are similar to
iLIGO and aLIGO, respectively, but with a slightly
better low-frequency sensitivity, KAGRA, which will
be similar to aLIGO, and GEO600, whose sensitivity
above 800 Hz will be about a factor � 10 worse than
aLIGO but significantly poorer sensitivity at lower fre-
quencies. Figure 26.7a shows sources expected to be
seen in the millihertz frequency region and sensitivity
of LISA. Here we have left out the sensitivity curve
of DECIGO, designed to operate in the frequency win-
dow of 100 mHz to 20 Hz with a strain sensitivity of
5�10�26 Hz�1=2.

26.5.1 Compact Binaries

Binaries consisting of a pair of neutron stars, a pair
of black holes, or a neutron star and a black hole are
called compact binaries. As far as we know, they are
the most powerful emitters of gravitational radiation.
The Hulse–Taylor binary pulsar is a typical example
of such a system that consists of a pair of � 1:4M

ˇ

neutron stars. With an orbital period of 7:5 h and eccen-
tricity of 0:62, this system loses energy to gravitational

waves at the rate of � 7�1024 J s�1. It will be another
300 million years for gravitational radiation to drive this
system to coalescence. Its cousin, J0737-3039 discov-
ered in 2003 [26.60], is a double pulsar (the only known
such system) whose orbital period is only 2:5 h and it
will coalesce only in 85 million years.

These systems spend millions of years with very
low luminosity. As the two stars get closer, they
brighten up to the point that they could be detected just
minutes to seconds prior to merger even at cosmologi-
cal distances. Their late time dynamics is believed to be
governed entirely by gravitational radiation back reac-
tion, which causes the eccentricity of these systems to
become negligible well before they become observable
by ground-based detectors.

Using post-Newtonian (PN) approximation meth-
ods [26.10], it has been possible to calculate the wave-
forms from these systems very accurately. At the lowest
order approximation (i. e., using the quadrupole for-
mula given in (26.9) and (26.11)) the plus and cross
polarizations of the waves for a binary, whose distance
from the Earth is r, orbital orientation with respect to
the line of sight is $, and orbital separation is R, take the
form

h
C

.t/D
2M

r
.M!/2=3.1C cos2 $/ cos 2� ;

h
�

.t/D
4M

r
.M!/2=3 cos $ sin 2� : (26.22)

Here MD �3=5M is called the chirp mass, � D
m1m2=M2 is the symmetric mass ratio, ! D d�=dtDp

GM=R3 is the angular frequency, and � is the orbital
phase. One can solve for !.t/ and �.t/ using the energy
balance equationLD�dE=dt, which states that the lu-
minosity in gravitational waves is generated by the loss
in energy E of the system. Noting that ED��M2=2R
and LD .32=5/�2.M!/10=3, we obtain
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32
.M!/�5=3 : (26.23)
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Fig. 26.7 (a) Sensitivity of LISA and its variant termed eLISA. (b) Sensitivity of three generations of ground-based
detectors, iLIGO, aLIGO, and ET. Inspiral sources are assumed to be randomly oriented and located with respect to the
detectors. Binary neutron stars (BNS) are assumed to consist of two 1:4M

ˇ

neutron stars; only the inspiral part of the
signal is shown up to the last stable orbit when the frequency of the source is fLSO D c3=.63=2G�M/. The merger part
of BNS signal could be very complicated and is not fully understood. Binary black holes (BBH) are assumed to consist
of two 10M

ˇ

black holes; here the inspiral phase smoothly transitions to merger phase, followed by quasi-normal mode
ringing of the final black hole. Both (a) and (b) show the characteristic amplitude hc (in units of Hz�1=2) for a number
of sources: for burst sources of Fourier amplitude H.f / the characteristic amplitude is hc � 2

p
f H.f /; for continuous

wave sources of strain amplitude h0 the characteristic amplitude after integrating for a time T is hc �
p

Th0; and for
a stochastic background of spectral density Sh.f / the characteristic amplitude at frequency f after cross-correlating data
from a pair of detectors over time T is hc � .Tf /1=4

p
Sh.f /. For continuous waves and stochastic radiation, we assume

the period of integration to be T D 1 yr. The sensitivity and source strengths are all in units of Hz�1=2

Here !i is the angular frequency at the orbital separa-
tion Ri. It is immediately clear that the amplitude and
frequency of the emitted waves increase with time, pro-
ducing a characteristic chirp signal. Since the phase and
amplitude evolutions are known accurately it is possi-
ble to dig these signals out of background noise using
matched filtering.

Figure 26.8 is a frequency-mass diagram in which
we show the frequency range accessible to various de-
tectors and some interesting features deduced from the
above equations:

1. The frequency at which the two stars merge de-
pends on the total mass and it is roughly given by
fmerge D c3=.63=2�GM/' .M=10M

ˇ

/�1440 Hz.
Figure 26.8 shows this frequency as a function of
the binary mass as a dot-dashed line marked LSO.
The peak luminosity of a binary reaches soon after
the system reaches this frequency.

2. The merged object, a black hole, emits quasi-
normal modes (QNM) to get rid of the deformation
inherited in the process of merger. The frequency
of the fundamental mode � .M=M

ˇ

/�11:2 kHz, is
shown as a function of mass as a dashed line imme-
diately above the LSO line. Although higher-order
modes might be excited it is not expected that they
will carry too much energy and so one does not
expect any radiation to occur in nature in the grey
shaded region above this line.

3. A circular binary starting from frequency fi
coalesces roughly on a timescale tC given by
(26.10), where �i D .�GMfi/2=3=c2. Dotted lines
in Fig. 26.8 show the starting frequency, as a func-
tion of total mass for equal mass binaries (i. e.,
� D 1=4), from where the system would last for
1 min, 1 d, and 1 yr.

4. The rate at which the frequency of gravitational
waves changes Pf D P!=� (cf. (26.23)) depends on
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Fig. 26.8 Frequency–mass plot
showing typical compact binary
sources expected to be observed
in ground-based detectors (LIGO,
Virgo, KAGRA, ET), space-based de-
tectors (LISA), and PTA. See text for
details

the chirp mass of the system. For binaries whose
frequency changes during the course of observation
it will be possible to determine the chirp mass of
the system. If the system is observed for a time T ,
then the smallest change observable is 1=T and the
change in frequency is T Pf . Equating the two gives
the observation time necessary to observe the chirp-
ing of a binary, namely, T D .Pf /�1=2. Chirp mass
will be measurable over a period of 1 (10) year
for those systems that are on the 1 yr chirp line
(10 yr chirp line), (dot-dot-dashed lines). It is not
possible to measure any physical parameters for
systems below this line if the observation period is
. 10 yr.

As mentioned earlier, (26.22) and (26.23) are de-
rived in the quadrupole approximation. There are PN
corrections, currently known to order .v=c/7 beyond
the lowest order, that have additional dependences on
the mass ratio of the system. Moreover, if the binary
is on an eccentric orbit or the component stars have
large spins, the signal’s frequency and amplitude will
have modulations. Note also that the ratio of the two
polarizations contains important information about the
orientation of the source (namely, the angle $). Thus,
imprinted in the structure of the signal are the various
parameters of the source. By a careful analysis it will
be possible, in principle, to measure the masses of the
component stars, eccentricity of the orbit, spins of the
two bodies, and the polarization of the radiation. In re-

ality, however, not all parameters of the source can be
measured to a good accuracy as there are strong corre-
lations between some of the parameters (for example, $
and r are strongly correlated) [26.18].

The PN approximation breaks down when the two
objects are very close. In the case of BNS it is very hard
to model the merger phase of the evolution that involves
strong tidal interaction of the two bodies. Observing
this phase could lead to very useful insights into the
structure of matter under extreme conditions of density,
temperature, pressure, and magnetic fields. This phase,
however, is not likely to be visible in advanced detec-
tors but could be observed in ET. In the case of BBH,
analytical methods [26.61, 62] and numerical relativity
simulations [26.63] have been successfully employed
to understand the merger phase. The slow adiabatic
phase smoothly transitions to a brief merger phase when
the luminosity reaches its peak, followed by the quasi-
normal mode ringing of the final deformed black hole
(Fig. 26.7).

Matched Filtering and Signal Visibility. Since com-
pact binary signals are well-modeled it is possible to
dig out signals buried in noise using matched filter-
ing [26.64]. The SNR � obtained by cross correlating
the data with an optimal template is given by [26.65]

�D

2
644

fmaxZ
fmin

jH.f /j2

Sh.f /
df

3
75

1=2

;
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Fig.26.9a,b Contour map of optimal SNR in the inspiral phase of compact binary sources in (a) ET and (b) eLISA

where H.f / is the Fourier transform of the signal h.t/
and Sh.f / is the noise spectral density of the detector
in question. fmin and fmax are the appropriately chosen
lower and upper frequency cutoffs used in computing
the SNR. For example, in the case of ground-based de-
tectors the upper limit is the frequency at which the
binary coalesces, which is taken to be the last sta-
ble orbit frequency for BNS fLSO D c3=.63=2�GM/ or
the quasi-normal mode frequency for BBH fQNM D

1:2.M=10M
ˇ

/�1kHz and the lower limit is taken to
be 10 Hz for advanced detectors and 1 Hz for ET. In
the case of eLISA and LISA one could choose fmax as
in the case of ground-based detectors but one should
be careful not to choose fmin to be too low, as binaries
could spend millions of years in the sensitivity band
of eLISA. One typically takes the lower cutoff such
that it takes � 3 yr for the binary to coalesce starting
from fmin.

Figure 26.9 shows the contour map of the opti-
mal signal-to-noise ratio (i. e., SNR assuming optimal
sky position and orientation of the binary) for bina-
ries consisting of masses M1 and M2 and at a redshift
of zD 1. The upper and lower frequency cutoffs are
chosen as discussed above. Quite clearly, both of these
instruments will observe sources at z� 1 and could
provide clues as to the birth and evolution of first black
holes and their demographics. Note also that eLISA and
ET observe different ranges of masses and, therefore,
complement each other in exploring black holes at cos-
mological distances.

Stellar Mass Compact Binaries. The merger time of
Hulse–Taylor and J0707-3039 binaries is far less than
the Hubble time. We can, therefore, expect that the
BNS merger is not an uncommon event in the Uni-
verse. How many such events might we expect each
year within a given volume of the Universe? Unfortu-
nately, the small number of observed galactic systems
is only able to provide an estimate that is uncertain by
a factor of � 103. Nominally, the rate could be about
one event within a volume of 400 Mpc3 but the rate
could be lower by a factor of 100 or larger by a factor
of 10 [26.66].

The other two categories of stellar mass binaries,
a pair of black holes (BBH) or a neutron star and
a black hole (NSBH), have so far not been observed,
although Belczynski et al. argue that high mass x-ray
binaries IC10 X-1 and NGC300 X-1 are progenitors of
BBH [26.67]. If this is true then statistical arguments
similar to the one applied to BNS give the event rate of
BBH to be RD 3:36C8:29

�2:92 in initial LIGO and roughly
1000 greater in aLIGO [26.67]. Some authors [26.68]
have explored the effect of metallicity on the forma-
tion and evolution of massive stars to deduce that black
hole mergers could be far more common in the Universe
with rates in excess of several 100s to several 1000s in
aLIGO.

In all cases the rates are rather uncertain. How-
ever, a network of advanced gravitational wave de-
tectors could have a distance reach of 200 Mpc for
BNS, 800 Mpc for NSBH, and 1:5 Gpc for BBH, within
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which we can not only expect to make the first direct
detection of gravitational waves, but also place a firm
constraint on astrophysical models of the formation and
evolution of compact stars and their merger rates.

Supermassive and Intermediate Mass Black Hole
Binaries. There is now strong observational evidence
that galactic centers host supermassive black holes, i. e.,
black holes of millions to several tens of billions of
solar masses. Decades of observations of stellar orbits
close to the galactic center have revealed the presence
of a black hole of 4�106M

ˇ

in the nucleus of our own
Milky Way [26.69, 70]. When and how did such black
holes form? Did the black holes precede the galaxies
or did they form after the galaxies were assembled?
What were their initial masses and how did they grow?
These are among the most pressing unsolved questions
in cosmology. Gravitational wave observations in dif-
ferent spectral windows might be able to answer some
of these questions.

A binary of intrinsic masses .104; 104/M
ˇ

at zD 20
will appear to us as a .2:1�105; 2:1�105/M

ˇ

binary
and merge at a frequency of around 10 mHz. The red-
shift effect on the amplitude is so great that a binary
that is visible with a modest SNR (of, say, 20) at red-
shift zD 1 will continue to be visible until the observed
mass is so large that the binary merges outside the sen-
sitivity band of the detector (see Fig. 26.7). Even at
a redshift of zD 20 a randomly oriented .104; 104/M

ˇ

binary with a random sky position would produce,
close to merger, a characteristic amplitude of hc �

2
p

f jH.f /j � 1:4�10�19 Hz�1=2, and will be clearly
visible in LISA/eLISA. These are such high redshifts
that the Universe was probably assembling its first black
holes at this epoch. LISA/eLISA can take a census
of supermassive black hole binaries in the mass range
104�107M

ˇ

in the entire Universe and provide the
necessary input for testing different scenarios of the for-
mation and growth of galaxies [26.71, 72].

The merger rate of supermassive black holes is
highly uncertain as there are only a handful of such
candidate binaries that would merge within the Hub-
ble time. Detailed modeling of these systems is very
difficult due to many unknown astrophysical parame-
ters, including their masses and spins when they formed
and how they grew. Predicted merger rates in the Uni-
verse in the range of masses that LISA/eLISA could
observe are of order � 30�100 yr�1, depending on the
model used for the formation and growth of massive
black holes, of which� 20�30 should be detectable by
LISA [26.73].

There is as yet no conclusive evidence for the
existence of black holes of mass in the range �
102�104M

ˇ

, the so-called intermediate mass black
holes. However, there are strong indications that cer-
tain ultra-luminous x-ray sources, e.g., HLX-1 in ESO
243-49 [26.74], are host to intermediate mass black
holes. If a population of such binaries exists and they
grow by merger, then, depending on their masses, ET
will be able to explore their dynamics out to z� 6
and study their mass function, redshift distribution, and
evolution. Several authors have looked at the possi-
bility that intermediate mass black hole binaries may
form and merge in dense stellar clusters. Modeling the
growth of seed black holes using different scenarios,
these authors conclude that ET could observe a few to
a few tens of intermediate mass black hole binaries per
year [26.75–77].

Extreme Mass Ratio Binaries. The binaries that we
have discussed so far have component stars of compa-
rable masses. When one of the masses is far smaller
than its companion, we have the problem of a test body
in near geodesic motion in black hole geometry. Such
binaries are called extreme mass ratio binaries, as the
mass ratio m1=m2, m1� m2, could get stupendously
large. The orbits in this case are near geodesics because
in each cycle the test body loses only a small amount
of its rotational energy to radiation; recall that the lumi-
nosity of a binary source is �2 ' .m2=m1/

2.
In general relativity, bound geodesics in Kerr space-

time geometry have a far richer structure than the
simple elliptic orbits of Newtonian gravity. Geodesics
with eccentricity close to unity and periastron very near
the horizon are especially intriguing. A test particle
on such an orbit could begin at apastron and when it
reaches periastron it might exhibit tens of near-circular
orbits, before ending up at an entirely different point
in space as apastron. When the particle is close to pe-
riastron, it loses far more energy (remember that the
luminosity is proportional to fifth power of compact-
ness) than when it is at apastron and hence the emitted
gravitational wave signal can have a rather complex
structure.

Moreover, such geodesics could be truly spheri-
cal orbits and sample the entire spacetime region near
a black hole. Imprinted in the signal’s phasing is the
full multipole structure of the black hole spacetime and
it should be possible to produce a map of the Kerr ge-
ometry of the central object by observing the inspiral
of an extreme mass ratio binary [26.78]. This would be
a stringent test of general relativity as it would be pos-
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sible to check if the spacetime geometry of black holes
is truly described by only their masses and spins or if
black holes have hair.

LISA is best suited to observe extreme mass ratio
inspirals. Supermassive black holes at galactic nuclei
are believed to grow by the infall of stellar mass and
intermediate mass black holes. Such events could be ob-
served by LISA at cosmological distances. For instance,
the inspiral of a 10M

ˇ

black hole into a 106M
ˇ

super-
massive black hole at zD 1 would produce a detectable
amplitude in LISA. The rates in this case are also highly
uncertain and range from a few to several hundreds per
year [26.75, 79].

Gamma-Ray Bursts. Gamma-ray bursts (GRBs) are
extremely bright flashes of energy that last anywhere
from milliseconds to several minutes. Discovered in the
late 1960s by US spy satellites, they are the most lumi-
nous known sources in the Universe. Their rapid vari-
ability over short time scales implies that they are very
compact sources, likely neutron stars or stellar mass
black holes. By measuring the redshift of host galax-
ies it is now known that most GRBs are cosmological
in origin. The flux levels often exceed 10�8 J m�2 s�1,
implying an isotropic luminosity of 1044 J s�1 for bursts
at 1 Gpc. This is several orders of magnitude larger than
the luminosity of an entire galaxy at all wavelengths.
The difficulty in modeling these sources is that it is
impossible to produce such stupendously large lumi-
nosities from highly compact objects. If the emission
is beamed in a narrow cone, however, then the energy
requirements can be considerably smaller. Most models
assume that the radiation is confined to a cone with an
opening angle of about 20ı.

If the GRBs are compact sources, then it is plausible
that gamma ray emission is accompanied (most likely,
preceded) by the emission of gravitational waves. GRBs
are classified based on the duration of bursts and spec-
tral hardness. Bursts that last for 2 s or more and with
soft spectra are called long GRBs, and they are asso-
ciated with core-collapse supernovae that are expected
to emit a burst of gravitational waves before the cre-
ation of the fireball leading to GRBs. Bursts lasting for
shorter periods of 2 s or less and with hard spectra are
termed short GRBs, and the most popular progenitor
model for such bursts is the coalescence of BNS, which
are also the most promising sources for interferometric
gravitational wave detectors. It is thought that some of
these short GRBs are giant magnetar flares which could
also be accompanied by the emission of gravitational
radiation.

Observing gravitational waves in coincidence with
GRBs will have a tremendous impact on the under-
standing the progenitors of GRBs and how they are
powered. Initial detectors have already placed some
impressive constraints on nearby GRBs and set upper
limits on the strength of gravitational waves from a pop-
ulation of bursts that occurred during recent science
runs [26.33]. Moreover, such coincident observations
will help identify the host galaxy and measure its red-
shift. If progenitors of short GRBs are BNS mergers
then this would help measure both the luminosity dis-
tance and redshift to the source, without the use of
the cosmic distance ladder [26.80]. Clearly, such ob-
servations will have a great potential for precision
cosmography [26.81–84].

GRBs are detected roughly twice a day, of which
about a quarter (� 170) are short GRBs and the rest
(� 500) are long GRBs [26.85]. The local rate, in-
ferred from redshift measurements of the host galax-
ies of a subset of the population, for short GRBs is
10 Gpc�3 yr�1, an order of magnitude more than that
for long GRBs, 0:5 Gpc�3 yr�1. Most of these events
are at redshifts that are not accessible to advanced
detectors. Long GRBs, associated with core collapse
supernovae, will be particularly faint in the gravita-
tional window at distances greater than about a few
Mpc. Short GRBs, associated with BNS or neutron star-
black hole binaries, could be observed up to distances
in the range of 400�800 Mpc, depending on the total
mass of the binary. Advanced detectors might observe
coincidences with short GRBs within about 16 months
of observation at modest sensitivities [26.84]. ET, how-
ever, will be sensitive to neutron star coalescences at
z� 2�4 and will observe them in coincidence with
GRBs far more frequently [26.82].

Standard Sirens. Compact binary sources are quite
unique for astrophysics and cosmology as they are stan-
dard candles or, perhaps more appropriately, standard
sirens. Gravitational wave observations can measure
both ! and P! if the observation time T is suffi-
ciently long, namely T > . P!=2�/�1=2. For example,
the change in frequency of a 106M

ˇ

supermassive
black hole binary with an orbital frequency of 5+Hz
will not be observable even after 1 year, while that of a
2:8M

ˇ

neutron star binary at 1 Hz would be detectable
after roughly 5 min. Systems whose frequencies change
during the course of observation are called chirping bi-
naries. For binaries that chirp, it is possible to measure
the chirp mass of the binary, but since we can also mea-
sure the two polarizations h

C

and h
�

, we can deduce
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the distance D to the binary from gravitational wave ob-
servations alone [26.80].

Until recently, it was thought that while gravita-
tional wave observations of a compact binary inspiral
can be used to infer the luminosity distance of its host, it
will not be possible to measure the host’s redshift. This
is because from the expression for P! in (26.23) we see
that cosmological redshift in frequency (!! !=.1C
z/, P!! P!=.1Cz/2/, causes the source to appear to have
a larger chirp mass (M! .1C z/M). There is no way
to tell if the source is at a lower redshift with an in-
trinsically larger chirp mass or at a higher redshift with
an intrinsically smaller chirp mass. It was, therefore,
thought that the only way to break the redshift-mass de-
generacy is to identify the host galaxy and measure its
redshift. While this is still true for BBH, for binaries in
which at least one of them is a neutron star it might
be possible to infer the intrinsic mass of the system
from gravitational wave observations. This is because
the equation of state dependent tidal effects, which ap-
pear at the fifth PN order, depend on the density M=R3

of the neutron star and not just on the compactness. It
turns out that the tidal effect can be used to determine
the source’s redshift provided the neutron star equa-
tion of state is known [26.86]. The effect is completely
absent for black hole binaries, weaker in the case of
neutron star-black hole binaries, and quickly diminishes
as the mass ratio � decreases.

26.5.2 Black Hole Quasi-Normal Modes

Merging binaries of compact objects produce black
holes that are initially highly deformed. As mentioned
before, the energy in the deformation is emitted as
a superposition of exponentially damped sinusoidal
gravitational waves called quasi-normal modes. There
are infinitely many quasi-normal modes although only
a small number of them (� 10) might be excited with
nonnegligible amplitudes in the process of the merger
of compact objects [26.87]. As a consequence of the
no hair theorem, the complex frequencies of modes all
depend only on the merged black hole’s mass and spin
angular momentum. (A black hole could, in principle,
also have an electric charge. Astrophysical black holes,
which are the ones of interest to us, are, however, ex-
pected not to have any residual charge.)

The modes are indexed by integers similar to the
spherical harmonic indices .`;m/, `D 2; 3; : : :, mD
�`; : : : ; `, as also an overtone index n that takes values
nD 0;1; 2; : : :. By definition, nD 0 is the least damped
mode and called the fundamental mode. In most prob-

lems, it is sufficient to consider the fundamental mode.
Gravitational waves emitted during quasi-normal mode
ringing of a black hole are given by [26.88]

h
C

� ih
�

D

1X
`D2

X̀
mD�`

Y`m
�2.$; �/h`m ;

h`m D
˛`mM

D
e�i!`mt�t=�`m ;

where .$; �/ refer to the colatitude and the azimuth an-
gle at which the radiation is emitted from the black hole
and Y`m

�2 are �2 spin-weighted spherical harmonics. Al-
though the mode frequencies !`m and damping times

`m are functions of only the final black hole’s mass
and spin, the amplitudes ˛`m of the excited modes de-
pend quite critically on the parameters of the progenitor
binary and in particular on its mass ratio and spins. As
a result, by detecting quasi-normal modes, even when
the binary itself is not visible to a detector (because
the inspiral phase lies outside the sensitive band), it
might still be possible to measure the parameters of the
progenitor binary [26.89, 90]. Moreover, accurate mea-
surement of the various mode frequencies could provide
ambiguous evidence for the existence of black holes as
the mode frequencies of other compact objects (e.g.,
neutron stars) will depend on more than two parame-
ters [26.91]. Consistency of the modes with one another
will provide smoking gun evidence for black holes.

Quasi-normal modes could also be used to test gen-
eral relativity by comparing the predictions of numeri-
cal solutions to Einstein’s equations with the measured
spectrum of the modes and their amplitudes [26.91, 92].
In particular, it should be possible to measure the mass
of the system before and after merger and compute
the mass loss to gravitational waves and see how that
compares with predictions of general relativity [26.89],
to test the no-hair theorem by measuring the complex
frequencies of different modes and verifying if they
depend on extra degrees of freedom other than the ob-
ject’s mass and spin and confirming that the merged
object is actually a black hole and not a naked singu-
larity [26.93].

26.5.3 Neutron Stars

Neutron stars in isolation but with a time-varying
quadrupole moment can be good sources of gravita-
tional waves. The birth of a neutron star in a supernova,
neutron stars with mountains that rotate about an axis
misaligned with the symmetry axis, accretion of matter
onto a neutron star from a companion star, and trans-
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fer of energy from a differentially rotating neutron-star
core to crust, can all produce gravitational waves that
are potentially detectable. Any isolated body is bound
to have a limited supply of energy available for radia-
tion and so either most of the energy might be emitted in
a burst resulting in a strong source that would be easily
discernible (e.g., supernova), or the energy might leak
out slowly over millions of years, giving a long-lived
continuous, but weak, source of radiation (e.g., con-
tinuous waves from a neutron star whose spin axis is
different from its axis of symmetry).

Supernovae: The Birth of Neutron Stars. Neutron
stars are born in the aftermath of the collapse of a mas-
sive star or when the core of a white dwarf becomes
more massive than the Chandrasekhar limit of 1:4M

ˇ

.
Both axisymmetric and nonaxisymmetric collapse can
produce gravitational waves. In fact, the first gravi-
tational wave detectors were built to detect galactic
supernova and they are still among the most important
sources. Supernovae produce the Universe’s dust and
heavy elements; their cores are laboratories of com-
plex physical phenomena requiring general relativity,
nuclear physics, magneto-hydrodynamics, neutrino vis-
cosity, and transport, turbulence, etc., to model them.
Much of the physics of supernovae is poorly under-
stood: how nonaxisymmetric is the collapse? How
much energy is converted to gravitational waves and
over what time scale? What causes shock revival in su-
pernovae that form a neutron star? Gravitational wave
observations could provide some of the clues for solv-
ing these questions [26.94].

We can make a rough estimate of the amplitude of
the radiation if we have a knowledge of the total energy
in gravitational waves and the frequency of the emitted
waves. For a galactic supernova (r� 10 kpc), assum-
ing �ED 10�8M

ˇ

, �tD 10 ms, and f D 300 Hz, the
amplitude from (26.13) is h� 10�21. Such an event
would produce a characteristic amplitude hc � h=

p
f �

6�10�23 Hz�1=2. Amplitudes this large would be de-
tectable in advanced detectors, especially if we know
the epoch of the event and its sky position. Supernovae
occur only once in about 30 or 100 years in a galaxy like
the Milky Way and so the prospect of observing a galac-
tic supernova is not so bright. The supernova rate could
be of order 1 per few years within 2 Mpc (see, e.g., Ando
et al. [26.95]). At that distance advanced detectors will
not be sensitive to supernovae, but ET will be.

Triaxial Neutron Stars. In many cases, one can think
of a neutron star as a triaxial rotating body. A neu-

tron star rotating at a frequency of frot emits gravita-
tional waves at f D 2frot. Using the quadrupole formula
(26.11) it is straightforward to compute the amplitude
of the radiation from a triaxial body to be

h
C

.t/D h0
1C cos2 $

2
cos 2�.t/ ;

h
�

.t/D h0 cos $ sin 2�.t/ ; (26.24)

where $ is the angle between the star’s spin axis and the
line of sight, and h0 and �.t/ are the signal’s amplitude
and phase

h0 D
4�2G

c4

�Izzf 2

r
;

�.t/D �0C 2� ftC
nX

kD1

fk
.kC 1/Š

tkC1 : (26.25)

Here Izz is the star’s moment of inertia with respect to
the rotation axis, the ellipticity � is defined in terms of
the principal moments of inertia as � D .Ixx � Iyy/=Izz,
and r is the distance to the star. The pulsar’s frequency
will not be constant due to the loss of rotational energy
to gravitational waves and so the rotational phase �.t/
is not just linear in time. A Taylor expansion of the
phase that includes the quadratic and, if necessary,
higher-order corrections is used to describe the phase
evolution. In this model, �0, and fk, kD 1; : : : ; n are,
respectively, the phase and the spin-down parameters in
the rest frame of the star at the fiducial time tD 0, n
being the number of spin-down parameters included in
the model (e.g., �f1 is the rate at which the star spins
down).

At a spin frequency of frot D 100 Hz (a gravitational
wave frequency of f D 200 Hz), for a source at 10 kpc
and ellipticity � D 10�6, the amplitude of the radiation
is h0 ' 4:2�10�27. To compute the characteristic strain
amplitude hc produced by such a signal we must as-
sume a time interval over which the signal is integrated;
taking this to be 1 year, we obtain hc D h0

p
1 yrD

2:3�10�23 Hz�1=2 (Fig. 26.7, dash-dotted lines). The
amplitude increases as the square of the spin frequency,
so for the Crab pulsar (B0531+21, r' 2 kpc) with a
spin frequency of 30 Hz, hc � 10�23 Hz�1=2, for the
same ellipticity. If Crab’s ellipticity is ten times higher,
then it will be well within the reach of advanced de-
tectors (Fig. 26.7b). However, it is not clear if neutron
stars occur with ellipticities as large as 10�5. Models
are mostly able to compute the maximum ellipticity of
neutron stars by subjecting the crust to breaking strains.
Ellipticities computed in the literature range from val-
ues of 10�4 (for exotic equations of state) [26.96]
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to 10�7 for conventional crustal shear [26.97]. Large
toroidal magnetic fields of order 1015 G could produce
ellipticities of order 10�6 [26.98], and accretion along
magnetic fields could produce similar or an order of
magnitude larger deformations [26.99]. The large range
in possible eccentricities shows that gravitational wave
observations could have a potentially high impact and
science return in this area.

The radiation emitted in this case is roughly
a monotonic signal, but the radiation back reaction and
energy lost to electromagnetic radiation and particles
could cause the frequency to slowly drift in time. Using
(26.13), we can compute the luminosity for the exam-
ple we considered above to be roughlyL� 40L

ˇ

. If we
assume that the rotational energy ED I!2=2 of the star
powers the radiation, then the maximum timescale over
which the energy is exhausted is roughly 
 � E=L�
5�108 yr. Newly born neutron stars emitting in the
gravitational window will take 100s of millions of years
to exhaust their source of energy and are essentially
continuous wave (CW) sources.

The motion of the detector with respect to the
source (due to Earth’s rotation and orbital motion)
causes a modulation in the signal’s amplitude and fre-
quency. Encoded in this modulation is the signal’s
position on the sky, and so it will be possible to resolve
the source’s location subject to the Rayleigh criterion,
ı D 2�	=L, where ı is the angular resolution, 	 is
the wavelength of the radiation, and LD 2 AU is the
diameter of Earth’s orbit. At a frequency of 100 Hz,
ı � 200. Moreover, the amplitude of the radiation will
help constrain the product of the star’s ellipticity and
moment of inertia, which is one of the main ingredients
that goes into determining its equation of state.

Observing a representative sample of the galactic
population of neutron stars could transform astrophysi-
cal studies of compact objects. A catalog of CW sources
would help understand the galactic supernova rate,
their demographics will lead to insights on evolution-
ary scenarios of compact objects, their amplitudes and
distances can be used to constrain the equation of state.
(Gravitational wave observations alone cannot deter-
mine the distance to CW sources. However, it should
be possible to measure the distance to a subset of them
from radio observations.) Constraints on the range of
ellipticity could help understand crustal strengths and
test models of the structure and composition of neutron
stars.

Pulsar Glitches and Magnetar Flares. Radio pul-
sars have very stable spins and their periods (P) change

very slowly over time. Their small spin-down rate ( PP.
10�12 s�1) is occasionally marked by a sudden in-
crease in angular frequency ˝, an event that is called
a glitch [26.100]. To date more than 300 glitches
have been observed in about 100 pulsars [26.101]
(Jodrell Bank Observatory maintains a glitch catalog
at [26.102]). Vela (B0833-45) is a nearby (r� 300 pc)
pulsar in which 16 glitches have been observed since
its discovery in 1969. The magnitude of a glitch is mea-
sured in terms of the fractional change in the angular
velocity, which is found to be in the range �˝=˝ �
10�5�10�11. Some time after a glitch, the pulsar re-
turns to its regular spin-down evolution. The origin of
pulsar glitches is not a settled matter, although the most
favored explanation is that it is due to the transfer of an-
gular momentum from a differentially rotating core to
the crust.

Glitches are not the only transient phenomena
observed in neutron stars. Sources of giant x- and
gamma ray flashes are believed to be highly magnetized
(B� 1015�1016 G) neutron stars called magnetars. The
source of high energy radiation is believed to be the de-
cay of the magnetic field associated with a stellar quake.
Star quakes could, in general, excite normal mode oscil-
lations of the ultra dense core. The energy in the modes
is emitted as gravitational waves with a characteris-
tic frequency and decay time, similar to quasi-normal
modes of black holes. Unlike black holes, however, the
complex mode frequencies depend on the mass and ra-
dius of the neutron star. (Although the modes would
depend on the spin of the star, at a first approxima-
tion it can be neglected.) One can obtain an estimate
of the amplitude of gravitational waves from a glitch
by noting that for a star with angular frequency ˝ the
glitch energy is �Eglitch ' I˝�˝, where I is the star’s
moment of inertia and �˝ is the change in angular ve-
locity. For Vela, whose spin frequency is frot ' 11 Hz,
the largest glitch has �˝=˝ � 3�10�6 [26.101]. The
corresponding glitch energy is�Eglitch � 8�10�12M

ˇ

.
If a tenth of this energy is available to normal modes,
which can then emit gravitational waves at the fun-
damental mode frequency of f � 2 kHz, then we can
expect a strain amplitude of

h0 �
1

� fr

r
5 G

c3

�E

�t
' 2�10�21

�
300 pc

r

�

�

�
�E

10�12M
ˇ

�1=2 �2 kHz

f

�1=2

;

where we have taken �tD f�1 D 0:5 ms. Such a sig-
nal would produce a characteristic amplitude of hc D
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h0=
p

f ' 4:5�10�23 Hz�1=2. Third generation detec-
tors like ET should be able to detect such amplitudes in
coincidence with radio observations. Figure 26.7 shows
plausible characteristic amplitudes produced by normal
modes of energy 10�12M

ˇ

, for mode frequencies in the
range of 1:5�4 kHz and neutron star distances in the
range 1 kpc to 10 kpc.

The frequency and decay time of normal modes
have different dependences on the mass and radius
of the star. Thus, by measuring the complex mode
frequency of, say, the fundamental mode one can in-
fer both the mass and radius of the star. The size of
a neutron star of a given mass depends critically on
the supranuclear equation of state of matter, which is
currently highly uncertain. Gravitational wave obser-
vations of glitches will help to directly measure the
equation of state of matter under extreme conditions of
density, pressure, and magnetic fields, one of the most
important unsolved problems in astronomy and nuclear
physics.

Low Mass X-ray Binaries. Gravity in the vicinity of
a compact star is so large that particles falling into it can
become accelerated close to the speed of light. Charged
particles accelerated in this way are responsible for in-
tense flashes of x-rays in binary systems in which one
of the stars is a compact object that accretes matter from
a low-mass star, or a main sequence star, or a giant.
Low-mass x-ray binaries (LMXBs) are systems where
the donor star is less massive than the compact object.
LMXBs are thought to have spun up millisecond pul-
sars.

LMXBs emit bursts of x-ray flashes that last for
about 10 s and repeat once every few hours or days. Mil-
lisecond oscillations in burst intensity are observed in
many LMXBs (for a review of LMXBs, see [26.103]).
X-ray bursts are believed to be caused by thermonu-
clear burning of infalling matter, while oscillations are
suspected to be caused by the neutron star spin. About
100 galactic LMXBs are known to date as also many
extragalactic ones. Inferred spin frequencies of neutron
stars in LMXBs in all these cases seem to have an upper
limit of about 700 Hz [26.103]. The centrifugal breakup
of neutron star spins for most equations of state is far
higher, about 1500 Hz. It has, therefore, been a puzzle
as to why neutron star spin frequencies are stalled. One
reason for this could be that some mechanism operat-
ing in the neutron star emits gravitational waves and the
resulting loss in angular momentum explains why neu-
tron stars cannot be spun up beyond a certain frequency.
If the accretion induced torque on a neutron star is bal-

anced by the emission of gravitational waves, then the
amplitude of gravitational waves must be

h0 D 5�10�27

�
FX

10�8 erg cm�2 s�1

�1=2

�

�
300 Hz

f

�1=2

; (26.26)

where FX is the bolometric x-ray flux of the source,
from which the mass accretion rate is inferred and
thereby helps in computing the amplitude of gravi-
tational waves [26.104, 105]. The exact mechanism
causing the emission of gravitational waves can ac-
count for this amplitude if it can support an effective
ellipticity of � � 10�8 (cf. (26.25)). This ellipticity
could be produced by a time-varying, accretion-induced
quadrupole moment [26.105], or by relativistic insta-
bilities (e.g., r-modes) [26.106], or by large toroidal
magnetic fields [26.107]. It is assumed that the gravita-
tional wave luminosity is related to the x-ray luminosity
and the expected characteristic amplitude of gravita-
tional radiation is shown in Fig. 26.7 for the well-known
LMXB Sco-X1 as well as for the known galactic pop-
ulation of LMXBs. Advanced detectors should detect
Sco-X1 if the system is losing all of its accreted angular
momentum to gravitational waves (for a comprehensive
analysis of the detectability of LMXBs, see [26.108]).
Such a detection could help understand what is the
mechanism behind limiting spin frequencies in LMXBs
and in turn provide deeper insights into models of
LMXBs.

26.5.4 Stochastic Backgrounds

Another class of continuous gravitational waves is an
ever present stochastic gravitational wave background.
Such a background might have been produced by
physical processes in the early Universe (just as cos-
mic microwave background was produced at the big
bang) [26.109] or by random superposition of a popula-
tion of point sources throughout the Universe [26.110].
Detecting such a background and measuring its spectral
features could provide insight into the physical pro-
cesses in the very early Universe accessible in no other
way or provide a census of sources at cosmological dis-
tances.

The strength of a stochastic background is measured
not by the amplitude of the radiation (as we cannot
follow the amplitudes of individual waves) but by the
power spectrum that it produces. An equivalent, but
more popular, way of characterizing the strength of
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a background is to specify the energy density in the
radiation, as a function of frequency, relative to the clo-
sure density of the Universe

˝GW.f /�
1

�C

d�GW.f /

d log f
;

where �C D 3H2
0c2=.8�G/' 8:8�10�10 J m�3 is the

closure density, H0 D 72 km s�1 Mpc�1 is the present
value of the Hubble parameter. The dimensionless
quantity ˝GW is related to the strain power spectrum
SGW.f / (which has dimensions of Hz�1) by [26.111]

SGW.f /D
3H2

0

10�2

˝GW.f /

f 3
:

Since detector sensitivities and source strengths are of-
ten compared on a plot of strain amplitudes, it is useful
to define hGW.f /�

p
SGW.f /. hGW has units of Hz�1=2

but it is still not the relevant quantity if we wish to
understand the detectability of a given stochastic back-
ground.

Stochastic signals are detected by cross-correlating
the data from a network of two or more detectors over
a bandwidth �f for a time duration T . For a pair
of detectors the SNR of the background power spec-
trum grows as

p
T�f , and so the amplitude grows as

.T�f /1=4. Thus, the characteristic amplitude of a back-
ground at frequency f is hc.f /D hGW .T�f /1=4. (Some
authors, e.g., Sesana et al. [26.56], choose to divide
their characteristic amplitude by the factor .T�f /1=4.
This is because their characteristic amplitude is a mea-
sure of the PTA sensitivity while our characteristic
amplitude refers to the signal strength. Note also that
these and many other PTA authors use a dimensionless
characteristic amplitude: hPTA

c D
p

f hHere
c .) At 100 Hz,

where ground-based detectors have their best sensi-
tivity, the characteristic amplitude for an integration
period of 1 yr and bandwidth�f D f is

hc.f /' 3:0�10�24

�
T�f

3�109

�1=4 � f

100 Hz

�
�3=2

�

�
˝GW

10�9

�1=2

Hz�1=2 :

Figure 26.7a plots (dotted lines) hc.f / for several val-
ues of ˝GW assumed to be independent of f . Advanced
ground-based detectors should detect ˝GW � 10�9.

In the case of PTA the detection technique is es-
sentially similar. Instead of just a pair of detectors one
looks at the timing residuals of many stable millisec-
ond pulsars to improve the sensitivity. For an integration

time of 5 yr and 20 ms pulsars, PTA could reach a sen-
sitivity level of

hc.f /' 2:4�10�11

�
T�f

1:6

�1=4 � f

6 nHz

�
�3=2

�

�
˝GW

2:5�10�10

�1=2

Hz�1=2I :

This corresponds to the dimensionless amplitude of
hPTA

c ' 2�10�15 at a frequency of .5 yr/�1 ' 6�
10�9 Hz.

Populations of Point Sources. The most certain
source of stochastic gravitational wave background is
the one produced by the galactic white dwarf binary
population. White dwarf binaries with orbital periods
in the range of few hours to few minutes are abundant
in the galaxy. The combined effect of 100s of mil-
lions such systems is a stochastic background radiation.
This white dwarf binary (WDB) background should be
visible in the frequency range of 0:1�2 mHz in LISA
(see Fig. 26.7) [26.112]. This would correspond to en-
ergy density in gravitational waves of ˝GW D 10�12 at
1 mHz [26.113]. Some close white dwarf binaries, AM
CVn systems, and ultra compact x-ray binaries should
be detectable above the confusion background of WDB
as shown in [26.112].

Inspiralling compact binaries at cosmological dis-
tances will also cause a confusion background. Astro-
physical observations guarantee the presence of two
such populations: BNS, which should be observable in
ground-based detectors, and binary supermassive black
holes, which should be observable by PTAs. In both
cases, the lack of precise knowledge about the underly-
ing population of sources and their coalescence rate as
a function of redshift makes it hard to predict the pre-
cise strength of the background. Regimbau and Mandic
estimate that the BNS population could produce a back-
ground strength of [26.114, 115]

˝BNS
GW .f /' 2:5�10�10

�
f

100 Hz

�2=3

:

This is out of reach of advanced detectors but ET should
be able to detect such a background quite easily. It
should be noted, however, that unlike WDB popula-
tion in LISA, BNS population will not cause a con-
fusion background above the detector noise spectral
density [26.116]. Sesana [26.117] considers a number
of different mechanisms for the formation and evolu-
tion of supermassive black hole binaries (SMBBH) and
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computes a median energy density of

˝SMBBH
GW .f /' 2�10�10

�
f

10 nHz

�2=3

:

This is only a factor of about 10 in ˝ (which translates
to a factor of 3 in amplitude) below the current best up-
per limits [26.118] and could be reachable within the
next 5�10 years.

Stochastic background could be produced by any
population of point sources including stellar mass BBH,
supernovae, and magnetars. In most cases the uncer-
tainty in event rates is so high that it is difficult to pre-
dict reliable estimates (for reviews, see [26.110, 114]).

Early Universe. Physical processes in the very early
Universe can lead to a stochastic gravitational wave
background. On generic grounds, we should expect that
just as electromagnetic stochastic radiation (cosmic mi-
crowave background) was produced at the birth of the
Universe, a background of gravitational radiation was
also generated. While electromagnetic radiation was in
thermal equilibrium with relativistic particles for about
300 000 years after the big bang, gravitational waves,
due to their weak interaction with matter, decouple from
all particles and radiation a tiny fraction of a second
after the birth of the Universe. They should, therefore,
carry the signature of physical processes when quantum
gravity effects were important. Observing relic gravi-
tons from the early Universe is undoubtedly the most
important goal for gravitational astronomy.

The primary mechanism for the generation of pri-
mordial gravitational waves is the parametric amplifi-
cation (by the background gravitational field) of grav-
itational waves generated by quantum fluctuations in

the inflationary era [26.109, 119, 120]. This is the
same mechanism that is believed to have produced the
scalar density perturbations that led to the formation
of large-scale structure in the Universe. The standard
de Sitter inflationary model predicts that the energy
density ˝GW is independent of frequency for f < f0,
where f0 ' 10�16 Hz, raising as a power-law for f <
f0 [26.110]

˝Inflation
GW D

8̂<
:̂
˝0

�
f

f0

�
�2

; f 	 f0

˝0; f > f0 ;
;

where the value of ˝0 is uncertain and could be
in the range 10�13 	˝0 	 10�14. The transition fre-
quency f0 corresponds to the horizon scale at the time
of matter and radiation equality redshifted to the cur-
rent epoch. Gravitational waves with f > f0 today were
much smaller than the horizon scale at matter radi-
ation equality and hence were not amplified. COBE
observations place a bound of ˝GW ' 2�10�12 (for
H0 D 72 km s�1 Mpc�1). This is at a level that might
be detectable by ET and LISA. The more popular slow
roll inflation predicts background density two orders of
magnitude smaller and hence unreachable by ground
and space-based detectors or PTA.

Many other interesting sources of stochastic back-
ground have been studied, including cosmic strings,
phase transitions in the early Universe and processes
during the re-heating phase (see Maggiore [26.110] for
a detailed account). Of these, cosmic strings are possi-
bly the most interesting ones that could produce energy
densities of order ˝GW � 10�8�10�7 that is flat in the
frequency range 10�8�1010 Hz.

26.6 Conclusions

The next decade will witness the opening of the grav-
itational window for observational astronomy. Many
sources of gravitational waves are multimessengers
emitting intense x-rays, gamma rays, radio waves, op-
tical radiation, and neutrinos. Observation of gravi-
tational radiation from astronomical sources will un-
doubtedly help us learn a great deal about fundamental
theories of nature, verify if astrophysical black holes
have the properties predicted by general relativity, mea-

sure the large-scale geometrical and topological proper-
ties of the Universe, and infer the very early history of
the Universe by detecting or constraining the stochas-
tic background that might have been produced in the
early Universe. As always, new windows of observation
will undoubtedly reveal completely unexpected physi-
cal processes and astronomical phenomena, and this is
perhaps where most of the exciting new discoveries will
be made.
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27. Probing Dynamical Spacetimes
with Gravitational Waves

Chris Van Den Broek

This decade will see the first direct detections of
gravitational waves by observatories such as Ad-
vanced LIGO and Virgo. Among the prime sources
are coalescences of binary neutron stars and black
holes, which are ideal probes of dynamical space-
time. This will herald a new era in the empirical
study of gravitation. For the first time, we will
have access to the genuinely strong-field dynam-
ics, where low-energy imprints of quantum gravity
may well show up. In addition, we will be able to
search for effects which might only make their
presence known at large distance scales, such as
the ones that gravitational waves must traverse in
going from source to observer. Finally, coalescing
binaries can be used as cosmic distance markers,
to study the large-scale structure and evolution of
the Universe.

With the advanced detector era fast approach-
ing, concrete data analysis algorithms are being
developed to look for deviations from general rel-
ativity in signals from coalescing binaries, taking
into account the noisy detector output as well as
the expectation that most sources will be near the
threshold of detectability. Similarly, several prac-
tical methods have been proposed to use them for
cosmology. We explain the state of the art, includ-
ing the obstacles that still need to be overcome
in order to make optimal use of the signals that
will be detected. Although the emphasis will be
on second-generation observatories, we will also
discuss some of the science that could be done
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with future third-generation ground-based facil-
ities such as Einstein Telescope, as well as with
space-based detectors.

27.1 Overview

General relativity (GR) is a highly nonlinear, dynami-
cal theory of gravitation. Yet, until the 1970s, almost all
tests of GR were theoretically based on the behavior of
test particles in a static gravitational field [27.1]. These
include the perihelium precession of Mercury, deflec-
tion of star light by the Sun, and Shapiro time delay.

The parameterized post-Newtonian (PPN) formalism
(for an overview, see [27.2]) was developed to provide
a systematic framework for these and other checks, by
appropriately parameterizing various aspects of space-
time geometry viewed as a nonlinear superposition of
contributions from, e.g., the Sun and the planets. Even
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so, the most important early experiments did not require
much more than an expansion of the Schwarzschild
metric in GM=.c2r/ up to the first few subleading terms,
with M the mass and r the distance. Although excellent
agreement with theory was obtained, the aspects of GR
that were actually tested were somewhat limited, mostly
amounting to the influence on the motion of test parti-
cles of low-order general-relativistic corrections to the
Newtonian gravitational field.

The situation improved with the discovery of the
Hulse–Taylor binary neutron star in 1974 [27.3]. One
of the two stars can be observed electromagnetically as
a pulsar, and from this signal it was inferred that the or-
bital motion of the binary changes as predicted by GR,
assuming that orbital energy and angular momentum
are being carried away by gravitational waves (GW).
This was an event of historic significance, as it provided
incontrovertible evidence of the dynamical nature of
the gravitational field. Subsequently, similar and even
more relativistic binary neutron stars were discovered,
allowing for new tests of GR in a post-Keplerian frame-
work [27.4]. Nevertheless, explaining the observed
dissipative dynamics related to gravitational wave emis-
sion only requires a lowest-order approximation to GR
in powers of v=c, with v a characteristic velocity.

Some of the most exciting aspects of general rel-
ativity still remain out of our empirical reach. What
we would like to explore is the full nonlinear dy-
namics of the gravitational field itself, including its
self-interaction. From this perspective, even the most
relativistic binary neutron star system that is currently
known, PSR J0737-3039 [27.4], is still in the relatively
slowly varying, weak-field regime, with an orbital com-
pactness of GM=.c2R/' 4:4�10�6 (where M is the
total mass and R the orbital separation), and a typical or-
bital speed v=c' 2�10�3. (For comparison, the surface
gravity of the Sun is ' 2�10�6, and the orbital speed
of the Earth as it moves around the Sun is v=c' 10�4.)
By contrast, for a compact binary just prior to the fi-
nal plunge and merger one has GM=.c2R/� 0:2 and
v=c� 0:4. This will bring us to the genuinely strong
field, dynamical regime of general relativity, which in
the foreseeable future will only be accessible by means
of gravitational wave detectors.

The first detection of gravitational waves by the
Advanced LIGO and Virgo detectors might happen
as early as 2015, and certainly before the end of the
decade [27.5]. Around 2020, a network of five large in-
terferometric GW detectors will be in place: in addition
to the two Advanced LIGO interferometers [27.6] and
Advanced Virgo [27.7], there will be the Japanese KA-

GRA [27.8], and IndIGO in India [27.9]. There is also
the smaller GEO-HF in Germany [27.10, 11]. These
are usually referred to as second-generation detectors.
A conceptual design study for a third-generation ob-
servatory called Einstein telescope (ET) was recently
concluded, and there are plans for a space-based ob-
servatory called LISA [27.12]. There is a considerable
body of literature on the projected capabilities of ET
and LISA in probing the dynamics of gravity. Although
attention will be given to these, our main focus in this
chapter will be on what can be achieved with the up-
coming advanced detectors. In particular, in the last few
years, development has started of hands-on data analy-
sis techniques for use on signals detected with second-
generation observatories, properly taking into account
the noisy detector output as well as the expectation that
most sources will be near the threshold of detectability.

Since the advent of GR, a large number of alterna-
tive theories of gravity has been proposed; for a partial
list, see [27.13]. Among these, GR tends to be the
simplest and the most elegant; moreover, many of the
alternatives are already strongly constrained by existing
observations. Consequently, our primary aim will not be
to seek confirmation of an alternative theory and mea-
sure its parameters; rather, we want to develop a test
of GR itself. The testing should be as generic as we
can make it, in the sense that if macroscopic deviations
from GR exist, we want to find them even if they take
a form that is yet to be envisaged, rather than looking
inside a class of particular, existing alternative theories.
That said, we will occasionaly mention the predictions
of such alternative models to indicate the power of the
probe that direct gravitational wave detection will pro-
vide us with.

Recently proposed tests of the strong-field dynam-
ics broadly fall into two categories. One consists of
checking for possible alternative polarization states be-
yond the two polarizations that GR predicts, and which
might only make their presence known in the case of
gravitational waves that were generated in the ultra-
relativistic regime. The other category focuses on the
coalescence process of compact binary objects (neutron
stars and black holes) [27.2].

Searching for alternative polarizations started in
earnest with the detailed studies made on the electro-
magnetically observed binary neutron stars. Here we
will explain how one would go about looking for their
signature in data from gravitational wave detectors, in
particular using transient signals such as will be emitted
by supernova explosions or, again, coalescing compact
binaries. There have also been studies about how to use



Probing Dynamical Spacetimes with Gravitational Waves 27.1 Overview 591
Part

D
|27.1

stochastic gravitational waves for this purpose [27.14];
these could take the form of a primordial GW back-
ground, or they could be a bath of radiation caused by
a large number of unresolvable astrophysical sources,
such as the combined population of all compact bi-
nary coalescence events, or cosmic string cusps. Due
to space limitations, here we will limit ourselves to
resolvable transient sources. Although with a single in-
terferometric detector one would not be able to tell the
difference between, or even measure, additional polar-
izations, this does become possible with a network of
detectors. In particular, it is possible to combine the out-
puts of multiple interferometers to construct a so-called
null stream, which should be devoid of signals if the
only polarization states present are the ones predicted
by GR. More generally, one can have null streams
which in addition to the usual tensor polarizations also
exclude one or more of the alternative ones, allowing
one to tell them apart. Here we will partially follow the
recent discussions by Chatziioannou et al. [27.15], and
by Hayama and Nishizawa [27.16].

The coalescence of compact binaries consists of
three regimes: an adiabatic inspiral, the merger lead-
ing to the formation of a single black hole (or an exotic
alternative object!), and the ringdown of the result-
ing object as it evolves toward a quiescent state. The
inspiral regime is reasonably well understood thanks
to the so-called post-Newtonian formalism [27.17], in
which physical quantities such as energy and flux are
expanded in powers of v=c. A test of GR could then take
the form of identifying directly measurable quantities,
such as post-Newtonian coefficients in an expansion
of the orbital phase, which in GR are inter-related,
and checking whether the predicted relationships re-
ally hold. This would constitute a very generic test
of GR, in which no recourse needs to be taken to
any particular alternative theory of gravity. Such a test
was first proposed by Arun et al. [27.18–20]. Next,
Yunes and Pretorius developed the parameterized post-
Einsteinian (ppE) framework, which considerably gen-
eralized the family of waveforms used in [27.18–20]
by allowing for a larger class of parameterized defor-
mations [27.13, 21]. The basic idea of Arun et al. was
implemented in a Bayesian way by Li et al. using wave-
forms in the ppE family [27.22, 23]. The latter approach
focuses on hypothesis testing. This has the advantage
that since for every detected sources the same yes/no
question is asked, evidence for or against GR has a ten-
dency to build up as information from an increasing
number of detections is included.

Moving beyond the inspiral regime, the ringdown
can be studied in a variety of ways. In particular, the
no hair theorem can be tested, which says that in GR,
the spacetime around a quiescent, electrically neutral
black hole is determined uniquely by its mass and
spin [27.24, 25]. The ringdown process can be modeled
as perturbations on a fixed black hole spacetime, and the
Einstein field equations impose relationships between
the ringdown frequencies and damping times of the var-
ious modes that can get excited [27.26]. Verifying these
interdependences amounts to testing the no hair theo-
rem. Moreover, it has been shown that the amplitudes of
the ringdown modes carry information about the masses
and the spins of the binary compact object that merged
to form a single black hole [27.27]. As shown earlier by
Ryan, the no hair theorem can also be tested by mon-
itoring the motion of a small object (a neutron star or
a stellar mass black hole) around a very massive black
hole or exotic object, effectively mapping out the lat-
ter’s spacetime geometry [27.25].

As demonstrated by Schutz already in 1986, in-
spiraling and merging compact binaries can also be
used as cosmic distances markers, or standard sirens,
to probe the large-scale structure and evolution of
the Universe [27.28]. A variety of techniques have
been proposed to exploit this fact using the second-
generation detectors, ET, and space-based detectors.
The second-generation observatories will mainly give
us information about the Hubble constant H0; however,
they will do so in a way that is completely inde-
pendent of existing measurements, and in particular
does not require the so-called cosmic distance ladder,
with its potentially unknown systematic errors at every
rung [27.29–31]. In the case of ET and space-based de-
tectors, it is also possible to study the matter content
of the Universe [27.32–36]. By now we know that the
expansion of the Universe is accelerating [27.37, 38],
which can be modeled heuristically by invoking a new
substance called dark energy. An exciting prospect is
probing the equation of state of dark energy with grav-
itational waves, again in a way that is independent of
conventional observations.

This chapter is structured as follows. In Sect. 27.2
we discuss how one might look for alternative polar-
ization states in transient GW signals, using a network
of detectors. Next, we explain how the inspiral of com-
pact binaries can be used to arrive at a very generic test
of the strong-field dynamics of general relativity, in-
cluding self-interaction (Sect. 27.3). The emphasis will
be on second-generation detectors, where most sources
will be near the threshold of detectability. As we shall
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see, in the case of binary neutron stars, appropriate data
analysis methods are already in place, which can be ap-
plied to raw data from the advanced detectors as soon
as they become available. Binary black holes are dy-
namically far richer, but they also pose formidable data
analysis problems. A discussion of merger and ring-
down, and tests of the no hair theorem, will naturally
bring us to third-generation ground-based observatories
as well as space-based detectors (Sect. 27.4), and we
will give an overview of what one might expect from
them. In Sect. 27.5, we will briefly recall the basics of

modern cosmology, and investigate what gravitational
wave observations might have to say about the evolu-
tion of the Universe. A summary and conclusions are
given in Sect. 27.6.

We will denote binary neutron stars by BNS, neu-
tron star-black hole systems by NSBH, and binary black
holes by BBH. The usual post-Newtonian notation will
be employed, where qPN order with q integer or half-
integer refers to O



.v=c/2q

�
beyond leading order in

expansions in v=c. Unless stated otherwise, we use units
such that GD cD 1.

27.2 Alternative Polarization States

In the so-called transverse-traceless gauge, the metric
perturbation only has spatial components, and for a sig-
nal propagating in the z direction in a coordinate system
associated with unit vectors .Oex; Oey; Oez/, it can be brought
in the form [27.1]

hTT
ij D h

C

eCij C h
�

e�ij ; (27.1)

with

eCij D Oex˝ Oex � Oey˝ Oey ; (27.2)

e�ij D Oex˝ OeyC Oey˝ Oex : (27.3)

h
C

and h
�

are the magnitudes of the independent
plus and cross tensor polarizations, respectively. The
response to a gravitational wave of an L-shaped inter-
ferometric detector is a linear combination of these

h.t/D F
C

h
C

.t/CF
�

h
�

.t/ : (27.4)

The beam pattern functions F
C

, F
�

depend on the sky
position Ő D .; �/ of the source

F
C

D 1
2 .1C cos2 / cos 2� ; (27.5)

F
�

D� cos  sin 2� : (27.6)

In metric theories of gravity, up to 6 degrees of
freedom are allowed [27.2]; these are illustrated in
Fig. 27.1. Other than the plus and cross polarizations,
they include a scalar breathing mode (“b”), a scalar
longitudinal mode (“`”), and vectorial modes (“vx”,
“vy”). The full metric perturbation then takes the form
(see [27.14] and references therein)

hij D h
C

eCij Ch
�

e�ij Chbeb
ijCh`e`ijChvxevx

ij Chvye
vy
ij ;

(27.7)

with

eb D Oex˝ OexC Oey˝ Oey ; (27.8)

e` D
p

2Oez˝ Oez ; (27.9)

evx D Oex˝ OezC Oez˝ Oex ; (27.10)

evy D Oey˝ OezC Oez˝ Oey : (27.11)

The full response of an interferometer to a signal con-
taining all these polarization states is

hD F
C

h
C

CF
�

h
�

CFbhbCF`h`
CFvxhvxCFvyhvy ; (27.12)

and

Fb D�
1
2 sin2  cos 2� ; (27.13)

F` D
1
p

2
sin2  cos 2�; (27.14)

Fvx D�
1
2 sin 2 cos 2� ; (27.15)

Fvy D sin  sin 2� : (27.16)

Currently, observational constraints on additional
polarization modes are limited. From the Hulse–Taylor
double neutron star we know that the energy loss due
to nontensor emission must be less than 1% [27.2,
16]. However, alternative polarizations might show up
in more weak-field regimes and after having propa-
gated over distances much larger than the characteristic
scale of the Hulse–Taylor binary. Alternatively, they
might only appear in situations where the source is
far more relativistic, with high characteristic veloci-
ties v=c. In core collapse supernovae, radial veloci-
ties v=c� 0:25 are attained [27.39], which may excite
longitudinal modes. In the case of binary inspiral,
v=c> 0:4 is reached before the final plunge, which
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Fig. 27.1 In metric theories of gravity, up to six polariza-
tion states are allowed. At top left and right, we illustrate
the transverse “C” and “�” tensor polarizations. At middle
left, the transverse breathing mode is shown, and at middle
right the longitudinal scalar mode. At bottom left and right,
one has the vector modes (after [27.2])

(using Kepler’s third law) corresponds to a gravita-
tional wave frequency f D c3.v=c/3=.�GM/, with M
the total mass. For binary neutron stars with compo-
nent masses .1:4; 1:4/M

ˇ

this approximately equals
1600 Hz, which is in the sensitivity band of ground-
based detectors.

There are a number of alternative theories of gravity
which predict nonstandard polarization states. To name
but a few:

� Brans–Dicke theory is a scalar-tensor theory of
gravity which has scalar modes [27.40, 41].

� Scalar modes also occur in Kaluza–Klein theory,
where our 4D world arises after compactification of
one or more extra spatial dimensions [27.42].

� Certain brane world models, such as the Dvali–
Gabadadze–Porrati model in the self-accelerating
branch, have all six modes above [27.43].

A single interferometric detector would not suffice
to disentangle all these polarization states. To see this,
consider a breathing mode (Fig. 27.1) impinging upon
a detector, coming from a direction that is perpen-
dicular to the plane of the interferometer. Then both
detector arms would get lengthened and shortened in
unison, but what an interferometer senses is the relative
difference in arm length. Or, consider a breathing

mode whose propagation direction corresponds to the
orientation of one of the arms. Then this arm would be
unaffected, while the other arm would still periodically
get lenghtened and shortened, leading to a relative
difference in arm lengths, which however would be
indistinguishable from the effect of a gravitational
wave with plus polarization. Hence, a network of
interferometers is called for.

Consider D detectors at different positions on the
Earth and whose noise is uncorrelated. A signal would
reach the interferometers at different times. However, if
one knew the sky position Ő , e.g., because of an elec-
tromagnetic counterpart to the gravitational wave signal
as might be expected from a conveniently oriented BNS
or NSBH event [27.44], then one would know how to
time shift the outputs of the detectors to analyze the
signal at a fixed time, say the arrival time at the Earth’s
center. Since from now on we assume Ő to be known,
we omit any explicit reference to it in expressions be-
low. In each detector AD 1; : : : ;D, the output will take
the form

NdA.f /D NhA.f /C NnA.f / ; (27.17)

where each of the NhA takes the general form (27.12),
and the NnA represent the noise in each of the detectors.
The overbar indicates that (a) we will be considering the
Fourier transforms of the relevant quantities, which are
functions of frequency f rather than time t, and (b) the
data streams have been divided by

p
SA.f /, with SA.f /

the noise spectral density (basically the variance of the
noise as a function of frequency) for detector A. The
latter ensures that we will not have to worry about dif-
ferences in design and operation between the various
detectors.

Equation (27.17) can be expressed in terms of the
beam pattern functions

NdA.f /D NFA
a ha.f /C Nn

A.f / ; (27.18)

where aD 1; : : : ; 6 runs over the polarization states
“C,” “�,” “b,” “`,” “vx,” and “vy,” and summation over
repeated indices is assumed. The first term in the right-
hand side expresses the signal as a linear combination
of five vectors in the D-dimensional space of detec-
tor outputs: NF

C

, NF
�

, NFvx, NFvy, and NF`; indeed, from
(27.13), (27.14), it is clear that NF` D�

p
2 NFb, so that

one only has one independent vector pertaining to the
scalar modes. Also note that the remaining vectors can
be linearly independent only if D� 5.

In general relativity, only the tensor modes h
C

and
h
�

are present. Given three detectors (e.g., the two Ad-
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Fig. 27.2 An illustration of the construction of the null
stream dGR,null from a 3-detector output. The vector of out-
puts Nd, and the beam pattern vectors NF

C

and NF
�

, live in
a three-dimensional space. The null stream is obtained by
projecting Nd onto the unit normal to the plane determined
by NF

C

, NF
�

. The projection is guaranteed not to contain
tensorial polarization modes

vanced LIGOs and Advanced Virgo, which will be the
first to take data), a null stream can be constructed by
eliminating these modes from the output vector Nd, fol-
lowing the original idea by Gürsel and Tinto [27.45]

dGR, null D
NF
C

^ NF
�

j NF
C

^ NF
�

j
� Nd ; (27.19)

where NF
C

^ NF
�

is the vector whose components in the
space of detector outputs are

�ABC NFB
C

NFC
�

; (27.20)

with �ABC the completely antisymmetric symbol, and
here too summation over repeated indices is under-
stood. It is not difficult to see that dGR, null can only
contain nonstandard polarizations; the tensor modes are
projected out. This is illustrated in Fig. 27.2. Hence, if
GR is correct, dGR, null should not contain a signal. If, on
the other hand, one or more of the alternative polariza-
tions hb, h`, hvx, hvy are present, then they will show up
as a statistical excess in the null stream.

Sometime after 2017, the Japanese KAGRA will
become active, and there will be four detectors, so that
DD 4. This will allow for the construction of two null
streams which in addition to the tensor modes will also
be devoid of e.g., one of the two vector modes and one

of the two scalar modes

.4/d1
GR, null D

NF
C

^ NF
�

^ NFvx

j NF
C

^ NF
�

^ NFvxj
� Nd ; (27.21)

.4/d2
GR, null D

NF
C

^ NF
�

^ NF`
j NF
C

^ NF
�

^ NF`j
� Nd ; (27.22)

where the wedge product is defined analogously to
(27.20), but now using the four-dimensional antisym-
metric symbol �ABCD. Note that for DD 4, there cannot
be a third independent null stream which also excludes
the tensor modes.

Finally, around the end of the decade, IndIGO may
also be taking data, so that DD 5. In that case three
null streams can be constructed that exclude the tensor
modes

.5/d1
GR, null D

NF
C

^ NF
�

^ NFvx^ NFvy

j NF
C

^ NF
�

^ NFvx^ NFvyj
� Nd ; (27.23)

.5/d2
GR, null D

NF
C

^ NF
�

^ NFvx^ NF`
j NF
C

^ NF
�

^ NFvx^ NF`j
� Nd; (27.24)

.5/d3
GR, null D

NF
C

^ NF
�

^ NFvy^ NF`
j NF
C

^ NF
�

^ NFvy^ NF`j
� Nd ; (27.25)

If a theory that has scalar modes happens to be the right
one, then there will be a signal in .5/d1

GR, null above.
If there are vector modes, then they will show up in
.5/d2

GR,null and/or .5/d3
GR,null.

Hayama and Nishizawa showed how to reconstruct
the polarization modes in the case where the number of
detectors is at least the number of modes, based on the
null stream idea [27.16]. As an illustration, they recon-
structed a simulated longitudinal mode in Brans–Dicke
theory. Such a mode might be emitted by a supernova
explosion, in which radial velocities v=c� 0:25 are
reached [27.39].

If a statistical excess is seen in one or more null
streams, then one would like to match-filter them with
template waveforms that allow for one or more alterna-
tive polarization states to obtain information about their
physical content. Such waveform models were devel-
oped in the context of the (extended) ppE framework
by Chatziioannou et al. [27.15], and we refer the reader
to that paper for details. The original ppE framework
will be discussed below.
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27.3 Probing Gravitational Self-Interaction

27.3.1 The Regime of Late Inspiral

Within GR, especially the inspiral part of the coales-
cence process has been modeled in great detail using
the post-Newtonian (PN) formalism (see [27.17] and
references therein), in which quantities such as the con-
served energy and flux are found as expansions in v=c,
where v.t/ is a characteristic speed. During inspiral, the
GW signals will carry a detailed imprint of the orbital
motion. Indeed, the main contribution has a phase that
is simply 2˚.t/, with ˚.t/ the orbital phase. Thus, the
angular motion of the binary is directly encoded in the
waveform’s phase, and assuming quasi-circular inspi-
ral, the radial motion follows from the instantaneous
angular frequency !.t/D P̊ .t/ through the relativistic
version of Kepler’s third law. If there are deviations
from GR, the different emission mechanism and/or dif-
ferences in the orbital motion will be encoded in the
phase of the signal waveform, allowing us to probe the
strong-field dynamics of gravity.

In this section, we shall employ the usual post-
Newtonian notation, in which qPN order, with q an
integer or half-integer, refers to contributions at .v=c/2q

beyond leading order.
Up to a reference phase, the orbital phase takes the

form [27.46, 47]

˚.v/D
�v

c

	
�5 1X

nD0

h
'nC '

.l/
n ln

�v

c

	i �v

c

	n
:

(27.26)

In general relativity, the coefficients 'n and '.l/n depend
on the component masses m1, m2 and spins S1, S2 in
a very specific way; these dependences are currently
known up to nD 7. The different PN terms in the phas-
ing formula arise from nonlinear multipole interactions
as the wave propagates from the source’s near zone,
where gravitational fields are strong, to the far zone,
where detection takes place. Specifically, the physical
content of some of the contributions is as follows:

� '3 and '5 encode the interaction of the total
(Arnowitt–Deser–Misner, or ADM [27.1]) mass-
energy of the source with the quadrupole moment.
The physical picture is that the quadrupolar waves
scatter off the Schwarzschild curvature generated by
the source. These contributions are referred to as
gravitational wave tails. One of the early proposals
toward testing nonlinear aspects of general relativity

using gravitational waves was due to Blanchet and
Sathyaprakash, who first discussed the possibility
of measuring these tail effects [27.48, 49].

� Spin–orbit interactions also first make their appear-
ance in '3, and the lowest-order spin–spin interac-
tions occur in '4 [27.50].

� '6 includes the cubic nonlinear interactions in the
scattering of gravitational waves due to the ADM
mass-energy of the system [27.48, 49].

Thus, observations of these PN contributions would
allow for penetrating tests of the nonlinear structure of
general relativity.

It is worth noting that with binary pulsars, one can
only constrain the conservative sector of the orbital
dynamics to 1 PN order, and the dissipative sector to
leading order; see, e.g., the discussion in [27.51] and
references therein. Hence, when it comes to ˚.t/, these
observations do not fully constrain the 1 PN contribu-
tion. More generally, terms in (27.26) with n> 0 are
only accessible with direct gravitational wave detection.

27.3.2 The Parameterized Post-Einsteinian
Formalism

By now there is a large body of literature on alternative
theories to general relativity, which will induce changes
in the functional dependences of the 'n, '.l/n on compo-
nent masses and spins, or even introduce new powers of
v=c in the phase expression, (27.26). For instance:

� The effect of a nonstandard dispersion relation
(e.g., due to a nonzero graviton mass) would ac-
cumulate over the large distances which the signal
has to travel to reach the detector, and would be
visible in '2. Solar system dynamics bound the
graviton’s Compton wavelength as 	g & 1012 km.
Second-generation detectors will improve on this
by a factor of a few; Einstein Telescope will probe
	g & 1014 km, and LISA 	g & 1016 km [27.52–58].

� Scalar-tensor theories add a term 'ST.v=c/�7 to
(27.26), due to dipolar emission. In Brans–Dicke
theory, one has a dimensionless parameter !BD

which leads to standard GR in the limit !BD!1.
The Solar system bound from the Cassini spacecraft
is !BD & 40 000; LISA will improve on this by up
to an order of magnitude [27.53, 54, 59–61].

� A variable Newton constant adds a term
'G.t/.v=c/�13 [27.62], and extra dimensions
can also have this effect [27.63].
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� Quadratic curvature terms in the Lagrangian mod-
ify '4 [27.64, 65]. The same is true of dynamical
Chern–Simons theory [27.66]. Here the second-
generation detectors could place a bound on a di-
mensionful parameter of �1=4 .O.10�100/ km, 6
to 7 orders of magnitude better than the solar
system constraint (�1=4 . O.108/ km), and in this
case also considerably better than LISA (�1=4 .
O.105�106/ km)!

Quadratic curvature terms arise in string theory
compactifications [27.67, 68], and dynamical Chern–
Simons theory can be motivated both from string the-
ory [27.69, 70] and loop quantum gravity [27.71, 72],
and also arises in effective field theories of infla-
tion [27.73]. Their effects on the phase at .v=c/4 beyond
leading order will only become visible when v=c is
large. This is the regime we will be interested in here.

Yunes and Pretorius established the so-called ppE
framework as a way both to classify alternative theo-
ries of gravity, and to provide template waveforms to
search for violations of GR with gravitational wave de-
tectors [27.13]. Their proposal involves both the phase
and the amplitude of gravitational waves. However,
since we are mostly concerned with second-generation
detectors which for the expected stellar mass sources
will not be very sensitive to changes in the ampli-
tude [27.74, 75], we will focus on the phase. Instead of
using the expression (27.26) for the inspiral phase, the
authors of [27.13] proposed the following ansatz (again
up to some reference phase)

˚.v/D
NX

nD0

h
�nC�

.l/
n ln

�v

c

	i � v

c

	bn

: (27.27)

Here, the bn and �n, �.l/n are meant to be completely free
parameters. The above phase reduces to the one pre-
dicted by GR, (27.26), for bn D�5;�4; : : : and when
the phase coefficients have the standard dependences on
component masses and spins: �n D 'n.m1;m2; S1; S2/,
�.l/n D '

.l/
n .m1;m2; S1; S2/. Yunes and Pretorius also

showed how a variety of alternative theories of gravity
in the literature can be obtained by making appropri-
ate choices for the bn and �n. Now, in the case of
second-generation detectors, the form (27.27) may not
be the most convenient one as far as data analysis is
concerned. Indeed, even in the presence of a pure GR
signal and using trial waveforms with the above phase,
probability distributions arising from measurements of
bn and �n might peak at the correct values for very
high SNRs, but probably not for signals at the threshold
of detectability and in the presence of a considerable

amount of noise, as is expected for most detections in
second-generation observatories.

Yunes and others calculated the phase for a great
variety of alternative theories, and in each case found
the bn to be integer; see the examples and references
above. It then makes sense to write

˚.v/D
NX

nD�2

h
�nC�

.l/
n ln

�v

c

	i � v

c

	n�5
; (27.28)

where we let the leading-order term be .v=c/�7 to allow
for dipolar emission. This time only the �n and �.l/n are
free parameters.

If there are too many free parameters to be deter-
mined, the measurement accuracy of all of the parame-
ters will be adversely affected, and we would still like
to reduce the number of free �n, �.l/n in (27.28). Alter-
native theories that have a nonzero nD�2 contribution
to the phase, such as scalar-tensor theories, can already
be fairly well constrained using the electromagnetically
observed binary pulsars [27.4]. With direct gravitational
wave detection, the regime where we will be the most
sensitive to GR violations is the one where v=c is large,
which is out of reach for other observational methods.
Hence we are mostly interested in new contributions to
the phase with a power of v=c greater than or equal to
�5. For this reason, below we will set �

�2 D ��1 D 0.

27.3.3 A Generic Test of General Relativity
with Inspiraling Compact Binaries:
The TIGER Method

In probing the strong-field dynamics, one would like
to be sensitive to almost any departure from general
relativity, also through mechanisms that have yet to be
envisaged. Hence what is needed is a test of GR that
is as generic as possible. The possibility of such a test
was first put forward by Arun et al. in [27.18–20], and
the idea is illustrated in Fig. 27.3. If for simplicity we
assume that the component objects have zero spins,
then the GR values of the coefficients �n, �.l/n in (27.28)
only depend on the component masses .m1;m2/. Hence
only two of them are independent, and tests of GR
could be performed by comparing any three of them
and checking for consistency. (Needless to say, this
does not mean that a completely generic test of GR
is possible. In this picture, in principle there could be
a GR violation which somehow still causes the error
bands of any triplet of phasing coefficients to have
a common region of overlap, but at the same, wrong
component masses. See also the discussion in [27.76].)
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Fig.27.3a,b A schematic illustration of how one might set up a very generic test of GR (after [27.18–20]). The plots
show the regions in the plane of the component masses .m1;m2/ corresponding to the 1�� measurement uncertainties
on the coefficients .�1; �2; �3/. (a) If GR is correct, there will be a common region of overlap at the true values of the
masses (here 10 and 4 M

ˇ

). (b) If there is a deviation from GR and one or more of the �n do not have the dependences
on masses that GR predicts, then there will be a mismatch

In practice, it is more convenient to make use of
Bayesian inference. This involves the comparison of
two hypotheses, namely the GR hypothesis HGR, and
HmodGR which posits that GR is violated. In the present
context, HGR will be the hypothesis that the �n, �.l/n
depend on both masses and spins in the standard way.
Ideally, HmodGR would be the negation of HmodGR, but
this is impossible in principle to evaluate, as one can-
not check the observed phase against all possible phase
models that deviate from the GR family. Instead, we
need to base our HmodGR on a phase which allows for
a finite-dimensional family of deviations.

Inspired by [27.18–20], we define HGR and
HmodGR as follows [27.22, 23]:

� HGR is the hypothesis that all the �n, �.l/n have the
functional dependence on component masses and
spins as predicted by GR.

� HmodGR is the hypothesis that one or more of the
�n, �.l/n (without specifying which) do not have this
functional dependence, but all others do.

Given a detected inspiral signal in a stretch of data
d, the question is now how these hypotheses are to be
evaluated.

Suppose we would like to compare two hypotheses
HA andHB. First, on each of them we can apply Bayes’
theorem [27.77]. For instance, for HA

P.HAjd; I/D
P.djHA; I/P.HAjI/

P.djI/
: (27.29)

Here P.HAjd; I/ is the posterior probability of the hy-
pothesis HA given the data d and whatever additional

information I we may hold, P.HAjI/ is the prior proba-
bility of the hypothesis, and P.djHA; I/ is the evidence
for HA, which can be written as

P.djHA; I/D
Z

d	p.djHA;	 ; I/p.	jHA; I/ :

(27.30)

In this expression, p.	jHA; I/ is the prior probability
density of the unknown parameter vector 	 within the
model corresponding to HA, and p.djHA; 	; I/ is the
likelihood function for the observation d, assuming the
modelHA and given values of the parameters 	 .

The function p.djHA;	 ; I/ is what can be computed
from the data. Let us assume that HA corresponds to
a particular gravitational wave signal model, hA.	I t/.
In the output of a gravitational wave detector d.t/, the
signal will be combined with detector noise n.t/

d.t/D n.t/C hA.	I t/ : (27.31)

Let us assume that the noise is stationary and Gaussian;
then its probability density distribution can be written
as

pŒn�DN e�.njn/=2 ; (27.32)

where the square brackets in the left-hand side indicate
that pŒn� is a functional of n, and N is a normalization
factor. The inner product . � j � / is defined as follows

.ajb/D 4 Re

1Z
0

Qa�.f /b.f /

Sn.f /
; (27.33)
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with Qa.f /, Qb.f / the Fourier transforms of functions
a.t/, b.t/. The quantity Sn.f / is called the noise power
spectral density; comparing with (27.32), we see that
it is essentially the variance of the noise as a func-
tion of frequency. Equations (27.31), (27.32), and
(27.33) motivate the following form for the likelihood
p.djHA;	 ; I/:

p.djHA; 	; I/DN e�.d�hA.�/jd�hA.�//=2 : (27.34)

Indeed, when subtracting the signal from the detector
output, the expectation is that only stationary, Gaussian
noise remains.

Using (27.29) for both HA and HB, one can con-
struct an odds ratio

OA
B �

P.HAjd; I/

P.HBjd; I/
D

P.HAjI/

P.HBjI/

P.djHA; I/

P.djHB; I/
;

(27.35)

where P.HAjI/=P.HBjI/ is the prior odds of the two
hypotheses, i. e., the relative confidence we assign to
the models before any observation has taken place. The
ratio of evidences is called the Bayes factor, which can
be computed from the data by using (27.30) and (27.34)
for hypothesesHA and HB

BA
B �

P.djHA; I/

P.djHB; I/
: (27.36)

In the present context, the odds ratio of interest is

OmodGR
GR D

P.HmodGRjd; I/

P.HGRjd; I/

D
P.HmodGRjI/

P.HGRjI/

P.djHmodGR; I/

P.djHGR; I/
: (27.37)

The evidence P.djHGR; I/ is computed by consider-
ing a large number of GR waveforms with differ-
ent parameters 	 to map out the likelihood function
p.djHGR; 	; I/, (27.34), which is then substituted into
(27.30). However, the wayHmodGR is formulated, there
is no waveform family associated with it, as there is no
waveform model in which one or more of the �n, �.l/n
are different from their GR predictions.

To address this issue, we introduce the following
auxiliary hypotheses:

Hi1 i2���ik is the hypothesis that the phasing coeffi-
cients �i1 ; �i2 ; : : : ; �ik do not have the functional
dependence on masses and spins as predicted by
GR, but all other coefficients �j, j … fi1; i2; : : : ; ikg
do have the dependence as in GR.

Thus, for example, H12 is the hypothesis that �1 and
�2 deviate from their GR values, but all other coeffi-
cients are as in GR. With each of the hypotheses above,
we can associate a waveform model that can be used
to test it. Let 	 D fm1;m2;S1; S2; : : :g be the parame-
ters occurring in the GR waveform, where m1, m2 are
the component masses and S1, S2 the component spins;
other parameters include the orientation of the orbital
plane with respect to the line of sight, sky position, and
distance. Then Hi1i2���ik is tested by a waveform in which
the independent parameters are

f	; �i1 ; �i2 ; : : : ; �ikg ; (27.38)

i. e., the coefficients f�i1 ; �i2 ; : : : ; �ik g are allowed to
vary freely in addition to the other parameters.

The hypothesis we are really interested in is
HmodGR above, which posits that one or more of the �i

differ from their GR values, without specifying which.
But this corresponds to the logical or of the auxiliary
hypotheses

HmodGR D
_

i1<i2<���<ikIk	NT

Hi1 i2���ik : (27.39)

Note that in practice, it will not be possible for compu-
tational reasons to consider all possible subsets of even
the 10 known phasing coefficients; hence we limit our-
selves to the subsets of f�1; �2; : : : ; �NT g, where NT 	

10 is mainly set by computational resources. We will
call the latter our testing coefficients.

To illustrate how the auxiliary hypotheses allow us
to compute the odds ratioOmodGR

GR of (27.37), let us con-
sider the case of just two testing coefficients, f�1; �2g.
Then

HmodGR DH1 _H2 _H12 ; (27.40)

and the odds ratio becomes

OmodGR
GR D

P.H1 _H2 _H12jd; I/

P.HGRjd; I/
: (27.41)

Now, the hypotheses H1, H2, and H12 are logically dis-
joint: the and of any two of them is false. Indeed, in H1,
�2 takes the GR value, but in H2 it differs from it, as it
does in H12. Similarly, in H2, �1 takes the GR value, but
it differs from it in H1 and in H12. This implies

P.H1 _H2 _H12jd; I/D P.H1jd; I/CP.H2jd; I/

CP.H12jd; I/

(27.42)
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and hence

OmodGR
GR D

P.H1jd; I/

P.HGRjd; I/
C

P.H2jd; I/

P.HGRjd; I/

C
P.H12jd; I/

P.HGRjd; I/
: (27.43)

Using Bayes’ theorem (27.29) on each term, we get

OmodGR
GR D

P.H1jI/

P.HGRjI/
B1

GRC
P.H2jI/

P.HGRjI/
B2

GR

C
P.H12jI/

P.HGRjI/
B12

GR ; (27.44)

where the Bayes factors B1
GR, B2

GR, and B12
GR are given

by

B1
GR D

P.djH1; I/

P.djHGR; I/
;

B2
GR D

P.djH2; I/

P.djHGR; I/
;

B12
GR D

P.djH12; I/

P.djHGR; I/
: (27.45)

These can be computed from the data, as explained
in the discussion leading up to (27.36). However,
a choice will have to be made for the relative
prior odds P.H1jI/=P.HGRjI/, P.H2jI/=P.HGRjI/, and
P.H12jI/=P.HGRjI/. If one believed that the graviton
has mass, then a deviation in �2 would be the thing to
look for, and the auxiliary hypothesis H2 should have
more weight than either H1 or H12. On the other hand,
one’s favorite alternative theory might predict a viola-
tion in �1 instead, in which case H1 should have more
prior weight. Or, one might expect a GR violation to
affect all phasing coefficients at the same time, so that
H12 is a priori preferred. The method presented here
is meant to find generic deviations from GR, with no
preference for any particular alternative theory; conse-
quently, we set

P.H1jI/

P.HGRjI/
D

P.H2jI/

P.HGRjI/
D

P.H12jI/

P.HGRjI/
: (27.46)

We will also need to specify the overall prior odds for
HmodGR againstHGR. Here we simply set

P.HmodGRjI/

P.HGRjI/
D

P.H1 _H2 _H12jI/

P.HGRjI/
D ˛ ; (27.47)

where the constant ˛ will end up being an unimpor-
tant overall scaling factor in the odds ratio. Equations

(27.46) and (27.47) imply

P.H1jI/

P.HGRjI/
D

P.H2jI/

P.HGRjI/
D

P.H12jI/

P.HGRjI/
D
˛

3
;

(27.48)

and, except for the overall factor ˛, the final expression
for the odds ratio reduces to a straightforward average
of the Bayes factors for the auxiliary hypotheses against
GR

OmodGR
GR D

P.HmodGRjd; I/

P.HGRjd; I/

D
˛

3

�
B1

GRCB2
GRCB12

GR

�
: (27.49)

Thus, although there is no waveform model with which
to directly test the hypothesis HmodGR, thanks to the
auxiliary hypotheses it is nevertheless possible to com-
pute its posterior probability relative to that of GR.

In the above example we used only two testing pa-
rameters, but in practice one will want to have more.
With NT testing parameters f�1; : : : ; �NTg and making
similar choices to (27.46) and (27.47), the odds ratio
will again be proportional to an average of the Bayes
factors for the auxiliary hypotheses against GR [27.22]

OmodGR
GR D

˛

2NT � 1

NTX
kD1

X
i1<i2<���<ik

Bi1 i2���ik
GR : (27.50)

Combining data from multiple observed inspiral
events will make for a far more robust test of GR
compared to using just one detection. Suppose one
has N independent detections in stretches of data
d1; d2; : : : ; dN . Assuming these to be independent, it is
not difficult to show that the odds ratio for the catalog
of detections as a whole takes the form [27.22]

OmodGR
GR D

P.HmodGRjd1; d2; : : : ; dN ; I/

P.HGRjd1; d2; : : : ; dN ; I/

D
˛

2NT � 1

NTX
kD1

X
i1<i2<���<ik

NY
AD1

.A/Bi1 i2���ik
GR ;

(27.51)

i. e., for each auxiliary hypothesis, one multiplies to-
gether all the Bayes factors against GR for individual
sources, .A/Bi1 i2���ik

GR , after which one takes the average
over all these hypotheses.

The algorithm described here was developed by
Li et al. [27.22, 23]. It has been dubbed the TIGER
method (Test Infrastructure for GEneral Relativity),
and a hands-on data analysis pipeline for use on the
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upcoming detections in Advanced LIGO and Virgo
data has been developed based on this idea. It has
a number of benefits:

� Unlike previous Bayesian treatments such as [27.21,
26], it addresses the question Do one or more test-
ing parameters deviate from their GR values?, as
opposed to Do all of them deviate?. Bayesian anal-
ysis naturally includes the idea of Occam’s Razor
in a quantitative way, and if the full non-GR model
happens to have too many free parameters then one
will be penalized for it [27.77].

� It is well suited to a situation where most sources
are near the threshold of detectability. As shown
in [27.22], if a GR violation is small, the Bayes
factor for the correct auxiliary hypothesis (if any)
will not always make the largest contribution to the
odds ratio, as detector noise can obfuscate the pre-
cise nature of the GR violation. Even then, the GR
hypothesis will typically be disfavored compared to
one or more of the other auxiliary hypotheses, caus-
ing the GR violation to be detected after all.

� In combining information from multiple sources, it
is not necessary that a GR violation manifests it-
self in the same way from one source to another.
A deviation from GR could depend on mass, and on
whatever additional charges might be present in the
correct theory of gravity. However, in the above, the
same yes/no question is asked for every source, and
evidence for or against GR is allowed to build up as
more and more sources get added.

� The method is not restricted to just the inspiral
phase. It could equally well be applied to ringdown
(as discussed below), or for that matter to alternative
polarization states. All that is needed is a conve-
nient parameterization of possible deviations from
GR, such as provided by (generalizations of) the
ppE formalism.

27.3.4 Accuracy in Probing the Strong-Field
Dynamics with Second-Generation
Detectors

Let us consider some examples to gauge how sensitive
the TIGER method will be for particular (though heuris-
tic) violations of GR, with the network of Advanced
LIGO and Virgo detectors. In order to do this, one can
produce simulated stationary, Gaussian detector noise,
whose power spectral density (essentially the variance
of the noise as a function of frequency) is in accordance
with predictions for the Advanced LIGO and Virgo in-

terferometers in their final configurations, projected for
the 2019–2021 time frame [27.6, 7]. Simulated signals
can be added to this simulated noise.

First we consider binary neutron stars. For such
sources, the inspiral signal ends at high frequen-
cies, and to good approximation one can assume that
only this part of the coalescence process is visible in
the frequency band where the detectors are sensitive.
Moreover, in BNS systems the dimensionless intrin-
sic spins of the components are expected to be small:
cJ=.Gm2/. 0:05 [27.78], with J the spin and m the
component mass. Finally, for most of the inspiral, neu-
tron stars can be treated as point particles; finite size
and matter effects will only be important at relatively
high frequencies where the detectors are not very sen-
sitive [27.79]. Thus, binary neutron star inspirals are
relatively clean systems whose GW emission can be
described by fairly simple waveform models [27.80].
Indeed, a hands-on data analysis pipeline which starts
from raw detector data and computes OmodGR

GR has al-
ready been developed.

To have a fair assessment of how the method will
perform with second-generation detectors, the simu-
lated BNS sources will have to be distributed in an
astrophysically realistic way. We will assume the com-
ponent masses to be uniform in the interval Œ1; 2�M

ˇ

.
The normal to the inspiral plane, and the sky position,
are taken from a uniform distribution on the sphere,
and sources are distributed uniformly in volume. Dis-
tances are between 100 and 400 Mpc; the former is
the distance within which one can realistically expect
one inspiral event every two years, and the latter is ap-
proximately the largest distance at which an optimally
oriented and positioned system is still visible with Ad-
vanced LIGO [27.5]. Finally, many simulated catalogs
of 15 sources each are produced.

We will be interested in GR violations that af-
fect contributions to the phase (27.28) with n > 0; as
mentioned earlier, we expect novel effects to show
up for large v=c. Therefore, let us choose as testing
coefficients the set f�1; �2; �3g, leading to 23� 1D 7
auxiliary hypotheses that need to be compared with
HGR in order to compute the odds ratio OmodGR

GR .
A priori, one would expectOmodGR

GR > 1 if GR is vio-
lated, and OmodGR

GR < 1 if it is correct. However, detector
noise can mimick GR violations, so that occasionally
one will have OmodGR

GR > 1 even when GR is in fact cor-
rect. To deal with this, one can compute odds ratios for
a large number of catalogs of simulated sources whose
emission is in accordance with GR, but having different
parameter values within the above ranges, and see how
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the odds ratio ends up being distributed. For a given
kind of GR violation, one can similarly construct an
odds ratio distribution for catalogs of simulated sources.
If the non-GR distribution has significant overlap with
the GR distribution, then the particular GR violation
considered would not necessarily be detected with great
confidence. If, on the other hand, the two distributions
are perfectly separated then the GR violation will be in-
controvertibly detectable.

As we have seen, nonlinearities related to tail ef-
fects first show up at 1:5 PN order, i. e., in �3, so that
this contribution is of particular interest. In order to
gauge how sensitive the method might be to GR viola-
tions at this order, in [27.22] a constant relative shift in
�3 was considered: �3 D .1C ı�3/�

GR
3 . This was com-

pared with the GR case, and it was found that for ı�3 D

0:1, there is complete separation between the odds ratio
distributions for the GR and non-GR catalogs, so that
a violation of this kind and size would certainly be dis-
covered. This is shown in the top panel of Fig. 27.4.

What if a deviation from GR does not manifest it-
self as simple shifts in the phase coefficients? Naively
one might think that a more general phase model as in
(27.27) would then be needed to uncover the GR viola-
tion. To show that this is not the case, Li et al. [27.23]
considered a heuristic violation of the form

˚GR.v/! ˚GR.v/Cˇ
�v

c

	
�6CM=M

ˇ

; (27.52)

with ˚GR.v/ the GR phase. The prefactor ˇ was chosen
to be of the same order as the �n predicted by GR
(see [27.23] for details), and M is the total mass, so
that the power of v=c in the extra term varies from
effectively 0:5 PN to effectively 1:5 PN within the
BNS mass range considered. However, in order to
compute OmodGR

GR , the phase model used was still that
of (27.28) with integer n, and the testing parameters
were f�1; �2; �3g, as before. As shown in the bottom
panel of Fig. 27.4, also in this eventuality the GR
hypothesis HGR will be disfavored compared with one
or more of the Hi1i2 ���ik . The separation between GR
and non-GR source catalogs is complete. The odds
ratio OmodGR

GR indeed provides a Bayesian realization of
the basic idea sketched in Fig. 27.3, inspired by Arun
et al. [27.18–20].

27.3.5 Binary Neutron Stars Versus
Binary Black Holes

As mentioned earlier, in the case of binary neutron stars,
it is mostly only the inspiral part that is within the sen-

GR
(213 catalogs)

δφ3/φ3 = 0.1
(98 catalogs)

GR
(213 catalogs)

O ((υ/c)α(M ))
(91 catalogs)
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Fig. 27.4 (a) Distributions of log odds ratios for many
catalogs of 15 BNS sources each, with and without a 10%
shift in �3, the 1:5 PN phasing coefficient which contains
the leading-order nonlinearities of GR related to tail effects
(after [27.22]). The light grey distribution is for sources
with pure GR emission; we see that mostly lnOmodGR

GR < 0,
although noise will occasionally mimick a GR violation,
causing the tail toward positive lnOmodGR

GR . The grey distri-
bution is for sources with the 10% shift at 1:5 PN. The two
distributions are perfectly separated, indicating that a vi-
olation of this type and magnitude will easily be detected.
(b) The same for a violation which does not manifest itself
as a simple shift in one or more of the phasing coefficients
(see the main text for details), but OmodGR

GR is still computed
in exactly the same way as before (after [27.23]). Here
too, there is complete separation between GR and non-GR

sitivity band of the detector, so that we do not have
to worry about the messy merger process. Finite size
and matter effects mostly appear at high frequencies,
where they have little impact. Neutron stars in binaries
are expected to be relatively slowly spinning, and also
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Fig. 27.5 For systems with no spins, the frequency and
amplitude of gravitational waveforms increases in a steady
chirp (top). If there are significant spins which are not
aligned with each other and the orbital angular momen-
tum, then one has precession of the orbital plane, causing
modulation of the amplitude and frequency (courtesy of
B.S. Sathyaprakash)

this aspect can be dealt with. Consequently, a simple
waveform model can be used for which data analysis
algorithms are sufficiently fast, and a full data analysis
pipeline for testing GR with BNS signals is already in
place.

The situation is quite different for binary black
holes. The frequency at which the inspiral terminates
is roughly c3=.63=2�GM/, with M the total mass. For
a BBH with component masses of .10;10/M

ˇ

, this
is approximately 220 Hz, close to the frequency of
� 150 Hz where the detectors will be the most sen-
sitive. Thus, the merger part of the signal, which is
still not well modeled, will play a major role. More-
over, astrophysical black holes are expected to be
fast-spinning, with dimensionless spins cJ=.Gm2/D
0:3�0:99 [27.81]. If the spins are not aligned with each
other and the orbital angular momentum, then all three
of these vectors will undergo precession during the in-
spiral phase [27.82, 83]. Since the unit vector OL in the
direction of orbital angular momentum is also the unit
normal to the inspiral plane, the latter will undergo pre-
cession, and in extreme cases even a tumbling motion.
This behavior is imprinted onto the gravitational wave
emission through modulation of both the amplitude and
the frequency of the waveform, as shown in Fig. 27.5.
The rich dynamics that is unleashed in this way makes
binary black holes far more interesting systems to study,

GR
(260 catalogs)

δφ6 /φ6 = 0.005
(48 catalogs)

ln 
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Fig. 27.6 An estimate by the authors of [27.22, 23] of how
well one would be able to probe deviations from GR at
high post-Newtonian order with binary black holes. As be-
fore, the light grey histogram is for catalogs of GR sources.
The grey histogram is for sources with a 0:5% deviation at
3 PN order, where cubic nonlinear self-interaction of the
gravitational field appears. The testing coefficients were
f�1; �2; �3; �4g and hence did not include the parameter �6

where the GR violation actually occurs; nevertheless, there
is near-complete separation between GR and non-GR

but the more complicated signals also make the data
analysis problem a great deal more difficult.

Large-scale numerical simulations provide us with
accurate waveform models [27.84], but they take a long
time to compute and cannot be used in data analysis,
where many thousands of trial waveforms need to be
compared with the data to arrive at accurate parameter
estimation. On the other hand, semianalytic inspiral-
merger-ringdown waveforms are under construction,
which roughly fall into two categories. In the Effective
One-Body formalism, the inspiral includes part of the
final plunge, and a ringdown waveform can be stitched
to it; the waveform as a whole can then be further tuned
against numerical results [27.85, 86]. There is also a va-
riety of phenomenological waveform models which are
similarly improved using numerical predictions [27.87–
91]. These are achieving matches & 0:99 with nu-
merically predicted signals; however, so far the only
inspiral-merger-ringdown waveform with fully precess-
ing spins is the one of [27.90, 91], which has been tuned
against only a limited number of numerical waveforms.

Because of these difficulties, TIGER cannot yet be
extended for use on BBH signals. However, the au-
thors of [27.22, 23] made some rough estimates of
what might be achievable once appropriate waveform
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models are available. Figure 27.6 shows the log odds
ratio distributions for catalogs of simulated BBH sig-
nals with GR emission, and with a 0:5% shift in �6,
which encodes the cubic nonlinear interactions of the
scattering of gravitational wave tails by the ADM mass-
energy. In both cases, the inspiral-merger-ringdown
waveform model used was the aligned-spin approx-
imant of [27.89], and the set of testing parameters
consisted of (the analogs of) only f�1; �2; �3; �4g. (Note
that the number of auxiliary hypotheses Hi1;:::;ik grows
with the number of testing parameters NT as 2NT�1, and

the data analysis problem can become computationally
very costly if too many are used.) Hence the the coeffi-
cient containing the deviation was not among the testing
parameters. However, even though both HGR and the
Hi1;:::;ik are inconsistent with the signal, the waveform
models of the latter have more freedom and can arrive at
a closer fit, causing the GR hypothesis to be disfavored.
And indeed, there is near-complete separation between
GR and non-GR! On the other hand, precessing spins
are bound to affect these results, in a way that is as yet
unknown.

27.4 Testing the No Hair Theorem

In Newtonian theory, the gravitational potential ˚
caused by a body with density � satisfies

r2˚ D 4�G� in the interior ; (27.53)

r2˚ D 0 in the exterior : (27.54)

In the exterior, ˚ can be expanded as

˚ D�G
X
l;m

Mlm

rlC1
Ylm.; �/ ; (27.55)

and the multipole moments Mlm are obtained by de-
manding consistency between the interior and exterior
solutions. For axially symmetric objects, only terms
with mD 0 contribute. The lowest-order multipole M00

is just the total mass of the body. By appropriately
choosing the center of the coordinate system used, one
can set M10 D 0. The next nontrivial multipole moment
is M20, the quadrupole moment, which has dimensions
ML2. The set of all multipole moments uniquely deter-
mines the shape of the potential ˚ , and by measuring
them one can study the properties of the mass distribu-
tion that gives rise to it.

In general relativity, the spacetimes outside bod-
ies can similarly be described by a set of multipole
moments. Spacetimes that are stationary, axisymmet-
ric, reflection symmetric across the equatorial plane,
and asymptotically flat – an example being the Kerr
black hole – are characterized by two sets of multipole
moments: mass multipole moments M0;M2;M4; : : :;
and current (or spin) multipole moments S1; S3; S5; : : :.
M0 DM is the mass, S1 D J is the spin, and M2 is the
mass quadrupole moment. Now, according to the no
hair theorem [27.24], the multipole moments of quies-

cent black holes with the above properties satisfy

MlC iSl DM.ia/l ; (27.56)

where aD J=M. Hence only two of them are inde-
pendent: a quiescent black hole can be characterized
completely by its mass M and spin J. Measuring any
three of the multipole moments and checking consis-
tency with the above relation would constitute a test of
general relativity. The Ml and Sl have dimensions of
(mass)lC1, and it is convenient to instead use dimen-
sionless quantities ml DMl=MlC1 and sl D Sl=MlC1,
as we shall do below.

27.4.1 Ringdown

At the end of inspiral, binary neutron stars or black
holes plunge toward each other to form a single, highly
excited black hole, which will then undergo ring-
down as it evolves to a quiescent, Kerr black hole.
This process can be modeled as perturbations around
a Kerr background, subject to the Einstein equations.
For a black hole with mass M at a distance D, the plus
and cross polarizations then take the form of damped
sinusoids, the quasi-normal modes (QNMs) [27.92]

h
C

.t/D
M

D

X
l;m

AlmYlm
C

e�t=�lm cos.!lmt�m�/ ;

(27.57)

h
�

.t/D�
M

D

X
l;m

AlmYlm
�

e�t=�lm sin.!lmt�m�/ ;

(27.58)

with � a phase offset, and Ylm
C

, Ylm
�

are linear com-
binations of spin-weighted spherical harmonics

�2Ylm
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[27.93],

Ylm
C

.$/D
�2Ylm.$;0/C .�1/l

�2Yl�m.$;0/ ; (27.59)

Ylm
�

.$/D
�2Ylm.$;0/� .�1/l

�2Yl�m.$;0/ ; (27.60)

with $ the angle between the direction of the black
hole’s intrinsic angular momentum and the line of sight
to the observer.

The damping times and mode frequencies

lm.M; J/, !lm.M; J/ in (27.57) and (27.58) only
depend on the black hole mass M and its spin
J [27.94, 95]. Hence, in general relativity only two of
the 
lm and !lm are independent, which opens up the
possibility of a test of GR, similar to the one described
above for the case of inspiral. This would effectively
be a test of the no hair theorem. Indeed, the reason why
frequencies and damping times only depend on these
two quantities is that (a) the background spacetime
around which one considers perturbations is assumed
to be Kerr, and (b) the perturbative Einstein equations
are assumed valid on this spacetime background,
forcing relationships between damping frequencies and
times.

Gossan et al. [27.26] demonstrated how one can ex-
ploit the interdependences of the 
lm, !lm to test GR
with Einstein Telescope as well as space-based detec-
tors. For simplicity, they assumed that the spins of the
progenitor objects were zero, in which case the am-
plitudes Alm in (27.57) and (27.58) only depend on
the symmetric mass ratio �D m1m2=.m1Cm2/

2. Using
data from numerical simulations in [27.96], they arrived
at an analytic fit for the amplitudes A21, A22, A33, and
A44 of the four most dominant modes as a function of �,
and the damping times 
GR

lm .M; J/ and QNM frequen-
cies !GR

lm .M; J/ predicted by GR were modeled using
simple analytic fits from Berti et al. [27.97]. It was then
assumed that the true damping times 
lm and !lm might
deviate from the GR prediction by dimensionless rela-
tive shifts � O
lm and � O!lm, respectively


lm D .1C� O
lm/

GR
lm .M; J/ ; (27.61)

!lm D .1C� O!lm/!
GR
lm .M; J/ ; (27.62)

where in the case of GR, � O
lm D� O!lm D 0 for all l
and m. The full parameter space for the deviating model
Hdev was then

f� O
lm;� O!lm;	g ; (27.63)

with 	 D fM; J; : : :g the parameters of the GR wave-
form. In practice, only a limited number of frequencies

and damping times were allowed to be nonzero, leading
to a parameter space

f� O!22;� O
22; � O!33;	g : (27.64)

With the second-generation detectors, it is unlikely
that much more than the 22 mode will be distinguish-
able. As shown by Kamaretsos et al. [27.96], the situa-
tion is quite different for Einstein Telescope or a space-
based detector such as LISA, where the 21, 22, 33, and
44 modes can all contribute signicantly to the signal-to-
noise ratio. Numerical experiments were performed in
which simulated signals were added to stationary, Gaus-
sian noise following the projected noise power spectral
densities of Einstein Telescope and LISA. The sensitiv-
ity to GR violations of the type (27.61) and (27.62) was
then checked by two methods:

� Direct parameter estimation. Given data d and the
signal model Hdev, the posterior probability distri-
bution for the parameters 
 of (27.63) is given by

p.
jd;Hdev; I/D
p.djHdev;
; I/p.
jHdev; I/

p.djHdev; I/
;

(27.65)

where we have used Bayes’ theorem. One has

p.djHdev; I/D
Z

d
p.djHdev;
; I/p.
jHdev; I/

(27.66)

with p.
jHdev; I/ the prior distribution of the pa-
rameters. p.djHdev;
; I/ is the likelihood of the
data given parameters 
, as in (27.34)

p.djHdev;
; I/DN e�.d�h.�/jd�h.�//=2 ;

(27.67)

where h.
I t/ is the waveform family corresponding
to Hdev. Posterior distributions for parameters like
� O
lm and � O!lm are obtained by integrating the pos-
terior probability density (27.65) over all the other
parameters.

� Model selection. Here two models were considered:
the GR modelHGR in which� O
lm D� O!lm D 0 and
only the 	 are free parameters, and the deviating
model Hdev in which the � O
lm and � O!lm are al-
lowed to vary on top of the 	 . One then computes



Probing Dynamical Spacetimes with Gravitational Waves 27.4 Testing the No Hair Theorem 605
Part

D
|27.4

an odds ratio

Odev
GR D

P.Hdevjd; I/

P.HGRjd; I/

D
P.HdevjI/

P.HGRjI/

P.djHdev; I/

P.djHGR; I/
: (27.68)

The ratio of prior probabilities, P.HdevjI/=
P.HGRjI/, is just a constant overall prefactor,
which for convenience can be set to one.

With parameter estimation, it was found that a 10%
deviation in !22 would be clearly visible for a 500 M

ˇ

black hole at 1:25 Gpc in ET, and for 106 M
ˇ

and
108 M

ˇ

at 1:25 Gpc and 10 Gpc, respectively, in LISA.
500 M

ˇ

coalescences are expected to be rare within
distances of 1:25 Gpc. By contrast, the quoted mass and
distance range for LISA is expected to correspond to
a detection rate of tens per year [27.98].

Bayesian model selection leads to rather better re-
sults. A 10% deviation in !22 would be visible for
500 M

ˇ

at DL ' 6 Gpc in Einstein Telescope, and for
106 M

ˇ

at a similar distance with LISA. A 0:6 % devia-
tion could be picked up at a redshift of 5 with a 108 M

ˇ

source in LISA.
The above results are for black holes resulting

from a binary with nonspinning components. However,
in [27.27], it was shown that in the case where both
components have spins, the ringdown mode amplitudes
Alm retain a memory not only of the progenitor’s mass
ratio, but also of spins.

We end this subsection with an important comment.
In the odds ratio (27.68), the hypothesis Hdev is not
the equivalent of our HmodGR in the case of inspiral
(Sect. 27.3.3). To see this, denote the testing parame-
ters by

.�1; �2; �3/� .� O!22;� O
22;� O!33/ ; (27.69)

where in this case, �i D 0 for iD 1; 2; 3 corresponds to
GR. In the language of TIGER, one then has Hdev D

H123, the hypothesis in which all three parameters at the
same time are different from the GR prediction. Indeed,
in the deviating waveform model, all of the testing pa-
rameters are allowed to vary freely, but e.g., each of the
hypersurfaces �i D 0 have zero measure in the model’s
parameter space, and zero prior probability. In this no-
tation and with the prior odds forHdev againstHGR set
to some arbitrary ˛

Odev
GR D ˛B123

GR : (27.70)

The resolvability of anomalies in the testing parameters
would no doubt improve if instead one were to compute
an odds ratio

OmodGR
GR D

P.HmodGRjd; I/

P.HGRjd; I/
(27.71)

D
˛

23 � 1

3X
kD1

X
i1<���<ik

Bi1 ���ik
GR ; (27.72)

completely analogously to (27.50), possibly with
a larger number of testing parameters than just
f� O!22; � O
22;� O!33g. It would also be of great inter-
est to see what happens if information from multiple
sources is combined,

OmodGR
GR D

P.HmodGRjd1; : : : ; dN ; I/

P.HGRjd1; : : : ; dN ; I/
; (27.73)

analogously to (27.51).

27.4.2 Extreme Mass Ratio Inspirals

Extreme mass ratio inspirals (EMRIs) consist of a very
massive black hole (or boson star [27.99], or naked
singularity, . . . ) surrounded by a smaller object, which
could be a neutron star or a stellar mass black hole. In
the case of Einstein Telescope, target systems would
have a massive component of a few hundred solar
masses [27.100], while for space-based detectors the
mass would be in the range 105� 109 M

ˇ

[27.101].
EMRIs provide another avenue to testing the no hair
theorem: the orbits are expected to be extremely com-
plicated, and in the case of LISA, there will be a large
number of gravitational wave cycles within the detec-
tor’s frequency band. As a consequence, the gravita-
tional wave emission of the smaller object will bear
a detailed imprint of the spacetime in the vicinity of the
massive object.

Ryan was the first to evaluate the measurability of
multipole moments using EMRI signals in Advanced
LIGO and LISA [27.25]. With a number of simplifying
assumptions – the most important one being circular-
ity of the orbit of the smaller object, which moreover is
taken to move in the equatorial plane – one can write
down an expression for the phase in the Fourier domain
explicitly showing the dependence on the multipoles
ml, sl. In particular, s1 first appears at 1:5 PN order, and
m2 at 2 PN. In the case of Advanced LIGO, Ryan’s con-
clusion was that even assuming m1 D 30 M

ˇ

(a very
heavy stellar mass black hole) and m2 D 0:2 (an im-
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plausibly light neutron star), it would be hard to in-
dependently measure s1 and m2 with a single inspiral
event near SNR threshold. For LISA, the situation is
quite different. Assuming m1 D 105 M

ˇ

, m2 D 10 M
ˇ

,
and SNR D 100, one obtains 1-� measurement accura-
cies of�s1 � 10�4 and�m2 � 1:5�10�3. This would
allow for a precision test of the no hair theorem.

Subsequent to Ryan’s seminal paper, a number
of authors have relaxed his assumptions. Collins and
Hughes developed a treatment of multipole moments
that is more appropriate than Ryan’s in the strong-
field regime [27.102] through the notion of bumpy
black holes. The motion of the smaller object will
not be quasi-circular; Glampedakis and Babak em-
ployed so-called kludge waveforms which encode the
essentials of the orbital motion [27.103]. Barack and
Cutler [27.104] showed that with kludge waveforms,

results for the measurability of low-order multipole mo-
ments are qualitatively in keeping with those of Ryan.
Vigeland and Hughes studied orbits around bumpy
black holes, showing how a spacetime’s bumps are im-
printed onto the orbital frequencies [27.105]. Recently,
Vigeland et al. studied bumpy black holes in alternative
theories of gravity [27.106].

Most recently, Rodriguez et al. performed a more
in-depth study of the possibility of using second-
generation detectors to test the no hair theorem, also
assuming a more reasonable mass for the lighter ob-
ject (1:4 M

ˇ

), and masses between 10 M
ˇ

and 150 M
ˇ

for the heavier one [27.107]. This work still mostly
considered parameter estimation; it would be of great
interest to cast the problem in terms of hypothesis test-
ing, in which case results from multiple sources could
be combined.

27.5 Probing the Large-Scale Structure of Spacetime

27.5.1 Binary Inspirals as Standard Sirens

Assuming that at large scales the Universe is homo-
geneous and isotropic, its line element can be put in
the Friedmann–Lemaître–Robertson–Walker (FLRW)
form [27.1]

ds2 D�dt2C a2.t/

�

�
dr2

1� kr2
C r2

�
d2C sin2  d�2

��
;

(27.74)

where the entire dynamical content resides in the evo-
lution of the scale factor a.t/. The constant k can be
positive, zero, or negative, in which case the tD const
spatial hypersurfaces are hyperspherical, flat, or hy-
perboloidal, respectively. Given a homogeneous mass
distribution � with pressure P, the Einstein equations
reduce to two equations for a.t/, �.t/, and P.t/, called
the Friedmann equations,

�
Pa

a

�2

D
8�

3
��

k

a2
; (27.75)

Ra

a
D�

4�

3
.�C 3P/ ; (27.76)

which can be combined to arrive at an equation for the
time evolution of the density

P�D�3.�CP/
Pa

a
: (27.77)

This can be solved given an equation of state PD
P.�/. In the case of pressureless dust (which can serve
as a model for a sprinkling of galaxies), PD 0, and
� / a�3. For radiation, PD �=3, leading to � / a�4.
Finally, there is evidence that the expansion of the Uni-
verse is speeding up [27.37, 38]. The cause is unknown,
but it is convenient to model it as dark energy, a perfect
fluid with positive density but negative pressure. Postu-
lating an equation of state of the form P.t/D w.t/�.t/
with w.t/ < 0, one can once again solve (27.77) to
obtain an expression for � as a function of the scale fac-
tor a.

Using this and the first Friedmann equation (27.75),
the way the Universe evolves depending on its contents
can be expressed through the Hubble parameter H.a/,
defined as

H2.a/�

�
Pa

a

�2

(27.78)

D H2
0

2
4˝Ma�3C˝Ra�4C˝ka�2

C˝DE exp

0
@3

aZ
0

da0

a0


1Cw.a0/

�1A
3
5 ;

(27.79)

where H0 is the Hubble constant, which gives the ex-
pansion of the Universe at the current epoch, and the
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dimensionless quantities ˝M, ˝R, ˝k, and ˝DE are
the fractional contributions to the total density of, re-
spectively, matter, radiation, spatial curvature, and dark
energy

˝M D
8�

3H2
0

�M;0 ; ˝R D
8�

3H2
0

�R,0 ;

˝k D�
k

H2
0

; ˝DE D
8�

3H2
0

�DE,0 ;

(27.80)

with �M,0, �R,0, �DE,0 the densities at the current epoch
of matter, radiation, and dark energy, respectively.

An important task in cosmology is to determine

˝ � .H0;˝M; ˝R;˝k;˝DE;w.t// ; (27.81)

and especially to gain empirical insight into the enig-
matic dark energy, by measuring its equation-of-state
parameter w.t/. The main tools for studying the late-
time evolution of the Universe are standard candles.
These are distance markers for which both the redshift z
and the luminosity distance DL are known. For a source
with intrinsic luminosity L and observed flux F , DL is
defined through

F D L
4�D2

L

: (27.82)

If the Universe were Euclidean and never-changing, DL

would correspond to the familiar Euclidean notion of
distance. However, due to the evolution of the Universe,
DL and z are related in a complicated way

DL.z/

D c.1C z/

8̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:̂

jkj�1=2 sin

�
jkj1=2

R z
0

dz0

H.z0/

�
for ˝k < 0 ;

zZ
0

dz0

H.z0/
for ˝k D 0 ;

jkj�1=2 sinh
�
jkj1=2

R z
0

dz0

H.z0/

�
for ˝k > 0;

(27.83)

where H.z/ is the Hubble parameter as a function of
redshift. Since radiation will not be very important at
late times, one can write (using 1=aD 1C z)

H.z/D H0


˝M.1C z/3C˝k.1C z/2

C.1�˝M �˝k/E.z/
�1=2

; (27.84)

where E.z/ depends on the equation of state of dark en-
ergy. At late times, one can expand w.t/, or equivalently
w.z/, as

w.z/D
PDE

�DE
D w0Cwa.1� a/CO



.1� a/2

�
(27.85)

' w0Cwa
z

1C z
; (27.86)

in which case

E.z/D .1C z/3.1Cw0Cwa/e�3waz=.1Cz/ : (27.87)

From (27.83) and (27.84), it will be clear that given
a large number of astrophysical sources for which the
pairs .DL; z/ can be measured, one can constrain the pa-
rameters (27.81).

The most commonly used standard candles are
Type Ia supernovae, whose luminosity is believed to
be known within � 10% [27.37, 38]. However, this lu-
minosity needs to be calibrated by comparison with
different kinds of closer-by sources, leading to a cos-
mic distance ladder, each rung of which could contain
unknown systematic errors. As pointed out by Schutz
in 1986, GW signals from inspiraling neutron stars and
black holes can provide an absolute measure of dis-
tance, with no dependence on other sources [27.28].
In the context of cosmology, they have been dubbed
standard sirens. To see how this works, consider the
amplitude of an inspiral signal as a function of time

A.t/D 1

DL
M5=3g.; �; $;  /!2=3.t/ : (27.88)

Here MD .m1m2/
3=5=.m1Cm2/

1=5 is the chirp mass,
g.; �; $;  / is a known function of the sky position
.; �/ and orientation of the orbital plane .$; /, and
!.t/D P̊ .t/ is the instantaneous frequency. The chirp
mass, and of course !.t/, can be obtained from the
phase. Thus, if sky position and orientation are known,
then from the amplitude one can infer the luminosity
distance DL.

27.5.2 Cosmography with Gravitational
Wave Detectors

To make use of binary inspirals as standard sirens, what
is needed is a way to obtain some information about
redshift z, and also about the sky position .; �/ and ori-
entation .$;  / so that the luminosity distance DL can be
obtained from the GW amplitude. A variety of methods
have been proposed to achieve this.
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Using Electromagnetic Counterparts
Gamma ray bursts (GRBs) are among the most ener-
getic electromagnetic events since the Big Bang. They
roughly fall into two categories: short, hard GRBs and
long, soft ones. It is believed (although only direct GW
detection will provide a definitive answer) that short,
hard GRBs are caused by the coalescence of two neu-
tron stars, or a neutron star and a black hole [27.44].
Sometimes a GRB can be localized on the sky, provid-
ing .; �/. If this allows for the identification of the
galaxy that was host to the inspiral event, then from
its spectrum one can infer the redshift z. Finally, given
a network of detectors, some information about the ori-
entation .$; �/ can also be obtained. Additionally, it is
possible that GRBs are strongly beamed in a direction
perpendicular to the inspiral plane, with inclination an-
gle $ . 20ı.

In [27.29], Nissanke et al. investigated with what
accuracy a network of advanced detectors would be
able to do cosmology. We first note that with second-
generation detectors, the maximum redshift out to
which inspirals can be seen is z' 0:1 for BNS and
z' 0:2 for NSBH. For small redshifts, the luminosity
distance–redshift relationship, (27.83), reduces to

DL '
cz

H0
; (27.89)

which is just Hubble’s law. This means that with ad-
vanced detectors, we will only be able to probe the
Hubble constant H0. However, since H0 is an overall
scaling factor in the full expression for DL, its accurate
and unbiased measurement is key to precision cosmol-
ogy at the largest scales. Gravitational wave detection
will provide us with a way of measuring H0 without
having to rely on any kind of cosmic distance ladder.
Note that from (27.89), if redshift can be determined
with essentially zero uncertainty, then the uncertainty
�H0 on the Hubble parameter is related to the distance
uncertainty by

�H0

H0
D
�DL

DL
: (27.90)

This pertains to a single source; the accuracy will im-
prove roughly as �

p
N for N events. Nissanke et al.

found that with a network composed of the two Ad-
vanced LIGOs and Advanced Virgo, with N D 4 BNS
events one already has�H0=H0 � 13%, and withN D
15, �H0=H0 � 5% [27.29].

With Einstein Telescope it would be possible to
see BNS events out to redshifts of several. In [27.32]

and [27.33], detailed studies were made of how accu-
rately the full set of cosmological parameters (27.81)
could be measured. With O.1000/ events with identifi-
able host galaxies over the course of 5�10 yr, ˝M and
˝DE could be constrained with an uncertainties compa-
rable to what one finds in measurements of the cosmic
microwave background (CMB). One can also use the
CMB measurements for ˝M, ˝DE, and ˝k, and their
uncertainties, as priors, and focus on the dark energy
equation of state parameter w, including its possible
time dependence. Using a linear approximation to w.z/
as in (27.86), one can then compare accuracies in mea-
suring w0 and wa, on the one hand using standard sirens
seen by ET, and on the other hand considering the
SNAP Type Ia supernova survey which may be avail-
able on the same timescale as ET. The results are shown
in Fig. 27.7. The measurement quality is comparable in
the two cases, but we stress once again that standard
sirens allow for an independent measurement, with no
need for a cosmic distance ladder.

Using a Prior
on the Intrinsic Neutron Star Masses

Currently there are about 10 electromagnetically ob-
served binary neutron star systems, with varying de-
grees of compactness. The distribution of neutron star
masses in these binaries is relatively tight [27.108, 109],

GW+ CMB
SNla + CMB

w0

–1.15 –1 –0.95 –0.9–1.05–1.1 –0.85

0.4

0.2

0

–0.2

–0.4

wa

Fig. 27.7 Measurement uncertainties for the possible time
dependence in the dark energy equation of state parameter
w, modeled as w.a/D w0C.1�a/wa , with a the scale fac-
tor (after [27.33]). The slightly larger, brown ellipse is for
standard sirens as seen with ET, the grey one for the possi-
ble future SNAP Type Ia supernova survey. In both cases,
prior information from the CMB is assumed for˝M, ˝DE,
and ˝k
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with mean �NS ' 1:34 M
ˇ

and standard deviation
�NS ' 0:06 M

ˇ

. Now, the masses that are measured
from a gravitational wave signal are not the physical
ones mphys, but the redshifted masses mobs; for a source
at redshift z, one has

mobs D .1C z/mphys : (27.91)

As shown by Taylor et al., assuming an underlying,
physical distribution of masses and comparing with the
observed masses, one can obtain information about the
redshifts of events without ever needing an electromag-
netic counterpart [27.30]. With � 100 BNS observa-
tions, a network of second-generation detectors would
then allow the measurement of the Hubble constant
with� 10% uncertainty.

Taylor and Gair applied this idea to a network of
Einstein Telescopes, in which case one might have as
many as 105 BNS signals per year [27.34]. Keeping H0,
˝M, ˝DE, and ˝k fixed, they also found that with this
method, the dark energy equation of state parameters
.w0;wa/ in (27.86) could be measured with an accuracy
comparable to the forecasted constraints from future
SNIa surveys with CMB and other results as priors.

Using Galaxy Catalogs
Another exciting idea for measuring H0 without the
need for electromagnetic counterparts, and without hav-
ing to restrict to a particular kind of inspiral event,
was recently put forward by Del Pozzo [27.31]. He as-
sumed three kinds of networks: the Advanced LIGO
detectors together with Advanced Virgo (HLV), the
same with the Japanese KAGRA added (HLVJ), and
the five-detector network with IndIGO also included
(HLVJI). Given an inspiral event, these networks will
be able to localize it on the sky with different uncer-
tainties; similarly, the distance ODL extracted from the
gravitational wave signal will also be subject to er-
rors. Combining these uncertainties, one obtains a large
three-dimensional box in which the inspiral event could
have occurred. A galaxy catalog will yield a list of
potential host galaxies within this box, all having dif-
ferent redshifts Ozi. Using the Hubble law DL D cz=H0,
the maximum-likelihood distance ODL, together with this
list of redshifts, leads to a list of possible values for
the Hubble constant fH0;ig. However, a second inspiral
event will yield another list fH0;jg, which will typically
have only limited overlap with the first one. As more
and more detections are made, the true value of the
Hubble constant will quickly emerge. Del Pozzo cast
this idea into the language of Bayesian analysis, and
found that after only 10 observations, the 95% confi-

dence level accuracy on H0 is 14:5%, 7%, and 6:7%
for the HLV, HLVJ, and HLVJI networks, respectively.
After 50 observations, these numbers become 5%, 2%,
and 1:8%, respectively; see also Fig. 27.8.

The advantage of this method is that it does not rely
on any specific kind of source – in principle it can use
all BNS, NSBH, and BBH detections. One issue will
be the completeness of galaxy catalogs. However, it is
possible to include in the analysis terms that describe
the likelihood of observing a GW whose host galaxy
was not detected by any survey because of its faintness;
see [27.35].

MacLeod and Hogan explored a similar idea for
measuring H0 in the context of LISA, with GW signals
from EMRIs, and using galaxy clustering [27.36]. Fi-
nally, a supermassive binary black hole at z . 1 would
be sufficiently localizable with LISA that one might
be able to find the host galaxy cluster, which would
then yield a redshift, allowing for a measurement of
the equation-of-state parameter of dark energy to within
a few percent [27.110–112].

Using the Neutron Star Equation of State
to Extract Redshift
from the Gravitational Wave Signal

Recently, a method was developed to extract redshift in-
formation from the GW signal itself, at least in the case
of BNS or NSBH. In the last stages of inspiral, a neu-
tron star will be deformed and acquire a quadrupole
moment Qij due to the tidal field Eij of the compan-
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Fig. 27.8 Evolution of the medians and 95% confidence intervals
for the Hubble constant as information from an increasing num-
ber of coalescence events is combined, using a galaxy catalog to
obtain information on redshifts, for the HLVJI network of second-
generation detectors (after [27.31])



Part
D

|27.6

610 Part D Confronting Relativity Theories with Observations

ion object, and to leading order one can write Qij D

�	Eij. Here 	 is the tidal deformability parameter,
which depends both on the neutron star mass and the
equation of state. These deformations have an influence
on the orbital motion, which in turn gets imprinted onto
the gravitational waveform. Such effects appear in the
phase at 5 PN and 6 PN orders

˚.v/D ˚PP.v/C˚tidal.v/ ; (27.92)

where ˚PP is the post-Newtonian phase under the as-
sumption of point particles, and [27.79, 113]

˚tidal D
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(27.93)

where the sum is over the components of the binary,
�a Dma=M, and 	a D 	.ma/, aD 1; 2. The function
	.m/ takes the form 	.m/D .2=3/k2R5.m/, with k2 the
second Love number and R.m/ a neutron star’s radius as
a function of mass. Note that 	.m/ enters (27.93) only
in the combination

	.m/

M5
/

�
R

M

�5

� 105 : (27.94)

Thus, although the tidal terms only appear at very high
post-Newtonian order, they come with a large prefac-
tor. Their effect will be noticeable already in advanced
detectors, and certainly in Einstein Telescope.

Messenger and Read noted that the tidal contri-
bution to the phase (27.93) only depends on intrinsic
quantities [27.114]. Indeed, the expansion of the Uni-
verse as the signal travels from source to observer will
cause the observed radius and mass to both be larger
than the physical ones by a factor .1C z/, which how-
ever will cancel from (27.94) and hence (27.93).

Einstein Telescope might see O.105/ BNS sources.
Some fraction of these could be used to determine the
neutron star equation of state by measuring 	.m/. Once
this is done, for each source in the other fraction one
would be able to determine the observed masses mobs D

.1C z/mphys from the low-order PN contributions to the
phase, and the intrinsic masses mphys from the tidal con-
tribution (27.93). Hence both luminosity distances DL

and redshifts z can be inferred directly from the gravi-
tational wave signals!

This will again allow for a fit of the luminos-
ity distance–redshift relation DL.z/, thus constraining
the cosmological parameters ˝ of (27.81), on con-
dition that the uncertainties on redshift measurements
are not too high. The latter depend on the equation
of state, about which not much is currently known.
Messenger and Read estimate that in the range zD
0:1� 1, �z=z� 0:1 for the hardest predicted equa-
tions of state (implying the greatest deformability), and
�z=z� 0:4 for soft equations of state. How this trans-
lates into constraints on the parameters ˝ is yet to be
investigated.

27.6 Summary

In a few years’ time, the second-generation gravi-
tational wave detectors are due to deliver their first
detections. This will herald a new era in the empirical
study of gravitation. For the first time, we will have ac-
cess to the genuinely strong-field dynamics of gravity.
As a bonus, we will be able to look at weak-field gravity
in a novel way, by searching for effects that may only
show up at very large distance scales, such as the ones
which gravitational waves must travel from source to
observer.

In the older literature, studies of how well one
might test GR with gravitational waves mostly took the
form of estimates. With the advanced detector era ap-

proaching, the last few years have seen the development
of hands-on data analysis pipelines to look for devi-
ations from GR in actual detector data. Soon we will
be searching for alternative polarization states, as well
as for possible anomalies in the way that dynamical
gravitational fields interact with themselves. For the lat-
ter, a full data analysis pipeline using coalescences of
binary neutron stars is already in place. Binary black
holes have a much richer dynamics, but the added
complexity also makes for a formidable data analysis
problem, the exploration of which has only just begun.

With third-generation ground-based detectors such
as Einstein Telescope, and the space-based LISA, one
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would be able to exploit not just the inspiral phase,
but also the ringdown. As with the phasing coefficients,
the Einstein equations impose relationships between
characteristic frequencies and damping times, which ef-
fectively allow for a test of the no hair theorem. This
will complement the test proposed earlier by Ryan, us-
ing extreme mass ratio inspirals.

Binary inspirals are standard sirens which can be
used to probe the large scale structure of spacetime.
Although the basic idea had already been proposed by
Schutz as early as 1986, the last few years have seen

the development of detailed methods, based on electro-
magnetic counterparts, exploiting the mass distribution
of binary neutron stars, using galaxy catalogs, or em-
ploying knowledge of the neutron star equation of state.

The coming years are almost guaranteed to be a bo-
nanza for gravitational physics. Either general relativity
will be confirmed with more stringent tests than any that
have been performed hitherto, or we will see deviations,
which may well take the form of low-energy limits of
quantum gravity effects. Any which way, the prospects
are exciting indeed.
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28. Einstein’s Equations, Cosmology, and Astrophysics

Paul S. Wesson

A compact, pedagogical review of our present un-
derstanding of the universe as based on general
relativity is given. This includes the uniform mod-
els, with special reference to the cosmological
constant; and the equations for spherically-
symmetric systems, in a particularly convenient
form that aids their application to astrophysics.
New ideas in research are also outlined, notably
involving extra dimensions.
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28.1 Gravitation Today
General relativity is a remarkable subject, based on
a few principles, yet covering a vast and intricate ar-
ray of consequences. The present account is intended
mainly as an overview; it is compact, yet reasonably
complete. The material of Einstein’s equations, cos-
mology, and astrophysics is treated in Sects. 28.2–28.4.
Our understanding of these subjects has progressed so
greatly that they have come to represent what might
be termed academic industries. However, while many
properties of the universe are well described by general
relativity, there are indications that a deeper under-
standing may require an extended theory, the possible
nature of which will be outlined in the conclusion of
Sect. 28.5.

Einstein’s theory has a broad literature, but those
who work with it tend to gravitate to a few books
(some of which are massive enough to justify the
metaphor). The ones in the bibliography have different
strengths, and together cover everything that is neces-
sary for an understanding of the basics of the theory
[28.1–5]. There are also certain subjects which occur
in the following sections that are discussed in books
and papers of a more technical sort [28.6–14]. Ideas
at the forefront of research are of a diverse nature and
are perhaps best approached through introductory ac-
counts [28.15–18], since it is not clear where they will
lead.

28.2 Einstein’s Equations

This section is devoted to the genesis and properties of
the field equations. The notation is standard, so x0;123

are the coordinates of time and ordinary space. To avoid
symbolic clutter, we adopt the usual ploy of imagining
that we measure time, distance, and mass in units which
make the speed of light c, Newton’s constant of grav-
ity G and Planck’s constant of action h all equal to unity.

The so-called fundamental constants are, in fact,
not very significant in their scientific content and are

only constants in the sense of being useful conventions.
They arise because the history of physics saw it use-
ful to separate the things it deals with into categories,
which in mechanics we label mass, length, and time
[28.10, 11, 15–18]. We ascribe basic units for these
things, denoted in the abstract by M, L, and T , and in
practice by convenient measures like the gram, centime-
ter, and second. The latter are obviously man-made, but
so are the former. The concepts of mass, length, and
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time are instructive, and arise because of the ways in
which humans perceive the world and comprehend it
by the five senses. Over centuries of research, this ap-
proach has been honed, and nowadays we take it for
granted that the equations of physics should be homo-
geneous in their physical dimensions.

Dimensional analysis – the traditional shortcut of
the physicist – is really the application of an elementary
form of group theory related to the Pi theorem. It pro-
vides a way of checking the dimensional consistency of
the equations of physics under the permutations of the
three base quantities M, L, and T . Dimensional anal-
ysis does not, of course, determine the dimensionless
factors which may enter a problem, such as � or e.
In this regard, it should be noted that the constants
of physics do serve the useful purpose of converting
a physical proportionality to an equation in numbers. To
illustrate, let us consider the classical Kepler problem.
In it, the Earth (mass m) orbits the Sun (mass M) with
an azimuthal velocity (v) at a certain radial distance (r).
The relative motion of the frames of reference of the
two objects results in what historically has come to be
called the centrifugal force mv2=r. This is counterbal-
anced by the gravitational force of attraction between
the objects, which following Newton we know to be
proportional to the product of the masses and the in-
verse square of their separation. The essential physics
of the Kepler orbit is described by the proportionality
mv2=r�Mm=r2. However, to convert this to an equa-
tion we have to insert an appropriate constant G on the
right-hand side. Its purpose is to transpose the physi-
cal characteristics of the quantities on the one side of
the law to those on the other side, so it perforce has
the physical dimensions of M�1L3T�2. It is the some-
what arbitrary manner in which constants like G are
introduced that has led several well-known workers to
regard their presence in physics as accidental. By con-
trast, the canceling of the m on the left-hand side of the
previous relation with the m on the right-hand side is
not trivial. It is a consequence of Einstein’s equivalence
principle, to which we will return below. The simplicity
of the Kepler problem, and particularly of the answer
vD

p
GM=r, is due to this principle. Indeed, it is the

fact that its laws are independent of the mass of a test
object which makes gravitation a relatively simple sci-
ence.

Quantum mechanics, in distinction to gravitation,
is characterized by the unit of action h introduced by
Planck and named after him. Both branches of science
make use of c, the speed of light in vacuum. The com-
plete suite of constants with their physical dimensions

is thus GDM�1L3T�2, hDML2T�1, and cD LT�1.
While these constants are commonplace, it is important
to realize that their dimensional contents do not over-
lap; each may be set to unity by an appropriate choice
of units independent of the others. A corollary of this is
that the mass of an object m can be geometrized, if so
desired, in both subjects. The appropriate lengths are
Gm=c2 and h=mc, the Schwarzschild radius, and the
Compton wavelength. The existence of these implies
that it is possible, at least in principle, to construct a uni-
fied theory of gravitation and the interactions of particle
physics which is based on geometry. It is also possible,
as realized long ago by Planck and others, to use G, h,
and c to define a natural set of units. (It is currently
more common to use angular frequency than straight
frequency in atomic problems, so „ � h=2� is the pre-
ferred unit.) The correspondence between natural or
Planck units and the conventional gram, centimeter, and
second can be summarized as follows:

1mp �

�
„c

G

�1=2

D 2:2�10�5 g

1 gD 4:6�104mp

1lp �

�
G„

c3

�1=2

D 1:6�10�33 cm

1 cmD 6:3�1032lp

1tp �

�
G„

c5

�1=2

D 5:4�10�44 s

1 sD 1:9�1043tp :

In Plank units, all the constants G, „, and c become
unity and they consequently disappear from the equa-
tions of physics.

In general relativity, the masses of objects are nearly
always taken to be constants. It is, therefore, a theory of
accelerations rather than forces. The equivalence princi-
ple, noted above, thus states that test masses accelerate
in a gravitational field at the same rate, irrespective
of their composition. This refers not only to chemi-
cal composition, but also to contributions to effective
mass from binding energy and electromagnetic and
other types of energy. For a particle, the equivalence
principle removes the distinction which might be made
between the gravitational mass (the quantity concerned
in the object’s gravitational field) and the inertial mass
(the quantity which measures the object’s energy con-
tent). For a fluid, however, it will be seen below that
this distinction still exists and indeed follows from the
field equations. The latter should not, of course, lead to
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consequences that depend on our choice of coordinates.
The principle of covariance makes this arbitrariness of
coordinate formal and by use of tensors ensures that the
theory leads to results whose content is independent of
how we describe things. As in other theories, in general
relativity the prime objective is often the calculation of
the path of a test particle. The geodesic principle pro-
vides a formal scheme for doing this. The analog of the
distance between two nearby points in the four dimen-
sions of spacetime is the elemental interval ds, which
also defines proper time. The interval can be extremized
by varying it to isolate the shortest route, as in the sym-
bolic relation ıŒ

R
ds�D 0. The result is the geodesic

equation, whose four components give the equations of
motion along the time and spatial axes (the time com-
ponent involves the energy while the components in
ordinary 3-D (three-dimensional) space involve the mo-
menta of the test particle). The three principles outlined
in this paragraph, to do with equivalence, covariance,
and the geodesic, form the basis of a theory which is
both monolithic and far-reaching.

Einstein’s field equations are usually presented as
a match between the gravitational field and its source in
matter. Some of the philosophical implications of this
are still under discussion (see below), but the mathe-
matical structure of the theory is straightforward. The
interval between two nearby points in spacetime is
defined via an extension of Pythagoras’ theorem by
ds2 D g˛ˇ dx˛ dxˇ , where a repeated index upstairs
and downstairs is shorthand for summation over time
.x0/ and space .x123/. The metric tensor g˛ˇ is a 4� 4
array of potentials, which is taken to be symmetric
and so has 10 independent elements. Generally the
potentials depend on space and time g˛ˇ.x /, but lo-
cally they are constants whose magnitudes may be
set to unity, defining flat Minkowski spacetime where
the diagonal components are �˛ˇ D .C1;�1;�1;�1/.
The derivatives of g˛ˇ with respect to the coordi-
nates define the useful objects named after Christoffel,
� ˛
ˇ
� .g˛ı=2/.gˇı; C gı;ˇ � gˇ;ı/. Here the par-

tial derivative is denoted by a comma and should not
be confused with the semicolon used to denote the
covariant derivative, which takes into account the curva-
ture of spacetime. (The covariant derivative of a vector,
for example, is given by V˛Iˇ D V˛;ˇ ��



˛ˇ
A .) The

Christoffel symbols figure in the geodesic equation
mentioned above, which gives the acceleration of a test
particle in terms of its four-velocity u˛ � dx˛=ds, via
du=dsC� 

˛ˇ
u˛uˇ D 0. They are also used to de-

fine the Riemann tensor R˛
ˇı

, which may be shown
to encode all of the relevant information about the

gravitational field. However, the Riemann tensor has
20 independent components, whereas to obtain field
equations to solve for the 10 elements of the metric
tensor g˛ˇ requires an object with the same number of
components. This is provided by setting the upper index
in R˛

ˇı
equal to one of the lower indices, and summing,

a process which produces the contracted tensor R��
named after Ricci. When this is again contracted by tak-
ing its product with the metric tensor in its upstairs or
contravariant form, the result is RD g��R�� D R0

0C

R1
1CR2

2CR3
3, the Ricci or curvature scalar. It can be

thought of as a kind of measure of the average intensity
of the gravitational field at a point in spacetime. Lastly,
the combination G�� � R�� � .R=2/g�� is of special
interest because its 4-D (four-dimensional) covariant
divergence is zero by construction: G��I� D 0. The ge-
ometrical object G�� is known as the Einstein tensor
and comprises the left-hand side of the field equations.

The preceding paragraph is standard material and
familiar to many workers. However, it is not so widely
known that Einstein wished to follow the same proce-
dure for the other side of his field equations. That is,
he wished to replace the common properties of mat-
ter, such as the density � and pressure p, by algebraic
expressions. He termed the former base wood and the
latter fine marble. In his later years, Einstein attempted
to find a way to affect this transmutation by using an ex-
tra dimension. This had already been shown by Kaluza
to unify the gravitational and electromagnetic equations
of classical theory, and Kaluza suggested an extension
to quantum theory that was designed to explain the
magnitude of the electron charge in terms of the mo-
mentum in the fifth dimension. Unfortunately, to make
algebraic progress, Kaluza was obliged to assume that
the 5-D (five-dimensional) theory had functions inde-
pendent of the fifth coordinate (the cylinder condition),
and Klein took the extra dimension to be rolled up to an
unobservably small size (compactification). These two
conditions proved to be a mathematical straightjacket
for the theory, which robbed it of much of its physical
power and doomed Einstein’s dream of a purely geo-
metric account of gravity and matter. It was not until
1992 that a fully general 5-D theory was formulated,
which explained matter as being induced in 4-D by the
fifth dimension. Actually, it was devised by workers try-
ing to find a geometric rationale for rest mass, who were
originally ignorant of Einstein’s forgotten dream. Later,
however, the rediscovery of an old embedding theory
of differential geometry due to Campbell showed that
the 5-D theory (based on the 5-D Ricci tensor RAB)
contained the 4-D one (based on the 4-D Einstein ten-
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sor G˛ˇ). This approach, known as space-time-matter
theory, was joined in 1998 by the similar membrane
theory, and it is now acknowledged that matter can be
explained in geometric terms if so desired.

General relativity, in its regular 4-D form, matches
the Einstein tensor G�� to an object which contains
the phenomenological properties of matter, the energy-
momentum tensor T�� . The form of this depends
somewhat on the type of matter involved, but the lat-
ter is commonly assumed to be a perfect fluid (with
an isotropic pressure and a unique density and no vis-
cosity). Then the appropriate matter tensor may be
written T�� D .�C p/u�u� � pg�� , where u� are the
four-velocities defined before. This form may look con-
trived, but it can be shown that the divergence T��I� D 0
gives back the standard equations of motion in ordinary
3-D space plus the equation of continuity (conservation
of mass) for the fluid.

Before joining the parts of Einstein’s equations
which describe the gravitational field .G��/ and the
matter .T��/, it is necessary to tackle the notorious
problem posed by the cosmological constant �. The
mathematical possibility of adding a term �g˛ˇ to the
field equations arises because the metric tensor acts like
a constant under covariant differentiation .g˛ˇI D 0/.
The presence of such a term does not, therefore, upset
the physical considerations used to identify the left-
hand side .G��/ and the right-hand side .T��/ of
the proposed field equations. Notwithstanding this, it
does have physical consequences. Notably, in a 3-D
spherically-symmetric distribution of matter, an accel-
eration appears which at radius r is �r=3. This is
a repulsion for �> 0, but an attraction that augments
gravity if �< 0. Einstein strongly disliked such a �
term, because it acts on matter without being itself
connected with matter. But Eddington, his contempo-
rary, regarded the � term as the essential foundation
of cosmology, and present observations do indeed in-
dicate its importance (see later). There has been much
wrangling about the cosmological constant, both in
physics and philosophy. It continues to be a subject of
controversy, because certain models of elementary par-
ticles imply intense vacuum fields which correspond to
a large magnitude for�, in apparent contradiction with
astrophysical observations which imply a small, pos-
itive value for � of order 10�56 cm�2. The apparent
discrepancy lies in the range 1080�10120. One reason-
able way of explaining this is in terms of a 5-D theory,
where � varies with scale depending on the size of
the extra dimension (which, though, is controversial).
A new angle on � may actually be gained by taking

from particle physics the idea that the vacuum is not
merely emptiness but the seat of significant physics,
and joining this to the structure necessary for a tensor-
based description of gravity like general relativity. The
result is that the cosmological constant may be regarded
as measuring the density and pressure of the vacuum,
its equation of state being �v D�pv DC�=8� . This is
neat, but not without its pitfalls. For example, it is com-
mon to take the physical dimension of� as L�2, so with
conventional units restored the dimensionally-correct
form of the density is �� D�c2=8�G. This gives the
impression that the vacuum is ultimately related to the
strength of gravity, as measured by G. However, this is
mistaken. Firstly, because there is a coupling constant
8�G=c2 in front of the energy-momentum tensor if the
field equations are set up using conventional units, and
this exactly cancels the similar factor in �� as written
above. Secondly, the so-called fundamental constants
are, in fact, disposable, as we saw before; and while
it may be convenient to put them back at the end of
a complicated calculation, the numerical size of a given
constant depends on an arbitrary choice of units and
has no real significance. By contrast, the geometrical
factor in �� D�=8� does have some significance. It
is composed of a conventional factor 2 connected with
the standard way of expressing potentials and a fac-
tor 4� . This is connected with the fact that the surface
area of a sphere of radius r around a given center in
flat space is 4�r2, so the intensity of a conserved field
necessarily falls off as 1=4�r2, and it is necessary to
integrate over the same surface area in order to evalu-
ate the strength of a source. This situation is identical to
the one in classical electromagnetism as described by
Maxwell’s equations. Those equations are vector in na-
ture and admit of a gauge term which is the gradient of
a scalar function. Similarly, while Einstein’s equations
are tensor in nature, they too admit of a kind of gauge
term. This is just the �g�� discussed above. In other
words, the most satisfactory way to regard the cosmo-
logical constant is in terms of a kind of gauge term for
the equations of general relativity.

Putting Einstein’s field equations together is now –
with the knowledge of the previous discussion – a sim-
ple business. We choose to keep the � term explicit,
for mathematical generality and because it is indicated
by modern observations. (Although it was skimped in
certain older books, including a black-covered one pub-
lished in 1973 that was big in size and influence.) The
equations in standard form read

G�� C�g�� D 8�T�� : (28.1)
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These equations, despite occupying only one line, en-
tail a vast amount of physics. They are also remarkable
in that they attempt to explain reality (as expressed by
T��) in terms of a purely abstract quantity based on ge-
ometry (namely G��). While a precursor may be found
in Maxwell’s theory, Einstein’s theory represents a fun-

damental break with older, mechanical ways of viewing
the world. It is not the purpose of the present account to
go into the many observations and tests which support
the validity of the equations (28.1). However, given the
abstract mode of their genesis, it is truly remarkable that
they work.

28.3 Cosmology

In this section, the usual viewpoint is adopted that the
universe started in some event like a big bang. This
is indicated by the traditional evidence to do with the
expansion, the microwave background, and nucleosyn-
thesis.

To these should be added the more recent evi-
dence of the integrated radiation produced by sources
like stars in galaxies [28.7, 8]. These produce a back-
ground field dependent on astrophysical processes,
which should not be confused with the cooled-down
fireball radiation now seen as the 3K background. The
integrated light from galaxies has a very low intensity,
which in the optical band has only recently been con-
strained in a meaningful way. It is controlled by the
intensity of the sources, the redshift effect of the Hubble
expansion, and the age of the universe. The last factor is
important, and models of the integrated radiation from
galaxies confirm that the present age is t0 ' 13�109 yr
approximately. The night sky is dark because the uni-
verse has a finite past history, as expected if there was
something like a big bang.

The present universe, on the basis of supernova
and other data, appears to be accelerating under the
influence of the cosmological constant or some simi-
lar scalar field. There is also ample evidence from the
structure of spiral galaxies, the morphology of clus-
ters of galaxies, and the gravitational lensing of distant
sources like quasars that there is a significant density of
dark matter in the universe. The nature of this is con-
troversial, but it could be elementary particles of some
kind with a low effective temperature. Ordinary matter,
of the kind seen in stars and the optical parts of galax-
ies, makes up a relatively small fraction of the whole,
especially in comparison to the effect of the cosmo-
logical constant regarded as a density for the vacuum
(Sect. 28.2). The relative densities of the vacuum, dark
matter, and ordinary matter are 74% W 22% W 4% approx-
imately. We see that the stuff of traditional astronomy is
a mere smattering.

It is difficult to match the aforementioned data to
any simple model of cosmology. It is particularly dif-
ficult to find a single set of parameters which gives the
evolution of the scale factor R.t/ as a function of cosmic
time, notably in regard to the supernova data indicating
acceleration at the present epoch. For this reason, the
current picture is largely qualitative: following the big
bang, there appears to have been a phase of rapid or in-
flationary expansion, with the equation of state of the
vacuum (pD��), when the universe became relatively
smooth; then there was a hot period when the equa-
tion of state of the matter was close to that of radiation
(pD �=3); and this evolved with cooling into the later
phase we observe at present, when the matter is cold and
behaves like dust (p' 0), but where the �-like expan-
sion is still dominant. To model these different phases,
we need to take the field equations (28.1) and find rele-
vant solutions.

The required solutions are named after Friedmann,
Robertson, and Walker (FRW). The first reduced the
field equations to a pair of convenient relations which
will be examined below. The latter two workers isolated
the corresponding form of the interval, which is useful
for calculating distances and related quantities. The 4-D
interval consists of two parts: a simple time and a mea-
sure for the 3-D distance whose form ensures that all
places are equivalent. The Robertson–Walker interval
is given by

ds2 D dt2 �
R2.t/

.1C kr2=4/2
Œdr2C r2 d˝2� : (28.2)

Here d˝2 � .d2Csin2  d�2/ defines the angular
part of the metric in spherical polar coordinates. The ra-
dial part is expressed for ease in terms of a measure that
is chosen to be comoving with the matter, which means
that r in (28.2) is merely a distance label, the same
at all time for a given galaxy. The actual (changing)
distance involves the scale factor R.t/, which measures
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the separation between two typical galaxies at time t.
The rate of expansion is given by Hubble’s parameter
H � PR=R, where an overdot denotes the total derivative
with respect to time. The second derivative of R.t/ is
measured for historical reasons by the deceleration pa-
rameter, q��RRR= PR2. This is dimensionless, while H
has the units of an inverse time. (The present value
of H is about 70 km/s/Mpc in terms of its traditional but
rather perverse unit, and galaxies that are not too distant
recede at velocities proportional to this and the dis-
tance.) The constant k in (28.2) is a normalized measure
of the curvature of ordinary 3-D space, and can be posi-
tive, negative or zero (see below). It should be noted that
an alternative form of (28.2) appears in some texts, ob-
tained from it by a change in the radial coordinate, thus

ds2 D c2 dt2 �R2.t/

�
dr2

.1� kr2/
C r2 d˝2

�
: (28.3)

This is useful if we choose to measure r from ourselves
considered as center, whereas (28.2) is spatially
isotropic and provides a more global measure. Of
course, for both forms, there is no real center and no
boundary.

When the Robertson–Walker interval is used in con-
junction with the Einstein field equations (28.1), the
latter take the form of two relations which were stud-
ied by Friedmann. The assumption that the density �
and pressure p of the cosmological fluid are isotropic
and homogeneous (D uniform) causes the partial differ-
ential equations (28.1) to become ordinary differential
equations in the scale factor R.t/ which measures the
expansion. Friedmann’s equations are

8��D
3k

R2
C

3 PR2

R2
�� (28.4)

8�pD
�k

R2
�
PR2

R2
�

2 RR

R
C� : (28.5)

Here the constant k, as mentioned above, measures
the curvature of the 3-D ordinary space of the models
and is normalized to have the values ˙1, 0. It can be
thought of as indicating the relative contributions of
the kinetic energy and gravitational binding energy for
a unit volume of the fluid. In the absence of �, kD�1
means that the balance of energies is in the direction
of continued expansion, kDC1 means that the fluid
eventually stops expanding and collapses under its
own gravity, while kD 0 means an exact balance with
a continuing but slowing expansion. However, � is not
absent in the real universe, which considerably compli-
cates the dynamical solutions of (28.4) and (28.5), most
of which can only be isolated by numerical means.

Some instructive things emerge from the two Fried-
mann equations (28.4) and (28.5) when they are com-
bined in appropriate ways. For this, it is useful to re-
place� by its equivalent vacuum properties (see above)
and write the total density and pressure as �D �mC�v,
pD pmC pv with matter and vacuum parts. Then com-
bining (28.4) with three times (28.5) to eliminate k gives

RRD
�.4=3/�R3.�C 3p/

R2
: (28.6)

This is seen to be a quasi-Newtonian law of inverse-
square attraction, when we recall that the physical
distance in 3-D is proportional at any time to the
scale-factor R.t/, although this symbol does not im-
ply a physical boundary since the cosmological fluid is
continuous. It is noteworthy that the effective gravita-
tional mass of a portion of the fluid is proportional to
the combination .�C 3p/, not the Newtonian � (which
is only recovered for p� �). Accordingly, the combi-
nation .�C 3p/ is called the gravitational density. For
pure vacuum, this combination is negative for �> 0
since pD��D��=8� , and this is why a universe
dominated by a positive cosmological constant expe-
riences a cosmic repulsion. Another instructive thing
emerges when the first derivative of (28.4) is combined
with (28.5) to eliminate RR, to give

P�D�.�C p/

 
3 PR

R

!
: (28.7)

This is seen to be a kind of stability relation for the uni-
verse, in the sense that the density adjusts in proportion
to the expansion rate and the combination .�Cp/. This
is not a gravitational effect, and accordingly the noted
combination is called the inertial density. For pure vac-
uum, the combination .�Cp/ is zero since the equation
of state is pD��. So the vacuum has constant density
(and pressure) even though the matter in the universe is
expanding.

It is apparent from the above that the universe ac-
cording to Einstein can have properties quite different
from those predicted by Newton. The reasons for this
have primarily to do with the cosmological constant,
the possibility that the pressure of matter may be a sig-
nificant fraction of the energy density, and the fact that
the speed of light is large but finite. The last of these
has consequences which are subtle but ubiquitous. To
briefly review these, let us temporarily reinstate conven-
tional (nongeometrical) units for c. Then it is obvious
that as we look to greater distances we also look back
in time. Advances in observational techniques are such
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that we can soon expect to be able to study in detail
the first generation of galaxies. At greater distances
we would ‚see‘ the primordial plasma from which the
galaxies formed, and beyond that would be the zipping
sea of strange particles being carried along by inflation.
Since the universe is isotropic about every point and
about us, we might in principle be able to ‚see‘ the big-
bang fireball, which would resemble a glowing shell all
around us.

Horizons, however, might block our view of the re-
mote cosmos as they do our view of the distant parts of
the Earth [28.1–5]. In the cosmological context, there
are actually two kinds of horizon: an event horizon
separates those galaxies we can see from those we
cannot ever see even as t!1; while a particle hori-
zon separates those galaxies we can see from those
we cannot see now at tD t0 ' 13�109 yr. FRW mod-
els exist which have both kinds of horizon, one but
not the other, or neither. To investigate these, consider
the path of a photon which moves radially through
a universe where distance is defined by the Robertson–
Walker metric. We put dsD 0, d D d� D 0 in (28.3)
and obtain the (coordinate-based) velocity as dr=dtD
˙c.1� kr2/1=2=R.t/. The sign choice here corresponds
to whether the photon is moving towards or away from
us. More importantly, we see that the speed of the pho-
ton is not just c. It actually depends on R.t/, which is
given by the Friedmann equations (28.4) and (28.5).
This means that the distance to the particle horizon,
which defines that part of the universe in causal commu-
nication with us, can be quite complicated to work out.
However, algebraic expressions can be written down for
the simple case where �D 0 and pD 0. Then for the
three values of the curvature constant, the distances are
given by

dD
c

H0.2q0� 1/1=2
cos�1

�
1

q0
� 1

�
;

kDC1; q0 >
1

2

dD
2c

H0
D 3ct0 ;

kD 0; q0 D
1

2

dD
c

H0.1� 2q0/1=2
cosh�1

�
1

q 0
� 1

�
;

kD�1; q0 <
1

2
:

(28.8)

The Hubble parameter and deceleration parameter used
here were defined above and are to be evaluated at the

present epoch. It is apparent from these relations that
the size of that part of the universe we can see is not just
given by the product of the speed of light and the age.

The redshift z is in some ways a better parameter to
use as a cosmological measure than either the distance
or the time. It is a parameter which is directly observ-
able, and it runs smoothly from us (zD 0), through the
populations of galaxies and quasars .z' 1� 10/, and
in principle all the way to the big bang .z!1/. It is
defined in terms of the scale factor of the Robertson–
Walker metric at present .t0/ and at emission .te/ by
1C z� R.t0/=R.te/. This neatly sidesteps long-running
arguments about whether the redshift is caused by the
Doppler effect, gravity, or some other agency, which
are frame-dependent in general relativity and cannot be
uniquely identified. The noted definition merely makes
a statement about light waves and a ratio of scales. (It
might even be imagined that the universe is momentar-
ily static at the two instants which define the redshift,
with no information available as to what happened in-
between.) Notwithstanding the utility of the redshift as
a measure, it is still true that most workers have a mental
picture of a universe that evolves through stages sepa-
rated in time. This is actually acceptable, provided that
the epoch is used only in a relative sense, as an ordering
device. Let us, therefore, return to this mode of organi-
zation and list the solutions of the Friedmann equations
(28.4) and (28.5) relevant to the successive phases of
the universe.

Inflation is characterized by a rapid expansion un-
der the influence of the cosmological constant or some
similar measure of vacuum energy. The appropriate so-
lution of (28.4) and (28.5) was found by de Sitter in the
early days of general relativity and is given by

pD��D��=8�;R.t/� et=L; kD 0 : (28.9)

The length scale here is related to the cosmological con-
stant by �D 3=L2 (the proportionality sign indicates
that the scale factor is arbitrary up to a constant). The
present universe also appears to have a significant value
of�, which corresponds to a length L of order 1028 cm.
The interval corresponding to (28.9) is

ds2 D dt2 � e2t=L.dr2C r2 d˝2/ : (28.10)

There is an alternative form of this cosmological metric,
which is related by a coordinate transformation but is
local in nature, thus

ds2 D

�
1�

�r2

3

�
dt2 �

dr2

.1��r2=3/
� r2 d˝2 :

(28.11)
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This form of the de Sitter metric has been extensively
used to model quantum-mechanical processes in the
early universe, like tunneling. Such processes could be
of great importance if it should be shown that general
relativity needs to be extended in some way. For exam-
ple, it then becomes feasible to explain the big bang
as a quantum event, perhaps in a higher-dimensional
manifold. In this regard, it can be mentioned that for
both signs of � (28.11) can be embedded in a 5-D
manifold which is flat, in which case (28.11) resembles
a 4-D pseudosphere with radius L [28.2, 13]. Sim-
ilarly, (28.10) can be embedded in 5-D Minkowski
space.

Following inflation, the universe is believed to have
passed through a hot period when the matter had an
equation of state similar to that of radiation. A solution
of the Friedmann equations (28.4) and (28.5) has been
known for a long while that has the noted properties,
although it was formulated before the importance of �
was realized. The formal solution has

pD �=3D 1=32� t2 ; R.t/� t1=2 ;

kD 0 ; �D 0 : (28.12)

This solution needs to be modified as regards its
global properties for �¤ 0, but its local properties
are still those necessary for nucleosynthesis of the
kind needed to explain the observed abundances of the
elements.

Later, when the matter had cooled, the universe is
believed to have evolved into a cold phase which per-
sists to the present and which is characterized by a value
for the matter pressure which is effectively zero. The
formal solution of (28.4) and (28.5) has

pD 0 ; �D 1=6� t2 ;R.t/� t2=3

kD 0 ; �D 0 :
(28.13)

This solution, like the previous one, needs to be mod-
ified in regard to its global properties for �¤ 0. The
solution (28.13) is named after Einstein/de Sitter and
should not be confused with the straight de Sitter so-
lution (28.9). For many years, (28.13) was considered
to be the closest approximation to the real universe. It
is slightly ironic that modern data indicate that the old
solution (28.9), with the cosmological constant so de-
tested by Einstein, may be closer to the truth.

28.4 Astrophysics

The application of general relativity to astrophysical
systems is simpler than to cosmology for one main
reason: the influence of the cosmological constant is
negligible. For this reason, we largely ignore it in this
section. Also, despite what was stated in Sect. 28.2
about the disposability of the so-called fundamental
constants, G and c are now made explicit in order to
bring out the comparison with Newtonian theory and
special relativity.

Many astrophysical systems are approximately
spherically symmetric in ordinary 3-D space. The solar
system is like this, although as a solution of Einstein’s
equations (28.1) it is exceptionally simple because it
is approximately empty of matter except for the Sun
(mass M). The interval may be regarded as an extended
version of the local de Sitter one (28.11) and is given by

ds2 D

�
1�

2GM

c2r
�
�r2

3

�
dt2

�
dr2

.1� 2GM=c2r��r2=3/
� r2 d˝2 :

(28.14)

This is the familiar form, but it should be noted that the
potential can be written 2G.MCMv/=c2r, where Mv D

.4=3/ �r3�v is the effective mass of the vacuum due
to its equivalent density �v D�c2=8�G (Sect. 28.2).
It should also be noted that while the local de Sit-
ter solution (28.11) can be embedded in flat 5-D, the
Schwarzschild–de Sitter solution (28.14) cannot be em-
bedded in a flat space of less than six dimensions. The
fact that (28.14) successfully accounts for the dynamics
of the solar system and binary pulsars, thereby estab-
lishing the validity of general relativity, also means that
any extra dimensions must play an insignificant role in
much of astrophysics.

To study other astrophysical systems where there
is substantial matter, we assume the latter to be
a spherically-symmetric perfect fluid described by the
scalars � and p for the density and pressure. It is conve-
nient to take the interval in the form

ds2 D e	c2 dt2 � e! dr2 �R2 d˝2 : (28.15)

Here � and ! are metric coefficients that in general de-
pend on the time t and a radial measure r, which can be
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chosen to be comoving with the matter [28.1–5]. The
latter may flow either inwards or outwards, but an el-
ement of it then maintains the same radial label r (as
in the Robertson–Walker metric of Sect. 28.3). By con-
trast, RD R.t; r/ is really another metric coefficient and
measures the dynamics of the fluid, although in such
a way that 2�R is the circumference of a great circle
around the center of the distribution. With this setup, it
is the inequality of r and R in (28.15) which character-
izes the departure of ordinary 3-D space from flatness
due to the gravitational field of the fluid.

Given the interval (28.15), the question arises of
how to write Einstein’s equations (28.1) in the most
informative manner. In many texts, they are written
as long strings of symbols relating the derivatives of
the metric coefficients � , !, and R to the properties
of matter � and p. For problems of the type being
considered here, there will in general be four equations
for the five unknowns. Therefore, one relation may
be specified in order to balance things and hopefully
find a solution (ways to do this are examined below).
However, in such problems it is often useful to define
a function which is first order in the derivatives as
a new unknown and rewrite the four second-order
partial differential equations as five first-order ones
[28.9]. For the current problem, it was found some
while ago by Podurets and Misner and Sharp that the
appropriate new function to define is a measure of the
mass of the fluid interior to radius r at time t, that
is, mD m.r; t/. The upshot is a set of five first-order
differential equations in three metric coefficients .� , !,
and R) and three properties of matter .�, p, and m). Not
only does this improve the tractability of the algebra,
it also (after some manipulation) leads to a set of
equations which have much greater physical meaning.

Writing the definition of the mass function as a rela-
tion with other quantities, the full set of field equations
is

2Gm

c2R
D 1C

e�	

c2

�
@R

@t

�2

� e�!
�
@R

@r

�2

; (28.16)
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D
�4�pR2

c2
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; (28.17)
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: (28.20)

Experience shows that the first of the equations (28.16)
is usually the hardest to solve. However, it is help-
ful to note that it involves a balance between the
Schwarzschild-like gravitational potential Gm=c2R, the
kinetic energy per unit mass of the fluid .@R=@t/2, and
a measure of the departure of ordinary space from flat-
ness, or equivalently the binding energy per unit mass of
the fluid stored in the gravitational field .@R=@r/2. The
second equation (28.17) is best interpreted from right to
left. It says, loosely speaking, that the force due to the
pressure p acting over a shell of area 4�R2 that moves
at a velocity @R=@t forms a quantity which in mechanics
would be termed a rate of work or power, and that the
mass of the fluid responds by changing at a rate consis-
tent with Einstein’s formula for the equivalent energy
mc2. The third equation (28.18) would on integration
give the usual Newtonian expression for the mass of
a portion of the fluid .mD 4�R3=3/ if the space were
flat .RD r/, but since it is not, (28.18) gives the cor-
responding differential form for the mass of the fluid
as affected by its own gravitational field. The last two
equations, (28.19) and (28.20), relate the metric coef-
ficients to the properties of the matter responsible for
curving spacetime.

Solving (28.16)–(28.20) can be achieved once an
extra relation is specified which balances the number of
equations and the number of unknowns. There are also
numerous solutions in the literature which were found
by more tedious means and whose physical mean-
ings may be elucidated by employing (28.16)–(28.20).
It would be redundant to list those solutions here,
especially since reviews are available [28.1–6]. The re-
lations (28.16)–(28.20) have been applied to a wide
range of problems, since they cover everything from
the global cosmological fluid (the Friedmann equa-
tions included) to tiny perturbations of it [28.9]. Thus,
they lead to a more objective form of the cosmolog-
ical principle, in which all intelligent observers judge
the universe to be the same everywhere, not merely
in terms of the density and pressure but in terms of
dimensionless combinations of these and other param-
eters. While at the other end of the spectrum, they
can be used to study the growth of material around
a quantum seed to form a protogalaxy. The equations
in the form (28.16)–(28.20) are especially useful in
understanding the behavior of matter under extreme cir-
cumstances, such as when the pressure approaches the
energy density and the velocity of sound approaches the
speed of light. New solutions like this certainly await
discovery.
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Ways to specify a condition which makes the set of
equations (28.16)–(28.20) determinate are also various,
and some examples follow:

a) An equation of state, pD p.�/, is the traditional
approach. This is particularly efficacious if infor-
mation about the microscopic state of the matter is
available, for example from spectral observations of
a real system.

b) Boundary conditions, in the broad sense, can help
to restrict the form of a solution. These may include
continuity conditions on the metric tensor if there
is a join to another solution; or physical conditions,
such as ones on the pressure at the center and pe-
riphery of a system.

c) Morphological constraints, such as self-similarity.
The latter technique is especially relevant to astro-

physical systems, which often lack sharp boundar-
ies or other scales. A distribution completely free
of scales may be described by defining a dimen-
sionless combined variable (say ct=r), so enabling
the problem to be posed in ordinary rather than par-
tial differential equations, which are easier to solve.
A distribution with a single scale may be tackled us-
ing a refinement of this technique, so that problems
like phase changes which involve a change in size of
a physical parameter can be treated.

The preceding options are not exhaustive and in any
case there is the alternative of numerical integration.
However, due to the nonlinearity of Einstein’s equa-
tions, an exact algebraic solution is especially valuable.
The search for new solutions is left as an exercise for
the motivated reader.

28.5 Conclusion

General relativity is in the happy situation of being
agreed upon by the great majority of workers and be-
ing verified by observations that stretch from the solar
system to the most remote quasars. Much of cosmology
can be treated using the Friedmann equations (28.4) and
(28.5) for a uniform fluid, and much of astrophysics can
be handled by the more complicated equations (28.16)–
(28.20) for a spherically-symmetric fluid. In these two
areas, it remains to find a single model that describes the
whole history of the universe and solutions that describe
the diversity of its constituent systems. Notwithstanding
these technical shortcomings, it is still true to say that
Einstein’s theory provides quite a good account of the
real universe.

It is also true, however, that a shift in our under-
standing of the classical universe will occur if a way
is found to unify it with the quantum theory of particle
interactions. That a connection exists is already hinted
by the cosmological-constant problem, wherein the
energy density of the vacuum is observed to be small on
macroscopic scales but inferred to be large on micro-
scopic scales. This problem would, of course, disappear
if the properties of the vacuum prove to be variable.
However, even this compromise will entail significant
changes to our current accounts of both cosmology and
particle physics. In fact, most workers believe that new
physics will inevitably emerge from a unification of our
present classical and quantum theories. Currently, the
preferred route to unification is via extra dimensions.

The basic extension is to 5-D, which as mentioned
before is commonly called space-time-matter theory or
membrane theory, whose main concerns are with clas-
sical matter and particles, respectively. For cosmology,
perhaps the main consequence of the fifth dimension
is the realization that the 4-D big bang is a kind of arte-
fact, produced by an unfortunate choice of coordinates
in a flat 5-D manifold. More generally, 5-D relativity is
a unified theory of gravitation, electromagnetism, and
a scalar field. It is the classical analog of the quantum
interactions of the spin-2 graviton, the spin-1 photon,
and a spin-0 scaleron. The last may be related to the
Higgs boson, which is believed to be responsible for the
finite masses of other objects (although in the classical
theory masses also involve shifts in spacetime along
the fifth dimension). As to the old question: Why do we
not see the extra dimension? Well, in a way we do: it is
the mass/energy all around us. This may sound strange,
but adding one or more extra dimensions is actually
the most effective way to extend general relativity so
as to obtain new physics without upsetting established
knowledge.

Our understanding of even established theory could
do with some improvement, especially in what might be
termed the psychology of cosmology. Anyone who has
taught cosmology knows that even bright students have
difficulty with the concepts raised by Einstein’s theory.
Moreover, even some researchers have an inadequate
idea of what the big bang must have been like. This
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is largely because human beings are imprinted from
childhood with everyday constructs which leave them
ill-equipped as adults to visualize a universe without
a center or a boundary. Yet if the density and pres-
sure depend only on the time then logic tells us that
neither thing can exist. Confusion is engendered by
calling the big bang an explosion, because this brings
to mind a conventional bomb that sends shrapnel out
from a point in 3-D space until it hits some obstruction

like a wall. Insofar as an analogy can be made, the big
bang should be imagined as a kind of explosion that
fills all of 3-D space at the same moment, as if there is
an indefinitely large number of bombs which are wired
together so that they all detonate at the same instant.
Even this description does not get across all of the sub-
tleties of the Einstein singularity, but hopefully more
attention will be given in the future to thinking in the
right way.
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29. Viscous Universe Models

Øyvind Grøn, Diako Darian

We give a review of viscous relativistic universe
models that have been presented during the pe-
riod from 1990 until the present time. In particular
we discuss the properties of isotropic and homo-
geneous universe models, and of anisotropic and
homogeneous Bianchi type I models. We consider
these types of models both in the context of the
non-causal Eckhart theory and the causal Israel-
Stewart theory.
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The research on relativistic universe models with vis-
cous fluids is reviewed. Viscosity may have been of
significance during the early inflationary era, and may
also be of importance for the late time evolution of the

universe. Bulk viscosity and shear viscosity cause ex-
ponential decay of anisotropy, while nonlinear viscosity
causes power-law decay of anisotropy. Redshift at tran-
sition from deceleration to acceleration is calculated.

29.1 Viscous Universe Models

Misner [29.1] noted that the

measurement of the isotropy of the cosmic back-
ground radiation represents the most accurate ob-
servational datum in cosmology,

which is even more true today with the Wilkin-
son microwave anisotropy probe WMAP and Planck
measurements. An explanation of this isotropy was
provided by showing that in a large class of ho-
mogeneous but anisotropic universes, the anisotropy
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dies away rapidly. It was found that the most im-
portant mechanism in reducing the anisotropy is neu-
trino viscosity at temperatures just above 1010 K (when
the universe was about 1 s old: cf. Zel’dovich and
Novikov [29.2]).

The first theory of relativistic viscous fluid was
presented by Eckart in 1940 [29.3]. Eckart’s theory
deals with first-order deviation from equilibrium, while
neglected second-order terms are necessary to pre-
vent noncausal behavior. Israel and Stewart [29.4]
have developed a second-order theory. Grøn [29.5]
and Maartens [29.6, 7] have presented exhaustive re-
views of research on cosmological models with non-
causal and causal theories of viscous fluids, respec-
tively.

Bulk viscosity-driven cosmic expansion with the
Israel–Stewart theory have been investigated by Zim-
dahl [29.8], Mak and Harko [29.9], Paul et al. [29.10]
and by Arbab and Beesham [29.11]. As noted by Lepe
et al. [29.12], although Eckart’s theory presents some
causality problems, it is the simplest alternative and has
been widely considered in cosmology, as documented
in Grøn’s review [29.5], which we refer to for works
on these topics up to 1990. We will here review papers
from 1990 and onward.

Many types of observations favor that our universe
is homogeneous and isotropic on scales above a billion
light years. The observations of the temperature fluctu-
ations in the cosmic microwave radiation favor that the
universe is flat, i. e., that the total density of the mat-

ter and energy contained in the universe is equal to the
critical density.

The discovery that the expansion of the universe ac-
celerates could most simply be explained by repulsive
gravity due to a cosmic vacuum energy with a density
equal to about 70% of the critical density. The obser-
vations also favor a special type of vacuum energy,
which may be represented by a cosmological constant
in Einstein’s field equations. The energy–momentum
tensor of this energy is proportional to the metric tensor.
One may show that this means that every component
of the energy–momentum tensor is Lorentz invari-
ant [29.13, 14]. Hence it is not possible to measure
velocity with respect to this type of energy. It may
therefore be called a Lorentz invariant vacuum energy,
LIVE.

Furthermore, a large amount of cold dark matter is
needed to keep the galaxies and the clusters of galax-
ies together because of the rapid motions of the stars in
the galaxies and of the galaxies in the clusters. Hence,
about 30% of the contents of the universe seem to be in
the form of cold dark matter.

The cosmologists therefore introduced a stan-
dard model of the universe dominated by two fluids,
a Lorentz invariant vacuum energy (LIVE), and a cold
fluid. The vacuum energy is usually called dark energy
and the cold fluid is called dark matter. Since the ob-
servations of the temperature fluctuations in the cosmic
microwave radiation favor that the universe is flat, we
shall only consider flat universe models.

29.2 The Standard Model of the Universe

For later comparison, we shall first briefly summarize
the main properties of the standard model, which has
vanishing viscosity. The total pressure and density are
given by

�D �MC �� ;

pD pMC p� D��� : (29.1)

The line-element has the form (using units so that the
velocity of light in empty space is equal to 1),

ds2 D�dt2C a.t/2.dr2C r2 d˝2/ ;

d˝2 D d2C sin2  d�2 : (29.2)

The scale factor of this model is [29.15]

a.t/D A1=3 sinh2=3

�
t

t�

�
;

t� D 2=
p

3��� ; AD
1�˝M

˝�0
; (29.3)

where � D 8�G is Einstein’s gravitational constant.
Here ˝�0 is the present value of the density param-
eter of LIVE. The scale factor represents the distance
between two galaxy clusters relative to their present
distance. Hence a.t0/D 1 where the present age of the
universe is

t0 D t�artanh
p
˝�0 : (29.4)
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Inserting the presently favored values t0 D 13:7�109 yr
and˝�0 D 0:7 leads to t� D 11:4�109 yr. The Hubble
parameter is

H.t/D
2

3t�
coth

t

t�
: (29.5)

The deceleration parameter is

q.t/D
1

2

�
1� 3 tanh2 t

t�

�
: (29.6)

The point of time t1 when deceleration turns into accel-
eration is given by q.t1/D 0 which leads to

t1 D t�artanh
1
p

3
: (29.7)

The corresponding redshift is

zD
1

a.t1/
� 1D

�
2˝�0

1�˝�0

�1=3

� 1 ; (29.8)

which gives t1 D 7:4�109 yr and z.t1/D 0:67.

29.3 Viscous Fluid in an Expanding Universe

Let u� be components of the four-velocity of a fluid
element. The projection tensor onto a 3-space orthog-
onal to the world line of a fluid element is defined
by

h˛ˇ D g˛ˇC u˛uˇ : (29.9)

The covariant derivative of the velocity field of the
fluid can be written as a 3� 3 matrix which can be
separated into the antisymmetric part representing the
vorticity,

!˛ˇ D
1

2
.u�I� � u�I�/ h�˛h�ˇ ; (29.10)

the trace free, symmetrical part which represents the
shear,

�˛ˇ D

�
1

2
.u�I� � u�I�/�

1

3
u�
I�h��

�
h�˛h�ˇ ;

(29.11)

and the trace, which represents the expansion,

 D u�
I� : (29.12)

The four acceleration of the fluid element, which is non-
vanishing only for nongeodesic flow, is defined by

a˛ D a˛I�u� : (29.13)

We then have

u˛Iˇ D !˛ˇC �˛ˇ C
1
3h�� � a˛uˇ : (29.14)

The energy–momentum tensor of a viscous fluid with
proper density � and pressure p is

T˛ˇ D �u˛uˇC .p� �/ h˛ˇ � 2��˛ˇ ; (29.15)

where � and � are the coefficients of shear and bulk
viscosity, respectively. Einstein’s field equations imply
that the divergence of this tensor vanishes. From this
one may deduce the equation of continuity of the fluid
in the form [29.16]

P�C .�C p/  � 4��2 � �2 D 0 : (29.16)

The evolution of the divergence with time is given
by the Raychaudhuri equation which may be written
as [29.16]

P D a�
I�C

�

2
.3� � �� 3p/� 2!2 � 2�2 �

1

3
2 :

(29.17)
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29.4 Isotropic, Viscous Generalization of the Standard Universe Model

We now consider a homogeneous and isotropic universe
with geodesic fluid flow. In this case a�

I�
D ! D � D 0

and (29.16) and (29.17) reduce to

P�C .�C p/ � �2 D 0 ; (29.18)

and

P D
�

2
.3� � �� 3p/�

1

3
2 : (29.19)

Assuming that the 3-space is Euclidean, the line ele-
ment has the form given by (29.2). As a further gen-
eralization of the standard model we shall assume that
the universe contains two noninteracting fluids, Lorentz
invariant vacuum energy, LIVE, that may be repre-
sented by a cosmological constant, ��� D��p� D
�, and a fluid with equation of state pm D w�m, so
that �D �mC ��. Ren and Meng [29.17] and Hu and
Meng [29.18] have proposed the following form of the
bulk viscosity coefficient:

� D �0C �1
Pa

a
C �2
Ra

Pa
: (29.20)

The motivation for considering this form for the coeffi-
cient of bulk viscosity is that from fluid mechanics we
know that the viscosity is related to the motion of the
fluid, i. e., to Pa and Ra.

With the metric (29.2) the expansion is  D 3Pa=aD
3H, where H � Pa=a is the Hubble parameter. Inserting
(29.20) into (29.18) the equation of continuity takes the
form

P�C 3.1Cw/�H� 9�0H2

C 9�1H3C 9�2.H PHCH3/H2 D 0 : (29.21)

Einstein’s field equations take the form

�
Pa

a

�2

D
�

3
� ; (29.22)

Ra

a
D�

�

6
.�C 3p� 9�H/ : (29.23)

Inserting (29.22) into (29.19), the Raychaudhuri equa-
tion takes the form

PH D�
3

2
H2C

3

2
��HC

�

2
�� : (29.24)

We define the density parameters

˝�0 D
���

3H2
0

;

˝m0 D
��m0

3H2
0

and

˝�0 D
3��0

H0
; (29.25)

where H0 D Œ.�=3/ �0�
1=2.

The field equations can be integrated analytically
for some special cases [29.19]. Choosing �1 D �2 D 0
and integrating (29.24) two times with the boundary
conditions a.0/D 0 and a.t0/D 1 we obtain

H.t/D
��0

2
C OH coth

�
3

2
OHt

�
(29.26)

with

OH D H0

s�
˝�0

2

�2

C˝�0 (29.27)

and

a.t/D Ae
��0

2 .t�t0/ sinh2=3

�
3

2
OHt

�
;

AD

0
B@ ˝m0 �˝�0

˝�0C
�
˝�0

2

	2

1
CA

1=3

: (29.28)

From (29.26) it follows that the age of this universe
model is

t0 D
2

3 OH
artanh

r�
˝�0

2

	2
C˝�0

1� ˝�0
2

: (29.29)

The corresponding age of the universe if the viscosity
vanishes is given by (29.4). Hence for a given present
value of the Hubble parameter the viscosity increases
the age of the universe. Assuming that ��0� H0, the
increase of the age due to the viscosity is approximately

t0 � t00 �
1

3H0

�
˝�0

2

	2

˝�0 .1�˝�0/
: (29.30)
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Brevik and Heen [29.20] have used that in the plasma
era of the universe the bulk viscosity derived from ki-
netic theory of gases has order of magnitude so that
.��0/

�1 � 10�1021 yr. Since .H0/
�1 � 1010 years this

estimate of the magnitude of the bulk viscosity gives
˝�0 � 10�11. During most of the evolution of the uni-
verse the viscosity is smaller than this. Hence, this form
of viscosity is totally insignificant for the age of the
universe.

Brevik and Heen [29.20] have, however, pointed out
that impulsive processes at the end of the inflationary
era may have produced great viscosity. In this extremely
brief period the viscosity may have given significant
contributions to the production of entropy in the uni-
verse, able to explain why the number of photons per
baryon is so large,� 109, in our universe.

The continuity equation for matter takes the form

P�m D�3H .�m� 3�0H/ : (29.31)

Inserting (29.26) into (29.31) and integrating both sides
of this equation, yields

�m.t/D 3�0H.t/C Œ�m0 � 3�0H.t/� e�
3
2��0.t�t0/

�
1

A3 sinh2
�

3
2
OHt
	 ;

(29.32)

where �m0 is the energy density of matter at the present
time, t0. Next we insert (29.20) into (29.24) to obtain

a PH D bH2C cHC d ; (29.33)

where

aD 1�
3

2
��2 ;

bD
3

2
.�.�1C �2/� 1/ ;

cD
3

2
��0 ;

dD
1

2
��� : (29.34)

Integration with a.0/D 0 and a.t0/D 1 gives

H.t/D�
c

b
C OH coth

�
�

b

a
OHt

�
(29.35)
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Fig. 29.1 The dynamical evolution of the Hubble parame-
ter, the scale factor, and the energy density as functions of
time. Here ��0 D 0:1, ��1 D 0:5 and ��2 D 0:4

and

a.t/D e�
c

2b .t�t0/

0
@ sinh

�
� b

a
OHt
	

sinh
�
� b

a
OHt0
	
1
A
�b=a

; (29.36)

where

OH2 D
� c

2b

	2
�

d

b
: (29.37)

In Fig. 29.1, we have plotted the evolution of the
Hubble parameter, the scale factor, and the energy den-
sity as functions of time for some values of the bulk
viscosity coefficients. This figure shows that the scale
factor starts with zero and the Hubble parameter and
the energy density are infinitely large at beginning of
the cosmic evolution, which shows that there is a sin-
gularity at the initial epoch, and therefore the universe
starts with a Big Bang. As t increases the scale factor
will increase exponentially, and, as t!1, it becomes
infinite, whereas the Hubble parameter and the energy
density become finite. If the bulk viscosity is zero, the
energy density tends to zero as t!1. Therefore, this
model will give an empty universe for large times. For
the �CDM model with bulk viscosity, as t!1 the
energy density converges to a finite value. It means that
for this model the energy density will stay constant for
large times. The bigger the value of the bulk viscosity
coefficient �0 is, the bigger this constant value of the
energy density will be.
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29.5 The Dark Sector of the Universe as a Viscous Fluid

In the standard�CDM model, the universe today is dy-
namically dominated by a dark sector which consists
of dark matter and dark energy, and occupies 96% of
its total energy content. The dark energy in the �CDM
model is represented by a cosmological constant, �.
One problem with the cosmological constant is that its
theoretical value is between 60�120 orders of magni-
tude greater than the observed value. Another problem
in the �CDM model is the dark degeneracy prob-
lem [29.21, 22], which is the disability of the present
gravitational probes to differentiate dark matter from
dark energy. Therefore, it is reasonable to model dark
matter and dark energy with a single fluid.

There are some models of this type, like the uni-
fied dark energy model and models with ordinary and
generalized Chaplygin gas (see [29.23] and references
therein). Here, we will concentrate on a description of
the dark sector with a viscous fluid. We will, therefore,
look at two different models for a unified dark fluid with
viscosity.

29.5.1 Bulk Viscosity as a Model
for Unified Dark Matter
with the EoS pD .� �1/

We consider the Friedmann–Robertson–Walker uni-
verse with metric given in (29.2) and energy–momen-
tum tensor given by (29.15). The Friedmann equations
and the continuity equation are

3H2 D ��; (29.38)

Ra

a
D�

�

6
.�C 3.pC˘// ;

(29.39)

P�C 3 .�C pC˘/H D 0 : (29.40)

Here we will use the Eckart theory and set ˘ D�3�H.
Inserting the EoS into (29.40), we obtain

P�C 3 .��� 3�H/H D 0 : (29.41)

Defining the dimensionless Hubble parameter as

h�
H

H0
; (29.42)

where H0 is the present value of the Hubble parameter,
(29.38) and (29.41) can be rewritten as

h2 D
�

�cr
; (29.43)

1

H0

d.h2/

dt
C 3�h3 D 9	h2 ; (29.44)

where �cr D
3H2

0
�

is the critical density and 	� H0�
�cr

. Us-
ing the transformation

dtD
1

aH
da ; (29.45)

we rewrite (29.44) as

dH

da
C

3�

2a
H D

3��

2a
: (29.46)

Integrating (29.46), we obtain

H.a/D Ca�
3
2 C

�Z
3��

2a
exp

�Z
3�

2a
da

�
da

�

� exp
�
�

Z
3�

2a
da

�
:

(29.47)

Depending on the form of the bulk viscosity, � , this
integral can be solved analytically or numerically. Com-
bining (29.38) and (29.40), we obtain the Raychaudhuri
equation

PH D�
3

2
�

�
H�

��

�

�
H : (29.48)

Integration of this equation with the assumption that the
bulk viscosity is constant, gives

H.t/D
��

�

1

1�
�

1� ��
H0

	
e�

3
2��.t�t0/

: (29.49)

Using H D Paa , and integrating (29.49) with a.0/D 0 and
a.t0/D 1, we get the following expression for the scale
factor:

a.t/D e
��
 .t�t0/

�
�H0

��

�
1� e�

3
2��t

	� 2
3

; (29.50)

where

t0 D�
2

3��
ln
�

1�
��

�H0

�
: (29.51)
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The energy density as a function of time is then

�.t/D
3��2

�2

1�
1� e�

3
2��t

	2 : (29.52)

These equations describe a universe that begins in a Big
Bang and evolves to have constant energy density and
expands forever with a constant Hubble parameter. In
what follows we will look at two universe models with
different bulk viscosity parameter � [29.23–25].

Model I: � D �0C �1 Paa C �2
Ra
Pa

A universe model with this bulk viscosity parameter is
equivalent with a model that has the effective equation
of state

pD .� � 1/�C p0CwHHCwH2H2CwdH PH ;

(29.53)

where p0, wH , wH2 , and wdH are free parameters. The
equivalence between these two models is given by the
following transformation:

wH D�3�0; (29.54a)

wH2 D�3.�1C �2/; (29.54b)

wdH D�3�2 : (29.54c)

Combining (29.38) and (29.39), we get the following
differential equation for the Hubble parameter:

PH D k1H2C k2H ; (29.55)

where

k1 D

3
2 Œ�.�1C �2/� ��

1� 3
2��2

;

k2 D

3
2��0

1� 3
2��2

:

Integration of (29.55) gives

H.t/D
k2H0ek2.t�t0/

k2C k1H0
�
1� ek2.t�t0/

� : (29.56)

The scale factor takes the form

a.t/D e�
k2
k1
.t�t0/

�

�
k2

.k1H0C k2/e�k2.t�t0/ � k1H0

�1=k1

:

(29.57)

From Friedmann’s first equation, i. e., (29.38), the en-
ergy density can be written as

�.t/D
3

�

 
k2H0ek2.t�t0/

k2C k1H0
�
1� ek2.t�t0/

�
!2

: (29.58)

The deceleration parameter is defined as

qD�
Ra

aH2
D�1�

PH

H2
: (29.59)

By using (29.56), q takes the form

q.t/D�1�
.k1H0C k2/e�k2.t�t0/

H0
: (29.60)

Rewriting the bulk viscosity as

� D �0C �1
Pa

a
C �2
Ra

Pa
D �0C .�1 � �2q/H;

we obtain the evolution of bulk viscosity

�.t/D

.k2C k1H0/.�0Ck2�2/CŒk1�0Ck2.�1C�2/�H0ek2.t�t0/

k2C k1H0
�
1� ek2.t�t0/

� :

(29.61)

Model II: � D �0C �1HC �2H2

In this model the Raychaudhuri equation takes the form

PH D 3
2��2H

h
.HC b/2 � OH2

i
; (29.62)

where

OH2 � b2 �
�0

�2
and b�

��1 � �

2��2
: (29.63)

Integration of (29.62) gives

t.H/D t0 �
2

3��2
ln

2
4�H0

H

� �2
�0

 
H0C b� OH

HC b� OH

! 1
2 OH. OH�b/

�

 
H0C bC OH

HC bC OH

! 1
2 OH. OHCb/

3
5 :

(29.64)
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Equation (29.64) is very complicated and does not give
an expression for the Hubble parameter. Therefore, we
define x� ln a, and we use the transformation

d

dt
D H

d

dx
; (29.65)

to rewrite (29.44) as

h0C
3

2
�hD

3

2

�

H2
0

� : (29.66)

Inserting the expression for the bulk viscosity into this
equation, we obtain

h0 D
3

2
��2H0h2C

3

2
.��1� �/hC

3

2

��0

H0
; (29.67)

This equation can be integrated, and the solution de-
pends on the sign of

��
9

16
.��1� �/

2�
9

4
�2�0�2 : (29.68)

The solutions are

� �< 0:

h.x/D�
c2

c1
C

p
��

c1
tan

�
�C
p
��x

	
;

(29.69)

where � � arctan c1Cc2
p

��
, c1 �

3
2��2H0 and

c2 �
3
2 .��1� �/.

� �D 0:

h.x/D
1

c1

�
1

x
� c2

�
: (29.70)

� �> 0:

h.x/D
1

c1

.c2C
p
�/Ke2

p

�x � c2C
p
�

1�Ke2
p

�x
;

(29.71)

where K � c1Cc2�
p

�

c1Cc2C
p

�
.

Meng and Ma [29.25] have constrained these mod-
els with the latest Union2 data [29.26] and the currently
observed Hubble-parameter dataset (OHD) [29.27].
From their results by best fitting they have found that
these models are consistent with the observational data
in the region of data fitting, but because of the presence
of bulk viscosity these models have a much more flex-
ible evolution processing. They conclude that with the

bulk viscosity considered, a more realistic universe sce-
nario is obtained comparable with the �CDM model
but without introducing the mysterious dark energy.

Furthermore, they have found that Model I mimics
the evolution of the �CDM universe model perfectly.
Since Model I shares many similarities with the�CDM
model, it makes this kind of bulk viscosity parameter
a successful substitution for the dark energy model. For
Model II they have only studied the solutions�> 0 and
�< 0. For the case �< 0 the universe is bounded, and
the expansion ends at far future tD tc, when H and PH
both vanishes. However, this solution fits the data quite
well in the corresponding data region. For the case�>
0 the universe does not have a Big Bang scenario. But,
in the region of data fitting this universe model mimics
the observed acceleration successfully.

29.5.2 Unified Dark Matter
with the EoS pD��	

In this section, we will look at a unified description
of dark matter and dark energy proposed by Hipolito-
Ricaldi et al. [29.28]. We assume that the dark sector of
the cosmic substratum is a viscous fluid with the equa-
tion of state

pD�� ; (29.72)

where we assume that the bulk viscosity coefficient is
given by

� D �0�
� ; (29.73)

where �0 and � are positive constants. Inserting (29.38)
and (29.73) into (29.72) and using that  D 3H, we ob-
tain

pD��0�
� D�A��C1=2 ; (29.74)

where AD
p

3��0 > 0. This equation can be compared
to the equation of state of a generalized Chaplygin gas,
which has the form

pgcg D�
A

�˛
; (29.75)

and we obtain the correspondence ˛ D� .�C 1=2/.
For the study of the similarity between generalized
Chaplygin gases and bulk viscous fluids see [29.29, 30].
For � D 1=2 and ˛ D�1 and AD 1 both models con-
tain the �CDM model as a special case.
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Friedmann’s first equation takes the form

2 D 3�� : (29.76)

With the equation of state

p

�
D � � 1 ; (29.77)

where � is not constant, (29.16) and (29.17) reduce to

P�C  .�C p/D 0 ; (29.78)

and

P D�
�

2
.�C 3p/�

1

3
2 H) P D�

�

2
2 :

(29.79)

Integrating (29.78), we obtain the following relation-
ship between the energy density and the scale factor:

�D

�
ACB

�a0

a

	 3
2 .1�2�/

� 2
1�2�

; (29.80)

where B� 1�A��C1=2
0

�
�C1=2
0

and a0 and �0 are the present

values of the scale factor and the energy density, re-
spectively. Inserting (29.80) into (29.76), gives

H D

r
�

3

�
ACB

�a0

a

	 3
2 .1�2�/

� 1
1�2�

: (29.81)

Using the equation qD�1� PH
H2 , we obtain the follow-

ing equation for the deceleration parameter:

qD�
1� B

2A

� a0
a

� 3
2 .1�2�/

1C B
A

� a0
a

� 3
2 .1�2�/

: (29.82)

The present value of the deceleration parameter is

q0 D�
1� B

2A

1C B
A

; (29.83)

which we rewrite as

B

2A
D

1C q0

1� 2q0
: (29.84)

At qD 0 we have the transition from decelerated to
accelerated expansion. Using (29.82), we find the fol-
lowing value for the scale factor at this point, which we
denote by aacc:

aacc D a0

�
B

2A

� 2
3.1�2�/

: (29.85)

By using the relation 1C zD a0
a , we obtain the corre-

sponding redshift

zacc D

�
1� 2q0

1C q0

� 2
3.1�2�/

� 1 : (29.86)

Expressing the Hubble parameter and the energy den-
sity as functions of q0, we obtain

H

H0
D

�
1

3

� 1
1�2�

�

�
1� 2q0C 2 .1C q0/

�a0

a

	 3
2 .1�2�/

� 1
1�2�

;

(29.87)

and

�

�0
D

�
1

9

� 2
1�2�

�

�
1� 2q0C 2 .1C q0/

�a0

a

	 3
2 .1�2�/

� 2
1�2�

:

(29.88)

The equation of state parameter is then given by

� D 1C
p

�
D

2 .1C q0/
� a0

a

� 3
2 .1�2�/

1� 2q0C 2 .1C q0/
� a0

a

� 3
2 .1�2�/

:

(29.89)

Hipolito-Ricaldi et al. [29.28] have calculated the
matter power spectrum for this model and they have
concluded that unified models with bulk viscosity with
� / �� are compatible with the current observational
data. Also, for certain parameter combinations, their �2

analysis favors the unified viscous dark fluid model over
the standard �CDM universe model.
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29.6 Viscosity and the Accelerated Expansion of the Universe
The question whether a matter dominated universe with
the constant bulk viscosity can drive the accelerated ex-
pansion of the universe has been discussed by Avelino
and Nucamendi [29.31]. In this universe model˝m D 1,
˝� D 0, and the expression (29.28) for the scale factor
reduces to

a.t/D

 
4
�
1�˝�0

�
˝2
�0

!1=3

e.˝�0=2/H0.t�t0/

� sinh2=3

�
3

4
˝�0H0t

�
: (29.90)

where the age of the universe is

t0 D
4

3˝�0H0
artanh

˝�0

2�˝�0

D�
2

3˝�0H0
ln
�
1�˝�0

�
: (29.91)

This form of the solution satisfies the boundary con-
ditions a.0/D 0, a.t0/D 1. The first of these are not
satisfied by the form of the solution given by Avelino
and Nucamendi [29.31]. Solution (29.90) may be writ-
ten as

a.t/D

�
1�˝�0

˝�0

�2=3 �
e

3
2˝�0H0t � 1

	2=3
: (29.92)

The Hubble parameter is

H.t/D
˝�0H0

1� e�
3
2˝�0H0t

: (29.93)

This universe model approaches the de Sitter model for
t� 1=˝�0H0 with a constant Hubble parameter equal
to ˝�0H0. The deceleration parameter is in general
given by

qD�1�
PH

H2
: (29.94)

The deceleration parameter of the universe models con-
sidered here is

q.t/D
3

2e
3
2˝�0H0t

� 1 : (29.95)

The present value of the deceleration parameter is

q.t0/D
1
2

�
1� 3˝�0

�
: (29.96)

These expressions show that the expansion starts from
a Big Bang with an infinitely great expansion velocity,
but decelerates to a finite value. At a point of time t1
given by q.t1/D 0 there is a transition to accelerated
expansion, which will last forever. The transition hap-
pens at

t1 D
2 ln 3

2

3˝�0H0
: (29.97)

At this point of time the scale factor has the value

a.t1/D

�
1�˝�0

2˝�0

�2=3

: (29.98)

The corresponding redshift is

z1 D

�
2˝�0

1�˝�0

�2=3

� 1 : (29.99)

In order that the transition shall have happened at a past
time, a.t1/ < 1, the bulk viscosity must be sufficiently
great, ˝�0 > 1=3.

For this universe model, with Euclidean spatial
geometry, the matter density is equal to the critical den-
sity,

�m D
3H2

�
D

3˝2
�0H2

0

�
�

1� e�
3
2˝�0H0t

	2 : (29.100)

Hence, the matter density approaches a constant value
�m! .3=�/˝2

�0H2
0 .

Avelino and Nucamendi [29.31] have used the most
comprehensive supernova data to estimate the value of
˝�0 that gives the best fit with observed data for a uni-
verse model containing dust with constant coefficient of
viscosity. The result was ˝�0 D 0:64, which is 11 or-
ders of magnitude greater than the value coming from
kinetic gas theory [29.20]. However a mechanism for
producing greater viscosity may be generation of bulk
viscosity due to decay of dark matter particles into rel-
ativistic products [29.32, 33].
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29.7 Viscous Universe Models with Variable G and �

There have been proposed many universe models in
which the gravitational parameter G varies with the
cosmic time, see [29.34–42] and references therein.
Since G couples geometry to matter, it is reasonable
to expect that in an evolving universe we might have
GD G.t/. In this section we will briefly review the spa-
tially flat Friedmann–Robertson–Walker universe mod-
els containing viscous fluid with variable gravitational
coupling constant and variable cosmological constant.
The Friedmann–Robertson–Walker space-time is given
by the metric in (29.2). The Friedmann equations take
the form

3H2 D 8�G�C� ; (29.101)

3
Ra

a
D�4�G Œ�C 3 .pC˘/�C� ; (29.102)

where ˘ is the bulk viscous pressure. The deceleration
parameter is given by

qD�
Ra

aH2
D�1�

PH

H2
: (29.103)

A universe with accelerating expansion has negative de-
celeration parameter. From the Bianchi identities we
obtain

P�C 3 .pC �C˘/H D�
PG

G
��

P�

8�G
: (29.104)

Assuming there is no creation of particles, we can
rewrite (29.104) as

P�C 3 .pC �C˘/H D 0 ; (29.105)

and

8� PG�C P�D 0 : (29.106)

Using the equation of state pD w� the Raychaudhuri
equation reduces to

PH D�
3

2
.1Cw/H2� 4�G˘ C

.7C 3w/

6
� :

(29.107)

In order to solve these equations we assume�D 3mH2,
where m is a constant. In what follows, we explore uni-

verse models with a power law expansion given by

a.t/D a0t� ; (29.108)

where a0 and � are constants. For a universe with accel-
erating expansion (i. e., q< 0) it follows from (29.103)
that � > 1. From (29.108), we obtain directly

H.t/D
�

t
; (29.109)

and

�.t/D
3m�2

t2
: (29.110)

Combining (29.101) and (29.106), we obtain the fol-
lowing differential equation for G:

PG

G
D

2m

1�m

1

t
: (29.111)

Integrating (29.111), we get

G.t/D G0

�
t

t0

� 2m
1�m

; m¤ 1 ; (29.112)

where G0 is the value of the gravitational parameter at
the present time t0. From this equation, we see that for
0< m< 1 the gravitational parameter increases with
time and � decreases, and it decreases for m> 1. It is
evident that G is a constant when � vanishes. The en-
ergy density can now be obtained from (29.101)

�.t/D
3.1�m/�2t

2m
1�m
0

8�G0

1

t2 1Cm
1�m

: (29.113)

Assuming that � > 0 gives the constraint m< 1 which
sets the upper boundary for the cosmological parameter
to �< 3H2. From the continuity equation, we obtain
the following expression for the bulk viscous pressure:

˘.t/D
� Œ2.1Cm/� 3.1�m/.1Cw/�� t

2m
1�m
0

8�G0

�
1

t2 1Cm
1�m

:

(29.114)
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The bulk viscous pressure is assumed to be nega-
tive, i. e., ˘ < 0, which demands � > 2.1Cm/

3.1�m/.1Cw/ . For
�1< m< 1 the bulk viscous pressure will decrease
with time. In the Eckart theory the bulk viscosity pres-
sure is given by

˘ D�3�H ; (29.115)

where � is the bulk viscosity parameter. From (29.109)
and (29.114), we obtain

� D �0�
˛ ; (29.116)

where

�0 D�
2.1Cm/� 3.1�m/.1Cw/�

9�2.1�m/

�

0
@3.1�m/�2t

2m
1�m
0

8�G0

1
A

1�m
2.1Cm/

; (29.117)

and

˛ D
1C 3m

2.1Cm/
: (29.118)

For a positive cosmological parameter and with m< 1
we have the constraint 1=2< ˛ < 1.

29.8 Hubble Parameter in the QCD Era of the Early Universe
in the Presence of Bulk Viscosity

Tawfik et al. [29.43] have studied the evolution of the
Hubble parameter in the QCD era of the early uni-
verse in the presence of viscous QCD plasma. Based
on the recent lattice QCD simulations and heavy-ion
collisions [29.44, 45], they have approximately deter-
mined the equation of state, the temperature and the
bulk viscosity of the quark-gluon plasma and used this
information to calculate the evolution of the universe in
this era. They have used both the Eckart and the Israel–
Stewart theory. The bulk viscosity is given by

� D �0�C b ; (29.119)

where �0 and b are constants. The universe is assumed
to be homogeneous and isotropic, and it contains mat-
ter that is given by the barotropic equation of state,
obtained from lattice QCD simulations and heavy-ion
collisions [29.44, 45]. The Friedmann equations and the
continuity equation take the form

3H2 D �� ; 3
Ra

a
D�

�

2
.�C 3.pC˘// ; (29.120)

and

P�C 3H.�C pC˘/D 0 : (29.121)

In the Eckart theory, the bulk viscosity pressure has the
form

˘ D�3�H : (29.122)

In the Israel–Stewart theory the bulk viscosity pressure
is given by the following differential equation:


 P̆ C˘ D�3�H�
1

2

˘

 
3HC

P




�
P�

�
�
PT

T

!
;

(29.123)

where T is temperature and 
 is relaxation time. Using
(29.120) and the equation of state pD w�D .� � 1/�,
we obtain

PH D�
3

2
�H2 �

�

2
˘ : (29.124)

In what follows we will solve (29.124) for Eckart and
Israel–Stewart fluids. Inserting (29.119) and (29.122)
into (29.124), yields

PH D
9

2
�0H3 �

3

2
�H2C

3

2
�bH : (29.125)

Integrating (29.125), we obtain implicitly H.t/ in the
Eckart theory

t.H/D t0 �
2

9�0

2
4ln

�
H

H0

� 1

OH2
�

�


6�0

�2

C ln

 
H0 � OH�


6�0

H� OH� 
6�0

! 1

2 OH

�
OHC 

6�0

�

C ln

 
H0C OH�


6�0

HC OH� 
6�0

! 1

2 OH

�
OH� 

6�0

� 3
5 ;

(29.126)
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Fig. 29.2 The time evolution of the Hubble parameter
from the Eckart theory, i. e., (29.126), Israel–Stewart the-
ory in (29.131) and for radiation dominated universe with-
out viscosity, i. e., H.t/D 1=2t. Here bD 0:1 and !0 D 1

where

OH2 D

�
�

6�0

�2

�
b�

3�0
:

If � D �0�, i. e., bD 0, (29.126) reduces to

t.H/D t0 �
2

3�0

�

"
1

H
�

1

H0
C

3�0

�
ln

 
H=H� 

3�0

H0=H0 �


3�0

!#
:

(29.127)

Assuming that the relaxation time is given by [29.7]


 D ���1 � �0 ; (29.128)

and that the temperature has the form [29.44, 45]

T D ˇ�r ; (29.129)

where ˇ � 0:718, r� 0:213, � � 1:183, !0 �

0:5�1:5 GeV and

�0 D
1

9!0

9�2 � 24� C 16

� � 1
; (29.130)

we can use Israel–Stewart theory and insert (29.123)
into (29.124) to get the equation that describes the cos-
mological evolution of the Hubble parameter

RHC
3

2
Œ1C .1� r/��H PHC

1

˛
PH

� .1C r/
PH2

H
C

9

4
.� � 2/H3C

3

2

�

˛
H2 D 0 :

(29.131)

In the limit the viscosity vanishes, i. e., �! 0, (29.131)
reduces to

PHC 3
2�H2 D 0 : (29.132)

Integrating this equation, we obtain

H.t/D
2

3�

1

t
: (29.133)

In the radiation dominated era � D 4=3, and (29.133)
reduces to H.t/D 1=2t.

In Fig. 29.2 we have plotted the numerical solu-
tion of (29.131) for the time evolution of the Hubble
parameter in the Israel–Stewart theory along with the
corresponding equations from the Eckart theory, i. e.,
(29.126) and H.t/D 1=2t for a radiation dominated era
without viscosity.

29.9 Viscous Bianchi Type-I Universe Models

Bianchi type-I universe models are the simplest models
of anisotropic universes that describe a homogeneous
and spatially flat space-time and if filled with perfect
fluid with the equation of state pD w�, w < 1, eventu-
ally evolve into a FRW universe. The isotropy of the
present-day universe makes the Bianchi type-I mod-
els prime candidates for studying possible effects of an

anisotropy in the early universe on modern-day obser-
vational data.

Some cosmologists have studied Bianchi type-I
universe models with viscous fluid. The influence of
viscosity on Bianchi type-I models has been investi-
gated by Belinskij and Khalatnikov [29.46], and they
found that asymptotically for large times, such Bianchi
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type-I models will approach an isotropic steady-state
universe model with a de Sitter space which expands ex-
ponentially. For asymptotically early times they found
that there exists a Kasner era in which the effects of
matter, radiation, and viscosity are negligible. Other au-
thors [29.47, 48] have also concluded that anisotropic
models have in general a vacuum stage near an unavoid-
able initial singularity in which the energy–momentum
tensor has no influence on the cosmic evolution. But
Grøn [29.5] has found that in a Bianchi type-I uni-
verse model filled with viscous Zel’dovich fluid, the
bulk viscosity may remove the initial singularity. He
also concluded that the viscosity and also LIVE [29.47],
have an important role in isotropizing the universe.

We will, in this section, study the influence of vis-
cosity on the evolution of homogeneous and anisotropic
Bianchi type-I cosmological models, filled with nonlin-
ear viscous fluid, both with and without a cosmological
constant, �. In the present section, we generalize a re-
cent analysis of viscous isotropic FRW-universe mod-
els [29.19] to anisotropic universe models.

The line element of a Bianchi type-I universe can be
written in the form

ds2 D dt2 �R2
i .dxi/2 ; (29.134)

where R1 D a.t/, R2 D b.t/, R3 D c.t/ are the direc-
tional scale factors. The energy–momentum tensor of
the viscous fluid has nonvanishing components

T0
0 D � ;

Ti
i D�pC 2�HiC .3� � 2�/H� 9˛H�Hi ;

(29.135)

where Hi D PRi=Ri are the directional Hubble parame-
ters, H D 1

3

P3
iD1 Hi, �Hi D Hi �H and pD w�. For

these universe models the Raychaudhuri equation takes
the form [29.49]

PH D�3H2C
�

2
.1�w/�C

3

2
��HC� : (29.136)

The anisotropy parameter is defined as [29.50]

AD
1

3

3X
iD1

�
�Hi

H

�2

D
1

9

X
i<j

�
Hi �Hj

H

�2

:

(29.137)

From Einstein’s field equations then follow

��D

�
1�

A

2

�
3H2�� ; (29.138)

and

AD C

2.3˛�1/e�2˚

9H2
;


 D abc ;

˚ D 2
Z
�dt ; (29.139)

where C is an integration constant. Inserting (29.139)
into (29.138) leads to

��D 3H2�
C

6

2.3˛�1/e�2˚ �� : (29.140)

Further inserting (29.140) into (29.136) gives

PH D�
3

2
.1Cw/H2C

3

2
��H

�
C

12
.1�w/
2.3˛�1/e�2˚ C

1

2
.1Cw/� :

(29.141)

29.9.1 Bianchi Type-I Universe
with Viscous Zel’dovich Fluid
and LIVE

As a simple example showing some properties of an
anisotropic, viscous universe model we shall first con-
sider a Bianchi type-I universe model with a viscous
fluid consisting of a mixture of a Zel’dovich fluid (also
called stiff matter because the velocity of sound is equal
to the velocity of light c in such a fluid) with wD 1 and
LIVE with wD�1. Then (29.136) reduces to

PH D�3H2C 3
2��HC� : (29.142)

Assuming that the bulk viscosity is constant we get the
following expression for the Hubble parameter:

H.t/D
��

4
C OH coth

�
3 OHt

	
; OH2 D

�
��

4

�2

C
�

3
:

(29.143)

The volume scale factor normalized to unity at the
present time takes the form


.t/D e
3��

4 .t�t0/
sinh

�
3 OHt

	

sinh
�

3 OHt0
	 : (29.144)
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Fig.29.3a,b The Hubble parameter, the scale factor, the energy density, and the anisotropy parameter as functions of
time. (a) H.t/, 
.t/ and �.t/. Here ˛ D 0:3 and �D 0:3; (b) A.t/. Here ˛ D 0:3 and �D 0:3

The anisotropy parameter varies with time as

A.t//
e..3��=2/.3˛�1/�4�/t

h
��
4 C

OH coth
�

3 OHt
	i2

: (29.145)

The time evolution of the Hubble parameter, the
scale factor, the energy density, and the anisotropy
parameter are shown in Fig. 29.3. As we see from
Fig. 29.3a the Hubble parameter and hence, from
(29.140) also the density of the fluid, are both infinitely
large at the beginning of the cosmic evolution. As t in-
creases the Hubble parameter and the energy density
decrease and approach finite values. The universe starts
from a Big Bang with vanishing value of the volume
scale factor. From Fig. 29.3b we see that the bigger the
values of the shear and the bulk viscosities are the faster
the anisotropy parameter goes to zero. This means that
the shear and bulk viscosities contribute to isotropiza-
tion of the universe. The presence of the shear and the
bulk viscosities will also contribute to energy produc-
tion of the universe.

29.9.2 Bianchi Type-I Universe
with Variable Shear
and Bulk Viscosity

In order to consider a simple example of an anisotropic
universe model with both shear and bulk viscosity we
shall assume that the coefficient of shear viscosity is
proportional to the Hubble parameter H averaged over
the different directions, with a carefully chosen propor-
tionality constant,

�D� 3
2 .1� 3˛/H : (29.146)

so that 
2.3˛�1/e�2˚ D 1. Furthermore, we assume
that the coefficient of bulk viscosity is given by

� D �0C �1
P




C �2
R


P

: (29.147)

Then (29.141) reduces to

a PH D bH2C cHC d : (29.148)

where

aD 1�
3

2
��2 ;

bD
3

2
Œ3�.�1C �2/� .1Cw/� ;

cD
3

2
��0 ;

d D
1

2
.1Cw/��

C

12
.1�w/ : (29.149)

Integration with 
.0/D 0, 
.t0/D 1 and assuming �1C

�2 < 1=3, gives

H.t/D�
c

b
C OH coth

�
�

b

a
OHt

�
; (29.150)

and


.t/D e�
3c
2b .t�t0/

0
@ sinh

�
� b

a
OHt
	

sinh
�
� b

a
OHt0
	
1
A
�3b=a

;

(29.151)
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where

OH2 D
� c

2b

	2
�

d

b
; (29.152)

and

t0 D�
a

b OH
artanh

 
OH

H0C
c

2b

!
: (29.153)

In this case the anisotropy parameter is given by

AD A0

�
H0

H2

�2

; (29.154)

and the density is

�D �0C 3
�
H2�H2

0

�
: (29.155)

For pressureless matter with wD 0, we find that in
this model the universe starts with a big bang at tD 0
with zero anisotropy. As t increases the volume of this
universe increases, but the energy density decreases.
The energy density decreases faster for smaller values
of bulk viscosity, which means that the bulk viscosity
plays an important role in the energy production of the
universe. The anisotropy parameter increases with time,
but it will approach a finite value. The bigger the value
of the bulk viscosity is the smaller is the anisotropy
parameter. This means that the viscosity contributes in
keeping the anisotropy of the universe small.

29.9.3 Decaying Vacuum Energy

Bali et al. [29.51] have considered a related universe
model with Zel’dovich fluid, wD 1, and a decaying
vacuum energy with density proportional to the Hub-
ble parameter, �D aH, where a is a positive constant.
Then (29.146) reduces to

PH D�
3

2
.2� �1/H

2C

�
aC

3

2
�0

�
H : (29.156)

The general solution is

H D
bH0

H0d� .H0d� b/e�b.t�t0/
; (29.157)

where bD aC .3=2/�0, d D 3� .3=2/�1 and H0 D

H.t0/. The initial value of the Hubble parameter is

H.0/D
bH0

H0d� .H0d� b/ebt0
: (29.158)

Considering a universe model with an initial Big Bang
having H.0/D1 gives the age of the universe model
in terms of the present value of the Hubble parameter,

t0 D�
1

b
ln

�
1�

b

H0d

�
: (29.159)

For this universe model the expression for the Hubble
parameter reduces to

H D
b

d.1� e�bt/
: (29.160)

Introducing an average scale factor RD .R1R2R3/
1=3

so that H D PRR and integrating with the normalization
R.t0/D 1 we obtain

RD

�
ebt � 1

ebt0 � 1

�1=d

: (29.161)

The decay of the density of the vacuum energy is given
by

�D
ab

d.1� e�bt/
: (29.162)

The deceleration parameter as given in (29.5), is

qD de�bt� 1 : (29.163)

At early times q� 2� .3=3/�1 > 0, and the expansion
decelerates. The deceleration is reduced by the compo-
nent of the bulk viscosity proportional to the Hubble
parameter. At a point of time t1 given by q.t1/D 0, i. e.,
at t1 D .1=b/ ln d there is a transition from decelerated
to accelerated expansion.

In the limit of large times this universe model enters
a de Sitter era with the constant Hubble parameter

H.t!1/D
aC 3

2�0

3� 3
2 �1

; (29.164)

constant density of the vacuum energy, and constant de-
celeration parameter q.t!1/D�1.

29.9.4 Anisotropic Bianchi Type-I
Viscous Universe Models
with Variable G and �

We have already considered isotropic universe models
with variable G and �. It is time to look at anisotropic
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Bianchi type-I viscous universe models with variable
G and �. Many authors (see [29.52–56] and refer-
ences therein) have studied different universe models
in the presence of perfect or imperfect fluid with vari-
able G and�, within the framework of Einstein’s theory
of relativity. We will here write down the dynamical
equations for the Bianchi type-I universe models in the
presence of nonlinear viscous fluid with variable G and
�, and give a special solution.

In a comoving reference frame with diagonal met-
ric tensor the equation of energy conservation T�0I� D 0
may be written as

PT0
0 C

P�
ln
p
�g
�
T0

0 �
1
2 Pg˛˛T˛˛ D 0 : (29.165)

Inserting the components of the energy momentum ten-
sor in (29.135), we obtain

P�C 3H.�C p/D 3.3� � 2�/H2C 2�
3X

iD1

H2
i

C 27˛H3 � 9˛H
3X

iD1

H2
i :

(29.166)

Using the definition of the anisotropy parameter, we can
rewrite this equation as

P�C 3H.�C p/D3.3�C 2�A/H2� 27˛AH3 :
(29.167)

From the Bianchi identities we obtain

P�C 3H.�C p/� 3.3�C 2�A/H2

C 27˛AH3 D�
PG

G
��

P�

8�G
:

(29.168)

From (29.167) and (29.168), we have

PG

G
�C

P�

8�G
D 0 : (29.169)

From (29.139)–(29.141) and (29.167) and (29.169) it
follows that we have four independent equations having
nine unknowns w, � , �, ˛, 
 , H, �, G, and �. In what
follows we give a solution to these equation based on
the work of [29.52].

We start by assuming that ˛D �D 0, and

b.t/D c.t/ : (29.170)

With this assumption we get

3H.t/D
P




D
Pa

a
C 2
Pb

b
: (29.171)

Furthermore, since the majority of the universe models
has a scale factor that is either given by a power law
form or exponential form, we assume

a.t/D a0tn ; b.t/D b0tl ; (29.172)

where a0, b0, n, and l are constants. We also assume

�D�0

 
Pa

a
C 2
Pb

b

!2

; (29.173)

where �0 is a constant. Using the above assumptions
we obtain the following solutions:

�.t/D
m

t2
; (29.174)

H.t/D
nC 2l

3t
; (29.175)

G.t/D G0

�
t

t0

� 2m
k�m

; (29.176)

�.t/D �0t
�2k
k�m ; (29.177)

A.t/D 2
h
1� 3�0 � 3.nC 2l/2�0t

�2m
k�m

i
; (29.178)

�.t/D �0t�
kCm
k�m ; (29.179)

where G0 is the value of the gravitational constant at
the precent time t0, and kD l2C 2nl, mD�0.nC 2l/2,
and

�0 D
k�m

8�G0
t

2m
k�m
0 ; (29.180)

�0 D
�0�0

m

�
�.nC 2l/�

2k

k�m

�
: (29.181)

Singh and Kale [29.52] have considered the case
where nD l, and by using the observational values of
PG
G � 10�11 and t0 � 1010 they have found that the de-
celeration parameter is qD 1�n

n D�0:1150, which is
within the observational limits. They have also found
that for n> 1 this model describes a universe with ac-
celerated expansion.
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29.10 Viscous Cosmology with Casual Thermodynamics

So far we have reviewed cosmological models of the
universe with nonequilibrium thermodynamical pro-
cesses mostly described by the theories of Eckart [29.3]
and Landau and Lifshitz [29.57]. But the Eckart formal-
ism is not completely consistent because it is restricted
to a first-order deviation from equilibrium and therefore
suffers from serious drawbacks concerning stability and
causality. We will therefore look at homogenous and
isotropic universe models with the causal second-order
theories of nonequilibrium thermodynamical processes
due to the work of Müller [29.58], Israel [29.59], Israel
and Stewart [29.60], Pavón et al. [29.61] and Hiscock
and Lindblom [29.62].

Belinskii et al. [29.63] were the first to study the
cosmological implications of Müller–Israel–Stewarts
theory, followed by Pavón et al. [29.61], Grøn [29.5],
Maartens [29.6, 7], and Zimdahl [29.8, 64]. For the im-
pact of the bulk viscosity on the background expansion
of the universe the reader is referred to [29.65–74]. For
the perturbative analysis of the viscous cosmological
models we cite the following papers [29.28], [29.29],
and [29.75–79]. Reheating and causal thermodynamics
have been discussed by Zimdahl et al. [29.80].

In what follows, we will look at two causal bulk
viscous cosmological models of the universe, one with
conservation of the fluid particle number and the
other without this conservation law, i. e., with particle
production.

29.10.1 Causal Bulk Viscosity
with Particle Conservation

In this section, we will study the viscous universe
models by using the Israel–Stewart theory of causal
thermodynamics. We start with the entropy flow vector
S�, which with second-order deviation from equilib-
rium takes the form

S� D sN��

˘

2�T
u� ; (29.182)

where u� is the four-velocity, T is the temperature, �
is the coefficient of bulk viscosity, 
 is the relaxation
time, s is the entropy per particle, ˘ is the bulk viscous
pressure, and N� D nu� is particle flow vector, where
n is the particle number density. Particle conservation
N�
I� D 0 and energy–momentum conservation T�

I� D 0
imply

PnC�nD 0 ; (29.183)

and

P�D��.�C pC˘/ ; (29.184)

respectively. From (29.182) and (29.183), we obtain the
following expression for the entropy production den-
sity:

S�
I� D�

˘

T

"
�C




�
P̆ C

1

2
˘T

�



�T
u�
�
I�

#
:

(29.185)

In order to satisfy the second law of thermodynamics,
i. e., S�

I� � 0, we have to impose the linear relation

˘ D��

"
�C




�
P̆ C

1

2
˘T

�



�T
u�
�
I�

#
;

(29.186)

which leads to


 P̆ C˘ D����
1

2
�˘T

�



�T
u�
�
I�

: (29.187)

By using that u�
I� D� D 3H, PnD n;�u�, PT D T;�u�

and P� D �;�u�, (29.187) takes the form


 P̆ C˘ D�3�H�
1

2

˘

 
3HC

P




�
P�

�
�
PT

T

!
:

(29.188)

This dynamical equation determines the evolution of
the viscous pressure. When the relaxation time van-
ishes, i. e., 
 ! 0, (29.188) reduces to

˘ D�3�H ; (29.189)

which is the corresponding relation of the Eckart the-
ory. When we assume that the second term on the
right hand of (29.187) is negligible compared with
the other terms in the equation, we obtain (what R.
Maartens [29.7] calls) the truncated Israel–Stewart
equation, which is of covariant relativistic Maxwell–
Cattaneo form


 P̆ C˘ D�3�H : (29.190)
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The explicit criteria for using this equation over the full
Israel–Stewart equation is given by Zimdahl [29.8]. We
assume the following general form for the equations of
state:

pD p.n;T/ and �D �.n;T/: (29.191)

The temperature of the viscous fluid is determined
by [29.7, 8]

PT

T
D�3H

��
@p

@�

�
n

C
˘

T

�
@T

@�

�
n

�
: (29.192)

For ˘ D 0 and for the equation of state pD .� � 1/�,
(29.192) reduces to

dT

T
D�3.� � 1/

da

a
; (29.193)

which after integration gives T / a�1, for � D 4
3 , i. e.

for a radiation dominated universe and T / a�2, for
� D 1, i. e. for a matter dominated universe. The bulk
viscous pressure is expected to be negative, therefore,
from (29.192) we see that in the presence of bulk vis-
cosity the temperature decreases less. Using (29.191)
and (29.192), we can rewrite (29.188) as


 P̆ C˘ D�3
�H

�
�c2

bC
˘

2�

�
2C

@p

@�
C c2

s

�

C
˘ 2

2��2

�
1C

@p

@�
C
�C p

T

@T

@�

��

C

˘

2

P.c2
b/

c2
b

;

(29.194)

where

c2
s D

�
@p

@�

�
ad

D
n

�C p

@p

@n
C

T

�C p

.@p=@T/2

@�=@T

(29.195)

is the square of the adiabatic sound velocity, cs, and

c2
b D

�

.�C p/

(29.196)

is the speed of bulk viscous perturbations, which is the
nonadiabatic contribution of the speed of sound v given
by

v2 D c2
bC c2

s 	 1 (29.197)

in a dissipative fluid without heat flux or shear viscos-
ity. When we have the equation of state pD .� � 1/�,
(29.195) gives c2

s D � � 1, so that

c2
b 	 2� � : (29.198)

For a flat, homogeneous and isotropic universe, Ein-
stein’s field equations give

H2 D
�

3
� ; (29.199)

Ra

a
D�

�

6
Œ�C 3.pC˘/� : (29.200)

From (29.200), we obtain

�˘ D�2 PH� 3�H2 : (29.201)

Differentiating (29.201), we get

� P̆ D �2 RH�6H PH

�
1C

@p

@�

�
C9�H3

�
c2

s �
@p

@�

�
:

(29.202)

Inserting (29.201) and (29.202) into (29.194), we ob-
tain a dynamical equation for the causal evolution of
the Hubble parameter


H

"
RH

H
�A
PH2

H2
� 3 PH

�
BC

1

2
C

�

�
9

2
�H2

�
c2

bC
1

2
.B�C/

�

�
1

2

P.c2
b/

Hc2
b

�
PHC

3

2
�H2

�#

C PHC
3

2
�H2 D 0; (29.203)

where

r D
�C p

T

@T

@�
;

AD ��1

�
rC 1C

@p

@�

�
;

BD r� 1�
@p

@�
;

C D
@p

@�
� c2

s : (29.204)

For nonrelativistic matter � D 1, @p=@�D 2=3, and
c2

s � 1, which implies that r� 1, A� 1, B� 1 and
CD 2=3. For radiation � D 4=3, @p=@�D c2

s D 1=3,
therefore, r D 1, AD 2 and BD C D 0 in that case.
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Stationary Solutions, i. e., PH D 0
Assuming that cb is a constant and H D H0 D constant,
(29.203) gives


H


�

9

2
�H2

�
c2

bC
1

2
.B�C/

��
C

3

2
�H2 D 0 ;

(29.205)

which we rewrite as


H D
1

3


c2

bC
1
2 .B�C/

� : (29.206)

For nonrelativistic matter we have c2
b 	 1, B� 1 and

C� 2=3, (29.206) yields


H� 1 ) 
 �
1

H
: (29.207)

This means that the relaxation time is much shorter
than the cosmological time scale H�1. For radiation
c2

b 	 2=3, rD 1 and BD CD 0, (29.206) gives


H D
1

3c2
b

�
1

2
) 
 �

1

2H
: (29.208)

In this case the relaxation time may well be of order
of the cosmological time H�1, and the nonequilibrium
is said to be frozen in. It is a necessary condition for
a successful inflation that the relaxation time is of the
same order as the Hubble time. Since the Hubble pa-
rameter is a constant, the scale factor is a / exp.H0t/.
From (29.199), (29.200), and (29.201) we obtain

˘ D�
3�

�
H2

0 D��� : (29.209)

Using (29.192) for the evolution of the temperature and
(29.183) for particle conservation, we find

T / a3
�

r� @p
@�

	
; (29.210)

n/ a�3; (29.211)

respectively. These equations imply that the tempera-
ture is exponentially increasing, but the number density
is exponentially decreasing, which results in a constant
energy density. With these solutions Zimdahl [29.8]
concludes that this evolution is unrealistic.

Power Law Solutions, i. e., a/ tq

With a power law solution, i. e., a/ tq, the Hubble pa-
rameter takes the form H D Paa D qt�1. Inserting

PH D�qt�2 and RH D 2qt�3 (29.212)

into (29.203), gives


H D
1� 2

3q

3c2
b

Q ; (29.213)

where

QD
c2

b

c2
bC

1
2 .B�C/C 2

9q2 ŒA� 2� 3q.BCC/�
:

(29.214)

For nonrelativistic matter Q� 1, and therefore, the re-
laxation time is much shorter than the Hubble time, i. e.,

 � H�1. For ultrarelativistic particles Q! 1, which
implies that


 �

�
1

2
�

1

3q

�
1

H
: (29.215)

This means that in this case the relaxation time may
well be of the order of the Hubble time. Since the re-
laxation time 
 and the bulk viscous coefficient � are
positively defined and Q> 0 the bulk pressure must be
negative. From (29.199) and (29.200), we obtain

�
˘

�C p
D 1�

2

3�q
: (29.216)

Combining (29.213) and (29.216), we get


H D�
1

3c2
b

˘

�C p
Q : (29.217)

From this equation we see that when ˘ ¤ 0 in the case
of the Eckart theory we have 
 ! 0 in the limit c2

b
!1. Solving (29.216) for q gives

qD
2

3�
�

1C ˘
�Cp

	 : (29.218)

The evolution of the temperature is obtained from
(29.192)

T / a3
h
r.1� 2

3q /�
@p
@�

i
:

(29.219)
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Equation (29.218) implies that qD 2=.3�/ corresponds
to ˘ D 0, which is the limit for the perfect fluid. The
number density takes the form n/ a�3 / t�3q, which
means that it decays for q> 0, n is constant for qD
0 and it increases for q< 0. The case qD 1 gives the
following solutions:

a/ t ) H D t�1 ) �D
�

3
a�2;

˘ D�

�
1�

2

3�

�
.�C p/

T / a3
h
r
�

1� 2
3

	
�

@p
@�

i
:

(29.220)

These solutions describe a universe where the temper-
ature is increasing but the energy density decreases.
In order to have an inflationary behavior there must
be accelerated expansion, q> 1. With these solutions,
Zimdahl [29.64], concludes that viscosity-driven infla-
tion is hardly convincing.

29.10.2 Causal Bulk Viscosity
Without Particle Conservation

Assuming that the fluid particle number is not con-
served in the early universe, i. e., N�

I� ¤ 0, we rewrite
(29.183) as [29.64, 81, 82]

N�
I� D PnC 3HnD n� ; (29.221)

where � D PNN is the rate of change of the number N D
na3 of particles in a comoving volume a3. For � > 0
we have particle creation, for � < 0 particles are anni-
hilated. Inserting the continuity equations (29.184) and
(29.221) into the Gibbs equation

T dsD d
��

n

	
C pd

�
1

n

�
; (29.222)

we obtain

nT PsD�3H˘ � .�C p/� : (29.223)

The corresponding expression for the entropy produc-
tion in that case is given by [29.64]

S�
I� D nPsC sN�

I� �
1

2

�



�T
u�
�
I�

˘ 2�



�T
˘ P̆ :

(29.224)

We assume that we have isentropic particle produc-
tion [29.64], which is characterized by PsD 0. With this
condition, (29.223) gives

˘ D�.�C p/
�

3H
; (29.225)

which means that the bulk pressure is given by the
particle production rate, and (29.224) may be written
as [29.64]
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#)
;

(29.226)

where we have used that

Pn

n
D�.3H�� / ;

PT

T
D�.3H�� /

@p

@�
(29.227)

and

P�D�.3H�� /.�Cp/ ; PpD�c2
s .3H�� /.�Cp/ :

(29.228)

In order to satisfy the second law of thermodynamics,
i. e., S�

I� � 0, we impose the generalized linear relation

.�C p/
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D �


3nsTH

�C p

� .�C p/
�

3H




2�

"
� C 2

�

P3H

3H

�

� .3H�� /

�
c2

s �
@p

@�

�

�
P.c2
b/

c2
b

#)
; (29.229)
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which leads to




�
�
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�
P

C
�

3H

D 3H


"
nsT

�C p
c2

b �
1

2

�
1C c2
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@�

��
�
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�2
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1

2

�
c2

s �
@p

@�

�
�

3H
C

1

2

P.c2
b/

3Hc2
b

�

3H

#
:

(29.230)

Using (29.225), we rewrite (29.230) in terms of ˘


 P̆ C˘

D�3H
�

�
nsT

�C p
�c2

bC
˘

2�

�
2C c2

s C
@p

@�

�

C
˘ 2

2�2

�
1C c2

s C
@p

@�

��

C

˘

2

P.c2
b/

c2
b

:

(29.231)

Combining (29.199), (29.201), and (29.225), we obtain

�

3H
D 1C

2

3�

PH

H2
: (29.232)

Substituting (29.232) into (29.230), we obtain an equa-
tion for the evolution of the Hubble parameter


H

"
RH

H
�A

PH2

�H2
C 3B PH�

9

2
�H2

�
rc2

b �
1

2

�

�
1

2

P.c2
b/

Hc2
b

�
PHC

3

2
�H2

�#

C PHC
3

2
�H2 D 0 ;

(29.233)

where

rD
nTs

�C p
;

AD

�
1C c2

s C
@p

@�

�
;

BD 1�
1

2

�
@p

@�
� c2

s

�
: (29.234)

For relativistic matter with � D 4=3, @p=@�D c2
s D

1=3, nsD .�C p/=T and with the constant c2
b, (29.233)

reduces to


H

"
RH

H
�

5

4

PH2

H2
C 3 PH� 6H2

�
c2

b �
1

2

�#

C PHC 2H2 D 0 : (29.235)

In what follows we will study different solutions of
(29.235).

Stationary Solutions PHD 0
Assuming that the Hubble parameter is constant, i. e.,
H D H0, (29.235) gives


H D
1

3
�
c2

b �
1
2

� : (29.236)

From this relation we see that c2
b > 1=2 in order to

give a physically meaningful solution. Since c2
s D 1=3,

from (29.197) we get the general causality restriction
c2

b 	 1� c2
s 	 2=3. This means that c2

b takes values in
the interval 1=2< c2

b 	 2=3. With this causality restric-
tion we find

2	 
H <1 ; (29.237)

which means that particle production makes the relax-
ation time larger (The relaxation time here may refer to
a different process which is explained in [29.64]). From
(29.227), (29.228) and (29.232) we obtain� D 3H, and
the particle density number n, the temperature T , the en-
ergy density �, and the pressure p are constants in time.

Solutions for the Case � / H
By using the relation

PH D
dH

da
PaD H0Ha ; (29.238)

where H0 D dH
da , we can rewrite (29.232) as

dH

H
�
�
3H � 1

� D 3�

2

da

a
: (29.239)

Assuming that the particle production rate, � , is pro-
portional to the Hubble parameter, H, i. e., � D ˛3H,
with ˛ being a constant, (29.239) reduces to

dH

H
D

3� .˛� 1/

2

da

a
: (29.240)
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Integration of this equation gives the following expres-
sion for the Hubble parameter in terms of the scale
factor:

H.a/DH0

�
a

a0

� 3
2.˛�1/

: (29.241)

Using the definition of the Hubble parameter H D Paa ,
and integrating (29.241), we obtain

a.t/D

�
t

t0

� 2
3.1�˛/

: (29.242)

The Hubble parameter in terms of the cosmic time is
then H.t/D 2

3.1�˛/
1
t . From this solution we see that

a linear relation between � and H implies a power-
law behavior of the scale factor. From (29.227) and
(29.228), it follows that

nD n0

�
t

t0

�
�

2


D n0a�3.1�˛/; (29.243a)

T D T0

�
t

t0

� 2.1�/


D T0a3.1�˛/.1�/; (29.243b)

�D �0

�
t

t0

�
�2

D �0a�3.1�˛/; (29.243c)

with � D 4=3, aD
�

t
t0

	q
, where q� 1

2.1�˛/ . Inserting

H D q 1
t , PH D�q 1

t2
and RH D 2q 1

t3
into (29.235), yields


H D
2

3

q.q� 1
2 /

q


1C 2q

�
c2

b �
1
2

��
� 1

4

: (29.244)

With qD 1=2 we get � D 0 and 
 D 0, which means
that the fluid is perfect. For q> 1=2 we have � > 0, and
if we compare the parameters with those in (29.213) for
� D 4=3 and QD 1, we find that the relaxation time is
generally larger in this case.

Solutions for the Case � / H2

To find yet another solution, we assume the following
proportionality relation between the particle production
rate � and H2:

�

3H
D ˇ

H

He
; (29.245)

where ˇ is a constant and He D H.ae/ is the Hubble
parameter at some fixed epoch with aD ae. Inserting

(29.245) into (29.239) gives

dH

H
�
ˇ
He

H� 1
	 D 3�

2

da

a
: (29.246)

Integrating this equation, we obtain

H.a/D He
a

3
2
e

.1�ˇ/a
3
2 Cˇa

3
2
e

: (29.247)

From this expression we see that for a! 0 we have
H! He

ˇ
D constant, which means that we have accel-

erated expansion (Ra > 0). For a� ae we have H /
a�3=2, which is the Hubble parameter for the FLRW
universe. Assuming that aD ae in the transition from
accelerated to decelerated expansion at which RaD 0
and PHe D�H2

e , and combining (29.245) and (29.232),
we find

ˇ D 1�
2

3�
: (29.248)

For radiation ˇ D 1=2, and (29.247) reduces to

H.a/D
2a2

eHe

a2C a2
e
: (29.249)

With this expression for the Hubble parameter the scale
factor takes the form

tD teC
1

4He

"
ln

�
a

ae

�2

C

�
a

ae

�2

� 1

#
: (29.250)

Inserting (29.249) in the first Friedmann equation, leads
to the expression for the energy density

�.a/D
12H2

e

�

�
a2

e

a2C a2
e

�2

: (29.251)

From this expression we see that for a! 0 we have
�!

12H2
e

�
D constant, and for a� ae we have the

familiar behavior � / a�4. Rewriting the dynamical
equations for the particle number density and the tem-
perature from (29.227), we obtain

dn

n
D

1

3a

�
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e

a2C a2
e

� 1
�

and

dT

T
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� 1
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; (29.252)
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where we have used the relation

d

dt
D aH

d

da
: (29.253)

Integration of equations (29.252) yields

nD ne

�
2a2

e

a2C a2
e

� 3
2

and T D Te

�
2a2

e

a2C a2
e

� 1
2
:

(29.254)

These expressions show that both the particle num-
ber density and the temperature remain finite at aD 0,
and they approach the correct relations for the radia-
tion dominated era for a� ae. Inserting (29.249) into

(29.235), gives


H D
2a2

e

�
a2C a2

e

�
3a2C 10a2

ea2C 6
�
c2

b �
1
2

� �
a2C a2

e

�2 ;
(29.255a)

D
1

6

1

c2
bC

1
3

H
He

�
1� 7

8
H
He

	 H

He
: (29.255b)

In the limit a! 0 we have H! 2He and

H D 1=Œ3.c2

b� 1=2/�. Since 1=2< c2
b 	 2=3, we

find 
 D 2H�1, for the maximum value of c2
b, i. e.,

for c2
b D 2=3. From (29.255a) we also see that the

parameter 
H decreases with time, and for a� ae,

H tends to zero. Hence, in this limit we will have
perfect fluid behavior, and since He� H, the particle
production is negligible, i. e., �=H� 1.

29.11 Summary
In this chapter, we have reviewed many viscous uni-
verse models. The noncausal first-order Eckart the-
ory and the causal second-order Müller–Israel–Stewart
(MIS) theory of dissipative processes in relativistic
fluids have been applied to a flat, homogeneous and
isotropic universe and the homogeneous but anisotropic
Bianchi type-I universe. The generalization of the
�CDM universe model to include viscosity, and vis-
cous universe models with variable G and � have also
been reviewed.

The possibility of an accelerated expansion of
a matter dominated universe with constant bulk viscos-
ity have been studied, and the estimated value of the
density parameter of the viscous fluid that gives the best
fit with observed data is ˝�0 D 0:64, which is 11 or-
ders of magnitude greater than the value coming from
kinetic gas theory. It is believed that a mechanism for
producing greater viscosity may be generation of bulk
viscosity due to decay of dark matter particles into rel-
ativistic products.

By using a special relation between the bulk viscos-
ity and the Hubble parameter and its derivatives, and

by assuming that the shear viscosity is proportional to
the Hubble parameter, analytical solutions to the Ray-
chaudhuri and the continuity equation have been found
for the Bianchi type-I universe models with nonlinear
viscous fluid. From these solutions it is clear that for
these models the presence of bulk viscosity and the
nonlinear viscous fluid will increase the energy den-
sity of matter. The evolution of the Hubble parameter,
the volume scale factor, and the anisotropy parameter
will also depend on the bulk viscosity. If the value of
the bulk viscosity is increased the anisotropy parameter
will decrease. In other words, the presence of viscosity
is important for the isotropization of the universe.

The MIS theory with and without particle num-
ber conservation has been used to study the possibility
of bulk viscosity-driven inflationary solutions. When
the particle number is not conserved the bulk viscous
pressure is assumed to be responsible for the particle
production processes. In this case with a particle pro-
duction rate which depends quadratically on the Hubble
parameter a smooth transition from inflationary to non-
inflationary behavior was obtained.
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30. Friedmann–Lemaître–Robertson–Walker
Cosmology

David Wands

Presented is a discussion of homogeneous
and isotropic cosmologies described by the
Friedmann–Lemaître–Robertson–Walker (FLRW)
metric. The cosmological models provide the
framework within which astronomical observa-
tions of the Hubble expansion, cosmic microwave
background radiation and primordial nucle-
osynthesis can be described. I present simple
cosmological solutions of the Einstein equations
in the case of vacuum spacetimes, radiation and
dust, and discuss how an accelerated expansion
(inflation) can solve some problems of the hot
big bang model. In particular I discuss inhomoge-
neous perturbations about the FLRW background
and how inflationary cosmology provides a model
for the origin and evolution of structure in our
Universe.
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30.1 Motivation

The standard Hot Big Bang model of cosmology is
based upon a simple class of spacetimes described by
the Friedmann–Lemaître–Robertson–Walker (FLRW)
metrics. While general relativity can, in principle, de-
scribe far more complicated spacetimes, symmetries
are often used to reduce Einstein’s field equations to
something more manageable. Cosmologists appear to
be fortunate to live in a universe that, on the largest ob-
servable scales, seems to be

1. Spatially homogeneous, which means that its prop-
erties are invariant under spatial translations (it
looks the same at all positions at a given cosmic
time).

2. Isotropic, which means that it is rotationally invari-
ant (it looks the same in all directions).

30.1.1 Symmetries

The former doesn’t actually imply the latter (you can
have a spatially homogeneous universe that is expand-
ing at unequal rates in different directions) and the latter
does not imply the former (it just requires spherical
symmetry about a given point). However, if a system is
isotropic about all points, then it must be homogeneous
too.

To be precise, we will assume that there exists
a foliation of three-dimensional spatial hypersurfaces,
each labeled by a cosmic time coordinate t, which are
maximally symmetric, characterized by an intrinsic cur-
vature scalar �, which is the same at all spatial points at
a given cosmic time.
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For example, the two-dimensional surface of
a sphere is a maximally-symmetric surface with a pos-
itive curvature proportional to the inverse square of
the radius, � / L�2. The infinitesimal distance between
two points on the sphere, labeled by angular coordinates
.;  / and . C d; C d /, is given

ds2 D L2
�

d2C sin2  d 2
�
:

Mathematically this is readily extended to a three-
dimensional sphere, with radius L and coordinates
.�; ;  /

ds2 D d�2CL2 sin2.�=L/
�

d2C sin2  d 2
�
;

or a three-dimensional hyperboloid (with negative cur-
vature)

ds2 D d�2CL2 sinh2.�=L/
�

d2C sin2  d 2
�
:

On scales much smaller than the radius of curvature
�� L, both cases reduce to flat three-dimensional
space

ds2 D d�2C�2
�

d2C sin2  d 2
�
:

We may write all three cases in unified form by in-
troducing the angular diameter coordinate

r�

8̂<
:̂

L sin.�=L/

�

L sinh.�=L/

; (30.1)

such that

ds2 D
dr2

1� �r2
C r2

�
d2C sin2  d�2

�
;

with � DC1=L2, 0 or �1=L2 for spherical, flat or hy-
perbolic space, with positive, zero or negative spatial
curvature, respectively.

These three-dimensional spaces have a fixed ge-
ometry, but our observed universe evolves with time.
Thus we consider spatial foliations (three-dimensional
slices of spacetime) with an overall scale factor that
evolves with time, a.t/. The spacetime interval between
neighboring events in the most general spatially homo-
geneous and isotropic spacetime is given by the FLRW
metric [30.1]

ds2 D�c2 dt2C a2.t/�
dr2

1� �r2
C r2 d2C r2 sin2  d�2

�
:

(30.2)

where a.t/ is the scale factor of the universe. The proper
(physical) distance d, between any two observers at rest
with respect to the homogeneous matter can be given as
d.t/D a.t/�, where � is a fixed coordinate distance.
The coordinate distance � is also referred to as the
comoving distance as it remains a constant for parti-
cles comoving with the cosmological expansion. The
present value of the scale factor is taken to be a0 D 1
and comoving distances then correspond to the physi-
cal distance at the present cosmic time.

If � > 0 then the spatial geometry becomes analo-
gous to geometry on the surface of a sphere. The angles
of a triangle add up to more than 180ı and the cir-
cumference of a circle is less than 2� times its radius.
Note that the volume of space (at a fixed time t) is
finite, and these models are sometimes referred to as
closed.

If � < 0 the space has a negative curvature (hyper-
bolic geometry). The angles of a triangle add up to less
than 180ı and the circumference of a circle is more than
2� times its radius. Like flat space, the volume of space
at any fixed time t, may be infinite so these models are
sometimes referred to as open. However, it is possible
to construct flat or hyperbolic spaces with closed spatial
topology [30.2].

The spatial curvature becomes significant over
physical distances of order of the curvature scale
d� D a=

p
j�j, or larger. Well within this scale the space

still looks flat, just as the surface of the Earth may ap-
pear flat on scales less than Learth D 6400 km.

30.1.2 Cosmological Redshift

The original observational motivation to consider dy-
namical models of cosmology was the discovery of the
redshift of light from distant galaxies, which is most
simply interpreted as the expansion of our Universe.

Light rays follow a light-like or null path, i. e.,
the interval ds2 D 0. In the FLRW metric (30.2) this
implies that for a photon traveling radially inwards to-
wards r D 0, we must have

c2 dt2 D a2.t/
dr2

1� �r2
: (30.3)

We can show that this leads to the wavelength of light
being stretched (or equivalently its frequency is red-
shifted) due to the expansion of the scale factor, as seen
by observers comoving with the cosmic expansion.

Consider a light-ray emitted at some time te from
a galaxy at r D re. If it observed by us at time t0, at
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rD 0, then it must travel a coordinate distance

�e D

reZ
0

dr
p

1� �r2
D

t0Z
te

cdt

a.t/
: (30.4)

Another light ray emitted from the same galaxy shortly
afterwards at teC�te reaches us at t0C�t0. The coor-
dinate distance is the same, so we also have

�e D

t0C�t0Z
teC�te

cdt

a.t/
D

t0Z
te

cdt

a.t/
; (30.5)

which implies

t0C�t0Z
t0

cdt

a.t/
D

teC�teZ
te

cdt

a.t/
: (30.6)

If we choose a small time interval �te compared with
the rate of expansion of the Universe then we can treat
a.t/ as constant over this short interval. We then have

c�t0
a.t0/

D
c�te
a.te/

: (30.7)

Therefore, light emitted with a frequency �e D 1=�te is
observed to have been redshifted when it is observed in
an expanding universe

�e

�0
D
�t0
�te
D

a.t0/

a.te/
: (30.8)

This redshift is seen by all observers who are at rest
with respect to a homogeneous expansion, and appears
as a Doppler shift of the frequency of light from sources
receding from the observer. Distant galaxies are moving
away from us because space itself is expanding.

We commonly refer to earlier times in terms of this
redshift relative to the present (denoted by subscript 0)

1C ze �
	0

	e
D
�e

�0
D

a0

ae
: (30.9)

For small distances, te ' t0, we can expand

a.te/D a.t0/�

�
da

dt

�
0
.t0� te/C : : : : (30.10)

Hence

1C zD
a.t0/

a.te/
D 1CH0.t� te/C : : : ; (30.11)

where the present expansion rate is given by the Hubble
constant, H0 D .Pa=a/0. For sufficiently small distances
we recover Hubble’s law that redshift is proportional to
distance

z'
H0 d

c
; (30.12)

where d ' c.t0 � te/. What we refer to as the Hubble
constant H0 is just the present value of what is, in gen-
eral, a time-dependent expansion rate,

H D

�
Pa

a

�
: (30.13)

The linear Hubble law (30.12) is an approximate
expression for small distances and for larger distances
(higher redshifts) we need a more careful definition of
distance in an expanding universe and in the presence
of spatial curvature. One practical definition of distance
is the luminosity distance dL, defined in terms of the
energy flux per unit area F, received from an object of
absolute luminosity L

dL D

r
L

4�F
: (30.14)

In an FLRW metric (30.2) this gives

dL D .1C z/a0r.�/ : (30.15)

Compared with the corresponding expression in flat
Minkowski spacetime, there is an additional factor of
.1Cz/ due to the cosmological redshift which decreases
the energy of photons observed and increases the ob-
served interval between photons being emitted. r.�/ is
the angular diameter distance (30.1) in curved space,
where we can re-write (30.4) in terms of redshift as

�D

t0Z
te

cdt

a.t/
D

zZ
0

cdz

a0H
: (30.16)

We can Taylor expand the Hubble expansion rate

H 'H0 � PH0.t0 � t/

'H0Œ1C .1C q0/z� ;
(30.17)

where we define the dimensionless deceleration param-
eter

q0 ��

�
aRa

Pa2

�
0
: (30.18)

Thus observations of the luminosity distance (30.15)
against redshift (30.16) can, in principle, measure not
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only the present Hubble expansion, H0, but also the de-
celeration, q0.

30.1.3 Observational Cornerstones

Having introduced some of the key mathematical defi-
nitions, let us now briefly review some of the support-
ing evidence for spatially homogeneous and isotropic
cosmologies.

Hubble Expansion
The most obvious test of the isotropy of our universe is
to look at the position and motion of galaxies on the sky.
They are not uniformly distributed, but they do appear
to be statistically isotropic. Thus, the average number
density of galaxies seems to be independent of direction,
and indeed the types of galaxies found seem to be much
the same in whatever direction we look. Nowadays not
only the positions on the sky but also the redshifts of
hundreds of thousands of galaxies are measured in sys-
tematic large-scale surveys [30.3, 4]. Combined with
independent distance estimators this provides a strong
confirmation of Hubble’s expansion law (30.12).

For many years there was controversy about the
correct value for the Hubble constant due to different
methods for determining the distances to galaxies. A re-
liable determination of the Hubble constant was given
by one of the cornerstone projects of the Hubble Space
Telescope which used Cepheid variable stars in more
distant galaxies to fix a value [30.5]

H0 D 72˙ 8 km s�1 Mpc�1 : (30.19)

More recently effort has moved on to determine
possible corrections to the linear Hubble law at high
redshifts which could reveal spatial curvature and/or
time-dependence of the Hubble rate as the cosmic
expansion slowed down, or speeded up. Type IA su-
pernovae are exploding stars which are visible out to
redshifts of order 1. They are thought to originate
from stars close to the Chandrasekhar mass, approxi-
mately 1:4 times the mass of our Sun, and hence are
all of similar intrinsic luminosity. Observations of lo-
cal supernovae have been used to calibrate the intrinsic
brightness against the rate of decay of the supernova
light-curve and further reduce the scatter in the intrinsic
luminosity. Surveys of distant type IA supernovae have
been used to show that the expansion of the universe is
accelerating [30.6], confounding expectations of a uni-
verse filled with ordinary matter and radiation, with no
evidence of spatial curvature.

We now have so much data about the angular po-
sitions (on the sky) and redshifts of galaxies that even
without independent estimates of their distance, galaxy
redshift surveys are used to test cosmological theories
and constrain model parameters [30.3, 7].

The Cosmic Microwave Background
Just because our universe is expanding does not mean
there had to be a big bang. For many years the steady
state theory offered an alternative explanation for the
expanding universe [30.8]. It proposed that matter was
continually being created, so the overall state of the uni-
verse was uniform in time as well as space.

The primary observational grounds for believing
that the universe emerged from a hot big bang is the
presence of the cosmic microwave background (CMB).
Today these microwave photons are part of a thermal
spectrum of radiation corresponding to a temperature
of 2:73 K [30.9]. However, we know that the frequency
of photons is redshifted by the expansion of the uni-
verse, (30.9), and so the CMB temperature is inversely
proportional to the size of the universe,

T

T0
D

a0

a
: (30.20)

The CMB was discovered by Penzias and Wilson
in 1965 [30.10] as a uniform background radiation.
Apart from a small dipole component (produced by our
motion relative to the Hubble flow), the primordial ra-
diation is observed to be isotropic to about 1 part in 105.
This is consistent with the idea that the early universe
was nearly homogeneous with only small perturbations.
Over time these small perturbations can grow, due their
own gravitational attraction, to produce the distribution
of galaxies that we observe today.

In 1992 the first evidence of primordial anisotropies
in the microwave background sky were reported by the
Cosmic Background Explorer (COBE) satellite [30.11].
This has led to a new era in observational cosmol-
ogy. A large number of balloon, ground-based and
satellite experiments have confirmed COBE’s measure-
ments and extended them to precise measurements of
the temperature and polarization anisotropies in the
CMB across a range of angular scales. These ob-
servations have given us a snapshot of the Universe
was when it was only a few hundred thousand years
old. The specific features of this map give us a strin-
gent test of different cosmological models and pa-
rameters [30.12]. The general picture of an isotropic
universe very close to thermal equilibrium remains an



Friedmann–Lemaître–Robertson–Walker Cosmology 30.2 Dynamical Equations and Simple Solutions 661
Part

E
|30.2

essential feature of current models of the very early
universe.

Primordial Nucleosynthesis
About the same time that the microwave background
was first discovered in the 1960s, theorists were begin-
ning to take seriously another prediction of the hot big
bang model. If temperatures really were so high in the
early universe then there must have been an epoch at
which nuclear reactions were in thermal equilibrium.
A hot plasma of electrons and protons, photons, and
neutrons and neutrinos, all interacting and cooling as
the universe expanded makes specific predictions for
the primordial abundances of the elements.

The early universe turns out to be successful at
producing nuclei of the lightest elements: helium and

lithium, as well as hydrogen, but heavier elements are
produced later in stars. By studying the abundance of
the light elements and their different isotopes, and plot-
ting this against the abundance of heavier elements one
can extrapolate back to a primordial value (where there
were no heavy elements). The relative abundances of
the light elements are sensitive to the cosmology only
one second after the big bang [30.13]. Changing the
rate of cosmological expansion or the relative num-
ber of photons to protons, say, affects these yields.
From the observed abundances of light elements we
can see that the primordial composition of distant
galaxies appears to have been much the same as our
own galaxy. This provides evidence that the early uni-
verse, when these elements were made, was indeed
homogeneous.

30.2 Dynamical Equations and Simple Solutions

Einstein’s field equations tell us how the spacetime
curvature is determined by the energy-momentum of
matter. In a homogeneous and isotropic universe (30.2)
the symmetry of spacetime leaves us with only two
independent equations. One is the evolution equation
which determines the acceleration of the scale factor

Ra

a
D�

4�G

3

�
�C 3

p

c2

	
C
�

3
; (30.21)

where � is the matter density and p the pressure (which
is required to be isotropic), and we have allowed for
a cosmological constant � in the Einstein equations.
The other equation is the Friedmann constraint equa-
tion, which shows how the density and spatial curvature
determine the expansion rate at any time

�
Pa

a

�2

D
8�G

3
��

�c2

a2
C
�

3
: (30.22)

The Friedmann constraint may also be derived as
a first integral of the evolution equation (30.21) using
the matter continuity equation

P�D�3H
�
�C

p

c2

	
: (30.23)

Through solving these equations of motion for the
scale factor in a homogeneous universe we can un-
derstand how our universe may have evolved from an
initial big bang to the present.

30.2.1 True Vacuum

In the absence of any energy density (a true vacuum
spacetime with �D 0, PD 0 and �D 0) we find two
solutions of the Friedmann equation (30.22). One has
no spatial curvature � D 0 and hence PaD 0 and, as we
might expect, we find static Minkowski spacetime with

ds2 D�c2 dt2C dr2

C r2
�

d2C sin2  d�2
�
:

(30.24)

However, the second solution is obtained with � D
�1=L2 and PaD c=L, hence

ds2 D�c2 dQt2C

�
cQt

L

�2

�



d�2CL2 sinh2.�=L/

�
�

d2C sin2  d�2
��
:

(30.25)

This is the Milne universe, where the spacetime cur-
vature is zero, but spatial slices at a given time Qt have
negative spatial curvature. Comoving observers, fol-
lowing geodesics orthogonal to these spatial slices, see
a uniform expansion. It can be shown that this is, in fact,
a coordinate transform of Minkowski spacetime (30.24)
where

ct D cQt cosh.�=L/ ;

r D cQt sinh.�=L/ :
(30.26)
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The Milne coordinates .Qt; �/, describe only the interior
of the light-cone r2 < c2t2 in Minkowski spacetime. In
this case the apparent Big Bang singularity in the Milne
universe where the scale factor vanishes at QtD 0 is,
in fact, only a coordinate singularity (at rD ct in the
Minkowski chart (30.24)) and the density and pressure
remain zero throughout.

30.2.2 Radiation

The Hot Big Bang cosmology describes a universe
filled by a fluid of relativistic particles, such as photons.
An isotropic distribution in three-dimensional space ex-
erts a pressure

pD
1

3
�c2 : (30.27)

The factor of 1=3 simply reflects the average component
of each particle’s total momentum along each spatial di-
rection. The continuity equation (30.23) then gives

P�D�4
Pa

a
� ; (30.28)

which can be integrated to yield

�D
�

a4
; (30.29)

where � is a constant.
Another way to derive this relation between density

and scale factor is to realize that, if the total pho-
ton number is conserved, the photon number density
must decrease as n/ a�3, while the energy of each
individual photon decreases as h� / a�1 due to being
redshifted as its wavelength is stretched by the cosmo-
logical expansion. Thus we have

�c2 / n h� / a�4 : (30.30)

Substituting this into the Friedmann constraint
equation (30.22), taking �D 0, and multiplying
through by a4 gives

�
1

2

d

dt

�
a2
��2

D
8�G�

3
� �c2a2 : (30.31)

This can be integrated to give

a2 D

"r
32�G�

3
� �c2.t� t

�

/

#
.t� t

�

/ : (30.32)

The qualitative evolution of a.t/ for t > t
�

depends
solely on the sign of �:

1. If � < 0 the scale factor, expanding from zero at
tD t
�

, approaches an asymptotically constant speed
Pa!
p
��c as a!1.

2. If � > 0 then the scale factor only reaches a max-
imum size amax D

p
8�G�=3�c2 before recollaps-

ing back to zero size at t� t
�

D .
p

32�G�=3/=�c2.
3. If � D 0 we have

a/ .t� t
�

/1=2 : (30.33)

The scale factor grows to an infinite size in an infi-
nite time, but the limiting speed Pa! 0 as a!1.

Note that models with � ¤ 0 remain close to
the � D 0 solution at early times (j�c2.t� t

�

/j �p
32�G�=3) but then diverge from this behavior at late

times.
All these solutions have a Big Bang singularity

where the scale factor a vanishes at t! t
�

. Unlike the
Milne universe, this is curvature singularity where the
density and pressure diverge. In the spherical universe,
� > 0, there is also a big crunch singularity when the
scale factor recollapses to zero size.

30.2.3 Dust

The energy density of cold (nonrelativistic) matter (v�
c) is dominated by its rest-mass energy and the pressure
it exerts is negligible (p� �c2). Such a pressureless
fluid is referred to as dust.

The continuity equation (30.23) gives

P�D�3
Pa

a
� ; (30.34)

and thus

�D
�

a3
: (30.35)

As in the case of radiation this corresponds to the num-
ber of particles being conserved n/ a�3, but unlike
radiation the energy of nonrelativistic particles is not
affected by the redshift, so

�D nm0 / a�3 : (30.36)

Substituting this into the constraint equation
(30.22), with �D 0, gives�

Pa

a

�2

D
8�G�

3a3
�
�c2

a2
: (30.37)

The simplest case to integrate is when � D 0. Then we
haveZ

a1=2 daD

r
8�G�

3

Z
dt ; (30.38)
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and so

aD

"
3

2

r
8�G�

3
.t� t

�

/

#2=3

: (30.39)

Analytic solutions for dust cosmologies with spa-
tial curvature � ¤ 0 can be given in parametric
form [30.14]. They obey the same qualitative picture
as seen for the radiation solutions for � > 0 and � < 0.

30.2.4 Barotropic Fluids

Any fluid obeying an equation of state pD w�c2 where
the equation of state w is a function of the density is
referred to as a barotropic fluid. These are very useful
in cosmology, partly because they include the two im-
portant cases given above, but also because whenever w
is a constant we can integrate the continuity equation to
find

�D
�

a3.1Cw/
: (30.40)

This in turn allows us to integrate the Friedmann con-
straint equation (30.22) when �D 0 and � D 0, to give
a/ .t� t

�

/2=3.1Cw/.
Note that for �D 0 and � D 0 models with

barotropic equations of state we always have a power-
law expansion of the scale factor with respect to the
time t. Moreover, we find the density decreases, � /
.t� t

�

/�2, and the Hubble rate can always be written as

H D
Pa

a
D

2

3.1Cw/.t� t
�

/
: (30.41)

The age of the universe is inversely proportional to the
expansion rate.

The acceleration of the scale factor, Ra in (30.21),
is always negative for p> ��c2=3, i. e., w> �1=3. To
explain the acceleration of the universe indicated by
high-redshift supernovae surveys, within FLRW mod-
els in general relativity with �D 0, requires an exotic
equation of state with w < �1=3.

30.2.5 False Vacuum

The simplest explanation for the apparent acceleration
of the universe today could be provided by a nonzero
energy density of empty space. If the vacuum has

a nonzero energy density, �D �V D constant, then it
would remain undiluted by cosmological expansion,
P�D 0, and hence from (30.23) the vacuum must have
pD��c2. We have, in effect, a barotropic fluid with
equation of state wD�1.

We have already considered true vacuum solutions
where �V D 0, but it is possible to have �V ¤ 0 and this
is referred to as the false vacuum, to distinguish it from
the true vacuum where �D 0. In most of physics, the
absolute value of the vacuum energy is irrelevant, and
all that matters is the change in energy due to different
physical processes. However, in general relativity it is
the total energy density, including the vacuum energy
that appears in the field equations. Such a term is iden-
tical to a cosmological constant,�, in the Einstein field
equations. In particular, the Friedmann equation (30.22)
with a nonzero vacuum energy gives

H2 D
�

3
�
�c2

a2
; (30.42)

where �D 8�G�V .
This can be integrated for �> 0 to give

a.t/D

8<
:

a
�

cosh ŒHdS.t� t
�

/� for � DC1
a0 exp ŒHdS.t� t0/� for � D 0
a
�

sinh ŒHdS.t� t
�

/� for � D�1
; (30.43)

where HdS D
p
�=3 and a2

�

D 3j�jc2=�.
This is the de Sitter spacetime first derived by de

Sitter in 1917. The intrinsic spacetime curvature is con-
stant throughout time as well as space. The apparent
singularity when aD 0 at tD t

�

for � < 0 is, in fact,
a coordinate singularity analogous to the coordinate sin-
gularity in the Milne universe (30.25).

As t!1 all the solutions approach exponential
expansion. Thus all models approach the spatially flat
� D 0 solution at late times. In particular, the acceler-
ation of the scale factor is always positive, Ra > 0, in
contrast with all the models we have considered up to
this point.

For �D 0 and � 	 0, we recover the true vacuum
solutions discussed earlier, while �< 0 gives anti-de
Sitter solutions which are not thought to describe our
four-dimensional cosmology, but play a central role in
many theoretical studies of supergravity theories and
holography [30.15].
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30.3 The Density Parameter ˝

Two long-standing challenges in observational cosmol-
ogy are to determine the value of the cosmological
constant � and the spatial curvature of our Universe �
in the FLRW models. One way to quantify their effect
is to measure the expansion rate H and compare it with
the observed matter density.

If the universe were spatially flat (� D 0) with van-
ishing cosmological constant (�D 0), the Friedmann
equation (30.22) would require a critical density

�c �
3H2

8�G
: (30.44)

For the present-day value of the Hubble constant this
implies

�c0 D 1:9� 10�29h2g cm�3 : (30.45)

where the dimensionless Hubble constant
hD H0=.100 km s�1 Mpc

�1
/.

The actual density of matter relative to this critical
density is denoted by

˝ �
8�G�

3H2
: (30.46)

It has become common to define an analogous parame-
ter for the cosmological constant (or equivalently a false
vacuum energy density)

˝� �
�

3H2
: (30.47)

The sum of all the different energy densities �i and the
cosmological constant is then given by

˝tot D˝�C
X

i

˝i : (30.48)

The value of the dimensionless parameter ˝ shows
the relative contribution of the energy density to the
Hubble expansion in the constraint equation, (30.22):

1. ˝tot D 1: The spatial metric is flat (� D 0) so the
expansion is solely driven by the matter density and/
or the cosmological constant.

2. ˝tot < 1: The spatial metric is hyperbolic (� < 0) so
the expansion is partly due to the curvature.

3. ˝tot > 1: The spatial metric is spherical (� > 0) so
there is more than enough matter and/or cosmolog-
ical constant to close the universe. The curvature
leads to a slower expansion than would be inferred
solely from the energy density and cosmological
constant.

Although spatial curvature and the cosmological
constant both affect the Hubble expansion through the
Friedmann equation (30.22), the curvature also deter-
mines the geometry of space. The cosmic microwave
background temperature anisotropies play a key role in
determining this spatial curvature in our universe today.
These anisotropies have a characteristic scale corre-
sponding to the Hubble length, cH�1, at last-scattering
of the CMB photons, at a redshift zlss ' 1100. This
would correspond to an angular scale of approximately
1ı in a spatially flat universe, but would coincide with
a larger angular scale in a spherical geometry, � > 0, or
a smaller angular scale in a hyperbolic geometry. The
fact that the observed angular scale closely matches the
theoretical prediction in a flat geometry can be used to
determine [30.16]

˝tot D 1:04˙ 0:04 : (30.49)

The energy density of the CMB photons them-
selves can be calculated precisely from the observed
black-body spectrum and temperature of the microwave
background radiation

�0 D 4:8� 10�34g cm�3 ; (30.50)

which corresponds to

˝0 D 2:6� 10�5h�2 : (30.51)

Thus radiation makes a very small contribution to the
expansion rate in our present universe.

The present density of nonrelativistic matter in the
universe is significantly larger than that of radiation.
The density of luminous matter seen in galaxies, stars,
and gas, principally baryonic matter (atomic nuclei) like
our Sun

˝B0 ' 0:05 ; (30.52)

is consistent with that required by theoretical models of
primordial nucleosynthesis [30.13]. However dynami-
cal studies of galaxies and clusters of galaxies suggest
that the real mass of matter in galaxies is much larger
than this, requiring some form of nonbaryonic, dark
matter.

If we assume a spatially flat geometry then an esti-
mate of the total matter density in the universe today
comes from comparing the observed angular power
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spectrum of CMB anisotropies to theoretical predic-
tions using different model parameters. Data from the
WMAP satellite, for example, compared against theo-
retical predictions for a universe dominated by matter
and/or a cosmological constant at the present time
gives [30.16]

˝m0 D .0:136˙ 0:005/h�2 ; (30.53)

˝�0 D 0:72˙ 0:03 : (30.54)

This is the basis of the standard cosmological model at
present, commonly referred to as �CDM. Combining
CMB data with additional data including type IA su-
pernovae and galaxy redshift surveys gives even tighter
constraints on parameters within a �CDM cosmology.

Remembering that the density of a relativistic fluid
like photons decreases as a�4 as the universe expands
(30.29) while nonrelativistic matter decreases as a�3

(30.35), we deduce that the two densities must have
been equal at some time in the past teq, where

1C zeq �
a0

aeq
D
˝m0

˝0
D 3:9� 104˝m0h2

' 5300 :
(30.55)

At earlier times relativistic rather than nonrelativistic
matter would have dominated the energy density of
the universe. This is the basis of the Hot Big Bang
cosmology.

On the other hand, a cosmological constant re-
mains undiluted while the matter and radiation densities
decrease as the universe expands. Therefore, � is ap-
parently unimportant in the very early universe, but
comes to play a dominant role in the present expansion.
The fact that this occurs at a very recent cosmological
epoch is known as the coincidence problem in modern
cosmology. In the future, a cosmological constant will
increasingly dominate the Hubble expansion and matter
density will have a negligible effect.

30.3.1 The Flatness Problem

If˝ is not exactly equal to unity then why should it still
be as close as 1:1 or 1:01 today? If the spatial curvature
had been comparable to the matter density in the very
early universe it would then have dominated the ex-
pansion within a few Hubble times. A spherical model
would recollapse, while a hyperbolic model would ex-
pand so that the matter density would rapidly become
negligible.

The Friedmann constraint equation (30.22) can be
written as

˝ D 1C
�c2

Pa2
: (30.56)

We see that ˝ is driven away from 1 whenever Pa2 de-
creases.

The evolution equation (30.21) shows that Pa de-
creases as the universe expands with either radiation
(pD �c2=3) or dust domination (pD 0), so j˝�1jmust
grow with time in the early universe

˝ � 1 / a2 for radiation dominated ; (30.57)

/ a for dust dominated : (30.58)

If we use the matter dominated solution for T < Teq and
radiation dominated solutions for T > Teq, we see that
if j1�˝0j is 0:01 today, then j1�˝j would have to be
0:01� .T0=Teq/� .Teq=1010K/2 � 10�16 at the time of
nucleosynthesis.

30.3.2 Inflation

False vacuum cosmologies, (30.43), with �V > 0 ap-
proach the spatially flat solution at late times. Unlike
radiation or dust solutions, these false vacuum solutions
correspond to an accelerated expansion

Ra> 0 : (30.59)

This implies that PaD aH is then an increasing function
of time and ˝ � 1! 0 in (30.56).

The acceleration of the scale factor (30.59) can
be taken as a definition of inflation in an FLRW cos-
mology. The quantity c=PaD cH�1=a is a comoving
measure of the Hubble length, cH�1. Thus we see that
the comoving Hubble length decreases during inflation.

We see from the evolution equation (30.21) that in-
flation (30.59) occurs when

p<
�c2

4�G
�

1

3
�c2 : (30.60)

The present value of the cosmological constant would
be negligible when compared with the energy density of
matter in the very early universe, and hence in practice
we require

p< �
1

3
�c2 (30.61)

for inflation.
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A false vacuum energy density, pD��c2, provides
one possible source of inflation. Taking Pa/ a in a false
vacuum dominated cosmology, we have

˝ � 1/ a�2 : (30.62)

As long as inflation lasts long enough there is no
problem in driving ˝ arbitrarily close to one in the

very early universe. However, a very early era of ac-
celerated expansion must give way to the standard
radiation and dust dominated eras, so the false vac-
uum energy must decay into ordinary matter, returning
the universe to thermal equilibrium before the epoch
of primordial nucleosynthesis, a process known as
reheating.

30.4 Cosmological Horizons

The Hot Big Bang model provides a good description of
many aspects of the observed universe, based on estab-
lished models of particle interactions in a homogeneous
and isotropic universe obeying the evolution equations
of Einstein’s general relativity. However, at the same
time there are a number of unanswered questions.

Just why is our universe so homogeneous? For
instance, the microwave background is sensitive to per-
turbations in the metric at the time of last scattering
of the CMB photons. Perturbations in the gravitational
potential produce temperature anisotropies, yet the mi-
crowave sky is uniform to about one part in a hundred
thousand. On the other hand, the universe cannot be
completely homogeneous or there would be no struc-
tures, such as galaxies and stars, today. Gravity tends
to make matter clump together so should amplify any
initial inhomogeneities. Small density perturbations in
the dust dominated era grow proportional to the scale
factor, so if the density perturbation ı�=� is only of
order unity today, as we observe on scales of about
8h�1 Mpc, these must have grown from an initial den-
sity perturbation � 10�4 at teq, see (30.55). Why such
small initial inhomogeneities, and where did they come
from?

In order to avoid producing large metric perturba-
tions on small scales (which would collapse to form
black holes) and to avoid large inhomogeneities on
large scales (which would be seen on the CMB sky),
an almost scale invariant distribution of density pertur-
bations is required in order to produce structure across
a wide range of scales. A Harrison–Zel’dovich spec-
trum corresponds to an exactly scale-invariant initial
gravitational potential, � � GL2ı�=c2 � 10�4, on all
scales L.

30.4.1 Particle Horizon

This smoothness problem becomes even worse if we
think about the size of causally connected regions in

the early universe. Starting from the Big Bang at t
�

D

0 a light ray travels a coordinate distance equal toR t
0 cdt0=a.t0/which at time t, in the radiation dominated

era (30.33), corresponds to a physical distance

d.t/D a.t/

tZ
0

cdt0

a.t0/
D 2ctD cH�1 : (30.63)

This is called the particle horizon distance. At the time
of nucleosynthesis, say, this corresponds to a physical
distance of about 1012 cm. This region, stretched by
the Hubble expansion up to the present, corresponds to
about 1021 cm, which is only 1 kpc, less than the size of
our galaxy.

Assuming that nothing travels faster than the speed
of light there would seem to be no way that causally dis-
connected regions could have established homogeneity
by that time, and yet there is no evidence for differ-
ent primordial nuclear abundances in different parts of
our galaxy, or even different galaxies. Causally dis-
connected regions could not know of one another’s
existence much less establish homogeneity and ther-
mal equilibrium in the standard Hot Big Bang model.
Similarly, if we estimate the size of causally con-
nected regions on the microwave background sky at
the time of decoupling, they are only about 1ı across.
The initial conditions must have been set up so that
the universe was not only approximately homogeneous
over causally disconnected regions, but also close to
thermal equilibrium and contained a nearly Harrison–
Zel’dovich spectrum of small but nonzero density per-
turbations.

30.4.2 Inflating Horizons

In calculating the particle horizon size during the early
radiation dominated era we implicitly assumed that
there was no significant contribution from any pre-
ceding era. Suppose there is an earlier nonradiation
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dominated era, for t < tr, then we can split the integral
in (30.63) to give

d.t/D a.t/

2
4

tZ
tr

cdt0

a.t0/
C

trZ
ti

cdt0

a.t0/

3
5

D 2c.t� tf /C

�
t

tr

�1=2

dr : (30.64)

The second term can be neglected for conventional
(noninflationary) evolution if tr� t. For instance, for
power-law evolution a/ .t� ti/n, we have dr D c.tr �
ti/=.1� n/ < .n=.1� n//cH�1

r for n < 1.
However, after a period of inflation this may no

longer be the case. We can write

dr D ar

trZ
ti

cdt0

a.t0/
D ar

arZ
ai

c

Pa

da

a
: (30.65)

During inflation Pa increases so Par > Pa at earlier times
and hence

dr > ar

arZ
ai

c

Par

da

a
D cH�1

r ln

�
ar

ai

�
: (30.66)

Thus in the limit ai! 0 the distance dr is divergent and
the particle horizon is undefined. Put another way, as the
duration of inflation, represented here by the number
of e-folds, Ninf D ln.ar=ai/ becomes arbitrarily large,
so the physical scale of causally connected regions be-
comes arbitrarily large.

Thus it becomes possible to study causal models for
the origin of large-scale structure across a wide range
of scales in our universe if we allow for an inflation-
ary epoch in the very early universe, before primordial
nucleosynthesis.

30.5 Inhomogeneous Perturbations

While the FLRW metric provides an idealized descrip-
tion of a perfectly homogeneous and isotropic space-
time, our observed Universe has localized fluctuations
in density and temperature. These may be described as
inhomogeneous perturbations about a spatially homo-
geneous background, so that the local mass density, for
example, is given by

�.t; xi/D N�.t/C ı�.t; xi/ : (30.67)

On large scales (greater than about 10 Mpc in the
present Universe) or at early times, the local density
fluctuations are small and their evolution may be de-
scribed by linearized equations of motion (keeping only
terms to first order in the perturbations).

Breaking the symmetry of the FLRW background
cosmology breaks some important simplifications and
re-introduces some complexity. In particular, quantities
such as the density or pressure perturbation at a given
spacetime point become gauge-dependent. The FLRW
background has a preferred choice of cosmic time, cor-
responding to homogeneous spatial hypersurfaces at
time t, but in the presence of inhomogeneities there is
no unique choice of spatial hypersurfaces, and we can
redefine our time coordinate

t! tC ıt.t; xi/ : (30.68)

This leads to a change in the local density perturbation
due to the change in the split between background den-
sity and perturbed density. At first order we find

ı�! ı�� P�ıt : (30.69)

Gauge-invariant perturbations can be defined by iden-
tifying perturbations on physically defined hypersur-
faces [30.17], but there is no unique set of gauge-invari-
ant perturbations, such as the gauge-invariant density
perturbation, and different authors may use different
gauge invariant quantities in different situations.

Inhomogeneities in the matter and metric can be
decomposed into scalar, vector, and tensor modes de-
fined with respect to the homogeneous background
spatial metric [30.18]. Vector modes are transverse
(i. e., divergence-free,rivi D 0), while tensor modes are
transverse and tracefree. Scalars can represent scalar
quantities, such as density or pressure, or tensorial
quantities that can be constructed from spatial deriva-
tives of scalars. For example, the three-velocity of
a fluid can be decomposed into scalar and vector parts,

vi Dr iv.S/C v.V/i ;

where the potential v.S/ determines the scalar part and
the vorticity v.V/i is transverse.

The linearized field equations can be split into
scalar, vector, and tensor parts, and thus the scalar,
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vector, and tensor perturbations evolve independently.
One can study the evolution of the linear density per-
turbation coupled to scalar metric perturbations and
the scalar velocity potential v.S/, independently of the
vector or tensor metric perturbations, or the transverse
velocity v.V/i. Scalar, vector, and tensor perturbations
can be further decomposed into Fourier modes (eigen-
modes of the spatial Laplacian) with wavenumber k.

30.5.1 Density Waves

Density waves with different comoving wavevectors k
evolve independently in this linear regime in an FLRW
background. The density contrast ı � ı�=� for adia-
batic density perturbations in a comoving-orthogonal
gauge (i. e., on constant time hypersurfaces orthogonal
to observers comoving with the cosmic fluid) obeys the
wave equation [30.19]

RıC
�
2� 6wC 3c2

s

�
H Pı

C

�
c2

s k2

a2
�

3H2

2

�
1C 8w� 3w2� 6c2

s

��
ı

D 0 ; (30.70)

where wD p=� is the equation of state, c2
s D Pp= P� is

the adiabatic sound speed, and kD jkj is the comov-
ing wavenumber of the perturbation, corresponding to
a physical wavelength 	D 2�a=k.

Spatial pressure gradients, rpD c2
sr�, drive oscil-

lations on small scales, while the cosmological expan-
sion leads to the Hubble damping term. The competi-
tion between these two effects divides the behavior of
density waves into two regimes

� Small-scale underdamped oscillations for
c2

s k2=a2 > H2, whose amplitude decays / 1=a.
� Large-scale overdamped perturbations frozen in for

c2
s k2=a2 < H2.

In the early Hot Big Bang the sound speed for
the hot relativistic plasma is c2

s D c2=3. All comoving
modes in the radiation dominated era, with a / t1=2 and
aH / t�1=2 start frozen in, in the large-scale regime,
and only oscillate after they enter the horizon when
c2k2=3a2 D H2, corresponding to 	� ct.

Observations of the spectrum of temperature and
polarization anisotropies in the CMB data, from the
WMAP satellite for example, show a pattern of coher-
ent oscillations, whose phase at the last scattering of the
CMB photons depends upon the wavelength and hence
the time each mode entered the horizon. This provides

strong evidence for an initial almost scale-invariant
spectrum of adiabatic density perturbations, existing on
super-horizon scales before the time of last-scattering.
The standard hot big bang model offers no explanation
for how these primordial density perturbations could
arise without apparently breaking causality.

In the dust-dominated era which follows the radi-
ation-dominated era, with wD 0 and hence a/ t2=3,
where nonrelativistic matter dominates the energy den-
sity and the sound speed drops close to zero, linear
perturbations can grow relative to the background den-
sity on all scales with ı / a. This is thought to be
the origin of all the structure observed in galaxy red-
shift surveys in the present universe, having grown
from small density perturbations at the start of the
dust-dominated era.

The growth of structure, observed at different cos-
mological redshifts, provides a test of both the primor-
dial distribution of density perturbations and also the
relative energy densities controlling the dynamics at
later cosmic times, including radiation, neutrinos, bary-
onic and cold or hot dark matter, and dark energy or
modified gravity today.

30.5.2 Inflation and the Origin of Structure

Inflation offers a mechanism to generate the large scale
structure observed in our Universe today from micro-
scopic fluctuations in the very early universe. Inflation
is a period of accelerated expansion in the early uni-
verse, such that aHD Pa grows with time. Hence wave
modes that originate as oscillations on sub-Hubble
scales with csk=a> H, are stretched up to super-Hubble
scales with csk=a< H. In particular, inhomogeneous
perturbations can originate from quantum fluctuations
of free fields during a period of inflation. Assuming
only that there exist zero-point vacuum fluctuations on
small scales, ck=a�H (for massless fields with cs D c)
this leads to field fluctuations proportional to the Hub-
ble scale when modes leave the horizon with ck=aD H.
These fluctuations then enter the overdamped regime,
becoming squeezed in phase space (since the decay-
ing mode is rapidly damped) and can be treated as
effectively classical perturbations [30.20]. This particle
production is due to the Gibbons–Hawking temperature
in de Sitter space and is analogous to Hawking radiation
from black holes.

These fluctuations determine the initial conditions
for primordial density perturbations, in the subse-
quent radiation and dust-dominatederas. If inflation
is driven by a slowly-rolling scalar field ', then the
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time-dependence of the field breaks the spacetime sym-
metry of de Sitter spacetime and defines a preferred
time-like direction, and hence a foliation of spatial hy-
persurfaces orthogonal to r�'. Quantum fluctuations
perturb the classical evolution of the field and lead to
adiabatic density perturbations as different parts of the
universe reach the end of inflation, and reheat, having
undergone different local expansion [30.21].

Any massless field can acquire a spectrum of quan-
tum fluctuations on super-Hubble scales. Transverse
and trace-free (tensor) metric perturbations correspond
to gravitational waves, and inflation also stretches quan-
tum fluctuations of the free gravitational field up to
super-Hubble scales. These tensor perturbations could,
in principle, be observed on large scales in the CMB
sky today. Any detection of primordial gravitational
waves on super-Hubble scales at last scattering would
be strong evidence of a period of inflation in the very
early universe. The power spectrum of these primordial
gravitational waves would be a direct measure of the
Gibbons–Hawking temperature during inflation.

Vector and scalar metric perturbations are related
to vorticity and potential flows in matter fields. Vor-
ticity usually decays rapidly in an inflating universe
(and is identically zero for scalar fields) but scalar met-
ric perturbations are naturally generated by quantum

fluctuations in scalar fields, and massless fields acquire
a power spectrum close to scale invariant in an al-
most de Sitter expansion. Small deviations from exact
scale-invariance are expected [30.14] due to the slow
change of the Hubble rate during inflation � D� PH=H2,
and the mass of the field relative to the Hubble scale
�D m2=3H2. In the latest CMB data [30.16] there is
now evidence of small, but significant deviations from
exact scale-invariance at about the 1% level, consistent
with the expectations of slow-roll inflation.

Further clues to the physical processes at work dur-
ing a period of inflation in the very early universe
could be revealed by other features in the distribu-
tion of primordial density perturbations and/or gravi-
tational waves. Scale-dependence, nonadiabaticity, and
non-Gaussianity of their distribution are all the sub-
ject of ongoing theoretical and observational work. The
CMB currently provides the most detailed picture of
primordial fields, but galaxy redshift surveys extend
these constraints to smaller cosmic scales which will
continue to improve with future surveys [30.22], while
ambitious radio surveys with proposed experiments
such as the SKA could map all the neutral hydrogen
within our observable horizon via the intensity of the
redshifted 21 cm line produced by the hyperfine split-
ting of the electron-proton ground state [30.23].

30.6 Outlook

Cosmology based on the FLRW metric (30.2) has
emerged from hesitant beginnings, limited by sparse
and uncertain data, to become one of the most ac-
tive areas of modern science, with rich data sets
and precise parameter constraints. Future observational
projects will continue to drive the subject forward as
astronomers accumulate and analyze large datasets,
mapping out the visible matter within our horizon.
Progress will need to go hand-in-hand with an improved
understanding of the physical processes which lead to
the formation of galaxies, stars, and black holes, with
which we map out our universe.

Observational efforts have already led most cosmol-
ogists to conclude that the expansion of our universe
is dominated by some form of dark energy, possibly
a cosmological constant, causing the FLRW scale fac-
tor to accelerate at present. There is now intense effort
to characterize this dark component [30.24] through its
equation of state, or to test whether the observed accel-
eration could instead be due to modified gravity on large

scales, or indeed nonlinear inhomogeneities which in-
validate the FLRW description.

Observations of primordial density perturbations
on scales larger than the horizon scale at the time of
last-scattering of the CMB also suggest that our uni-
verse underwent a period of accelerated expansion, or
inflation, at a much higher energy density in the very
early universe. Quantum fluctuations about the FLRW
background solution could then seed inhomogeneous
structures in our primordial universe.

This description assumes a semiclassical approach
where we consider quantum field fluctuations, includ-
ing linear fluctuations in the metric, within a classical
FLRW background. In the absence of a full theory of
quantum gravity this seems a reasonable assumption,
and is the same reasoning used to deduce Hawking ra-
diation and the evaporation of black holes. However,
the amplitude of these fluctuations is proportional to
the Hubble scale, and becomes of the order of unity
as the Hubble rate approaches the inverse Planck time,
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t�1
Pl D .5�10�44 s/�1. At this point, the semiclassical

description is expected to break down, and a more com-
plete quantum gravity description is required, possibly
resolving the singularities seen in classical FLRW so-
lutions. Both Wheeler–De Witt quantization and loop
quantum gravity [30.25] have also been developed
largely within the context of FLRW spacetimes, due to
their observational motivation and their analytical sim-
plicity.

A different approach that has been advocated
within the semiclassical picture is an eternally
self-reproducing universe [30.26] where quantum fluc-
tuations cause some spatial regions to jump to a higher
density, despite the classical drift towards lower den-
sities in an expanding universe. These higher density

regions inflate faster than low density regions and the
spatial volume on some constant time hypersurface
could become dominated by regions that emerge from
this self-reproducing regime. This suggests that on un-
observably large scales the universe could be highly
inhomogeneous, still undergoing high-energy inflation
far beyond our horizon, and the FLRW metric (30.2)
then becomes valid only on exceedingly large, but finite
regimes, emerging at lower energies from this inhomo-
geneous quantum diffusion dominated regime.

FLRW spacetimes will continue to play a central
role in both abstract theoretical speculations about our
cosmological past and future, and in more pragmatic
attempts to understand the distribution of matter and as-
trophysics in a cosmological neighborhood today.

References

30.1 S. Weinberg: Cosmology (Oxford Univ. Press, Oxford
2008)

30.2 N.J. Cornish, J.R. Weeks: Measuring the shape of
the universe, Notices AMS 45, 1463 (1998)

30.3 S. Cole, W.J. Percival, J.A. Peacock, P. Norberg,
C.M. Baugh, C.S. Frenk, I. Baldry, J. Bland-
Hawthorn, T. Bridges, R. Cannon, M. Colless,
C. Collins, W. Couch, N.J.G. Cross, G. Dalton,
V.R. Eke, R. De Propris, S.P. Driver, G. Efstathiou,
R.S. Ellis, K. Glazebrook, C. Jackson, A. Jenkins,
O. Lahav, I. Lewis, S. Lumsden, S. Maddox, D. Madg-
wick, B.A. Peterson, W. Sutherland, K. Taylor: The
2dF Galaxy Redshift Survey: Power-spectrum anal-
ysis of the final dataset and cosmological implica-
tions, Mon. Not. Roy. Astron. Soc. 362, 505 (2005)

30.4 D.J. Eisenstein, et al.: SDSS-III: Massive spectro-
scopic surveys of the distant universe, the milky
way galaxy, and extra-solar planetary systems, As-
tron. J. 142, 72 (2011)

30.5 W.L. Freedman, B.F. Madore, B.K. Gibson, L. Fer-
rarese, D.D. Kelson, S. Sakai, J.R. Mould, R.C. Ken-
nicutt, H.C. Ford, J.A. Graham, J.P. Huchra,
S.M.G. Hughes, G.D. Illingworth, L.M. Macri,
P.B. Stetson: Final results from the Hubble Space
Telescope key project to measure the Hubble con-
stant, Astrophys. J. 553, 47 (2001)

30.6 S. Perlmutter, B.P. Schmidt: Measuring cosmology
with supernovae, Lect. Notes Phys. 598, 195 (2003)

30.7 M. Tegmark, et al.: Cosmological Constraints from
the SDSS luminous red galaxies, Phys. Rev. D 74,
123507 (2006)

30.8 H.S. Kragh: Conceptions of Cosmos: From Myths to
the Accelerating Universe. A History of Cosmology
(Oxford Univ. Press, Oxford 2007)

30.9 D.J. Fixsen, E.S. Cheng, J.M. Gales, J.C. Mather,
R.A. Shafer, E.L. Wright: The Cosmic Microwave

Background spectrum from the full COBE FIRAS data
set, Astrophys. J. 473, 576 (1996)

30.10 A.A. Penzias, R.W. Wilson: A Measurement of excess
antenna temperature at 4080-Mc/s, Astrophys. J.
142, 419 (1965)

30.11 G.F. Smoot, C.L. Bennett, A. Kogut, E.L. Wright,
J. Aymon, N.W. Boggess, E.S. Cheng, G. De Am-
ici, S. Gulkis, M.G. Hauser, G. Hinshaw, P.D. Jack-
son, M. Janssen, E. Kaita, T. Kelsall, P. Keegstra,
C. Lineweaver, K. Loewenstein, P. Lubin, J.C. Mather,
S.S. Meyer, S.H. Moseley, T. Murdock, L. Rokke,
R.F. Silverberg, L. Tenorio, R. Weiss, D.T. Wilkin-
son: Structure in the COBE differential microwave
radiometer first year maps, Astrophys. J. 396, L1
(1992)

30.12 E. Komatsu, K.M. Smith, J. Dunkley, C.L. Ben-
nett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson,
M.R. Nolta, L. Page, D.N. Spergel, M. Halpern,
R.S. Hill, A. Kogut, M. Limon, S.S. Meyer, N. Odegard,
G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright:
Seven-year Wilkinson microwave anisotropy probe
(WMAP) observations: Cosmological interpretation,
Astrophys. J. Suppl. 192, 18 (2011)

30.13 G. Steigman: Primordial nucleosynthesis in the
precision cosmology era, Annu. Rev. Nucl. Part. Sci.
57, 463 (2007)

30.14 D.H. Lyth, A.R. Liddle: The Primordial Density Per-
turbation: Cosmology, Inflation and the Origin of
Structure (Cambridge Univ. Press, Cambridge 2009)

30.15 J.M. Maldacena: The large N limit of supercon-
formal field theories and supergravity, Adv. Theor.
Math. Phys. 2, 231 (1998)

30.16 G. Hinshaw, D. Larson, E. Komatsu, D.N. Spergel,
C.L. Bennett, J. Dunkley, M.R. Nolta, M. Halpern,
R.S. Hill, N. Odegard, L. Page, K.M. Smith, J.L. Wei-
land, B. Gold, N. Jarosik, A. Kogut, M. Limon,



Friedmann–Lemaître–Robertson–Walker Cosmology References 671
Part

E
|30.6

S.S. Meyer, G.S. Tucker, E. Wollack, E.L. Wright:
Nine-year Wilkinson microwave anisotropy probe
(WMAP) observations: Cosmological parameter re-
sults, Astrophys. J. Suppl. 208, 19 (2013)

30.17 K.A. Malik, D. Wands: Cosmological perturbations,
Phys. Rep. 475, 1 (2009)

30.18 J.M. Bardeen: Gauge invariant cosmological per-
turbations, Phys. Rev. D 22, 1882 (1980)

30.19 T. Padmanabhan: Structure Formation in the Uni-
verse (Cambridge Univ. Press, Cambridge 1993)

30.20 C. Kiefer, D. Polarski: Why do cosmological pertur-
bations look classical to us?, Adv. Sci. Lett. 2, 164
(2009)

30.21 D. Wands, K.A. Malik, D.H. Lyth, A.R. Liddle: A New
approach to the evolution of cosmological pertur-

bations on large scales, Phys. Rev. D 62, 043527
(2000)

30.22 L. Amendola, Euclid Theory Working Group: Cos-
mology and fundamental physics with the Euclid
satellite, Living Rev. Rel. 16, 6 (2013)

30.23 J.R. Pritchard, A. Loeb: 21-cm cosmology, Rept.
Prog. Phys. 75, 086901 (2012)

30.24 E.J. Copeland, M. Sami, S. Tsujikawa: Dynamics of
dark energy, Int. J. Mod. Phys. D 15, 1753 (2006)

30.25 M. Bojowald, C. Kiefer, P.V. Moniz: Proc. 12th Mar-
cel Grossmann Meeting Gen. Relativ., Paris, France,
July 12-18 (2009)

30.26 A.D. Linde: The selfreproducing inflationary uni-
verse, Sci. Am. 271, 32 (1994)



Exact Approa
673

Part
E

|31.1

31. Exact Approach to Inflationary Universe Models

Sergio del Campo

In this chapter we introduce a study of inflationary
universe models that are characterized by a single
scalar inflation field. The study of these models
is based on two dynamical equations: one cor-
responding to the Klein–Gordon equation for the
inflaton field and the other to a generalized Fried-
mann equation. After describing the kinematics
and dynamics of the models under the Hamilton–
Jacobi scheme, we determine in some detail
scalar density perturbations and relic gravitational
waves. We also introduce the study of inflation
under the hierarchy of the slow-roll parameters
together with the flow equations. We apply this
approach to the modified Friedmann equation
that we call the Friedmann–Chern–Simons equa-
tion, characterized by F.H/D H2�˛H4, and the
brane-world inflationary models expressed by the
modified Friedmann equation.
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31.1 Aims and Motivations

The most appealing cosmological model to date is
the standard hot big bang scenario. This model rests
on the assumption of the cosmological principle that
the universe is both homogeneous and isotropic at
large scale [31.1–4]. Even though this model could ex-
plain observational facts such as approximately 3-K
microwave background radiation [31.5], the primor-
dial abundances of the light elements [31.6–8], the
Hubble expansion [31.9, 10], and the present acceler-
ation [31.11, 12], it presents some shortcomings (puz-
zles) when this is traced back to very early times in the
evolution of the universe. Among them we distinguish
the horizon, the flatness, and the monopole problems. In
dealing with these puzzles, the standard big bang model
demands an unacceptable amount of fine-tuning con-
cerning the initial conditions for the universe.

Inflation has been proposed as a good approach for
solving most of the cosmological puzzles [31.13, 14].
The essential feature of any inflationary universe model
proposed so far is the rapid (accelerated) but finite pe-
riod of expansion that the universe underwent at very
early times in its evolution.

This brief accelerated expansion, apart of solving
most of the cosmological problems mentioned above,
serves to produce the seeds that, in the course of the
subsequent eras of radiation and matter dominance,
developed into the cosmic structures (galaxies and clus-
ters thereof) that we observe today.

In fact, the present popularity of the inflationary
scenario is entirely due to its ability to generate a spec-
trum of density perturbations which lead to structure
formation in the universe. In essence, the conclusion
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that all the observations of microwave background
anisotropy performed so far support inflation rests
on the consistency of the anisotropy with an almost
Harrison–Zel’dovich power spectrum predicted by most
of the inflationary universe scenarios [31.15].

The implementation of the inflationary universe
model rests on the introduction of a scalar inflaton
field �. The evolution of this field becomes governed
by its scalar potential V.�/ via the Klein–Gordon
equation. Thus, this equation of motion together with
the Friedmann equation, obtained from Einstein gen-
eral relativity theory, form the most simple set of
field equations, which could be applied to obtain in-
flationary solutions. However, in order to do this it
is necessary to give an explicit expression for the
scalar inflaton potential. However, in simple cases it
is very complicated to find solutions, even in the sit-
uation that the so-called slow-roll approximation is
applied, where the kinetics term is much smaller than
the potential energy, i. e. P�2� V.�/, together with
approximation j R� j� H j P� j. From now on the dots
represent the derivative with respect to the cosmolog-
ical time t.

In general terms, the condition for inflation to occur
is that the inflaton field slow rolls near the top of the
potential for sufficiently long time, so that the vacuum
energy drives the inflationary expansion of the universe.
In this approach, many models of inflation have been
proposed based on single-field or multifield potentials
constructed in various theoretical schemes.

We may distinguish those solutions introduced by
Barrow [31.16], where the scale factor a.t/ has the
asymptotic property that ordinary differential equations
of the form RaD P.a; t/=Q.a; t/, as t �!1 with poly-
nomials P and Q, bring specific different solutions from
which we can distinguish those named logamediate in-
flationary models. What is interesting in these models
is that the property of the ratio of tensor to scalar per-
turbations is small and the power spectrum can be either
red or blue tilted, according to the values of the parame-
ters that characterize the model [31.17]. The motivation
to study logamediate models comes from the form of
the scalar potential that describes the model in the slow-
roll approximation, i. e., V.�// �˛ exp Œ�ˇ� �, where
˛, ˇ and � are arbitrary constants. This potential in-
cludes exponential potential (˛ D 0) that appears in
Kaluza–Klein theories, as well as in supergravity, and
in superstring models [31.18]. It also includes power-
law potentials (ˇ D 0) with models based on dynamical
supersymmetry breaking which motivates potentials of

the type V.�// ��˛ [31.19]. We should mention that
one of the drawbacks of this model rests on the impos-
sibility to bring inflation to an end. We know that at the
end of the period of inflation the energy density of the
universe is locked up in a combination of kinetic and
potential energies of the scalar field, which drives in-
flation [31.20]. One path to defrost the universe after
inflation is known as reheating [31.21]. During reheat-
ing most of the matter and radiation of the universe are
created due to the decay of the inflaton field. While the
temperature grows in many orders of magnitude, it is
at this point where the universe matches the big bang
model. In this process the particular interest is in the
quantity known as the reheating temperature. This tem-
perature is related to the temperature of the universe
when the radiation epoch began.

In the reheating process, the oscillations of the in-
flaton are an essential part for the standard mechanism
of reheating. However, in some models the inflaton
potential does not present a minimum and, therefore,
the scalar field does not oscillate. Here, the standard
mechanism of reheating does not work [31.22]. These
models are known in the literature as nonoscillating
models [31.23, 24]. Nonoscillating models correspond
to runaway fields such as module fields in string theory,
which are potentially useful for inflation model build-
ing because they present flat directions which survive
the famous � problem of inflation [31.25]. This prob-
lem is related to the fact that between the inflationary
plateau and the quintessential tail there is a difference
of over 100 orders of magnitude. There is a mechanism
of reheating in this kind of model which is based on
the introduction of the curvaton field [31.26]. The study
of the curvaton reheating in a logamediate inflationary
model was carried out in [31.27].

One way of finding inflationary solutions out of the
slow-roll approximation is giving the functional form of
the Hubble parameter in term of the inflaton field, i. e.,
H.�/, the so-called generating function [31.28, 29].
This approach presents some advantages when com-
pared with the slow-roll approximation: first of all, the
form of the potential is deduced, and second, since an
exact solution is obtained, then, application to the fi-
nal period of inflation is possible, where the kinetic
term of the inflaton field in the Friedmann equation
becomes important [31.30], i. e., during the reheating
phase. The method followed here is usually referred to
as the Hamilton–Jacobi (H–J) scheme [31.31–35].

There is a particular scenario of intermediate in-
flation [31.36, 37] in which the scale factor evolves
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as a.t/� exp A tf , where A is constant and f is a free
parameter which ranges as 0< f < 1. Therefore, the ex-
pansion of the Universe is slower than standard de Sitter
inflation, but faster than power law inflation. The main
motivation to study this latter kind of model came from
string/M theory. Actually, the intermediate inflationary
model was introduced as an exact solution for a particu-
lar scalar field potential of the type V.�// ��4.f�1

�1/.
In the slow-roll approximation, and with this sort of
potential, it is possible to have a spectrum of density
perturbations which presents a scale-invariant spectral
index, i. e., ns D 1, the so-called Harrison–Zel’dovich
spectrum provided that f takes the value of 2=3 [31.38–
40]. Even though this kind of spectrum is disfavored
by the current WMAP data, the inclusion of tensor per-
turbation, which could be presented at some point by
inflation and parametrized by the tensor-to-scalar ratio
r, the conclusion that ns � 1 is allowed providing that
the value of r is significantly nonzero. In fact, in [31.41]
it was shown that the combination ns D 1 and r > 0 is
given by a version of the intermediate inflation in which
the scale factor varies as a.t// et2=3

within the slow-roll
approximation. We should mention here that, similar to
the logamediate model, the resulting effective potential
does not have a minimum, and therefore, the introduc-
tion of the curvaton field becomes necessary to bringing
inflation to an end [31.42].

In this chapter we would like to study the conse-
quences that result when considering a modified Fried-
mann equation expressed by

F.H/�
�

8�

3m2
Pl

�
�
�
D

�
8�

3m2
Pl

��
1

2
P�2CV.�/

�
:

(31.1)

Here, F � 0 is an arbitrary function of the Hubble
parameter H D Pa=a; a is the scale factor, and �� rep-
resents the scalar field energy density given by �� D
1=2 P�2CV.�/. Also, V.�/ expresses the scalar inflaton
potential and m2

Pl � 1=G represents the Planck mass.
The description of this chapter is based on a recent ar-
ticle by this author [31.43]. Here, we have added some
topics for the sole purpose of completeness.

The motivation for using this kind of equation lies
in the fact that in the literature the study of several
models can be reduced to such a modified Friedmann
equation. For instance, in an L.R/-theory of gravity in
which L.R/D R�˛2=.3R/, where R is the scalar curva-
ture and ˛ is a constant with dimension of mass square,

the Friedmann equation becomes modified by the ex-
pression [31.44]

F.H/D
6H2 � ˛2

11
8 �

9
4˛H2

:

Another example is the case in which the theories
of generalized modified gravity present an acceleration
equation of the second-order derivative. In this case, the
Friedmann equation is written as [31.45]

H2C
1

6
f .H/�

1

6
Hf;H.H/D

�
8�

3m2
Pl

�
�
�
; (31.2)

where the function f is a function of the Hubble pa-
rameter H and f;H � .df .H//=dH. In [31.45] different
expressions were studied for the function f , giving dif-
ferent modified Friedmann equations.

It is also possible to consider

F.H/D H2� ˛H4 D

�
8�

3m2
Pl

�
�
�
; (31.3)

where ˛ is a constant with a dimension of mass�2.
There are various ways to obtain this latter expres-

sion for F.H/. This has been derived by consider-
ing a quantum corrected entropy-area relation of the
type [31.46]

SA D m2
Pl
A
4
� Q̨ ln

�
m2

Pl
A
4

�
; (31.4)

where A is the area of the apparent horizon, and
Q̨ is a dimensionless positive constant determined by
the conformal anomaly of the fields. The conformal
anomaly is interpreted as a quantum correction to the
entropy of the apparent horizon [31.47]. In fact, in or-
der to obtain (31.3), we consider the area expressed as
AD 4�r2

A, where rA represents the apparent horizon,
which for a flat universe becomes rA D 1=H. Therefore,
from (31.4) we obtain

dSA D�2�m2
Pl

dH

H3
C 2 Q̨

dH

H
: (31.5)

From the first law of thermodynamics we have
TA dSA D�dEA, where TA is the temperature of the ap-
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parent horizon which is given by

TA D
1

2�rA
D

H

2�
;

and

dEA D
4

3
�r3

A d�D
4

3
�

d�

H3
;

is the energy with �, the energy density. Thus, from
these expressions, after an integration, we obtain (31.3),
where the constant of integration has been chosen as
zero, �D �

�
D 1

2
P�2CV.�/, and ˛� Q̨=.2�m2

Pl/.
On the other hand, the modified Friedmann equa-

tion, (31.3), could be obtained when an ADS-
Schwarzschild black-hole via holographic renormal-
ization is considered, together with mixed boundary
conditions corresponding to the Einstein field equations
in four dimensions [31.48]. Also, this could be derived
in terms of spacetime thermodynamics together with
a generalized uncertainty principle of quantum grav-
ity [31.49]. A Chern–Simons type of theory also yields
to this modification [31.50]. In this case, we will call the
resulting modified Friedmann equation the Friedmann–
Chern–Simons equation [31.43].

Superstring and M-theory bring about the possi-
bility of considering our universe as a domain wall
embedded in a higher dimensional space. In this sce-

nario the standard model of particle physics is confined
to the brane, while gravitation propagates into the bulk
space–time. The effect of extra dimensions induces
a change in the Friedmann equation. Here, the function
F.H/ results to be

F.H/D
�

8�	

3m2
Pl

�24
s

1C

�
3m2

Pl

4�	

�
H2 � 1

3
5

D

�
8�

3m2
Pl

�
�
�
; (31.6)

where 	 represents the brane tension [31.51–53].
Here, in this chapter, we first describe the inflation-

ary paradigm within which we will depict a possible
classification for different inflationary universe models.
Then, after describing a general approach to the study
of inflation based on the modified Friedmann equa-
tion within the scheme developed under the exact H–J
approach, we determine in some detail scalar density
perturbations and relic gravitational waves. We also in-
troduce the study of inflation under the hierarchy of the
slow-roll parameters together with the flow equations.
In this context we will describe in some detail the latter
two cases specified above, i. e., the Friedmann–Chern–
Simons case, expressed by the modified Friedmann
equation (31.3), and the brane-world inflationary uni-
verse models, described by (31.6).

31.2 Inflation as a Paradigm

As was mentioned above, the idea of inflation rests
on a quasi exponential expansion that the universe un-
derwent at an early time. In the period of 10�35 Œs�
a Planck-sized region blows up to a factor of 1030!

However, the question is, what causes inflation? Es-
sentially, it is assumed that inflation is produced, in its
simplest version, by a scalar field � usually called the
inflaton field. This scalar field is characterized by its
scalar field potential V.�/. In the slow-roll approxima-
tion for inflation the field equations become

H2 '
8�

3m2
Pl

V.�/ ; (31.7)

and

P�H '�
1

3

dV.�/

d�
D�

1

3
V0.�/ ; (31.8)

where from now on one or more primes will represent
derivatives with respect to the scalar field �.

Thus, we see from this set of equations that for de-
scribing the physical evolution of the universe we need
an explicit expression for the scalar field potential V.�/.
In this context, many models for inflation depend ex-
plicitly on the form of the scalar potential. Actually,
their functional forms characterize different inflationary
models. For instance, the potential shown in Fig. 31.1
corresponds to old inflation [31.13].

This kind of model is characterized by a first-order
phase transition, where percolation becomes an essen-
tial issue. Unfortunately, this model cannot realize the
appropriate amount of inflation needed for solving most
of the puzzles present in standard big bang theory. In
order to solve the problem presented in the old infla-
tionary model, another sort of model emerged, so-called
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φ

V (φ)

Fig. 31.1 Typical form of the scalar potentials V.˚/ as
a function of the inflaton field � in the case of old infla-
tion

φ

V (φ)

Fig. 31.2 Typical form of the scalar potentials V.˚/ as
a function of the inflaton field � in the case of new inflation

φ

V (φ)

Fig. 31.3 Typical form of the scalar potentials V.˚/ as
a function of the inflaton field � in the case of chaotic in-
flation

new inflation [31.55, 56]. Differently from in the old
inflationary model, the Universe underwent a second-
order phase transition at an early time. The scalar field
potential form is shown in Fig. 31.2.

Then another quite different sort of model appeared,
so-called chaotic inflation [31.57]. The main difference
from the previous models is that in this case there is no
need for any kind of phase transition. In fact, inflation
may start with a value for the inflaton field so high that
it may exceed the value of the Planck mass. Figure 31.3

φ

φc

V (x, φ)

x

Fig. 31.4 Form of the scalar potential V.�; �/ as a func-
tion of the scalar fields,� and �, for the case of hybrid
inflation, where the scalar potential has the V.�; �/D
V0C

1
2 g2.�2 ��2

c /�
2C 1

2 m2�2C 1
4	�

4 form

n
1 1.050.85 0.9 0.950.8

0.5

0

1

Small
field

Large
field

Hybrid

1.1

r

Fig. 31.5 Possible classification for the different inflation-
ary universe models (after [31.54])

shows the form of the potential for a chaotic inflationary
universe model.

In general terms, it is possible to classify the dif-
ferent inflationary models into three categories [31.58].
The first category is the small field (like old or new
inflation). Here, the inflaton potential V.�/ has the con-
straints V00 < 0 and .lg V/00 < 0. The second category
is the large field (like chaotic inflation). Now, the in-
flaton potential V.�/ has the constraints V00 > 0 and
.lg V/00 < 0. The third category corresponds to the hy-
brid models [31.59]. In this latter case two scalar fields
act, and the form of the scalar potential looks like

V.�; �/D V0C
1

2
g2
�
�2 ��2

c

�
�2

C
1

2
m2�2C

1

4
	�4 ;

where V0, g, �c and 	 are constant. Note that here the ef-
fective squared mass of the scalar field � is g2.�2��2

c /,
where � corresponds to the inflaton field, and the scalar
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field � is needed in order to finish inflation. Figure 31.4
shows a diagram of the scalar potential V.�; �/.

The previous classification of the different classes
of models will cover different regions of the tensor-to-
scalar amplitude ratio r and the scalar spectral index n
plane with no overlap. Figure 31.5 shows this situation.

Certainly, this is not the only way to classify dif-
ferent inflationary universe models. In fact, there are
models that lie outside this classification scheme, such
as logarithmic potential, where V.�/D V0 ln.�=�0/.
Also, we could add the medium field classification,
which could be large, medium, or small. These refer to

field variations which are much larger than, comparable
to, or much smaller than the Planck mass.

Note that, in general terms, large (or medium) field
inflation is difficult to describe from the fundamental
point of view without a complete theory of quantum
gravity. On the other hand, small field inflation does not
seem to have this problem, but still has to deal with the
problem related to the onset of inflation, i. e., what was
the state of the universe prior to the period of inflation?
Answers are highly dependent on the initial conditions
that the universe presents at that epoch, which compli-
cates any model predictions.

31.3 The Exact Solution Approach

Let us consider (31.1) together with the evolution equa-
tion related to the scalar inflaton field � in a background
of a flat Friedmann universe

R�C 3H P�CV0.�/D 0 : (31.9)

In obtaining this latter equation we have assumed that
the matter, specified by the inflaton scalar field, enters
into the Lagrangian action in such a way that its vari-
ation in a Friedmann–Robertson–Walker background
metric leads to the Klein–Gordon equation expressed
by (31.9). Therefore, we are considering constrained
sorts of models, in which the background (together with
the perturbed equation, see (31.37)) is not modified.
The theory of gravity , such as Hořava-Lifshitz [31.60],
lies outside of the approach followed here. Also, in this
study we will use the scalar field � as a time vari-
able. The requirement imposed in this approach is that
the scalar field increases monotonically and its time
derivative P� should not change sign along the path of
evolution.

It is not hard to find that

P� D�

�
m2

Pl

8�

�
F;H

�
H0

H

�
; (31.10)

where, as before,F;H � dF=dH. From this expression
we obtain the scalar potential results

V.�/D
3m2

Pl

8�
F
"

1�
m2

Pl

48�

�
H0F;H
H
pF

�2
#
: (31.11)

It is not hard to show that

aH D�

�
m2

Pl

8�

� F;H
H

a0H0 ; (31.12)

from which we obtain

a.�/D ai exp

0
B@� 8�

m2
Pl

�Z
�i

H2

H0F;H
d�

1
CA : (31.13)

where ai D a.�i/.
It is not hard to see that the acceleration equation

for the scale factor is

Ra

a
DH2 .1� �H/ ; (31.14)

where the function �H corresponds to

�H ��
d ln H

d ln a
D

�
m2

Pl

8�

� F;H
H

�
H0

H

�2

: (31.15)

From this latter expression we can see that this defini-
tion, called the first Hubble slow-roll parameter, gives
information about the acceleration of the universe. Dur-
ing inflation we have �H < 1, and this period ends when
�H takes the value equal to 1. In the next section we
will use this parameter for describing scalar and tensor
perturbations.

One interesting quantity in characterizing inflation-
ary universe models is the amount of inflation. Usually,
this quantity is defined by

N.t/� ln
a .tend/

a.t/
; (31.16)

where a.tend/ corresponds to the scale factor evaluated
at the end of inflation. In terms of the scalar field, to-
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gether with the modified Friedmann equation we obtain

N.�/D

tendZ
t

H dtD

�
8�

m2
Pl

� �Z
�end

H2

H0F;H
d�

D

�Z
�end

1

�H

H0

H
d� : (31.17)

Here, �end represents the value of the scalar field at the
end of inflation. Its value is determined by imposing
�H.�end/D 1.

However, it seems to be more appropriate to de-
scribe the amount of inflation in terms of the comov-
ing Hubble length, 1=.aH/ than in terms of the scale
factor only. In this case, the amount of inflation be-
comes [31.61]

N D ln
a .tend/H .tend/

a.t/H.t/
; (31.18)

which results into

N.�/D

�Z
�end

�
1

�H
� 1

�
H0

H
d� : (31.19)

Note that, in general, N.�/ is smaller than N.�/ and
they coincide only in the slow-roll limit. As was
stressed in [31.61], we should consider N.�/ and not
N.�/ in determining the appropriate amount of infla-
tion.

It is not enough to see that a given inflationary uni-
verse model presents an accelerated phase with a given
number of e-folds associated to this period, as we did
previously, but it is also necessary to show that their
solutions are independent from their initial conditions.
This ensures the true predictive power that presents any
inflationary universe model, otherwise the correspond-
ing physical quantities associated with the inflationary
phase, such as the scalar or tensor spectra, would de-
pend on these initial conditions. Thus, with the purpose
of being predictive, every inflationary model needs its
solutions to present an attractor behavior, in the sense
that solutions with different initial conditions tend to
a unique solution [31.62].

In order to study the corresponding inflationary at-
tractor solution for our case, and following [31.62], we
consider a linear perturbation •H.�/ around a given so-
lution, expressed by H0.�/. Below we will refer to this

quantity as the background solution, and any quantity
with the subscript zero is assumed to be evaluated with
this background solution. Thus, from the field equations
(31.1) and (31.9) we have�

1C
1

3
�H

�
1�H

F;HH

F;H

��ˇ̌̌
ˇ
0

•H

'
1

3

�
m2

Pl

8�

�
F;H

H0

H2

ˇ̌̌
ˇ
0

•H0 ; (31.20)

This latter expression can be solved by obtaining

•H.�/D •H.�i/ exp

�Z
�i

�
3

�H

�

�

�
1C

1

3
�H

�
1�H

F;HH

F;H

��
H0

H

ˇ̌̌
ˇ
0

d� ;

(31.21)

where �i corresponds to some arbitrary initial value
of �. By considering theories in which F;H > HF;HH

we find that the integrand within the exponential term
will be negative, since d� and H0 have opposite signs
(assuming that P� does not change sign due to the per-
turbation •H)[31.61]. Therefore, all linear perturbations
tend to vanish quickly.

On the other hand, we can show that the set of initial
conditions is quite large by considering the dynamical
system approach for inflationary universe models. In
this respect we consider the field equations, from which
it is not hard to show that

d P�

d�
D�

�
m2

Pl

8�

�

�

"
ŒHF;HH �F;H �

�
H0

H

�2

CF;H
�

H00

H

�#
:

(31.22)

From this expression we obtained the phase diagram in
the P��� plane. For the standard case in whichF D H2,
the above equation (31.22) reduces to

d P�

d�
D�

�
m2

Pl

8�

�
H00:

or equivalently,

d P�

d�
D�

3 P�

r�
8�

3m2
Pl

	 �
1
2
P�2CV.�/

�
CV0.�/

2 P�
;
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which, for the case where the scalar potential corre-
sponds to a massive scalar field V.�/D 1

2 m2�2 the
latter equation reduces to

d P�

d�
D�

q
12�
m2

Pl

P�

q
P�2Cm2�2Cm2�

2 P�
:

Figure 31.6 shows the phase portrait for the case dis-
cussed above. This diagram shows the important feature
related to the existence of an attractor solution to which
all other solutions converge in time.

Before concluding this section, we should mention
that there is another way of studying the scalar inflaton
field equation (31.9), which could be written in terms
of the number of e-folds N or, in terms of the modi-
fied number of e-folds, N. Let us consider the latter one;
then, (31.9) becomes

 
.1� �H/

2

.1� �H/ .�H� 3/C 1
H P�H

!
d2�

dN
2 C

d�

dN

C
1

H2

 
1

.1� �H/ .�H� 3/C 1
H P�H

!
dV

d�
D 0 ;

(31.23)

where we used that d=dt��H.1��H/d=dN. Also, in
this equation the scalar field potential becomes

V.�/D

�
3m2

Pl

8�

�
F.H/

�
1�

1

6

d lnF.H/
d ln H

�H

�
:

(31.24)

Since F.H/ > 0 and because �
�

should be positive, we
then need to satisfy the inequality

�H > 6

�
d lnF.H/

d ln H

�
;

in order for the scalar field potential to become positive.
In the slow-roll approximation, where �H D �� 1,

together with H2 � V.�/ for the standard case, (31.23)
simplifies to

d2�

dN
2 C

�
P�

H
� 3

�
d�

dN
C

d

d�
.ln V/D 0 :

In the case in which the scalar potential is taken to be
a massive scalar field, i. e., V.�/D exp . 1

2 m2�2/, the
above equation represents an oscillator damped by the

factor P�=H�3 > 0, making its evolution slower. An in-
teresting result is the situation in which P�=H < 3. Here,
the oscillations are undamped; a situation that deserves
to be studied more deeply.

Below we will describe some examples where the
generating function H.�/ has been given explicitly.
For instance, in the intermediate inflationary universe
model already described in Sect. 31.1 [31.64], H.�/ is
taken to be

H.�/D
1

2
fˇˇ=4

�
m2

Pl

2�
A

�ˇ=4

��ˇ=2 ; (31.25)

where A> 0 is a constant, f is in the range 0< f < 1,
and ˇ D 4..1=f /� 1/. The corresponding scalar poten-
tial becomes

V.�/D
m4

Pl

.4�/2
8A2

.ˇC 4/2

�
2��2

m2
Plˇ

�
�ˇ=2 �

6�
ˇ2

�2

�
;

(31.26)

and the scale factor results in

a.t/D a0 exp Atf : (31.27)

The scalar potential, (31.26) should be compared
with the case where the slow-roll approximation is used.
In this approximated case we obtain

V.�/'
m4

Pl

.4�/2
48A2

.ˇC 4/2

�
2��2

m2
Plˇ

�
�ˇ=2

; (31.28)

which is appropriated for the case �� ˇ=
p

6 in ex-
pression (31.26).

Another example corresponds to the case where
Einstein’s equation is considered in such a way that
inflation is driven by the evolution of scalar fields in
potentials which possess minima [31.65]. Here, the gen-
erating function is taken to be

H.�/D 	A2 cosh
�
�

A

�
; (31.29)

where 	 and A are two constants. The scalar potential
becomes

V.�/D .	A/2
��

3A2 � 2
�

cosh2

�
�

A

�
C 2

�
:

(31.30)
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φ

Attractorm

m

φ·
Fig. 31.6 The phase portrait for the
case in which the scalar potential
corresponds to V.�/D .1=2/m2�2,
showing the attractor inflationary so-
lution (after [31.63])

As a function of the cosmological time the scalar field
and the scale factor become

�.t/D A ln Œtanh.	t/� ; (31.31)

and

a.t/D a0 Œsinh.2	t/�
A2
2 ; (31.32)

respectively. Note that we could have three cases for
the constant A, namely, 3A2 > 2, 3A2 < 2, and 3A2 D 2.
From these three cases, the first one is the most inter-
esting, where the scalar potential has the property of
being concave with a single stable minimum located at
� D 0. The behavior of the universe at small t becomes
a.t/� tA2=2, which corresponds to a power-law infla-
tion for A2 > 2, and the potential becomes

V.�/� exp

�
2�

A

�

for � �!�1.
Another situation in which an explicit expression

for the Hubble parameter has been used is in [31.62].
In this reference,

H.�/D H0 exp.�ˇ�/ ; (31.33)

where the constant H0 becomes

H0 D

�
8�V0

3m2
Pl

1

1� 1=3p

�1=2

and

ˇ D
1

mPl

�
4�

p

�1=2

;

with V0 > 0 and p> 1 in order for inflation to occur. In
this case the scalar potential becomes exponential, i. e.,

V.�/D V0 exp.�2ˇ�/ :

The scalar field as a function of time becomes

�.t/D mPl

r
p

4�
ln

"s
8�V0

3m2
Plp

2

1

1� 1=3p
t

#
;

and the scale factor corresponds to a power law and is
given simply by a.t/D a0tp.

In a gravity rainbow theory [31.66–68], where
F.H/D f 2H2, with f a correction term that correlates
with the energy of the probe particles [31.69],

H.�/D H0
�M

f 2

was used, where H0 and M are numbers greater than 1.
It was found that the scalar field and the scale factor
become

�.t/D

8̂<
:̂
h
�2�M

0
C
�

H0M.M�2/m2
Pl

4�

	
t
i1=.2�M/

; M ¤ 2
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h
�
�
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t
i
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0 ��
2
�i
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�

f 2m2
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	 �
�2

0
��2

�i
; M D 2

respectively. In this case, the scalar potential was

V.�/D

�
3H2

0mPl2

8�

�
�2M

�

�
1�

�
M2f 2m2

Pl

12�

��
1

�2

��
:

An exact solution to Einstein’s equations that de-
scribe the evolution of the cosmological chaotic in-
flationary universe model was presented in [31.70].
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The generating function used in this case was H.�/D
˛1�

2C ˛2, where ˛1 and ˛2 are two positive constants.
The scalar field and the scale factor are

� D �0 exp

�
�

�
˛1m2

Pl

2�

�
t

�

and

a.t/D a0 exp


˛2tC

�
��2

0

m2
Pl

�

�

�
1� exp

��
˛1m2

Pl

�

�
t

���
:

The scalar potential assumes the following form

V.�/D
	

8

�
�2� v2

�2
;

where 	D .3˛2
1m2

Pl/=� and v2 � ˛1=˛2.
Finally, let us consider the logamediate inflationary

universe model [31.16] where the scale factor becomes

a.t/D exp
h
A.ln t/�

i
;

with t > 1. Here A> 0 and 	 > 1 are two constants. The
Hubble parameter as a function of t is

H.t/D
A	.ln t/��1

t
;

where A	 > 0 in order to have an expanding universe.
We should notice that when 	D 1, the model reduces
to the power-law inflation, where a.t/� tp, with pD
A> 1.

The scalar field � as a function of the cosmological
time becomes

�.t/D �0 C �
p

A	.ln t/1= ;

where � corresponds to � D 2
�C1 .

The scalar field potential becomes (by setting
�0 D 0)

V.�/D V0�
˛ exp

�
�ˇ�

�

�

(
1�

m2
Pl

24�

�
�

�

�2 �
1�

�
1
p

A	

�
�
�)
;

(31.34)

where ˛ D 4.	� 1/=.	C 1/ and ˇ D 2..	C 1/=
.2
p

A	// . Under the slow-roll approximation the
scalar potential (31.34) becomes [31.17]

V.�/' V0�
˛ exp

�
�ˇ�

�
;

which occurs in the range

mPl
p

6�

�
1

	C 1

�
� ��

p
A	

of the scalar inflaton field.

31.4 Scalar and Tensor Perturbations

Inflation generates perturbations through the amplifi-
cation of quantum fluctuations, which are stretched
to astrophysical scales by brief, but rapid inflationary
expansion. The simplest models of inflation gener-
ate two types of perturbations, density perturbations
which come from quantum fluctuations of the scalar
field [31.71–74], and relic gravitational waves which
are tensor metric fluctuations [31.75–79]. The former
experience gravitational instability leading to structure
formation [31.80, 81], while the latter predict a stochas-
tic background of relic gravitational waves which could
influence the cosmic microwave background anisotropy
via the presence of polarization [31.82, 83]. Upcoming
experiments such as the Planck satellite will character-

ize polarization anisotropy to a higher accuracy [31.84].
It is very timely to develop the tools which can opti-
mally utilize the polarization information to constrain
models of the early Universe. Specifically, magnetic
modes (B-modes) are signals from cosmic inflation and
suggest the presence of gravitational waves [31.85].

In order to describe these perturbations, let us con-
sider the Hamilton–Jacobi slow-roll parameters. The
first Hubble slow-roll parameter �H was already defined
in the previous section, (31.15).

The second slow-roll parameter �H is defined as

�H ��
d ln H0

d ln a
D

�
m2

Pl

8�

� F;H
H

H00

H
: (31.35)
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We should note here that both �H and �H are exact
quantities, despite the fact that we call them slow-roll
parameters. In the slow-roll limit these parameters be-
come [31.61, 86]

�H �! � ;

�H �! �� � ; (31.36)

where the quantities � and � are common slow-roll pa-
rameters which satisfy �� 1 and �� 1, in agreement
with the slow-roll approximation.

The evolution equation for the Fourier modes of the
scalar perturbations (quantum mode functions) at some
comovil wave number scale k is governed by [31.87–
90]

d2uk

d
2
C

 
k2 �

1

z

d2z

d
2

!
uk D 0 ; (31.37)

where 
 represents the conformal time defined by 
 DR
.1=a/dt and uk corresponds to the Fourier transform

of the Mukanov variable, which is defined by uD zR,
with zD a P�=H and R defining the gauge-invariant
comovil curvature perturbation. This latter amount re-
mains constant outside the horizon, i. e., metric pertur-
bations with wavelengths larger than the Hubble radius
will be frozen [31.91].

During inflation it is expected that

k2�
1

z

d2z

d
2
;

i. e., the physical modes are assumed to have a wave-
length much smaller than the curvature scale, and thus
(31.37) can be solved to achieve

uk.
/� e�ik�

�
1C

Ak



C : : :

�
: (31.38)

On the other hand, when

k2�
1

z

d2z

d
2
;

we have that the physical modes correspond to wave-
lengths much bigger than the curvature scale.

The mass term

1

z
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d
2
;

in our case becomes
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(31.39)

For F.H/D H2 we obtain [31.92]

1
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d2z

d
2
D 2a2H2

�
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1
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�
:

It has long been known that (31.37) can be
solved exactly in the case in which the mass term
.1=z/.d2z=d
2/ is proportional to 
�2, where this
equation reduces to a Bessel equation, where the stan-
dard solution becomes uk �

p
�k
H�.�k
/, with H�

the Hankel function of first kind, and the parameter �
depending on the slow-roll parameter � via � D 3=2C
�=.1� �/. For instance, this occurred in the case of the
standard Friedmann equation and the scale factor a.t/
expands as a power law, i. e., a.t/� tp.p> 1/, resulting
in �H D �H D constant [31.93]. Other solutions, which
are far from the slow-roll approximation, are described
in [31.94].

Immediately that we obtain an explicit expression
for uk we can obtain the power spectrum, which is de-
fined in terms of the two-point correlation function as

PR.k/D
k3

2�2

D
R
�!

k 0
R
�!

k

E
ı
��!

k 0C
�!
k
	
; (31.40)

which in terms of uk and z becomes

PR.k/D
k3

2�2

ˇ̌ˇ̌uk

z

ˇ̌ˇ̌2 : (31.41)

In order to obtain uk by solving (31.37), we need
to impose some boundary conditions. These asymptotic
conditions are usually taken to be the so-called Bunch–
Davies vacuum states [31.95]

uk!

(
1
p

2k
e�ik� as � k� �!1 ;

Akz as � k� �! 0 :
(31.42)
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This ensures that perturbations that are generated well
inside the horizon, i. e., in the region where k� aH, the
modes approach plane waves and those that are gener-
ated well outside the horizon, i. e., in the region where
k� aH, remain unchanged.

The description of the primordial curvature pertur-
bation presents a standard result given by [31.73, 74,
91, 96]

PR.k/D
�

H

j P�j

�2 � H

2�

�2
ˇ̌̌
ˇ̌
aHDk

: (31.43)

This perturbation is, in general, a function of the wave
number k, which is evaluated as aH D k, i. e., when
a given mode crosses outside the horizon during infla-
tion. Since the modes do not evolve outside the horizon,
the amplitude of the modes when they cross back inside
the horizon coincides with the value that they had when
they left the horizon.

By using the primordial scalar perturbations we can
introduce the scalar spectral index ns defined by

ns � 1�
d lnPR
d ln k

: (31.44)

This quantity becomes

ns � 1D 2�H� 2

�
3�H

F;HH

F;H

�
�H : (31.45)

Note that ns > 1 requires

�H >

�
3�H

F;HH

F;H

�
�H ;

which corresponds to a blue spectral [31.97]. In the
special case where F.H/D H2, we find �H > 2�H, and
since �H by definition is positive, then, at the lowest or-
der, �H > 2�H > 0. As was mentioned in [31.97], this
condition is not easy to satisfy and this is particularly
so during the final stage of inflation where � ' 1, which
requires that � > 2.

In the same way we define the running scalar spec-
tral index, nrun � dns=.d ln k/, which becomes

nrun D�2

�
9� 5H

F;HH

F;H
CH2F;HHH

F;H

�
�2

H

C 2

�
8� 3H

F;HH

F;H

�
�H�H� 2�H ; (31.46)

where �H corresponds to the third slow-roll param-
eter and turns out to be given by

�H �

�
m2

Pl

4�

�2 �F;H
H

�2 H000H0

H2
: (31.47)

In addition to the scalar curvature perturbation,
transverse-traceless tensor perturbation can also be
generated from quantum fluctuations during infla-
tion [31.76, 80, 81]. The tensor perturbations do not
couple to matter and, consequently, they are only de-
termined by the dynamics of the background metric, so
the standard results for the evolution of tensor perturba-
tions of the metric remain valid. The two independent
polarizations evolve like minimally coupled massless
fields with spectrum (we mention here that this ex-
pression should be implemented with a factor such that
F2
˛.H=�/, where

F�2
˛ .x/D

p
1C x2 �

�
1� 4˛�2

1C 4˛�2

�
x2 sinh�1 1

x
;

when a brane-world with a Gauss–Bonnet term is con-
sidered [31.98].)

PT D
16�

m2
Pl

�
H

2�

�2
ˇ̌̌
ˇ̌
aHDk

: (31.48)

Similarly to the case of scalar perturbations, we
evaluate the expression on the right-hand side of
(31.48) when the comoving scale k leaves the hori-
zon during inflation. Furthermore, we can introduce
the gravitational wave spectral index nT defined by
nT � .d lnPT /=.d ln k/, which turns out to be

nT D�2�H : (31.49)

Here, we can also introduce the running tensor spectral
index ˛T defined by

˛T �
dnT

d ln k
D 4�H�H � 2

�
3�H

F;HH

F;H

�
�2

H :

(31.50)

At this point we can define the tensor-to-scalar ra-
tio r� PT =PR, which becomes

rD 2
F;H
H
�H ; (31.51)

and combining (31.49) and (31.51) we find that

nT D�

�
H

F;H

�
r : (31.52)
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This latter expression corresponds to the inflationary
consistency condition [31.92, 99]. Note that for stan-
dard cosmology, in which F.H/D H2, (31.52) reduces

to rD�.1=2/nT. However, this relation may be vio-
lated in some cases [31.100, 101]. Note that this relation
depends on the kind of theory that we are dealing with.

31.5 Hierarchy of Slow-Roll Parameters and Flow Equations

There is a different way of studying inflationary uni-
verse models, which is subtended by a sort of hierarchy
imposed on the slow-roll parameters [31.102, 103]. In
fact, the set of equations in this approach is based on
derivatives with respect to the e-fold number over the
slow-roll parameters.

We previously introduced the slow-roll parameters,
such as �H, �H and �H, to which we have given a sort
of hierarchy, calling them first, second, and third slow-
roll parameters, respectively. Each of these parameters
is characterized by their dependence on the order of the
scalar field derivative of the Hubble ratio H.�/, such as
�H � .H0/2, �H � H00 and �H � H000, as we can see from
(31.15), (31.35), and (31.47), respectively. It is possi-
ble to extend this definition to higher derivatives of the
Hubble parameter so that we can introduce the follow-
ing parameter

l	H �

�
m2

Pl

4�

�l �F;H
H

�l
.H0/l�1

Hl

d
lC1

H

d� lC1
I .l� 1/ ;

(31.53)

where for lD 1 we have 1	H � �H and lD 2 corre-
sponds to 2	H � �H.

It is not difficult to show that the following set of
equations is satisfied

d�H

dN
D

��
H
F;HH

F;H
� 3

�
�HC 2�H

�
�H ;

dl	H

dN
D

�
l

�
H
F;HH

F;H
� 2

�
�HC .l� 1/�H

�
l	H

C lC1	H I .l� 1/ :

(31.54)

Here the relationship

d

dN
��

m2
Pl

8�

F;H
H

�
H0

H

�
d

d�

was used.

In the standard case, i. e., when F.H/D H2, the
above set of equations reduces to

d�H

dN
D �H.� C 2�H/ ;

d�

dN
D�5�H� � 12�2

HC 2�H ;

dl	H

dN
D

�
l� 1

2
� C .l� 2/�H

�
l	H

C lC1	H I .l � 2/ ; (31.55)

where � � 2�H� 4�H [31.103].
In order to solve the infinite set of equations (31.55)

the series is truncated by imposing a vanishing value
to a given high enough slow-roll parameter. This cor-
responds to taking that MC1	H D 0, for an appropriate
large number M (for instance, M D 5 has been used in
the literature [31.103]). With this truncation the set of
equations has been solved both numerically [31.102–
105] and analytically [31.106–108].

With respect to possible solutions of these equations
and their relations with the inflationary paradigm, it was
emphasized in [31.106] that there is no clear connection
between them. Actually, it is not clear that a particular
solution of the flow equations corresponds directly to
some type of inflationary solution. To achieve this task
we must add additional ingredients to the correspond-
ing solutions. The main ingredient that has been left out
of this scheme is the Friedmann equation itself. Thus, in
solving the flow equations we were able to obtain �H as
a function of the scalar field � (imposing the condition
that this parameter will satisfy the range 0	 �H 	 1),
and then we were able to obtain H.�/ through the fol-
lowing relation

H.�/Z
Hi

r
F;H
H3

dH D

s
8�

m2
Pl

�Z
�i

p
�H.�/d� : (31.56)

Thus, by obtaining an explicit expression for �H and
giving an explicit expression for F.H/ as a function of
H, we obtained the Hubble parameter H.�/ as a func-
tion of the scalar field through (31.56) (in the standard
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case in which F DH2 it is obtained that

H.�/D Hi exp

2
64
s

8�

m2
Pl

�Z
�i

p
�H.�/d�

3
75 :

). With this in hand, we can obtain an explicit expres-
sion for the scalar field potential V.�/, given by

V.�/D

�
3m2

Pl

8�

�
F
�

1�
1

6
H

�F;H
F

�
�H

�
: (31.57)

In short, for a given function F.H/, we could say
that the Hubble flow formalism allows us to determine
the scalar field potential V.�/ associated to some in-
flationary universe model. In order to realize this task
we first solve the flow equations, (31.54), from which
we can obtain the first slow-roll parameter �H under
the condition that this parameter must satisfy the bound
0 	 �H 	 1. Then, by using (31.56), we obtain the cor-
responding Hubble parameter as a function of the scalar
field H.�/ from which we obtain all the other quantities
associated to the inflationary scenario.

31.6 A Possible Way of Obtaining the Generating Function H.�/

There is a way to obtain the generating function, i. e.,
H as a function of the inflaton scalar field �, ex-
plicitly. This approach was revealed for the first time
in [31.109]. The procedure is as follows: we noticed

that variable z, defined as zD
P�
H , plays an important role

in the description of scalar perturbations (see (31.37)).
Actually, its second derivative with respect to the con-
formal time gives the mass term, (31.39).

On the other hand, with respect to inflationary uni-
verse models, we can restrict ourselves to the particular
case in which the variable z is a constant at superhori-
zon scale [31.109]. By imposing this latter condition,
i. e., zD const., a straightforward calculation leads to
the following differential equation for the Hubble pa-
rameter H.�/

�
m2

Pl

8�

�"
.HF;HH � 2F;H/

�
H0

H

�2

C

�F;H
H2

�
H00
#
�H

D 0 :

(31.58)

In principle, after solving this latter differential equa-
tion we can obtain H as a function of the scalar field
�, and with this explicit expression for H we can ob-
tain, for instance, the primordial curvature perturbations
PR.k/, together with the tensor perturbation, PT .k/.

Let us take the unit in which m2
Pl=8� D 1, and if we

take the case in whichF.H/D H2, we have that (31.58)
simplifies to

1

2
C

�
H0

H

�2

�
H00

H
D 0 ; (31.59)

which presents a solution of the type [31.109]

H.�/D H0 exp

�
�2

4
C�i�

�
; (31.60)

where H0 and �i are two arbitrary constants. In this
case, for instance, the scalar potential, the scale fac-
tor, and the cosmological time become a function of the
scalar field given by (taking the constant �i D 0)

V.�/D H2
0

�
3�

�2

2

�
exp

�
�2

2

�
; (31.61)

a.�/D
�0

�
(31.62)

and

t.�/D
1

2H0

�
Ei
�
�
�2

0

4

�
�Ei

�
�
�2

4

��
; (31.63)

respectively. Here, �0 is an integration constant and
Ei is the exponential integral function. One interesting
thing in this specific case is that the equation govern-
ing the evolution of scalar perturbations simplifies and
can be solved, and with this solution together with the
assumption that the variable z remains constant, it is
possible to calculate the spectral index, which turns out
to be exact and �-independent, namely,

ns D 3 :

Unfortunately, this result, when compared with that cor-
responding to an observed scale-free spectrum (which
is close to unity) presents a large blue shift. Apart from
this, we could say that this case and the one related to
the Einstein power-law inflation are the only ones that
have this feature [31.109].
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31.7 Two Interesting Cases

In the following descriptions we will study the two
cases that we mentioned above, in the introductory
section, i. e., the Friedmann–Chern–Simons and the
brane-world type of inflationary universe models.

31.7.1 The Friedmann–Chern–Simons Model

As stated in the introductory section, we would like to
consider here a model in which the Friedmann equation
modifies to

F.H/� H2 �˛H4 D

�
8�

3m2
Pl

�
�
�
; (31.64)

where ˛ is an arbitrary constant with dimension m�2
Pl .

Here, we assume that during the inflationary evolution
the Hubble parameter H satisfies the bound H < 1=

p
˛,

so that the energy density associated to the scalar field
� is positive.

For the generating function it is possible to
choose a polynomial like H.�/D H0.1Cˇ�Cˇ2�

2C

: : :ˇN�
N/, where H0 and the different ˇ are constants.

This sort of solution was used to generate suitable func-
tions of slow-roll parameters [31.106]. Here, just for
simplicity, and in order to show how this approach
works, we shall take the previous polynomial, but, up
to first order in the scalar field �, i. e., H.�/D H0.1C
ˇ�/, with ˇ an arbitrary constant with dimension m�1

Pl .
In this case, the scalar potential becomes

V.�/D

�
3m2

Pl

8�

�
H2

0�
2
h
1� ˛H2

0�
2
i

�

2
641�

m2
Pl

12�

ˇ2

�
2

0
B@ 1� 2˛H2

0�
2

q
1�˛H2

0�
2

1
CA

23
75 ;
(31.65)

where � � 1Cˇ�.
In the slow-roll approximation, i. e., where P�2�

V.�/ together with j R�j � jdV.�/=d�j, it is found that
the scalar field potential becomes

V.�/s�r '

�
3m2

Pl

8�

�
H2

0�
2
�

1� ˛H2
0�

2
	
: (31.66)

Figure 31.7 depicts the shape of the potential for the ex-
act case (thick line), expressed by (31.65), together with
the approximated slow-roll case, (31.66). In the figure
the dotted line represents the exact case in which the
˛-parameter vanishes.

Here, from expression (31.15) we have that in this
case the first Hubble slow-roll parameter �H is given by

�H ��
d ln H

d ln a
D

�
m2

Pl

4�

� �
1� 2˛H2

� �H0

H

�2

:

(31.67)

This parameter gives information about the acceleration
of the Universe. During inflation we have �H < 1, and it
ends when �H takes the value equal to 1.

The amount of inflation is

N.t/� ln
a .tend/

a.t/
; (31.68)

where a.tend/ is the scale factor evaluated at the end of
inflation. Thus, we have

N.�/D

tendZ
t

H dtD

�Z
�end

1

�H

H0

H
d� : (31.69)

Here, �end represents the value of the scalar field at the
end of inflation. Its value is determined by imposing
�H.�end/D 1.

φ
0.7 0.80.4 0.5 0.6

0.1

0
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0.4
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V (φ)

Fig. 31.7 Plots of the scalar potentials V.˚/ as a function
of the dimensionless scalar field, ˚ �

p
˛H0�. The thick

line represents the exact potential, expressed by (31.65).
The dashed line represents the same potential, but in the
slow-roll approximation, (31.66). The dotted line corre-
sponds to the exact case, but when ˛ D 0. Here we have
taken ˛.ˇH0/

2 � .24�/=.9m2
Pl/ and V.˚/ is expressed as

a multiple of the constant V0 � .3m2
Pl/=.8�˛/
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x
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2.5

q (x)

1/2
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3/2
2
5/2

Values for 4   2α

Fig. 31.8 Time evolution of the deceleration parameter
q as a function of xDH .t� t0/. Here we have taken
the value

p
˛H0 D 19=.5

p
2/. The thick, dotted, thin,

dashed, and dot-dashed lines correspond to the values
for 4
p

2˛H D 1=2I 1I 3=2I 2I 5=2, respectively. Note that
in all cases the acceleration parameters turn out to be
negative

The scalar field results are given by

�.t/D�
1

ˇ
C

1
p

2˛ˇH0

� cosh
h
2 tanh�1

�

�
tanh

�
1

2
cosh�1.

p
2˛H0/

�

� eH .t�t0/
	i
;

(31.70)

where H �
p

2˛.ˇH0/
2 m2

Pl
4� and �.t0/D 0. This latter

expression allows us to write down the Hubble parame-
ter as a function of time. From this result we obtain the
scale factor a.t/, which becomes

a.t/D

a0

�
sinhf2 tanh�1 Œtanh. 1

2 cosh�1.
p

2˛H0//�eH .t�t0/�g
sinhŒcosh�1.

p

2˛H0/�

�4
p

2˛H
:

(31.71)

In order to see if this latter expression describes
an accelerated phase, for given values of the parame-
ters, in Fig. 31.8 we plot the deceleration parameter q,
which is defined as qD�.Raa/=Pa2. For this plot we have
taken the value

p
˛H0 D

19
5
p

2
. The different curves cor-

respond to different values of the exponent that appears
in the scale factor a, i. e., 4

p
2˛H . These curves show

that the universe is accelerating, since the parameter
q.t/ turns out to be negative as time passes. Therefore,
our model presents a period of inflation, at least for the
values of the parameters that we have considered here.

The amount of inflation in this case becomes

N.y/D�NeC
p
�

�

�
1
p

y
C

1
p

2

�
1� 4�

�

�
tanh�1

�p
2y
	�
;

(31.72)

where y is a dimensionless function of the scalar field
defined by yD ˛H2

0.1Cˇ�/
2, � is a dimensionless

constant given by � � .m2
Pl=4�/˛.H0ˇ/

2, and Ne cor-
responds to

Ne D
1

2

p
1C 2�

C
1

2
p

2

�
1� 4�
p
�

�
tanh�1

 s
2�

1C 2�

!
:

(31.73)

Let us now consider the attractor behavior of this
model. By taking into account (31.21), we have

•H.�/D •H.�i/ exp

2
6412�

m2
Pl

�Z
�i

g.H0/
H0

H00
d�

3
75 ;

(31.74)

where �i represents the initial value of the scalar field �.
The function g.H0/ is given by



1� 2˛H2

0

�
1� 2

3�H0˛H2
0

��
�
1� 2˛H2

0

�2
;

and it is positive for 2˛H2
0 < 1 (this makes sure that

the energy density will be positive, as we can see from
(31.64)). Thus, the integrand within the exponential
term will be negative, due to the fact that d� and H00
have contrary signs (assuming that the perturbation •H
does not change the sign of P�)[31.61]. In this way, all
the linear perturbations tend to vanish rapidly.

Regarding scalar perturbations, the scalar spectral
index parameter becomes

ns� 1D 2�H� 4

�
1�

2˛H2

1� 2˛H2

�
�H ; (31.75)
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and the running scalar spectral index is

nrun D

�
10

1� 2˛H2

�
�H�H

C

�
8

1� 2˛H2

�
�2

H� 2�2
H ; (31.76)

where �H is defined as

�2
H �

�
m2

Pl

4�

�2

.1� 2˛H2/2
H000H0

H2
: (31.77)

Analogously, from (31.49) we found an expression
for the gravitational wave spectral index nT, given by

nT D�2�H ; (31.78)

and the corresponding tensor-to-scalar amplitude ratio

rD 4
�
1� 2˛H2

�
�H : (31.79)

Bearing in mind the expression that we have required
for H.�/, we obtain a relationship between r and ns

given by

r.ns/D
.8� C 1� ns/

2

16� C 1� ns
; (31.80)

where the dimensionless constant � was defined previ-
ously.

Note that we need to satisfy ns < 1C16� in order to
have r > 0. Thus, from this inequality we obtain a con-
straint on the parameter � given by � > 1

16 j.ns� 1/j.
Figure 31.9 shows how r changes as a function of ns

for two different values of the parameter � . These val-
ues are � D 8:0�10�3 and � D 16:0�10�3. From this
figure we see that our model can accommodate the ob-
servational data quite well. Note that this model allows
the possibility of having a Harrison–Zel’dovich spec-
trum, i. e., ns D 1, with r¤ 0 as could be seen from the
plot.

In this case, the system of flow equations (31.54) is
reduced to the following set of equations

d�H

dN
D

�
2
�

1� 4˛H2

1� 2˛H2

�
�HC �

�
�H ;

d�

dN
D�

�
6

�
2�˛H2

1� 2˛H2

�
�H

C

�
5� 6˛H2

1� 2˛H2

�
�

�
�HC 2�H ;

dl	H

dN
D

�
l

�
1� 6˛H2

1� 2˛H2

�
�HC

1

2
.l� 1/�

�

� l	HC
lC1	H .l� 2/ : (31.81)

ns

1 1.050.9 0.95
0

0.14

0.12

0.1

0.08

0.06

0.04

0.02

1.1

r

8 ×10–3

16 ×10–3
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Fig. 31.9 The parameter r as a function of the scalar
spectral index ns for two values of the constant � D
.m2

Pl=4�/˛ .H0ˇ/
2, as described by (31.80). Here, we have

taken the values � D 8:0�10�3 and � D 16:0�10�3. Note
that we could have the possibility of having a Harrison–
Zel’dovich spectrum (ns D 1) with r ¤ 0.

In order to solve this set of equations we need to have
H D H.N/. In order to obtain this result, we start by
considering (31.16), which results N D N.�/. Then, we
need to invert this latter expression (if possible) to ob-
tain � D �.N/. Finally, with this expression we obtain
H as a function of N, and, by introducing this function
into the flow equation, it is possible to solve it.

There is another way of obtaining a relationship be-
tween H and N. Let us assume that we really know the
Hubble rate as a function of the scale factor, i. e., we
know H.a/ explicitly. Then, since by definition dN D
�d ln a, we obtain a.N/D aee.Ne�N/, where ae and Ne

are the values of the scale factor and the number of
e-folds at the end of inflation. Then, by a direct sub-
stitution of a.N/ on the Hubble rate H we obtain H.N/.

As an example of the latter approach, let us con-
sider the model in which there is a smooth exit from
inflation, under the so-called decaying vacuum cos-
mology [31.110]. There, it was found that the Hubble
parameter as a function of the scale factor becomes

H.a/D 2He

�
a2

e

a2C a2
e

�
; (31.82)

where He D H.ae/. In this case it is obtained that

H.N/D He Œ1� tanh .Ne �N/� : (31.83)

Let us solve numerically the set of (31.81) for the
first two slow-roll parameters, �H and �H, when �H is
a constant equal to 0:2. Figure 31.10 shows the nu-
merical solutions for these two slow-roll parameters.
From the figure we can see that �H remains almost
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Ne –N
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ηH
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�H

Fig. 31.10 Numerical solutions for �H and �H from the set
of equations (31.81) in the case in which � D const.D 0:2
and H.N/D HeŒ1� tanh.Ne �N/�

constant (closed to zero) for a wide range of values
of eN � Ne �N. However, for eN < 1 it increases to the
value of 1. Actually, for N D Ne, i. e., at the end of
inflation, �H D 1. In the same range, i. e., eN < 1, the
other slow-roll parameter �H decreases from a maxi-
mum value (closed to the point eN � 1) to its final value
�H � 1:2 at the end of inflation. For this parameter, in
the case eN > 1, is can be observed from the figure that
it decreases lineally.

Applying the approach followed in [31.109] in this
case, we obtain that the differential (31.58) reduces to

H00

H
�

�
1C 2˛H2

1� 2˛H2

��
H0

H

�2

�
�

1
2

� � 1

1� 2˛H2

�
D 0 : (31.84)

This ordinary differential equation is quite hard to solve
analytically. Figure 31.11 presents numerical solutions
for different values of ˛. It shows how the Hubble pa-
rameter H.�/ changes as a function of the scalar field
�. For comparison we have included the exact solution
corresponding to the ˛ D 0 case.

31.7.2 The Brane-World Model

As we mentioned in Sect. 31.1, we consider a five-
dimensional brane scenario in which the Friedmann
equation is modified to [31.51–53]

H2 D

�
8�

3m2
Pl

�
�
�

�
1C

�
�

2	

	
; (31.85)

where 	 represents the brane tension.

φ
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Value for α  ×10–16m2
Pl

Fig. 31.11 The evolution of the Hubble parameter H.�/ as
a function of the scalar field �. Here we have plotted H.�/
for the values ˛.�10�16m2

Pl/D 0:0; 5:0; 6:0, and 7:5

The previous expression was also considered in the
high energy regime [31.111], i. e., when �

�
=2	� 1. In

this case the function F.H/ is

F.H/D
s

16�	

3m2
Pl

H :

With this expression for the function F.H/, for the
scalar field potential we obtain

V.�/D

s
3	m2

Pl

4�
H.�/�

	m2
Pl

24�

�
H0.�/

H.�/

�2

:

Here we assume that the Hubble factor presents an ex-
ponential dependence, i. e., H.�/� exp.��/.

Expression (31.85) can be written as

F.H/� b

"s
1C

�
2

b

�
H2 � 1

#
D

�
8�

3m2
Pl

�
�
�
;

(31.86)

where b is defined by b� .8�	/=.3m2
Pl/.

From this latter equation, together with (31.11), we
obtain for the scalar potential

V.�/D 	

"s
1C

�
2

b

�
H2 � 1

#

� 2
9

�
	

b2

�
.H0/2

Œ1C
�

2
b

�
H2�

: (31.87)

In order to obtain an explicit expression for the
scalar potential we need to introduce an explicit ex-
pression for the Hubble parameter as a function of the
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scalar field. In this respect, we borrow the expression
put forward by Hawkins and Lidsey for the Hubble pa-
rameter [31.30]. Thus, we take

H.�/D

r
b

2

�
coth.ˇ�/

sinh.ˇ�/

�
;

where ˇ is a constant given by ˇ � .
p

2�C/=.mPl/,
with C an arbitrary dimensionless constant.

The scalar field potential and the scale factor be-
come

V.�/D
	

3
.6�C2/csch2

 p
2�C

mPl
�

!
(31.88)

and

a.t/D
1

2
bC4

��
tC

4

C2
p

b

�
t

�1=C2

; (31.89)

respectively [31.30]. Two comments are in order, first
we demand that C be less than

p
6 in order for the

potential to be positive definite, and secondly, in the
expression for the scale factor we have chosen t0 D
�..3m2

Pl/=.4�	C4//1=2 in order to have a.0/D 0. For
an early time it is found that a� t1=C2

, therefore, for
inflation to be realizable we need C2 < 1.

In this case, the amount of comoving inflation be-
comes

N.x/D ln

"�
sinh.xe/

sinh.x/

� 2
C2 .1�C2/ cosh.xend/

cosh.x/

#
:

(31.90)

Here, x� .
p

2�C/=.mPl/� and xe D .
p

2�C/=
.mPl/�e, where �e is the value of the scalar field at the
end of inflation, which corresponds to

�e D
mPl
p

2�C
sech�1

�
1

C

p
2�C2

�
:

Regarding the attractor solution, from (31.21) we
obtain

•H.�/D •H.�i/

� exp

�Z
�i

 
3

�H
C

2

b

H2

1C 2
b H2

!�
H0

H

�ˇ̌ˇ̌̌
0

d� :

(31.91)

The quantity in square brackets is positive definite,
thus the difference in sign between H0 and d� makes

the exponential negative, and therefore, the exponential
rapidly tends to zero, showing the attractor feature.

Returning to the previously introduced expression
for the Hubble parameters, for the various slow-roll pa-
rameters we obtain the following expressions

�H.�/D
C2

2



1C sech2.ˇ�/

�
; (31.92)

�H.�/D
C2

2

�
1C

8

3C cosh.2ˇ�/

�
(31.93)

and

�H D
C4

4

�
1C 5sech2.ˇ�/C

24

3C cosh.2ˇ�/

�
:

(31.94)

By using these expressions we obtain ns and r, which
become

ns � 1D�
C2

2
sech2.ˇ�/ Œ5C cosh.2ˇ�/�

and

rD 2C2 tanh.ˇ�/ ;

respectively. It is not difficult to show that the following
relation holds

rD 3C2C .ns� 1/ : (31.95)

Now, due to the observational constraint on r, which
presents an upper limit, r < 0:20 (95% CL) from
WMAPCBAOC SN [31.112], where SN is the con-
stitution samples compiled in [31.113], and since
ns D 0:963˙0:012 (excluding the Harrison–Zel’dovich
spectrum in a value greater than 3�) [31.114], we have
that the parameter C should satisfy the upper bound
C2 < 0:079˙ 0:004 in order to be in agreement with
the observational data.

On the other hand, the consistency condition in this
case becomes

rD�
2q

1C 2
b H2

nT ;

where nT turns out to be nT D�C2 Œ1C sech.ˇ�/�.
Note that in the limit in which b �!1 we obtain the
standard results rD�2nT. Concerning the hierarchy
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slow-roll parameters equations we find

d�H

dN
D

"
2

 
1C 1

b H2

1C 2
b H2

!
�HC �

#
�H ;

d�

dN
DC2�H

�

" 
5C 12

b H2

1C 2
b H2

!
� C 12�H

#
�H ;

dl	H

dN
D

" 
l� 2� 4

b H2

1C 2
b H2

!
�HC

1
2 .l� 1/�

#

� l	HC
lC1	H .l� 2/ : (31.96)

Following an approach analogous to the previous
subsection we solve this set numerically in the case in
which the �H parameter remains constant equal to 0:2,
and we use expression (31.83) for the dependence of
the Hubble parameter as a function of the number of
e-folds. The result is shown in Fig. 31.12. Note that �H
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Fig. 31.12 Numerical solutions for �H and �H from the set
of equations (31.96) in the case in which � D const:D 0:2.
Here, H.N/D HeŒ1� tanh.Ne �N/� was used

increases enormously close to the end of inflation. With
this parameter much greater than 1 and �H reaching the
value equal to 1 at the end of inflation, the slow-roll
approximation becomes unsustainable at the end of
inflation.

31.8 Conclusion

In this chapter we have given a general descrip-
tion of inflationary universe models in the case of
modified Friedmann equations of the type F.H/�
.8�/=.3m2

Pl/�� within the scheme referred to as the ex-
act Hamilton–Jacobi approach.

First, we introduced different types of inflation-
ary universe models, which were classified in terms of
small, large, and hybrid types of models.

Then, we gave a description of the exact approach
to inflationary universe models. We introduced differ-
ent definitions and a study of attractor solutions. Some
examples were described under this approach.

We studied inflationary universe models in terms
of a single scalar field. We applied the exact solution
approach to the modified Friedmann equations. After
describing the main characteristics of the inflationary
model in general terms, we described some details of
two specific models. First, we studied a model charac-
terized by a modified Friedmann equation of the type
H2 �˛H4 D .3m2

Pl=8�/�
�

, where the kinematical evo-
lution was described for the case in which the Hubble
parameter evolves as H.�/DH0.1Cˇ�/. With this at
hand, we obtained the scalar potential, the correspond-
ing number of e-folds and the attractor feature of the

model. For some values of the parameters that entered
into the scenario, we were able to characterize inflation-
ary universe models.

Concerning scalar and tensor perturbations we cal-
culated the scalar and tensor power spectrum gener-
ated by the quantum fluctuations of the scalar and the
gravitational fields. We determined scalar and tensor
spectrum indices in terms of the so-called slow-roll pa-
rameters �H, �H, and �H. From these quantities we were
able to write down explicit expressions for the different
parameters. Moreover, the shape of the contours in the
r� ns plane resulted in being in agreement with those
given by WMAP 7. In fact, we found that the tensor-to-
scalar ratio can adequately accommodate the currently
available observational data for some values of the pa-
rameters.

In the case of the brane-world model, the functional
form for the Hubble parameter was considered

H.�/D

r
b

2

�
coth.ˇ�/

sinh.ˇ�/

�
;

where ˇ D .
p

2�C/=mPl is constant. With this expres-
sion we were able to determine all the kinematics and
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dynamics of the model. On the other hand, current as-
trophysical data put an upper bound on the constant C,
which becomes C2 < 0:079˙ 0:004.

An important point that we did not consider here
was the reheating period. In general terms, inflation is
a period of supercooled expansion such that, when in-
flation ends, the temperature of the universe needs to
go up to a value that coincides with that corresponding
to the temperature of the radiation epoch, which thus
matches the big bang model. This issue, as far as we
know, has not been studied under the exact approach.
Perhaps this study may give some insight on a deeper
understanding of the period of reheating.

On the other hand, and not least, we have considered
only one scalar field in our approach. It would be inter-
esting to develop this approach, i. e., the exact approach,
out of the slow-roll approximation, where two or more
fields enter into the inflationary picture. This would

be interesting for the mere fact that non-Gaussianity
is a point that deserves to be considered. By non-
Gaussianity we mean the non-Gaussian contributions
to the correlations of cosmological fluctuations that be-
came important probes of the early Universe. In partic-
ular, it will play an important role in our understanding
of fundamental aspects of cosmology, especially in un-
derstanding the physics of the very early Universe that
created the primordial seeds for large-scale structures
with the subsequent growth of structures via gravi-
tational instability. Actually, we should mention that
a large non-Gaussianity can be generated under the
mechanism of single field inflation, but it is necessary
to include a noncanonical kinetic term [31.115].

In the scheme of a single inflationary universe field
within the Hamilton–Jacobi approach, all these points
deserve to be considered in depth in further studies. We
hope to address these points in the near future.
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32. Cosmology with the
Cosmic Microwave Background

Tarun Souradeep

The standard model of cosmology must not only
explain the dynamics of the homogeneous back-
ground universe, but also satisfactorily describe
the perturbed universe – the generation, evo-
lution and finally, the formation of large-scale
structures in the universe. Cosmic microwave back-
ground (CMB) has been by far the most influential
cosmological observation driving advances in cur-
rent cosmology. Exquisite measurements from
CMB experiments have seen the emergence of
a concordant cosmological model. Besides pre-
cise determination of various parameters of the
standard cosmological model, observations have
also established some important basic tenets that
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underlie models of cosmology and structure for-
mation in the universe. The article reviews this
aspect of recent progress in cosmology for a gen-
eral science reader.

32.1 Contemporary View of our Cosmos

The universe is the grandest conceivable scale on which
the human mind can strive to understand nature. The
amazing aspect of cosmology, the branch of science
that attempts to understand the origin and evolution
of the universe, is that it is largely comprehensible
by applying the same basic laws of physics that we
use for other branches of physics. Historically, theo-
retical developments always preceded observations in
cosmology up until the past couple of decades. Recent
developments in cosmology have been largely driven by
huge improvement in quality, quantity, and the scope of
cosmological observations.

We will avoid giving a historical perspective. The
theoretical model of cosmology, the Hot Big Bang
model (HBBM), has broadly remained as it was estab-
lished and widely accepted by the late 1960s. This is
readily available in most standard textbooks, as well as,
many semipopular books. The perspective would be to
review the theoretical model of cosmology in the light
of the available data. The main goal is to convey the
excitement in cosmology where amazing observations
have now concretely verified that the present edifice

of the standard cosmological models is robust. A set
of foundation and pillars of cosmology have emerged
and are each supported by a number of distinct obser-
vations:

� Homogeneous, isotropic cosmology, expanding
from a hot initial phase due to gravitational dynam-
ics of the Friedmann equations derived from laws of
general relativity.

� The basics constituent of the universe are baryons,
photons, neutrinos, dark matter, and dark energy
(cosmological constant/vacuum energy).

� The homogeneous spatial sections of spacetime are
nearly geometrically flat (Euclidean space).

� Evolution of density perturbations under gravita-
tional instability has produced the large-scale struc-
ture in the distribution of matter starting from the
primordial perturbations in the early universe.

� The primordial perturbations have correlation on
length scales larger than the causal horizon that
makes a strong case for an epoch of inflation in
the very early universe. The nature of primor-
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dial perturbation matches that of the generation of
primordial perturbations in the simplest model of
inflation.

The cosmic microwave background (CMB),
a nearly uniform, thermal black-body distribution of
photons throughout space, at a temperature of 2:7 K,
accounts for almost the entire radiation energy density
in the universe. Tiny variation of temperature and linear
polarization of these black-body photons of the cosmic
microwave background arriving from different direc-
tions in the sky faithfully encodes information about
the early universe and have traveled unimpeded across
the observable universe, making them an excellent
probe of the universe.

There are two distinct aspects to modern day cos-
mology – the background universe and the perturbed
universe. The standard model of cosmology must not
only explain the dynamics of the homogeneous back-

ground universe, but also satisfactorily describe the
perturbed universe – the generation, evolution, and,
finally, the formation of large-scale structures in the
universe. It is fair to say that cosmology over the past
few decade has increasingly been more dominated by
the interplay between the theory and observations of
the perturbed universe – the origin and evolution of
large-scale structures in the matter distribution. The
past few years have seen the emergence of a concor-
dant cosmological model that is consistent both with
observational constraints from the background evolu-
tion of the universe as well that from the formation
of large-scale structures (LSS) in the universe. In par-
ticular, the much talked about dawn of precision era
of cosmology has been ushered in by the study of the
perturbed universe. Measurements of CMB anisotropy
and polarization have been by far the most influential
cosmological observation driving advances in current
cosmology in this direction.

32.2 The Smooth Background Universe

In recent years, vast cosmological surveys have pro-
vided a three-dimensional map of the distribution of
millions of galaxies extending to a billion light-years
around us. If theorists were to start building a model of
cosmology today, this would be the cosmos they would
need to explain. As shown in Fig. 32.1, there is a rich
organized structure in the distribution of galaxies in
a region of about 100 Mpc. However, this is a typical
(statistically speaking) sample of mass distribution. In
other words, the mass distribution in the universe av-
eraged over regions of a few hundred mega-parsecs is
fairly uniform. A stronger case for the homogeneous
cosmology actually comes from the high degree of uni-
formity in the temperature of the CMB. These provide
observational support for the cosmological principle
that postulates a homogeneous universe invoked by the-
orists in the 1920 to 1930s to develop the first physical
models of cosmology.

The evolution of the universe is an initial value
problem in general relativity that governs Einstein’s
theory of gravitation – the dynamical evolution in time
of the three-dimensional spatial sections in the folia-
tion of spacetime. The, now observationally confirmed,
large-scale homogeneity and isotropy of the matter dis-
tribution implies that the spatial sections of the universe
are homogeneous (i. e., 3-D spaces of constant curva-
ture). This reduces the problem to one of the simplest

applications of general relativity formulated as a dy-
namical system. The dynamics of the spatial sections
reduces to the time evolution of the scale factor a.t/ of
the spatial section. Averaged on large scales, the spa-
tial sections at any time t are simply a scaled version
of the present universe at time t0 – i. e., the physical
distance between two points in the universe at time
t is given by a.t/d, where d is the present distance.
It is convenient to define a.t0/D 1 with no loss of
generality. Observationally, the expansion of the uni-
verse causes a redshift zD .1� a/=a, of the spectrum
light from a (cosmologically) distant astrophysical ob-
ject (galaxy or quasar) emitted at a time t, when the
universe had a scale factor a. The observation that all
galaxies (on the average) appear to have a redshift in
the spectra proportional to their distance confirms the
expansion of the universe. The cosmic time t, the scale
factor a.t/, and the redshift z can be used interchange-
ably to label spatial hyper-surfaces of the evolving
universe.

The dynamics of the universe is encoded in the sim-
ple Friedmann equation

H2.t/�

�
Pa

a

�2

D
8�G

3
�c.˝mC˝rC˝�C˝K/ ;

(32.1)
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Fig. 32.1 The figure depicts the typical structure in the
three-dimensional distribution of galaxies in the uni-
verse using a 100 Mpc sized cube carved out from the
2def Galaxy Redshift Survey (2dFGRS). The locations of
galaxies are marked by a toy image colored according
to the galaxy type. The gray shading is a visual aid that
highlights the density contrast in the distribution by mark-
ing a region of approximately constant density (courtesy
Paul Bourke/Swinburne Centre for Astrophysics and Su-
percomputing and the 2dFGRS Team)

deduced from the Einstein equations. It relates the Hub-
ble parameter H.t/, that measures the expansion rate
of the universe, to the matter density in the universe.
Here we use the conventional dimensionless density
parameter ˝i D �i=�c in terms of the critical density
�c D 3H2=8�G at that time. The key components of the
universe are radiation˝r, pressure-less gravitating mat-
ter ˝m, and cosmological vacuum (dark) energy ˝�.
The departure of the total matter density parameter from
unity contributes to the curvature of the space and can,
hence, be represented by an effective curvature energy
density ˝K that determines the effect of curvature on
the expansion of the universe. (Note that ˝K is only
a convenient notation and not a physical energy density,
in particular, the curvature density is negative when the
spatial section of uniform positive curvature.) Dividing
out (32.1) by H2 on both sides leads to a simple sum
rule that summarizes the evolution of the universe

˝mC˝rC˝�C˝K D 1 : (32.2)

Since the expansion rate H.t/ evolves with time, ˝i

are time dependent. Further, the components (species)
of matter are assumed to be noninteracting (on cosmo-
logical scales), ideal, hydrodynamic fluids, specified by
their energy/mass density �i and the pressure pi (equiva-

lently, by the equation of state wi, where pi D wi�i). For
given species, the evolution of the density �i is governed
by the conservation equation of the energy–momentum
tensor. In a volume V0 in the current universe, the con-
servation equation implies

d.�ia
3V0/C pi.3a2/V0 D 0 ; or

dEC pdV D 0
(32.3)

where in arriving at the second equation we use the fact
that the physical volume V D V0a3. The second equa-
tion resembles the first law of thermodynamic for an
isentropic system with energy E and work done under
pressure p (recall, dEC pdV D T dS). It is straightfor-
ward to derive the scaling of the energy density �i with
the evolution of the universe as relative to its present
value �0i as

�i

�0i
D a�3.1Cwi/ : (32.4)

The equation of the state characterizes the ideal cos-
mological fluid, e.g., wD 1=3 for radiation (relativistic
matter); wD 0 for pressure-less (nonrelativistic matter),
curvature density can be expressed as an ideal fluid with
wD�1=3, and wD�1 for a cosmological constant (in
general, for the dark energy component w < �1=3).

The entire dynamics of the universe is then com-
pletely determined by the present matter composition.
Explicitly, (32.1) and (32.4) lead to the more commonly
seen version of the Friedmann equation

H2.t/�

�
Pa

a

�2

D
8�G

3
�0c



˝0ma�3C˝0ra

�4

C˝�C˝0Ka�2
�
:

(32.5)

Equation (32.5) shows that the energy in an expand-
ing universe is dominated successively by matter with
a smaller value of w – i. e., first a radiation domi-
nated phase ˝r, followed by matter-dominated ˝m,
then curvature-dominated ˝K and finally a cosmolog-
ical vacuum (dark) energy ˝�.

The relativistic mater density is almost entirely
dominated by the CMB and the relic background of
three species of light neutrinos (expected to have a den-
sity 68% of that of the CMB). The isentropic expansion
dictated by the Friedmann equations implies that al-
though, at present (given by the temperature of the
CMB), ˝0r is negligible, at an early epoch the uni-
verse was dominated by relativistic matter density. The
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Fig. 32.2 The cosmic triangle represents the three key cos-
mological parameters – ˝m, ˝�, and ˝k – where each
point in the triangle satisfies the sum rule ˝mC˝�C

˝k D 1. The blue horizontal line (marked Flat) corre-
sponds to a flat universe (˝mC˝� D 1), separating an
open universe from a closed one. The red line, nearly
along the�D 0 line, separates a universe that will expand
forever (approximately ˝� > 0) from one that will even-
tually recollapse (approximately˝� < 0). And the yellow,
nearly vertical line separates a universe with an expansion
rate that is currently decelerating from one that is acceler-
ating. The locations of three key models are highlighted:
(Flat) standard cold dark matter (SCDM); flat (�CDM –
Lambda-cold dark matter); and open cold dark matter
(OCDM) (after [32.1, 2])

pressure-less matter density ˝m D˝BC˝cdmC˝�
minimally consists of three distinct components, the
baryonic matter, cold dark matter, and a possibly minor
contribution from massive neutrino species. The con-
straint on the Baryon density ˝Bh2 D 0:022˙ 0:002
from the predicted abundances of light elements from
Big-Bang nucleosynthesis (BBN) is consistent with
that recently obtained from considerations of structure
formation.

The present state of the universe in terms the three
dominant components can be neatly summarized on
the cosmic triangle shown in Fig. 32.2 [32.2]. The
three axes address fundamental issues regarding back-
ground cosmology – Does space have positive, negative
or zero curvature (˝0K)? Is the expansion accelerating,
or decelerating (determined by ˝�)?, and, what is the
fraction of the nonrelativistic matter, (˝0m)?

Historically, the focus has shifted between differ-
ent sectors of the cosmic triangle depending on which
of the three is the dominant player ˝0m, ˝0K, or, ˝�.
The canonical standard cold dark matter (SCDM) is
a model where the present universe is a flat universe
(˝0K D 0) dominated by nonrelativistic matter density
˝0m D 1 ()˝� D 0). This is also theoretically the
simplest since it avoids the fine tuning problem of hav-
ing a curved universe by invoking inflation and was the
favorite in the 1980s. The nonrelativistic matter had to
be mostly nonbaryonic dark matter (i. e., matter than
does not interact with light), since Big-Bang nucleosyn-
thesis and the absence of CMB temperature fluctuations
at the power level of � 10�4 limit the baryonic frac-
tion to a much smaller value than that inferred for˝0m.
(Nonbaryonic dark matter component has to be nonrel-
ativistic to satisfy power spectrum measurements of the
LSS.)

At the end of the 1980s and early 1990s, observa-
tions of LSS made it clear that ˝0m was much smaller
than unity. The sum rule, (32.2), then implies that either
˝0K, or˝�, or both had to be non zero. The theoretical
discomfort with a nonzero˝� (that still persists today)
led to the era of open cold dark matter (OCDM) mod-
els, where˝0K > 0. The conflict˝0K ¤ 0 with a robust
prediction of inflation promptly development of open
models of inflationary scenarios that could avoid this
problem.

Toward the end of the 1990s, the observation of
a high-redshift supernova indicated an acceleration in
the present expansion universe. Very soon after, CMB
anisotropy observations revealed a flat universe (˝0K D

0). This leads to the currently favored �CDM model
in cosmology. The energy density of the cosmological
constant (or, more broadly quintessence) can be in-
ferred from the measurement of luminosity distance as
a function of redshift using the high-redshift supernova
SN Ia as standard candles. In this chapter, we limit our
attention to the simplest case of a cosmological constant
that has a constant equation of state wD�1, which is
also completely consistent with all observations to date.
Alternative propositions for the nature of the dark en-
ergy are discussed in the chapter by Tsujikawa in this
volume.

The key program of the Hubble space telescope
(HST) mission measured the expansion rate of the uni-
verse H0 D 72˙ 8 km s�1 Mpc�1 in 2001. Recently,
new Spitzer calibration, has allowed the systematic
uncertainty in H0 from the HST key project to be
decreased by over a factor of 3. Also optical and in-
frared observations of over 600 Cepheid variables in
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the host galaxies of eight recent Type Ia supernovae
(SNe Ia) determines H0 D 73:8˙ 2:4 km s�1 Mpc�1.
This is broadly consistent with the constraints from the
CMB anisotropy and large-scale structure observations
and combined constraints are remarkably tight. Cosmo-
logical observations have definitively determined the
present universe to be located in the �-CDM sector.
(The above improvement in H0, combined with Wilkin-
son microwave anisotropy probe (WMAP)-7yr data,

results in a strong constraint on the nature of dark
energy wD�1:08˙0:10, close to a cosmological con-
stant.) The expansion rate and age estimates of the
present universe measured from CMB data are again
consistent with, and considerably improved in precision
by including structure formation consideration.

One the most crucial observational pillars that sup-
port the HBBM of the background universe is the CMB
discussed in the next section.

32.3 The Cosmic Microwave Background

The CMB, a nearly uniform, thermal black-body
(Planck) distribution of photons throughout space, at
a temperature of 2:7 K, accounts for almost the entire
radiation energy density in the universe. The HBBM as-
cribes cosmic significance to this microwave radiation
background, and hence CMB measurements play a role
of great importance. In this widely accepted view, the
CMB comprises the oldest photons that last interacted
when the universe was only 380 000 yr old (compared to
the present age of about 14 billion years). The photons
have freely traveled right from the edge of the observ-
able universe a distance of about 43 billion light years
(14 Gpc) as explained in Fig. 32.3.

The prediction of the Planck distribution of the
CMB in the HBBM dates from the early nucleosynthe-
sis calculations of Gamow and collaborators in 1948.
Thermal equilibrium in the early universe establishes
a Planck energy distribution for the photons. In the
HBBM the universe expands adiabatically conserving
the photon entropy per comoving volume. (The ob-
served CMB accounts for almost all the entropy.) The
adiabatic Hubble expansion conserves the Planck dis-
tribution. However, the energy density of photons �r /

a�4 in an expanding universe (see (32.4) for radia-
tion wD 1=3). Recalling, that the energy density of
a black body is proportional to the fourth power of
the temperature, it is clear that the temperature of the
CMB photons Tcmb D T0cmb=aD T0cmb.1C z/ scales as
the inverse of the expansion of universe. At a redshift
of zrec � 1100, the temperature of CMB falls below
the threshold required to keep the hydrogen atoms
in the universe ionized. At this epoch of recombina-
tion at around tD 380 000 yr, the protons and electrons
form a neutral hydrogen atom and lose their coupling
to the CMB. (This happens a bit earlier for the he-
lium fraction). The baryonic matter in the universe
transits from an ionized plasma state to neutral one

where CMB photons can freely travel over cosmic
distances.

The serendipitous discovery of this extra galactic
microwave background Penzias and Wilson in 1965
provided a big boost to the HBBM. This was fol-
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Fig. 32.3 A cartoon explaining the CMB using a space-
(conformal) time diagram. The universe became transpar-
ent at the epoch of recombination, and CMB photons were
able to travel to us freely over cosmic distances along our
past light cone. In an expanding universe, the temperature
of the Planck black-body CMB is inversely proportional
to the expansion factor. When the universe is about 1100
times smaller, the CMB photons are hot enough to keep
the baryonic matter in the universe (about three quarters
hydrogen, one quarter helium as determined by Big-Bang
nucleosynthesis) ionized, accompanied by a sharp transi-
tion to an opaque universe. The CMB photons come to
us unimpeded directly from this spherical opaque surface
of last scattering at a distance of RH D 14 Gpc that sur-
rounds us – a super IMAX cosmic screen. The brown circle
depicts the sphere of last scattering in the reduced 2C 1-
dimensional representation of the universe
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Fig. 32.4 Measurements of the energy spectrum of the CMB pho-
tons as a function of frequency (from 60 to 600 GHz). The measure-
ments are from the FIRAS instrument on board the COBE satellite
that won the Nobel prize in Physics in 2006. The accuracy of the
measurements is apparent from the fact that the error bars have
been multiplied by a factor of thousand in the plot. The distribu-
tion is extremely well fit by a black-body spectrum at a temperature
of T0 D 2:726 (˙0:0013) making the CMB the most perfect black
body known in nature (courtesy of Tuhin Ghosh (IUCAA))

lowed up by numerous measurements of the CMB
flux at other wavelengths that were broadly consistent
with a Planck distribution of CMB photons. The Nobel
prize in Physics in 2006 was awarded to John Mather
(NASA Goddard Flight Center, USA) and George
Smoot (University of Berkeley, USA), who led exper-
imental teams of the pioneering Cosmic Background
Explorer (COBE) mission – a US space Administra-
tion, NASA, satellite launched in 1989 to measure
the cosmic microwave background radiation with un-
precedented accuracy over the full sky. The satellite

operated for 4 yr in a circumpolar orbit at an altitude
of 900 km. COBE carried three different instruments:
far-infrared absolute spectrophotometer (FIRAS), dif-
ferential microwave radiometer (DMR), and diffuse
infrared background experiment (DIRBE). John Mather
was the principle investigator (PI of the FIRAS exper-
iment that measured the energy distribution of CMB
photons to unprecedented accuracy. The FIRAS in-
strument measurements of the radiation flux in the
60�2880 GHz frequency band shown in Fig. 32.4 con-
firmed the Planck distribution of CMB photons beyond
reasonable doubt. The flux measurement at a given
wavelength can be converted into an equivalent thermo-
dynamic temperature T0 for the CMB. Recent results
derived from the FIRAS data combined with WMAP
in 2009 find that the energy spectrum of CMB photons
is accurately described by a Planck distribution at the
precise temperature

T0 D 2:726˙ 0:0013 K : (32.6)

Over the frequency band 60�630 GHz used to deduce
the above FIRAS result, the maximum 1-� deviation
of the CMB spectrum from a Planck is constrained
to be . 0:01% of the peak brightness. The observa-
tionally established Planck distribution of the energy
spectrum of the CMB is naturally explained as arising
from the thermal equilibrium the baryons and pho-
tons set up at very high temperatures and densities,
that is expected to exist in the early universe. The
present temperature T0, of the CMB sets the total en-
tropy of the universe (given the number of relativistic
neutrino species). The origin of this entropy is not ex-
plained within the classical Big Bang model (inflation
scenarios do provide an explanation but not a predic-
tion). Working backward in time, adiabatic expansion
implies a smaller and hotter universe expected in the
HBBM.

32.4 Perturbed Universe: Structure Formation

The standard model of cosmology must not only ex-
plain the dynamics of the homogeneous background
universe, but also describe the perturbed universe – the
generation, evolution, and the formation of large-scale
structures in the universe. There is a well understood
(if not rigorously defined) notion of a standard model
of cosmology that includes the formation of a large-
scale structure. It is fair to say that much of the recent
progress in cosmology has come from the interplay be-

tween refinements of the theories of structure formation
and the improvements in observations.

Although the simple homogeneous and isotropic
cosmological model does fit the dynamics of the back-
ground universe averaged on large scales, the rich struc-
ture in the distribution of galaxies shown in Fig. 32.1
suggests that there is more information to be gleaned
about the universe from the large-scale structure of
mass distribution (LSS). It has been a well-accepted



Cosmology with the Cosmic Microwave Background 32.5 CMB Anisotropy and Polarization 703
Part

E
|32.5

Gravitational instability
mechanism

Mildly perturbed universe
at z = 1100

CMB Map

Present universe at z = 0

Cosmological
parameters

Ωtot

ΩB

ΩDM

ΩΛ
H0 

Fig. 32.5 A schematic figure to illustrate how
understanding of the perturbed universe de-
termines the cosmological parameters. The
exquisitely measured CMB anisotropy maps
characterize the mildly perturbed universe at
early times. Large galaxy surveys and other LSS
probe give the final state of the LSS. The cosmo-
logical parameters that affect the known struc-
ture formation mechanism through gravitational
instability have to be dialed to precise values
to consistently produce the LSS in the present
universe from the mildly perturbed universe ob-
served in the CMB anisotropy

notion that the large-scale structure in the distribu-
tion of matter in the present universe arose gradually
due to gravitational instability from tiny primordial
perturbation in the early universe. Although explosive
mechanisms for structure formation in a relatively re-
cent epoch had been proposed, the limits of input into
the radiation budget in the recent past due to the tight
adherence of the CMB to the Planck form seen in the
COBE-FIRAS data make them nonviable. Also, the tiny
level of fluctuations in the temperature of the CMB im-
plies that the level of inhomogeneity in the universe at
a redshift of zrec D 1100 is at most few 10 ppm. A recent
exciting success of observational cosmology has been
in detecting the baryon acoustic oscillations that es-
tablish the gravitational instability mechanism beyond
reasonable doubt.

As schematically summarized in Fig. 32.5, cosmo-
logical observations have placed the theory of structure
formation in an enviable position for any branch of
physics where the initial and final states as well as the
dynamical mechanism are known:

� The exquisite maps of CMB anisotropy provide
a snap shot of perturbation in the universe at a red-
shift of zrec D 1100 when the universe is only about
380 000 yr old.

� In the past decade an extensive survey of galax-
ies has mapped out the distribution of matter in the
present 14 Gyr-old universe.

� As mentioned above, the well-understood gravi-
tationally instability is the underlying mechanism
for amplifying the tiny perturbations at a redshift
of zrec D 1100 to give rise to the observed LSS
now.

The recent era of precision cosmology arises from
the sensitivity of a consistent picture on the cos-
mological parameters. The parameters have to be
dialed to precise values to make a consistent de-
scription of the perturbed universe starting with the
mildly perturbed universe at zrec D 1100 seen in the
CMB to the present universe with a well-developed
LSS.

32.5 CMB Anisotropy and Polarization

The CMB photons arriving from different directions in
the sky show tiny variations in temperature, at a level of
ten parts per million, i. e., tens of micro-Kelvin, referred
to as the CMB anisotropy, and a net linear polarization
pattern at micro-Kelvin to tens of nano-Kelvin level.
The tiny variation of temperature and linear polarization
of these black-body photons of the cosmic microwave
background arriving from different directions in the sky
faithfully encodes information about the early universe
and have traveled unimpeded across the observable uni-

verse making them an excellent probe of the universe.
As illustrated in the cartoon in Fig. 32.3, the cosmic
microwave background radiation sky is essentially a gi-
ant, cosmic super IMAX theater screen surrounding
us at a distance of 43 billion light-years displaying
a snapshot of the universe at a time very close to its
origin.

The CMB anisotropy is imprints of the perturbed
universe in the radiation when the universe was only
380 000 yr old. On the large angular scales, the CMB
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Fig.32.6a,b The exquisite temperature anisotropy data that are
currently available are shown. (a) Color-coded full sky map (in
Mollewide projection) of the CMB temperature variations seen in
WMAP data. The temperature variations range between ˙200+K
with a r.m.s. of about 70+K. The angular resolution of features
of the map is about a quarter of a degree. (The map was obtained
using a model free approach to foreground removal on WMAP
developed by the author’s group.) (b) Most recent angular power
spectrum of CMB obtained from the entire WMAP 9 yr (black),
the ground-based South Pole Telescope (blue), and Atacama Cos-
mology Telescope (orange) data. The solid gray curve shows that
the best-fit power law, flat, �CDM model obtained from WMAP-9
threads all the data points closely (WMAP-9 publication publicly
available at the NASA-GSFC LAMBDA site http://www.lambda.
gsfc.nasa.gov)

anisotropy directly probes the primordial power spec-
trum on scales enormously larger than the causal
horizon. On smaller angular scales, the CMB tem-
perature fluctuations probe the physics of the coupled
baryon–photon fluid through the imprint of the acous-

tic oscillations in the ionized plasma sourced by the
same primordial fluctuations. The physics of CMB
anisotropy is well understood, and the predictions of
the linear primary anisotropy and their connection to
observables are, by and large, unambiguous [32.3–5].

It is convenient to express the sky map of the CMB
temperature anisotropy in the direction On as a spherical
harmonic expansion

�T. On/D
1X
`D2

X̀
mD�`

a`mY`m. On/ :

Theory predicts that the primary CMB anisotropy is
a Gaussian field (of zero mean), and current observa-
tions remain fully consistent with this expectation. The
anisotropy can then be characterized solely in terms an
angular spectrum

C` D
1

.2`C 1/

X̀
mD�`

ja`mj
2 :

The C` spectra for a wide variety of models share
a generic set of features clearly related to basics physics
of primary CMB anisotropy.

The acoustic peaks occur because the cosmological
perturbations excite acoustic waves in the relativistic
plasma of the early universe. The recombination of
baryons at redshift z� 1100 effectively decouples the
baryon and photons in the plasma abruptly switch-
ing off the wave propagation. In the time between the
excitation of the perturbations and the epoch of re-
combination, a sound wave could have traveled a fixed
distance. Modes of different wavelengths can complete
different numbers of oscillation periods. This translates
the characteristic time into a characteristic length scale
and produces a harmonic series of maxima and minima
in the CMB anisotropy power spectrum. The acoustic
oscillations have a characteristic scale known as the
sound horizon, which is the comoving distance that
a sound wave could have traveled up to the epoch of
recombination. This is a well-determined physical scale
imprinted on the CMB fluctuations on the surface of last
scattering – the cosmic super-IMAX screen.

The angle subtended by this physical scale in the
CMB anisotropy sky at the distance of 14 Gpc allows
a sensitive determination of the geometry (˝0K) of
the background universe. This is determined by the
location of the harmonic peaks series of C` seen in
Fig. 32.6. The amplitude of baryon–photon oscillations

http://www.lambda.gsfc.nasa.gov
http://www.lambda.gsfc.nasa.gov
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consequently, the height of the peaks in the C` sen-
sitively determine the baryon density ˝B. The C` are
sensitive to other important cosmological parameters,
such as, the relative density of matter ˝m; cosmolog-
ical constant ˝�; Hubble constant H0, and deviation
from flatness (curvature) ˝K. Implicit in C` is the
hypothesized nature of random primordial/initial met-
ric perturbations – (Gaussian) statistics , (nearly scale
invariant) power spectrum, (largely) adiabatic versus
isocurvature, and (largely) scalar versus tensor compo-
nent. The default settings in bracket are motivated by
inflation.

The transition to precision cosmology has been
spearheaded by the measurements of CMB anisotropy
and, more recently, polarization. The COBE-DMR
detection of CMB anisotropy provided observational
evidence for the origin and mechanism of structure
formation in the universe. The following decade has
been dominated by high-resolution, full sky, CMB
anisotropy measurements from the WMAP of NASA
that has provided observational support for the basic
acoustic physics of the baryon–photon plasma.

The measured angular power spectrum of the CMB
temperature fluctuations C`, shown in Fig. 32.6 has
become invaluable observables for constraining cos-
mological models. The position and amplitude of the
peaks and dips of the C` are sensitive to important
cosmological parameters. The most robust constraint
obtained is that on the spatial curvature of the universe
and baryon density. Combining most recent CMB ob-
servations from WMAP9, South Pole Telescope (SPT)
and Atacama Cosmology Telescope (ACT) can estab-
lish that the space on cosmic scales is geometrically flat
(˝K D 0:001˙ 0:012) to nearly within 1% precision.
From WMAP9 alone, the dominant energy content in
the present universe is a mysterious matter with neg-
ative pressure dubbed, dark energy, or a cosmological
constant of about 72% (˝� D 0:721˙0:025), followed
by cold nonbaryonic dark matter about 23% (˝m D

0:233˙ 0:023) and ordinary matter (baryons) account
for only about 5% (˝B D 0:0463˙0:00234) of the mat-
ter budget. Observations of the large-scale structure in
the distribution of galaxies, high-redshift supernova,
and more recently, CMB polarization, have provided
valuable complementary information.

In addition to the temperature anisotropy, there is
also linear polarization information imprinted on the
CMB at the last scattering surface. Thomson scattering

generates CMB polarization anisotropy at decoupling.
The coordinate-free description distinguishes two kinds
of polarization patterns on the sky by their different par-
ities. In the spinor approach, the even parity pattern is
called the E-mode and the odd parity pattern the B-
mode. While the CMB temperature anisotropy can also
be generated during the propagation of the radiation
from the last scattering surface, the CMB polarization
signal can be generated only at the last scattering sur-
face, where the optical depth transits from large to small
values. The polarization information complements the
CMB temperature anisotropy by isolating the effect at
the last scattering surface from effects along the line
of sight. Since the CMB polarization is sourced by
the anisotropy of the CMB at the surface of last scat-
tering, the angular power spectra of temperature and
polarization are strongly linked to each other. For adi-
abatic initial perturbations, the acoustic peaks in the
polarization spectra are out of phase with that of the
temperature.

The Degree Angular Scale Interferometer (DASI)
first measured the CMB polarization spectrum over
a limited band of angular scales (multipole band l�
200�440) in late 2002. Since then, the polarization
power spectrum measurements have been further re-
fined by a number of CMB experiments, notably, MAX-
IMA CBI, QUaD, BICEP (background imaging of
cosmic extragalactic polarization), etc. The main results
indicated by the E-mode polarization measurements is
that the acoustic peaks in the polarization spectra are
indeed out of phase with that of the temperature. The
strong limit on the nonadiabatic contribution to the pri-
mordial perturbations constrains the physics of the early
universe.

The CMB polarization is a very clean and direct
probe of the energy scale of early universe physics
that generate the primordial metric perturbations. In
the standard model, inflation generates both (scalar)
density perturbations and (tensor) gravity wave per-
turbations. The relative amplitude of inflationary GW
to scalar density perturbations sets the energy scale
for inflation. A measurement of B-mode polarization
on large-angular scales would give this amplitude, and
hence a direct determination of the energy scale of infla-
tion. Besides being a generic prediction of inflation, the
cosmological gravity wave background from inflation
would be a fundamental test of GR on cosmic scales
and the semiclassical behavior of gravity.
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32.6 Conclusion
The remarkable transition to precision cosmology has
been spearheaded by the nearly two decade long ex-
perimental successes of CMB measurements. The first
results from the COBE team (awarded the Nobel prize
in Physics in 2006) provided only a coarse image of in-
fant universe. The data from the Wilkinson Microwave
Anisotropy Probe (WMAP) refined the image of the in-
fant universe considerably in the following decade. It is
the precision of these measurements of the CMB fluc-
tuations cosmology that has translated to present day
precision cosmology.

The past decade has seen the emergence of a con-
cordant cosmological model that is consistent, both,
with observational constraints from the background
evolution of the universe, and that from the forma-
tion of a large-scale structure in the distribution of
matter in the universe. Besides precise determination
of various parameters of the standard cosmological
model, CMB and related observations have also es-
tablished some important basic tenets of cosmology
and structure formation in the universe – acausally
correlated initial perturbations, adiabatic nature primor-
dial density perturbations, gravitational instability as
the mechanism for structure formation. We have in-
ferred a spatially flat universe where structures form
by the gravitational evolution of nearly scale invari-
ant, adiabatic perturbations, as expected from infla-
tion.

The signature of primordial perturbations observed
as the CMB anisotropy and polarization is the most
compelling evidence for new, possibly fundamental,

physics in the early universe that underlie the scenario
of inflation (or related alternatives). Some fundamen-
tal assumptions rooted in the paradigm of inflation are
still to be observationally established beyond doubt. Be-
sides, there are deeper issues and exotic possibilities
that no longer remain theoretical speculations, but have
now come well within the grasp of cosmological ob-
servations (Chap. 39). These include cosmic topology,
extra-dimensions, and violations of basic symmetries
such as Lorentz transformations. In order to detect the
subtle signatures it is also important to identify and
weed out systematic effects such as the noncircularity
of the beam in the acquisition and analysis of the CMB
data.

The progress in the field continues unabated, refin-
ing the cosmological parameters into increasingly more
precise numbers. Numerous ongoing and near future
ground and balloon born CMB experiments at high sen-
sitivity and resolution have sustained a steady pace of
progress. The Planck Surveyor mission of ESA (Eu-
ropean Space Agency) launched in May 2009 has ac-
quired considerably more refined CMB measurements
compared to WMAP. In the near future, exquisite re-
sults from the Planck satellite are expected. Planck is
arguably the most ambitious cosmological space mis-
sion till date. It aims to measure CMB fluctuations at
higher sensitivity and angular resolution to eke out al-
most all the information expected to be available in the
CMB sky. Further in the future, dedicated CMB polar-
ization space missions are being studied by both NASA
and ESA [32.6].
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33.1 Why Quantum Gravity?

33.1.1 Introduction

At the fundamental level of physical theories, we cur-
rently distinguish between four different interactions:
strong, weak, electromagnetic, and gravitational inter-
action. In the standard model of particle physics, weak
and electromagnetic interactions are partially unified
in electroweak interaction, but otherwise they have so
far been treated distinctly. The main difference lies
between gravity and the other interactions. Whereas
strong and electroweak interactions are successfully
described by quantum field theories, all known grav-
itational phenomena can be understood by a classical
theory: Einstein’s theory of general relativity (GR).
They range from applications in everyday life (such as
the positioning system GPS) and the Solar System to
stars, galaxies, and the Universe as a whole. The ques-
tion is whether this is the final state of affairs or whether
gravity must also be accommodated at the most funda-
mental level into the framework of quantum theory.

In this chapter, we first discuss the main argu-
ments that can be invoked in favor of a quantum theory
of gravity. We then present the main approaches and
briefly discuss some of their applications. In order not to
overload this article with too many references, we refer
mainly to monographs and reviews, in which all refer-
ences to the original articles can be found; this holds, in
particular, for the monograph [33.1]. Some references

to recently published original articles are, however, in-
cluded.

Let us first look at Einstein’s theory of GR. Gravity
is there described by the geometry of space and time,
unified to a four-dimensional manifold of spacetime.
The theory can be defined by the Einstein–Hilbert ac-
tion,

SEH D
c4

16�G

Z
M

d4x
p
�g .R� 2�/

�
c4

8�G

Z
@M

d3x
p

hK : (33.1)

The first term is an integral over a spacetime region M,
while the second term is an integral over its space-
like boundary @M; in it, K is the trace of the second
fundamental form, and h is the determinant of the three-
dimensional metric at the boundary. The need for this
second term to obtain a consistent variational principle
was already emphasized by Einstein in 1916.

In the presence of nongravitational fields, (33.1) is
augmented by a matter action Sm. From the sum of
these actions, one finds Einstein’s field equations by
variation,

G�� WD R�� �
1

2
g��RD

8�G

c4
T�� ��g�� :

(33.2)
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The right-hand side contains the symmetric (Belinfante)
energy–momentum tensor

T�� D
2
p
�g

ıSm

ıg��
; (33.3)

plus the cosmological constant term, which may itself
be accommodated into the energy–momentum tensor
of the vacuum. If fermionic fields are added, one must
generalize GR to the Einstein–Cartan theory or to the
Poincaré gauge theory, because spin is the source of tor-
sion, a geometric quantity that is identically zero in GR.

In his 1936 article on physics and reality, Einstein
compared the left-hand side of (33.2) with fine marble
and the right-hand side with rough timber. The reason is
that he regarded the geometric part as already perfect,
but the matter part with its many (not unified) contri-
butions as a preliminary description. The attempts by
Kaluza and later scientists to describe everything by go-
ing to a higher-dimensional spacetime can be seen as an
attempt to overcome this dichotomy, which still persists
today.

It is interesting to note that in particular the timber
part is responsible for the incompleteness of GR. Nat-
ural conditions for the energy–momentum tensor lead
to the singularity theorems according to which, for ex-
ample, time-like geodesics reach their end in a finite
proper time [33.2]. Important examples are the interior
of black holes and the beginning (and possibly end) of
the Universe.

The singularity theorems provide the first motiva-
tion for going beyond GR and constructing an encom-
passing, more fundamental, theory. We cannot under-
stand the origin of the Universe and the final fate of
black holes within GR. It is, of course, not logically
required that the more fundamental theory must be
a quantum theory. It is only by historic analogy (the
avoidance of atomic instability in quantum mechanics)
that this hope has arisen.

The second motivation for quantum gravity is
a philosophical (and partly, historical) one. The reduc-
tionist program has proven to be very successful: hith-
erto unconnected theories such as optics, magnetism,
and electricity have turned out to be different aspects
of one and the same theory, electrodynamics. The stan-
dard model with its partial unification provides another
example. Since gravity couples universally to all forms
of energy, it couples to all quantum fields, which is
why one expects that in a unified description of Na-
ture the gravitational field is of quantum nature, too.
Some scientists have expressed the hope that a quan-

tum theory of gravity will not only cure the singularities
of classical GR, but also the notorious divergences of
quantum field theory. This may not come as a sur-
prise, since both type of singularities are connected
with the microstructure of spacetime, in particular to
the open question whether it is fundamentally discrete
or continuous.

Two further motivations are both of a conceptual
nature. One is often called the problem of time. The
point is that time is of very different nature in quan-
tum (field) theory and in GR. In quantum mechanics,
the t in the Schrödinger equation is Newton’s abso-
lute time; in quantum field theory, the fields act on
Minkowski spacetime, which plays the role of a non-
dynamical background. In GR, there are no absolute
structures; spacetime is fully dynamical. This is also
called background independence. There is thus a clash
of concepts. As long as the two frameworks are ap-
plied to different phenomena at different scales, this
does not matter too much. If, however, one desires to
understand phenomena where the interaction of grav-
ity with quantum fields becomes dynamically relevant,
one needs a conceptually coherent framework. One thus
expects that a theory of quantum gravity will entail far-
reaching consequences for the concept of time.

The other motivation was expressed, in particular,
by Feynman during the famous Chapel Hill Confer-
ence in 1957. A quantum superposition, such as the
superposition of two spin states for an electron in
a Stern–Gerlach experiment will also lead to a su-
perposition of gravitational fields; the components of
the superposition correspond to different gravitational
fields, which (at least in a gedanken experiment) can be
transferred to different gravitational fields of a macro-
scopic object. As long as the superposition principle is
valid also in these circumstances (which is not obvi-
ous but is a conservative assumption), one must invoke
a quantum theory of gravity to describe this situation of
superposed states of the gravitational field.

A final motivation comes from particle physics
[33.3]. It seems that the standard model does not exist
as a consistent quantum field theory up to arbitrar-
ily high energies. The reasons for this failure may be
a potential instability of the effective potential and/or
potential Landau poles, although with the recently mea-
sured Higgs mass of about 126 GeV it is conceivable
that the standard model holds up to the Planck scale
(see below), where effects of quantum gravity are ex-
pected to come into play anyway. The standard model
thus points to a more fundamental theory, which could
be quantum gravity.
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A main problem in the search for a quantum theory
of gravity is the lack of empirical tests so far. Concep-
tually, effects of such a theory can occur at any scale,
as long as the validity of the superposition principle is
not restricted. The scale where one would definitely ex-
pect to see effects of quantum gravity is, however, far
remote from the scales that are directly accessible by to-
day’s technology. It is the Planck scale. It was noted by
Planck already in 1899 (1 year before his official intro-
duction of the quantum of action!) that the fundamental
constants of the speed of light (c), gravitational constant
(G), and quantum of action (today called „) can be com-
bined in a unique way (apart from numerical factors) to
give units of length, time, and mass. They are called the
Planck length, lP, Planck time, tP, and Planck mass, mP,
respectively, and are given by the expressions

lP WD

r
„G

c3
� 1:62� 10�33 cm ; (33.4)

tP WD
lP
c
D

r
„G

c5
� 5:39�10�44 s ; (33.5)

mP WD
„

lPc
D

r
„c

G
� 2:18�10�5 g

�
1:22�1019 GeV

c2
:

(33.6)

It must be emphasized that units of length, time, and
mass cannot be formed out of G and c (GR) or out of „
and c (quantum theory) alone. Similar units (with the
use of the fine structure constant instead of „) had been
proposed before Planck by Stoney in 1881. In addition
to the above Planck units, one can also define a Planck
charge as follows,

QP WD
p

mPlP
lP
tP
D
p

GmP D
p
„c ; (33.7)

which is independent of G. One can see that the elemen-
tary electric charge is eD

p
˛QP � 0:085QP, with ˛ as

the fine structure constant. For two particles with elec-
tric charge QP and mass mP, the Coulombian repulsion
exactly compensates the Newtonian attraction.

For the study of structures in the Universe, the
Planck scale is usually irrelevant. The reason is that
scales of astrophysical relevance are typically con-
nected with the fine structure constant of gravity defined
by

˛g WD
Gm2

pr

„c
D

�
mpr

mP

�2

� 5:91�10�39 ; (33.8)

where mpr denotes the proton mass. For example, the
Chandrasekhar mass MC (which gives the mass scale
for main sequence stars) is approximately given by
MC � ˛

�3=2
g mpr � 1:8 M

ˇ

, which is much bigger than
the Planck mass.

As far as Planck scale effects in accelerators are
concerned, one would have to increase the large hadron
collider (LHC) up to the size of the Milky Way, in order
to create particles with masses given by (33.6). Tests of
quantum gravity must thus come in a different way.

In the rest of this section, we discuss briefly the lim-
its where gravity is treated as an external field, in which
the quantum objects act dynamically. Section 33.2 is
then devoted to the main approaches of a full quantum
theory of gravity. Recent general introductions and re-
views include, besides [33.1], [33.3–8].

33.1.2 Quantum Mechanics
in an External Gravitational Field

The first encounter of quantum theory with gravity is
quantum mechanics with an external Newtonian grav-
itational field. In the classic experiment performed in
1975 by Colella, Overhauser, and Werner (the COW
experiment), a neutron was brought into a superposi-
tion in which the components run at different heights in
the gravitational field of the Earth (Fig. 33.1). The two
components experience a different phase shift causing
a characteristic interference pattern when recombined
in a detector.

In the experiment, the change in the interference
pattern with respect to the angle  is measured. The
gravitational phase shift is calculated to read

�ˇg �
mimgg	A sin 

2�„2
; (33.9)

where A is the area of the parallelogram ABCD, g is the
gravitational acceleration, and 	 the de Broglie wave-

Detectors

DC

BA

θ

g

Fig. 33.1 Schematic description of the COW experiment
for neutron interferometry in the gravitational field of the
Earth (after [33.1])
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length of the neutron. This expression was confirmed in
the experiment with 1% accuracy.

It is interesting to see that the result for the phase
shift depends on the product of inertial mass mi and
gravitational mass mg. This is different from classical
physics, where both quantities appear as a ratio. Never-
theless, the validity of the weak equivalence principle
(mi Dmg) was confirmed with an accuracy of 10�7.
Another important application of neutron interferom-
etry is the observation of neutron eigenstates in the
Newtonian potential (as approximated by a linear po-
tential).

The result (33.9) can be obtained from the
Schrödinger equation with a Newtonian potential.
A more fundamental description employs the Dirac
equation in order to take into account the spin of the
neutron. By a Foldy–Wouthuysen transformation one
can obtain a nonrelativistic approximation in the form
(with ˇ being equivalent to the Dirac gamma ma-
trix �0),

i„
@ 

@t
D HFW ; (33.10)

where

HFW D ˇmc2C
ˇ

2m
p2 �

ˇ

8m3c2
p4Cˇm.gx/

�!.LCS/C
ˇ

2m
p

gx
c2

pC
ˇ„

4mc2
˙ .g� p/

CO
�

1

c3

�
:

(33.11)

Here, ˙ is three spin matrices which in a convenient
representation read ˙ D diag.� ; � /, where � are the
Pauli matrices. The fourth term in the Hamiltonian HFW

is the one that leads to (33.9). The next term describes
the coupling of the neutron’s angular momentum and
spin to the angular velocity of the Earth. The first of
these couplings (leading to the Sagnac effect) has been
clearly seen in the COW experiment.

If derived in this way, the weak equivalence prin-
ciple is already implemented, because there is only one
mass m in the Dirac equation. A fundamental derivation
should start from quantum field theory, from which the
Dirac equation follows in the one-particle limit only.

So far, the limit of Newtonian gravity is fully suffi-
cient in order to describe existing experiments. A recent
suggestion to include the gravitational time dilation of
GR was made in [33.9]. The proper time for the up-
per path in Fig. 33.1 is larger than the proper time for

the lower path. If the difference is sufficiently large, it
may lead to a suppression of the interference pattern be-
cause which-way information is then available. If seen
experimentally, this would probe the geometric nature
of spacetime in a quantum setting.

33.1.3 Quantum Field Theory
in an External Gravitational Field

The next level in the relation between quantum the-
ory and gravity is quantum field theory in an external
gravitational field. Here, no observations are available
so far, although definite predictions exist. The most fa-
mous one is Hawking radiation. As Hawking found out
in 1974, black holes are not really black when quantum
theory is taken into account. They behave like a ther-
modynamical system and emit thermal radiation with
a temperature proportional to „. Explicitly, the Hawk-
ing temperature reads

TBH D
„�

2�kBc
; (33.12)

where � is the surface gravity of a stationary black
hole, which by the no-hair theorem is uniquely char-
acterized by its mass M, its angular momentum J, and
(if present) its electric charge q. In the particular case
of the spherically symmetric Schwarzschild black hole,
one has � D c4=4GM D GM=R2

S, were RS D 2GM=c2 is
the Schwarzschild radius, and therefore,

TBH D
„c3

8�kBGM
� 6:17�10�8

�
M
ˇ

M

�
K :

(33.13)

One recognizes that the black hole becomes hotter by
emission ofradiation. This is because the mass is in the
denominator, and the mass decreases when the emis-
sion takes place. This behavior is in contrast to the
behavior of ordinary thermodynamical systems. It is,
in fact, typical for gravitational systems [33.10]. The
emission leads to a finite lifetime for the evaporating
black hole. To understand the final phase of the evap-
oration, one must go beyond Hawking’s approximation
and apply a full theory of quantum gravity. Observa-
tional tests can only come from primordial black holes
or, in the case that particular theories with higher di-
mensions hold, from black holes produced in colliders.
Primordial black holes can be identified through their
characteristic emission of � -radiation; so far, nothing
has been seen.
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Since black holes behave thermodynamically, they
also possess an entropy. It is given by the expression

SBH D
kBA

4l2P
; (33.14)

where A is the surface of the event horizon. It is called
the Bekenstein–Hawking entropy. For the special case
of Schwarzschild black hole, it reads

SBH D
kB�R2

S

G„
� 1:07�1077kB

�
M

M
ˇ

�2

: (33.15)

A major question in any theory of quantum gravity is
the microscopic derivation of the area law for the en-
tropy by counting appropriate quantum states.

There exists an analogous effect to (33.12) in flat
spacetime. The concepts of vacuum and particles are
usually introduced with respect to inertial observers.
These notions are no longer unique if accelerated mo-
tion is considered. As Unruh found out in 1976, an
observer that moves through the Minkowski vacuum
with a uniform linear acceleration experiences this vac-
uum as filled with thermally distributed particles. The
temperature is given by the Davies–Unruh temperature

TDU D
„a

2�kBc
� 4:05�10�23 a

hcm

s2

i
K : (33.16)

Although this seems to be unobservationally small,
accelerations in particle detectors can, in principle, be-
come high enough to observe this effect. The point is
that the acceleration should occur in linear motion in or-
der to see (33.16). Experiments with high-power lasers
are in preparation.

The Hawking effect occurs at the level of quan-
tum field theory on an external curved spacetime. Here,
the matter part of the Einstein equations (33.2) con-
sists of quantum fields. Yet, how can this be properly
described? One cannot formulate an equation with op-
erators in Hilbert space on the right-hand side and
classical fields on the left-hand side. An ad hoc mod-
ification of (33.2) in order to cope with this situation is
the semiclassical Einstein equation. In it, the energy–
momentum tensor is replaced by the expectation value
of the energy–momentum operator with respect to the
quantum state in question,

R�� �
1

2
g��RC�g�� D

8�G

c4
h� j OT�� j�i :

(33.17)

The range of validity of this equation should be un-
derstood from a full quantum theory of gravity. In the
following, we shall briefly discuss the main current ap-
proaches for such a theory.

33.2 Main Approaches to Quantum Gravity

One can roughly distinguish between two classes of ap-
proaches. In the first, one starts from a given classical
theory of gravity (usually, but not exclusively, GR) and
then employs heuristic quantization rules to find a quan-
tum theory of the gravitational field. This procedure
does not yet by itself entail a unification of interactions.
In the second, one first attempts to construct a unified
quantum theory of all interactions and then tries to re-
cover quantum gravity in the limit where the various
interactions become distinguishable.

As for the first class, we shall in the following
consider only the quantization of GR and distinguish
between covariant and canonical approaches. In the
covariant approaches, the four-dimensional covariance
plays a guiding role in the formalism. This is most
clearly seen by using path integrals and DeWitt’s back-
ground field method. In the canonical approaches, one
develops a Hamiltonian formalism at the classical level

and then performs the quantization by imposing com-
mutator relations for the canonical variables.

As for the second class, the main representative is
string theory. It is supposed to be a quantum theory
(beyond quantum field theory) of all interactions, often
called theory of everything. There are other approaches
that start from fundamental discrete structures and at-
tempt to construct a unified quantum theory from them,
cf. [33.7]. Among them are the theory of causal sets
and group field theory. In the following, we set cD 1 in
most expressions.

33.2.1 Covariant Quantum Gravity

The oldest covariant approach is perturbation theory
around a given background, which is usually taken flat.
Let us, therefore, first have a brief look at the treat-
ment of weak gravitational waves in GR. We take for
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the background the flat Minkowski spacetime with the
standard metric ��� D diag.�1; 1; 1; 1/ and call the
perturbation f�� . We then write

g�� D ��� C f�� : (33.18)

Instead of f�� , it is often useful to use the following
combination,

Nf�� WD f�� �
1

2
��� f �� : (33.19)

The linearized Einstein equations then assume the sim-
ple form

�Nf�� D�16�GT�� ; (33.20)

if the harmonic gauge condition @� Nf �� D 0 is used.
Quantization is performed by turning the perturba-

tion f�� into an operator. If the above weak gravita-
tional waves are quantized, one arrives at linearized
quantum gravity, which was first discussed in this way
by Bronstein in 1936 and elaborated on by Gupta in
1952. At the linearized level, there is a close analogy
with electrodynamics. While the mediator of the free
electromagnetic field is the photon, a massless particle
of spin one, the mediator of the linearized gravitational
field is the graviton, a massless particle of spin two.
Empirically, the mass of the graviton is currently lim-
ited by 10�29 eV.

Formally, one starts from a superposition of plane
waves,

f��.x/D
X
	D˙2

Z
d3kp
2jkj

�
h
a.k; �/e��.k; �/eikx

Ca�.k; �/e���.k; �/e
�ikx

i
; (33.21)

and turns the amplitudes into operators satisfying

Œa.k; �/; a�.k0; � 0/�D ı		 0ı.k�k0/ ; (33.22)

with all other commutators vanishing.
Already at this level, effects of quantum gravity can

be discussed. One can, for example, calculate the tran-
sition rate from the 3-D level to the 1s level in the
hydrogen atom due to the emission of a graviton. One
obtains

�g D
Gm3

ec˛6

360„2
� 5:7�10�40 s�1 ; (33.23)

which corresponds to a lifetime of


g � 5:6�1031 yr : (33.24)

This seems too long to be observable, although it is
of the same order as the value for the proton lifetime
predicted by some unified theories, which has been ex-
cluded experimentally.

Another observable effect of linear quantum grav-
ity may, in fact, lie around the corner. According to
the inflationary scenario of cosmology, gravitons were
produced in the early Universe. These gravitons would
exhibit themselves as a tensor contribution to the CMB
anisotropy spectrum. A detection of this contribution
has been announced by the BICEP2 experiment in
March 2014 [33.11].

In going beyond the linear level, the most straight-
forward way is to employ a path integral quantization
[33.12]. The quantum gravitational path integral was
first formulated by Misner in 1957 and formally reads

ZŒg�D
Z
Dg��.x/e

iSŒg��.x/
 ; (33.25)

where the sum runs over all metrics on a four-
dimensional manifold M quotiented by the diffeomor-
phism group DiffM. In addition, one would like to
perform a sum over all topologies, but this is not pos-
sible in full generality, since four-manifolds are not
classifiable. Considerable care must be taken in the
treatment of the integration measure. This includes the
application of the Faddeev–Popov procedure [33.1].

In order to use the path integral for the derivation of
Feynman rules, one generalizes the ansatz (33.18) to

g�� D Ng�� C
p

32�Gf�� ; (33.26)

where Ng�� denotes the background field with respect
to which (four-dimensional) covariance will be imple-
mented in the formalism, and f�� denotes the quantized
field, which has here the dimension of a mass, and
which is here taken to all orders. The covariance with
respect to the background metric means that no partic-
ular background is distinguished; that is, background
independence is implemented into the formalism (this
method is also referred to as DeWitt’s background field
method, a somewhat misleading terminology).

In contrast to linear quantum gravity, the formal-
ism now allows for graviton interactions. As is usual
in quantum field theory, divergences occur. A major
problem arises in the treatment of these divergences. In
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contrast to quantum electrodynamics (QED) and Yang–
Mills theories, perturbative quantum gravity turns out
to be nonrenormalizable. This means that at each or-
der of the perturbation theory new types of divergences
emerge, which must be absorbed by new parameters
to be introduced into the action. This leaves one with
infinitely many parameters (each of which must be
determined experimentally), rendering, it seems, the
theory meaningless. The formal reason is that the ex-
pansion parameter – the gravitational constant appear-
ing in (33.26) – possesses a negative mass dimension.

For pure gravity, the divergences are absent on-shell
at the one-loop level. They occur, however, from the
two-loop order on. Using dimensional regularization,
the divergent part in the two-loop Lagrangian reads

L.div/
2�loop D

209„2

2880

32�G

.16�2/2�

p
�Ng NR˛ˇ

ı
NRı�� NR

��

˛ˇ
;

(33.27)

where � D 4�D, with D being the number of spacetime
dimensions.

Does this nonrenormalizability really render the
perturbative approach meaningless? Not necessarily.
In the limit of low energies, the arbitrariness coming
from the infinitely many renormalization parameters
disappears, and definite results can be calculated in
the ensuing effective theory. One example discussed
by Bjerrum-Bohr et al. [33.13] in 2003 is the quantum
gravitational correction to the Newtonian potential be-
tween two masses m1 and m2, for which they find

V.r/D�
Gm1m2

r

�

�
1C 3

G.m1Cm2/

rc2
C

41

10�

G„

r2c3

CO.G2/

�
:

(33.28)

(The first correction term, which does not contain „, is
a well-known correction from classical GR.) The quan-
tum gravitational correction term is too small to be
seen in laboratory experiments; the notable point is that
a definite term can be calculated.

A modification of GR that leads to a perturbative
theory of quantum gravity that is renormalizable (and
also unitary) is Hořava–Lifshitz gravity [33.14]. This
comes, however, at the price of violating Lorentz in-
variance (and thus the equivalence principle) at high
energies. Its status is thus open.

Using path integral formalism, one can derive the
semiclassical Einstein equations (33.17) at the one-loop
level. One finds (neglecting, here, the cosmological
constant) [33.1]

R�� �
1

2
g��RD 8�G .hT��iC ht��i/ ; (33.29)

where the left-hand side is evaluated for the mean
metric hg��i. Compared with (33.17), there is also
a contribution from the gravitons through their energy–
momentum tensor t�� . This demonstrates that at the
one-loop order (the limit of quantum theory in curved
spacetime), the gravitons are as important as the matter
fields.

The gravitational path integral (33.25) is either
evaluated in a semiclassical (saddle point) approxima-
tion or numerically. For a numerical evaluation, either
Regge calculus [33.12] or causal dynamical triangula-
tion (Chap. 34) is used. For this purpose, spacetime is
decomposed into a set of simplices. In Regge calcu-
lus, a Euclidean formulation is employed, and the edge
lengths of the simplices are treated as dynamical en-
tities. In causal dynamical triangulation, a Lorentzian
formulation is used, and the edge lengths are kept fixed,
while the sum in the path integral is performed over all
possible manifold-gluing of simplices. Here, one result
is a phase transition from a four-dimensional spacetime
at large scales to a two-dimensional one at small scales.

A transition to a two-dimensional spacetime at
small scales can also be seen in the approach of asymp-
totic safety [33.15]. In quantum field theory, coupling
constants are actually energy-dependent due to renor-
malization. This dependence is described by renormal-
ization group equations. A theory is called asymptot-
ically safe if at least one of the coupling constants
approaches a nontrivial (i. e., nonvanishing) fixed point
at energy E!1. (If the coupling constants approach
a vanishing fixed point, the theory is called asymp-
totically free; this happens, for example, in quantum
chromodynamics (QCD) and perhaps also QED.) De-
tailed calculations indicate that quantum gravity may,
in fact, be asymptotically safe [33.15].

So far, only the quantization of GR has been ad-
dressed. The situation may change if supersymmetry is
added, leading to a theory of supergravity (SUGRA),
in which fermions and bosons appear on equal footing.
Recent work has found indications that a quantum field
theory based on N D 8 SUGRA (this corresponds to the
maximal number of supersymmetry generators) may
be perturbatively finite. More precisely, it was shown
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that the theory is finite up to four loops, and arguments
were presented that finiteness also holds at five and six
loops [33.16]. This could mean that a (so far unknown)
symmetry guarantees the finiteness of N D 8 SUGRA
at all orders. If this were true, one would then have
a constructed a finite quantum field theory for the grav-
itational field.

33.2.2 Canonical Approaches

In the canonical approaches to quantum gravity, one
develops a Hamiltonian formulation at the classical
level and then imposes commutator relations for the
canonical variables. For this purpose, a 3C 1 decom-
position of spacetime is performed (for which the
assumption is needed that spacetime is globally hyper-
bolic) [33.1]. The four-dimensional metric is thereby
decomposed into a three-dimensional metric, one lapse
function, and a shift vector. In this procedure, one ar-
rives at constraints on the canonical variables. Such
constraints arise in any theory that is classically in-
variant under redundancy transformations. In GR, these
are the spacetime diffeomorphisms. One thus has four
constraints (per space point). One is the Hamiltonian
constraint, which generates hypersurface deformations
(many-fingered time evolution). The three others are the
momentum or diffeomorphism constraints, which gen-
erate three-dimensional coordinate transformations. If
a tetrad formulation of GR is used, one has in addition
three Gauss constraints, which generate triad rotations;
they play a role in loop quantum gravity. Classically, the
constraints obey a closed (but not Lie) algebra.

To connect the redundancy transformations at the
canonical level with spacetime diffeomorphisms, one
must note that the corresponding redundancy generator
is a sum of these constraints plus additional constraints
that are related with lapse function and shift vec-
tor. The Hamiltonian constraint, although part of this
generator, can nevertheless by itself generate physical
motion [33.17].

In the quantum theory, the constraints are trans-
formed into quantum constraints that act on physically
allowed wave functions. Depending on the variables
used, one distinguishes between quantum geometrody-
namics and loop quantum gravity. An important con-
sistency requirement in both approaches is the off-shell
closure of the quantum constraint algebra (also known
as Dirac consistency). Whether this can be achieved or
not, is presently open. Closure of the algebra means
absence of central terms. In string theory (see below),
these terms are, however, crucial; they yield, for ex-

ample, the critical number of dimensions in which the
string can propagate. If such central terms are also
needed in canonical quantum gravity, the standard for-
malism presented below must be modified.

Quantum Geometrodynamics. In the geometrody-
namical version of canonical gravity, the canonical
variables are the three-metric hab.x/ and its conjugate
momentum pcd.y/, which is a linear combination of the
second fundamental form. Upon quantization, one turns
these variables into operators and imposes the formal
commutator relations

ŒOhab.x/; Op
cd.y/�D i„ıc

.aı
d
b/ı.x; y/ : (33.30)

They are formal because they do not implement the re-
quirement that the determinant h of the three-metric be
positive. In this way, one arrives at the quantum con-
straints

H
?

� D 0; (33.31)

Ha� D 0 : (33.32)

The first equation is called the Wheeler–DeWitt equa-
tion, the three other equations are called quantum
momentum or diffeomorphism constraints. Equations
(33.32) guarantee that the wave functional is invariant
under three-dimensional coordinate transformations. In
the vacuum case, these equations read explicitly

OH
?

� WD

 
� 16�G„2Gabcd

ı2

ıhabıhcd

�

p
h

16�G
..3/R� 2�/

!
� D 0 ;

(33.33)

OHa� WD �2Dbhac
„

i

ı�

ıhbc
D 0 : (33.34)

Here, Db denotes the three-dimensional covariant
derivative, Gabcd is the DeWitt metric (an ultralocal
function of the three-metric), and .3/R is the three-
dimensional Ricci scalar. A detailed discussion of these
equations can be found in [33.18, 19] and [33.1]. Be-
cause of the notorious factor-ordering problem, (33.33)
possesses formal meaning only.

A most surprising feature of these equations is the
absence of spacetime – only the three-metric remains in
the formalism. Quantum gravity in this form thus seems
to be fundamentally timeless. Upon second thought,
however, this feature is less surprising [33.20]. Clas-
sical spacetime is the analog of a particle trajectory
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in classical mechanics. After quantization, the particle
trajectory disappears, and so does spacetime. The time-
lessness is thus a natural consequence of a quantum
theory of gravity in the absence of an absolute external
time.

There is a close connection with the path integral
formalism discussed above. One can show, at least
at a formal level, that the full path integral of quan-
tum gravity satisfies the quantum constraints (33.31)
and (33.32). The situation is thus analogous to quan-
tum mechanics, where the path integral satisfies the
Schrödinger equation. The factor-ordering problem in
the Wheeler–DeWitt equation corresponds to the mea-
sure ambiguity in the path integral.

The treatment of functional differential equations
such as (33.31) and (33.32) is notoriously difficult. In
this sense, the situation is not better (but also not worse)
than the situation for the functional Schrödinger equa-
tion in, for example, QCD. One possibility to deal with
the full set of equations is the use of lattice meth-
ods [33.21]. Another possibility is to employ approx-
imations. Among the latter is the Wentzel–Kramers–
Brillouin (WKB) approximation, which corresponds to
the saddle-point approximation for the path integral.
One makes the ansatz

�Œhab�D CŒhab� exp

�
i

„
SŒhab�

�
; (33.35)

where CŒhab� is a slowly varying amplitude and SŒhab�
is a rapidly varying phase (an eikonal as in geometrical
optics).

Yet another approximation scheme makes use of the
fact that the energy scales for nongravitational fields
are usually much smaller than the Planck mass. One
can then employ a Born–Oppenheimer type of ap-
proximation, which is known from molecular physics,
where the different scales are the masses of the nu-
clei and the electrons. In this way, one can derive the
limit of quantum theory in an external background
in the form of a (functional) Schrödinger equation
for matter fields propagating in a spacetime described
by Einstein’s equations. The (many-fingered) time in
this equation arises from the state of the gravitational
field as a WKB time. At higher orders of the Born–
Oppenheimer scheme, one can derive quantum gravi-
tational corrections to this Schrödinger equation. These
correction terms lead, in principle, to observable effects.
One example is the modification of the CMB anisotropy
spectrum at large scales, although this modification
seems too small to be presently observable [33.22, 23].

Another type of approximation is the quantization
of classically reduced models. Let us briefly review
two of their classes. The first addresses the reduction
to spherically symmetric models [33.1, 24]. This yields
models that include the quantum Schwarzschild black
hole and the quantum version of the Lemaître–Tolman–
Bondi model (classically describing the collapse of
a spherically symmetric dust cloud). In the latter, one
can also attempt to reproduce the entropy (33.14) from
the quantum states. This leads to SBH / A, but not with
the correct proportionality factor.

The second class is quantum cosmology. Here, one
performs a classical reduction to homogeneous models,
mostly Friedmann–Lemaître models, but also models
for anisotropic universes [33.1, 25]. The Wheeler–
DeWitt equation is well defined in those cases and can
be solved at least numerically, if not analytically. For
some models and for some boundary conditions, one
can show that the solutions avoid the classical singular-
ities. This happens, for example, if the wave function
turns out to be zero in the region where the classi-
cal singularities lurk. A general statement cannot be
made so far. In quantum cosmology, one can study
conceptual questions as well as the potential obser-
vational effects. One can even attempt to understand
the origin of irreversibility [33.10]. Classical properties
emerge from the quantum universe in an approximate
way through decoherence, a concept that is well un-
derstood from quantum mechanics [33.26]. One can
also study the supersymmetric extension of quantum
cosmology [33.27].

Loop Quantum Gravity. Loop quantum gravity is
a canonical approach that uses a set of canonical vari-
ables different from geometrodynamics. It uses vari-
ables that are conceptually closer to variables familiar
from Yang–Mills theories. A detailed treatment can be
found in [33.28–32].

The starting point is Ashtekar’s new variables, in-
troduced by Ashtekar in 1986. The role of the momen-
tum variable is played by the densitized triad (dreibein)

Ea
i .x/ WD

p
h.x/ea

i .x/ ; (33.36)

while the momentum variable is the connection

GAi
a.x/D �

i
a .x/CˇKi

a.x/ : (33.37)

Here, a (i) denotes a space index (internal index), � i
a .x/

is the spin connection, and Ki
a.x/ is related to the sec-

ond fundamental form. The parameter ˇ is called the
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Barbero–Immirzi parameter and can assume any non-
vanishing real value; it represents a new freedom for
the quantum theory.

The canonical variables obey

fAi
a.x/;E

b
j .y/g D 8�ˇıi

j ı
b
aı.x; y/ : (33.38)

There are again the Hamiltonian and momentum con-
straints known from geometrodynamics, but rewritten
in terms of the new variables. Because of the use of the
triad, one encounters a new constraint called the Gauss
constraint, which expresses the local freedom to rotate
these triads.

The loop variables are constructed from these vari-
ables in a nonlocal manner. The new connection vari-
able is the holonomy UŒA; ˛�, which is a path-ordered
exponential of G times the integral over the connection
around a loop ˛. In the quantum theory, it acts on wave
functionals as

OUŒA; ˛��SŒA�D UŒA; ˛��SŒA� : (33.39)

The new momentum variable is the flux of the den-
sitized triad through a two-dimensional surface S
bounded by the loop. Its operator version reads

OEiŒS� WD �8�ˇ„i
Z
S

d�1 d�2 na.� /
ı

ıAi
aŒx.� /�

;

(33.40)

where the embedding of the surface is given by
.�1; �2/� � 7! xa.�1; �2/. The variables obey the
commutation relationsh

OUŒA; ˛�; OEiŒS�
i
D il2Pˇ$.˛;S/UŒ˛1;A�
iUŒ˛2;A� ;

where $.˛;S/D˙1; 0 is the intersection number,
which depends on the orientation of ˛ and S. For
these commutation relations, one can prove a theorem
that is analogous to the Stone–von Neumann theorem
in quantum mechanics: the holonomy flux representa-
tion is essentially unique. This gives rise to a unique
Hilbert space structure at the kinematical level (before
the constraints are imposed). An important feature of
this Hilbert space is its nonseparable character, that is,
it does not admit a countable basis. A convenient basis
is the spin network basis, which consists of graphs with
spins attached to it.

The spin network structure suggests that space may
be discrete at small scales. One can, in fact, construct

a self-adjoint area operator which has a discrete spec-
trum on the kinematical Hilbert space,

OAŒS��SŒA�D 8�ˇl2P
X

P2S\S

p
jP.jPC 1/�SŒA�

DW AŒS��SŒA� :

(33.41)

Here, P denotes the intersection points between the spin
network S and the surface S, and jP can assume inte-
ger and half-integer values (arising from the use of the
group SU(2) for the triads). There thus exists a minimal
quantum of action of the order of ˇ times the Planck
length squared. Whether this discrete structure is pre-
served at the dynamical level (after the constraints are
imposed) is far from clear. As in quantum geometrody-
namics, a full understanding of the quantum constraints
is elusive; this holds, in particular, for the Hamiltonian
constraint (the loop version of the Wheeler–DeWitt
equation). Also elusive is a precise formulation of the
semiclassical limit.

There also exists a covariant version of loop quan-
tum gravity. It corresponds to a path integral formula-
tion, through which the spin networks are evolved in
time. It is referred to as the spin foam approach [33.33].

It has been attempted to apply loop quantum grav-
ity to a microscopic derivation of the black hole entropy
(33.14). Treating the microstates as distinguishable, it
was indeed found that SBH / A, with a proportional-
ity factor that depends on ˇ. The result coincides with
(33.14) for a very peculiar value of ˇ; whether this
value has any significance, is open.

As in quantum geometrodynamics, one can also ap-
ply loop quantum gravity to cosmology, resulting in
loop quantum cosmology [33.34–36]. The Wheeler–
DeWitt equation is replaced by a difference equation.
This equation also provides the means for singularity
avoidance. The same conclusion results from a bounce
predicted from an effective Friedmann equation; this
bounce gives a lower bound for the size of the uni-
verse, preventing the occurrence of the big bang. Loop
quantum cosmology has also been applied to the CMB
anisotropy spectrum, for which it predicts an enhance-
ment at large scales [33.23].

33.2.3 String Theory

String theory is fundamentally different from the ap-
proaches discussed above. It is not a quantization of
GR or any other classical theory of gravity. It has
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the ambition to be a fundamental quantum theory in
which all interactions are unified. Gravity, as well as the
other known interactions, only emerge in an appropriate
limit. Strings are one-dimensional objects characterized
by a dimensionful parameter ˛0 or the string length
ls D
p

2˛0„ constructed from it. In spacetime, it forms
a two-dimensional surface, the worldsheet. Closer in-
spection of the theory also exhibits the presence of
higher-dimensional objects called D-branes, which are
as important as the strings themselves. Extensive treat-
ments of string theory include [33.37, 38]; a recent
assessment from a conceptual point of view is given
in [33.39].

String theory necessarily contains gravity, because
the graviton appears as an excitation of closed strings.
It is through this appearance that a connection to co-
variant quantum gravity discussed above can be made.
String theory also includes gauge theories, since the
corresponding gauge bosons are found in the spectrum.
It also needs the presence of supersymmetry for a con-
sistent formulation. Fermions are thus an important
ingredient of string theory. One recognizes that gravity,
other fields, and matter appear on the same footing.

Because of reparametrization invariance on the
worldsheet, string theory also possesses constraint
equations. The constraints do not, however, close, but
contain a central term on the right-hand side. This cor-
responds to the presence of an anomaly (connected with
Weyl transformations). The vanishing of this anomaly
can be achieved if ghost fields are added that gain a cen-
tral term which cancels the original one. The important
point is that this works only in a particular number D of
dimensions: DD 26 for the bosonic string, and DD 10
for the superstring. The presence of higher spacetime
dimensions is an essential ingredient of string theory.

Let us consider, for simplicity, the bosonic string.
Its quantization is usually performed through the Eu-
clidean path integral

Z D
Z
DXDhe�SP ; (33.42)

where X and h are a shorthand for the embedding
variables and the worldsheet metric, respectively. The
action in the exponent is the Polyakov action, which
is an action defined on the worldsheet. Besides the
dynamical variables X and h, it contains various back-
ground fields on spacetime, among them the metric of
the embedding space and a scalar field called dilaton.
It is obvious that this formulation is not background
independent.

If the string propagates in a curved spacetime with
the metric g�� , the demand for the absence of a Weyl
anomaly leads to consistency equations that correspond
(up to terms of order ˛0) to the Einstein equations for
the background fields. These equations can be obtained
from an effective action of the form

Seff /
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12
H���H���

C 4r�˚r
�˚ CO.˛0/

�
; (33.43)

where ˚ is the dilaton, R the Ricci scalar correspond-
ing to g�� , and H��� the field strength associated with
an antisymmetric tensor field (which in DD 4 would be
the axion). This is the second connection of string the-
ory with gravity, after the appearance of the graviton as
a string excitation.

The connection with the covariant perturbation the-
ory of quantum gravity is then performed by making the
ansatz (33.26) and inserting this into the effective action
(33.43). Comparison is then made through scattering
amplitudes. For example, the amplitude for graviton–
graviton scattering from the scattering of strings at tree
level coincides with the corresponding amplitude in the
covariant perturbation theory. In this way, one can con-
nect the gravitational constant with the string length.

The finiteness of the string length has consequences
for the microstructure of spacetime. As gedanken ex-
periments show, there seems to be a minimal length,
at least in an operational sense. Veneziano has found
a generalized uncertainty relation of the form

�x�
„

�p
C

l2s
„
�p :

This relation can be heuristically extended to a general
class of uncertainty relations, also called the general-
ized uncertainty principle. From such relations, one can
calculate corrections to effects such as the Lamb shift,
which have potential observational significance. (So far,
nothing has been seen.)

Concerning black holes, it is possible to give a mi-
croscopic derivation of (33.14) for extremal and near-
extremal stringy black holes. The treatment of the
ordinary Schwarzschild black hole remains elusive. The
derivation is somewhat indirect, though. One exploits
the existence of BPS states for which the mass is fixed
in terms of their charges, and whose spectrum is pre-
served on the transition from the weak to the strong
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coupling limit of string theory. In the weak coupling
limit, a BPS state can describe a bound state of D-
branes, whose entropy can easily be calculated by string
methods. In the strong coupling limit, the state can
describe an extremal black hole. It turns out that the
entropy calculated in the weak coupling limit exactly
coincides with the expression (33.14) for the extremal
black hole.

For extremal black holes, the Hawking temperature
vanishes. It is possible, however, to generalize the cal-
culation of the entropy to near extremal black holes for
which there is Hawking radiation. The radiation cor-
responds here to the emission of closed strings from
D-branes. If the D-brane state is traced out in the full
quantum state, the radiation is described by a mixed
thermal state. The full quantum state evolves unitarily,
which is why no information loss problem is present,
at least at the semiclassical level where the calculations
are performed. An understanding of the final evapora-
tion phase is as elusive in string theory as it is in the
other approaches.

The black hole entropy (33.14) involves the area
of the event horizon, not the volume inside. This gives
rise to the idea of the holographic principle according
to which the information (or missing information) for
a gravitating system is located on the boundary of a spa-
tial region. This principle seems to be realized in string
theory in the form of the ADS-CFT correspondence
[33.40]. This correspondence states that nonperturba-
tive string theory in a background spacetime that is
asymptotically anti-de Sitter (AdS) is dual to a con-
formal field theory (CFT) defined in a flat spacetime
with one lower dimension. It associates fields in string
theory with operators in the CFT and compares ex-
pectation values and symmetries in the two theories;
an equivalence at the level of the quantum states has
not been shown. The AdS-CFT correspondence pro-
vides an almost background-independent definition of
string theory because the background metric enters only
through boundary conditions at infinity [33.41]. A truly
background-independent formulation may be provided
by string field theory, but this is an open issue.

33.3 Outlook

Where do we stand? It is fair to say that none of the
above approaches has been proven to be the quantum
theory of gravity. The main problem is the lack of em-
pirical tests so far, although attempts to find such tests
are being undertaken in various directions [33.42, 43].
Unfortunately, no sign of new physics is seen at the
LHC so far.

It is, again, important to emphasize the different
nature of the above approaches. The covariant and
canonical approaches aim at the construction of a sep-
arate quantum theory of the gravitational field; the
unification with other interactions is a secondary fea-
ture. It is thus not surprising that the matter aspect has
been neglected there compared with the gravity aspect.
These approaches are thus most likely effective theories
only, in the same sense that QED is an effective theory.
They nevertheless provide important insight and can in
principle be tested by observations. The central require-
ment of background independence (absence of absolute
structures) is implemented in these approaches.

String theory is so far the only serious candi-
date for a unified quantum theory of all interactions.

Gravity is, like the other forces, an emergent inter-
action only. The many particles in Nature can, in
principle, be understood from string excitations, anal-
ogously to the way the elements in the atomic ta-
ble can be understood from electrons and protons.
Of particular importance is the relevance of super-
symmetry. Fermions are thus an indispensable ingre-
dient of the theory. This is not seen in the other
approaches. However, string theory also suffers from
problems. It seems that there are more than 10500 pos-
sible ground states of the theory (the infamous string
landscape). Still, it is difficult if not impossible to re-
cover the standard model from it. It has been claimed
that a selection among the many ground states in
the landscape can only made by the anthropic prin-
ciple, but this would go strongly against the original
idea of string theory to find a unique description of
Nature.

Gravity is the oldest known interaction and the one
that is of immediate relevance for everyday life. It is
amazing that it is also the interaction that still presents
the greatest mystery.
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34. Quantum Gravity
via Causal Dynamical Triangulations

Jan Ambjørn, Andrzej Görlich, Jerzy Jurkiewicz, Renate Loll

Causal dynamical triangulations (CDT) represent
a lattice regularization of the sum over spacetime
histories, providing us with a nonperturbative for-
mulation of quantum gravity. The ultraviolet fixed
points of the lattice theory can be used to define
a continuum quantum field theory, potentially
making contact with quantum gravity defined via
asymptotic safety. We describe the formalism of
CDT, its phase diagram, and the quantum ge-
ometries emerging from it. We also argue that
the formalism should be able to describe a more
general class of quantum-gravitational models of
Hořava–Lifshitz type.
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34.1 Asymptotic Safety

At this stage, there is no certainty how to best reconcile
the classical theory of relativity with quantum mechan-
ics. Applying the well-tested methods of quantization
to gravity – defined by the Einstein–Hilbert action – and
quantizing the fluctuations around a classical solution to
Einstein’s equations leads to a nonrenormalizable the-
ory. This happens because in four spacetime dimensions
the mass dimension of the gravitational coupling con-
stant G (in units where „ and c are 1) is �2, whereas
it should be larger than or equal to 0 for the theory
to be renormalizable perturbatively. One would there-
fore expect the perturbative effective quantum field
theory description to break down at energies E satis-
fying GE2 & 1.

There are of course well-known examples where the
nonrenormalizability of a quantum field theory in the
ultraviolet (UV) was eventually resolved by introduc-
ing new degrees of freedom, missed initially because
they were not directly observable at low energies. The
electroweak theory is an example where perturbative
renormalizability was regained in this way. The the-
ory was first described by a four-fermion interaction
with an associated Fermi coupling GF of mass dimen-

sion �2, just like the Newton constant G in gravity.
As a result, its perturbation theory breaks down at en-
ergies with GFE2 & 1. However, it turns out that for
energies above 1=

p
GF �MW , the mass of the W-

particle, the four-fermion theory has to be replaced by
the SU.2/-gauge theory of the weak interactions, which
contains new excitations, the W- and Z-bosons. The
new electroweak theory is a renormalizable quantum
field theory.

Similarly, in the 1960s the low-energy scattering of
pions was described by a nonlinear sigma model, an-
other nonrenormalizable quantum field theory whose
coupling constant, the pion decay constant F� -squared,
has mass dimension �2. However, high-energy scatter-
ing at energies beyond 1=F� is no longer described well
by the nonlinear sigma model, because it starts probing
the intrinsic structure of the pions. A correct description
has to incorporate appropriate new degrees of freedom,
the quarks and gluons, and the corresponding quan-
tum theory – quantum chromodynamics – is perfectly
renormalizable.

There is no obvious reason which prevents us from
writing down a perturbative (and nonrenormalizable)
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expansion for gravity around some classical back-
ground geometry, say, flat Minkowski spacetime, if we
are interested in an effective quantum field-theoretic de-
scription whose range of applicability does not extend
beyond energies with GE2 � 1. In view of the exam-
ples cited earlier, it is then tempting to conjecture that
the apparent nonrenormalizability of gravity could be
resolved by the appearance of new degrees of freedom
at higher energies, rendering the theory renormalizable
after all.

A solution of this kind may be in the form of a su-
perstring theory in a higher dimensional spacetime,
where the gravitational excitations are intertwined with
infinitely many new degrees of freedom in such a way
as to cure the UV problem. Although string theory can-
not be ruled out as the correct answer, the world picture
it provides has yet to be verified. In particular, super-
symmetry – predicted by string theory – has not yet
been observed at the Large Hadron Collider. Of course,
even if no evidence of supersymmetry is found at this
or future colliders, it may still be present at even higher
energies. In this sense, the absence of observational evi-
dence for supersymmetry does not disprove superstring
theory as such, although it makes it less compelling
as a resolution of the problem of unifying gravity and
quantum theory.

There are other potential resolutions to the prob-
lem of finding a suitable ultraviolet completion of
perturbative quantum gravity, which are not based on
fundamental, string-like excitations and do not obvi-
ously require the existence of supersymmetry or extra
dimensions. These are so-called nonperturbative ap-
proaches, whose starting point typically consists of a set
of dynamical degrees of freedom closely modeled on
those of classical gravity (curved geometry in one way
or other), together with a nonperturbative prescription
for quantization. A concrete example, that of Causal
Dynamical Triangulations, will be described in some
detail below. Its geometric degrees of freedom, in the
presence of a UV cut-off, are given in terms of triangu-
lated, piecewise flat spacetimes with discrete curvature
assignments. Its nonperturbative quantization follows
that of a standard lattice field theory, albeit with a dy-
namical rather than a fixed lattice.

An obvious charm of such a purely quantum field-
theoretic ansatz lies in its minimalism, and the ab-
sence – to a large degree – of free parameters and other
tunable ingredients. On the other hand, a key difficulty
of this type of approach is to demonstrate that it is re-
lated to classical gravity in a suitable limit, something
that is not at all obvious once one has moved beyond

linearized quantum fields on a fixed background space-
time. One also needs to spell out what it means for
the nonperturbative theory to exist, which likewise is
nontrivial in a background-free description where ob-
servables are hard to come by.

In parallel with advances in string theory, also re-
search in the wider area of nonperturbative quantum
gravity has seen a steady rise in interest in recent
decades. On the one hand, this was due to the re-
juvenation of canonical quantum gravity in the form
of loop quantum gravity from the late 1980s onward.
(Curiously, this ansatz also postulates the fundamen-
tal character of certain one-dimensional closed-string
(a.k.a. loop) excitations in the quantum theory.) At
about the same time, the covariant gravitational path
integral was given a new nonperturbative lease of life
in terms of dynamical triangulations. Motivated orig-
inally by the search for a nonperturbative dynamics
of curved, two-dimensional worldsheets in (bosonic)
string theory, this dynamical lattice formulation pro-
vides a powerful computational tool for evaluating
gravitational path integrals quantitatively: analytically
in two, and numerically in higher dimensions. The
focus of this chapter will be on this latter develop-
ment, arguably the conceptually most straightforward
and methodologically minimalist extension of the stan-
dard perturbative and covariant quantum field-theoretic
formulation of gravity. We will explain how it may
lead to the construction of a viable theory of quantum
gravity, valid on all scales, without running into contra-
dictions vis-à-vis the perturbative nonrenormalizability
of the theory.

In the late 1970s, Weinberg outlined a scenario,
coined asymptotic safety [34.1], for how quantum field
theories which are not power-counting renormalizable
around a trivial Gaussian fixed point could under cer-
tain, general conditions still make sense, just like ordi-
nary renormalizable theories. In particular, an asymp-
totically safe theory is characterized by only a finite
number of coupling constants, whose values will be
determined by comparison with experiment or obser-
vation. The asymptotic freedom scenario is naturally
described in the language of quantum field theory and
the renormalization group. It is characterized by the
presence of an ultraviolet fixed point in the infinite-
dimensional coupling constant space of a theory, with
the property that in the fixed point’s neighborhood
the dimension of the subspace of attraction is infinite-
dimensional, with finite codimension. This codimen-
sion coincides with the number of free parameters of
the theory that need to be fixed by experiment. Such
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a UV fixed point therefore attains a similar status to
that of the Gaussian fixed point of a renormalizable the-
ory. The snag is that the tools of the perturbative theory
are usually not sufficient to find such ultraviolet fixed
points – if they exist for a given theory – and to study
their neighborhoods.

To illustrate the implications of the presence of such
a fixed point (in a somewhat simplistic fashion), let us
introduce the dimensionless coupling

QG.E/ WD GE2: (34.1)

A fixed point in this context always refers to the be-
havior under a change of scale E of a dimensionless,
energy-dependent function like QG.E/. The dimension-
ful quantity G in (34.1) can at this stage still be thought
of as a (classical, low-energy) coupling constant of
mass dimension �2. Let the behavior of QG.E/ be dic-
tated by a beta function ˇ. QG/ according to

E
d QG

dE
D ˇ. QG/ ; with ˇ. QG/D 2 QG�2! QG2; (34.2)

for some real parameter !. It is immediately clear
that for ! 6D 0, GD const is no longer a solution to
(34.2). For consistency, G has to acquire a nontrivial E-
dependence and therefore becomes a function G.E/D
QG.E/=E2. In (34.2) we have chosen the simplest non-
trivial beta function such that (i) in the limit of low
energy, E! 0, G.E/ goes to a constant (which we will
continue to call G), and (ii) for E!1, QG.E/ goes to
a nontrivial UV fixed point. Explicitly, the solution to
the differential equation in (34.2) can be stated as

G.E/D
G

1C!GE2
; (34.3)

from which we can read off the location of the UV fixed
point at QGD 1=!, the nontrivial zero of the beta func-
tion. An important feature of this solution is that the
coupling constant G.E/ goes to zero at the UV fixed
point.

In case the above example should appear somewhat
ad hoc, it can be understood as arising from a more gen-
eral construction, which starts from an asymptotically
free theory in d dimensions. Figure 34.1a illustrates the
corresponding (negative) beta function of the coupling
g, together with a Gaussian UV fixed point at gD 0. If
this theory is lifted to dC " dimensions – assuming that
such a perturbation in the dimension is well defined, at

�a)

g

�b)

g

Fig.34.1a,b Changing an asymptotically free theory to an
asymptotically safe one by increasing its dimension from
d to dC " results in a shift of its ultraviolet fixed point to
a value g > 0

least for small " > 0 – its beta function will change ac-
cording to

ˇ.g/! �."/gCˇ.g/; (34.4)

where �."/ is the (positive) amount by which the mass
dimension of the coupling g decreases as a result of
the dimensional increase by ". (Our previous example,
whose beta function was defined in relation (34.2), cor-
responds to �D 2.) Note that the Gaussian UV fixed
point of the original theory has become a nontrivial UV
fixed point away from zero in the higher dimensional
theory, while gD 0 has been turned into an infrared
fixed point, as illustrated by Fig. 34.1.

The theories we have discussed so far – four-Fermi
theory, nonlinear sigma model and Einstein gravity –
display a similar behavior in the sense that they are
asymptotically free, renormalizable theories in space-
time dimension d D 2. Trying to make sense of them
beyond dimension 2 by way of a 2C "-expansion,
one encounters the situation depicted in Fig. 34.1. Of
course, one may formally set "D 2 in such an expan-
sion, as would be needed to reach the dimension d D 4
of physical spacetime, but the validity of the perturba-
tive expansion for such large values of " would need to
be established to take the results seriously, and a priori
appears perhaps rather doubtful.

Nontrivial UV-complete extensions to dD 4 of the
four-Fermi interaction or the nonlinear sigma model are
not known and presumably do not exist. As mentioned
above, we should rather think of them as effective
theories, which happen to describe certain low-energy
properties of more fundamental theories with more and
different fundamental excitations. Still, it is difficult
to draw any conclusions from this for general rela-
tivity, the theory we are interested in, which is after
all very different physically: exactly the degrees of
freedom that are fixed in all other theories, those of
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spacetime itself, become dynamical in gravity. Much
work has gone into trying to show that four-dimensional
gravity possesses an ultraviolet fixed point with the req-
uisite properties, either in terms of the 2C "-expansion
[34.2–6] or by using general renormalization group
techniques [34.7–12].

In what follows, we will not be concerned with the
details of these efforts, but with the question of how the
hypothesis of asymptotically safe gravity may be tested
independently and nonperturbatively by using standard
field-theoretic tools and by formulating quantum grav-
ity via a lattice regularization.

34.2 A Lattice Theory for Gravity

A number of issues have to be addressed when repre-
senting gravity on a lattice. Is it possible in principle to
construct a well-defined lattice regularization of grav-
ity with a UV lattice cut-off, which can be removed in
a controlled way to obtain a continuum limit (whatever
this may turn out to be)? The answer is yes. More pre-
cisely, the issue is not so much how to represent gravity
on a lattice, but how to represent a theory as a lattice
theory whose standard continuum formulation in terms
of local fields is diffeomorphism invariant, a vast gauge
invariance closely related to the differentiable structure
of the underlying manifold and its description in terms
of local coordinate charts.

For the geometric degrees of freedom of the gravi-
tational theory this can be done by viewing the lattice
itself as representing directly a (piecewise linear) ge-
ometry. The key point is that such a geometry can
be described uniquely without ever introducing coor-
dinates, thus circumventing the associated redundancy
of having to choose any particular set of coordinates.
A convenient choice is to use lattices which are tri-
angulations, in the sense of consisting of d-simplices,
triangular building blocks which are d-dimensional
generalizations of flat triangles (D 2-simplices). As-
suming the interior of a d-simplex to be flat, its geom-
etry is uniquely specified by giving the lengths of its
d.dC 1/=2 one-dimensional edges or links. Together
with the information of how the simplices are glued
together (that is, how .d� 1/-dimensional boundary
simplices are identified pairwise) to form a triangu-
lated manifold, this suffices to compute all geometric
information, including distances, geodesics, volumes
etc. without using coordinates. Important for our path
integral representation, Regge observed that the curva-
ture of such a piecewise linear geometry is in a natural
way located on its .d� 2/-dimensional subsimplices
(the hinges). By the same token, the scalar curvature
term of the Einstein action of such a geometry is given
by the sum over all hinges of the deficit angle around
each hinge, multiplied by the hinge’s volume [34.13].

In our construction of a theory of quantum grav-
ity, the lattice-regularized path integral over geometries
thus becomes the sum over such triangulations, with
weight depending on the Regge implementation of the
Einstein action. Precisely which class of triangulations
should we sum over in the path integral? When ap-
plying Regge calculus to classical gravity one uses
a fixed lattice, in the sense of leaving the connectivity
of its constituent simplicial building blocks unaltered.
This still allows the curvature of the triangulation to be
changed – for example, to optimally approximate that
of a given smooth geometry – by changing the lengths
of its one-dimensional edges.

When using the piecewise linear geometries in
a path integral, the task is different. Firstly, we do not
expect the individual path integral configurations to be
smooth, but only continuous, in the same way as the
paths in the path integral of a quantum-mechanical par-
ticle are continuous but in general nonsmooth (in fact,
with unit probability they are nowhere differentiable).
Similarly, the piecewise linear geometries are a subset
of all continuous spacetime geometries. Note that we
can even restrict ourselves to a subset of piecewise
linear geometries as long as it is suitably dense in the
set of all geometries. More precisely, when the lattice
spacing goes to zero, we require the expectation values
of observables, again suitably defined on the piecewise
linear geometries, to converge to the value they would
take in the continuum quantum field theory (which we
assume exists). In contrast with the aim of the classical
theory, we are therefore not trying to approximate any
particular geometry by our lattice geometries, but to
span the whole set of geometries.

In this context a specific subset of piecewise linear
geometries has proved to be very useful, namely, the
triangulations whose edges have all the same length a
say. One can characterize this set of geometries as being
constructed from gluing together equilateral simplicial
building blocks in all possible ways, compatible with
certain constraints (typically, a fixed topology and fixed
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boundary components). Consequently, the variation in
geometry (the way in which the geometric degrees of
freedom are encoded) is linked to the mutual connec-
tivity of the building blocks created by the gluing and
not to variations in the link lengths, giving rise to the
name dynamical triangulations (DT) [34.14–19]. From
a path-integral perspective this approach has the advan-
tage that distinct triangulations correspond to physically
distinct geometries. Summing over this DT ensemble
of geometries may therefore lead directly to the cor-
rect continuum measure in the limit that the UV cut-off
is taken to zero, a! 0. By contrast, treating the tri-
angulations classically à la Regge, with fixed lattice
connectivity and variable link lengths, still contains
redundancies, in the sense that many different lattice
configurations can correspond to the same physical
geometry (see [34.20] and references therein). For il-
lustration, consider a rectangle in the two-dimensional
plane and triangulate its interior. Clearly, the interior
vertices can be moved around locally in the plane
without changing the flat geometry of the rectangle.
However, since all of these are different as Regge trian-
gulations, this leads to a severe overcounting in the path
integral of quantum Regge calculus, for which there is
currently no known fix.

Most importantly, the viability of the DT lattice
regularization has already been demonstrated in a non-
trivial case, that of gravity (coupled to matter) in two di-
mensions. As mentioned above, two-dimensional grav-
ity is a renormalizable quantum field theory and various
observables can be calculated analytically [34.21–23].
The dynamically triangulated two-dimensional lattice
theory can also be solved, a number of observables can
be calculated analytically and its continuum limit, tak-
ing the lattice spacing a! 0, can be taken [34.24, 25].
Remarkably, results from the two different calculations
can be compared and are found to agree. We conclude
that it is possible to provide a viable lattice regulariza-
tion of a diffeomorphism-invariant quantum theory of
geometries.

One may object that this two-dimensional theory
has little to do with true gravity in four spacetime di-
mensions; to start with, it has no propagating gravitons.
However, we would like to argue that it is much more
a theory of fluctuating geometries than one would ever
expect of the four-dimensional theory. Because there
is no Einstein–Hilbert action in two dimensions (it is
topological), each configuration contributes in the path
integral with the same weight, which is a maximally
quantum situation. This is borne out by the analytic so-
lutions of this model, which show the two-dimensional

geometries as wildly quantum fluctuating. Nevertheless
the lattice theory has no problem in reproducing the cor-
rect diffeomorphism-invariant continuum theory, also
known as quantum Liouville gravity.

34.2.1 Observables

How to define what does and does not constitute an ob-
servable in quantum gravity, and how to construct and
evaluate observables in any given formulation are phys-
ical questions of central importance. What we would
like to highlight here is that a beautiful aspect of a ge-
ometric lattice formulation of quantum gravity of the
type we are considering is that it forces one to address
such questions head-on. It is not possible to hide behind
some expansion around flat spacetime, but one is forced
to think in terms of physical rods and clocks, much in
the spirit of Einstein’s classical theory.

Let us discuss the basic objects of any quantum field
theory, namely, the correlators of local quantum oper-
ators O.x/. Such correlators are important ingredients
in constructing S-matrix elements, i. e., observables in
quantum field theory on a fixed background. Also in
conventional lattice theories, correlators play a crucial
role in showing that a lattice theory has a continuum
limit when the lattice spacing goes to zero.

Consider some lattice scalar field theory, and let
O.xn/ be an operator at lattice spacetime coordinate
xn D n � a, where a is the lattice spacing and n the
integer-valued lattice coordinate. In general, we expect
the correlator to fall off exponentially,

� loghO.xn/O.xm/i �
jn�mj

�.g0/
C o.jn�mj/; (34.5)

where g0 is the bare lattice coupling and �.g0/ the corre-
lation length in lattice spacings. The standard procedure
for a lattice system is to take the continuum limit at
a second-order phase transition point gc

0, where the cor-
relation length diverges like

�.g0/ /
1

jg0 � gc
0j
�
; a.g0/ / jg0 � gc

0j
� : (34.6)

Equation (34.6) tells us at what rate we should scale the
lattice spacing to zero in the limit g0! gc

0, in order to
find an exponential decay in the continuum, when the
lattice correlation diverges, but the (dimensional) phys-
ical length xn � xm D .n�m/a is kept constant,

mpha.g0/D
1

�.g0/
;

e�jn�mj=�.g0/ D e�mphjxn�xmj: (34.7)
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Equation (34.7) illustrates the fact that dimensionful ob-
servables, like the physical mass mph, are defined by the
approach to the critical point, not at the critical point.

The existence of a critical point and an associated
divergent correlation length constitute the backbone of
the Wilsonian renormalization group approach to quan-
tum field theory. Since we are appealing to this Wilso-
nian approach by asking whether asymptotic safety is
realized, it is important to understand whether it can be
applied to quantum gravity at all. A first step in this di-
rection is to understand whether suitable correlators and
a correlation length can be defined in a diffeomorphism-
invariant theory like quantum gravity. To start with, how
can we define the distance between two points in a path
integral where we integrate over the geometries defin-
ing this distance?

In flat d-dimensional spacetime, let us rewrite the
correlator of a scalar field �.x/, say, in the form

h��.R/iV

�
1

V

1

s.R/

Z
D�e�SŒ�


�

Z
ddx

Z
ddy�.x/�.y/ı.R� jx� yj/: (34.8)

As indicated, this expression depends on a chosen dis-
tance R, but no longer on specific points x and y, which
instead are integrated over. The integrand can be read
from right to left as first averaging over all points y at
a distance R from some fixed point x, normalized by
the volume s.R/ of the spherical shell of radius R, and
then averaging over all points x, normalized by the to-
tal volume V of spacetime. We assume translational and
rotational invariance of the theory and that V is so large
that we can ignore any boundary effects related to a fi-
nite volume.

This definition of a correlator is of course nonlocal,
but unlike the underlying locally defined correlator has
a straightforward diffeomorphism-invariant generaliza-
tion to the case where gravity is dynamical, namely,

h��.R/iV �
1

V

Z
DŒg�

Z
DŒg
�e�SŒg;�
ı

�

�
V �

Z
ddx

p
det g

�

�

Z
ddx

Z
ddy

p
det g.x/

p
det g.y/

sŒg
.y;R/

��.x/�.y/ı.R�DŒg
.x; y//; (34.9)

which now includes a functional integration over ge-
ometries (in accordance with standard notation, Œg� de-
notes an equivalence class of metrics g under the action
of the diffeomorphism group.) Œg�, and dependences of
the action, measures, distances, and volumes on Œg�. Can
the definition (34.9) be implemented meaningfully to
define correlators in a quantum gravity theory? The an-
swer is yes, and a two-dimensional example can again
be used to demonstrate this. Namely, there are ana-
lytic predictions for the behavior of the propagators of
certain matter theories coupled to two-dimensional Eu-
clidean gravity [34.21–23], which have been shown to
be reproduced by numerical simulations of the corre-
sponding lattice theory [34.26–28]. By the way, their
behavior is quite different from that of the flat space
correlators, another manifestation of the fact that two-
dimensional gravity is a theory of strong geometric
fluctuations.

34.2.2 Time-Slicing and Baby Universes

An interesting aspect that can be analyzed in detail in
the solvable two-dimensional quantum theory of fluc-
tuating geometry is that of proper time. One usually
considers a situation where the rotation to Euclidean
signature has taken place and proper time is simply
given by geodesic distance. In this setting, a closed
one-dimensional spatial universe of fixed time is simply
a loop of length `. In the corresponding quantum theory
one can ask for the amplitude for a universe of length `1

to propagate to another one of length `2 in proper time
t. More precisely, the outgoing loop of length `2 is said
to have a proper-time (in this case a geodesic) distance t
to the incoming loop of length `1 if each point on `2 has
geodesic distance t to `1. (The geodesic distance from
a point to a set of points is defined as the minimum of
the geodesic distances from the point to the points in
the set.)

Figure 34.2 shows a typical geometry in the path
integral contributing to the corresponding amplitude
G.`1; `2I t/. It will often be convenient to work with its
Laplace transform,

G.x; yI t/D

1Z
0

1Z
0

d`1 d`2e�x`1�y`2G.`1; `2I t/:

(34.10)

We can view x and y in this expression as boundary cos-
mological constants, since x � ` would be the action of
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Fig. 34.2 Incoming and outgoing boundary loops of
length `1 and `2, separated by a geodesic distance t,
and a typical interpolating geometry of cylinder topol-
ogy which contributes to the amplitude G.`1; `2I t/ in
Euclidean signature. The additional loops drawn onto the
interior geometry consist of points which share the same
distance to the incoming loop. As indicated by the upper
set of three loops, there can be many disconnected loops at
a given distance to the incoming loop

a one-dimensional spacetime of volume ` and cosmo-
logical constant x.

As shown in [34.29], the amplitude G.x; yI t/ satis-
fies the remarkably simple equation

@G.x; y; t/

@t
D
@.W.x/G.x; y; t//

@x
; (34.11)

where W.x/ is the Hartle–Hawking disk amplitude,
which in two-dimensional Euclidean gravity is given by
[34.24, 25]

W.x/D

�
x�

1

2

�q
xC
p
�: (34.12)

As is clear from Fig. 34.2, space can branch out into
many disconnected parts (i. e., change its topology) as
a function of proper time t, giving rise to baby uni-
verses. The appearance of baby universes on all scales
leads to the two-dimensional quantum spacetime being
fractal, with Hausdorff dimension dh D 4 [34.29, 30].

Rather amazingly, it is possible to integrate analyti-
cally over these baby universes, resulting (for each time

history) in a spacetime with a proper-time foliation and
no baby universes [34.31]. Alternatively, the expression
for the loop–loop propagator without baby universes
can be obtained directly by summing over a class of
two-dimensional spacetimes which from the outset lack
baby universes, provided one redefines the coupling
constants suitably [34.32]. This latter procedure can
also be implemented at the regularized level in terms
of a set of causal dynamical triangulations (CDT), to
be distinguished from the larger class of merely dynam-
ical triangulations (DT), which served as carrier space
for the Euclidean gravitational path integral [34.32].

The resulting theory has a well-defined Hamiltonian
and corresponding unitary proper-time evolution. The
explicit map between the cosmological constants of DT
and CDT turns out to be nonanalytic,

Q�CDT D
p
�DT ; QxCDT D

q
xC

p
�DT; (34.13)

where we have denoted the CDT-analogs of the cou-
plings with a subscript and tilde. Consequently, in
CDT both lengths and areas acquire a dimensional-
ity different from that found in the DT ensemble of
spacetimes and in Liouville gravity. When using the
CDT ensemble, also the Hausdorff dimension changes
from 4 to 2, the canonical value for ordinary smooth
two-dimensional spacetimes. (A word of warning: the
coincidence in Hausdorff dimension does not allow
one to conclude that the quantum geometry of two-
dimensional CDT in any way approximates a smooth
classical manifold; in fact, it does not.)

The CDT loop–loop propagator satisfies the equa-
tion

@ QG.Qx; Qy; t/

@t
D
@..Qx2 � Q�CDT/ QG.Qx; Qy; t//

@Qx
; (34.14)

and the Hamiltonian governing the (proper-) time evo-
lution is given by

QG. Q̀1; Q̀2; t/D h Q̀2je
�t OHj Q̀1i ;

OH D� Q̀
d2

d Q̀2
C Q�CDT

Q̀; (34.15)

while the CDT Hartle–Hawking wave function (which
is derived from the propagator QG [34.32]) satisfies

OH QWCDT. Q̀/D 0 : .Wheeler–DeWitt/ (34.16)

Above, our first way of deriving this formulation
was as a kind of effective theory: we started from
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Fig. 34.3 The light cone structure (and therefore the un-
derlying Lorentzian geometry) becomes degenerate in
points where space splits in two

the set of all Euclidean two-dimensional geometries
of a fixed topology. These geometries are isotropic in
the sense that they do no carry any a priori preferred
direction. We then superimposed a notion of proper
time on them and integrated out part of the degrees
of freedom. However, when starting in the physically
correct Lorentzian signature, one can formulate a gen-
eral principle which excludes geometries whose spatial
topology is not constant in time [34.33, 34]. The point
is that spatial topology changes are associated with
causality violations of one kind or other. This is illus-
trated by the trouser geometry depicted in Fig. 34.3.
As is clear from the embedding of this two-dimensional
spacetime in flat Minkowski space, with time pointing
upward, there must be at least one point near the crotch
of the trousers where the tangent plane is exactly hor-
izontal and the light cone therefore degenerate. Note
that imposing causality conditions on the geometry to
eliminate such configurations only makes sense in the
presence of a Lorentzian metric and cannot even be for-
mulated in a purely Euclidean theory, in the absence of
any extra structure.

By the same token, one can take as domain of the
path integral the set of all Lorentzian piecewise flat tri-
angulations whose causal structure is well defined, and
where in particular no changes of spatial topology are
allowed to occur. The set of CDT – which can be de-
fined in any dimension (not just dD 2) – obeys a strong
version of causality of this kind, which is implemented
by requiring each triangulation to be the product of
a one-dimensional triangulation (a line with equidistant
points), representing discrete proper time, and other tri-
angulated degrees of freedom, representing the spatial

directions of the geometry, which may be thought of as
triangulated fibres over a one-dimensional base space.
(Product triangulations, of which this is a particular in-
stance, were investigated in [34.35], see also [34.36].)
As an added bonus, each triangulation in the class of
CDT can be analytically continued to Euclidean sig-
nature, and the associated gravitational Regge actions
satisfy the standard relation between actions defined
in spacetimes of Lorentzian and Euclidean signatures,
namely,

iSLorentzian 7! �SEuclidean: (34.17)

Despite the fact that the actions obey (34.17), the
Lorentzian theory defined on CDT geometries will
even after this Wick rotation be distinct from the full
Euclidean theory, because not every Euclidean trian-
gulation is the image of a causal, Lorentzian one. The
subclass of Euclidean geometries that are in the image
can be obtained surgically as explained above, by su-
perimposing a notion of proper time on each Euclidean
triangulation and then removing all of its baby uni-
verses associated with spatial topology changes. The
two-dimensional case is sufficiently simple to allow us
to perform the calculation in either way, by starting
from a path integral over all Euclidean geometries and
removing baby universes, or by starting from a path in-
tegral over causal (CDT) geometries and rotating it to
Euclidean signature. Both results agree after a redefini-
tion of the coupling constants. Let us note in passing
that our formulation – not only in dimension 2, but
also in higher dimensions – has a couple of character-
istics reminiscent of so-called Hořava–Lifshitz gravity,
namely, the use of a preferred time foliation and a uni-
tary time evolution. We will return to this subject in
Sect. 34.4 below.

34.2.3 CDT in Higher Dimensions

It is not known whether the above-described proce-
dure of integrating out baby universes in dD 2 can
be generalized to higher dimensions in a simple and
useful way. It implies that at this stage, we have two
a priori unrelated lattice gravity theories in dimension
d > 2, one purely Euclidean based on DT and one
Lorentzian based on CDT. The latter starts out in phys-
ical, Lorentzian signature, and imposes local causality
conditions (nondegeneracy of local light cones) and
a proper-time time foliation. (Note that there is no
strict physical requirement that individual path integral
histories must be causal; individual histories are not
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physical, observable quantities, only expectation val-
ues computed in the ensemble of histories are.) For
calculational purposes, these lattice configurations are
then rotated to Euclidean signature and the path inte-
gral over this class can in principle be performed. Of
course, since the physics one hopes to describe ulti-
mately by these theories has Lorentzian character, one
will have to perform an inverse Wick rotation back to
Lorentzian spacetime eventually, never mind whether
the computation at an intermediate step took place in
a purely Euclidean or in a Euclideanized Lorentzian
framework.

The simplest implementation of Euclidean DT
based on the lattice Regge version of the Einstein–
Hilbert action (the inclusion of a cosmological term
being understood) does not seem to lead to a theory
with an interesting continuum limit. Even if this is the
case, it is in principle possible that by adding more
terms to the bare lattice action and suitably tuning the
associated new coupling constants, an interesting con-
tinuum theory may emerge after all. This possibility
has been investigated in the past [34.37–39], as well
as more recently [34.40, 41], but there is no conclu-
sive evidence at this point that these modified Euclidean
models can reproduce the physical properties of quan-
tum gravity from CDT, the Lorentzian lattice gravity
theory to which we will turn next (see also [34.42–50]
for a variety of reviews of the subject).

Figure 34.4 illustrates the general construction of
a four-dimensional CDT triangulation. We take space
to be compact and with the simplest topology, that of
the three-sphere S3. In addition, we assume a discrete
proper-time foliation and represent the spatial geome-

(4,1) (3,2) t –1

t

t

t +1b)a)

t +1

Fig.34.4a,b A triangulation in CDT consists of four-dimensional triangulated layers assembled from (4,1)- and (3,2)-
simplices, interpolating between adjacent integer constant-time slices (a), which in turn are triangulations of S3 in terms
of equilateral tetrahedra. Each purely spatial tetrahedron at time t forms the interface between two (4,1)-simplices, one
in the interval Œt� 1; 1�, and the other in Œt; tC 1�, as illustrated on (b). Although a (3,2)-simplex shares none of the five
tetrahedra on its surface with a constant-time slice (the tetrahedra are all Lorentzian), it is nevertheless needed in addition
to the (4,1)-building block to obtain simplicial manifolds with a well-defined causal structure

try at each integer proper time t by a three-dimensional
simplicial manifold, given as some configuration of
Euclidean DT in terms of equilateral tetrahedra. By as-
sumption, the tetrahedra are flat in the interior, which
means that their geometric properties are uniquely spec-
ified by the length of their edges, which is some
number as > 0 (the same for all edges). To obtain
a four-dimensional Lorentzian simplicial manifold with
signature (�CCC), we must still fill in all intervals
Œt; tC 1� between consecutive spatial slices. This can
be done by using two types of geometrically distinct
four-simplices, which again by assumption are flat in
the interior, but this time with Lorentzian signature. The
two different types are the (4,1)- and the (3,2)-simplex
depicted in Fig. 34.4, together with their time-reversed
counterparts. The (4,1)-simplex has as its base one
of the spatial tetrahedra contained in the triangulated
constant-time slice. (The 4 in the label (4,1) refers to the
four vertices contained in slice t that span this tetrahe-
dron; similarly, the 1 refers to the single vertex shared
with slice tC 1. An analogous labeling has been used
for the (3,2)-simplex.) All that remains to be done to fix
the geometry of the four-simplices is to assign lengths
to the edges that have their end points in adjacent slices,
and whose time labels therefore differ by one unit. We
choose them to be all time-like and of equal (absolute)
length at > 0, which in our signature convention im-
plies that their squared edge length is given by �a2

t .
(Note that at gives us an approximate distance mea-
sure between adjacent spatial slices labeled by integer-t,
where the distance of a point in slice tC 1 to slice t is
defined as the length of the longest geodesic from the
point to the slice.)
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Our choice of causal geometries and length assign-
ments has the added benefit that we can define a map
that uniquely maps each Lorentzian CDT history to
a Euclidean DT history. Let us start by parameterizing
the relative length of the two lattice parameters as and
at by a positive real number ˛ defined by ˛ WD �a2

t =a2
s .

Performing a rotation ˛!�˛ in the complex lower
half plane can be interpreted as changing all time-like
length assignments of lattice links to space-like ones ac-
cording to

a2
t D�˛a2

s ! a2
t D ˛a2

s : (34.18)

In order that the Euclidean four-simplices obtained after
this rotation satisfy triangle inequalities we require ˛ >
7=12. The resulting triangulation represents a piecewise
linear manifold with Euclidean signature. If one writes
the Lorentzian Regge action as a function of a single
lattice parameter a WD as and of ˛, the action behaves
under the rotation (34.18) as one would expect naively
from a rotation from Lorentzian to Euclidean space-
time, namely,

iSLŒ˛�D�SEŒ�˛�: (34.19)

The prescription (34.18) leading to (34.19) is the Wick
rotation we had in mind in our earlier discussion in
Sect. 34.2.2. It transforms the original Lorentzian path
integral with complex weights eiSL.T/ to one with real
weights e�SE.T/, where by slight abuse of notation we
use the same symbol T to denote the initial triangula-
tion (with Lorentzian edge length assignments) and the
one after rotation (which has identical connectivity, but
purely Euclidean edge length assignments). Modulo the
sign flip for the length assignments, the domain of the
Euclideanized path integral is the same set T D fTg of
triangulations as that of the original Lorentzian path in-
tegral. The set T is of course smaller than the set of all
Euclidean triangulations one would obtain by gluing to-
gether the same Euclideanized building blocks, because
it still carries an imprint of the causality conditions im-
posed on the Lorentzian triangulations.

The fact that in DT and CDT we use standardized
building blocks to construct the triangulations means
that the Regge action takes on a very simple functional
form. For the special case j˛j D 1 we have after the
Wick rotation only a single type of building block, the
equilateral four-simplex with all link lengths equal to
a� as. The Regge form of the Einstein–Hilbert action
becomes

SEŒ�˛ D�1IT�D��0N0.T/C �4N4.T/; (34.20)

as is well known from Euclidean DT quantum grav-
ity. In (34.20), N0.T/ denotes the number of vertices
in the triangulation T , and N4.T/ the number of its four-
simplices. The coupling �0 is related to the gravitational
coupling constant G via 1=�0 / Ga2, and �4 should be
identified with a4�=G, where � is the cosmological
constant.

Whenever j˛j 6D 1, we retain the two different build-
ing blocks (of type (4,1) and (3,2)) after the rotation,
and the action will depend on their total numbers, N.4;1/4
and N.3;2/4 , separately instead of only on their sum
N4 D N.4;1/4 CN.3;2/4 . It is convenient to parameterize
the resulting Euclideanized Regge action in the form

SEŒ�˛I T�D�.�0C 6�/N0.T/

C �4

�
N.3;2/4 .T/CN.4;1/4 .T/

	

C�
�

N.3;2/4 .T/C 2N.4;1/4 .T/
	
;

(34.21)

where the asymmetry parameter � is a function of ˛
such that �.˛D 1/D 0.

We note that � appears in (34.21) on a par with the
other two coupling constants, �0 and �4. In what fol-
lows, we will treat it as a third independent coupling
constant. The reason for doing this – despite the fact
that it has no immediate interpretation in the Einstein–
Hilbert action – is that in the region of phase space
(the space spanned by the three couplings �0, �4 and
�) where we observe interesting, apparently continuum
physics, the entropy of geometries is as important as
the contributions coming from the bare action term. To
make this more explicit, one can rewrite the Euclidean
partition function of the theory as a sum over the count-
ing variables N.4;1/4 , N.3;2/4 and N0 according to

Z.�0; �4; �/D
X

T

e�SEŒT


D
X

N.4;1/4 ;N.3;2/4 ;N0

e�SE

h
N.4;1/4 ;N.3;2/4 ;N0

i

N
�

N.4;1/4 ;N.3;2/4 ;N0

	
; (34.22)

where N .N.4;1/4 ;N.3;2/4 ;N0/ is the number of triangu-
lations with N.4;1/4 four-simplices of type (4,1), N.3;2/4
four-simplices of type (3,2) and N0 vertices. Introduc-
ing the notation c1 D N0=N.4;1/4 and c2 D N.3;2/4 =N.4;1/4 ,
the leading-order behavior of this combinatorial quan-
tity in the large-volume limit is known to be of the
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form

N .N.4;1/4 ;N.3;2/4 ;N0/D ef .c1;c2/N
.4;1/
4 Cs.l.; (34.23)

where s.l. denotes subleading terms in N.4;1/4 , and the
ci typically have some boundedness properties. Since
in the same limit the action (34.21) can be similarly ap-
proximated by SE D Qf .c1; c2/N

.4;1/
4 Cs.l., it implies that

in the region of phase space where the four-volume can
become large, both N and e�SE have the same func-
tional form and are potentially of the same magnitude.
It turns out that this is the same region where we ob-
serve interesting continuum-like physics. Because of
contributions from both energy and entropy, it is clear
therefore that the effective action governing physics in
this nonperturbative region can be very different from
the naïve Einstein–Hilbert action, justifying our inclu-
sion of � as a tunable parameter in the bare action.

To summarize: taking as our starting point space-
times with Lorentzian signature, we can consider the
transition amplitude between an initial and a final
spatial three-geometry, Œg.3/i � and Œg.3/f � separated by

a proper time t. We can then regularize the theory, us-
ing CDT, representing three-geometries by equilateral
Euclidean triangulations and spacetime geometries by
causal, Lorentzian triangulations with a discrete proper-
time foliation. In the CDT framework, each of the
latter can be rotated to Euclidean signature, leading to
a regularized, Euclideanized sum-over-histories. What
remains to be done is to remove the regulator, that is,
take the lattice spacing a to zero. Denoting the initial
and final spatial triangulations by T.3/i and T.3/f , we thus
arrive at the prescription

GE

�h
g.3/i

i
;
h
g.3/i

i
; t; �0; �4; �

	

WD lim
a!0

X
TWT.3/i !T.3/f

e�SEŒT
; (34.24)

which can be viewed as the four-dimensional gener-
alization of the two-dimensional loop–loop amplitude
QG. Q̀1; Q̀2; t/ introduced in (34.15). For a more detailed
description of the CDT construction we refer the inter-
ested reader to [34.51–55].

34.3 The Phase Diagram

Contrary to the situation in two dimensions, we cannot
calculate the amplitude (34.24) analytically. However,
we can extract a lot of nontrivial, nonperturbative infor-
mation by performing Monte Carlo computer simula-
tions. This will usually start with an investigation of the
structure of the space of coupling constants (the phase
space of the underlying statistical system), in particular,
trying to identify regions associated with a second-
order phase transition, where according to standard lore
one can hope to obtain continuum physics.

Let us highlight two technical aspects related to our
implementation of the computer simulations. Firstly,
rather than fixing specific boundary three-geometries
T.3/ at times 0 and t, we take time to be periodic. Al-
though this is strictly speaking in contradiction with im-
posing causality (it introduces closed time-like curves),
in practice it turns out to not affect results. The nature
of the ground states of geometry is such that by choos-
ing t sufficiently large – assumed from now on – the
boundary condition becomes irrelevant.

Secondly, as we have discussed, action (34.21) de-
pends on three coupling constants, one of which, �4, can
be identified with the cosmological coupling constant,
multiplying the spacetime volume V in the action. In

the computer simulations it is convenient to keep this
four-volume fixed, which means that the cosmological
constant does not really play a role. We compensate
for this by performing separate simulations at differ-
ent (fixed) spacetime volumes. From these we can in
principle reconstruct results which depend on the cos-
mological constant via a Laplace transformation,

G.�4; : : :/D

1Z
0

dVe�4V G.V; : : :/: (34.25)

We are therefore left with two coupling constants, �0

and �. The corresponding phase diagram is shown in
Fig. 34.5 [34.56] and exhibits three distinct phases, la-
beled A, B, and C. Phase C appears to be the one
relevant for continuum physics, because only there
do we observe extended four-dimensional universes
[34.57, 58]. A careful numerical analysis reveals strong
evidence that the transition between phases C and A is
first order, whereas between phases C and B we find
a second-order transition [34.59, 60]. This very excit-
ing result implies that the B–C phase transition line is
a candidate for a region in the coupling-constant plane
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Fig. 34.5 The phase diagram of CDT quantum gravity in the
.�0;�/-plane

where genuine UV continuum limits may exist, defined
by approaching specific points on the line. Conversely,
moving away from the transition line into phase C cor-
responds to going toward an IR limit.

34.3.1 Phase C

The reason why phase C is related to extended four-
dimensional spacetimes is illustrated in Fig. 34.6, which
shows both a sample path-integral configuration gen-
erated by the computer during the Monte Carlo simu-
lations, as well as the associated quantum observable,
obtained by averaging in the ensemble. While of course
we have access to the complete geometric informa-
tion of the quantum spacetimes that are generated, only
a single degree of freedom is depicted here, the three-
volume of a spatial slice of the quantum spacetime as
a function of proper time. The time extension in a given
simulation is always fixed (in the case at hand to 80 dis-
crete time steps). What we observe in Fig. 34.6 is that
the universe does not make use of the full time interval
available, but has a nonvanishing volume only on a con-
nected subset of the time axis. (Since we impose the
kinematical constraint that the spatial volume at fixed
t cannot become smaller than 5 tetrahedra – the mini-
mal number required to build a simplicial manifold of
topology S3 – the volume never vanishes completely.
More precisely, what we observe in addition to the bell-
shaped part of the volume profile is the formation of
a distinct stalk which is close to the minimal size of 5
everywhere.)

nt

Sample
configuration

Average from
configurations

806040200
t

8000

6000

4000

2000

0

Fig. 34.6 The three-volume of spatial slices as a function
of proper time in phase C. Shown are a sample configura-
tion of the volume profile, as well as the expectation value
of the same quantity

A quantitative piece of evidence in favor of a four-
dimensional extended universe is the fact that its time
extension (not counting the stalk) scales like N1=4

4 when
the total discrete four-volume N4 of the universe used
in the simulations is varied. Similarly, its discrete three-
volume N3.t/ scales like N3=4

4 . Contrary to one’s naïve
expectations, these findings are highly nontrivial, be-
cause they have been derived in a nonperturbative,
background-independent path integral formulation. The
simplicial building blocks of our regularization are
four-dimensional, but since assembling them is only
dictated by the Boltzmann weight e�SEŒT
 without any
reference to a four-dimensional background, there is no
reason why the resulting object, extrapolated to infi-
nite lattice volume, should be four-dimensional on any
scale.

This is specifically true in the nonperturbative re-
gions of phase space where the entropic contributions
to the effective action compete with those coming from
the classical bare action, as explained above. In these
regions it can easily happen that a type of configuration
is entropically favored that has no resemblance at all
with an extended four-dimensional universe. Just from
looking at the volume profiles, it is obvious that some-
thing like this does indeed happen in phases A and B,
which as a result do not appear to have any classical
limit resembling general relativity [34.57, 58]. How-
ever, even in phase C the observed quantum universe
is truly an outcome of nonperturbative dynamics, not
a consequence of the dominance of the classical action.
(Since we are working in Euclidean signature, domi-
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nance of the classical action would be fatal for the path
integral, because of the action’s unboundedness from
below. In phase C, this instability is cured by the en-
tropy of microstates or, in other words, the path-integral
measure [34.61–63].)

The fact that the path-integral measure can play
a crucial role in determining the nonperturbative dy-
namics was a main lesson learned already earlier in
the context of four-dimensional DT quantum gravity.
When one considers a path integral ensemble of ge-
ometries obtained from gluing four-dimensional equi-
lateral Euclidean simplices, with the only constraint that
the topology should be that of S4, one ends up with
a universe of vanishing linear extension and infinite
Hausdorff dimension [34.64]. This makes the situation
depicted in Fig. 34.6 all the more remarkable!

34.3.2 The Effective Action

However, the surprises do not stop here. The smooth
curve in Fig. 34.6 represents the expectation value
of the volume profile, that is, the average over path
integral configurations measured in the Monte Carlo
simulations. For N4 sufficiently large this curve is very
precisely fitted by the function

hN3.i/i / N3=4
4 cos3

 
i

s0N1=4
4

!
; (34.26)

where i denotes (integer) lattice time, N4 the total
number of four-simplices, and N3.i/ the number of
tetrahedra at time i [34.65, 66], and s0 is a constant.
(The formula is of course not valid in the stalk, where
N3.i/� 5.)

Can the functional form of the expectation value
found in (34.26) be obtained directly from an action
principle? The answer is yes [34.61]. A long time
ago, Hartle and Hawking explored a minisuperspace
approach to quantum gravity, where all gravitational
(field) degrees of freedom at a fixed time are repre-
sented by a single number, the so-called scale factor
or, equivalently, the total three-volume of the universe.
(This rather crude approximation is borrowed from
standard cosmology, where homogeneity and isotropy
are assumed to give a realistic description of our uni-
verse on the very largest scales.) Taking this classically
reduced formulation as the starting point of the quanti-
zation, finding a quantum theory of gravity is reduced
to a quantum mechanical problem in one variable, the
scale factor a.t/ [34.67].

The volume profile (34.26) of the emergent ex-
tended universe found in phase C of CDT quantum
gravity can be derived from an effective action for the
three volume, namely,

Seff D
1

24�G

Z
dt

 
PV3

2
.t/

V3.t/
C k2V1=3

3 .t/�	V3.t/

!
;

(34.27)

where t denotes the proper time, k2 is the numeri-
cal constant, and 	 is the Lagrange multiplier, not
a cosmological constant, because the total four-volume
V4 is kept fixed in the simulations. Intriguingly, one
obtains exactly the same expression (up to an over-
all sign) when plugging a spatially homogeneous and
isotropic ansatz for the metric g��.x/ into the Eu-
clidean Einstein–Hilbert action, and re-expressing the
dependence on the scale factor in terms of the three-
volume V3.t// a3.t/. The solution to the equations of
motion derived from (34.27) is the Euclidean de Sitter
universe (a round four-sphere), which as a function of
proper time t results in the cos3.t=V1=4

4 /-dependence of
(34.26).

Despite the fact that they lead to very similar re-
sults for the dynamics of the scale factor, let us stress
that conceptually there is a big difference between the
ansatz of Hartle and Hawking, who simply assumed
a minisuperspace reduction from the outset, and study-
ing the effective dynamics of (the expectation value of)
the scale factor in a full theory of quantum gravity, as
we are doing. The only small but important reminder
of the nonperturbative origin of the action (34.27) is
its overall sign, which is opposite to that found in
Euclidean cosmology. It can be attributed directly to
entropic contributions to the effective action. The so-
lutions to the equations of motion are of course not
affected by this sign difference. A discretization of the
effective action (34.27) has the functional form

Sdiscr D k1

X
i

�
.N3.iC 1/�N3.i//2

N3.i/

C Qk2N1=3
3 .i/� Q	N3.i/

�
: (34.28)

We have managed to reconstruct it in detail from
the simulation data for the volume–volume correlator
hV3.t/V3.t0/i, and have also shown that the quantum
fluctuations around the de Sitter background geometry
are well described by the action (34.28), yet another
nontrivial result [34.66].
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The same data have allowed us to relate the contin-
uum coupling constant G in (34.27) to the constant k1

in (34.28) according to

GD
a2

k1

p
C4s2

0

3
p

6
; (34.29)

where a is the lattice spacing and C4 is essentially the
volume of a four-simplex (for lattice spacing aD 1), but
depends weakly on the ratio between N.1;4/4 and N.2;3/4
(since the (4,1)- and (3,2)-simplices only have identical
four-volumes when ˛ D 1). This ratio, as well as the
value of the constant s0, defined in (34.26), depend on
the choice of the bare coupling constants �0 and � in
phase C.

Let us consider a typical choice for these couplings,
.�0; �/D .2:2; 0:6/, positioning us in the interior of
phase C. At this point in phase space, we have measured
k1 and with the help of (34.29) expressed Newton’s con-
stant and the Planck length `P in terms of the lattice
spacing, resulting in

G� 0:23a2 ; `P �
p

G� 0:48a: (34.30)

From the identification of spacetime with a Euclidean
de Sitter universe we have that V4 D 8�2R4=3D
C4N4a4, where C4 is the same quantity that appeared
in (34.29). For the range of four-volumes used in the
simulations, N4 2 Œ45 000;360 000�, the linear size �R
of the quantum de Sitter universes lies between 12 and
21 Planck lengths `P. The small size of our universes
is compatible with the fact that the observed quantum
fluctuations in the three-volume are quite substantial,
as illustrated in Fig. 34.6 (see also Fig. 34.7). For larger
universes, the volume fluctuations will quickly become
irrelevant.

However, in order to investigate quantum proper-
ties of spacetime at Planckian and even sub-Planckian
length scales, we want to do the opposite, namely,
make the universes smaller and in this way increase
the small-scale resolution of the simulations. How can
we improve on (34.30) such that a single Planck length
`P corresponds not to just half a lattice spacing, but to
many lattice spacings a? From (34.29) and (34.30) it is
clear that when k1 goes to zero, `P can become much
larger than a. The question is whether we can adjust k1

to go to zero. Since k1 depends on the bare coupling
constants �0 and �, we have performed a scan of phase
C to determine its qualitative behavior [34.66]. Moving
toward the A–C phase transition, k1 is indeed decreas-
ing, without going all the way to zero in the range of

coupling constants scanned so far. Approaching the B–
C phase transition is more difficult, because the system
undergoes a second-order transition, and we observe
a corresponding critical slowing-down. As far as we can
tell from the numerical data at this stage, k1 does not de-
crease when we approach this transition. However, as
we will see in the next section, having k1 go to a fixed
value different from zero is actually the behavior pre-
dicted at an ultraviolet second-order transition line, and
therefore compatible with the continuum scenario we
have appealed to earlier.

34.3.3 Making Contact
with Asymptotic Safety

Let us return to the renormalization group (34.2), which
was formulated in terms of the dimensionless coupling
constant QGD GE2. Now that we have a UV cut-off, the
lattice link length a, we can instead form the dimension-
less quantity OGD G=a2. From (34.29) it can essentially
be identified with the inverse of k1, which we can mea-
sure. We can reformulate the renormalization group in
terms of the new short-distance cut-off as

G.a/D a2 OG.a/ ;

a
d OG

da
D�ˇ. OG/ ;

ˇ. OG/D 2 OG� c OG2C � � � ; (34.31)

where c depends on the constant ! of (34.2). Near the
putative non-Gaussian UV fixed point OG�, we can ex-
pand OG and k1 to the lowest order in a according to

OG.a/D OG� �KaQc; k1.a/D k�1 C QKaQc; (34.32)

for some K, QK, where the approach to the fixed point is
governed by the exponent

QcD�ˇ0. OG�/: (34.33)

As explained in Sect. 34.2.1, in standard lattice the-
ory one would now relate the lattice spacing near
the fixed point to the bare coupling constants with
the help of some correlation length � . However, in
four-dimensional quantum gravity we do not yet have
a suitable correlation length at our disposal which could
play this role.

In search of an alternative, let us first consider the
equation V4 D N4a4, which defines the dimensionful
continuum four-volume V4 in terms of the number N4 of
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Fig. 34.7 (a) Three-volume profile for given N4, for specific values .�0;�/ of the bare coupling constants. Also indicated
is the magnitude of the three-volume fluctuations around the mean value. While the expectation value of the three-volume
scales like N3=4

4 , the fluctuations only scale like N1=2
4 . (b) Identifying a path of constant physics in the �0-� plane. Starting

at some point in phase C, a path moving toward the UV phase transition is created by increasing N4 and simultaneously
adjusting �0 and �, such that the ratio of the size of the three-volume fluctuations and the expectation value of the
three-volume remains constant

four-simplices and the lattice spacing. If we could con-
sider V4 as fixed, we could replace the a-dependence
of (34.32) by a N4-dependence, with the advantage that
N4 is a parameter we can straightforwardly control. Re-
expressing (34.32) in terms of N4 yields

k1.N4/D k�1 �K0N�Qc=4
4 ; (34.34)

for some K0. Since we can measure k1, we could de-
termine the flow to the fixed point. The question is now
which lattice measurements we should perform in order
to make (34.34) applicable. Increasing N4 while staying
at a specific point .�0; �/ in phase C does not corre-
spond to keeping V4 fixed, because during this process
the size of the quantum fluctuations in the three-volume
decreases relative to the expectation value of the three-
volume. (More precisely, we already know that the ratio
goes to zero like 1=N1=4

4 .) Conversely, if physics is to be
constant, which includes a constant V4, that same ratio
should also remain constant.

We will use this observation as our definition for
what we mean by a path of constant physics. If we
had a correlation length available, we could increase

N4 and simultaneously change the bare coupling con-
stants in such a way that the ratio of the correlation
length to the linear extension of the universe of volume
N4 (both in terms of lattice units) stayed constant. In
the absence of a suitable correlation length, we will use
the magnitude of the three-volume fluctuations instead,
and identify a path of constant physics as a trajec-
tory in phase C along which the discrete four-volume
N4 grows, but the accompanying change in the bare
couplings �0 and � ensures that the three-volume fluc-
tuations likewise increase, in such a way that the ratio
between the magnitude of the fluctuations and the mean
three-volume stays the same. Fixing this ratio forces us
to change bare coupling constants when we increase
N4, in this way tracing out a path that moves toward
one of the phase transitions bordering phase C, see
Fig. 34.7b for a schematic illustration. Preliminary re-
sults from computer simulations to determine the flow
defined in this way indicate that it should start quite
close to the B–C phase transition if it should resemble
the flow line of constant physics shown in the figure,
raising again the issue of critical slowing-down near the
B–C line.
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34.4 Relation to Hořava–Lifshitz Gravity
As described above, our CDT data in phase C can be
fitted well to the functional form (34.28), which in turn
can be seen as a discretized version of the minisu-
perspace action (34.27). There is a residual ambiguity
in the interpretation of the discrete time coordinate
appearing in the identification (34.26), which can be
thought of as an overall, finite scaling between the time
and spatial directions. As we have emphasized, due to
the entropic nature of the effective action, there is no
compelling reason to take the geometric length assign-
ments of the regularized theory literally. We have iden-
tified the time coordinate t with continuum proper time
in such a way that we obtain a round four-sphere, which
is a perfectly legitimate and physically well-motivated
choice. However, as we vary the bare couplings �0 and
�, the overall shape of the computer-generated universe
changes in terms of the number of lattice spacings in the
time direction relative to those in the spatial directions.
Although this change is qualitatively in agreement with
the change of ˛ as a function of �0 and �, there is no
detailed quantitative agreement.

Instead of choosing continuum time to be consistent
with a continuum S4-geometry as one moves in phase
space, one may be able to find a modified action which
describes the observed behavior without performing an
overall time rescaling which depends on �0 and�. This
may be especially appropriate in the vicinity of the
phase transition, where the length scales one is probing
become increasingly Planckian, and one would expect
significant contributions to the effective dynamics from
terms not contained in the infrared form of the Einstein–
Hilbert action including higher order curvature terms.

We will consider yet another generalization, which
suggests itself because of the built-in anisotropy be-
tween time and space of the CDT set-up, namely,
a deformation à la Hořava–Lifshitz [34.68, 69]. A corre-
sponding effective Euclidean continuum action, includ-
ing measure contributions, and expressed in terms of
standard metric variables could be of the form

SH D
1

16�G

Z
d3xdtN

p
g

�
.KijK

ij �	K2/C .��R.3/C 2�CV.gij/
	
;

(34.35)

where Kij denotes the extrinsic curvature and gij the
three-metric of the spatial slices, R.3/ the corresponding

three-dimensional scalar curvature, N the lapse func-
tion, and finally V.gij/ a potential which in Hořava’s
continuum formulation would contain higher orders of
spatial derivatives, potentially rendering SH renormaliz-
able. In our case we are not committed to any particular
choice of potential V.gij/, since we are not impos-
ing renormalizability of the theory in any conventional
sense.

An effective V.gij/ could be generated by entropy,
i. e., by the measure, and may not relate to any dis-
cussion of the theory being renormalizable. The kinetic
term depending on the extrinsic curvature is the most
general such term which is at most second order in time
derivatives and consistent with spatial diffeomorphism
invariance. The parameter 	 appears in the (general-
ized) DeWitt metric, which defines an ultralocal metric
on the classical space of all three-metrics (The value
of 	 governs the signature of the generalized DeWitt
metric

Gijkl
�
D 1

2

p
det g.gikgjlC gilgjk � 2	gijgkl/;

which is positive definite for 	 < 1=3, indefinite for
	D 1=3 and negative definite for 	 > 1=3. The role
of 	 in three-dimensional CDT quantum gravity has
been analyzed in detail in [34.70, 71].), and the param-
eter � can be related to a relative scaling between time
and spatial directions. Setting 	D � D 1 and V D 0 in
(34.35) we recover the standard (Euclidean) Einstein–
Hilbert action.

Making a simple minisuperspace ansatz with com-
pact spherical slices, which assumes homogeneity and
isotropy of the spatial three-metric gij, and fixing the
lapse to N D 1, the Euclidean action (34.35) becomes
a function of the scale factor a.t/ (see also [34.72–74],
as well as [34.75] for related work in 2C1 dimensions),
that is,

Smini D
2�2

16�G

Z
dt a.t/3

�

�
3.1� 3	/

Pa2

a2
� �

6

a2
C 2�C QV.a/

�
:

(34.36)

The first three terms in the parentheses define the IR
limit (which in Hořava–Lifshitz gravity is assumed to
include a flowing of 	 to its GR value), while the po-
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tential term QV.a/ contains inverse powers of the scale
factor a coming from possible higher order spatial
derivative terms.

Our reconstruction of the effective action from the
computer data is compatible with the functional form
(34.36) of the minisuperspace action. If we were able to
extract the constant Qk2 in front of the potential term in
(34.28), it would enable us to fix the ratio .1� 3	/=2�
appearing in (34.36) [34.76]. At this stage, the precision

of our measurements is insufficient to do so. The same
is true for our attempts to determine QV.a/ for small
values of the scale factor, which is important for under-
standing UV quantum corrections to the potential near
a.t/D 0. Once we have developed a better computer
algorithm which allows us to approach the B–C phase
transition line more closely, investigating such Planck-
ian properties and testing scenarios of Hořava–Lifshitz
type will be within reach.

34.5 Conclusions
In constructing a theory of quantum gravity using
causal dynamical triangulations, one of our initial in-
puts was the Regge action, which appears in the weights
of individual spacetimes in the gravitational path in-
tegral. However, as we have emphasized repeatedly,
the full effective action generated dynamically by per-
forming the nonperturbative sum over histories is only
indirectly related to this bare action. Likewise, the cou-
pling constant k1, which appears in front of the effective
action and we view as related to the gravitational cou-
pling constant G, has no obvious direct relation to the
bare coupling �0 appearing in the Regge action.

Nevertheless, the leading terms in the effective ac-
tion for the scale factor are precisely the ones present
in (34.27) or, more generally, in the effective Hořava–
Lifshitz action (34.36), at least for sufficiently large
values of the scale factor. The fact that a kinetic term

quadratic in derivatives appears as the leading term in
the effective action is perhaps less surprising, but that
the correct powers of the (undifferentiated) variable
N3.i/ appear in both the kinetic and potential terms in
(34.28) is rather remarkable and very encouraging for
the entire CDT quantization program.

For the range of bare coupling constants and four-
volumes investigated until now our results are com-
patible with the Einstein–Hilbert action. Better data
and more observables will be required to discriminate
between a pure gravity behavior and an anisotropic de-
formation à la Hořava–Lifshitz in the deep ultraviolet.
A beautiful feature of CDT quantum gravity is that
entirely nonperturbative questions of this kind can be
formulated explicitly and addressed with the nonpertur-
bative lattice tools available, and – if one is lucky – be
answered quantitatively.

References

34.1 S. Weinberg: Ultraviolet divergences in quantum
theories of gravitation. In: General Relativity: Ein-
stein Centenary Survey, ed. by S.W. Hawking, W. Is-
rael (Cambridge University Press, Cambridge, UK
1979), 790-831

34.2 H. Kawai, M. Ninomiya: Renormalization group and
quantum gravity, Nucl. Phys. B 336, 115 (1990)

34.3 H. Kawai, Y. Kitazawa, M. Ninomiya: Scaling expo-
nents in quantum gravity near two-dimensions,
Nucl. Phys. B 393, 280–300 (1993)

34.4 H. Kawai, Y. Kitazawa, M. Ninomiya: Ultraviolet
stable fixed point and scaling relations in (2C �)-
dimensional quantum gravity, Nucl. Phys. B 404,
684–716 (1993)

34.5 H. Kawai, Y. Kitazawa, M. Ninomiya: Renormaliz-
ability of quantum gravity near two dimensions,
Nucl. Phys. B 467, 313–331 (1996)

34.6 T. Aida, Y. Kitazawa, H. Kawai, M. Ninomiya: Con-
formal invariance and renormalization group in

quantum gravity near two-dimensions, Nucl. Phys.
B 427, 158–180 (1994)

34.7 M. Reuter: Nonperturbative evolution equation
for quantum gravity, Phys. Rev. D 57, 971–985
(1998)

34.8 A. Codello, R. Percacci, C. Rahmede: Investigating
the ultraviolet properties of gravity with a Wilso-
nian renormalization group equation, Ann. Phys.
324, 414 (2009)

34.9 M. Reuter, F. Saueressig: Functional renormal-
ization group equations, asymptotic safety, and
quantum Einstein gravity (2007), arXiv:0708.1317
[hep-th]

34.10 M. Niedermaier, M. Reuter: The asymptotic safety
scenario in quantum gravity, Living Rev. Relativ. 9,
5 (2006)

34.11 H.W. Hamber, R.M. Williams: Nonlocal effective
gravitational field equations and the running of
Newton’s G, Phys. Rev. D 72, 044026 (2005)



Part
F

|34.5

740 Part F Spacetime Beyond Einstein

34.12 D.F. Litim: Fixed points of quantum gravity, Phys.
Rev. Lett. 92, 201301 (2004)

34.13 T. Regge: General relativity without coordinates,
Nuovo Cim. 19, 558 (1961)

34.14 J. Ambjørn, B. Durhuus, J. Fröhlich: Diseases of tri-
angulated random surface models, and possible
cures, Nucl. Phys. B 257, 433–449 (1985)

34.15 J. Ambjørn, B. Durhuus, J. Fröhlich, P. Orland:
The appearance of critical dimensions in regulated
string theories, Nucl. Phys. B 270, 457–482 (1986)

34.16 F. David: Planar diagrams, two-dimensional lattice
gravity and surface models, Nucl. Phys. B 257, 45
(1985)

34.17 A. Billoire, F. David: Microcanonical simulations
of randomly triangulated planar random surfaces,
Phys. Lett. B 168, 279–283 (1986)

34.18 V.A. Kazakov, A.A. Migdal, I.K. Kostov: Critical prop-
erties of randomly triangulated planar random
surfaces, Phys. Lett. B 157, 295–300 (1985)

34.19 D.V. Boulatov, V.A. Kazakov, I.K. Kostov, A.A. Migdal:
Analytical and numerical study of the model of
dynamically triangulated random surfaces, Nucl.
Phys. B 275, 641–686 (1986)

34.20 B. Dittrich: How to construct diffeomorphism sym-
metry on the lattice, Proc. 3rd Quantum Gravity
Quantum Geom. Sch. (2011)

34.21 V.G. Knizhnik, A.M. Polyakov, A.B. Zamolodchikov:
Fractal structure of 2D quantum gravity, Mod. Phys.
Lett. A 3, 819 (1988)

34.22 F. David: Conformal field theories coupled to 2D
gravity in the conformal gauge, Mod. Phys. Lett. A
3, 1651 (1988)

34.23 J. Distler, H. Kawai: Conformal field theory and 2D
quantum gravity or Who’s afraid of Joseph Liou-
ville?, Nucl. Phys. B 321, 509 (1989)

34.24 F. David: Loop equations and nonperturbative ef-
fects in two-dimensional quantum gravity, Mod.
Phys. Lett. A 5, 1019–1030 (1990)

34.25 J. Ambjørn, J. Jurkiewicz, Y.M. Makeenko: Multiloop
correlators for two-dimensional quantum gravity,
Phys. Lett. B 251, 517–524 (1990)

34.26 J. Ambjørn, K.N. Anagnostopoulos: Quantum ge-
ometry of 2D gravity coupled to unitary matter,
Nucl. Phys. B 497, 445 (1997)

34.27 J. Ambjørn, K.N. Anagnostopoulos, U. Magnea,
G. Thorleifsson: Geometrical interpretation of the
KPZ exponents, Phys. Lett. B 388, 713 (1996)

34.28 J. Ambjørn, J. Jurkiewicz, Y. Watabiki: On the frac-
tal structure of two-dimensional quantum gravity,
Nucl. Phys. B 454, 313–342 (1995)

34.29 H. Kawai, N. Kawamoto, T. Mogami, Y. Watabiki:
Transfer matrix formalism for two-dimensional
quantum gravity and fractal structures of space-
time, Phys. Lett. B 306, 19 (1993)

34.30 J. Ambjørn, Y. Watabiki: Scaling in quantum gravity,
Nucl. Phys. B 445, 129 (1995)

34.31 J. Ambjørn, J. Correia, C. Kristjansen, R. Loll: On
the relation between Euclidean and Lorentzian 2-D
quantum gravity, Phys. Lett. B 475, 24–32 (2000)

34.32 J. Ambjørn, R. Loll: Non-perturbative Lorentzian
quantum gravity, causality and topology change,
Nucl. Phys. B 536, 407–434 (1998)

34.33 C. Teitelboim: Causality versus gauge invariance in
quantum gravity and supergravity, Phys. Rev. Lett.
50, 705–708 (1983)

34.34 C. Teitelboim: The proper time gauge in quan-
tum theory of gravitation, Phys. Rev. D 28, 297–309
(1983)

34.35 B. Dittrich, R. Loll: Counting a black hole in
Lorentzian product triangulations, Class. Quantum
Gravity 23, 3849–3878 (2006)

34.36 P. di Francesco, E. Guitter: Critical and multicriti-
cal semi-random .1Cd/-dimensional lattices and
hard objects in d dimensions, J. Phys. A 35, 897–
928 (2002)

34.37 B. Brügmann, E. Marinari: 4-d simplicial quantum
gravity with a nontrivial measure, Phys. Rev. Lett.
70, 1908 (1993)

34.38 S. Bilke, Z. Burda, A. Krzywicki, B. Petersson,
J. Tabaczek, G. Thorleifsson: 4-D simplicial quan-
tum gravity: Matter fields and the corresponding
effective action, Phys. Lett. B 432, 279 (1998)

34.39 J. Ambjørn, K.N. Anagnostopoulos, J. Jurkiewicz:
Abelian gauge fields coupled to simplicial quan-
tum gravity, J. High Energy Phys. 9908, 016 (1999)

34.40 J. Laiho, D. Coumbe: Evidence for asymptotic safety
from lattice quantum gravity, Phys. Rev. Lett. 107,
161301 (2011)

34.41 D. Coumbe, J. Laiho: Exploring the phase diagram
of lattice quantum gravity, PoS Lattice 2011, 334
(2011)

34.42 R. Loll: Discrete Lorentzian quantum gravity, Nucl.
Phys. Proc. Suppl. 94, 96 (2001)

34.43 R. Loll: A discrete history of the Lorentzian path in-
tegral, Lecture Notes in Physics 631, 137 (2003)

34.44 J. Ambjørn, J. Jurkiewicz, R. Loll: Quantum gravity,
or the art of building spacetime. In: Approaches to
Quantum Gravity, ed. by D. Oriti (Cambridge Univ.
Press, Cambridge 2009) pp. 341–359

34.45 R. Loll: The emergence of spacetime or quantum
gravity on your desktop, Class. Quantum Gravity 25,
114006 (2008)

34.46 J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll: The
emergence of (Euclidean) de Sitter space-time. In:
Path Integrals – New Trends and Perspectives, ed.
by W. Janke, A. Pelster (World Scientific, Singapore
2008) pp. 191–198

34.47 J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll: The
quantum universe, Acta Phys. Pol. B 39, 3309
(2008)

34.48 J. Ambjørn, J. Jurkiewicz, R. Loll: Deriving space-
time from first principles, Ann. Phys. 19, 186
(2010)

34.49 J. Ambjørn, J. Jurkiewicz, R. Loll: Causal dynamical
triangulations and the quest for quantum gravity.
In: Foundations of Space and Time, ed. by G. El-
lis, J. Murugan, A. Weltman (Cambridge Univ. Press,
Cambridge 2012)



Quantum Gravity via Causal Dynamical Triangulations References 741
Part

F
|34.5

34.50 J. Ambjørn, J. Jurkiewicz, R. Loll: Lattice quantum
gravity – An update, PoS Lattice 2010, 014 (2010)

34.51 J. Ambjørn, J. Jurkiewicz, R. Loll: Dynamically trian-
gulating Lorentzian quantum gravity, Nucl. Phys. B
610, 347–382 (2001)

34.52 J. Ambjørn, J. Jurkiewicz, R. Loll: A non-
perturbative Lorentzian path integral for gravity,
Phys. Rev. Lett. 85, 924 (2000)

34.53 J. Ambjørn, J. Jurkiewicz, R. Loll: Quantum gravity
as sum over spacetimes, Lecture Notes in Physics
807, 59 (2010)

34.54 J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll:
CDT – An entropic theory of quantum gravity,
arXiv:1007.2560 [hep-th]

34.55 J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll: Non-
perturbative quantum gravity, Phys. Rep. 519, 127–
210 (2012)

34.56 J. Ambjørn, A. Görlich, S. Jordan, J. Jurkiewicz,
R. Loll: CDT meets Hořava–Lifshitz gravity, Phys.
Lett. B 690, 413–419 (2010)

34.57 J. Ambjørn, J. Jurkiewicz, R. Loll: Emergence of a 4D
world from causal quantum gravity, Phys. Rev. Lett.
93, 131301 (2004)

34.58 J. Ambjørn, J. Jurkiewicz, R. Loll: Reconstructing the
universe, Phys. Rev. D 72, 064014 (2005)

34.59 J. Ambjørn, S. Jordan, J. Jurkiewicz, R. Loll: A
second-order phase transition in CDT, Phys. Rev.
Lett. 107, 211303 (2011)

34.60 J. Ambjørn, S. Jordan, J. Jurkiewicz, R. Loll: Second-
and first-order phase transitions in CDT, Phys. Rev.
D 85, 124044 (2012)

34.61 J. Ambjørn, J. Jurkiewicz, R. Loll: Semiclassical uni-
verse from first principles, Phys. Lett. B 607, 205–213
(2005)

34.62 A. Dasgupta, R. Loll: A proper time cure for the con-
formal sickness in quantum gravity, Nucl. Phys. B
606, 357 (2001)

34.63 J. Ambjørn, A. Dasgupta, J. Jurkiewicz, R. Loll: A
Lorentzian cure for Euclidean troubles, Nucl. Phys.
Proc. Suppl. 106, 977 (2002)

34.64 J. Ambjørn, J. Jurkiewicz: Four-dimensional sim-
plicial quantum gravity, Phys. Lett. B 278, 42–50
(1992)

34.65 J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll: Planck-
ian birth of the quantum de Sitter universe, Phys.
Rev. Lett. 100, 091304 (2008)

34.66 J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll: The
nonperturbative quantum de Sitter universe, Phys.
Rev. D 78, 063544 (2008)

34.67 J.B. Hartle, S.W. Hawking: Wave function of the
universe, Phys. Rev. D 28, 2960–2975 (1983)

34.68 P. Hořava: Quantum gravity at a Lifshitz point, Phys.
Rev. D 79, 084008 (2009)

34.69 P. Hořava, C.M. Melby-Thompson: General covari-
ance in quantum gravity at a Lifshitz point, Phys.
Rev. D 82, 064027 (2010)

34.70 T. Budd: The effective kinetic term in CDT, J. Phys.
Conf. Ser. 36, 012038 (2012)

34.71 T. Budd, R. Loll: Exploring torus universe in
causal dynamical triangulations, Phys. Rev. D 88(2),
024015 (2013)

34.72 E. Kiritsis, G. Kofinas: Hořava–Lifshitz cosmology,
Nucl. Phys. B 821, 467 (2009)

34.73 R. Brandenberger: Matter bounce in Hořava–
Lifshitz cosmology, Phys. Rev. D 80, 043516 (2009)

34.74 G. Calcagni: Cosmology of the Lifshitz universe,
J. High Energy Phys. 0909, 112 (2009)

34.75 D. Benedetti, J. Henson: Spectral geometry as a
probe of quantum spacetime, Phys. Rev. D 80,
124036 (2009)

34.76 J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll,
J. Gizbert-Studnicki, T. Trzesniewski: The semiclas-
sical limit of causal dynamical triangulations, Nucl.
Phys. B 849, 144 (2011)



String Theory
743

Part
F

|35.1

35. String Theory and Primordial Cosmology

Maurizio Gasperini

String cosmology aims at providing a reliable de-
scription of the very early Universe in the regime
where standard-model physics is no longer ap-
propriate, and where we can safely apply the
basic ingredients of superstring models such as
dilatonic and axionic forces, duality symmetries,
winding modes, limiting sizes and curvatures,
higher dimensional interactions among elemen-
tary extended object. The sought target is that of
resolving (or at least alleviating) the big problems
of standard and inflationary cosmology like the
spacetime singularity, the physics of the trans-
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Planckian regime, the initial condition for infla-
tion, and so on.

35.1 The Standard Big Bang Cosmology

In the second half of the last century the theoretical and
observational study of our Universe, grounded on one
hand on the Einstein theory of general relativity, and on
the other hand on astronomical observations of every
increasing precision, has led to the formulation (and to
the subsequent completion) of the so-called standard
cosmological model [35.1–3].

Such a model – like all physical models – is based
on various assumptions. We should mention, in partic-
ular:

i) The assumption that the large-scale spacetime
geometry can be foliated by a class of three-
dimensional space-like hypersurfaces which are ex-
actly homogeneous and isotropic.

ii) The assumption that the matter and the radiation fill-
ing our Universe behave exactly as a perfect fluid
with negligible friction and viscosity terms.

iii) The assumption that the radiation is in thermal equi-
librium.

iv) The assumption that the dominant source of gravity,
on cosmological scales, is the so-called dark mat-
ter component of the cosmological fluid (invisible,
up to now, to all attempted detection procedures of
nongravitational type); and so on.

Using such assumptions, the standard cosmological
model has obtained a long and impressive series of suc-
cesses and experimental confirmations, such as:

i) The geometric interpretation of the apparent reces-
sional velocity of distant light sources, together with
a precise theoretical formalization of the empirical
Hubble law.

ii) The prediction of a relic background of thermal ra-
diation.

iii) The explanation of the process of genesis of the
light elements and of the other building blocks of
our present macroscopic world (like the processes
of nucleosynhesis and baryogenesis); and so on.

In spite of these important achievements the stan-
dard cosmological model was put in trouble when, in
the 1980s, the scientific community started to investi-
gate the problem of the origin of the observed galactic
structures, and of the small (but finite) inhomogene-
ity fluctuations presents in the temperature T of the
relic background radiation (�T=T � 10�5). How did
originate the temperature inhomogeneities �T=T and,
especially, the matter inhomogeneities��=� which are
at the grounds of the concentration and subsequent
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growth of the cosmic aggregates (cluster of galax-
ies, stars and planets) that we presently observe? No
temperature fluctuation and density fluctuation should
exist, on macroscopic scales, if our Universe would be
exactly homogeneous and isotropic as required by the
standard cosmological model.

This problem was solved by assuming that the stan-
dard cosmological model has to be modified, at some
very early epoch, by the introduction of a cosmological
phase – called inflation – characterized by an acceler-
ated expansion rate [35.4–6]. During such a primordial
inflationary phase the three-dimensional spatial sec-
tions of our Universe underwent a gigantic (almost
exponential) growth of proper volume in few units of
the Hubbe-time parameter [35.3, 7, 8]. This process was
able to amplify the microscopic quantum fluctuations of
the matter fields (and of the geometry), thus producing
the macroscopic inhomogeneities required for the for-
mation of the matter structures and of the temperature
anisotropies we observe today [35.8–10].

A phase of inflationary evolution like that proposed
before, however, cannot be extended back in time to
infinity (or, to use the standard therminology, cannot
be past eternal [35.11–13]). If we go back in time to
sufficiently earlier epochs we find that the inflationary
phase of the standard model has a beginning at a precise
instant of time. Before that time, the Universe was in
an extremely hot, dense, and curved primordial state –
an ultimate concentrate of matter and radiation at ex-
tremely high energy and temperature.

This means, in other words, that before starting in-
flating the Universe was quite close to the so-called big
bang epoch, namely to the epoch of the huge cosmic ex-
plosion which – according to the standard model, even
including the inflationary phase – gave rise to the mat-
ter and energy species we observe today, and was at the
origin of the spacetime itself.

In fact, the big bang epoch of the standard model
corresponds (strictly speaking) to a mathematical sin-
gularity where the energy density and the spacetime
curvature blow up to infinity. We can thus say that to
the question How did the Universe begin?, the standard
cosmological model provides the answer: The Universe
was born from the initial big bang singularity.

35.1.1 Validity Restrictions of the Standard
Cosmological Model

It is well known that standard cosmology is based on
the Einstein theory of general relativity, which is a rel-
ativistic theory of gravity, but not a quantum theory.

Hence, like all classical theories, general relativity has
a limited validity range. Because of those limits the
standard cosmological model cannot be extrapolated to
physical regimes where the energy and the spacetime
curvature are too high: this prevents taking too seri-
ously the predictions of such a model about the initial
singularity.

We should recall, in fact, that a classical model is
valid until the corresponding action SD Et is much
larger than the elementary quantum of action (or
Planck’s quantum) h. If we take a cosmological patch
of the size given by the Hubble radius c=H, we can
then estimate the total involved energy E by multiply-
ing the energy density � of the gravitational sources by
the spatial volume .c=H/3, containing the contribution
of all observable matter and radiation at a given time t.
The typical cosmological time scale, on the other hand,
is provided by the Hubble time H�1, and the energy
density � is related to the Hubble time by the Einstein
equations, which imply (modulo numerical factors of
order one) �D c2H2=G, where G is the Newton grav-
itational constant. By imposing the condition Et� h
we then find that the standard cosmological model may
give a reliable (classical) description of the Universe
provided that

c5

GH2
� h: (35.1)

(This condition, in units hD cD 1, can also be
rephrased as H�MP, where MP D .hc=G/1=2 is the
Planck mass).

The parameters C, G, and H appearing in the
above equation are constant, while the Hubble parame-
ter H is closely related to the spacetime curvature and

0

Big bang!

t

H (t)

Fig. 35.1 According to the standard cosmological model,
the spacetime curvature and the associated Hubble param-
eter H.t/ undergo an unbounded growth as we go back in
time, and blow up at the time tD 0 of the initial big bang
singularity



String Theory and Primordial Cosmology 35.3 String Cosmology 745
Part

F
|35.3

is time dependent, H DH.t/. According to the stan-
dard model, in particular, H grows as we go back in
time, and diverges at the time of the big-bang singu-
larity (Fig. 35.1). Correspondingly, the ratio c5=GH2

decreases and goes to zero at the singularity. Hence, be-
fore reaching the big bang epoch we necessarily enter
the regime where condition (35.1) is violated, and the
standard cosmological model is no longer valid.

In order to provide a reliable description of the pri-
mordial Universe we should thus use a more general
approach, based on a theory able to describe grav-
ity also in the quantum regime. A possible candidate
for this theory, which is complete, consistent at all
energy scales and, besides gravity, also incorporates
all fundamental interactions, is the so-called theory of
strings [35.14–16].

35.2 String Theory
The name of this theory is due to the fact that it proposes
a model where the fundamental building blocks of our
physical description of nature are one-dimensional ex-
tended object (elementary strings, indeed), instead of
elementary particles. Such strings can be open (of finite
length), or closed, and the spectrum of states associated
with their vibration modes can reproduce the particle
states of the gravitational interaction and of all the other
fundamental (electromagnetic, strong and weak) inter-
actions.

In addition, if the string model is appropriately su-
persymmetrized – namely, if we add to each bosonic
degree of freedom a corresponding fermionic partner –
we arrive at the so-called theory of superstrings. This
model potentially describes not only all interaction
fields, but also their elementary sources (quarks and
leptons), and thus all possible species and states of mat-
ter [35.14, 15].

But there is more. A basic property of string the-
ory – probably the most revolutionary property, com-
paring with the other theories – is the property of
determining not only the possible form of the inter-
action terms (which is also done by the usual gauge
theories, through the minimal coupling procedure), but
also the form of the free-field (kinetic) terms (which in
the other theories is always left, to some extent, arbi-
trary). Indeed, string theory satisfies a new symmetry

(called conformal symmetry) which rigidly prescribes
the allowed free-field dynamics, at any given order of
the chosen perturbative expansion [35.14, 15].

Quantizing a string, and imposing that the con-
formal symmetry is left unbroken by the quantum
corrections (i. e. imposing the absence of conformal
anomalies), one finds, in fact, that – to lowest or-
der – the electromagnetic field must satisfy the Maxwell
equations, the gravitational field must satisfy the Ein-
stein equations, the spinor fields must satisfy the Dirac
equations, and so on. All field equations, laboriously
discovered in the past centuries through the theoretical
elaboration of a large amount of empirical data, can be
simply predicted by string theory even in the absence
of any experimental input!

Finally, as already stressed, string theory is valid
for all interactions also in the quantum regime, and
can thus be used at arbitrarily high energy scales. In
particular, unlike general relativity, can be applied to
describe the Universe at epochs arbitrarily near to the
big bang epoch. In such a limiting high-energy regime
the equations we obtain from string theory are different,
in general, from the corresponding field-theory equa-
tions, and thus it makes sense to ask the question What’s
new from string theory about cosmology?

In particular, What’s new about the very early
epochs at the beginning of the Universe?

35.3 String Cosmology

There are, in particular, two aspects of string theory
which can play a relevant role in the formulation of
a consistent cosmological scenario.

The first one concerns the so-called dual symme-
try, typical of one-dimensional extended objects. If
such a symmetry is respected (even at the approximate
level) by the gravitational dynamics on cosmological
scales, then any cosmological phase occurring at t > 0,

and characterized by a decreasing Hubble parameter
H (hence, decreasing curvature), must be associated to
a dual partner phase, defined at t < 0 and characterized
by growing H (see [35.17] for a nontechnical illustra-
tion of this duality symmetry). It follows in particular
that the present cosmological phase, subsequent to the
big bang epoch and well described by the standard
model, must be preceded in time by another, almost
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0

Big bang!

t

Present phase
“post-big bang”

Dual phase
“pre-big bang”

Fig. 35.2 The standard cosmological phase, of post-big
bang type, is preceded by a (string-theory) dual phase of
pre-big bang type

specularly symmetric phase, occurring before the big
bang (Fig. 35.2). Such a duality symmetry should also
leave an imprint on the properties of the cosmological
perturbations [35.18].

In Fig. 35.2 both phases are characterized by a cur-
vature (and a Hubble parameter) which diverges as
t goes to zero. If that would be the case, then the
two branches of the cosmological evolution would be
causally disconnected by a spacetime singularity, with
no chances of merging together into a single coherent
model of spacetime evolution. It is here, however, that
comes into play another crucial aspect of string theory.

String theory is indeed characterized by a funda-
mental length 	s, which is a constant parameter of the
string action and which controls the typical size of
a quantized string. The physical role played by 	s is
very similar to the role played by the Bohr radius for
the atom, which represents the minimal allowed size of
the quantum electronic orbitals. The numerical value,

0

Big bang

+
t

Standard
cosmology

Pre-big bang

–

Fig. 35.3 Time evolution of the curvature scale and of the
energy density in a typical example of string-cosmology
scenario. The big bang epoch does not correspond to a sin-
gularity (like in the standard model) but to a phase of
maximal, finite curvature. The Universe evolves starting
from a flat, cold and empty state called the string pertur-
bative vacuum, asymptotically localized at tD�1

however, is quite different: we may expect in fact 	s �

10�33 cm (i. e. a value of 	s which is about 10 times that
of the Planck length 	P D h=MPc2), in order that string
theory may include a realistic description of all funda-
mental interactions (different values of 	s are possible
in the presence of large extra dimensions, see below).

Aside from the particular numerical value of 	s,
what is important, also, is that proper distances and
sizes smaller than 	s have no physical meaning in
a string-inspired model. It follows that, in a string-
cosmology context, the Hubble radius c=H has to be
constrained by the condition c=H & 	s. Since the Hub-
ble radius is directly related to the inverse of the
spacetime curvature, we can deduce that the curvature
cannot blow up to infinity, because of the constraint
H . c=	s. Hence, when a given spacetime region has
reached the limiting value H � c=	s, its geometrical
state can only evolve in two ways: it can either stabi-
lize at such a maximum value, or start decaying toward
lower curvature states after a bounce induced by appro-
priate stringy effects [35.19].

In such a context, the big-bang singularity pre-
dicted by the standard model and sharply localized at
a given epoch (say, tD 0), has thus to be replaced by
an extended phase of very high (but finite) maximal
curvature: the so-called string phase [35.20, 21]. By
combining the existence of the dual symmetry and of
a minimal length scale, a string-based model can thus
complete the standard cosmological scenario by remov-
ing the curvature singularity and extending the physical
description of the Universe back in time, beyond the
big bang, to infinity. The big bang era is still there, but
it is deprived of the standard role of initial singularity:
it corresponds, instead, to the epoch marking the transi-
tion between the growing curvature and the decreasing
curvature regime (Fig. 35.3).

Within such a cosmological scenario (first presented
in detail in [35.22]) the initial cosmological state is no
longer localized at tD 0, but it is moved to the limit
t!�1, and corresponds to an asymptotic state usu-
ally called the string perturbative vacuum. Such a new
initial state, as illustrated in Fig. 35.3, turns out to
be a sort of specularly symmetric version of the final
state that would be reached in the asymptotic future by
a Universe which keeps expanding for ever according
to the standard cosmological dynamics. Namely, a flat,
empty and cold initial state, drastically different from
the initial hot, explosive state, extremely curved and
concentrated, proposed by the standard scenario.

There is, however, a possible asymmetry between
the initial and final state of the above string-cosmology
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model, due to the coupling strength of the fundamental
interactions: such a coupling tends to zero as t!�1,
while it may become very strong in the opposite limit,

if not appropriately stabilized [35.20, 21]. This growth
of the coupling can be accompanied, in principle, also
by a large amount of entropy production [35.23].

35.4 A Higher Dimensional Universe

String theory, which is at the grounds of the cosmolog-
ical scenario described in the previous section, can be
consistently formulated only in the context of a higher-
dimensional spacetime manifold.

In fact, in order to consistently quantize a bosonic
string without introducing ghosts (states of negative
norm), and without violating the Lorentz symmetry, one
must introduce a generalized spacetime manifold with
26 dimensions [35.14, 15]. In this way, however, one
obtains a model which has still a pathology, as it con-
tains tachyons (states of imaginary mass), which we
believe should be absent in any realistic physical model.

In order to eliminate the tachyons, we can general-
ize the bosonic string model by adding fermion states
and considering the so-called superymmetric string
models, or superstring models. In that case, a consis-
tent quantization requires 10 spacetime dimensions, and
the number of total dimensions is to be increased up to
11 (with one time-like and 10 space-like dimensions) if
we require that the five possible types of superstrings
may be connected by duality transformations, and may
represent various weak-coupling regimes of a more fun-
damental theory, called M-theory [35.24, 25].

Hence, whatever string model is assumed to ap-
ply, it is clear that the associated string cosmology
scenario must be referred to a higher dimensional Uni-
verse. On the other hand, all present phenomenological
experience (including the most sensitive high-energy
experiments) points at a world with one time-like and
only three space-like dimensions. We are thus naturally
led to the following questions:

If string theory is correct, and the Universe in
which we live has a number d > 3 of spatial di-
mensions, why our experience is only limited to
a three-dimensional space? why we cannot detect
the additional extra dimensions? what happened to
those dimensions, if they really exist?

There are at least two possible answers to the above
questions.

There is an old-fashioned answer – which, for
a long time, has been also the only possible answer to
the previous questions – dating back to the so-called

Kaluza–Klein model, formulated at the beginning of the
last century [35.26, 27] in the context of a higher dimen-
sional version of general relativity. According to such
model, we cannot detect the extra dimensions because
such dimensions are compactified on length scales of
the extremely small size (hence, they need extremely
high energies in order to be experimentally resolved).

We can take, as a simple example, a long and very
thin cylinder. A cylinder is a two-dimensional object
but, if it is observed from a distance much larger than
its radius, it may appear (in all respects) as being one-
dimensional, extended in length but deprived of any
sensible thickness. In the same way the spatial exten-
sion of our Universe could be largely asymmetric, with
three spatial dimensions macroscopically expanded on
a large scale, while all the other dimensions rolled up
in a highly compact way, and confined on a very small
length scale – of order (for instance) of 	s. If we do not
have a sufficiently powerful instrument, able to resolve
the required (very tiny) distance scales, we will always
observe only three spatial dimensions.

Very recently, however, a new possible answer to
the dimensionality problem has been suggested by the-
oretical studies mainly performed in the second half of
the 1990s, and closely related to particular string-model
configurations, called branes [35.25]. Such a new an-
swer states that we cannot see the extra dimensions
simply because the fundamental interactions propagate
only along three spatial dimensions. All instruments we
use to explore the world around us (starting from our
eyes up to the more powerful and sophisticated techno-
logical tools) have indeed a working mechanism based
on the fundamental (electromagnetic, nuclear, and so
on) interactions. If such interactions are living only on
a restricted subspace of the full spacetime manifold
(like, for instance, waves which propagate on the sur-
face of a pond, and not in the direction orthogonal to
the pond surface), then the extra dimensions are hidden
to our direct experience, even if they are largely (or in-
finitely) extended.

This second possible answer to the dimensional-
ity problem has suggested new, interesting types of
cosmological models, formulated in the context of the
so-called brane-world scenario [35.28].
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35.5 Brane Cosmology

According to the so-called brane-world cosmology, our
Universe could be a four-dimensional slice of a higher
dimensional bulk manifold. The elementary charges
sourcing the gauge interactions are confined on a three-
dimensional hypersurface ˙3 associated to an object
called Dirichlet 3-brane (or D3-brane), and we can-
not detect the external spatial dimensions because the
gauge fields of those charges can propagate only on
the world-volume ˙4 swept by the time evolution of
the brane. (It should be recalled that the description of
our Universe as a four-dimensional domain wall em-
bedded in a higher dimensional bulk spacetime was
previously suggested, with different motivations, also
in [35.29]).

In a string theory context, however, the confinement
mechanism is not equally efficient for all fundamen-
tal interactions. Gravity, in particular, is not at all (or
only partially [35.30]) confined, so that it can propa-
gate even outside the brane spacetime. This possibility
is illustrated in Fig. 35.4, which shows a brane space-
time ˙4 with two possible sources of interactions.
One is a charge, source of the electromagnetic field:
the associated electromagnetic waves (or photons) are
strictly confined to propagate only on ˙4. The other is
a mass, source of the gravitational field: the associated
gravitational waves (or gravitons) can leave the brane
spacetime ˙4 and propagate through the external spa-
tial dimensions.

Photons

6 or 7
space-like dimensions

“external”
to the brane

Electric
charge

Time
Mass

Gravitons

3-d space

Fig. 35.4 A brane-Universe with one time-like and three space-like
dimensions, embedded in an external bulk spacetime character-
ized by six (according to superstring theory) or seven (according
to M-theory) extra spatial dimensions. Electromagnetic forces are
confined on the brane spacetime, while gravitational forces propa-
gate also in the directions external to the brane

This property of the gravitational field is quite im-
portant because, if the higher dimensional bulk space-
time contains two (or more) fundamental branes, they
can interact among themselves gravitationally. And this
possibility leads us to an interesting geometric inter-
pretation of the big bang mechanism, namely of the
high-energy process which has marked the beginning of
the standard cosmological phase, bringing the Universe
to the form we are presently observing.

In fact, during the high-curvature phase localized
around tD 0 (Fig. 35.3), the Universe, if higher di-
mensional, tends to be filled by branes which are
spontaneously produced in pairs from the high-energy
vacuum, and which can gravitationally (and strongly)
interact among themselves [35.21]. According to string
theory, on the other hand, the total gravitational force
in a higher dimensional spacetime includes various
components: we should mention, in particular, the
symmetric-tensor contribution associated to the gravi-
ton, the scalar contribution associated to the dilaton,
and the antisymmetric-tensor contribution associated to
the axion [35.20, 21].

The first two types of forces are always attractive,
while the axion force is repulsive between sources of
the same sign and attractive between sources of oppo-
site sign (like, for instance, a brane and an anti-brane,
characterized by opposite axionic charges). It follows,
in particular, that if we have two identical branes (or
anti-branes) in an initial static and symmetric state, then
the axion repulsion exactly cancels the attraction due
to the graviton and to the dilaton, and the net result-

D3
D
–

3

Fig. 35.5 A brane (D3) and an anti-brane (D3) tend to col-
lide because the mutual gravitational force they experience
in a higher dimensional spacetime is always of attrac-
tive type (like the electric force acting between a charged
particle and the corresponding antiparticle in the usual
three-dimensional space)
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ing force is vanishing. If we have instead a brane and
an anti-brane then the total gravitational force is always
nonvanishing and attractive, quite irrespective of their
initial configuration.

Because of such attractive force branes and anti-
branes, copiously produced during the high-energy
pre-big bang phase, tend to collide among themselves
(Fig. 35.5): it could be, therefore, that it was the colli-
sion of our brane-Universe with an anti-brane to simu-

late the big bang explosion, and trigger the transition
from the pre-big bang phase to the phase of stan-
dard (post-big bang) evolution. This type of scenario
is very similar to the so-called ekpyrotic model (first
proposed in [35.31] and later embedded in the context
of a more general type of cyclic cosmologies [35.32]),
with the only difference that, in the ekpyrotic case, the
3-branes are domain walls representing the spacetime
boundaries.

35.6 Conclusion
String theory, M-theory, and the related models of
brane interactions suggests new and interesting scenar-
ios for the birth of the Universe and its subsequent
primordial evolution, not necessarily limited in time by
a big-bang singularity. They can be tested by present
(or near-future) observations concerning the proper-
ties of the cosmic background of relic gravitational
radiation [35.33] and of the so-called dark energy (or
quintessence field) dominating the large-scale dynam-
ics [35.34, 35].

Some of those scenario have been briefly introduced
and illustrated in the previous sections. But there are
also other, equally interesting scenarios closely related
to the previous ones, among which I would like to men-

tion the string-gas [35.36] and brane-gas [35.37] cos-
mologies, based on the repulsive mechanism of winding
modes, as well as more general bouncing cosmology
models [35.38–40]. Also, models of brane anti-brane
inflation [35.41, 42], where the (time-varying) distance
between the two branes plays the role of the inflation
field.

All these models have many (and interesting) phe-
nomenological implications, but – as usual in a cosmo-
logical context – many studies and many observational
data are required before being able of selecting the
model most appropriate to our Universe. Thus, we can
easily predict that we still have in front of us many years
of work and – maybe – of surprising findings.
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36. Quantum Spacetime

Carlo Rovelli

The recent progress towards the construction of
a quantum theory of gravity has been impressive,
in particular thanks to the Fairbairn–Meusburger–
Han theorems on the finiteness of the spinfoam
expansion [36.1, 2], and the Freidel-Conrady–
Barrett et al.–Han theorems on its classical
limit [36.1, 3–5]. This advance yields a very good
understanding of how quantum spacetime can be
described. I summarize the result of these devel-
opments, focusing on the conceptual aspects of
the problem: the emerging nature of quantum
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spacetime, and the revision of the concepts of
space and time it demands.

36.1 General Ideas for Understanding Quantum Gravity
The theoretical side of the problem of quantum gravity
is relatively well defined: write a quantum theory with-
out uncontrollable divergences whose classical limit is
general relativity, with its matter couplings. This prob-
lem should not be confused with that of unification,
which is independent, and probably unrelated. Quan-
tum chromodynamics (QCD) is a good quantum theory
of the strong interactions, not a unification with other
interactions.

In a quantum theory of gravity, spacetime can no
longer be thought as a four-dimensional manifold, for

the same reason for which a quantum particle does not
have a trajectory. This forces us into a full revision
of the notions of time and space. Therefore to under-
stand quantum gravity, we have to start by getting rid
of the idea that space is a 3-D metric space, time is
a one-dimensional flowing something, or spacetime is
a differentiable manifold. We must replace these con-
ceptual tools with others, compatible with a quantum
theory of spacetime.

Here I describe the new conceptual tools that may
work to understand quantum spacetime.

36.2 Time

In nonrelativistic physics, we describe change in terms
of evolution with respect to an external time variable,
ideally measured by a clock dynamically independent
from the system under consideration. This clock de-
fines the independent variable t in terms of which the
dynamics of the dependent variables qn.t/ that describe
the system is given.

In general relativistic physics, this formal structure
does not work anymore. Instead, we must include the

independent parameter of the evolution among the other
variables of the system, where it is on the same footing
as the other variables and generically indistinguishable
from the others. (Because no clock can be decoupled
from the gravitational field.) Accordingly, physics does
not anymore describe the evolution of the variables in
time, but rather the relative evolution of the variables,
namely the evolution of the variables with respect to
one another.
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The conceptual step is analogous to the step taken
by describing a curve in the .x; y/ plane in terms of a re-
lation f .x; y/D 0 rather than in the form yD y.x/. The
first option is clearly more general than the second.

In the canonical language, this means that we must
work with an (NC1)-dimensional extended configura-
tion space E, if N is the number of degrees of freedom,
and the dynamics is not determined by a Hamiltonian,
but by a Hamiltonian constraint C on the corresponding
phase space.

The dynamics of a finite-dimensional system is
compactly captured by the Hamilton function, which is
a function on E �E defined as the value of the action
on a solution of the equation of motion interpolating
between two given points in E. For instance, the free
particle dynamics is captured by the Hamilton function

S.x; tI x0; t/D
.x� x0/2

2m.t� t0/
: (36.1)

The derivatives of S with respect to the two variables x
and t (treated on equal footing) give the two momenta
px and pt and these satisfy the Hamiltonian constraint

C.x; t; px; pt/D ptC
p2

x

2m
D 0 : (36.2)

In other words, the Hamilton function satisfies the
Hamilton–Jacobi equation

C

�
x; t;

@S

@x
;
@S

@t

�
D 0 : (36.3)

The quantum version of this equation,

C

�
x; t;

@

@x
;
@

@t

�
�.x; t/D 0 ; (36.4)

is called the Wheeler–DeWitt equation. It reduces to the
time-dependent Schrödinger equation in nonrelativistic
systems, when we single out one coordinate on E as the
time variable. But its validity is more general.

A quantum theory is also defined by its transition
amplitudes, which determine the relative probability of
different processes. If spectra are continuous, transition
amplitudes are functions on E �E, like the Hamilton
function. In fact, in the approximation where the Planck
constant „ can be considered small, the transition am-
plitude satisfies

W � e
i
„

S : (36.5)

When everything is well defined, the transition ampli-
tudes are the matrix elements of an operator P� ı.C/
that projects on the solutions of the Wheeler–DeWitt
equation. (If C has a continuous spectrum, this equation
is properly defined using a Gelfand triple, or equivalent
strategies. See [36.6] for a full discussion.)

W.x; tI x0; t/D hx; tjPjx0; t0i : (36.6)

The transition amplitudes can also be defined à la Feyn-
man, by a functional integral over paths going from the
first to the second point in E, weighted by the expo-
nential of i

„

times the classical action of the path. In
this representation, it is immediate to see why (36.5)
holds: it is just the saddle point approximation of the
path integral.

The dynamics of a quantum theory is defined by
giving the Wheeler–DeWitt equation (the Schrödinger
equation in the nonrelativistic case.), or by giving
the path-integral representation of the transition ampli-
tudes, or by directly giving the transition amplitudes,
perhaps in terms of a perturbative expansion. The last
option is that of the Feynman-rules definition of quan-
tum electrodynamics (QED) and is also the option used
below for quantum gravity. This option circumvents
the mathematical complications of the Wheeler–DeWitt
equation or the full path integral.

The quantum dynamics determines the probability
of the state jx; ti, given the state jx0; t0i. Notice that the
quantum states of the theory live on the boundary of the
process considered.

This formal structure can be generalized to a field
theory as follows. Consider a closed compact region in
spacetime and let ˙ be its boundary (Fig. 36.1). The
states of the theory live on ˙ and describe the possible
outcomes of any interaction at the boundary. (Or mea-
surement, in standard parlance. But measurement has
a badly misleading connotation: it sounds as to refer to
the presence of a human being, or a recording device.

Fig. 36.1 The state described by a spin network can be
taken to give the geometry of the three-dimensional hy-
persurface surrounding a finite 4-D spacetime region
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Nothing of this is required to make sense of quantum
theory [36.7].)

The quantum amplitudes are functions of boundary
data and determine the probability of a process defined
by a given boundary state. The boundary states define
a Hilbert space H and the transition amplitudes can be
thought, à la Feynman, as the path integral of the field in
the bulk. (The boundary does not need to be considered
split a priori into past and future. If we do consider this
split, then the boundary Hilbert space splits into the ten-
sor product of an in and an out Hilbert spaces. Tensor
product states correspond to pure states, while generic
states include statistical states [36.8].)

In quantum gravity, the transition amplitudes de-
scribe the full process in the bulk including the gravi-
tational phenomena; therefore, there is no Riemannian
manifold inside, as there is no trajectory of a quan-
tum particle. The boundary data include the gravita-
tional boundary data, and these amount to a speci-
fication of boundary metric quantities. Therefore in-
formation such as the time lapsed during the pro-
cess or the physical distance between two boundary
points is not specified externally: they are already con-
tained in the boundary data about the boundary value
of the gravitational field, that is, the metric. This is
the beautiful and subtle manner in which time and

space are reinterpreted in quantum gravity: as gravi-
tational properties of the boundary data for physical
processes.

Note that in (36.6) the arguments of the transition
amplitudes are coordinates on E only if the quantum
spectrum of these is continuous. If it is discrete, the ar-
guments of the transition amplitudes are the quantum
numbers labeling the discrete spectrum. This is what
will happen below.

Summarizing, to construct a quantum theory of
gravity we need two ingredients: a boundary Hilbert
space capable of describing the possible outcome of in-
teractions with (measurements of) the gravitational field
and matter on the boundary of a process, and transition
amplitudes for any given boundary states. The theory
will have the appropriate classical limit if the transition
amplitudes behave as (36.5) for small „, where S is the
Hamilton function of general relativity.

Both these ingredients are constructed below.
This structure circumvents entirely the so-called

problem of time of quantum gravity. The problem of
time is resolved by this way of defining the quantum
dynamics. The theory is about probabilities assigned to
alternative processes. We may avoid talking about time
altogether, we may forget the word time, and still fully
and consistently describe change in the world.

36.3 Infinities

Classical field theories have an infinite number of de-
grees of freedom. Quantum field theories that describe
the world well, such as QED and QCD, are commonly
defined by building a quantization of a system with a fi-
nite number of degrees of freedom, namely quantizing a
truncated system, and then studying the limit where the
truncation is refined. In QED one defines the n-particle
Hilbert space, and then formally define the Fock space
as an appropriate limit when n increases. When using
Feynman graphs, we compute a finite number of graphs,
say up to n vertices, and, most of the times, just pay a lip
service to the limit where n is increased. In lattice QCD,
we define the theory on a finite lattice, and then study
the behavior of physical quantities as the number of lat-
tice cells increases.

Quantum gravity also needs to be defined using
a truncation.

However, the way the continuous limit is recovered
is peculiar, because of the pattern of dimensions in the
theory. Conventional interacting quantum field theories
suffer for ultraviolet divergences. These come from the

dynamics of arbitrarily short-scale (high-momentum)
modes. To deal with these, an artificial cut-off is intro-
duced. This is then sent to zero, to get rid of its artificial
effects. In perturbative QED and QCD, we consider the
limit where the number of vertices n is increased and
the cut off is removed. In lattice QCD, we study the
behavior of physical quantities as the number of lattice
cells increases and the lattice spacing is taken to zero.

In quantum gravity, on the other hand, there is
a scale in the theory, which is the Planck scale

p
„G.

A large indirect evidence indicates that this scale deter-
mines the maximal physical scale for the field modes.
Intuitively, a higher mode falls into its own black
hole, because its high energy density generate horizons
smaller than its wavelength. Therefore in quantum grav-
ity there is an intrinsic cut off, already built in into the
theory. This implies that there is no artificial cut off that
needs to be taken to infinity, in constructing the the-
ory. Unlike QCD, quantum gravity can be defined by
first truncating the classical theory and then increas-
ing the lattice size without taking a cut off to zero.
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See [36.9] for a detailed discussion of the source of the
difference.

This can also be seen from a different perspective.
In lattice QCD, the size of a cell is an external parame-
ter that enters in the definition of the dynamics. We must
tune it to zero to get to the physical theory. In gravity,
the physical size of a cell is precisely the dynamical
field itself, because the gravitational field is the met-
ric. In any transition amplitude, it is determined by the
boundary data. Therefore there is no parameter to tune.
Concretely, the Wilson action of given lattice (which
defines a truncation of QCD) depends on a parameter,
the Regge action on a given triangulation (which defines
a truncation of general relativity) does not.

In conventional high-energy physics, the need for
the removal of the cut off implies that the theory must

behave as if it was in the large-scale limit with respect
to the cut-off scale. To avoid triviality, this implies that
the theory must sit on a critical point. The same is not
true in quantum gravity for the reason explained. Con-
ventional quantum field theory is like condensed matter
on critical points, where the theory becomes indepen-
dent from the atomic scale; quantum gravity is like
condensed matter away from critical points, where the
atomic scale is not lost and determines the macroscopic
parameters.

The atomic scale in quantum gravity is the Planck
scale. It affects large-scale physics in the same manner
in which the Bohr radius affects the normal physics of
a piece of matter.

This is the key structural difference between quan-
tum gravity and conventional quantum field theory.

36.4 Space

The Hilbert space H� that represents the gravitational
field on a given boundary, at fixed truncation of the the-
ory, can be defined as follows. Let � be an oriented
graph (defined solely by its combinatorial structure).
Intuitively, � is the dual graph of a cellular decom-
position of ˙ (Fig. 36.2). The graph determines the
truncation. Refining the graph leads to a better approx-
imation of the theory.

Associate with each link l of the graph an SU.2/ el-
ement Ul. The states of the theory are given by square
integrable functions  .Ul/ invariant under the gauge
transformations

 .Ul/ 7!  .�s.l/Ul�
�1
t.l// ; (36.7)

where s.l/ and t.l/ are the two nodes where the link
l starts and ends and �n 2 SU.2/ for any node n of
the graph. Square integrability is under the SU.2/ Haar
measure.

The remarkable feature of this Hilbert space is that
it describes a 3-D curved metric geometry in the clas-
sical limit. In a sense, this should not be surprising: the
main result of Ashtekar’s formulation of general rela-
tivity [36.10] is that gravity can be described using the
phase space of an SU.2/ Yang–Mills theory, and the
Hilbert spaceH� is precisely the Hilbert space of a lat-
tice SU.2/ Yang–Mills theory.

Therefore, it describes precisely the gravitational
field on the boundary of a process [36.11–13]. More
precisely, at each given truncation � , semiclassical

states describe the discrete geometry of a piecewise flat
cellular decomposition of a curved metric space.

This important result is described in detail in
many reviews of loop quantum gravity. See for in-
stance [36.14]. Here I give only a sketchy summary.
The key point is that there are natural derivative opera-
tors defined on the Hilbert spaceH� : the left-invariant
vector fields at the nodes, along the links. These can
be shown to satisfy algebraic properties that imply that
they are in one-to-one correspondence with the quanti-
ties describing the metric geometry of a discrete space.
In particular, the Casimir on each link is the area of
the corresponding face bounding two cells. The scalar
product of two links emerging from the same node
determines the angle between the normals of the cor-

Fig. 36.2 The graph � is the dual of a cellular decompo-
sition of the 3-D boundary of the process
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responding faces. Thus the expectation values of these
operators define a piecewise flat geometry on the cellu-
lar decomposition (Fig. 36.3).

A complete set of commuting observables inH� is
provided by the areas of the faces and the volume of the
3-D cells. Accordingly, the Hilbert space admits a basis
j�; jl; vni, called the spin network basis [36.15], labeled
by three groups of quantum numbers: the graph � itself,
which gives the connectivity of the cells, the spins jl as-
sociated with the faces, that are the quantum numbers
of the areas and, at each node n, the quantum number
vn of the volume of the corresponding cell. Since areas
of surfaces and volume of cells do not fully determine
the classical geometry, the rest of the geometry fluctu-
ates. This is a situation analogous to angular momentum
theory, where only L2 and Lz can be diagonalized simul-
taneously.

An important result is that the spectrum of area and
volume is discrete [36.16, 17]. This is the realization of
the intuitive idea of the existence of a physical cut off
at the Planck scale. Intuitively, the physical size of the
polyhedra of Fig. 36.3 can never become smaller than
the Planck size. This is a typical quantum phenomenon:
the value of the angular momentum can never become
smaller than „=2. In quantum gravity, it is the reason of
the ultraviolet finiteness of the transition amplitudes.

36.4.1 Transition Amplitudes

The transition amplitude associated with a given bound-
ary state is defined as follows. First, pick a two-
complex C bounded by � . Call f its faces, e its
edges, and v its vertices. (For simplicity, I consider here
only two complexes that are dual to a 4-D triangula-
tion [36.18].). Then

WC.Ul/D

Z
SU.2/

dhvf

Y
f

ı

 Y
v

hvf

!

�
Y

v

Av.hvf / ; (36.8)

where the vertex amplitude is

A.hf /D

Z
SL.2;C/

dge

Y
f

X
j

djTrj

�
h
hf Y

�gege0Y
i
: (36.9)

dj D 2jC1 and Y maps the SU.2/ representation of spin
j into the spin j subspace of the SL.2;C/ unitary rep-

jl

|Γ, jl ,vn

υn

Fig. 36.3 A spin network and the quanta of space it de-
scribes

resentation determined by the discrete spin kD j and
the continuous parameter pD � j. The parameter � is
a free parameter in the theory. (For a recent clarifying
discussion on the Hamiltonian structure of the theory,
see [36.19].). This is the full definition of a quantum
theory of gravity.

This amplitude was derived in [36.20] building
on [36.21–24], and is sometimes called the EPRL
(Engle-Pereira-CR-Livine) amplitude. For details, full
references, and a derivation of these expressions from
the classical action of GR see [36.14, 25]. The exten-
sion of this amplitude that includes the cosmological
constant using a quantum deformation of the groups is
defined in [36.1, 26].

There are three key properties of these amplitudes
are three:

1. They define transition amplitudes for the Hilbert
space H� , which have the correct degrees of free-
dom to describe the gravitational field.

2. They yield the Hamilton function of a truncation
of Lorentzian general relativity over a cellular de-
composition dual to C. More precisely, the ver-
tex amplitude (36.9) yields the exponential of the
Regge action on the corresponding cell [36.4] and
the quantum deformed amplitude yields the ex-
ponential of the Regge action with cosmological
content [36.1, 5]. The full amplitude is a trun-
cation of a Feynman sum over geometries in the
bulk [36.3].

3. They are finite. This is the key result. A theorem
states that the vertex amplitude with cosmologi-
cal constant is finite [36.1, 2]. The Planck length
and the cosmological constant provide physical ul-
traviolet and infrared cutoff, respectively. (Without
cosmological constant, they are still ultraviolet fi-
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nite, but there are diverging radiative corrections
describing large spikes of the geometry. These are
cut off by the cosmological constant.)

Note the structure of the theory is shown in
Fig. 36.4.

The amplitudes on a given truncation approximate
the truncated dynamics of classical general relativity
on a given triangulation. These approximate continu-
ous general relativity when the truncation is refined. As
in QCD and QED, the truncation is expected to offer
already a good approximation to the full dynamics, in
appropriate regimes.

Although a number of important technical issues,
which must not be underestimated, remain open (see
a discussion in [36.14]) Eqs. 36.8–36.9 give a defi-
nition of a quantum theory of gravity which is finite

j

Semiclassical limit

C
on

tin
uo

us
 li

m
it

c

Full quantum
gravity (W )

c

General
relativity

j
Truncated
amplitudes

(Wc)

Regge calculus
on c

Fig. 36.4 The structure of covariant LQG

and yields classical general relativity in an appropriate
limit. The construction provides a good ground for dis-
cussing the physical question of the nature of quantum
spacetime.

36.5 Quantum Spacetime
I can now summarize the conceptual structure that has
emerged, for a quantum theory of spacetime.

Measurements directly involving the gravitational
field are measurements of geometrical lengths, areas,
or volumes. For instance, any measurement of a cross-
section is the measurement of an area. Gravitational
wave detectors measure (the variation of) a length. The
outcomes of these measurements are described by the
spin-network Hilbert space. No measurement measures
an infinite number of quantities: we always have access
only to a finite number of outcomes. Hence a truncation
of the degrees of freedom is sufficient to describe the
outcome of any measurement.

The theory predicts that measurements of some ge-
ometrical quantities yield discrete values [36.27, 28].
According to the theory, for instance, a physical cross
section cannot be smaller than the Planck scale; it can

only take values which are in the spectrum of the area
operator. (See [36.29] for a discussion on the diff invari-
ance of these prediction.)

Dynamics is given by associating an amplitude with
each process. A process is determined by its bound-
ary state, namely the outcome of a measurement (or
a generic interaction) on its boundary. The relative
probability of distinct processes can be computed from
these amplitudes. The formalism does not require to go
at infinite distance from an interaction to have well-
defined physical amplitudes.

Spacial and temporal specifications make sense
only on the boundary of a process, in the context of an
interaction. In other words, space and time themselves
are reduced to quantum entities such as the position of
a quantum particle, which is determined only at inter-
action time, otherwise is fluctuating.
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37. Gravity, Geometry, and the Quantum

Hanno Sahlmann

There are various indications that finding a quan-
tum theory of gravity is important for a full
understanding of fundamental physics. Loop
quantum gravity is one possibility for such a quan-
tum theory. In the following, we explain its origin
in a gauge theoretic reformulation of gravity, and
its status as a quantum theory of geometry. An
overview is given over Einstein’s equations in the
quantum theory. As an example for an application
of loop quantum gravity, the quantum theory of
certain black hole horizons is sketched. We close
with an outlook on current research and future
challenges.
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Perhaps the most surprising and delightful aspect about
general relativity is that gravity is geometry. The grav-
itational field not only carries the gravitational in-
teraction, it also determines the geometry of space–
time. This dual nature of gravity makes contemplation
of a quantum theory of gravity fascinating yet very
difficult.

At the same time, a quantum theory of gravity car-
ries with it the hope of resolving some of the problems
that are posed by our present understanding of fun-
damental physics. First off, there is general relativity
itself, in which singularities occur rather generically.
Moreover, at these singularities, curvature diverges and
space–time ends. We know that strong gravitational
fields lead to particle creation via quantum processes,
which in turn influences the gravitational field. Thus,
these singularities are points at which one can not trust
general relativity any more. Quantum theory and, ulti-
mately, quantum gravity, must be taken into account,
and it may lead to a drastic change in the picture, per-
haps even by resolving the singularities.

Next, the quantum field theories (QFTs) that de-
scribe matter and its nongravitational interactions very

well are often only effective theories. They contain
terms that become very large at large energy scales or,
differently put, at very small length scales. If quan-
tum gravity changes the structure of space–time at the
smallest scales, it has the potential to cut off these di-
vergences, and result in a more fundamental picture for
quantum field theory. Indeed, while there is no definite
proof of nontrivial structure at small scales, there are
some hints. With the Planck length

`P D

r
G„

c3
� 1:6�10�35 m ; (37.1)

there exists a constant of nature that is a very small
length scale. Natural scales often indicate that new phe-
nomena are to be expected; thus, the Planck length may
be indicative of a change of the structure of space–time
at the smallest scales.

Last but not least, there are the mysterious laws of
black-hole thermodynamics: stationary black holes are
described by a few macroscopic parameters, just like
a thermodynamical system in equilibrium. Moreover,
the parameters obey equations that are mathemati-
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cally equivalent to the equations of thermodynamics.
This leads to the identification of thermodynamical and
geometric quantities and, what is more, these identifica-
tions seem to make sense. For example, the black-hole
mass is identified with thermodynamic energy, and
black holes can also be assigned a temperature, due to
their thermal Hawking emission. In this situation it is
tempting to accept that black holes are thermodynami-
cal systems, and to identify their microstates with states
of the quantum theory of gravity.

How, then, can one approach the search for a quan-
tum theory of gravity? In the absence of experimental
hints, the only hard constraints are mathematical con-
sistency and the reduction to general relativity in the
appropriate circumstances. Therefore, the answers de-
pend on the viewpoint.

One natural avenue to try is to quantize gravity
perturbatively along the same lines as the other fun-
damental interactions, using a free graviton field on
a fixed, typically flat, background and the apparatus of
perturbation theory. This can give interesting results as
long as one is only interested in an effective quantum
theory describing physics in a limited regime, but if fails
to give a fundamental theory due to the perturbative
nonrenormalizability of gravity. One can add symme-
tries that improve the convergence, as has been explored
in supergravity, or even new fundamental principles, as
for example in string theory.

In contrast, loop quantum gravity (LQG) starts
from the assumption that a perturbative approach and,
in particular, a split into flat background and curvature
perturbations does not match well the geometric
character of gravity. Minkowski space, after all, has
no special status among the solutions of Einstein’s
equations, besides the high degree of symmetry. Thus,
loop quantum gravity is a nonperturbative approach to
the quantum theory of gravity, in which no classical
background metric is used. In particular, its starting
point is not a linearized theory of gravity. Furthermore,
loop quantum gravity starts from a classical formula-
tion that is, on a kinematic level, identical to that of
an SU(2) gauge theory [37.1, 2]. The starting point
is thus much closer to that for the other fundamental
interactions, which are also gauge theories.

Otherwise, loop quantum gravity is conservative, in
the sense that new symmetries or additional gravita-
tional or nongravitational fields are not essential. As we
will explain, a certain amount of unification of the de-
scription of matter and gravity is achieved. However,
the question of whether matter fields must have special
properties to be consistently coupled to gravity in the
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Fig. 37.1 A part of a spin network

framework of loop quantum gravity is one of the im-
portant open questions in loop quantum gravity. Finally,
while loop quantum gravity still operates according to
the rules of quantum field theory, the details are quite
different from those for field theories that operate on
a fixed classical background space–time.

One result that can be directly traced back to work-
ing without fixed background, and with gauge-theory
variables, is that in loop quantum gravity, geometry
is reduced to combinatorics and group representation
theory. Indeed, aspects of loop quantum gravity were
foreshadowed in works of Penrose (see for exam-
ple [37.3]), who argued that geometry can emerge from
the quantum theory of angular momentum. He studied
the quantized geometry inherent in spin networks, di-
rected graphs in which the edges carry representations
of SU(2) (labeled by spin quantum numbers), and the
vertices are invariant tensors under the action of SU(2)
given by the representations going into, or out of, the
vertex (Fig. 37.1).
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Fig. 37.2 The lowest part of the area spectrum of loop
quantum gravity, in units of l2P
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Fig. 37.3 Part of a spin-foam diagram

Fig. 37.4 Sketch of a black hole in loop quantum gravity:
spin networks end on the horizon, endow it with area, and
couple to the surface degrees of freedom

While Penrose was going for mathematical simplic-
ity and beauty, with the development of loop quantum
gravity his conjectures became the result of a deriva-
tion: in loop quantum gravity spin networks are a repre-
sentation for quantum states of spatial geometry [37.4–
8]. In this quantum theory of geometry, which will be
the topic of Sect. 37.2, quantities such as area and vol-
ume are quantized in units of the order of the Planck
length. In this sense, there is indeed a minimal length
scale of the order of the Planck length in loop quan-
tum gravity. But, the spectrum becomes exponentially
dense for large eigenvalues, thus effectively forming
a continuum. As an example, the lowest part of the area
spectrum is depicted in Fig. 37.2.

The edges of the spin networks can be thought of as
flux tubes of area, whereas the vertices carry informa-
tion about volumes.

Loop quantum gravity uses, in its original version,
a canonical approach to quantization. Einstein’s equa-

tions are encoded into constraints on the phase-space
variables. These translate into operator equations in the
quantum theory. The spin-network states do not satisfy
the quantum version of Einstein’s equations. Rather,
extremely complicated linear combinations have to be
formed. They can be organized into spin-foam dia-
grams, which can be considered as depicting a kind of
time evolution of spin networks [37.9]. A part of such
a diagram is depicted in Fig. 37.3 and a detailed discus-
sion can be found in Chap. 38.

While the interpretation of these as diagrams as
quantized space–times is not yet understood in all de-
tails, it is very encouraging that one can arrive at the
same structure from a path-integral point of view: in
spin-foam gravity, these diagrams describe an expan-
sion of a discretized path integral for gravity. A separate
chapter of this handbook is devoted to this approach to
quantum gravity. Recent developments show that spin-
foam gravity can literally be regarded as a path-integral
formulation of LQG [37.10–16].

It is also very encouraging that loop quantum grav-
ity provides a description of black-hole horizons that
can account for black-hole entropy for static and rotat-
ing, charged, and neutral black holes. Spin networks can
end on the horizon, endow it with area, and couple to
the surface degrees of freedom, which are described by
a Chern–Simons gauge theory; see Fig. 37.4.

The space of microstates of the horizon accounts for
the entropy.

Another area of success for loop quantum gravity
is cosmology. In loop quantum cosmology, one applies
the principles of loop quantum gravity to minisuper-
space models for cosmology. It turns out that in this
context, the big bang singularity is indeed resolved, and
inflation is favored [37.17–21]. This area is discussed in
detail in Chap. 39.

But, there are also a number of challenges. Some
of these arise from the fact that the requirement of
background independence leads to a theory which is
built around a very quantum mechanical gravitational
vacuum, a state with degenerate and highly fluctuating
geometry. On the one hand, this is exciting, because it
means that when working in loop quantum gravity, the
deep quantum regime of gravity is at one’s fingertips.
However, it also means that to make contact with low-
energy physics is a complicated endeavor. The latter
problem has attracted a considerable amount of work,
but is still not completely solved. A better understand-
ing of this issue should also lead to unequivocal testable
predictions from loop quantum gravity, which are so far
missing.
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A related area of work concerns the generation and
interpretation of solutions: in loop quantum gravity the
question of finding quantum states that satisfy quantum
Einstein equations is reformulated as finding states that
are annihilated by the quantum Hamilton constraint.
The choices that go into the definition of this con-
straint are not yet well understood in physical terms.
In particular, the constraint should be implemented in
an anomaly-free way, but what this entails in practice,

and whether existing proposals fulfill this requirement,
are still under debate. Also, methods for approximately
solving the constraint, and the interpretation of the so-
lutions, are still under investigation.

Loop quantum gravity is a large research area, and
the present chapter can not replace some more complete
and detailed reviews that are available. We refer the in-
terested reader in particular to [37.22–24], and to the
textbook [37.25].

37.1 Gravity as a Gauge Theory

In the present section, we will briefly describe the
classical phase-space description that underlies loop
quantum gravity.

The original phase-space description of gravity is
due to Arnowitt, Deser, and Misner (ADM) [37.26], de-
scribed in Chaps. 16–18. The phase-space variables are
the spatial metric qab of a spatial slice of space–time,
and �ab D

p
q.Kab �Kqab/ with Kab the extrinsic cur-

vature of the slice. They are canonical coordinates, with
the Poisson brackets

n
qab.p/;K

a0b0.p0/
o
D 8�Gıa0

a ı
b0
b ı.p;p

0/ : (37.2)

But these coordinates are not free. Rather, they have to
satisfy two sets of constraints

Da�
ab D 0 ;

p
q

�
RŒq��

1

q

�
�2

2
��ab�ab

��
D 0 : (37.3)

In the absence of nontrivial boundary conditions, the
canonical Hamiltonian is just a combination of these
constraints. So, evolution under the Hamiltonian is
gauge, and has to be divided out to obtain the true phase
space.

A starting point for loop quantum gravity is now the
following remarkable fact [37.1, 2, 27, 28]:

There is a formulation of general relativity in which
the (unconstrained) phase space is precisely that of
SU(2) Yang–Mills theory.

This phase-space description is a natural basis for
a quantization of gravity. The other fundamental inter-
actions are described by Yang–Mills theories; thus, one
obtains a more unified description of all interactions.

Moreover, this description makes the tools available
that have been developed for quantizing the other inter-
actions. The original approach was an extension of the
phase space (37.2) and (37.3), followed by a canonical
transformation [37.1, 2]. In the following, we will de-
rive the canonical formulation from a covariant action
principle. For some more detail on this, see [37.22].

A first step toward a formulation of gravity as
a gauge theory is the introduction of the connection as
an independent degree of freedom. This can be done in
the standard Einstein–Hilbert action, but more interest-
ing for us is the first-order formalism. Here, the Palatini
action reads

SPŒ!; e�D
1

4�

Z
d4x�IJKLeI ^ eJ ^F.!/KL ; (37.4)

where � D 8�G is the coupling constant of gravity. The
field e is a coframe, that is, a pointwise basis of the
cotangential bundle eI � eI

� dx�. Equivalently, it can
be viewed as a point-dependent map R4! TpM. It de-
fines a space–time metric via

g�� D eI
�eJ
��IJ : (37.5)

Vice versa, a space–time metric g defines an orthonor-
mal coframe via (37.5), but only up to SO(3,1) rotations
in the internal space R4. ! on the other hand is an
SO(3,1) connection, and F its curvature.

A Legendre transform of the Palatini action leads
(after solving the second-class constraints) back to the
original ADM variables (37.2). But, this can be changed
by adding the Holst term to the action

SŒ!; e�D SPŒ!; e�C SHŒ!; e� ; (37.6)

with [37.29]

SHŒ!; e�D�
1

2�ˇ

Z
d4xeI ^ eJ ^F.!/IJ : (37.7)
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The new term comes with an additional coupling con-
stant ˇ, the Barbero–Immirzi parameter. The equa-
tions ıS=ı! are equivalent to D.!/eD 0 [37.29], which
can be solved for ! � !.e/. Re-inserting !.e/ into the
action gives

SHŒ!.e/; e�D 0 ; SPŒ!.e/; e�D SEHŒg.e/� ; (37.8)

where SEH is the Einstein–Hilbert action. Thus, the
above action principle leads to the equations of motion
of general relativity, irrespective of the value of ˇ. It
does have physical significance in the case that spinor
matter is coupled to gravity [37.30]. Solving ıS=ı! D
0 and re-inserting into the action gives an effective
four-fermion interaction in that case with ˇ-dependent
strength. The effect is however suppressed by the gravi-
tational coupling constant, and is thus extremely small.

For the values ˇ D˙i, the resulting canonical for-
mulation has special properties [37.1, 2], which will be
briefly described below.

To go over to the Hamiltonian formulation, one
chooses a time function t on the space–time manifold,
whose level surfaces ˙t give a foliation of the space–
time into spatial slices, as well as a time covector field
t˛ with t˛@˛ tD 1, and decompose it into tangential and
normal components with respect to ˙t

t˛ D Nn˛CN˛ ; (37.9)

where n˛ is the unit normal and the shift vector N˛ is
tangential. The gauge freedom in the coframe is par-
tially fixed by going to time gauge

e0
�Dn� : (37.10)

Since n� is time like, only SO(3) remains as gauge
group. The covariant fields can now be decomposed
accordingly, and adapted coordinates be chosen. The
coframe assumes the structure

.eI
�/D

0
BB@

N Ni

0
0 ei

a
0

1
CCA ; (37.11)

where we let I run horizontally and � vertically. The
index i now runs from one to three, and a is a tangent-
space index for˙t. Analogously,! can be decomposed
into SO(3) connections � i

a WD �
i0

KL!
KL
a , Ki

a WD !
i0
a and

the rest, i. e., the components of !0. The action can now

be expressed in terms of the decomposed fields [37.22]

SD
1

�ˇ

Z
dt
Z
˙t

Ea
i
PAi

a �
�
! i

0GiCNaC0aCNC0
�

„ ƒ‚ …
DWhcan

;

(37.12)

with

Ai
a D �

i
a CˇKi

a ;

Ea
i D

p
det qea

i ;

qab D ei
aej

bıij : (37.13)

Here, q denotes the metric on˙t and the dot is the time
derivative t˛@˛ . We see that A and E are conjugate canon-
ical variables

˚
Ai

a.x/;E
b
j .y/

�
D �ˇıb

aı
i
j ı.x; y/ : (37.14)

These variables were first introduced in [37.1, 2] for
the special case ˇ D˙ i by a canonical transformation
from, and extension of, the phase-space formulation in
terms of ADM variables.

The Hamiltonian density hcan is a sum of con-
straints. One has

Gi DD.A/a Ea
i ; Ca D Eb

i Fi
ab ;

CD
ˇ

2

Ea
i Eb

j

det E

h
�ij

kFk
ab � 2.1Cˇ2/Ki

ŒaKj
b


i
;

(37.15)

where multiples of Gi were subtracted from G0a and C0

to obtain Ga and C. The constraint equations Gi DGa D

CD 0, together with the evolution equations

fA.x/; hcang D PA.x/ ; fE.x/; hcang D PE.x/ ;

(37.16)

are completely equivalent to Einstein’s equations. But,
as is the case for all reparameterization-invariant sys-
tems, time evolution is a gauge transformation. Con-
cretely

fAa;G.�/g D �D.A/a � ;

fEa;G.�/g D Œ�;Ea� ;
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so G generates gauge transformations on the unreduced
phase space. Moreover

fA;C.N/g D LNA ; fE;C.N/g D LNE ; (37.17)

so C generates diffeomorphisms of the spatial slice ˙ .
C is related to LNn˛ , i. e., it generates the diffeomor-
phisms in a direction normal to ˙ , as long as all the
fields are on-shell. The constraints form an algebra, the
Dirac algebra

fG.�/;G.�0/g D G.Œ�0; ��/ ;

fG.�/;C.N/g D �G.LN�/ ;

fC.N/;C.N0/g D C.ŒN;N0�/ : (37.18)

The Hamiltonian constraint C is gauge invariant and
transforms under diffeomorphisms in the expected
way

fC.N/;G.	/g D 0 ;

fC.N/;C.N/g D C.LNN/ : (37.19)

Up to here, the structure is that of an infinite-
dimensional Lie algebra. But, the bracket of two Hamil-
tonian constraints is more complicated

fC.N/;C.M/g D �
�2ˇ2

4
C.S/ ;

with Sa D
EaEb

det q
.N@bM�M@bN/ : (37.20)

It contains a function of the phase-space point on the
right-hand side, hence the structure is not that of a Lie
algebra any more.

The constraints commute on the constraint surface
GD CD C D 0. This means that they form a first-class
system, and thus the constraints can be imposed in the
quantum theory as operator equations. This is the result
of imposing the time gauge. Without it, the situation is
more complicated, but also very interesting [37.31–39].

Some remarks are in order:

1. It is instructive to compare the canonical formula-
tion given above to that of electrodynamics. In that

case, the action can be written

SŒA�D� 1
4

Z
M

F��F��d4x

D

Z
dt
Z

d3x�Ea PAa �
1

2
.E2CB2/CA0r �E ;

(37.21)

with A the 4-potential, F its curvature, and ˙t an
equal-time surface relative to some inertial observer
time t. One recognizes the vector potential A and the
electric field E as the analogues of the gravitational
phase-space variables. Also, the constraint r �E is
analogous, as it generates the U(1) gauge transfor-
mations. But, the rest of the structure is different.
There are no diffeomorphism and Hamiltonian con-
straints, due to the fact that the metric is fixed in
(37.21). Instead, there is a nonvanishing canonical
Hamiltonian generating physical time evolution.

2. The above provided a canonical formulation of Ein-
stein gravity in DC 1D 4 dimensions in terms of
a phase space that is identical to that of SO(D)
Yang–Mills theory. This formalism relies on a co-
incidence that only happens for DD 3: an SO(D)
connection has D.D� 1/=2 components, whereas
a spatial frame has D. If they are to be canonically
conjugate variables, they have to have the same
number of components, which restricts to DD 3.
There are, however, similar formulations for higher
dimensions, with additional constraints [37.40–43],
and also 2C1 gravity can be formulated as a gauge
theory [37.44].

3. In the following, we will go over from a formulation
in terms of SO(3) to one in terms of its covering
group SU(2). This must be done in order to couple
fermions to gravity, but it does not change classical
or quantum theory much. The biggest change is that
representations with half-integer spin will also be
allowed in the quantum theory.

4. Matter fields can be added to the canonical descrip-
tion given above. This has to be done with some
care, so as not to change the structure of the gravi-
tational sector. For the fermionic sector this requires
working with slightly unusual (half-density) vari-
ables [37.45].
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37.2 Quantum Geometry
37.2.1 Kinematic Quantization

We will now discuss the quantization of the unre-
duced phase space of gravity, coordinatized by the
fields A and E of (37.13). This is the first step in the
algorithm for the quantization of constrained systems
devised by Dirac (for the original account, see his Lec-
tures on Quantum Mechanics, for a modern treatment,
see [37.23]):

1. Quantization of the unreduced phase space (kine-
matic quantization)

2. Imposition of the constraints as operator equations
on states. The solutions of these equations are the
physical quantum states of the system.

The kinematic quantization will be discussed in the
following two sections.

The functions in the unreduced phase space have
a geometrical interpretation via intrinsic and extrinsic
curvatures of a spatial slice of space–time. Thus, states
in the kinematic Hilbert space have an interpretation in
terms of quantized geometry. This quantized geometry
has been studied extensively in loop quantum gravity. It
is the subject of Sect. 37.2.4.

37.2.2 The Holonomy-Flux Algebra

To quantize the unreduced phase space, one is seeking
a representation of the canonical commutation relations



Ai

a.x/;E
b
j .y/

�
D �„ˇıb

aı
i
j ı.x; y/ (37.22)

on some Hilbert space. Note that �„ / `2
P, the Planck

area. Fields evaluated at points are usually too singular
to give well-defined operators in the quantum theory.
Thus, one has to form suitably integrated quantities that
correspond to well-defined operators in the quantum
theory. Poisson brackets then suggest commutation re-
lations for these quantities, and one defines an abstract
algebra of operators.

Details matter in this context, as different choices
of smearing can lead to different algebras and hence
to different quantum theories. In loop quantum gravity
a different choice of algebra is made than is custom-
ary in Yang–Mills theory [37.4, 46, 47]. In the latter
case, both the algebra and its representations used in
the quantum theory make use of the metric as a clas-
sical background field in their construction. In general
relativity, the metric is dynamic and hence can not be

used as a background field. Moreover, a splitting of
the metric into background and dynamical parts, while
very useful in practical applications, is not natural from
a fundamental perspective.

Hence, the algebra and its representation chosen
in loop quantum gravity do not make use of any
background metric. To illustrate the different choices,
it is instructive to first consider the case of electro-
magnetism. The usual quantum theory is obtained by
declaring�Z

f aAa

p
det q d3x;

Z
f 0bEb d3x

�

D i„
Z

f a f 0a
p

det q d3x id ; (37.23)

and by defining the ground state as a Fock state, by

a.f /˝ D 0 : (37.24)

Here, f ; f 0 are arbitrary smearing functions, and the def-
inition of the annihilation operators a makes use of the
metric q in various ways. But, one could also define

E.S/ WD
Z
S

Ea�abcdxb ^ dxc ; (37.25)

where S is an oriented surface and �abc is the tensor den-
sity that is equal to the totally antisymmetric symbol
in any coordinate system. We note that Ea has density
weightC1 whereas �abc has weight�1, so the integrand
is a two-form and the integral, using the orientation of S,
is hence coordinate independent. Similarly, defining

A.e/D
Z
e

Aadxa ; (37.26)

where e is a curve, one finds (by a limiting procedure
from the Poisson brackets of the point fields)

ŒA.e/;E.S/�D i„I.e; S/id ; (37.27)

where I.e; S/ is the signed intersection number for S
and e. I.e; S/ is a purely topological quantity. The met-
ric has thus dropped out of all definitions and relations.

A similar thing can be done for gravity. For a sur-
face S and a Lie algebra valued smearing field n on S,
one defines

En.S/ WD
Z
S

niEa
i �abcdxb ^ dxc : (37.28)



Part
F

|37.2

766 Part F Spacetime Beyond Einstein

For A, we use the quantity analogous to exp.iA.e//. We
choose a local trivialization and define the holonomy

he WD P exp
Z
e

A (37.29)

D IC

1Z
0

A.e.t//Pea.t/dt

C

1Z
0

dt1

1Z
t1

dt2Aa.t1/Pe
a.t1/Aa.t2/Pe

a.t2/C : : : ;

(37.30)

which is an element of SU(2), and gives the parallel
transport map from the fiber over the beginning point
b.e/ of the edge to the fiber over of its final point
f .e/, for the chosen trivialization. The reason for the
choice of holonomies is that A, as a one-form, can be in-
tegrated over a one-dimensional oriented submanifold
without use of a metric. In comparison to the simpler
variables (37.26), holonomies offer the additional ben-
efit that they transform in a simple way under gauge
transformations, i. e., changes of trivialization, g WM!
SU.2/

he 7! g.b.e//heg.f .e//
�1 : (37.31)

In particular, traces of holonomies around closed loops
are invariant.

The commutator is slightly more complicated than
in the electromagnetic case

ŒEn.S/;he�D

(
ˇ�he1
jn

j.p/he2 if S\ eD fpg ;

0 if S\ eD ; ;

(37.32)

where f
jg is a basis of SU(2), and in the first line it
was assumed that there is a single transversal intersec-
tion p between S and e. If the intersection is tangential,
the commutator vanishes as well. Again, one sees that
the commutator just depends on relative properties of S
and e that are invariant under diffeomorphisms.

It is convenient to slightly generalize these vari-
ables. Given a graph of paths � D fe1; e2; : : : ; eng and
a function f WSU(2)n!C, one obtains the functional

f ŒA� WD f .he1 ŒA�; he2 ŒA�; : : : ; hen ŒA�/ : (37.33)

A functional f is called cylindrical with respect to �
(written f 2 Cyl ) if it is of the above form, and simply

cylindrical if it is of the above form for some graph � .
We note that

� A given cylindrical functional is cylindrical on
many graphs. Consider the example of a func-
tion f ŒA�D f .heŒA�/, which is cylindrical w.r.t. the
graph � D feg. Now consider a second graph � 0 D
e1; e2; e3, with e1 ı e2 D e, and e3 independent of e.
Then f is also cylindrical w.r.t. � 0, as it can be writ-
ten purely in terms of holonomies along edges in � 0,
f ŒA�D f .he1 ŒA�he2 ŒA�/.

� For two cylindrical functions which are cylindri-
cal on graphs with smooth edges, one can not
always find a finite graph such that they are both
cylindrical w.r.t. to that graph, because they can
intersect infinitely many times. But, for more reg-
ular edges, for example analytic or semi-analytic
(roughly speaking: piecewise real analytic [37.48])
ones this can not happen, and so one can always find
such a graph. As a consequence, such cylindrical
functions are closed under addition and multiplica-
tion and thus form an algebra, denoted Cyl. In the
following, we will always assume edges (and also
surfaces) to be semi-analytic.

One can use these observations to write the com-
mutator between the canonical variables in a relatively
concise form. Because of the observations made above,
one can assume without loss of generality that a sur-
face S and a graph � intersect only in vertices of � . The
commutator then reads

Œf ;En.S/�� Xn.S/.f/

D
ˇ�

2

X
v2V./

ni.v/

�

"X
e at v

�.S; e; v/bJ.v;e/i f

#
.he1 ; he2 ; : : :/ ;

(37.34)

where V.�/ denotes the set of all vertices of �

�.S; e; v/D

8̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂:

0 if e intersects S tangentially in v
or does not intersect S at all

1 if e intersects S transversally
and is above S

�1 if e intersects S
transversally and is below S

(37.35)
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and

bJ.v;e/k D id˝ id˝ � � �˝


Le

k
Re

k

�
˝ id˝ : : : ;

when


e ingoing at v
e outgoing at v

�
:

(37.36)

Here, R and L denote the right/left invariant vector fields
on SU(2) associated with a basis 
k of su(2). The addi-
tional factor of 1/2 in (37.34) as compared to (37.32) is
due to the assumption that edges must end on the sur-
face. An edge that continues on both sides of the surface
as in (37.32) will count as two separate edges in (37.34).

For general surfaces, the commutator above may not
be a cylindrical function again, because edges and sur-
faces can intersect each other infinitely often. Thus, one
must also restrict the surfaces to be in a suitable regu-
larity class, such as semi-analytic or real analytic. Then
the operation Xn.S/ defined above is a derivation on the
space Cyl of cylindrical functions, i. e., it satisfies the
Leibniz property

Xn.S/.fg/D Xn.S/.f /gC fXn.S/.g/ : (37.37)

Also, the commutator must have the Jacobi property, so

Œf ; ŒEn.S/;En0.S
0/��D ŒXn.S/;Xn0.S

0/�.f / (37.38)

and the commutator on the right-hand side is nonva-
nishing in general. Thus, we find that the operators
corresponding to the spatial geometry do not commute.

The objects En.S/, together with the cylindrical
functions Cyl subject to the above commutator rela-
tions, form the holonomy-flux algebra A. Since it does
not make reference to classical geometry on ˙ , diffeo-
morphisms � acting in a simple way

˛�.f /ŒA� WD f .�
�

A/ ; ˛�.En.S//D E�
�

n.�.S//

(37.39)

are automorphisms of A. A similar statement holds for
gauge transformations.

37.2.3 The Ashtekar–Lewandowski
Representation

To implement the constraints, one has to find a repre-
sentation of the holonomy-flux algebra A, i. e., a map-
ping of A into the operators of a Hilbert space that

preserves the algebra structure. There are many repre-
sentations of A, but again the nature of gravity can be
a guide. Since there is no preferred metric in general
relativity, one is looking for a representation that does
not single out a preferred geometry. This is the case for
the Ashtekar–Lewandowski representation of A [37.7].
In fact, one can show that it is the only such representa-
tion, in a precise technical sense [37.48, 49].

Roughly speaking, the states in this representation
are generated from a vacuum state that is invariant un-
der diffeomorphisms, by the action of the holonomy
operators. The operators En.S/ act via the derivations
Xn.s/ of (37.34).

To construct this representation, note first that an in-
ner product on Cyl can be defined by

hf jf
0

i WD

Z
SU(2)n

d�.g1/ : : : d�.gn/

� f .g1; g2; : : : ; gn/f
0.g1; g2; : : : ; gn/ :

(37.40)

The measure d� used above is the Haar measure on
SU(2), and we have assumed without loss of general-
ity that the two functions are cylindrical w.r.t. the same
graph, as discussed below (37.33). Closure with respect
to the corresponding norm gives a Hilbert space Hkin.
It can be shown that this space has a very suggestive
structure, Hkin D L2.A; d�AL/, the square-integrable
functions over a space of distributional connections,
with respect to a certain measure [37.50], which can be
interpreted as a kind of Lebesgue measure on the space
of connections.

The action of the basic operators in this represen-
tation is analogous to that found in the Schrödinger
representation of quantum mechanics

�.f /�ŒA�D f ŒA��ŒA� ;

�.En.S//�ŒA�D .Xn.S/�/ŒA� ; (37.41)

where we have assumed that � is smooth enough for
Xn.S/ to act. For example, � could be a cylindrical
function based on a differentiable function on some
power of SU(2). But, the properties of this represen-
tation are very different from those of the Schrödinger
representation of quantum mechanics, and of the repre-
sentations encountered in standard QFT. For example,
eigenstates of the fluxes, i. e., the momentum variables,
are normalizable, as we will see in a moment. Also,
there are precise analogues of this representation for
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scalar and gauge fields, and they are unitarily inequiva-
lent to the standard representations for those fields.

The representation has several useful properties:
it is irreducible and faithful. No background geome-
try was used in the definitions, so it carries a unitary
representation of spatial diffeomorphisms and gauge
transformations. It has an invariant vacuum, from which
all states can be generated by the action of the basic op-
erators.

The Hilbert space Hkin has a very useful orthonor-
mal basis. It is precisely labeled by the spin networks
that were mentioned in the introduction, and some
slight extensions of them. To explain, let us first con-
sider a general compact Lie group G. Then there are
two natural representations of G on HG D L2.G; d�/,
the left- and right-regular representations

.�L.g/f /.g
0/D f .g0g�1/ ; .�R.g/f /.g

0/D f .gg0/ :

(37.42)

They both decompose into irreducible representations
(irreps) and, since the two representations commute,
there is a common basis of eigenvectors of the Casimir
operators. Let � be an irrep of G; then

V.�;m/ WD spanf�mn.�/jnD 1; 2; : : : ; dim�g

is left invariant by �L ;

(37.43)

V.�;n/ WD spanf�mn.�/jmD 1; 2; : : : ; dim�g

is left invariant by �R :

(37.44)

The representation V.�;m/ induced by �L is � it-
self. The one induced by �R on V.�;n/ is its dual, � ,
i. e., �.g/D �.g�1/T . The Peter–Weyl theorem now as-
serts that each irrep arises in the decomposition of the
regular representations and, even more, that their matrix
elements give a basis ofHG. Pick, for each equivalence
class of irreps of G, a representative � ; then the set of
all
p

dim��mn for all equivalence classes forms an or-
thonormal basis of HG.

Let H D Cyl
k�k

. On the one hand, H is a sub-
space of Hkin; on the other hand, it is isomorphic to
L2.SU(2)n/. Thus, an orthonormal basis forH is given
by

 Y
i

.2jiC 1/

!1=2 Y
i

ji
�kili .hei ŒA�/ ; (37.45)

where the j1; j2; : : : ; jn label irreducible representations
of SU(2). The only problem with this decomposition
is that in general H is not orthogonal to H 0 for
graphs �; � 0 that overlap. Take for example � D feg,
� 0 D fe1; e2g with eD e1 ı e2. Then

�mn.heŒA�/D
X
m0

�mm0.he1 ŒA�/�m0n.he2 ŒA�/ :

(37.46)

Therefore, one introduces a family of slightly modified
Hilbert spacesH 0 , which give a decomposition ofHkin

into orthogonal subspaces. To describe it, we need to
discuss the transformation properties of vectors under
gauge transformations.

We start by considering just a single edge e. With
respect to gauge transformations g, the vectors � j

mn.he/
transform under the tensor product j˝ j, and can be
visualized as the edge with representation j sitting at
its end point and representation j at its starting point.
When several edges meet at a vertex v, contractions of
the matrix indices of the representation matrices at that
vertex can be done and correspond to vectors in the ten-
sor product

Hv D

 O
e into v

je

! O  O
e out of v

je

!
: (37.47)

To give an orthogonal basis of this space, one can sim-
ply decompose it into irreps

Hv D
M

l

cll ; (37.48)

where cl counts the multiplicity of the spin l-
representation. When we apply this to the situation in
LQG, we obtain the following decomposition. Given
a graph �

H D
M

j

H;j D
M

j;l

H;j;l : (37.49)

Here, we have first decomposed into spaces in which
the assignment of irreps to edges (labeled by j) is fixed,
giving essentially the tensor products of the spaces
(37.47). Then we have further decomposed according
to (37.48), labeling the irreducible subspace chosen at
the vertices with l.

Now one can remedy the problem that the decompo-
sition into H was not an orthogonal one. Given again
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α

Fig. 37.5 The loop ˛� and the edge ˇ� of (37.53)

a graph � , we can call a labeling j of edges and l of ver-
tices with irreps admissible if no two-valent vertex has
been assigned the trivial representation lD 0, and none
of the irreps assigned to the edges is trivial. Then we set

H 0 D
M

j;l admissible

H;j;l (37.50)

and obtain the desired orthogonal decomposition

H D
M


H 0 : (37.51)

We finish this section by noting that the AL-representa-
tion has the following peculiar properties:

1. Diffeomorphisms � are represented onHkin by uni-
tary operators U� . But, generators for these unitary
operators do not exist. If �.t/ is a one-parameter
family of diffeomorphisms, with �.0/D I, then

1

i

d

dt

ˇ̌̌
ˇ
0

U�.t/ (37.52)

does not exist, in any sense, as a well-defined oper-
ator.

2. We have seen that the holonomies heŒA� exist as ma-
trices of operators. But, can one obtain from them
an operator neither for the curvature F nor for the
connection A itself: the limits

lim
�!0

1

�2
.h˛� � I/ ; lim

�!0

1

�

�
hˇ� � I

�
(37.53)

do not exist in any sense as well-defined operators
on Hkin. ˛� is here a plaquette loop with (coor-
dinate) side length �, and ˇ� is an open line with
(coordinate) side length � (Fig. 37.5).

37.2.4 Geometric Operators

Now we return to the geometric nature of the fields and
explore the geometry residing in the states inHkin. This
can be done by employing operators that correspond
to easy to interpret geometric quantities. Prime exam-
ples for this are spatial areas and volumes. Indeed, it is
possible to quantize areas and volumes with respect to
the geometry on ˙ on the Hilbert space Hkin [37.5–
8, 51]. Since the quantum Einstein equations, in the
form of the constraints, have not yet been taken into
account, the physical implications of the results have to
be considered with substantial care [37.52, 53]. There
are, however, situations in which such quantities are
observables, in the sense that they commute with the
constraints. This is for example the case with the area
of a black-hole horizon as considered in Sect. 37.4. In
such cases the results that we are going to present have
clear physical significance.

We consider first the case of areas: let S be a surface
in ˙ . When the field E is pulled back to S, one obtains
a vector-valued two-form. The norm of this two-form is
directly related to the area [37.54]

AS D

Z
S

jEj : (37.54)

This formula can be used as a starting point for quan-
tization. Regularizing in terms of fluxes in the form of
(37.28), substituting operators, and taking the regula-
tor away leads to a well-defined, simple operator bAS.
Its action on states with just a single edge is especially
simple: if edge and surface do not intersect, the state is
annihilated. If they do intersect once, one obtains

bAS TrŒ�j.h˛ŒA�/�D 4�ˇ`2
P

p
j.jC 1/TrŒ�j.h˛ŒA�/� :

(37.55)

Thus, these states are eigenstates of area, with the
eigenvalue given as the square root of the eigenvalue of
the SU(2)-Casimir operator in the representation given
on the edge. A slightly more complicated action is
obtained in the case of several intersections, and in
particular if a vertex of the generalized spin network
lies within the surface. Eigenstates and eigenvectors are
nevertheless known explicitly. The full spectrum is of
the form

aD 4�ˇ`2
P

X
I

p
	I ; (37.56)
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where the 	I are half integers of the form

	D 2j.u/.j.u/C 1/C 2j.d/.j.d/C 1/

� j.uCd/.j.uCd/C 1/ ; (37.57)

with j.uCd/ in fjj.u/� j.d/j; jj.u/ � j.d/j C 1; : : : ; jj.u/C
j.d/jg. As is seen in (37.56), the scale is set by the Planck
area l2P. The eigenvalue density increases exponentially
with area.

A similar procedure leads to an operator for vol-
umes of subregions in ˙ . This operator is substantially
more complicated. Unlike the area operator, the action
of which is purely in terms of the representation label of
the edges, the volume operator acts on the vertices, by
changing the maps that label them (recoupling). In fact,
there are two slightly different versions of the volume
operator [37.5, 6, 8], differing in the way the tangent-
space structure of a vertex is taken into account. In
either case, the spectrum is discrete, but not explicitly
known. As in the case of the area operator, the volume
operator is the result of a regularization procedure, and
we will only state the result. Given a vertex v, one de-
fines the operators

bqe;e0;e00 D sign.det.Pe; Pe0; Pe00//�ijkbJ.e;v/i
bJ.e0;v/j

bJ.e00;v/k ;

bqv D
X

e;e0;e00 at v
bqe;e0;e00 :

(37.58)

The volume operator is then given by

bV D
 ˇ̌̌
ˇ̌X

v

bqv

ˇ̌̌
ˇ̌
!1=2

or bV D
 X

v

jbqvj

!1=2

;

(37.59)

depending on which version, Ashtekar–Lewandowski
(first expression) or Rovelli–Smolin (second one), one
considers. A particular complication of the first version
are the sign factors in the definition of bqe;e0;e00 , since
these can have substantial influence on the spectrum for
vertices of valence higher than three. While it may seem
at first that arbitrary sign combinations may occur when
letting e; e0; e00 range over all the triples of edges at
a given vertex, Brunnemann and Rideout [37.55] have
observed that by no means all sign combinations can
actually be realized by configurations of tangent vec-
tors in R3.

Some remarkable analytic developments regard-
ing the volume operator are given in [37.56–58], and
a beautiful computer analysis of the lowest part of the
spectrum can be found in [37.55, 59].

Thus, a picture emerges in which the vertices of spin
networks can be associated with volumes, and the spins
on the edges with the areas of the surfaces surrounding
the volumes. This picture can be made even more de-
tailed. The idea is to envision the geometry associated
with the spin network as given by a gluing of polyhedra,
one for each vertex.

To describe the aspects of this picture in more detail,
it is useful to decompose the space of gauge-invariant
states

H 0
 D

M
j admissible

H;j;lD0 (37.60)

associated with a graph � in a different way

H 0
 D

M
fjeje2g

O
v2

Inv.je; e at v/ ; (37.61)

where Inv.je; e at v/ is the space of invariant tensors in
the tensor product of representations at the vertex v.
Thus, it is natural to investigate the geometric inter-
pretation of the intertwiner spaces associated with the
vertices. It turns out that it carries an action of U.nv/,
where nv is the number of edges incoming at v [37.60].
Moreover, this action preserves the subspace of inter-
twiners with a fixed sum

P
eje of spins. This can be

interpreted as the preservation of area, for the rotations
of a quantized sphere.

The picture is rounded off by the following obser-
vations [37.61]: according to a theorem by Minkowski,
there is a 1–1 correspondence between sets faigiD1;:::;n,
fNigiD1;:::;n of positive real numbers and unit vectors in
R3 satisfying the closure relationX

i

Niai D 0 (37.62)

and the equivalence classes of convex polyhedra under
rotation. The ai correspond to the areas of the faces, the
Ni to their normal vectors under this correspondence.
The space of this data carries a natural symplectic struc-
ture due to Kapovich and Millson, and its quantization
can be precisely related to the structures at an n-valent
vertex in LQG. To each edge e, one has a dual face
whose area is given by the operator jJej and whose
product of area and normal vector corresponds to Je.
The closure condition (37.62) is then just gauge in-
variance at the vertex, and the intertwiners acquire an
interpretation as the quantum states of a convex poly-
hedron. This has very interesting consequences for the
quantum black hole [37.62], and one can show that the
volume operator of loop quantum gravity is a quantiza-
tion of the volume of the polyhedra [37.63].
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Fig. 37.6 The gluing of two flat tetrahedra dual to two ver-
tices connected by an edge

One can finally consider how to combine the quan-
tized polyhedra. The resulting geometries are called
twisted geometries [37.64, 65]. The phase space asso-

ciated with an edge e can be parameterized in a way
that uses the geometry of two flat polyhedra glued to-
gether, possibly with extrinsic curvature. A point is
given by .N;N0; j; �/, where N;N0 are the unit normal
vectors of the surfaces involved, and j describes their
area; see Fig. 37.6. The operatorsbJ.e;v/ can be under-
stood as quantizations of jN, the parameter � is carrying
the remaining information about the parallel transport
from one polyhedron to the next, and is related to the
holonomy operator in the quantum theory. An interest-
ing point, corresponding to an earlier result [37.66], is
that the geometries obtained in this way are twisted in
the sense that the shapes of the glued triangles do not
necessarily match.

37.3 Quantum Einstein Equations

In this section, we will examine how the constraints are
formulated and implemented in loop quantum gravity.
As we have indicated before, going over to the reduced
phase space, by solving the constraints and going over
to gauge orbits is classically equivalent to solving Ein-
stein’s equations. The information about the solutions
is then contained in observables, i. e., functions that
Poisson commute with all the constraints. In practice,
to translate between a description in terms of observ-
ables and a more standard space–time description is
very hard. Observables are by definition invariant under
space–time diffeomorphisms, i. e., they must encode the
information about space–time geometry in a very non-
local way. For some discussion of how this can be done,
see [37.67, 68].

In the quantum theory, to go from the unreduced to
the physical theory, the only step required is the imple-
mentation of the constraints. In principle, this is done
by constructing operators that correspond to the clas-
sical constraints, and restricting consideration to their
joint kernel. The physical states are thus

Hphys D\�kerbC� ; (37.63)

where 	 labels all the constraints, evaluated at all points.
Observables then correspond to operators that com-
mute with all the constraints, and can thus be restricted
toHphys. This is the way that Einstein equations can be
solved in the quantum theory.

37.3.1 Gauss Constraint

The simplest of the constraints (37.15) to implement
is the Gauss constraint G.�/. Classically, it generates

SU(2) gauge transformations which act on holonomies
according to (37.31). There are two ways to do this
in the quantum theory: one can either regularize the
expression for GI in terms of holonomies and fluxes,
quantize the regularized expression, and remove the
regulator to obtain a well-defined constraint operator
in the limit. One can then determine the kernel of the
quantum constraint.

Or, one can declare that all states in Hkin that
are invariant under gauge transformations (37.31) are
solutions to the constraint. Both strategies are vi-
able, and lead to exactly the same result: the solution
spaceHgauge is a proper subspace ofHkin, given by the
subspaces with lD 0 in the decomposition (37.50) and
(37.51). In other words, they are precisely the states la-
beled by spin networks [37.69, 70].

37.3.2 Diffeomorphism Constraint

The diffeomorphism constraint Ca D Eb
I FI

ab can not be
quantized directly. One reason is that curvature can not
be quantized on Hkin, but one can see even on more
general grounds that a quantization of Ca must run
into difficulties: classically, this constraint generates the
diffeomorphisms of ˙ , and one expects the same of
its quantum counterpart. Otherwise, one would have
produced an anomalous implementation of the con-
straint, with possibly disastrous consequences for the
theory. But, the diffeomorphisms � of ˙ already act
onHkin, through unitary operators U� . These operators
are, however, not strongly continuous in the diffeo-
morphisms (see (37.52)); in other words, they have no
self-adjoint generators. Thus, Ca can not be directly
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quantized without generating anomalies. But this is not
a problem, because one understands what the gauge
transformations generated by Ca are, and because they
are acting in a simple manner on Hkin. All one has to
do is find states that are invariant under the action of the
diffeomorphisms U� .

The action of the diffeomorphisms on cylindrical
functions consists in moving the underlying graph

U'� D �'./ : (37.64)

Therefore, the only invariant state in Hgauge is the
empty spin network. Rather than in Hdiff, the rest of
the invariant states are lying in the dual of Hdiff. They
can be found by group averaging. This procedure as-
signs to a state  2Hgauge a diffeomorphism-invariant
functional �  . The idea is to obtain invariant states, by
averaging over the gauge group

.� �/.� 0/D .Vol.Diff//�1
Z

Diff

D'hU'� j�
0i :

(37.65)

To make this precise, the integration over the diffeo-
morphism group, and the division by its volume, have
to be made sense of. These tasks would be hopeless,
were it not for the unusual properties of the scalar prod-
uct on Hkin. In fact, the correct notion in this context
of the integral over diffeomorphisms is that of a sum.
A careful examination leads to the formula [37.22, 47]

.� � /.�
0/D

X
'12Diff=Diff

1

jGS j

�
X

'22GS

h'1 �'2 �� j�
0i :

(37.66)

Here, Diff is the subgroup of diffeomorphisms map-
ping � onto itself, and TDiff the subgroup of Diff
which is the identity on � . The quotient GS WD
Diff=TDiff is called the set of graph symmetries.
It can be checked that this definition really gives
diffeomorphism-invariant functionals over Hgauge. An
inner product can also be defined on these functionals,
by setting

h� � j� � 0i D .� �/.� 0/ : (37.67)

Thus, one obtains a Hilbert space Hdiff of gauge- and
diffeomorphism-invariant quantum states.

1/2 1/2

1

Fig. 37.7 The hourglass spin network gets mapped to zero
under group averaging with respect to the diffeomorphism
group

It is sometimes stated that diffeomorphism-invariant
spin-network states are labeled by equivalence classes
of spin networks under diffeomorphisms. This is a nice
intuitive picture, but it is not entirely correct: the ef-
fects of (37.66) can be quite subtle. For example, the
map � has a large kernel. Some spin networks, such as
the hourglass (Fig. 37.7), are mapped to zero [37.71].
Diffeomorphism-invariant quantities can give rise to
well-defined operators on Hdiff. An example is the
total volume V˙ of ˙ . The corresponding operator
on Hkin extends to Hdiff; thus, one obtains a well-
defined notion of quantum volume. Areas of surfaces
and volumes of subregions of ˙ can similarly be quan-
tized, provided surfaces and regions can be defined in
a diffeomorphism-invariant fashion, for example by us-
ing a matter field as reference system.

37.3.3 Hamilton Constraint

As we have seen in Sect. 37.1, the Hamilton constraint
of the classical theory is given by

CD
ˇ

2

1
p

q
Ea

i Eb
j �

ij
kFk

ab

„ ƒ‚ …
DWCE

�ˇ.1Cˇ2/
1
p

q
Ea

i Eb
j Ki
ŒaKj

b
„ ƒ‚ …
DWT

:

(37.68)

In the present section, we will show how to turn this
classical expression into a well-defined operator. The
general difficulty with this is obviously that C is a com-
plicated nonlinear function in the phase-space variables
and hence ordering problems present themselves. There
are also some specific difficulties with the expression:

� Equation (37.68) contains the inverse volume ele-
ment. The volume element itself has a large kernel
when quantized, so its inverse is ill defined.

� The expression (37.68) contains the curvature F
of A, as well as the extrinsic curvature K. For neither
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of them is there a simple operator in the quantum
theory.

A guiding principle in the quantization process
can be the Dirac algebra (37.18)–(37.20). In partic-
ular, the quantum Hamiltonian constraint should be
invariant under gauge transformations, covariant under
diffeomorphisms, and the commutator of two Hamilton
constraints should give a diffeomorphism constraint.

We should say that the knowledge about the quan-
tization and implementation of the Hamilton constraint
is not complete. But, we will show that at least there
is a strategy that leads to well-defined constraint opera-
tors. Given the difficulties outlined above, this is highly
nontrivial in and of itself.

The quantization strategy we will describe in the
following is due to Thiemann [37.72–74], but draws on
important earlier work and ideas by Rovelli, Smolin,
Lewandowski, and others. Our presentation follows that
in [37.22].

Thiemann’s Tricks
The quantization is based on two key ideas. The first
one is to use various ingenious classical identities to
express parts of the Hamilton constraint in terms of
Poisson brackets before quantization. The second one
is to express curvature in terms of holonomies.

Let

V D
Z
˙

d3x
p

det q ; K D
Z
˙

d3xKi
aEa

i (37.69)

be the total volume of the spatial slice and the integrated
extrinsic curvature. Then

Ea
i Eb

j �
ijk

p
det q

D
4

�
�abcfV;Ak

cg ; Kj
a D

2

�
fK;Aj

ag :

(37.70)

These identities can be used to write

CE.N/D c
Z
˙

d3xN�abc Tr .FabfAc;Vg/ ; (37.71)

T.N/D c0
Z
˙

d3xN�abc Tr
�
fAa;KgfAb;KgfAc;Kg

�
;

(37.72)

where we have used the notation for the two parts of
the Hamilton constraint introduced in (37.68). c and c0

are simply two constants whose exact values are not so
important for us. The idea behind these reformulations
is that it is natural to replace Poisson brackets by com-
mutators in the quantization process

f � ; � g �!
1

i„
Œ � ; � � : (37.73)

This means that the quantization would be greatly
simplified if operators existed for the quantities V;K.
Indeed, we have already seen in Sect. 37.2.4 that an op-
erator exists for V. With respect to K, the identity

K D fV;CEg (37.74)

suggests to first quantize CE, and then to use the com-
mutator with the volume operator to define the operator
for K. Thus, we have already dealt with two of the dif-
ficulties regarding the quantization of C: the inverse
volume element is gone, and the extrinsic curvature is
dealt with. What remains is the quantization of the cur-
vature F of A. Here, we use the well-known fact that
holonomies encode information about curvature. Let
S be an oriented surface such that the integral

R
S F is

small, and let ˛ be the (oriented) boundary of S. Then
the first term on the right- hand side of

Z
S

F D 1
2

�
h˛ � h�1

˛

�
CO

2
64
0
@Z

S

F

1
A

2
3
75 (37.75)

is a good approximation to the left-hand side. Let e be
an edge starting at a point s.e/. A similar approximation
plus a second Taylor expansion gives

� Pea.s.e//fA.s.e//a;Vg � h�1
e fhe;Vg ; (37.76)

where Pe is the tangent to e in a chosen parameteriza-
tion e.t/, and � is the coordinate length � D

R
e dt of

the edge in the given parameterization. In this way, we
can express curvatures and connections by holonomies.
Putting everything together, one obtains a Riemann-
sum approximation of the Euclidean part of the con-
straint

CE.N/� C.�/E

WD c
X
�

N.v�/

�

3X
ID1

h�
h�1
˛I.�/

� h˛I.�/

	
h�1

sI.�/

˚
hsI.�/

;V
�i
:

(37.77)
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Here, f�g is a decomposition of ˙ into three-
dimensional cells and, for each cell, a point v� has
been fixed. f Į.�/g is a set of loops and fsI.�/g a set
of edges such that their tangents span the tangent space
in the point v� in the following sense: there is a ba-
sis fbI.�/g of the tangent space at v.�/, such that bI.�/
is tangent to both Į.�/ and sI.�/, and compatible with
their orientations. We call the data (f�g, fv�g, fsI.�/g,
f Į.�/g) a regulator of CE, and sometimes denote it
simply by�. The exact shape of these cells, loops, and
edges does not matter. The approximation is good as
long as the cells are much smaller than the scale on
which the fields A;E vary, and the loops and edges stay
within the cells.

Finally, one can consider families of regulators such
that the cells shrink to points. Then the correspond-
ing approximations will converge to the exact result for
a wide variety of such families.

The same kind of arguments can also be made for
the second part of the Hamiltonian constraint T.N/. The
connection components Aa in (37.72) can be replaced
by holonomies along edges with suitable tangents, and
the integrated exterior curvature K by Poisson brackets
of V with the regulated Euclidean part (37.77), as per
(37.74). The resulting expression is quite complicated
and contains ambiguities, but the correct refinement
limit is obtained for a large class of regulators.

Quantization
We will now come to the quantization. The general idea
is clear: pick a family of regulators which converge
to the continuum result. Replace Poisson brackets by
commutators, and holonomies and volume operators by
their operator counterparts, and obtain operators

bC.�/E .N/

D c
X
�

N.v�/

�

3X
ID1

��
h�1
˛I.�/

� h˛I.�/

	
h�1

sI.�/

h
hsI.�/

;bVi	

(37.78)

on the kinematic Hilbert space. Now take the refinement
limit�!˙ to obtain an operatorbCE. There are, how-
ever, several difficulties when putting this program into
practice:

1. In the limit of infinite refinement, the operator is in
danger of creating infinitely many loops and edges.
Hence, the limit may be ill defined.

2. Even if problem 1 can be overcome, the opera-
tor will generically not converge, since typicallybC.�/E � ?bC.�0/E � for regulators�¤�0.

3. Since h and bV do not commute, there are ordering
ambiguities.

4. There is a lot of ambiguity in the choice of regula-
tors, since now there is no guarantee that different
families of regulators will converge to the same op-
erator, if they converge at all.

The first problem can be solved by a suitable or-
dering. Let us consider the action on a spin network.
The volume operator acts only at the vertices; hence,
ordering it to the right will force the loops and edges
that are created by bCE to be attached to the vertices
of the spin network only. Thus, for a given spin net-
work, only finitely many new edges and loops can
be created. This also partially solves problem 3. To
deal with the rest of the difficulties, we will be less
ambitious, and not demand convergence in the kine-
matic Hilbert space. Rather, we consider the matrix

elements of bC.�/E between one kinematic state and one
diffeomorphism-invariant one. It turns out that due to
the diffeomorphism invariance of the one state, many of
the ambiguities in the attachment of the loops and edges
do not change the matrix elements. What is more, for
several types of regulators, it is known that the matrix
elements converge

lim
�!˙

�
� jbC.�/E jf

E
is well defined : (37.79)

Typically, the matrix elements already become constant
at a finite refinement, namely when the decomposition
of ˙ into cells is already so fine that there is at most
one vertex of � per cell.

Convergence of the above matrix elements does not
imply that there exists a limit operator on the kinematic
Hilbert space. Rather, we can interpret .� jbC.�/E j as an
element in the (algebraic) dual space of Cyl, and hence
conclude that there is an operator

bC�E WHdiff �! Cyl� : (37.80)

The detailed features of this operator depend on the
chosen family of regulators. But the generic features do
not:

� bC�E acts locally at the vertices.
� It acts by creating and annihilating edges and loops.

One can proceed in the same way with the quan-
tization of T.N/, but, since the quantized expression
contains double commutators with bC.�/E , the operator
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action becomes extremely complicated. Nevertheless, it
is well defined and finite.

Solutions
Given the definition of the Hamilton constraints we
sketched above, what are the solutions? They are
states � in Hdiff such that

.� jC.N/f i D 0 for all f 2 Cyl and all N :

(37.81)

One simple solution is the LQG vacuum ji, which can
also be interpreted as a state in Hdiff. But, more com-
plicated solutions exist. For working out the set of
solutions in some detail, details of the regularization
used in the quantization of the constraints have to be
fixed, since they do matter. Suffice it to say that so-
called exceptional edges play an important role in the
construction of solutions. Exceptional edges are edges
of the type created by the quantum constraint itself.
We will not discuss this in detail, but refer the reader
to [37.22, 72–74] for more detailed accounts.

Solutions lie in the intersection of the kernels of
all Hamilton constraints. Formally, the projector on
this space can be expressed and approximated as fol-
lows [37.9]

PC D ı.bC/D
Z

DNeibC.N/

D 1C i
Z

DN
Z

N.X/bC.x/
C

i2

2

Z
DN

“
N.X1/N.X2/bC.x1/bC.x2/C : : : :

(37.82)

Here, bC.x/ denotes the local action of the constraint,
which is zero unless x is the position of a vertex of the
state acted upon. The path integral over N gives an infi-
nite result, but, by requiring diffeomorphism invariance,
it can be split into a divergent term that can be normal-
ized away, and a finite remainder [37.75].

The matrix elements of the projector can then be
expanded into a series

.T1 jPCT2 /D

1X
ND0

X
v1

: : :
X

vn

cv1:::vN

�
�

T1 j
bC.v1/bC.v2/ : : :bC.vN/jT2

	
;

(37.83)

where the finite sums are over all vertices of �2 and
cv1:::vN is the finite remainder of the integral over the

lapse function. It only depends on the diffeomorphism
equivalence class of the vertex set fv1; v2; : : : ; vNg. We
note that a priori the multiple applications of the lo-
cal constraint in (37.83) do not make sense, since we
have up to now only defined the constraint operators
in such a way that domain and range are disjoint; see
(37.80). But, it is possible to enlarge the domain of
definition in such a way that multiple applications of
the constraints become possible [37.75, 76]. We will
sketch how this is done when we discuss the question
of anomalies below.

These matrix elements are interesting, because in
principle they contain all the information about the in-
ner product on the Hilbert space of physical states

.T1 jPCT2/D hPCT1 jPCT2iphys : (37.84)

The expansion (37.83) can be interpreted as a kind of
Feynman expansion, organized in terms of how many
times the constraint acts. The individual terms can be
nonzero only if the action of the constraint opera-
tors on T2 produces exactly T1 . Thus, the nonzero
diagrams can be thought of as terms coming from
the evolution of one spin network state into another.
More precisely, they can be labeled by a two-complex,
whose faces carry representations and whose edges
carry intertwiners. The complex has the graphs �1; �2

as boundaries, and the internal vertices correspond to
the action of the constraints. These diagrams are called
spin foams, and they show up independently as spin-
foam gravity, which is described in a separate chapter
in this handbook. That they show up in an expression
for the physical inner product of the canonical the-
ory is a very encouraging link between canonical and
covariant pictures. In fact, in the light of recent de-
velopments [37.10–16], one is getting close to actually
having a precise correspondence

quantum Hamilton constraint

 ! spin-foam model : (37.85)

We will now discuss some further aspects of the Hamil-
ton constraint quantization.

Symmetry, Anomaly Freeness, and Ambiguities
In principle, it would be desirable to produce a symmet-
ric, or even self-adjoint, Hamiltonian constraint

C�.N/D C.N/ : (37.86)

But, this turns out to be hard in practice, and there are
even some no-go theorems [37.76]. Interestingly, there
are heuristic arguments to the effect that one can not
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have both symmetric constraints and a constraint alge-
bra that is anomaly free.

We have seen that the constraints classically close to
form an algebra with respect to the Poisson bracket. The
same should happen on the quantum level, now with
respect to the commutators. Otherwise, the gauge sym-
metries may have been broken when quantizing the the-
ory. Such an anomaly in the gauge symmetries would
strongly suggest the quantum theory to be unphysical.
In particular, we are interested in the commutators

ŒC.M/;C.N/� ; (37.87)

since, by the above construction, we can already see
that the Hamilton constraints transform correctly under
gauge transformations and diffeomorphisms. Classi-
cally the above commutator is proportional to a diffeo-
morphism constraint, hence at minimum one requires
that the commutator should vanish states of Hdiff. The
problem is that the constraints map Hdiff to a certain
subspace of Cyl� which is strictly larger thanHdiff. So,
the above commutator is not well defined, as it stands.
There are two proposed solutions to this problem. The
first, by Thiemann [37.74], is to look at the commutator
on Hkin, before removing the regulator. He found that

ŒC.�/.M/;C.�/.N/�D something ¤ 0 ;

.� j something D 0 for j�/ 2Hdiff : (37.88)

In this sense

ŒC.M/;C.N/�jHdiff
D 0 ; (37.89)

and the quantization is anomaly free. The other solution
to defining the commutator is by Lewandowski and
Marolf [37.76]. They introduced a certain class of
elements of Cyl� that is slightly larger than Hdiff.
Without going into technical details, a vertex-smooth
state j�/ is a state

j�/ 2 Cyl� W .� jU� f / is a function of V.�.�// ;

(37.90)

i. e., of the set of vertices of the graph �.�/, for any
diffeomorphism �. Trivial examples of vertex-smooth
states are given by diffeomorphism-invariant states.
A less trivial example is the linear functional given by

� 0 7! .� j

Z
˙

N2
p

det qjj� 0i (37.91)

for a lapse function N and j�/ in Hdiff.
Lewandowski and Marolf observed that .� jC.N/ is

vertex smooth for a large class of regulators, and that its
action can be extended to vertex-smooth states. More-
over, they found that

.�vsjŒC.M/;C.N/�D 0 ; (37.92)

where �vs is vertex smooth. As far as diffeomorphism-
invariant states are concerned, this result would be
expected for an anomaly-free representation. But, since
it holds for all vertex-smooth states, it is surprising
and a little worrisome, since the term in the Dirac
algebra that results from the Poisson bracket of two
Hamiltonian constraints, a diffeomorphism constraint,
would be expected to act nontrivially on most vertex-
smooth states. But, this has to be checked explicitly,
and it may be possible to find quantizations of this term
that indeed vanish on vertex-smooth states. New light
on this question may be shed by new results of Lad-
dha and Varadarajan [37.77–79], who employed new
techniques to define constraints and their commutator
algebra.

We should not finish without pointing out that there
are various ambiguities in the above procedure that are
poorly understood, for example regarding the loop at-
tachment and the representation of the newly created
links (see however [37.80]). Overall, it is however very
encouraging that we can find a family of well-defined
constraint operators that are anomaly free in a certain
sense, and that lead to a convergence of the canonical
and the spin-foam pictures. Given the complexity of the
Hamiltonian constraints of general relativity, these re-
sults are highly nontrivial.

37.4 Black Holes

Black holes are fascinating objects predicted by gen-
eral relativity. They even point beyond the classical
theory, because of the singularities within, and because
of the intriguing phenomenon of black-hole thermody-

namics [37.81]. Therefore, they are a tempting subject
of investigation in any theory of quantum gravity. Loop
quantum gravity is able to successfully describe black-
hole horizons in the quantum theory. Within this de-
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scription, it is possible to identify degrees of freedom
that carry the black-hole entropy, and prove, for a large
class of black holes, the Bekenstein–Hawking area law.

The development of this subject is quite rich, with
many turns and discussions as to the precise definition
of the ensemble of quantum states; thus, our description
will leave out many interesting aspects and references.

The first ideas were developed in [37.82]: black-
hole entropy may be linked to topological quantum
field theory, and [37.83]: spin-network edges pierce the
horizon and endow it with area. The number of con-
figurations of these edges (modulo diffeomorphisms)
for a given total area is counted to obtain the entropy.
A systematic and detailed treatment is in [37.84] (see
also [37.85]), in which it was realized that the degrees
of freedom on the horizon are described by a Chern–
Simons theory and are essential in the calculation of
the entropy. Reference [37.84] does contain errors in
the state counting however, thereby wrongly concluding
that only spin-network edges with spin 1/2 contribute
significantly to the entropy counting. These errors were
corrected in [37.86], where the horizon Hilbert space
was correctly derived, its elements characterized in
a combinatorial way, and the entropy calculation stated
in combinatorial terms and partially carried out. It was
also shown that the spin-1/2 edges are not generic, and
a probability distribution for the edge spins derived.
The combinatorial problem was fully solved in [37.87].
In [37.88, 89], it was assumed that a partial gauge fixing
that had been used in [37.84] was unnecessary, and the
ensuing combinatorial problem for the black-hole en-
tropy was stated and solved. The area–entropy relation
in the resulting more natural, but technically more chal-
lenging, setting was thus determined. In [37.90, 91],
it was shown that dropping the partial gauge fixing as
in [37.88, 89] can in fact be fully justified. This led to
additional new insights [37.92]. In our description be-
low, we will follow [37.90, 91].

There are interesting generalizations (for exam-
ple [37.93, 94]) and modifications (for example [37.95–
97]) of the formalism. Surprising fine structure has been
found [37.98, 99] and analyzed [37.100–105]. The later
works in this series are remarkable applications of num-
ber theory, statistics, and combinatorics.

The loop quantum gravity calculation does not start
from solutions of the full theory. Rather, it quantizes
gravity on a manifold with boundary �. In the sim-
plest case, the boundary is assumed to be null, with
topology R� S3. Again, there are fields A and E on
a manifold ˙ , but now ˙ has a boundary H. The
boundary � is now required to be an isolated horizon,

a quasi-local substitute for an event horizon. The phase-
space description of a space–time with an isolated
horizon can be worked out, and put in a form explic-
itly using connection variables. The details depend on
the symmetry calls of the horizon. Results now exist for
generic isolated horizons [37.94, 97]. Here, we will fo-
cus on spherically symmetric horizons for simplicity.

The isolated horizon imposes boundary conditions
on the fields A and E at H

�ED�
aH

�.1�ˇ2/
F.A/ : (37.93)

Here, aH denotes the area of the horizon H. Further-
more, the symplectic structure acquires a surface term.
The latter suggests, together with some technical as-
pects of the kinematical Hilbert space used in loop quan-
tum gravity, quantizing the fields on the horizon sepa-
rately from the bulk fields. The latter are quantized in
the way described in Sect. 37.2. The only new aspect is
that now edges of a spin network can end on the horizon.
Such ends of spin-network edges are described by quan-
tum numbers mp 2 f�jp;�jpC1; : : : ; jp�1; jpg, where jp
is the representation label of the edge ending on the hori-
zon, and p is a label for the end point (puncture). The
quantum number represents the eigenvalue of the com-
ponent of E normal to the horizon at the puncture.

The boundary term in the symplectic structure is
that of a SU(2) Chern–Simons theory with level

kD
aH

2�ˇ.1�ˇ2/l2P
; (37.94)

and punctures where spin-network edges of the bulk
theory end on the surface. The quantized Chern–Simons
connection is flat, locally, but there are degrees of free-
dom at the punctures. These are – roughly speaking –
described by quantum numbers sp, m0p, where the former
is a half integer, and m0p 2 f�sp;�spC 1; : : : ; sp� 1; spg.
There is a constraint on the set of m0p’s coming from the
fact that H is a sphere, and hence a loop going around
all the punctures is contractible, and the corresponding
holonomy must hence be trivial. The Hilbert space is
equivalent to a subspace of the singlet component of
the tensor product �s1˝�s2˝ : : : ranging over all punc-
tures. The boundary condition (37.93) can be quantized
to yield an operator equation. The solutions are tensor
products of bulk and boundary states in which the quan-
tum numbers .sp;m0p/ and .jp;mp/ are equal to each other
at each puncture.

Now, if one fixes the quantum area of the black
hole to be a, this bounds the number of punctures
and the spins .jp/ labeling the representations. It be-
comes a rather complicated combinatorial problem to
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determine the number N.a/ of quantum states with
area a that satisfy the quantum boundary conditions.
It was solved in [37.88, 89] and later, independently,
in [37.106]. It turns out that

S.a/ WD ln.N.a//D
ˇ

$SU(2)

a

4� l2P
�

3

2
ln

a

l2P
CO.a0/

(37.95)

as long as ˇ 	
p

3. Here, $SU(2) is the constant that
solves the equation

1D
1X

kD1

.kC1/ exp

�
�

1

2
$SU(2)

p
k.kC 2/

�
: (37.96)

One finds that $SU(2) � 0:274. One thus obtains the
Bekenstein–Hawking area law upon setting ˇ D $SU(2).

37.5 Outlook

In this chapter, we have given an introduction to loop
quantum gravity. In particular, we have discussed the
Yang–Mills-type phase space that is its classical start-
ing point; its quantization without the use of any kind
of background structure; the quantum Riemannian ge-
ometry that results from it; the implementation of the
constraints, i. e., the dynamics of general relativity; and
the application of the theory to black holes. In this way,
the chapter touched on at least some of the big achieve-
ments of loop quantum gravity, namely its description
of quantum geometry and the corresponding dynamics,
the quantum theory of (extrinsic and intrinsic) geome-
try, which comprises in particular geometric operators
with a discrete spectrum, the scale of which is set by
the Planck length, and diffeomorphism-invariant states.
Based on this, well-defined Hamiltonian constraints can
be obtained. This is a highly nontrivial result, given the
complicated nature of the classical dynamics. More-
over, there is a clear connection to spin-foam gravity,
which is invaluable since it opens the possibility of
comparing results in an otherwise uncharted territory.

But, there are many omissions. For one thing, there
was no discussion about loop quantum cosmology, the
application of the techniques laid out in this chapter
to symmetry-reduced sectors of general relativity. But
this topic is covered in detail in another chapter of this
handbook. Other omissions concern the quantization
of matter fields along the same line as the geome-
try [37.45, 107–109]; and coherent states for quantum
geometry [37.110–115].

A big omission are the many recent developments
that could not be covered, among them:

� New quantization techniques have been developed
that may allow for a check of the relations in the
Dirac algebra in the quantum theory [37.77–79,
116]. This could be vital to assure an anomaly-free
quantization.

� Spinorial variables and related techniques have been
considered [37.115, 117–120], which may afford
new insights for the dynamics.

� Progress has been made in identifying observables
for general relativity [37.68, 121]. Matter systems
have been identified that can be used as reference
systems, to re-obtain a space–time picture in the
canonical theory [37.122–125]

� First steps have been taken to treat quantum matter
fields propagating on a quantized space–time, in an
analogous approximation as used for quantum fields
propagating on a classical background [37.20, 126,
127].

� A local notion of energy for isolated hori-
zons [37.128, 129] allows us to investigate the
thermodynamics of quantized horizons.

� Yang–Mills-type variables for higher dimensional
gravity [37.40–43] and even supergravity [37.130]
have been found. These allow the quantization tech-
niques that were developed in loop quantum gravity
to be applied to this much broader range of theories.

Let us finally list some important questions that are
the subject of ongoing investigation in loop quantum
gravity:

� Barbero–Immirzi parameter: what role does it ul-
timately play in loop quantum gravity with and
without matter?

� Controlled approximations: loop quantum gravity
is a nonperturbative approach to the quantization
of gravity, but approximations will be vital to do
physics. One question is how to find controlled ap-
proximations to situations with symmetries from the
full theory. Another question is how to approxi-
mately solve the Hamilton constraints.

� Loop quantum gravity and matter: which types of
matter can be consistently coupled to loop quan-
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tum gravity? What are the implications of quan-
tized space–time geometry to the propagation of
matter?

� Physics from Hamilton constraints and Hamiltoni-
ans: how does one extract physics from the solutions
to the constraints? In particular, one should be able
to understand how ordinary quantum field theory
and classical general relativity are embedded into
loop quantum gravity. The first should correspond
to a sector of quantum gravity where quantum fluc-
tuations of the geometry are small but matter is still
treated as a quantum object, whereas for general rel-
ativity both the matter and geometry quantum fluc-

tuations are expected to be negligible. Furthermore,
it is important to analyze how ambiguities in the
quantization of constraints and physical Hamiltoni-
ans do reflect in physical properties of the theory.

� Connection to spin-foam gravity: what is the pre-
cise relation between scattering amplitudes and the
physical inner product? Which quantization of the
Hamilton constraint corresponds to which vertex
amplitude?

For some of these, there are already insights. An-
swers to these questions will be crucial for the path that
loop quantum gravity takes in the future.
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38. Spin Foams

Jonathan S. Engle

The spin foam framework provides a way to define
the dynamics of canonical loop quantum gravity
in a spacetime covariant way, by using a path
integral over histories of quantum states which
can be interpreted as quantum space-times. This
chapter provides a basic conceptual introduction
to spin foams as well as a view of some current
research topics.
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Ever since special relativity, space and time have be-
come seamlessly merged into a single entity, and space–
time symmetries, such as Lorentz invariance, have
played a key role in our fundamental understanding
of nature. Quantum mechanics, however, did not origi-
nally conform to this new way of thinking. The original
formulation of quantum mechanics, called canonical,
involves wavefunctions, operators, Hamiltonians, and
time evolution in a way that treats time very differently
from space. This situation was improved by Feyn-
man, who formulated quantum mechanics in terms of

probabilities calculated by summing over amplitudes
associated with classical histories – the path-integral
formulation of quantum mechanics. As histories are
naturally space–time objects in which space and time
can be viewed on equal footing, the path-integral for-
mulation allowed, for the first time, space–time sym-
metries to be manifest in a general quantum theory.
The key insight of Einstein’s theory of gravity, gen-
eral relativity, is that gravity is space–time geometry.
Space–time geometry, the one background structure –
i. e., nondynamical space–time structure – remaining
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after special relativity, was discovered to be dynam-
ical and to describe the gravitational field, revealing
nature to be background independent. Background in-
dependence can equivalently be expressed in terms
of a profound enlargement of the basic space–time
symmetry group of physics: invariance under Lorentz
transformations and translations is replaced by in-
variance under the much larger group of space–time
diffeomorphisms.

We have already seen in the chapter by Sahlmann on
gravity, geometry, and the quantum, a canonical quan-
tization of Einstein’s gravity, and hence of geometry,
in which geometric operators are derived with discrete
eigenvalues [38.1–3]. Instead of space being a smooth
continuum, we see that it comes in discrete quanta –
minimal chunks of space. Furthermore, as discussed
in the chapter by Agullo and Corichi, when applied
to cosmology, this quantum theory of gravity leads to
a new understanding of the Big Bang in which usu-
ally problematic infinities are resolved, and one can
actually ask what happened before the Big Bang. In
spite of these successes, because it is a canonical the-
ory, it has as a drawback that space–time symmetries,
in particular space–time diffeomorphism symmetries,
are not manifest. Equivalently, the preferred separation
between space and time prevents full background inde-
pendence from being manifest.

One can ask: is there a way to construct a path-
integral formulation of quantum gravity, in which the
most radical discovery of general relativity, background

independence or, equivalently, space–time diffeomor-
phism invariance, can be fully manifest, which nev-
ertheless retains the successes of the canonical the-
ory? This is the question leading to the spin-foam
program. In answering it one must understand more
carefully the relationship between the canonical and
path-integral formulations of quantum mechanics, and
in particular how these apply to general relativity, with
its special subtleties such as the problem of time dis-
cussed in Chap. 33 and Chap. 36. The end result is
a path integral in which, instead of summing over
classical space–time histories, one sums over histo-
ries of quantum states of space. These histories have
a natural space–time interpretation and thus may be
thought of as quantum space–times. The resulting sum
over histories then provides a framework for defin-
ing the dynamics of loop quantum gravity (LQG) in
which space and time are unified, in the spirit of spe-
cial and general relativity. Due to their structure and
the way they are labeled, these quantum space–times
have been named spin foams by Baez [38.4], a name
which thenceforth has been used to refer to the entire
program.

In this chapter we hope to give the reader a broad
view of the conceptual ideas behind spin foams, the
ideas that have led to the spin-foam model currently
most often used in the community, as well as provide
a view of current avenues of investigation. For a more
detailed, complete review of spin foams [38.5] is rec-
ommended to the interested reader.

38.1 Background Ideas

38.1.1 The Path Integral as a Sum
over Histories of Quantum States

The first formulation of quantum mechanics that was
discovered, and that one learns, is the canonical for-
mulation. We review here briefly the basic structure
of a canonical quantum theory. The possible states of
a canonical quantum system form a vector space, that
is, they are such that states can be rescaled by real
numbers and added to each other. Additionally, one has
an inner product, which assigns to every two states �
and a complex number h ; �i, which may be roughly
thought of as the overlap between states � and  .
A vector space equipped with such an inner product is
called a Hilbert space; one often uses the phrase the
Hilbert space of quantum states. For each possible mea-

surable quantity, such as position, momentum, angular
momentum, or energy – or in the case of general rela-
tivity, areas of surfaces and volumes of regions – there
is a corresponding operator OO mapping states to states.
A number 	 is a possible outcome of a measurement
of OO only if there exists a state  such that OO D 	 .
When the state of the system is  , then a measurement
of OO yields 	 with certainty. Such a 	 and correspond-
ing  are called an eigenvalue and an eigenstate of OO.
The set of all possible eigenvalues – and hence possible
results of a measurement – of OO is called the spec-
trum of OO. Depending on the operator, its spectrum may
include all real numbers, or it may only include a dis-
crete set of possible numbers. This is the source of the
name quantum: that some quantities, when measured,
can only come in discrete increments, called quanta.
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Time evolution in canonical quantum theory is de-
termined by Schrödinger’s equation

i„
d 

dt
D OH ; (38.1)

where „ is Planck’s constant divided by 2� , and OH is
the Hamiltonian operator, which corresponds to the to-
tal energy of the system. If the system starts in an initial
state  .ti/, Schrödinger’s equation will uniquely deter-
mine its state  .tf/ at any later time tf D tiC T , thus
providing a map U.T/ from possible initial states  .ti/
to final states  .tf/, called a time-evolution map. Using
the time-evolution map, and given two states i;  f, and
two times ti; tf, one can define a quantity

A. f; tfI i; ti/ WD h f;U.tf � ti/ ii ;

called a transition amplitude. The transition amplitude
is of direct use for making predictions: if the sys-
tem is prepared in an initial state  i at time ti, the
transition amplitude tells us the probability of mea-
suring the system to be in a final state  f at time tf.
(Specifically, this probability is given by the formula
jA. f; tfI i; ti/j2=jh f;  fih i;  iij.)

The transition amplitude contains all information
about the dynamics of the quantum system. At the heart
of the path-integral formulation of quantum mechan-
ics is Feynman’s insight that the transition amplitude
can be rewritten in terms of purely classical, space–
time quantities. Consider, for example, a single free
particle, and consider the case in which  i and  f are
eigenstates of position, i. e., states in which the posi-
tion of the particle is exactly defined, being equal to
some xi and xf, respectively. We write  i D jxii and
 f D jxfi. In this case, one usually uses a simpler no-
tation for the transition amplitude: A.xf; tfI xi; ti/ WD
A .jxfi; tiI jxii; ti/. The expression for the transition am-
plitude can be rewritten as

A.xf; tfI xi; ti/D
˝
xf;U

�
T
N

�
� � �U

�
T
N

�
U
�

T
N

�
U
�

T
N

�
xi
˛
;

(38.2)

where T WD tf� ti and one has used the fact that the
time evolution U.T/ is equivalent to performing N evo-
lutions over the smaller time T=N. The eigenstates of
position jxi satisfy the following identity: for all  ; � 2
H

h ; �i D

1Z
�1

h ; xihx; �idx : (38.3)

This is known as a completeness relation or resolution
of the identity. Note that the range of integration on the
right-hand side includes all possible values which can
result from a measurement of the position Ox – that is, the
integral is over the spectrum of Ox. If Ox were quantized,
that is, if its spectrum were discrete, this integral would
be replaced by a sum over the discrete spectrum. We
will remark on this later. Applying the identity (38.3) to
(38.2) N � 1 times, in sequence, one obtains

A.xf; tfI xi; ti/D
Z ˝

xf;U
�

T
N

�
� � �U

�
T
N

�
U
�

T
N

�
x1
˛

�
˝
x1;U

�
T
N

�
xi
˛

dx1

D

“ ˝
xf;U

�
T
N

�
� � �U

�
T
N

�
x2
˛

�
˝
x2;U

�
T
N

�
x1
˛ ˝

x1;U
�

T
N

�
xi
˛

dx1 dx2

:::

D

“
� � �

Z ˝
xf;U

�
T
N

�
xN�1

˛

� � �
˝
x2;U

�
T
N

�
x1
˛ ˝

x1;U
�

T
N

�
xi
˛

� dx1 dx2 � � � dxN�1 :

In this expression one has introduced N�1 intermediate
position eigenstates, and one integrates over all possible
such intermediate states. This sequence of intermediate
states forms a discrete history of quantum states. Note
that the above expression is exact for any N. If one takes
the limit at N approaches infinity, the discrete histories
are replaced by continuum histories of quantum states,
and one obtains the path integral;

A.xf; tfI xi; ti/D
Z

x.ti/Dxi
x.tf/Dxf

exp

�
i

„
SŒx.�/�

�
Dx.�/ ;

(38.4)

where, heuristically,Dx.�/ denotes
Q

t dx.t/, and SŒx.�/�
is the action for the theory. The action is a purely classi-
cal quantity, which specifies a number for each possible
classical history x.t/. It is maximized or minimized
when x.t/ is a solution to the classical equations of mo-
tion. Because of the close relation between integrals and
sums (one is just a limit of the other), the integral in
(38.4) is also loosely referred to as a sum over paths, or
a sum over histories. If the position operator Ox had had
a discrete spectrum, so that only a discrete set of values
were allowed for x, as already mentioned, the resolution
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of the identity (38.3) would have actually been replaced
by a sum, and the final path integral (38.4) would have
actually become a sum rather than an integral. There are
also cases where the final expression for the propaga-
tor (38.4) involves a combination of sums and integrals.
In this chapter, as in much of the literature on path in-
tegrals, we will be loose with the distinction between
sums over paths and integrals over paths, and will use
the terms path integral, sum over paths, and sum over
histories interchangeably. Nevertheless, because, in the
case of quantum gravity, the primary interest of this
chapter, one will turn out to have mostly sums, we will
generally prefer to use the term sum.

Equation (38.4) provides an expression for the tran-
sition amplitude from a position xi at time ti to a posi-
tion xf at time tf, an expression that involves only a sum
over classical paths x.t/ that start at xi and end at xf,
and the classical action SŒx.t/� depending on this path.
The canonical theory enters into the expression in one
way only: it determines the spectrum of Ox and hence the
allowed values that the history of eigenvalues x.t/ can
take at each moment in time. Other than this, classical
physics is the only input for this expression. Because
of this, Feynman made the radical proposal that this
formula, which encodes all physical predictions for the
system in question, be a new starting point for the very
definition of the quantum theory.

However, care is necessary. As noted, one piece of
information from the canonical quantum theory does
remain: it is the canonical theory which tells us the
spectrum of the position operator Ox, and hence the pos-
sible positions which one sums over in the path integral.
In the case of the free particle, the spectrum of the po-
sition includes all real numbers, so that, in fact, the sum
is equivalent to a sum over all classical histories. How-
ever, in other theories this is not necessarily the case.
In particular, in the case of gravity, one must sum over
histories of geometry. But, one of the seminal results of
loop quantum gravity is that geometry is quantized. Ar-
eas of surfaces and volumes of regions can only take
on discrete sets of possible values. Thus, one should
not sum over all histories of classical geometries, but
rather over histories of the allowable quantum geome-
tries predicted by loop quantum gravity. This is the
insight leading to the spin-foam program.

Before closing this section, let us remark that the
integrand in (38.4) can be interpreted as giving the
probability amplitude for a single history x.t/

AŒx.�/�D exp

�
i

„
SŒx.�/�

�
: (38.5)

The total transition amplitude (38.4) is then obtained by
integrating (or adding) the amplitudes (38.5) associated
with all histories compatible with the relevant boundary
conditions, x.ti/D xi, x.tf/D xf.

The precise form (38.5) for the amplitude of each
history not only arises from the canonical quantum
theory in the manner presented above, but it is also im-
portant for the correct classical limit of the quantum
theory. When constructing a quantum theory, usually
the corresponding classical theory is already well tested
experimentally. In order to be consistent with known
experiments, it is therefore crucial that the predictions
of the quantum theory agree with those of the classi-
cal theory in situations where the effects of quantum
mechanics can be neglected. One way of stating this
requirement is that if appropriate combinations of the
physical scales in the situation are large compared to
Planck’s constant (so that Planck’s constant can ef-
fectively be scaled to zero), then the quantum theory
should yield the same predictions as the correspond-
ing classical theory. The limit here described – that
of either large physical scales or Planck’s constant be-
ing scaled to zero – is what is called the classical
limit of a quantum theory, and the requirement that this
yield predictions equivalent to the classical theory is
called the requirement of having the correct classical
limit.

Let us consider the classical limit of the path inte-
gral. For the present argument, it is easiest to cast this
as the limit in which Planck’s constant is scaled to zero.
In this limit, the phase 1

„

S of the amplitude (38.5) be-
comes very large compared to 2� . If one divides up the
domain of integration – the space of histories compat-
ible with the boundary conditions – into many small
neighborhoods, one finds that, in the vast majority of
these neighborhoods, the phase of the integrand will
oscillate very fast. As a consequence, in such neigh-
borhoods, there tend to be an equal number of opposite
phase contributions from the path integral which can-
cel each other, so that the total contribution from such
neighborhoods tends to be zero (Fig. 38.1). The only
neighborhoods where the phase is not oscillating fast
are those where SŒx.�/� does not change very much when
x.�/ changes. These are precisely the neighborhoods
where SŒx.�/� is maximum or minimum, that is, precisely
the neighborhoods containing a solution to the classical
equations of motion. Thus, one sees that, in the classical
limit, only histories near solutions to the classical equa-
tions of motion contribute to the path integral. This is
key to obtaining the correct classical limit of the quan-
tum theory. The Feynman prescription (38.5) for the
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eiS[  1(·)]/  + 

1(t) 2(t) · · · 

eiS[  2(·)] /  + · · · ≈ 0 

0 Re z 

Im z 

Fig. 38.1 In the classical limit, at histories x.�/
where .1=„/SŒx.�/� changes, it changes very fast, so
that the phases from the sum over histories near x.�/
tend to cancel. When SŒx.�/� does not change with x.�/,
the phases do not cancel, but reinforce each other. This
happens when x.�/ is a local minimum or maximum of
SŒx.�/� – that is, when x.�/ is a solution to the classical
equations of motion. In this way the classical solutions
dominate the sum over histories in the classical limit

probability amplitude of a single history is thus directly
related to ensuring the correct classical limit.

38.1.2 Field Theory and the General
Boundary Formulation of Quantum
Mechanics

Before going on to the specific case of gravity, we
take the opportunity to first discuss field theory, and
introduce what is known as the general boundary for-
mulation of quantum mechanics [38.2, 6, 7]. In the case
of field theory, instead of integrating over possible paths
x.t/ of a particle from time tD ti to tD tf as in (38.4),
one integrates over possible fields �.x/ on the four-
dimensional space–time region bounded by the instants
tD ti and t D tf. In the general boundary formulation,
this region is allowed to be replaced by any space–time
region. The biggest advantage of this formulation of
quantum mechanics is that, by choosing this region to
be finite, it permits purely local calculations in a quan-
tum field theory in which one need not worry about the
asymptotic behavior of states at infinity. Not only are
such calculations more consistent with the locality of
the measuring apparatus one would actually use, but

R,  φ (  )

Σtf , �f (x)

Σti , �i (x)

Fig. 38.2 In the path integral for the scalar field, one
sums over all fields �.x/ on some space–time region R
compatible with given initial values 'i.x/ on the initial
hypersurface ˙ti and final values 'f.x/ on the final hyper-
surface ˙tf , where ˙ti and ˙tf bound R

they are technically simpler, and have been central to
most work in spin foams up until now.

The Free Scalar Field
As an example, let us look at the case of a scalar field
in Minkowksi space. In this case, one has as basic
canonical variables '.x/ and its conjugate momentum
field �.x/, and corresponding operators O'.x/; O�.x/. We
here use bold to denote spatial points. One has a com-
plete set of simultaneous eigenstates j'.x/i of the oper-
ators O'.x/, each now labeled by a field '.x/ on space.
A history of such fields, �.t; x/D �.x/, is a field on the
four-dimensional space–time region R bounded by the
three-dimensional instant-time hypersurfaces tD ti and
tD tf, which shall be denoted ˙ti and ˙tf , respectively
(Fig. 38.2). Note that space–time points such as x will
not be bolded. Equation (38.4) becomes, in this case

Ascalar.'f; tfI'i; ti/ WDAscalar.j'fi; tfI j'ii; ti/

D

Z
�jtiD'i

�jtfD'f

eiSŒ�
D� ; (38.6)

where SŒ�� is the classical action (the exact form is not
important for the present discussion). Next, note that the
field 'i is a field on the hypersurface˙ti , and 'f is a field
on the hypersurface ˙tf . These two hypersurfaces to-
gether form the boundary of the four-dimensional
space–time region R, the region on which the field � is
defined. Let ' denote the combination of the fields 'i; 'f

on the full boundary of R, denoted @R, which in this case
is equal to ḟ [˙i. The state j'ii can be thought of as
living in a copy H˙ti

of the Hilbert space associated
with the surface ˙ti , and j'fi as living in a copy H˙tf
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of the Hilbert space of quantum states associated with
the surface ˙tf . The full field ' on all of @R can then be
thought of as labeling a state j'i in a certain combined
Hilbert space H@R for the full boundary of R.

Let us define the Hilbert space H@R. Consider
a given Hilbert space of quantum states H . Often one
thinks of quantum states j�i 2H as column vectors
(kets). Their Hermitian conjugates, denoted j�i� DW
h� j, are then row vectors (bras). The inner product be-
tween two states �;˚ can then be written as the matrix
product of the row vector h� j with the column vector
j˚i, yielding a complex number

h� j˚i D h�;˚i

(whence the motivation for the notation h� j and j˚i).
The space of row vectors is called the space dual to H ,
and is written H�. The Hilbert space H@R for the
full boundary @RD˙tf [˙ti , in terms of H˙ti

and
H˙tf

, is then defined to consist in formal sums of
products of states in the dual H�

˙tf
and in H˙ti

(the
product is denoted using the symbol ˝). Mathemati-
cally, this is expressed by saying thatH@R is the tensor
product of H�

˙tf
with H˙ti

, and one writes H@R WD

H�
˙tf
˝H˙ti

. In terms of the initial and final field

eigenstates j'ii 2H˙ti
; j'fi 2H˙tf

, the correspond-
ing field eigenstate on the full boundary of R is given
by j'i WD j'fi

�
˝j'ii D h'fj˝j'ii 2H@R. The Hilbert

space H@R on the full boundary of R is called the
boundary Hilbert space, and j'i is called a boundary
state.

In terms of the label ' and boundary states, (38.6)
becomes

Ascalar.';R/�Ascalar.j'i;R/

D

Z
�j@RD'

eiSŒ�
D� : (38.7)

This expression has the benefit that it makes sense
also when R is any space–time region, leading to
a natural generalization of the path-integral formalism.
This generalization is called the general boundary
formulation of quantum mechanics, and is equivalent
to the more standard formulations of quantum mechan-
ics [38.2, 6, 7]. The interpretation of the path integral
(38.7) is the direct generalization of the interpretation
of the original path integral (38.6): it provides the
probability amplitude of measuring the field � to have
the values ' on the boundary of the region R. The

R,  φ (  ) R, � (x)

Fig. 38.3 The general boundary formulation of the path
integral applies even when the space–time region R is
compact

expression (38.7) applies when the boundary state is
an eigenstate j'i of the scalar field operator O'.x/; from
this one can deduce the amplitude Ascalar.�;R/ for
any quantum boundary state � in H@R. The general
boundary formalism applies even, and in our case
most importantly, when R is compact (Fig. 38.3). One
advantage of this generalized formalism when R is
chosen to be compact is that one can completely side
step the issue of how the quantum state behaves as one
approaches spatial infinity, an issue which should not
matter for concrete applications anyway, because one
never measures fields at infinity in actual experiments.
Furthermore, the lack of an a priori fixed notion
of which space–time regions may be used is more
consistent with the spirit of background independence,
which will be central in the case of quantum gravity.

38.1.3 The Case of Gravity:
The Problem of Time
and the Path Integral as Projector

Applying the above ideas to gravity involves unique
subtleties. Specifically, in general relativity, when ini-
tial data surfaces are compact and without boundary (so
that there are no boundary terms), the Hamiltonian H
is constrained to be zero. In fact, the Hamiltonian can
be expressed in terms of a Hamiltonian density H DR
H .x/d3x, and this Hamiltonian densityH .x/ is con-

strained to be zero at each point x. Because H .x/
is constrained to be zero, it is called the Hamiltonian
constraint. In the quantum theory, the Hamiltonian con-
straint dictates that states be eigenstates of the Hamilto-
nian constraint operator OH .x/ with eigenvalue zero –
that is, one requires that states be annihilated by the
Hamiltonian constraint, OH .x/� D 0 and, hence, also
by the Hamiltonian, OH� D 0. By Schrödinger’s equa-
tion (38.1), this implies the curious property

d�

dt
D

�
�i

„

�
OH� D 0 ; (38.8)
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i. e., that the quantum state should not evolve in time.
This fact is directly related to the background indepen-
dence of general relativity: that there is no background
time variable. Whereas in classical general relativity
one can introduce an arbitrary time variable for conve-
nience, in quantum general relativity, even introducing
such a time for convenience is forbidden, or at least
useless.

It is clear, therefore, that in quantum gravity one
can not interpret the Feynman path integral in terms
of time evolution, as was done in (38.4). In fact, the
interpretation is different. Instead, in the interpretation
of the path integral, the time-evolution map is replaced
by a projector P onto solutions of OH .x/� D 0, the
quantum Hamiltonian constraint [38.8–10]. Let us be
concrete. In the case of gravity, the space–time field is
the four-dimensional metric, denoted g.x/, which de-
termines the lengths of, and angles between, vectors
at each point x, which in turn determines geometrical
lengths of curves, areas of surfaces, volumes of regions,
etc. – that is, g.x/ determines the geometry of space–
time. The canonical variables on a given instant-time
hypersurface ˙t are the three-dimensional metric h.x/
determining the three-dimensional geometry of˙t, and
its conjugate momentum ˘.x/, which determines the
way ˙t curves in the larger four-dimensional space–
time and can be related to the time derivative of h.x/.
Hence, in the quantum theory one has operators Oh.x/
and Ŏ .x/, and simultaneous eigenstates jhi of the op-
erators Oh.x/. The states jhi and the projector P are then
related to the Feynman path integral by

hhf;P hii D

Z
gj˙ti
Dhi

gj˙tf
Dhf

eiSŒg
Dg ; (38.9)

where gj˙ D h means that the geometry induced by g
on ˙ is equal to h.

Another way of stating this phenomenon is
that (38.8) is simply a statement of gauge invariance
of the wavefunction – time translations are coordinate
transformations, and hence do not change the physi-
cal state, and so are gauge. At the same time, it is also
a statement of the quantum version of the component

H D
R
H .x/d3xD 0 of the Hamiltonian constraint. In

fact, in general, for every gauge symmetry in a system,
there is a corresponding constraint and, as happens here,
in the quantum theory, invariance under the gauge sym-
metry and satisfaction of the corresponding quantum
constraint become one and the same thing. Constraints
related to gauge in this way are called first class [38.11].
Not only is H a first-class constraint, but so are the in-
finity of individual Hamiltonian constraints H .x/D 0
for each point x. In fact, all other fields which medi-
ate forces in nature (electroweak and strong forces) also
have first-class constraints and corresponding gauge
symmetries. Quite generally, whenever a system has
first-class constraints, the path integral projects onto
solutions of the first-class constraints, so that the pro-
jection property seen in (38.9) is not unique to general
relativity [38.8].

Exactly as in the case of the scalar field theory in
the last subsection, (38.9) generalizes to an arbitrary
space–time region. If Agrav.�;R/ denotes the probabil-
ity amplitude for a given quantum gravity state � on the
boundary of a given region R, h denotes a given three-
dimensional metric on the boundary @R of R, and jhi the
corresponding eigenstate in the boundary state space,
we have

Agrav.h;R/ WDAgrav.jhi;R/D
Z

gj@RDh

eiSŒg
Dg :

(38.10)

We close this section with a remark. In the case of
a scalar field, there is a background space–time geome-
try, Vg, present and the action SŒ�� depends on it: SŒ��D
SŒ�; Vg�. Because of this, Ascalar.�;R/ in fact depends
on the size and shape of the chosen region R, as deter-
mined by this background geometry. By contrast, in the
case of quantum gravity, there is no background geom-
etry, and so R has no nondynamically defined shape or
size. In this case the boundary quantum state � codes
the information about geometry, which is now dynami-
cal. If � is sufficiently peaked on a classical geometry,
then R again has a shape, but this shape is determined
by � , and not by any background geometry.
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38.2 Spin-Foam Models of Quantum Gravity
38.2.1 Review of Spin-Network States

and Their Meaning

It is now time to incorporate into the discussion what
has been learned from the canonical quantization of
gravity known as (canonical) loop quantum gravity. The
Hilbert space of states in LQG is spanned by what
are called spin networks (as discussed in Chap. 37).
In this chapter, because it will be most useful later
on, we review a form of spin network introduced by
Livine and Speziale [38.12], which we will refer to as
Livine–Speziale spin networks. (In the literature they
are more commonly referred to as Livine–Speziale co-
herent states.) Each such spin network state is peaked
on a particular three-dimensional, discrete, spatial ge-
ometry. We first review how each spin network is
labeled, and then how these labels determine the cor-
responding geometry.

Each spin-network state is first labeled by a col-
lection of curves in space which intersect each other
at most at their end points. Such a collection of
curves is called a graph and will be typically de-
noted � (Fig. 38.4). Following the terminology of
Rovelli [38.2], we call each curve in the graph a link,
and each end point of a curve a node. Each link ` is la-
beled by a half integer spin j` D 0; 1

2 ; 1;
3
2 ; : : : At each

node �, and for each link ` ending or beginning at �,
there is furthermore a unit, three-dimensional vector
n�` (Fig. 38.5). We write j�; fj`; n�`gi to denote such
a spin network.

The labels �; fj`; n�`g determine the spatial geom-
etry by determining areas of surfaces and volumes of
regions. In determining these areas and volumes, an im-

3/2

3/2

3/2

1/2

1/2

1/2

3/2

2

2

2

2 3 1

1

1
1

1

1

Fig. 38.4 Each spin-network state is labeled by a choice
of graph, with spins labelling the links, and other quantum
numbers labeling the nodes

portant role is played by the so-called Planck length,
the unique combination, with dimension of length, of
Newton’s gravitational constant (G), Planck’s constant
divided by 2� („), and the speed of light (c). It is given
by `Pl WD

p
G„=c3, which is approximately 1:616�

10�35 m, or roughly 10 sextillionths of (or 10�20�) the
diameter of a proton. Given a surface S, in terms of the
Planck length, its area as determined by a spin-network
state with the labels �; fj`; n�`g is

A.S/D
X

` intersecting S

8�`2
Plˇ
p

j`.j`C 1/ ; (38.11)

where ˇ is a certain positive real number referred to as
the Barbero–Immirzi parameter [38.13–16] (Fig. 38.6).
Given a three-dimensional region R in space, its volume
is

V.R/D
.8�ˇ/3=2`3

Pl

4
p

3

�
X

� nodes of 
in R

vuuuut
ˇ̌̌
ˇ̌̌
ˇ
X
`;`0;`00

at �

j`j`0 j`00 n�` � .n�`0 � n�`00/

ˇ̌̌
ˇ̌̌
ˇ
;

(38.12)

where the sum over `; `0; `0 is over all triples of links
in � starting or ending at the node �.

38.2.2 Interpretation of Spin Networks
in Terms of the Dual Complex

The extraction of information about geometry from the
quantum labels j`, n�` can be systematized using what

nv'ℓ'1

nv'ℓ2

nv'ℓ'3

nvℓ3

nvℓ2

nvℓ1

nv'ℓ

nvℓ

jℓ

Fig. 38.5 Each link ` is labeled by a spin j`. For each
node n, and each link ` incident at n, one has also a unit
three-dimensional vector n�`
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j1

j2

j3

S

Fig. 38.6 Each spin-network link, with spin j`, intersect-
ing a surface S contributes to the surface an area of
8�`2

Plˇ
p

j`.j`C 1/, where `Pl is the Planck length

R

γ

v

Fig. 38.7 A three-dimensional region RD �? is said to be
dual to a node � of � if it contains � but no other node of �

v*

θ

l*

l~*

Fig. 38.8 The interior angle  between the two faces `?

and Q̀? of the 3-cell �?, as determined by the LQG spin-
network labels, is given by (38.14)

is called a dual-cell complex. For each link `, a surface
(a two-dimensional region) SD `? is said to be dual
to ` if it intersects ` at one point, but intersects no other
link of � . For each node �, a three-dimensional region
RD �? is said to be dual to � if it contains � but no
other node of � (see Fig. 38.7).

If one chooses such a dual for each link and node
in the graph � , and if these are chosen such that they
all fit together – that is, such that the boundary of each
chosen three-dimensional region �? consists entirely of
chosen two-dimensional regions `?, then the set of all
the chosen regions �?, `? forms a cell complex which
is said to be dual to � , and which we denote by �?.
In this case, we refer to �? and `? as cells of �?; more
specifically, one uses the terms 3-cell and 2-cell, respec-
tively, according to the dimension of the region. From
(38.11), the spin j` on a link ` determines the area of
the surface `? dual to it by the formula

A.`?/D 8�`2
Plˇ
p

j`.j`C 1/ : (38.13)

From (38.12), the quantum labels n�` at a given node �
determine the volume of the region �? dual to it via the
formula

V.�?/D
.8�ˇ/3=2`3

Pl

4
p

3

�

vuuuut
ˇ̌̌
ˇ̌̌
ˇ
X
`;`0;`00

at �

j`j`0 j`00 n�` � .n�`0 � n�`00/

ˇ̌̌
ˇ̌̌
ˇ
:

In addition to this, given a node � and two links `; Q̀

incident at it, one can ask what is the angle  D
Œ�?; `?; Q̀?� between the dual surfaces `?; `0? within
the dual region �?. In fact, it is given by the formula

cos
�
Œ�?; `?; Q̀?�

	
D�n�` � n� Q` (38.14)

(Fig. 38.8). These areas, volumes, and interior angles
form the basic quantities from which the quantum ge-
ometry is constructed. We will go into more detail about
this in Sect. 38.3.6.

There is of course a great deal of choice in the com-
plex �? dual to � . However, given � , the connectivity of
the parts of �? is uniquely determined – that is, which
lower dimensional cells are on the boundary of each
higher dimensional cell is uniquely determined. If � is
on the boundary of ` (meaning, in this case, an end point
of `), then `? is on the boundary of �?. Another way of
saying this, in mathematical terms, is that the topology
of �? is unique, and it is in this sense that we can speak
unambiguously of the complex �? dual to � .

We have here discussed dual cells and dual-cell
complexes in three dimensions. However, these ideas
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Fig. 38.9 Example of dual-cell complexes in two dimen-
sions. The solid line complex and the dotted line complex
are dual to each other

can be formulated in any dimension. If one is work-
ing in an N-dimensional space, and one has an M-
dimensional surface S, a surface S? is said to be dual
to S if it has dimension N�M and intersects S at exactly
one point (Fig. 38.12). In the case of two dimensions,
one can visualize the idea of a dual-cell complex with
more completeness and ease. For the purpose of illus-
tration, we include in Fig. 38.9 an example of a dual
complex in two dimensions.

38.2.3 Histories of Spin Networks:
Spin Foams

Histories of three-dimensional spin networks j�; fj`;
n�`gi become four-dimensional objects. The one-
dimensional links of the graphs � become two-
dimensional faces f , and the zero-dimensional nodes

t
υ

Fig. 38.10 A single node splits into three nodes, creating
a spin-foam vertex

e6

e3

e4

e5

e2

e1

f5

f6

f3
f4

f1 f2

υ2

υ1

Fig. 38.11 A spin foam is a history of a spin network. It
forms a two-complex, with the links of the spin network
sweeping out faces, and the nodes of the spin network
sweeping out edges. Each face f in the spin foam inherits
the spin on the corresponding link, and each edge e in the
spin foam inherits the set of unit three-dimensional vectors
labeling the corresponding node. The face spins are now
denoted jf and the three- dimensional vectors are now de-
noted nef

of the graphs become one-dimensional edges e. Places
in the history where a node splits into multiple
nodes, or multiple nodes combine, are called vertices
(Fig. 38.10). The set of all such faces, edges, and ver-
tices of a given history together form the spin-foam
two-complex of the history, which we usually denoteF
(Fig. 38.11). Each face f inherits the half-integer spin
jf labeling the link of which it is the history, and each
edge e inherits the set of unit vectors associated with
the node of which it is a history, one unit vector nef

for each edge e and face f incident at e. The spin-
foam two-complex F , together with these labels, is
referred to as a spin foam. Specifically, with this choice
of labels, we will call it a loop quantum gravity spin
foam. Each such spin foam represents, in a precise sense
to be reviewed in Sect. 38.3.6, a quantum space–time
geometry.

38.2.4 Spin-Foam Amplitudes

In order to specify the quantum dynamics, a probability
amplitude must be specified for each spin foam – that
is, a probability amplitude for each history of quantum
gravity states, each quantum space–time. This ampli-
tude should be, in an appropriate semiclassical limit,
equal to (a possible real coefficient times) the usual
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Feynman prescription of the exponential of i times the
classical action, as reviewed in Sect. 38.1.1.

It turns out, from experience with simple theories
in four space–time dimensions and gravity in three
space–time dimensions [38.17, 18], that one expects
this amplitude to be of the form

A.F ; fjf ; nef g/

D

0
@Y

f2F
Af

1
A
0
@Y

e2F
Ae

1
A
0
@Y

v2F
Av

1
A ; (38.15)

where for each face f , edge e, and vertex v, Af , Ae,
and Av are referred to as the face, edge, and vertex
amplitudes, respectively. This form of the probability
amplitude is called the spin-foam ansatz. Here, Af is

a function of the spin jf alone, Ae is a function of
the quantum labels associated with the edge e as well
as with the faces incident at e, and Av is a function
of the quantum labels associated with the edges and
faces incident at the vertex v. From experience with
the above-mentioned simple models,Af andAe are ex-
pected to be real, and Av complex. Thus, one expects
the exponential of i times the action to arise almost en-
tirely from the vertex amplitudes alone. It is for this
reason that the vertex amplitude is usually considered
the most important one. Furthermore, the vertices are
where the spin network changes in the history, and
hence where interesting dynamics is taking place. Thus,
in a sense, it is not surprising that the vertex amplitude
usually turns out to be the most important factor in the
probability amplitude.

38.3 Deriving the Amplitude via a Simpler Theory

How should one determine the different factorsAf ,Ae,
andAv appearing in the probability amplitude (38.15)?
The strategy used by the spin-foam community is a bit
indirect: we first construct the spin-foam amplitude for
a very simple toy theory, called BF theory. The spin-
foam dynamics of BF theory is very well understood.
One then uses the fact that general relativity can be ob-
tained from BF theory by imposing extra constraints,
called simplicity constraints, an idea which traces back
to the work of Plebanski [38.19]. The nontrivial task in
constructing a spin-foam model is then reduced to the
question of how these simplicity constraints should be
imposed in the quantum theory.

We begin this section by reviewing a minimum nec-
essary to understand what is BF theory, what are the
simplicity constraints, and how Einstein’s theory of
gravity can be recovered from these. We then review
the quantum mechanics of BF theory, and then dis-
cuss the version of the quantum simplicity constraints
now predominant in the literature. (For the first method
of imposing quantum simplicity which was previously
predominant, and which laid the foundations for the
modern method, see [38.20, 21].)

38.3.1 BF Theory and Gravity

BF theory is a theory with a maximal number of gauge
symmetries. Recall that a gauge symmetry is a transfor-
mation that does not change the physical state of the
system, but only changes the variables used to describe

it. That is, the presence of gauge symmetries in a theory
indicates a redundancy in the variables used to describe
the system. The simplest example of a gauge symmetry
is a transformation of the vector potential of the mag-
netic field: given a vector potential A and a function �
on space, the new vector potential

QA WD ACr�

determines exactly the same magnetic field, and hence
the same physical state of the system. In the case of gen-
eral relativity, the gauge transformations are space–time
coordinate transformations, reflecting the physical fact
that space–time coordinates have no intrinsic meaning
in the theory: space–time coordinates are only tools of
convenience, used to aid in describing physical fields.
The more gauge symmetries one has in a system, the
less the variables of the theory contain real, physical in-
formation. BF theory has so many gauge symmetries
that in fact the variables of the theory contain no local
information. This is why BF theory is so simple and
why the corresponding spin-foam quantum theory is so
well understood. Such simple theories like BF theory
which have no local physical degrees of freedom are
referred to as topological field theories.

To introduce the basic variables of BF theory, we
first recall a notation usually used for matrices: given
a matrix M, one denotes its element in the i-th row and j-
th column by Mij. When one allows more than just two
indices, one obtains a generalization of matrices, which
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we shall call arrays. The basic variables of BF theory
are two fields of arrays on space–time, denoted˙ IJ

��.x/
and !IJ

�.x/, where the indices �; �; I; J take the values
0; 1; 2; 3. (There are more specific terms for these types
of fields of arrays, which indicate certain transforma-
tion properties, but we have chosen to avoid these terms,
because we wish to avoid talking about transformation
properties which are not necessary for the discussion in
this chapter.) In terms of these variables, the action for
BF theory is given by

SBF D
1

32�G

�

Z
���	�

�
1

2
�IJKL˙

KL
�� C

1

ˇ
�IK�JL˙

KL
��

�
FIJ
	� d4x

DW
1

2

Z
���	�B��IJFIJ

	� d4x ;

(38.16)

where �IJKL, ���	� both denote the Levi-Civita array,
defined uniquely by the properties �0123 D 1 and that
when any two indices of IJKL (respectively ����) are
interchanged, �IJKL (respectively ���	�) changes by
a minus sign – for example, �IJKL D��JIKL. Further-
more, here and throughout the rest of this section we
use the Einstein summation convention: when a given
index appears twice in an expression, once up and once
down, summation shall be implied over all possible val-
ues of the given index. In the final expression above, we
have defined BIJ

�� to be the quantity in parentheses, and
FIJ
	� denotes the field strength (or curvature) of !IJ

�, de-
fined by

FIJ
	� WD

@!IJ
�

@x	
�
@!IJ
	

@x�
C �KL

�
!IK
	 !

LJ
� �!

IK
� !

LJ
	

�
:

(Note that in the spin-foam literature, sometimes BIJ
��

is defined to be only the first term of the expression in
parentheses in (38.16).)

The simplicity constraint, in its simplest and most
important sense, is just the requirement that there exist
a matrix field eI

�.x/ such that

˙ IJ
��.x/D˙

�
eI
�.x/e

J
�.x/� eJ

�.x/e
I
�.x/

�
(38.17)

at each space–time point x. The simplicity constraint is
thus a constraint on the field˙ IJ

��.x/; when˙ IJ
��.x/ sat-

isfies this constraint, one says ˙ IJ
��.x/ is simple. When

˙ IJ
��.x/ is simple, the fields describing the system are

just eI
� and !IJ

�. What is important to know is that these

fields in fact just describe a geometry for space–time.
In terms of the metric tensor g�� used in much of this
handbook, this geometry is just g�� D �IJeI

�eJ
� , where

�IJ is the diagonal matrix with �11 D �22 D �33 D 1, and
�00 D˙1 depending on whether one is considering Eu-
clidean (C1) or Lorentzian (�1) gravity. eI

� is referred
to as a cotetrad. The terms Euclidean and Lorentzian
gravity are a bit misleading. In fact, there is only one
Einstein theory of gravity describing the real world,
and that is what we are calling here Lorentzian grav-
ity. Euclidean gravity is a simplified model very closely
related to, but in certain ways simpler than, Lorentzian
gravity. It is often used for practice when investigating
quantum gravity. Essentially, in Euclidean gravity one
treats time as though it were just a fourth dimension of
space. In this chapter, we consider spin-foam quantiza-
tions of both of these models of gravity.

38.3.2 Spin Foams of BF Theory

We have already described the spin foams arising from
loop quantum gravity. We next describe spin foams
for BF theory. These again arise as histories of labels
of corresponding canonical quantum states, just as the
loop quantum gravity spin foams of Sect. 38.2.3 arose
as histories of labels of the canonical Livine–Speziale
spin-network states of loop quantum gravity. As men-
tioned, there are two basic variables of BF theory,˙ IJ

��

and !IJ
�. The restrictions of these fields to a given

instant-time hypersurface are canonically conjugate, so
that, to have a complete set of canonical states, it is suf-
ficient to consider states peaked on˙ IJ

�� or !IJ
�, but not

both. The particular choice of canonical states we use
for defining BF spin foams are peaked on the variable
˙ IJ
�� and are closely related to the Livine–Speziale spin

networks [38.22–25]. This choice will facilitate impos-
ing the simplicity constraint, as well as be important for
taking the semiclassical limit of the theory.

Exactly as in the case of the loop quantum gravity
spin foams, each BF spin foam is first labeled by a spin-
foam two-complex, with faces, edges, and vertices (as
in Fig. 38.11). However, now the labels on the faces
and edges are different. As mentioned at the end of
the last section, in quantum gravity, often one considers
first the simplified theory of Euclidean gravity for prac-
tice, before considering the actual Lorentzian gravity
corresponding to reality. Spin foams are no exception.
The spin-foam quantum labels for BF theory are differ-
ent depending on whether one considers Euclidean or
Lorentzian gravity. In the Euclidean case, each face f is
labeled by two half integers jCf ; j

�

f D 0; 1
2 ; 1;

3
2 ; : : : and,
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Table 38.1 Labels on each face and on each edge bounding
each face, for the BF spin-foam model used in the case of
Euclidean and Lorentzian gravity, respectively

For each face f For each edge e 2 @ f

Euclidean jCf ; j�f jef ; nef

Lorentzian pf ; kf jef ; nef

for each edge e in the boundary of f , one has a further
half integer jef and a unit three-dimensional vector nef .
In the Lorentzian case, each face f is labeled by a real
number pf and a half integer kf and, for each edge e
in the boundary of f one again has a half integer jef

and a unit three-dimensional vector nef (Table 38.1).
For convenience, we let L denote the appropriate set of
possible labels on the BF spin foam: fjCf ; j

�

f ; jef ; nef g in
the Euclidean case, and fpf ; kf ; jef ; nef g in the Lorentzian
case.

In terms of these labels, the amplitude for a single
BF spin foam decomposes as in the spin-foam ansatz
(38.15), with certain expressions for the corresponding
face, edge, and vertex amplitudesABF

f , ABF
e , and ABF

v .
What is important for this chapter is that the vertex
amplitude can be expressed in terms of integrals over
certain groups. Let G denote the space of all 4� 4 ma-
trices GI

J such that

GK
IG

L
J�KL D �IJ ;

where �IJ is again the diagonal four by four matrix with
diagonal components �11 D �22 D �33 D 1 and �00 D

C1 or �1 depending on whether one is considering Eu-
clidean or Lorentzian gravity. For the case of Lorentzian
gravity, a matrix G satisfies the above equation if and
only if its action on a given set of four space–time co-
ordinates is a Lorentz transformation; in this case G
is called the Lorentz group. In the case of Euclidean
gravity, G is the group of four-dimensional Euclidean
rotations. (In fact, the group G is directly related to
the labels on the faces of the BF spin foam: each
pair .pf ; kf / labels a unitary irreducible representation
of the Lorentz group, and each pair .jCf ; j

�

f / labels
a unitary irreducible representation of the group of four-
dimensional Euclidean rotations. This is similar to the
way the angular momentum quantum number j in basic
quantum mechanics labels irreducible representations
of the spatial rotation group.) There is a way to define
integrals over the group of matrices G. The vertex am-
plitude ABF

v of BF theory can be expressed in terms of
nested integrals over such matrices, one such integral

for each edge e incident at the given vertex v

ABF
v .L/D

0
@ Y

e incident at v

Z
G

dGve

1
A QABF

v .L; fGveg/ :

(38.18)

One can think of the spin-foam two-complex F ,
together with the labels L and the group matri-
ces fGveg, as labelling a sort of augmented history,
and QABF

v .L; fGveg/ is the probability amplitude associ-
ated with this history. It is these augmented histories
that will have a complete interpretation in terms of
the classical variables of BF theory, as we will see in
the next subsection. Beyond the above general form
(38.18), the details of the vertex amplitude will not be
needed in this chapter.

38.3.3 Dual-Cell Complex

To interpret the quantum labels for the BF spin foams
in terms of classical BF theory, we use the same strat-
egy as that used in Sect. 38.2.2 to interpret spin-network
labels: we again use the notion of a dual-cell com-
plex, except now in one dimension higher. In this
subsection we explicitly spell out this duality in the
four-dimensional case, lifting the duality presented in
Sect. 38.2.2 from space to space–time.

Recall that each spin foam is first of all labeled
by a spin-foam two-complex F , consisting of vertices,
edges, and faces, which fit together. For each vertex v
in F , a four-dimensional region v? is said to be dual
to v if it contains v and no other vertices of F . For each
edge e inF , a three-dimensional hypersurface e? is said
to be dual to e if it intersects e in exactly one point, and
intersects no other edges in F . For each face f in F ,
a two-dimensional surface f? is said to be dual to f
if it intersects f at one point, and intersects no other
faces inF . (For comparison with examples of dual cells
when working in lower dimensions, see Fig. 38.12.) If
one chooses such a dual for each vertex, edge, and face
in F , and if these are chosen such that they all fit to-
gether – that is, such that the boundary of each chosen
four-dimensional region v? consists entirely of chosen
three-dimensional hypersurfaces e?, and the boundary
of each three-dimensional hypersurface e? consists en-
tirely of chosen two-dimensional surfaces f?, then the
set of all the chosen regions v?, e?, f? forms a cell
complex which is said to be dual to F , and which we
denote by F?. In this case we refer to v?, e?, and f?

as cells of F?; more specifically, one uses the terms
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3-D

0 + 3 = 3

4-D

0 + 4 = 4

1 + 3 = 4

2 + 2 = 4

2 + 1 = 3

2-D

0 + 2 = 2

1 + 1 = 2

2 + 0 = 2

Fig. 38.12 Examples of dual cells in two, three, and four dimen-
sions. For each pair of dual cells, the dimensionalities of the cells
add up to the total dimensionality of the ambient space, and inter-
sect in one point. In the four-dimensional case, the fact that dual
cells intersect in one point can not be depicted

4-cell, 3-cell, and 2-cell, respectively, according to the
dimension of the region. Once again, though there is
a great deal of choice in such a complex F? dual to F ,
the connectivity of the parts of F? is uniquely deter-
mined – that is, the topology of F? is unique.

38.3.4 Interpretation of the Labels

To interpret these labels, we arbitrarily fix a coordi-
nate system x� in each 4-cell v? such that, in this
coordinate system, each 3-cell e? and 2-cell f? bound-
ing v? is planar. No physical quantities arising from
the constructions that follow depend on this choice
of coordinates in each v?. The classical field ˙ IJ

��

corresponding to a given augmented BF spin foam
.F ;L;Gve/ is then constant in each 4-cell v? (in the
coordinates x� fixed in each v?). Let .˙v/

IJ
�� denote

the constant value taken by ˙ IJ
��.x/ in the cell v?. The

labels fjef ; nef ;Gveg are then related to .˙v/
IJ
�� by

8�`2
Pljef n

i
ef

D

�
.Gve/

0
L.Gve/

i
MC

s

ˇ
.Gve/

j
L.Gve/

k
M

�Z
f

˙LM
v

(38.19)

for .i; j; k/D .1; 2; 3/; .3; 1; 2/; .2; 3; 1/, where sDC1
for Euclidean gravity and �1 for Lorentzian grav-

ity, and where, recall, `Pl denotes the Planck length.
The remaining labels, fjCf ; j

�

f g in the Euclidean case
and fpf ; kf g in the Lorentzian case, are related to the
classical field ˙ IJ

��.x/ by

�IK�JL

�Z
f
˙ IJ

��Z
f
˙KL
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�
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(38.20)
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�
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(38.21)

where CE;CL; QCE; QCL are each a certain combination of
the Planck length `Pl, ˇ, and numerical factors. The in-
tegral

R
S˙

IJ of ˙ IJ
��.x/ over a surface S appearing in

the above equations is the standard differential form in-
tegral, defined by

Z
S

˙ IJ WD

Z
˙ IJ
��

@
�

@u

@
�

@v
dudv ; (38.22)

where .u; v/ are any choice of coordinates on S, and
x� D 
�.u; v/ is the four-dimensional position of the
point on S with surface coordinates .u; v/. (The result
of the integral (38.22) is independent of the choice of
.u; v/ and hence of 
�.u; v/.)

38.3.5 Simplicity and the LQG
Spin-Foam Model

Recall the general strategy we are taking: one starts
from the probability amplitude ABF.F ;L/ for BF the-
ory, and then restricts consideration to the case in which
the BF spin foam .F ;L/ satisfies some quantum ver-
sion of the simplicity constraint (38.17). Just as the
classical simplicity constraint is sufficient to recover
classical gravity from BF theory, so too one expects
an appropriate quantum simplicity constraint to recover
quantum gravity from quantum BF theory.

Different ways of imposing simplicity quantum me-
chanically then lead to different spin-foam models of
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gravity. We will present here only the most recent,
commonly used way of imposing quantum simplicity,
which leads to the so-called LQG spin-foam model.
This model is also variously referred to as the EPRL,
EPRL-FK, or EPRL-KKL model, after key authors who
contributed to its development [38.26–28] – namely the
present author, Pereira, Rovelli, Livine, Freidel, Kras-
nov, Kamiński, Kisielowski, and Lewandowski. At the
center of this strategy of imposing simplicity is the so-
called linear simplicity constraint: the condition that

.Gve/
0

I

Z
f

˙ IJ D 0 (38.23)

for all f , e, and v incident on one another. It is called
linear because it is linear in the field ˙ IJ

��.x/. One can
show that it implies that˙ IJ

�� takes one of the following
three forms [38.29, 30]:

.˙/ ˙ IJ
��.x/D˙

�
eI
�.x/e

J
�.x/� eJ

�.x/e
I
�.x/

�
for some eI

�.x/ ; (38.24)

.deg/ ˙ IJ
��.x/ is degenerate, that is,

�IJKL�
���	˙ IJ

��˙
KL
�	 D 0 : (38.25)

Each of these constitutes a different sector of solutions
to (38.23); we have chosen the symbols (C), (�), and
(deg) to denote these sectors. Notice that only sectors
(C) and (�) yield a field ˙ of the form (38.17) re-
quired to obtain gravity. In fact, as we will see later
in the section on the semiclassical limit, the existence
of the last, degenerate, sector will cause problems, and
we will mention one way to solve this problem. (How-
ever, it should be noted that the above three sectors of
linear simplicity are already an improvement over the
prior version of the simplicity constraint used in the lit-
erature [38.20–23, 31], which had five sectors.)

We just have discussed the classical implications
of the linear simplicity constraint (38.23); however,
it is the quantum implications for the BF spin foams
that will yield us our quantum theory of gravity. From
(38.19)–(38.21), one can deduce the consequences of
linear simplicity (38.23) for the quantum numbers la-
beling the BF spin foams. In the Euclidean case, these
are precisely

j˙f D
1

2
j1˙ˇjjef

and, in the Lorentzian case,

pf D ˇjef and kf D jef ;

both remarkably simple forms. These are the quantum
simplicity constraints at the heart of the LQG spin-foam
model of gravity. After one imposes these constraints,
one can ask: what free spin-foam labels are left? In the
Euclidean case, one starts out with the BF spin-foam
labels fjCf ; j

�

f ; jef ; nef g; the above quantum simplicity
constraint uniquely determines the labels j˙f in terms
of jef , and furthermore forces that, for each f , all the
spins jef to be equal, whence we can write simply jf .
Thus, the remaining free labels are fjf ; nef g. The same
is true in the Lorentzian case: there one starts with the
labels fpf ; kf ; jef ; nef g, simplicity determines pf and kf in
terms of jef , and all the spins jef for a given face f are
equal, whence we may write jf , and again the remain-
ing free labels are fjf ; nef g. The key thing to note here
is that in both cases, the remaining free labels are ex-
actly the same as the labels on the LQG spin foams
introduced earlier. Thus, just as classically the sim-
plicity constraint reduces BF theory to gravity, so the
quantum simplicity constraint reduces BF spin foams to
LQG spin foams. That this key classical property is re-
produced quantum mechanically is one of the principal
successes of the linear simplicity constraint as imposed
in the LQG spin-foam model, and is what allows the
LQG spin-foam model to provide a dynamics for LQG,
making it the first, and thus far only, spin-foam model
to do so. For other, more subtle, but no less interest-
ing, arguments for this model, we refer the reader to the
original papers [38.26–28, 32].

38.3.6 Interpretation of LQG Spin-Foam
Quantum Numbers:
Quantum Space–Time Geometry

LQG spin foams describe the gravitational field, and
hence the geometry of space–time. We here take time
to explain how the labels of a LQG spin foam deter-
mine a discrete space–time geometry. This is important
not only for understanding the meaning of the LQG
spin-foam labels, but will be central in looking at the
semiclassical limit of the resulting spin-foam quantum
theory – that is, the limit in which quantum mechanics
is turned off, and in which one should recover classical
general relativity.

This section builds on Sects. 38.2.1 and 38.2.2 on
the discrete spatial geometry determined by spin net-
works. Just as in classical general relativity, where spa-
tial geometry fits into the larger space–time geometry,
so too the quantum spatial geometry of spin networks
fits consistently into the larger quantum space–time ge-
ometry of spin foams.
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Interpretation of Quantum Numbers
and Uniqueness of the Space–Time Geometry

The quantum numbers fjf ; nef g determine a discrete
space–time geometry by determining uniquely the ge-
ometry of each 3-cell e? in the dual complex F?.
Specifically, for each 3-cell e?, the area of each face f?

of e? is equal to 8�`2
Plˇ
p

jf .jf C 1/, and the interior
angle Œe?; f?; Qf?� between each pair of faces f?; Qf?

within e? is given by the equation

cos
�
Œe?; f?; Qf?�

�
D�nef � neQf :

These areas and angles are precisely the same areas
and angles used to interpret the LQG spin-network la-
bels in Sect. 38.2.2, except now in a four-dimensional
context. Using a theorem by Minkowski [38.33], one
can show [38.34] that these areas and angles are suf-
ficient to uniquely determine a flat geometry within
each 3-cell e?. Because one is now working in four
dimensions, each 3-cell is now part of the boundary
of two 4-cells. The geometry of all the 3-cells e?

bounding each 4-cell v? is sufficient to determine a flat
geometry within each 4-cell [38.24, 35]. By determin-
ing the geometry within each 4-cell, one determines
a geometry of the entire space–time. This geometry
is piecewise flat: within each 4-cell it is flat, but the
resulting overall geometry of the larger space–time cer-
tainly need not be flat, and indeed can approximate
any desired space–time geometry arbitrarily well. (See
Fig. 38.13 for a depiction of this phenomenon in two
dimensions.) This is the discrete, quantum space–time
geometry determined by a loop quantum gravity spin
foam .F ; fjf ; nef g/.

Existence
The above discussion explains how the quantum num-
bers fjf ; nef g of a LQG spin foam are sufficient to
uniquely determine a piecewise-flat space–time ge-
ometry, assuming there exists a space–time geometry
compatible with the given spin-foam data. This will
not always be the case: there are constraints on the
spin-foam data. Specifically, in order for a compati-
ble space–time geometry to exist, two constraints must
be satisfied [38.24, 25]: the closure and gluing con-
straints [38.36, 37]. The closure constraint requires that,
in each dual 3-cell e?, one has

X
f incident at e

jf n
i
ef D 0 :

By the same theorem of Minkowski cited earlier, this
constraint is sufficient to ensure that a consistent geom-

Fig. 38.13 Illustration in two dimensions: even though
each 2-cell is flat, when many are glued together, the re-
sulting two-dimensional cell complex need not be flat, and
in fact can approximate any curved geometry

etry for the 3-cell e? can be reconstructed. The second
constraint, the gluing constraint, is the requirement that
all of these 3-cell geometries fit together consistently –
that is, when two 3-cells share a face, they should have
the same area and shape. When this is true, then the
4-cell geometries will also exist and fit together, yield-
ing a full piecewise-flat space–time geometry consistent
with the given spin-foam data.

38.3.7 The Loop-Quantum-Gravity
Spin-Foam Amplitude

We are now ready to implement the last step of the strat-
egy to define a spin-foam model of quantum gravity.
We have already described BF theory and its quantum
histories in Sect. 38.3.1–38.3.2, and have introduced
a way of imposing the simplicity constraint quan-
tum mechanically in Sect. 38.3.5. Just as the set of
classical BF fields satisfying classical simplicity co-
incides with the fields describing classical gravity, so
too we have seen that the set of BF spin foams sat-
isfying quantum simplicity as presented above is in
1–1 correspondence with loop quantum gravity spin
foams. Let I denote the 1–1 map from LQG spin-
foam labels on a given two-complex F to BF spin-
foam labels satisfying simplicity on the same F . The
last step of the strategy is to restrict the spin-foam
amplitude ABF.F ;L/ of BF theory to spin foams
satisfying simplicity. This leads one to assign the fol-
lowing probability amplitude to each LQG spin foam
.F ; fjf ; nef g/

ALQG.F ; fjf ; nef g/ WDABF.F ; I.fjf ; nef g// :

(38.26)
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This is the LQG spin-foam amplitude, defining the
LQG spin-foam model of quantum gravity. It exists
in both Euclidean and Lorentzian versions, depend-
ing on which BF theory one starts with. ALQG.F ;
fjf ; nef g/ gives the probability amplitude for the sin-
gle quantum space–time history .F ; fjf ; nef g/, the ge-
ometrical meaning of which has been explained in
the previous section. This is the principal spin-foam
amplitude that will be used in the rest of this
chapter.

Note that while the BF spin-foam amplitude is
a well-established result of an exactly soluble the-
ory, the LQG spin-foam amplitude (38.26) must be
considered a proposal due to the nontrivial decision
involved in the way the simplicity constraint is im-
posed. Nevertheless, the particular way of imposing the
simplicity constraint presented above has compelling
properties [38.27, 38], especially the exact reduction of
BF spin-foam labels to those of LQG, which no other
strategy thus far has.

38.4 Regge Action and the Semiclassical Limit

We turn attention now to the classical limit of the LQG
spin-foam model. Recall from Sect. 38.1.1 that the clas-
sical limit is defined as the limit in which appropriate
combinations of physical quantities become large com-
pared with Planck’s constant. In the case of gravity, the
relevant physical quantities are geometrical and have
dimensions of some power of length. As mentioned ear-
lier in this chapter, there is a unique combination of
Newton’s gravitational constant, Planck’s constant di-
vided by 2� , and the speed of light, with dimension
of length: the Planck length, `Pl D

p
G„=c3. The clas-

sical limit of a quantum theory of gravity arises when
geometrical quantities become large compared to the
corresponding power of the Planck length. In this limit,
quantum theory can be neglected and, in order for the
theory to remain compatible with the many successful
experimental and observational tests of general relativ-
ity, it is necessary for the theory, in this limit, to become
general relativity.

Recall from Sect. 38.1.1 that, when a quantum the-
ory is formulated in terms of a path integral, the form eiS

of the amplitude for individual histories is important not
only to have equivalence with the canonical quantum
dynamics, but also important for ensuring the correct
classical limit of the theory.

This leads us to ask: is the LQG spin-foam ampli-
tude, derived above, equal to eiS, with S an appropriate
action for gravity? Except for one subtle point to be
discussed further at the end of this subsection, this ques-
tion has been answered in the affirmative in the limit in
which geometrical quantities are large compared to the
Planck scale, and in the special case in which the dual-
cell complex F? consists of cells of the simplest type,
called simplices. The limit in which geometrical quan-
tities are large compared to the Planck scale is of course
just the classical limit. However, because the probabil-
ity amplitude for individual histories is a fundamentally

quantum mechanical object with no classical analogue,
one usually instead refers to this as the semiclassical
limit of the amplitude. When all cells of F? are sim-
plices, F? is called a simplicial complex. The possible
piecewise-flat geometries on such a complex are called
Regge geometries. Before stating the semiclassical limit
of the LQG spin-foam amplitude, we explain in more
detail simplicial complexes and Regge geometries.

38.4.1 Regge Geometries

Until this point we have spoken of general cells in the
dual-cell complex F?. In each dimension n, there is
a certain type of simplest possible cell called a sim-
plex, plural simplices. When one wishes to specify the
dimension n of a simplex, one uses the term n-simplex.
0-simplices are points, 1-simplices are line segments,
2-simplices are triangles, and 3-simplices are tetrahe-
dra. In four dimensions, there is no common term for
the simplest possible cell; it is therefore simply called
a 4-simplex (Fig. 38.14).

Recall from Sect. 38.3.6 how each LQG spin foam
.F ; fjf ; nef g/ determines a space–time geometry which
is flat in each dual 4-cell v? – that is, a piecewise-
flat space–time geometry. When we furthermore require
that all of the dual 4-cells be simplicial, the resulting
geometry is called a Regge geometry. Regge geome-
tries were first introduced by Regge [38.39] and are well
studied in the literature. Usually Regge geometries are
specified by giving the lengths of all 1-simplices, as this
information is equivalent to specifying a piecewise-flat
geometry, as noted in Regge’s original paper. We fur-
thermore note that the Regge geometries determined
by spin foams are slightly more restricted than what is
usual for Regge calculus, in that the areas of triangles
are restricted to belong to the canonical area spectrum
given in (38.13).
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Fig. 38.14 A 0-simplex, a 1-simplex, a 2-simplex, a 3-simplex, and a 4-simplex, projected into a three-dimensional plane
for visualization

When one takes the standard action for general
relativity, the Einstein–Hilbert action, and evaluates
it on Regge geometries, one obtains the Regge ac-
tion [38.40]. Thus, in order to ensure that our spin-foam
model of gravity has the correct classical limit (namely,
general relativity), one would like the amplitude for
such a spin foam to be

A.F ; fjf ; nef g/D .positive real number/ exp .iSR/ ;

where SR is the Regge action.

38.4.2 Semiclassical Limit

With the above background, we are ready to state the
result on the semiclassical limit of the LQG spin-foam
amplitude. The LQG spin-foam amplitude follows the
spin-foam ansatz (38.15), so that it decomposes into
face, edge, and vertex amplitudes

ALQG.F ; fjf ; nef g/

D

0
@Y

f2F
ALQG

f

1
A
0
@Y

e2F
ALQG

e

1
A
0
@Y

v2F
ALQG

v

1
A :

(38.27)

Recall that every complex number A can be decom-
posed as AD jAjei� , where  is the phase. Following
the argument of Sect. 38.1.1, in order to obtain the cor-
rect classical limit of the quantum theory, it is sufficient
for the phase of the amplitude to become the classical
action. The face and edge amplitudes are real. Hence,
they can contribute at most an integer multiple of � to
the phase of the full amplitude. The interesting contri-
bution to the phase of the amplitude will thus be from
the vertex amplitudes, and so one focuses on the semi-
classical limit of primarily the vertex amplitudes.

Each vertex amplitude ALQG
v can literally be un-

derstood as the spin-foam amplitude for a single 4-
cell v?. As mentioned above, the semiclassical limit has

thus far only been carried out for the case in which each
4-cell is a 4-simplex, and thus we restrict consideration
to the case in which v? is a 4-simplex. In this case, the
vertex amplitude ALQG

v depends on the 10 spins jf on
the 10 faces incident at v, on the 20 vectors nef labeling
the five edges e incident at v, and on the four faces f
incident at each of these five edges. To emphasize this
dependence, we write ALQG

v.fjf ; nef g/, where it is un-
derstood that there is only dependence on these spins
and vectors.

Recall that the semiclassical is the limit in which ge-
ometric quantities become large compared to the Planck
scale. All geometric quantities determined by the la-
bels fjf ; nef g scale directly with the spins jf , so that an
easy way to take the semiclassical limit is to rescale all
of these spins by some common parameter 	, and then
take the limit in which 	 becomes large. Thus, con-
cretely, to look at the semiclassical limit of the vertex
amplitude, one looks at the limit of ALQG

v.f	jf ; nef g/
as 	 becomes large.

The form of the semiclassical limit of ALQG
v.f	jf ;

nef g/ is different depending on the type of geometry,
or lack thereof, determined by the labels fjf ; nef g. The
form of the semiclassical limit of the Euclidean version
of the vertex amplitude falls into three different cases,
whereas that of the Lorentzian version is more subtle
and falls into four different cases. Because the Eu-
clidean case is sufficient to demonstrate the important
issues, and is simpler, we restrict the following presen-
tation to the Euclidean case. In Sect. 38.3.6 we reviewed
how, if the spin-foam labels fjf ; nef g satisfy what are
called the closure and the gluing constraints, then they
uniquely determine a (possibly degenerate) flat geome-
try for the 4-cell v? (which in this case is a 4-simplex).
If the tetrahedra on the boundary of v?, as determined
by this geometry, all have nonzero volume, we say that
the labels determine a nondegenerate boundary geom-
etry of v?. If any of the tetrahedra have zero volume,
we say that the labels fjf ; nef g determine a degener-
ate boundary geometry. If the labels do not satisfy the
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closure and gluing constraints, we say that they are non-
geometric. We give below the semiclassical limit, which
we denote by the symbol, of the Euclidean version of
ALQG

v in each these three different cases:

1. For labels determining a nondegenerate boundary
geometry

ALQG
v.f	jf ; nef g/

 	�12
�

C1eiSR CC2e�iSR CC3e
i
ˇ

SR CC4e�
i
ˇ

SR
	
:

(38.28)

2. For labels determining a degenerate boundary ge-
ometry

ALQG
v.f	jf ; nef g/ 	

�12C : (38.29)

3. For nongeometric labels, the probability amplitude
ALQG

v.f	jf ; nef g/ decays exponentially with 	, that
is, faster than any inverse power of 	, so that such
labels are suppressed by the vertex amplitude.

In the above formulae, C1;C2;C3;C4, and C
are independent of 	. Note that the only labels not
suppressed are the ones that actually correspond
to piecewise-flat (possibly degenerate) space–time
geometries. In addition to this, the fact that the expo-
nential of i times various multiples of the action appears
in the semiclassical limit of the vertex amplitude is
encouraging. However, this is not yet sufficient to
ensure the correct classical limit: not only are some
unphysical, degenerate geometries not suppressed, but
even for the nondegenerate geometries, the asymptotic
amplitude (38.28) is not yet the Feynman amplitude.
The Feynman amplitude would consist of only the first
term in (38.28). There is a reason for the nonsuppres-

sion of the degenerate configurations in (38.29) as well
as the extra terms in (38.28); in a moment, we will
remark on this reason, as well as mention a solution to
the problem. That these extra terms spoil the classical
limit of the theory can be seen by looking at spin foams
on triangulations with more than one 4-simplex. In
this case, even if we assume that the geometries of all
4-simplices are nondegenerate, one still has the four
terms in (38.28) for each 4-simplex. When these four
terms are substituted into the expression (38.27) for
the full amplitude, one obtains cross-terms. Each of
these cross-terms is equal to the exponential of a sum
of terms, one for each 4-simplex, equal to the Regge
action for that 4-simplex times differing coefficients,
yielding what can be called a generalized Regge
action [38.30, 41, 42]. The extrema of this generalized
Regge action are not the Regge equations of motion
and hence not those of general relativity, so that general
relativity fails to be recovered in the classical limit.

As shown in the recent work [38.22, 23], the ex-
tra terms causing this problem are due precisely to the
presence of the multiple sectors of solutions to the sim-
plicity constraint presented in Sect. 38.3.1, as well as
the presence of different orientations as dynamically
determined by the cotetrad field eI

�. Once these sectors
and orientations are properly handled [38.29, 30], one
arrives at what is called the proper loop quantum grav-
ity vertex amplitude. Its semiclassical limit includes
only the single term consisting of the exponential of i
times the classical action

A(+)
v .f	jf ; nef g/ 	

�12C1eiSR ;

thereby solving the above problem and giving reason
to believe that the resulting spin-foam model will yield
a correct classical limit.

38.5 Two-Point Correlation Function from Spin Foams

In this section, we review a calculation in spin foams
which has played an important role in the development
of the field: the calculation of the two-point correlation
function of quantum gravity. The two-point correla-
tion function of a quantum field theory is the simplest
quantity one can calculate which directly probes the
nonclassical-ness of the theory and thus provides one
with a genuinely quantum mechanical prediction. In or-
der to set the stage for this calculation, we begin with
a technical discussion of how one sums over spin foams.

38.5.1 The Complete Sum over Spin Foams

Let us first recall how the spin-foam amplitude dis-
cussed in the last few sections fits into the overall calcu-
lation scheme. As discussed in Sect. 38.1, the amplitude
for a given gravitational history is used to calculate the
probability amplitude for a canonical quantum state on
the boundary of a given space–time region. In the case
where this canonical quantum state is an eigenstate jhi
of spatial geometry on the boundary of some space–
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time region R, the probability amplitude takes the form
(38.10)

Agrav.jhi;R/D
Z

gj@RDh

eiSŒg
Dg : (38.30)

Spin foams provide a way to make the above for-
mal prescription concrete, by using the lessons of loop
quantum gravity. Loop quantum gravity tells us that the
correct eigenstates of spatial geometry on @R are the
spin network states j�; fj`; n�`gi, labeled by a graph �
on the boundary of R, spins j`, and unit 3-vectors
n�` as in Sect. 38.2.1. The integral over continuum
geometries is then replaced by the sum over discrete
space–time geometries represented by spin foams. The
formal expression (38.30) is then replaced by the con-
crete spin-foam expression

ALQG.j�; fj`; n�`gi;R/

WD
X

F such that
F\@RD

X
fjf ;nef g such that
fjf ;nef gj@RDfj`;n�`g

ALQG.F ; fjf ; nef g/ :

Before using this expression, there is still one more
issue that must be addressed. Two different types of
apparently infinite sums appear in the above expres-
sion: (1) the sum over possible two-complexes F and
(2) the sum over possible labels fjf ; nef g on the two-
complex. There is an infinite number of two-complexes,
giving rise to the first potential source of infinity, and,
for each two-complex, there are an infinite number of
possible ways to label it, giving rise to the second po-
tential source of infinity.

To aid in addressing the first of these potential
infinities, it is useful to separate the sum over two-
complexes into first a sum over numbers of vertices N,
and then a sum over two-complexes with N vertices

ALQG.j�; fj`; n�`gi;R/ WD
1X

ND0

X
F with N vertices,

such that
F\@RD

X
fjf ;nef g such that
fjf ;nef gj@RDfj`;n�`g

ALQG.F ; fjf ; nef g/ :

For each N there are only a finite number of two-
complexes, so the the potential infinity resides only in
the sum over N. To handle this, one usually introduces

a small, positive real number 	, raised to the power N

ALQG.j�; fj`; n�`gi;R/ WD
1X

ND0

	N
X

F with N vertices,
such that
F\@RD

X
fjf ;nef g such that
fjf ;nef gj@RDfj`;n�`g

ALQG.F ; fjf ; nef g/ :

(38.31)

This has the effect of making each consecutive term in
the sum over N smaller, and so ensuring convergence.
The insertion of the power of 	 not only brings this
potential infinity under control, it also allows the result-
ing spin-foam theory to be recast in terms of something
called a group field theory [38.43–45], thereby enabling
a wide array of developed tools to be used in the study
of the theory.

The second potential infinity comes from the sum
over labels on each two-complex. There are indica-
tions [38.46] that the proper vertex [38.29, 30] intro-
duced in Sect. 38.4.2 may solve this second problem,
though, at the moment, these are only indications. Other
promising research directions related to this question
include [38.47–49]. However, in the following applica-
tion, we look only at the terms in the sum (38.31) with
the lowest power of 	. One can show that the sum over
labels for the lowest power of 	 is finite, so that, at least
for the calculations considered below, this second infin-
ity is not an issue.

38.5.2 The Calculation

To define the two-point correlation function, we first
introduce the idea of the expectation value of an oper-
ator OO in a given boundary state � , as computed using
the path-integral formalism for some region R of space–
time. The expectation value is the average result one
would obtain by measuring the quantity OO when the
system is in the state � . It is denoted h OOi� and is given
by the expression

h OOi� WD
A. OO�;R/
A.�;R/ :

For illustrative purposes, let us first consider the
case of a scalar field theory. In this case, as an aside for
those more familiar with standard quantum field theory,
when� is an eigenstate j'.x/i of the field operator O'.x/
and OO is a function O. O'.x// of the field operator, the
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above expression for the expectation value takes the
more familiar form

h OOi� WD

R
�j@RD'

O.�/eiSŒ�
D�R
�j@RD'

eiSŒ�
D� :

Given a canonical quantum state � , and any two
points x and y on @R, the two-point correlation function
is defined as

D� .x; y/ WD h O'.x/ O'.y/i� �h O'.x/i� h O'.y/i� :

In the classical theory, the state of the system is,
and therefore uniquely determines, the value of the
field '.x/ and its conjugate momentum. Thus, classi-
cally, given the state of the system, the outcome of
a measurement of '.x/ is certain, so that the expec-
tation value of '.x/ is just '.x/, and the expectation
value of '.x/'.y/ is just '.x/'.y/, so that the classical
two-point correlation function is just zero. Its deviation
from zero can therefore be thought of as a measure of
the nonclassical-ness of the theory, providing us with
an essentially quantum mechanical prediction of the the
theory.

The two-point correlation function for loop quan-
tum gravity, as determined by the loop quantum
gravity spin-foam model, has been calculated in the
works [38.50–54], for both the Euclidean and the
Lorentzian versions of the model. The field operator in
this case (that is, the operator playing the role of O'.x/
above) is the metric tensor field operator, which takes
a discrete form in the case of loop quantum gravity. The
boundary state � that is considered is a linear com-
bination of spin networks based on a fixed graph �
on the boundary of R having the structure indicated in
Fig. 38.15.

In order to describe precisely the metric tensor op-
erator and the way it is discretized when acting on the
state � , we use again the notion of the complex �? dual
to � within the three-dimensional boundary of R. The

Fig. 38.15 The connectivity of the graph � used for the
boundary state

graph � within @R consists of nodes and links. The dual
to each node � in � is a three-dimensional region (a
3-cell) �?, and the dual to each link ` incident at � is
a two-dimensional surface (a 2-cell) `? in the bound-
ary of �?. For the specific case of the graph � given in
Fig. 38.15, each 3-cell �? is a tetrahedron and each 2-
cell `? is a triangle, so that the dual-cell complex �? is
a simplicial complex in the same sense as Sect. 38.4.1,
but one dimension lower, and so provides a triangula-
tion of the boundary of R. In fact, �? is the boundary
of a single 4-simplex (see Sect. 38.4.1); this will be im-
portant in a moment.

In terms of the dual-cell complex �?, the metric
tensor operator acting on � is defined as follows. Clas-
sically, the metric tensor determines areas and angles.
In LQG one has operators corresponding to the areas
of the triangles `? and the interior angles of the tetra-
hedra �? in �?. One can assemble these operators into
a single metric tensor-like matrix as

Oh``
0

.�/ WD OA`? OA`0? cos. OŒ�?I `?; `0?�/ ; (38.32)

where OA`? is the area operator for the triangle `?,
and OŒ�?I `?; `0?� is the interior angle between the tri-
angles `?, `0? within the tetrahedron �?. These areas
and angles are precisely the same areas and angles used
to interpret LQG spin networks in Sect. 38.2.1–38.2.2
and LQG spin-foam labels in Sect. 38.3.6, except now
cast as operators.

We have mentioned that we choose the boundary
state � to be based on the graph � in @R. We further-
more choose it to be a coherent state, that is, a quantum
state which approximates as well as possible a particu-
lar classical state – one says it is peaked on a particular
classical state. A classical state in this case consists
of an intrinsic geometry of the boundary, described by
a matrix Vh of areas and angles as in (38.32), together
with a specification V̆ of its conjugate momentum,
which, as mentioned in Sect. 38.1.3, describes how @R
bends in the larger, four-dimensional space R. That is,
V̆ describes the extrinsic geometry of @R. The state �

which is used in the calculation is peaked on a par-
ticular Vh and V̆ which are chosen to be as simple as
possible, namely they are chosen to describe the intrin-
sic and extrinsic geometry of the boundary of a regular
4-simplex – that is, a 4-simplex where all of the edges
are of equal length.

Now that the nature of the metric tensor field opera-
tor and the boundary state has been clarified, we return
to the expression for the two-point correlation function.
Again, one first defines the notion of the expectation
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value of a given operator OO in the boundary state �

h OOi� WD
ALQG. OO�;R/

ALQG.�;R/
;

and the two-point correlation function of the metric ten-
sor operator (38.32) is then

G`1`
0

1`2`
0

2.�1; �2/ WD
D
Oh`1`

0

1.�1/Oh
`2`
0

2.�2/
E
�

�
D
Oh`1`

0

1.�1/
E
�

D
Oh`2`

0

2.�2/
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:

(38.33)

One can expand this quantity in a power series in the
coupling constant 	 introduced in Sect. 38.5.1, and
what has been so far calculated is the lowest order term
in this series, which corresponds to summing over spin
foams which include only a single vertex, and which,
on the boundary of R, coincide with the graph � . For the
given graph � in Fig. 38.15, there is only one such spin
foam, and its one vertex is dual (in four dimensions) to
a single 4-simplex, of which �? forms the boundary.

The quantity (38.33) has been calculated in [38.53,
54] (to leading order in 	). It has been found to match,

at least in part, the same result one would calculate
in a more classical, but incomplete quantum gravity
framework – linearized quantum gravity [38.52, 55,
56] – the beginnings of which date back to the work
of Rosenfeld, Fierz, and Pauli in the 1930s [38.2].
Linearized gravity is a simplified version of gravity ob-
tained by assuming that space–time geometry is close
to flat, so that the metric tensor g�� is equal to a flat
background metric ��� plus some small change "h�� ,
where the components of h�� are of order one, while "
is much less than one. If one substitutes gD �C "h
into the standard action of gravity SgravŒ�C"h�, one can
then expand the action in powers of ". The term with
the lowest power of ", in this case 2, is then the ac-
tion for linearized gravity. Because the linearized action
involves only first and second powers of the basic vari-
able of the theory (usually taken to be h), the theory can
be exactly quantized. The two-point correlation func-
tion (38.33) calculated using the LQG spin-foam model
differs from the two-point correlation function of lin-
earized quantum gravity by addition of a term which
goes to zero as the Barbero–Immirzi parameter ˇ goes
to zero. This extra term thus yields a new signature of
the loop quantum gravity spin-foam dynamics; its sig-
nificance has yet to be fully understood.

38.6 Discussion

In the spin-foam approach to quantum gravity, one
uses what has been learned from canonical loop quan-
tum gravity about quantum space to construct a path-
integral approach to quantum gravity in which one
sums over quantum space–times. The resulting frame-
work allows for simpler concrete calculations of the
consequences of dynamics than was possible using the
canonical methods of loop quantum gravity alone – we
have seen this already above in the calculation of the
two-point correlation function, and one can also see it
in the first steps of the application of the full spin-foam
theory to cosmology [38.57–60], a topic which we have
not been able to discuss in this chapter.

Beyond these basic developments, the spin-foam
approach to quantum gravity has raised other inter-
esting questions and led to further lines of research
which are ongoing. These include among others work
on how the theory appears on different length scales
(so-called renormalization of spin foams) [38.61–65],
systematic issues in the derivation of spin foams [38.38,
66–69], mathematical tools and equivalent reformu-

lations of spin-foam theory [38.70–72], inclusion of
matter [38.73–75], the relation between the dynamics
defined by spin-foam sums and the dynamics defined
by the Hamiltonian constraint in loop quantum grav-
ity [38.76, 77], and the surprising relation of spin foams
to other approaches to quantum gravity, specifically
noncommutative geometry [38.78, 79] and group field
theory [38.43–45]. These are only a few representa-
tive works of the various research directions inspired
by spin foams.

If one is to distill a single lesson from the spin-foam
program, it is perhaps this: in constructing a path-
integral formulation of a quantum theory, it is important
to remember the role played by canonical quantization
in determining the potentially discrete nature of the his-
tories one sums over. A proper path-integral approach
to quantum gravity, strictly speaking, should not define
transition amplitudes between classical geometries, but
rather between canonical quantum states of quantum
gravity, and one should not sum over classical space–
time geometries, but rather histories of quantum states.
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This is what leads directly to the spin-foam program.
In addition to having this firm theoretical basis, the
final framework provides a way to combine the advan-
tages of canonical quantum gravity with its predictions
of discrete geometry, black-hole entropy, and quantum
cosmology, with the manifest unity of space and time
made possible by the path-integral approach, a unity of

space and time at the heart of both special and gen-
eral relativity. Lastly, in addition to these theoretical
and aesthetic advantages, as we have already touched
upon above, the resulting framework allows for simple,
concrete calculations involving dynamics by offering an
alternative to the task of finding general solutions to the
quantum Hamiltonian constraint.
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39. Loop Quantum Cosmology

Ivan Agullo, Alejandro Corichi

This Chapter provides an up to date, pedagogical
review of some of the most relevant advances in
loop quantum cosmology. We review the quanti-
zation of homogeneous cosmological models, their
singularity resolution and the formulation of effec-
tive equations that incorporate the main quantum
corrections to the dynamics. We also summarize
the theory of quantized metric perturbations prop-
agating in those quantum backgrounds. Finally,
we describe how this framework can be applied
to obtain a self-consistent extension of the infla-
tionary scenario to incorporate quantum aspects of
gravity, and to explore possible phenomenological
consequences.
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39.1 Overview

In this volume there is an introduction to cosmology
and cosmic microwave background (CMB) physics by
Sourdeep, and on the inflationary paradigm by Wands.
They summarize the synergy between theory and obser-
vations that has produced spectacular advances in our
understanding of the universe in the last decades. The
emergence of a concordance model is a remarkable suc-
cess of cosmology and the theory of General Relativity
(GR) in which the current paradigm relies. However,
the widely accepted Hot Big Bang scenario, regarded as
the standard model of cosmology, has important limita-
tions, already manifest in its name: the density of matter
and the spacetime curvature grow unboundedly in the
early universe, blowing up at the big-bang singularity.
The big bang is not a prediction, but the result of ap-

plying the theory beyond its domain of validity. When
the energy density and curvature approaches the Planck
scale, the predictions of General Relativity are unreli-
able; the quantum aspects of the gravitational degrees
of freedom are expected to dominate in that regime.
This chapter provides a possible quantum gravity exten-
sion of the well-established cosmological model from
the perspective of loop quantum gravity.

Loop quantum cosmology (LQC) arises from the
application of principles of loop quantum gravity
(LQG) [39.1, 2] to cosmology. The goal is to quan-
tize the sector of General Relativity containing the
symmetries of cosmological spacetimes, by following
the physical ideas and mathematical tools underlying
LQG, presented in detail in Chap. 37. Restricting at-
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tention to cosmology presents several advantages. The
existence of underlying symmetries largely simplifies
technical issues, and allows us to overcome mathe-
matics difficulties that are hard to handle in more
generic situations. Yet, the structure is rich enough
to contain deep conceptual issues in quantum grav-
ity: What happens with space and time when matter
density and curvature reach the Planck scale. Does
the big-bang singularity persist? What is the meaning
of time in the Planck era? How do classical Gen-
eral Relativity and a smooth spacetime description
arise in the low energy regime? What is the scale at
which quantum gravity effects become subdominant?
Does quantum gravity have anything to contribute to
the origin of cosmic structures and to the inflation-
ary scenario? On the other hand, cosmology proba-
bly provides the most promising avenue to confront
quantum gravity ideas with observations. Cosmology
then offers an interesting arena in which quantum
gravity can make contact with other theories such
as inflation, and probably provides the most promis-
ing avenue to confront quantum gravity ideas with
observations.

But the restriction to cosmological settings also
leads to important limitations. In principle, it is not
guaranteed that the result of quantizing a symmetry re-
duced sector of General Relativity will reproduce the
same physics as the restriction of a full quantum grav-
ity theory to symmetric scenarios. Symmetry reduction
often entails a drastic simplification, and one may
loose important features of the theory by restricting the
symmetry prior to quantization. However, it has been
extremely useful in several areas of physics, when the
complexity of the problem under consideration made
it difficult to find solutions without introducing addi-
tional inputs. The Oppenheimer–Snyder model of black
hole formation and the Dirac quantization of the hy-
drogen atom are examples that were able to encode
the key physical ingredients of the problem, in spite
of the severe symmetry reduction. Quantum cosmol-
ogy may well be another example, if it is constructed
choosing carefully the key ingredients from full quan-
tum gravity. It is likely that predictions from quantum
cosmology will not agree in every detail with those
obtained from full quantum gravity applied to cos-
mological scenarios, but we expect it to capture the
main aspects of the complete theory. As in the previous
examples, quantum cosmology can provide valuable in-
formation about the correct way to quantize gravity, and
be as useful as the hydrogen atom has been for quantum
mechanics.

39.1.1 Quantization
of Cosmological Spacetimes

General Relativity is a totally constrained theory, in the
sense that the full Hamiltonian that generates dynam-
ics is required to vanish. Something similar happens in
classical electromagnetism, where part of the Hamil-
tonian, the piece that generates gauge transformations,
is a constraint. In General Relativity the constraint turns
out to be the full Hamiltonian, reflecting the background
independence of the theory. Dirac provided the concep-
tual framework to quantize constrained systems. At the
quantum level, physical states have to be annihilated by
the operator corresponding to the classical Hamiltonian,
OC� D 0, and all the physics has to be extracted from

this equation. The quantum state � is the wave func-
tion of the physical fields, including the gravitational
field itself, and classical quantities such as the metric,
energy density and curvature tensor are represented by
quantum operators on the physical Hilbert space Hphy

it belongs to. The nontrivial mathematical problem is to
make sense and solve the quantum constraint equation,
and the underlying cosmological symmetries largely fa-
cilitate this task.

The next conceptual issue is to obtain the familiar
time evolution that we normally use in physics from this
time-less or frozen formalism. At the quantum level we
do not have a classical metric telling us what are the
time-like directions in the manifold, and all what we
have is a probability distribution � of different metrics.
A useful strategy has been to follow a relational-time
approach, in which one of the physical variables plays
the role of time, and the rest evolve with respect to it. By
using a massless scalar field as this internal time, it is
possible to construct the Hilbert space of physical states
satisfying the quantum constraints, and a precise math-
ematical framework has been developed to study the
resulting quantum geometry [39.3]. It has been shown
that all the operators representing physical quantities
such as the energy density, spacetime curvature, etc., re-
main bounded on the physical Hilbert space, even in the
deep Planck regime. This is the mathematical sense in
which the singularity is resolved in LQC. The physical
picture that emerges from the abstract formalism is the
following. When the energy density of the universe is
comparable to the Planck energy density, the quantum
properties of spacetime geometry become important
and dominate. A sort of quantum repulsive degener-
acy force appears at such extreme densities, precludes
the universe to continue contracting, and forces the
quantum spacetime to expand again once the maximum
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energy density has been attained, replacing the big-bang
singularity by a quantum bounce. This maximum en-
ergy density is proportional to „�1, similar to the finite
energy of the ground state of the hydrogen atom that
avoids the collapse of the positron and electron as a con-
sequence of the Heisenberg principle. When the energy
density and curvature become smaller than approxi-
mately 1% of the Planck scale, the quantum effects of
gravity become rapidly negligible and classical General
Relativity provides an excellent approximation. The re-
sulting quantum dynamics has been analyzed in detail
and has provided important insights on the behavior
of physics in the Planck regime. The ability of incor-
porating nonperturbative quantum corrections that are
able to completely dominate the evolution in the Planck
regime and dilute the big-bang singularity and, at the
same time, to disappear in the low energy regime to find
agreement with the classical description, is a highly non
trivial result of LQC.

Remarkably, some global aspects of the evolution
of the quantum geometry can be encoded in simple
effective equation. Those equations provide a smooth
spacetime metric that approximates the full quantum
evolution of the quantum spacetime. They have simi-
lar form to the equations arising in General Relativity,
but include new terms, proportional to „, that make
the effective trajectory to depart from the classical one
around the Planck era. The effective dynamics provides
an excellent approximation of the quantum evolution,
even at Planckian densities, provided the quantum state
is chosen to be highly peaked in a classical trajectory
in the low energy regime where General Relativity pro-
vides a good approximation.

39.1.2 Inhomogeneous Perturbations
in Quantum Cosmology

As emphasized in Chaps. 30 and 32, the theory of in-
homogeneous perturbations (of matter and gravitational
degrees of freedom) propagating in classical cosmo-
logical spacetimes has been a key mathematical tool
in modern cosmological research. One of the deepest
insights in cosmology is the idea that the cosmic struc-
tures (galaxy clusters, superclusters, etc.) that we see
today were originated in the very early universe by
a process of amplification of quantum fluctuation by
the cosmological expansion, as explained in the con-
text of cosmic inflation in Chap. 30. In the inflationary
scenario, this occurs when the energy density in the uni-
verse was close to the grand unification theory (GUT)
scale .1016 GeV/4 around 12 order of magnitude below

the Planck energy density. Quantum gravity effects of
the background spacetime metric are subdominant at
those scales, and the theory of quantized fields prop-
agating in a classical background appears to be the
appropriate mathematical framework to work out phys-
ical predictions. However, earlier in the evolution of
the universe, when the curvature and energy density are
close to the Planck scale, quantum gravity effects are
expected to be important, and they should not be ig-
nored. To have a complete picture of the evolution of
cosmic inhomogeneities that encompasses the Planck
regime, we need to learn how quantum fields propagate
on a quantum cosmological spacetime [39.4, 5]. The
goal of the second section of this chapter is to review
the construction of such a theory.

The detailed description of quantum cosmologies
provided by LQC is the suitable arena. The construction
of quantum field theory (QFT) on quantum cosmologies
follows closely the guiding principle behind LQC: first
carry out a truncation of the classical theory adapted
to the given physical problem, and then quantize by
using LQG techniques. The sector of the classical the-
ory of interest is extended in this part to cosmological
background plus first-order inhomogeneous perturba-
tions on it.

The resulting framework originates from first prin-
ciples, under the assumption that inhomogeneous per-
turbations behave as test fields on the quantum geom-
etry, and it should provide a bridge between quantum
gravity and QFT on curved spacetimes. Therefore, it
is suitable to face important conceptual questions such
as: What are the concrete approximations under which
the familiar QFT in classical spacetimes arises from
this more complete description? What are the precise
aspects of the quantum geometry that are seen by the
quantum fields propagating on it? Does the resulting
QFT make sense for trans-Planckian modes? These is-
sues will be discussed with some detail in Sect. 39.2.
In Sect. 39.3, this framework is applied to the study of
gauge invariant cosmic perturbations and phenomeno-
logical consequences are worked out.

39.1.3 LQC Extension of the Inflationary
Scenario

The inflationary scenario occupies the leading posi-
tion in accounting for the origin of the cosmic in-
homogeneities observed in the CMB and large-scale
structure. This success is mainly rooted in the econ-
omy of assumptions, the elegant mechanism that origi-
nates the cosmic inhomogeneities from vacuum quan-
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tum fluctuations, namely a subtle interplay between
quantum mechanics and classical gravitation, and par-
ticularly the nontrivial agreement with observations.
Inflation is however an effective theory, and it is ex-
pected that a more fundamental theory will complete
it. Examples of open questions that the more com-
plete theory should answer are: What is the nature of
the scalar inflaton field? Is there a single or several
fields, like in multifield models? What is the specific
shape of the inflaton potential? These questions orig-
inate in particle physics, and unfortunately at these
stages LQC does not have much to contribute. There
are, in addition, important issues related to gravita-
tion: What is the evolution of the spacetime before
inflation? In General Relativity the big-bang singular-
ity is unavoidable in inflationary scenarios [39.6]. Is
there a quantum gravity scenario in which the singu-
larity is resolved and in which the evolution finds an
inflationary phase compatible with observations gener-
ically, i. e., without a fine-tuning of its parameters?
Such a scenario would allow us to extend the infla-
tionary spacetimes all the way back to the Planck
era. Moreover, one could then use the quantum the-
ory of cosmological perturbation on quantum space-
times described in Sect. 39.3, to extend the analysis
of cosmic inhomogeneities to include Planck scale
physics.

Section 39.4 will review the arguments showing that
such an extension is possible in LQC, where one can
construct a conceptual completion of the inflationary
theory from the quantum gravity point of view, in which

Planck scale physics can be included in the study of
cosmological perturbations. The importance of this ex-
tension goes, however, beyond the conceptual domain
and may open a window for phenomenological conse-
quences.

To summarize, this chapter will review recent ad-
vances in the completion of the quantization program
underlying LQG when restricted to the cosmological
sector. We shall explore how the singularity of the
homogeneous background is avoided, and how the ab-
stract theoretical framework can descend down to make
contact with phenomenology. Although many open is-
sues still remain, at the present time there is a solid body
of knowledge, based on a rigorous mathematical frame-
work. These combine with analytical and numerical
techniques, and provide an avenue from the big-bang
singularity resolution to concrete observation of the
CMB and galaxy distributions.

Due to space restrictions, there are some topics that
we shall not cover in this chapter, such as the path inte-
gral formulation and its relation with spin foams [39.7,
8], spin foam cosmology [39.9, 10], and the Gowdy
models [39.11–16], nor numerical issues [39.17]. We
do not provide either a review of all the existing ideas to
study LQC effects on cosmic perturbations. See [39.18–
28] for different approaches to that problem. Further
information can be found in [39.29–32].

Our convention for the metric signature is �CCC,
we set cD 1 but keep G and „ explicit in our expression,
to emphasize gravitational and quantum effects. When
numerical values are shown, we use Planck units.

39.2 Quantization of Cosmological Backgrounds

In this section we shall consider the quantum theory
of the homogeneous background within the context of
LQC. First, we shall discuss what it means for a cos-
mological model to be quantized, or to use the standard
nomenclature, to define a quantum cosmology. Just as
with the quantization of any mechanical system such as
the hydrogen atom, the first step is to cast the model
to be quantized in a Hamiltonian language. That is, one
has to identify configuration variables qi and their corre-
sponding momenta pj, with the property that the Poisson
bracket is fqi; pjg D ı

i
j . The next step in the quantiza-

tion process is to find a Hilbert space H and operators
Oqi and Opj satisfying ŒOqi; Opj�D i„ıi

j . Then one has to de-
fine an operator OH corresponding to the Hamiltonian
(and to other physically relevant observables), in order

to define dynamics through the Schrödinger equation:
�i„@t� D OH� .

In the case where the classical system under con-
sideration is a totally constrained system, instead of
a Hamiltonian H defining dynamics, both the classi-
cal description and the corresponding quantization are
more subtle. Here the dynamical variables are sub-
ject to a constraint C.q;p/D 0. Furthermore, there is
no Hamiltonian defining dynamics, and the canonical
transformations generated by the constraint C are in-
terpreted as gauge. That is, points on the phase space
connected by a canonical transformations generated
by the constraint are physically equivalent. Thus, the
curve on phase space made out of all the physically
equivalent points represents a gauge orbit and can be
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identified with a point on the true, physical phase space.
Observables will be those functions f .q;p/ that are con-
stant along the gauge orbits (i. e., satisfying ff ;Cg D 0).
Since there is no true dynamics, the system is said to
posses a frozen dynamics. A natural question is whether
one can extract some dynamics from the frozen formal-
ism. In some cases, one can use one of the variables (or
an appropriately selected function) as an internal time
T.q;p/, with respect to which the gauge orbit can be de-
scribed in terms of a relational dynamics (that is, where
the dynamics is described by correlations between the
variable T and the rest of the variables).

Let us now review the quantization process when
we have a totally constrained system. The first step is
to define a kinematical Hilbert space Hkin. This space
serves an arena for the implementation of the constraint,
that is now required to be represented as a self-adjoint
operator OC on Hkin. Not all states in the kinematical
Hilbert space are regarded as physical. The condition
that selects those physical states was put forward by
Dirac and has the form

OC ��phy D 0 : (39.1)

Once one has found the physical states �phy (that might
belong to Hkin or not), one needs to specify an inner
product h�j�iphy in order to construct Hphy, the physical
Hilbert space. Physical observables will be operators OF
that leave the space of physical states invariant. This
translates into the condition Œ OF; OC�D 0. In some cases,
when there is an internal time variable T , one can re-
cast the Dirac condition (39.1) as an evolution equation
where T plays the role of time, as in the Schrödinger
equation.

One interesting feature of the simplest cosmologi-
cal models is that they are totally constrained systems,
so the general framework we have outlined is appli-
cable. Even more, one can complete the quantization
program and obtain a complete physical description
where a massless scalar field � plays the role of internal
relational time. One can then pose physical questions
pertaining to observables of cosmological interest, such
as the Hubble parameter and curvature scalars. Inter-
estingly, for the simplest models, one can indeed find
two different, inequivalent, quantizations. The first one
corresponds to the so-called Wheeler–De Witt (WDW)
quantization that was put forward by De Witt and Mis-
ner in the 60s. The second quantizations corresponds
precisely to the one we shall here describe in de-
tail, known as LQC. As we shall describe in more
detail later, the basic difference between these two pro-

grams corresponds to the choice of kinematical Hilbert
space Hkin. The choice made by De Witt and oth-
ers was, in a sense, the most natural one, resembling
the Schrödinger quantum mechanics that has been very
useful to describe many physical systems. On the other
hand, the choice one makes in LQC is somewhat exotic
from the perspective of standard quantum mechanics,
but is selected when the underlying symmetries perti-
nent to the gravitational field are seriously taken into
account.

The second and physically most important differ-
ence between these two representations is that their
predictions regarding the fate of the classical singu-
larity are radically different. While the WDW theory
predicts that the singularity remains, as defined by the
behavior of the expectation values of physically rele-
vant operators such as energy density, in the case of
LQC the singularity is generically avoided. Instead of
a big bang (or big crunch) one has a bounce connecting
a contracting branch with an expanding one; the energy
density and curvature scalars are bounded from above,
so that physics is well-defined throughout the intrinsic
dynamical evolution of the quantum state describing the
universe.

Let us now briefly describe the structure of the
remainder of this section. In the first part, we study
in detail the kD 0 Friedmann–Lemaître–Robertson–
Walker (FLRW) model with vanishing cosmological
constant and discuss some of its main features. In the
second part we discuss other models. The first one
we consider is the closed kD 1 model also without
a cosmological constant. Next, we briefly discuss kD 0
FLRW models with a cosmological constant and some
anisotropic models. In the third part, we introduce the
so called effective equations. We give a brief introduc-
tion to the subject and discuss in detail the case of the
kD 0 FLRW model. Next we consider the kD 1 case,
followed by a discussion of anisotropic effective space-
times, including the Bianchi I, II, and IX models.

39.2.1 k D 0 FLRW, Singularity Resolution

The simplest model that one can consider is a kD 0
homogeneous and isotropic FLRW cosmological model
foliated by 3-manifolds˙ that are topologically R3. In
order to find a Hamiltonian description for the model,
we have to start with an action principle. Due to ho-
mogeneity, the action is not well defined unless one
introduces and fixes a fiducial cell V . This will play
the role of a comoving volume. We can introduce a flat
fiducial metric Vqab on R3 with respect to which the co-
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ordinate volume ofV is VV D
R
V
p
Vqd3x without loss of

generality, we shall set VV D 1. The flat FLRW space-
time is described by the metric

ds2 D�N2 dt2C a.t/2 dx2 ; (39.2)

where N is the lapse function, Vq$ dx2 is the flat fidu-
cial metric, and a is the scale factor of the universe.
Now, the action principle is

SD
1

16�G

Z
dt
Z
V

d3x
p
jgjR

D
1

16�G

Z
dtNa3R ;

with R the scalar curvature of the spacetime. The grav-
itational part of the phase space consists of a and its
conjugate momenta that is found to be

Pa D�
3

4�GN
aPa :

In this simplest model, the matter we shall consider is
a homogeneous massless scalar field �. The action for
such a field is

Smatt D
1

2

Z
dt

a3 P�2

N
:

From this, the momenta p.�/ associated to the scalar
field is p.�/ D . P�a3/=N, and the Hamiltonian constraint
that defines the dynamics is then

Ctot D
2�G

3

P2
a

a
�

1

2

p2
.�/

a3
� 0 : (39.3)

To summarize, the phase space is four dimensional with
coordinates .a;PaI�; p.�//, satisfying fa;Pag D 1 and
f�; p.�/g D 1. In the standard WDW approach, the next
step is to consider the kinematical Hilbert space to
consist of wave functions �wdw D �.a; �/ of the con-
figuration variables .a; �/. In this case, the operators
are represented in the usual fashion, as: Oa ��.a; �/D
a�.a; �/ and OPa D�i„@a�.a; �/, and similarly for
the other variables. Then, one promotes the constraint
(39.3) to an operator, and finds solutions to the Dirac
condition (39.1). This has been described in detail
in [39.33, 34].

In order to define the corresponding phase space in
LQC, we need to follow some more steps. The first one
is that one needs to introduce a new set of variables
for the gravitational degrees of freedom. As explained

in Sahlmann’s contribution to this volume, LQG, and
consequently LQC is based in a connection A and its
corresponding momenta E, a generalization of the mag-
netic potential and electric field of electromagnetism.

Due to the underlying symmetries of the space-
times we are considering, these variables can be written
as [39.3]

Ai
a D Qc V!

i
a I Ea

i D Qp
q
Vqea

i ; (39.4)

where ea
i is a fiducial triad and V! i

a is the cotriad com-
patible with Vqab. Now, the dynamical variables in the
isotropic cosmological regime are p and c. The relation-
ship between the triad p and the scale factor is, jpj D a2.
The connection component gets related to the rate of
change of scale factor as cD � Pa=N, holding only for the
physical solutions of general relativity. For convenience
during the loop quantization process, let us introduce
the variables V D a3, the volume, and its conjugate vari-
able b WD c=jpj1=2. The gravitational part of the phase
space is characterized by the conjugate variables V and
b satisfying

fb;Vg D 4�G� ; (39.5)

and the complete phase space has coordinates
.b;VI �; p.�//. A further simplification is to choose
N D a3 D V from the very beginning. If we rewrite the
line element with this choice we have ds2 D�a6 d
 C
a2 dx2, for which the classical constraint now reads

QC D p2
.�/ �

3

4�G�2
V2b2 D 0 : (39.6)

It is worthwhile to note that the dynamics thus fund
in the Hamiltonian language is completely equivalent to
the standard description based in Einstein’s equations.

Let us now consider the issue of quantization. As
previously discussed, the choice of kinematical Hilbert
space in LQC is different from the WDW case. That is,
we do not expect to represent Ob and OV as multiplica-
tion and derivation, for example. The idea instead is to
construct a quantum theory that is closest to the quan-
tization used in loop quantum gravity, as discussed in
Sahlmann’s contribution. This means in particular a dif-
ferent choice of kinematical Hilbert space. Recently this
polymeric quantization for cosmological models has
been shown to be unique when invariance under dif-
feomorphisms is imposed [39.35] (in complete analogy
with the corresponding results in full LQG [39.36, 37]).
The new strategy is the following. Instead of re-writing
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the Hamiltonian constraint (39.3) in terms of the .b;V/
variables, one starts the full expression of the Hamilto-
nian constraint, in terms of variables A and E. Then, one
uses the simplification given by (39.4). As it turns out,
the choice of the polymeric Hilbert space as the kine-
matical arena for the implementation of the constraint –
following the LQG route to quantization – has the im-
portant feature that it does not admit the Ob operator. That
is, only exponential functions of the variable b such as

h.�/ D exp

�
i	

b

2

�
(39.7)

become well defined. These functions generate an al-
gebra of so-called almost periodic functions, for arbi-
trary 	.

The basic assumption behind loop quantization is
that the corresponding functions become a basis for
the quantum theory. The resulting kinematical Hilbert
space is then L2.RBohr; d�Bohr/, a space of square in-
tegrable functions on the Bohr compactification of the
real line. It is straightforward to understand the nature
of this space. For instance, the eigenstates of OV , labelled
by j�i, satisfy h�1j�2i D ı�1;�2 . This is to be contrasted
with the usual Schrödinger representation where, in-
stead of the Kronecker delta, one has the Dirac delta.
This representation of quantum states and operators is
referred to as the polymer representation because in full
LQG the fundamental excitations of the gravitational
field are one dimensional and polymer like.

In particular, these eigenstates are normalized and
constitute a basis for the kinematical Hilbert space
Hpoly. This constitutes the main difference from the
standard Schrödinger representation where the eigen-
states of momentum Opj�i D �j�i are not normalized
and satisfy h�j�i D ı.�; �/. Note also that this plane
waves states are not a basis for the L2.R; dx/ Hilbert
space.

There exists an important result in mathemati-
cal physics stating that for a finite-dimensional phase
space, the Schrödinger Hilbert space is the only choice
of representation of the canonical commutation rela-
tions, satisfying some regularity conditions. This re-
sult goes under the name of the Stone–Von Neumann
uniqueness theorem [39.38]. Thus, one could have
imagined that, since the system has a finite number
of degrees of freedom, both the WDW and the LQC
representations should be equivalent. However, that ex-
pectation is not realized. The polymeric representation
used in LQC and the standard one are unitarily inequiv-
alent. This is due to a crucial property of the LQC

operators, implying that the polymer quantum mechan-
ics does not posses some of the regularity conditions
that go into the hypothesis of the Stone–Von Neumann
theorem. To explore those properties further, let us con-
sider the action of the two fundamental operators on the
eigenstates j�i,

OVj�i D 2��`2
Pl�j�i I

4

exp
�

i	
b

2

�
j�i D j�C	i :

(39.8)

Note that the displacement operator 4exp.i	b=2/ is not
continuous when 	! 0, since the states j�i and j�C
	i are always orthogonal to each other, for all nonzero
values of 	. Also note that a basis of the polymer Hilbert
space is uncountable as the label � for the eigenstates
can take any value in the real line.

Let us now find what the form of the quantum
constraint operator is. The idea is to consider wave
functions of the type Q�.�; �/ 2Hkin. The quantum
constraint operator on wave functions Q�.�; �/ of � and
� is then

@2
�
Q�.�; �/DW�.�/ Q�.�; �/ : (39.9)

The geometrical part, �.�/, of the constraint is a differ-
ence operator in steps of 4	, that takes the form

�.�/ WD CC.�/�.�C 4	/CC0�.�/

CC��.� � 4	/�.�/ ; (39.10)

where C˙ and C0 are functions of j�j [39.34, 39]. Note
that the equivalent of the WDW equation is now a dif-
ference equation in the geometrical variable, instead of
a differential equation.

Then, physical states correspond to solutions to the
quantum constraint (39.9), but they should also belong
to the positive frequency part of the Hamiltonian con-
straint, and satisfy the Schrödinger equation

�i„@��.�; �/D
p
��.�; �/�H0�.�; �/ :

(39.11)

Furthermore, they should be symmetric under �!��
and have finite norms under the inner product

h�1j�2i D
X
�

� 1.�; �0/j�j
�1�2.�; �0/ ; (39.12)

where the constant �0 is arbitrary. As discussed above,
these physical states can be interpreted as being solu-
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tions to evolution equations with respect to the internal
time �.

The next step is to define relational observables that
will have a clear interpretation in terms of �. For in-
stance, one can define the operator OV�0 as the operator
corresponding to the volume V when the scalar field
takes the value �0. One can indeed define such Heisen-
berg operators by the standard prescription

OVj�0 ��phy.�; �/ WD eiH0.���0/ OVe�iH0.���0/

��phy.�; �/ ;

(39.13)

where OV is the standard Schrödinger operator (acting
by multiplication in this case). In this manner one can
define operators corresponding to matter energy density
O��0 and curvature scalars, all with a clear interpretation
as being defined at time �0.

As it turns out, one can perform a Fourier transform
into the conjugate variable to �, and the resulting quan-
tum constraint, a differential equation, can be solved
exactly [39.34]. This allows one to have closed ex-
pressions for the expectation values of the Heisenberg
operators. For instance, the expectation value for the
volume operator takes the form

h OVi� D V
C

e˛� CV
�

e�˛� ; (39.14)

with, V
˙

constants that depend on the details of the
initial (normalized) wave function, and ˛ D

p
12�G.

From (39.14), it follows that the expectation value of
the volume OVj� is large at both very early and late times
and has a nonzero global minimum

Vmin D 2.V
C

V
�

/1=2 :

The bounce occurs at time

�V
b D .2˛/

�1 ln
�

V
�

V
C

�
:

Around � D �V
b , the expectation value of the vol-

ume h OVi� is symmetric. Thus we see that all states
undergo a big bounce that replaces the big bang (in
which the volume goes to zero as �!˙1). Note: In
the case of the WDW quantization, the expected vol-
ume reaches zero as �!˙1, so in this sense one still
reaches the singularity.

Another important observable to consider is the en-
ergy density O�j� . Interestingly, this quantity possesses

an absolute upper bound given by

h O�i� 	 �max with �max WD
3

8��2G

1

	2
: (39.15)

It is interesting to note that this quantity depends in-
versely with the loop quantum geometry scale 	. Thus,
in the limit 	! 0, where we expect to recover the
WDW theory, the density becomes unbounded. That is
precisely what is found in the complete quantization of
the WDW theory [39.34].

Using the standard choice for 	 in LQC, namely
	2 D 4�

p
3�`2

Pl, we obtain

�max D

p
3

32�2�3G2„
� 0:41�Pl

(using the standard choice for � in LQG).
Let us now summarize the main features of the com-

plete quantization of this simple cosmological model.

1. The bounce is not restricted to semiclassical states
but occurs for states in a dense subspace of the phys-
ical Hilbert space.

2. There exists a supremum of the expectation value
for the energy density. This maximum allowed den-
sity is �max D

p
3=.32�2�3G2„/. We note that exis-

tence of an absolute maximum of the energy density
in this cosmological model implies a nonsingular
evolution, in terms of physical quantities. The sin-
gularity is therefore, resolved.

3. When curvatures become much smaller than the
Planck curvature (or for �� �max), the expectation
values of the Dirac observables agree with the val-
ues obtained from classical GR.

4. For states which are semiclassical at late times, i. e.,
those which lead to a large classical universe, the
backward evolution leads to a quantum bounce in
which the energy density of the field becomes arbi-
trarily close to �max � 0:41�Pl.

5. States that evolve to be semiclassical at late times,
as determined by the dispersion in canonically con-
jugate observables, have to evolve from states that
also had semiclassical properties before the bounce
(even when there might be asymmetry in their
relative fluctuations without affecting semiclassical-
ity) [39.40–43]. Semiclassicality is preserved to an
amazing degree across the bounce.

This concludes our discussion of the quantization
of the homogeneous background in the case where the
matter content is a massless scalar field. This is the sim-
plest isotropic model and is completely solvable. The
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question now is how to generalize these results for other
isotropic and anisotropic models. That will be subject of
the next section.

39.2.2 Other Cosmologies

k D 1 FLRW
There are several generalizations one might consider
away from the kD 0, �D 0, FLRW cosmology. The
simplest case is to consider the kD 1 FLRW cosmolog-
ical model [39.44–46]. Even when it is not phenomeno-
logically favored, it is important since it represents
a spatially closed model that in the classical theory has
both an expanding and a contracting phase continu-
ously joined by a recollapse point where H D Pa=aD 0.
Therefore, it is an important test if one can recover the
classical recollapse from the quantum theory.

The spacetimes under consideration are of the form
M D˙ �R, where ˙ is a topological three-sphere S3.
It is standard to endow ˙ with a fiducial basis of one-
forms o! i

a and vectors oea
i . The fiducial metric on ˙ is

then oqab WD
o! i

a
o!

j
bkij, with kij the Killing–Cartan met-

ric on su(2). Here, the fiducial metric oqab is the metric
of a three-sphere of radius a0. The volume of ˙ with
respect to oqab will be denoted by V0 D 2�2a3

0. We

also define the quantity `0 WD V1=3
0 . It can be written as

`0 DW #a0, where the quantity # WD .2�2/1=3 will ap-
pear in many expressions.

The isotropic and homogeneous connections and
triads can be written in terms of the fiducial quantities
as follows:

Ai
a D

c

`0

o! i
a I Ea

i D
p

`2
0

p
oqoea

i : (39.16)

Here, c is dimension-less and p has dimensions of
length. The metric and extrinsic curvature can be re-
covered from the pair .c; p/ as follows:

qab D
jpj

`2
0

oqab ;

and

�Kab D

�
c�

`0

2

�
jpj

`2
0

oqab :

Note that the total volume V of the hypersurface ˙ is
given by V D jpj3=2. The only relevant constraint is the
Hamiltonian constraint that has the form

Cgrav D�
3

8�G�2

p
jpj


.c�#/2C �2#2

�
: (39.17)

It is convenient to also use the variables [39.34]: b WD
c=jpj1=2 and V D p3=2. The quantity V is just the vol-
ume of ˙ and b is its canonically conjugate, fb;Vg D
4�G� . We can then compute the evolution equations of
V and b in order to find interesting geometrical scalars.
Then

PV D fV;Cgravg D
3

�

�
bV �#V2=3

	
; (39.18)

from which we can find the standard Friedman equation
using the constraint equation C D CgravCCmatt � 0 and
Cmatt D V�, we have

H2 WD

 
PV

3V

!2

D
8�G

3
��

#2

V2=3
:

The basic strategy of loop quantization, just as in the
kD 0 case, is that the effects of quantum geometry
are manifested by means of holonomies around closed
loops to carry information about field strength of the
connection. In order to define the quantum theory, tak-
ing again N D a3, one can work in the � representation
and define operators associated to curvature and spin
connection to arrive at a difference operator �.kD1/ of
the form

@2
��.�; �/

D��.kD0/�.�; �/

C
3�G

	2
�

�
sin2

�
	#

QK�1=3

�
C .1C �2/

�
	#

QK

��

��.�; �/ ;

(39.19)

with QK D 2��`Pl. Numerical solutions of this equation
were studied in detail in [39.44] for sharply peaked
states, and were shown to posses not only a bounce very
close to the critical density �max, but also a recollapse at
a density and volume very close to the classical value.
Thus, this model provides a very striking example of
a quantum gravitational system that possesses satisfac-
tory ultraviolet (UV) and infrared (IR) behavior. The
relative dispersion of OVj� does increase but the increase
is very small: For a universe that undergoes a classical
recollapse at � 1 Mpc, a state that nearly saturates the
uncertainty bound initially, with uncertainties in Op� and
OVj� spread equally, the relative dispersion in OVj� is still
� 10�6 after some 1050 cycles [39.44]. The expectation
values of volume have a quantum bounce which oc-
curs at �D �max up to the correction terms of the order
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of `2
Pl=V2=3

bounce. For universes that grow to macroscopic
sizes, the correction is totally negligible. For exam-
ple, for a universe which grows to a maximum volume
of 1 Gpc3, the volume at the bounce is approximately
10117`3

Pl. On the other hand, the numerical simulations
show that one indeed recovers the recollapse with very
large precision for semiclassical states that reach large
volumes [39.44]. An important lesson that this model
teaches us is that energy density and curvature are the
relevant quantities to define what the Planck scale is,
and not the size of the universe at the bounce (that, as
we have seen, can be very large in Planck units). One
should also note that, while semiclassical states alter-
nate between the Planck scale (UV) and the low density,
large volume GR regime (IR) states that are truly quan-
tum – or far from semiclassical – might have a bounce
at a density much lower than �max, and not grow to large
volumes before recollapse.

There exists another quantization in which the cur-
vature is not obtained by means of closed holonomies,
but rather by approximating the connection by open
holonomies, as is done in anisotropic models with non-
trivial curvature [39.46]. The structure of the constraints
is different but its quantum solutions have not been ex-
plored numerically yet.

Let us comment on the quantization of the kD�1
case. Some early attempts to find such a quantization
were put forward in [39.47, 48], but those efforts still
suffer from some drawbacks, such as the absence of es-
sential self-adjointness. A quantization based in open
holonomies as in [39.46] is still to be constructed.

FLRW with �¤ 0
The results found for a zero cosmological constant can
be generalized to the case of a nonzero cosmological
constant. For a mass-less scalar field and both signs of
the constant, we have singularity resolution, in the sense
that the big bag/crunch is replaced by a bounce, just as
in the �D 0 case. For simplicity we shall consider the
�< 0, kD 0 case, but the results can be generalized to
kD 1 as well. The Hamiltonian constraint, for N D 1,
takes the form

C D
p2
.�/

2V
�

3

8�G�2
b2VC

�

16�G
V � 0 : (39.20)

One can solve the equations of motion and express the
dynamics in terms of the scalar field � as

V.�/D
˛p.�/p

3j�j

1

coshŒ˛.� ��0/�
: (39.21)

With this, there is a big-bang singularity in the past �!
�1 and a big crunch in the future, when �!1. There
is a point of recollapse, when the volume reaches its
maximum value Vmax D .˛p.�//=.

p
3j�j/, at � D �0,

with some resemblance to the kD 1 case. The quantum
constraint now takes the form

@2
��.�; �/D���.�; �/�

�G�2j�j

2
�2�.�; �/ ;

(39.22)

with � the operator corresponding to the kD 0, �D 0
case. The operator can be consistently defined, and nu-
merically solved [39.49] to give a picture very similar
to the kD 1 case with vanishing cosmological constant.
The big bang/crunch is replaced by a bounce, in such
a way that a sharply peaked state goes through a series
of bounces and recollapses in an almost periodic fash-
ion.

Let us now consider the �> 0 case. The solution
to the classical equations is slightly different from the
negative case and takes the form [39.50, 51]

V.�/D
˛p.�/p

3j�j

1

sinhŒ˛.� ��0/�
: (39.23)

This is qualitatively very different from the previous
case. Now, an expanding solution with a big-bang
singularity at the past, �!�1, reaches an infinite
volume for a finite value of �, namely when � D �0.
Similarly, there are contracting solutions that start, for
� D �0, with an infinite volume and end in a big crunch
singularity when �!1. At the point � D �0, the
proper time diverges and the matter density vanishes.
One can see that one can actually continue the clas-
sical evolution past this singular point [39.50]. In the
quantum theory, this new behavior manifests itself in
the fact that the operator�� fails to be essentially self-
adjoint, and one has the freedom of choosing different
self-adjoint extensions. Interestingly enough, for all of
them, the evolution of semiclassical states is almost in-
distinguishable. Evolution is well defined past the point
� D �0 and the universe recollapses. As in all previ-
ous cases, the big bang/crunch singularity is replaced
by a bounce.

Anisotropic Cosmologies
Isotropic LQC, as we have seen, enjoys a very ro-
bust formulation; one has complete mathematical con-
trol over the quantum theory, one can make physical
predictions using analytical or numerical tools and
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can therefore draw conclusions about the behavior of
a background isotropic quantum geometry. The same is
not true for anisotropic solutions. While the quantum
constraints have been formulated in several cases, one
does not have full mathematical control regarding their
time evolution, and one has not been able to solve, even
numerically, their dynamical evolutions. In this part we
shall summarize the formulation of the quantum models
as we currently understand them.

Let us consider the spacetime of the form M D
˙ �R where ˙ is a spatial 3-manifold which can be
identified by the symmetry group of the chosen model
and is endowed with a fiducial metric oqab and asso-
ciated fixed fiducial basis of 1-forms o! i

a and vectors
oea

i . If ˙ is noncompact then we fix a fiducial cell V
adapted to the fiducial triads with finite fiducial volume.
We also define Li which is the length of the ith side of
the cell along oei and VV D L1L2L3. We choose for com-
pact ˙ , Li D VV1=3 with iD 1; 2; 3.

Since all of the models in which we are interested
are homogeneous and, if we restrict ourselves to diago-
nal metrics, one can fix the gauge in such a way that Ai

a
has three independent components, ci, and Ea

i has three
independent components, pi

Ai
a D

ci

Li

o! i
a and Ea

i D
piLi

VV

p
oq oea

i ; (39.24)

where pi, in terms of the scale factors ai, are given by
jpij D LiLjajak (i¤ j¤ k). Using .ci; pi/ for anisotropic
models, the Poisson brackets can be expressed as
fci; pjg D 8�G�ıi

j . With this choice of variables and
gauge fixing, the Gauss and diffeomorphism constraints
are automatically satisfied and, again, only the Hamil-
tonian constraint remains.

In the Bianchi I model, the quantum constraint op-
erator can be constructed by a natural generalization of
the strategy used in the isotropic case [39.52–54]. In the
Bianchi II and IX models, however, an extension of the
strategy is needed [39.55, 56]. In the kD 0 and Bianchi
I models one can also use the new strategy and it yields
the same quantum Hamiltonian constraint. However,
for the kD 1 isotropic models the two strategies yield
different quantum constraints – reflecting a quantization
ambiguity – and the quantum constraint obtained by the
new method is the limit of the Bianchi IX quantum con-
straint in the isotropic limit [39.46, 56, 57].

By using these results and choosing some factor or-
dering, we can construct the total constraint operator.
Note that different choices of factor ordering will yield
different operators, but the main results will remain al-

most the same. By solving the constraint equation OCH �

� D 0, we can obtain the physical states and the physi-
cal Hilbert spaceHphys. As a final step, one would need
to identify the physical observables, that in our case
would correspond to relational observables as func-
tions of the internal time �. These steps have proven
to be exceptionally difficult and so far these difficulties
have prevented from solving the resulting difference
equations numerically, even for the simplest case of
Bianchi I.

39.2.3 Effective Equations

When analyzing the numerical solutions of the kD 0,
�D 0 FLRW model, the authors of [39.33] noticed that
sharply peaked states followed trajectories in the .V; �/
plane that have a bounce, and therefore do not satisfy
the classical Einstein equations. Furthermore, they re-
alized that the expectation value of OVj� does indeed
follow a trajectory that satisfies (to a very good approx-
imation) some so-called effective equations. As it turns
out, these effective equations can be derived from an
effective Hamiltonian constraint Ceff. The question that
arises then is how to derive, from the quantum theory
defined by a quantum constraint OC, the effective Hamil-
tonian. A second question pertains to the domain of
validity of these effective equations. That is, for which
states and in which regimes are these equations a good
approximation to the exact quantum dynamics? As we
shall see in this part, for the models that are well under-
stood, effective equations describe very accurately the
dynamics for appropriately defined semiclassical states.

In the case of models for which we do not posses the
full quantum dynamics, one can expect that the effec-
tive theory to describe very well the quantum theory for
semiclassical states far from the deep quantum regime
(where it is expected to fail). Thus, in the anisotropic
Bianchi I, II, and IX models, the effective description
that we shall here consider provide a description in
which the singularity is also replaced by a bounce.

Let us begin by briefly describing how one obtains
this effective descriptions from the quantum theory.
The idea is to employ the geometric formulation of
quantum mechanics [39.58], which provides an appro-
priate formalism from which one can find the effective
Hamiltonian constraint Ceff by computing the expecta-
tion value h OCi of the quantum Hamiltonian constraint
on an appropriately defined semiclassical state  . From
that expression one can find the effective equations
of motion by replacing Ceff in Hamilton’s equations:
PqD fq;Ceffg and PpD fp;Ceffg.
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Let us now consider some important cases in homo-
geneous LQC.

k D 0 FLRW cosmology
Using the geometric methods of quantum mechanics,
one can write an effective Hamiltonian which provides
an excellent approximation to the behavior of expec-
tation values of Dirac observables in the numerical
simulations [39.59]. The effective Hamiltonian will, in
principle, also have contributions from terms depend-
ing on the properties of the state such as its spread. The
effect of these terms turns out to be negligible as dis-
played from the detailed numerical analysis [39.39, 44].
Thus, the effective Hamiltonian constraint is, for N D 1

Ceff D
3

8�G�2

sin2.	b/

	2
V �Cmatt ; (39.25)

which leads to modified Friedman and Raychaudhuri
equations on computing the Hamilton’s equations of
motion (as we shall see below). Using (39.25) one
can find that the energy density �D Hmatt=V equals
3 sin2.	b/=.8�G�2	2/. Since the latter reaches its
higher possible value when sin2.	b/D 1, the density
has a maximum given by

�max D
3

8�G�2	2
: (39.26)

Thus, we see that that the maximum energy density ob-
tained from the effective Hamiltonian is identical to the
supremum �sup for the density operator in kD 0, LQC.
The difference is, of course, that in the effective dynam-
ics every trajectory undergoes a bounce and reaches the
maximum possible density, while in the quantum the-
ory not every state is close to the critical density at the
quantum bounce.

It is easy to solve for the dynamics defined by the ef-
fective Hamiltonian. The equations of motion are found
using the effective constraint: @tF DW PF D fF;Cg, with
t the cosmic time. The only equation of motion different
from the classical one (on the constraint surface) is

PV D
3

�	
V sin .	b/ cos .	b/ ; (39.27)

leading to the modified Friedman equation for the Hub-
ble parameter

H2 WD

�
Pa

a

�2

D

 
PV

3V

!2

D
8�G

3
�

�
1�

�

�max

�
;

(39.28)

where �max D 9=.2˛2/.1=	2/ is the scalar field density
at the bounce. For every trajectory there are quan-
tum turning points at bD˙�=.2	/, where PV D 0,
corresponding to a bounce. Note that, at the bounce
RVjˇD�=.2�/ D 2˛2V�max > 0, so the bounce corre-
sponds to a minimum of volume. Also, note that
the Hubble parameter is absolutely bounded jHj 	 1=
.2	�/, indicating that the congruence of cosmological
observers can never have caustics, independently of the
matter content.

In the case of effective theories the proper time ap-
pears as a natural choice for an evolution parameter, but
one can always look for internal, relational notions of
time. Since, Pb 	 0 one can choose b as a relational time
in the effective theories, and consider the evolution with
respect to b. The advantage of this election is that no
external time variable is needed. Every trajectory, that
corresponds to b> 0, has a bounce at bD �=.2	/, and
this value tends to infinity as 	! 0.

In the effective theories, we consider the interval
b 2 Œ��=.2	/;�=.2	//. One should note that all func-
tions and observables in N�� are periodic in b with
period �=	. It is then completely equivalent to regard
the coordinate b as compactified on a circle. The solu-
tions are defined for every t and are given by [39.60]

cot	bD
3t

�	
; V�.t/D

˛

3
p�
p
�2	2C 9t2 ;

(39.29)

and

��.t/D �0C	'C
1

˛
ln

3tC
p
�2	2C 9t2

3t0C
q
�2	2C 9t2

0

;

(39.30)

so that ��.t0/D �0C	' and the initial condition ap-
proaches the classical one (for tD t0) as 	! 0. Note
that ��.0/! .sgn b=�/ ln	 as 	! 0. Let us now con-
sider an intrinsic description of the dynamics in terms
of the scalar field. One can solve V as a function of �

V�.�/D V
C

e˛.sgn b/.���.t0//

CV
�

e�˛.sgn b/.���.t0// ; (39.31)

where

V
C

D
1

2

�
V0C

q
V2

0 �ˇ
2

�

and V
�

D ˇ2=4.V
C

/�1, where V0 D V.�.t0//, and
ˇ D .1=3/�	˛p�. Note that the effective theory recov-
ers the quantum dynamics of h OVij� exactly, for all
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states of the physical Hilbert space. That is, there are no
further quantum corrections to the dynamics of V�.�/.

With this, one can see that the effective theory de-
fines an effective homogeneous and isotropic spacetime
metric, that takes the form

.ds2/eff D�dtC a2.t/eff dx2 ; (39.32)

with

a.t/eff D
�˛

3

	 1
3 p�
VV
.�2	2C 9t2/

1
6 :

It is trivial to see that in the 	! 0 limit, one recov-
ers the classical spacetime metric satisfying Einstein
equations.

As we have seen, the quantum corrections cap-
tured by the effective Hamiltonian modify the Friedman
equation in a nontrivial way, ensuring that quantum ef-
fects become important near the Planck scale in such
a way that a repulsive force is capable of stopping the
collapsing universe and turn it around into an expanding
phase. Let us explore a little bit more how this quantum
repulsive force can be seen. First, a modified Raychaud-
huri equation can be written [39.61]

Ra

a
D�

4�G

3
�

�
1� 4

�

�max

�
�4�GP

�
1� 2

�

�max

�
:

(39.33)

It is also illustrative to write an equation for the rate of
change of the Hubble parameter [39.62]

PH D�4�G.�CP/

�
1� 2

�

�max

�
: (39.34)

These equations imply that the matter conservation
equation

P�C 3H.�CP/D 0 ; (39.35)

has the same form as in the classical theory, even
when both Friedman and Raychaudhuri equations suf-
fer loop quantum corrections. From (39.34) one sees
that, for matter satisfying the WEC, there is a super-
inflationary phase, corresponding to PH > 0, whenever
the matter density satisfies � > �max=2. Note that in
the 	! 0 limit, we recover the corresponding classi-
cal equations.

Another system of interest, for the remainder sec-
tions of this chapter, is a scalar field subject to a po-
tential V.�/. Even for the simplest potential V.�/D
m2�2=2 the classical dynamics is drastically modified;

after the big bang there is a, slow roll, inflationary pe-
riod. A pressing question is how this dynamics gets
modified in the effective LQC scenario. We know that
every trajectory follows the effective Friedman equation
(39.28) and has a bounce when �D �max, followed by
a period of superinflation. How does that behavior af-
fect the presumed inflationary period occurring at much
smaller densities? First note that in that case, the energy
density has the form: �D P�2=2Cm2�2=2, so there is
a convenient way of depicting the bounce as the curve,
in the .�; P�/ plane, satisfying �max D P�

2=2Cm2�2=2.
The dynamics is therefore bounded by such ellipsoid.
The equation satisfied by the scalar field has the same
form as in the classical case: R�C 3H P�CV;� D 0. One
can solve these equations numerically [39.63, 64] and
finds that after the superinflationary phase, the dynam-
ics follows very closely the GR dynamics and exhibits
an attractor behavior as well. As we shall see in
later sections, this feature of the dynamics is respon-
sible for phenomenologically relevant inflation to be
generic.

Let us end this part with some comments:

i) This set of effective equations has the property that
one recovers General Relativity in the small den-
sity IR limit, and that they are independent of the
fiducial V . These are nontrivial requirements that
impose strong conditions on the particular form of
the quantum constraint operator [39.65].

ii) Inverse volume effects can introduce modifications
to the effective equations that have various conse-
quences, such as loss of the universal conservation
equation for matter, and extra superinflationary cor-
rections. However, the physical validity of consider-
ing such inverse correction for the kD 0 is seriously
challenged.

iii) It has been shown that for generic matter content,
the LQC effective equations imply that strong sin-
gularities are generically resolved [39.61].

iv) A consistency check for the validity of effective
equations pertains to the behavior of appropriately
defined semiclassical states. Such states have been
constructed and the predictions of the effective
theory put to the test [39.42, 43]. It was shown that
both the density at the bounce and the minimum
value of volume are very well described by the
effective theory.

k D 1 FLRW
Let us now start with the isotropic closed FLRW model.
As discussed before, there are two quantization avail-
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able for this model. Correspondingly, the effective
equations will yield two inequivalent theories. For the
first quantization, based in the curvature as defined by
closed holonomies, and neglecting the so-called inverse
triad corrections, one can arrive at the form of the effec-
tive Hamiltonian constraint

Ceff D�
3

8�G�2	2
V

�


sin2.	b�D/� sin2 DC .1C �2/D2

�
C �V ;

(39.36)

with D WD 	#=V1=3. We can now compute the equa-
tions of motion from the effective Hamiltonian as

PV D fV;Ceffg D fV; bg
@Ceff

@b

D
3

	�
V sin.	b�D/ cos.	b�D/ :

From here, we can find the expansion as

 D
PV

V
D

3

	�
sin.	b�D/ cos.	b�D/

D
3

2	�
sin 2.	b�D/ : (39.37)

From the above equation we can see that the Hubble
parameter is also absolutely bounded by jHj D j j=3	
1=2	� . We can now compute the modified, effective
Friedman equation, by computing H2 D �2

9

H2 D
1

	2�2

�
8�G�2	2

3
�C sin2 D� .1C �2/D2

�

�

�
1�

8�G�2	2

3
�� sin2 DC .1C �2/D2

�

D
8�G

3
.�� �1/

�
1�

�� �1

�max

�
;

(39.38)

where �1 D �maxŒ.1C �2/D2� sin2 D� and �max D 3=
.8�G�2	2/ is the critical density of the kD 0 FLRW
model.

Let us now consider the other quantization, based on
defining the connection using holonomies along open
paths. As mentioned before, this is the only available
route for anisotropic cosmologies when there is in-
trinsic curvature (such as in Bianchi II and IX). The
effective Hamiltonian constraint one obtains from that

quantum theory [39.46], when neglecting inverse scale
factor effects (as was done in [39.44, 66]), is

Ceff D�
3

8�G�2	2
V


.sin	b�D/2C �2D2

�
C�V :

(39.39)

It is then straightforward to compute the corresponding
effective equations of motion. In particular, by comput-
ing PV D fV;Ceffg, we can find the expression for the
expansion as

 D
3

	�
cos	b .sin	b�D/ : (39.40)

Note that in this case, the expansion (and Hubble) is
not absolutely bounded, due to the presence of the
term linear in D. An important feature of these effec-
tive equations is that they describe with great accuracy
the expectation value of volume during the numerical
evolution of semiclassical quantum states [39.44]. It is
also worth to note that for large values of the recol-
lapse volume, the effective and the classical equations
coincide. In the case of the connection-based quantiza-
tion [39.46], there are two different bounces, that ap-
proach the unique bounce of the curvature-based equa-
tions when the universe grows to be large [39.46]. Let
us now consider the effective equations for anisotropic
models.

Anisotropic Models: Bianchi I, II, and IX
Considering the effective description of anisotropic
models is interesting in view of the BKL conjec-
ture [39.67–69], that states that locally, generic space-
times approaching the classical singularity behave as
a combination of Bianchi cosmological models. The ef-
fective Hamiltonian constraint for Bianchi I and II can
be written in a single expression [39.52, 55, 70],

CBII

D
p1p2p3

8�G�2	2
Œsin N�1c1 sin N�2c2C sin N�2c2 sin N�3c3

C sin N�3c3 sin N�1c1�

C
1

8�G�2

�

"
˛.p2p3/

3=2

	
p

p1
sin N�1c1 � .1C �
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where the parameter " allows us to distinguish between
Bianchi I ("D 0) and Bianchi II ("D 1). This Hamil-
tonian together with the Poisson brackets fci; pjg D

8�G�ıi
j and f�; p�g D 1 gives the effective equations

of motion. In these previous effective Hamiltonians, one
chooses the lapse N D V.

In Bianchi IX, one chooses N D 1 to include more
inverse triad corrections. Then the effective Hamilto-
nian looks like that of the Bianchi I plus some extra
terms that capture the information about the intrinsic
curvature [39.70].

Let us now discuss the issue of singularity resolu-
tion when these equations are studied numerically. The
main features that these systems posses can be summa-
rized as follows:

1. All solutions have a bounce. In other words, sin-
gularities are resolved. In the closed FRW and the
Bianchi IX model, there are infinite number of
bounces and recollapses due to the compactness of
the spatial manifold.

2. One can have a different kind of bounce domi-
nated by shear � , but only in Bianchi II and IX. In
Bianchi I, the dynamical contribution from matter is
always bigger than the one from the shear, even in
the solution which reaches the maximal shear at the
bounce [39.71].

3. In the flat isotropic model all the solutions to
the effective equations have a maximal density
equal to the critical density, and a maximal ex-

pansion (2
max D 6�G�max D 3=.2�	/) when �D

�crit=2. For FRW kD 1 model, every solution has
its maximum density but in general the density
is not absolutely bounded. In the effective theory
which comes from connection-based quantization,
expansion can tend to infinity. For the other case,
expansion has the same bound as the flat FRW
model. However, by adding some more corrections
from inverse triad term, one can show that actually
in both effective theories the density and the expan-
sion have finite values.

4. For Bianchi I, in all the solutions � and  are up-
perly bounded by its values in the isotropic case and
� is bounded by �2

max D 10:125=.3�2	2/ [39.72–
74]. For Bianchi II, ; � and � are also bounded,
but for larger values than the ones in Bianchi
I, i. e., there are solutions where the matter den-
sity is larger than the critical density. With point-
like and cigar-like classical singularities [39.71],
the density can achieve the maximal value (��
0:54�Pl) as a consequence of the shear being
zero at the bounce and curvature different from
zero.

5. For Bianchi IX the behavior is the same as in
closed FRW, if the inverse triad corrections are not
used, then the geometric scalars are not absolutely
bounded. But if the inverse triad corrections are
used then, on each solution, the geometric scalars
are bounded but there is not an absolute bound for
all the solutions [39.70, 74].

39.3 Inhomogeneous Perturbations in LQC

The theory of quantized fields in curved spacetimes has
become an essential tool in modern early-universe cos-
mology. In that framework, one studies the behavior of
quantum fields propagating in spacetimes with generic
Lorentzian geometries, as in General Relativity. One
expects this theory to describe accurately physical pro-
cesses in situations where we are confident about the
validity of its building blocks: a description of matter
fields in terms of quantum field theories, and a space-
time geometry given by a smooth, classical spacetime
metric. These assumptions are reasonable, for instance,
during the inflationary era in which the energy den-
sity and curvature are believed to be more than 10
orders of magnitude below the Planck scale. How-
ever, earlier in the history of the universe, closer to
the Planck era, quantum gravity effects become im-

portant and the description of spacetime geometry in
terms of a smooth metric is expected to fail. To in-
clude physics in the Planck regime QFT in curved
backgrounds needs to be generalized to a QFT in
quantum spacetimes. The singularity-free quantum ge-
ometry provided by LQC, summarized in the previous
section, provides a suitable arena to formulate such
a theory, and the quantization of scalar fields on those
quantum cosmologies was introduced by Ashtekar et al.
[39.4], and further developed in [39.5, 75–77]. Having
in mind the most interesting application of this frame-
work, we summarize here the construction of the QFT
of scalar and tensor metric perturbations propagating
in a quantum FLRW universe, i. e., the quantum grav-
ity theory of cosmological perturbations. For details,
see [39.4, 5].
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As mentioned in the introduction of this chapter,
the construction will follow the guiding principle that
has been useful in the quantization of the background:
first carry out a truncation of the classical theory to se-
lect the sector of General Relativity of interest, and then
move to the quantum theory by using LQG techniques.
Starting from General Relativity with a scalar field as
matter source, we will truncate the phase space to the
sector containing cosmological backgrounds plus inho-
mogeneous, gauge invariant, first-order perturbations,
and then write down the dynamical equations on that
classical, reduced phase space. The main approximation
behind this truncation, and underlaying the subsequent
quantization, is that the back-reaction of inhomoge-
neous perturbations on the homogeneous degrees of
freedom is neglected. The second step is to move to the
quantum theory. Physical states will depend on back-
ground homogeneous degrees of freedom as well as on
inhomogeneous ones. Our basic approximation, how-
ever, enables us to write these quantum states as tensor
product of the homogeneous part, which will evolve
independently of perturbations, and first-order inhomo-
geneities thereon. The homogeneous part will therefore
be the same as the quantum geometries obtained in
the previous section, in which the big-bang singu-
larity is replaced by a bounce. The surprising result
appears in the evolution of perturbations. Without fur-
ther approximation, the evolution of inhomogeneities
on those quantum geometries turns out to be mathemat-
ically equivalent to the quantum theory of those fields
propagating on a smooth background characterized by
a metric tensor. The components of that smooth metric,
however, do not satisfy the classical Einstein equation.
They are obtained from expectation values of certain
combinations of background operators, and incorporate
all the information of the underlying quantum geome-
try that is seen by perturbations. The message is that
the propagation of inhomogeneous perturbations is not
sensitive to all the details of the quantum spacetime,
but only to certain aspects, which appear precisely in
a way that allows one to encode them in a smooth back-
ground metric. This is an unforeseen simplification that
facilitates enormously the treatment of field theoretical
issues.

The last step is to develop the necessary tools to
check the self-consistency of this construction. It is
necessary to show that, in the physical situations un-
der consideration, the Hilbert space of physical interest
contains a large enough subspace in which the back-
reaction of perturbations on the background is indeed
negligible, in such a way that our initial truncation is

justified. That should be done by comparing the expec-
tation value of the Hamiltonian and stress-energy tensor
for perturbations with that of background fields. Those
computation will require techniques of regularization
and renormalization.

39.3.1 The Classical Framework

The goal of this subsection is to summarize the con-
struction of the truncated theory of classical FLRW
spacetimes coupled to a scalar field, plus gauge in-
variant, linear perturbations on it, and write down the
equations describing their dynamics. The reader is re-
ferred to the extensive literature for more details (see,
for instance, [39.78]). We adopt here the Hamiltonian
framework which, as shown in [39.79], is particularly
transparent on the task of finding gauge invariant vari-
ables. It will also provide the appropriate arena to pass
to the quantum theory in the next section. For simplicity
and for physical interest, we work here with a spatially
flat FLRW universe.

The procedure can be divided in three steps:

1. Starting from the full phase space, expand the con-
figuration variables and their conjugate momenta in
perturbations, and truncate the expansion at first or-
der. Expand also the constraints of the theory (the
scalar and vector constraints) and keep only terms
containing zero and first-order perturbations.

2. Use the constraints linear in first-order perturbations
to find gauge invariant variables. Those variables
coordinatize the so-called truncated reduced phase
space.

3. Use the part of the constraints quadratic in zero and
first-order perturbations to write down the dynam-
ics.

See [39.5] for further details and subtle points of
this construction.

The Truncated Phase Space
Let us consider General Relativity coupled to a scalar
field on a spacetime manifold M D˙ �R, with ˙ D
R3. Due to the infinite volume in ˙ , spatial integrals of
homogeneous quantities will introduce infrared diver-
gences. To be able to write meaningful mathematical
expression, it is convenient to introduce a fiducial cell
V and restrict all integrals to it. V can be chosen to be
arbitrarily large, or at least larger than the observable
universe. At the quantum level this will be equivalent to
restrict to V the support of test functions in operator-
valued distributions.
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To facilitate comparison with the literature on cos-
mological perturbations, we will work with ADM vari-
ables for the gravitational sector, where the canonical
conjugated pairs consist in a positive definite 3-metric
on ˙ , qab, and its conjugate momentum pab (the same
analysis can be done in connection variables, by in-
cluding the corresponding Gauss constraint; see [39.5,
80–85]). The full phase space � consists of quadru-
ples fqab.x/; pab.x/; ˚.x/;˘.x/g 2 � , where ˘.x/ is
the conjugate momentum of the scalar field ˚.x/. Be-
cause we are interested in expanding around �hom 
 � ,
the (FLRW) isotropic and homogenous sector of � ,
it is convenient to introduce a fiducial flat metric Vqab,
and use it to raise and lower indices. We will denote
xD .x1; x2; x3/ the Cartesian coordinates defined by Vqab

onV , VV the volume ofV with respect to Vqab, which we
take equal to one to simplify the notation, and VqD 1 the
determinant of Vqab.

Consider now curves �Œ�� in � , which pass through
�hom at � D 0. Expanding the phase space variables
around � D 0, we have

qabŒ��.x/D a2 VqabC �ıq
.1/
ab .x/C � � �C

�n

nŠ
ıq.n/ab .x/

C : : :

˚Œ��.x/D �C �'.1/.x/C : : : ;

(39.41)

and similarly for the conjugated momenta. It is
convenient to consider the first-order perturbations
ıq.1/ab .x/; ıp

ab.1/.x/; '.1/.x/; �.1/.x/ as purely inhomo-
geneous functions of x, in the sense that the integral
of any of them on V is zero. By truncating the above
expansions at first order we obtain the truncated phase
space, made of four pairs of conjugate variables

�Trun D
n�

a;Pa; �; p.�/; ıq
.1/
ab ; ıp

ab.1/; '.1/; �.1/
	o

D �hom ��1 :

From now on, we will work only with first-order pertur-
bations, so we will omit the superindex .1/ to simplify
the notation.

Because of the homogeneity of the background it is
convenient to Fourier transform the perturbation fields
and carry out the standard scalar–vector-tensor decom-
position, in which the six degrees of freedom of ıqab

are decompose into two scalar, two vector, and two ten-
sor modes (see, e.g., [39.5, 79] for details). Because
perturbations are inhomogeneous, the restriction to the

fiducial cell V is not strictly necessary, and one can
avoid the artificial quantization of k that it introduces.
However, from the physical point of view one can ab-
sorb modes with wavelength larger than the observable
universe in the background. Therefore, we will consider
that the Fourier integrals incorporate an infrared cut-off
k0 provided by the size of the observable universe.

Constraints and Reduced Phase Space
A similar expansion to (39.41) can be carried out for
the constraints. In General Relativity, the Hamiltonian
is a sum of constrains, the familiar scalar SŒN�, and vec-
tor V ŒN� constraints. If �Œ�� is now a curve that lies
in the constraint hyersurface of � , and intersects �hom

at � D 0, by referring to the constraints collectively as
C.qab; pab; ˚;˘/ (suppressing the smearing fields for
simplicity), we expand around � D 0 to obtain a hierar-
chy of equations

C.0/ WD Cj�D0 D 0 ; C.1/ WD dC
d�
j�D0 D 0 ; : : :

C.n/ WD dnC
d�n
j�D0 D 0 ; : : :

(39.42)

� The zeroth-order constraint, C.0/ D 0, is just the re-
striction of the full constraint to the homogeneous
subspace �hom. The zeroth-order vector constraint
is trivially satisfied because of the gauge fixing on
the zeroth-order variables, introduced by the use of
the fiducial metric Vqab in (39.41). The zeroth-order
scalar constraint S0 is quadratic in zeroth-order
variables and can be interpreted as the generator of
background dynamics. This dynamics is exactly the
same as that of the unperturbed theory.

� First-order constraints are linear in first-order vari-
ables. They generate gauge transformations in �Trun

and, as usual, tell us that some of our degrees of
freedom are not physical. Initially we have 6.�1/
degrees of freedoms in ıqab.x/, plus one degree
of freedom in the scalar field '.x/, a total of 7.
As mentioned above, ıqab.x/ is conveniently de-
composed in Fourier space into two scalars, two
vector, and two tensor modes. We have the scalar
and three vector constraints, a total of 4. There-
fore, the number of physical degrees of freedom
is 7� 4D 3. There is an elegant systematic proce-
dure to construct gauge invariant variables out of
those three degrees of freedom, and we refer the
reader to [39.79] for details. It can be summarize
as follows. In FLRW backgrounds, scalar perturba-
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tions are affected by the scalar constraint and only
one of the vector constraints; they reduce the three
scalar degrees of freedom that we have initially, two
from gravity and one from the matter sector, to only
one physical scalar mode. Vector perturbations are
affected by two of the vector constraints that kill
completely the vector modes. In other words, in
the absence of matter with vector degrees of free-
dom, as in the case we are studying, there are no
physical vector perturbations. Tensor modes are not
affected by any of the constraints and therefore the
two original tensor modes are the physical ones,
i. e., they are gauge invariant. In summary, after im-
posing the constraints we are left with one scalar
degree of freedom, which we choose to be the fa-
miliar Mukhanov variableQ, and two tensor modes
T .1/ and T .2/. They are gauge invariant variables.
and together with their conjugate momenta form the
reduced, truncated phase space of first-order pertur-
bations, Q�Trun. Equations C.n/ D 0 with n> 1 do not
add further constraints on first-order perturbations.

� The second-order constraints in the full phase space
� involve terms quadratic in first-order perturba-
tions as well as linear terms in second-order per-
turbations. When a second-order constraint C.2/ is
restricted to the truncated phase space Q�Trun, terms
containing second-order perturbations are disre-
garded, and the resulting combination of quadratic
terms in first-order perturbation with coefficients
containing background quantities, QC.2/, is no longer
a constraint. The truncated second-order scalar con-
straint QS2 is interpreted as the Hamiltonian that
generates the dynamics of gauge invariant first-
order perturbations. It has the form

QS2 D QS
.Q/
2 C QS.T

.1//
2 C QS.T

.2//
2 ;

which indicates that scalar and tensor modes evolve
independently of each other, where

QS.T /2 ŒN�D
N

2.2�/3

�

Z
d3k

�
4�

a3
jp.T /k j

2C
ak2

4�
jTkj

2

�
:

(39.43)

with � D 8�G. The two tensor modes behave iden-
tically, and we have denoted them collectively
by T . For pedagogical reasons, we only write down
the expressions for tensor perturbations. See [39.5,

86] for explicit expressions for scalar modes. In the
above equations p.T /k are the conjugate momenta of
Tk, with Poisson brackets

n
Tk; p

.T /
�k0

o
D .2�/3ı.k� k0/ :

Tensor perturbations, except for the constant factor
1=.2
p
�/ that provides the appropriate dimensions,

behave exactly as massless, free scalar fields (scalar
perturbations Qk behave as a scalar field subject to
a time dependent emergent potential). The (homo-
geneous) lapse function N indicates the time coor-
dinate one is using. For instance, N D 1 corresponds
to standard cosmic time t, N D a to conformal time
�, and N D a3=p.�/ to choosing the scalar field �
as a time variable, which turns out to be the natural
choice in the quantum theory.

To summarize, the phase space of physical inter-
est is the reduced, truncated phase space Q�Trun made of
elementsn

.a;Pa; �; p.�//I�
Qk;p

.Q/
k ;T .1/k ; p.T

.1//
k ;T .2/k ; p.T

.2//
k

	o
2 Q�Trun :

The homogenous degrees of freedom evolve with the
zeroth-order Hamiltonian. This evolution takes place
entirely in �hom, and is independent of perturbations,
reflecting the main approximation of the truncated the-
ory. The homogenous dynamical trajectory can then
be lifted to Q�Trun, providing a well-defined evolution
of first-order perturbations on the homogenous back-
ground. This evolution is specified by the Hamilto-
nian QS2.

39.3.2 Quantum Theory of Cosmological
Perturbations on a Quantum FLRW

Quantization of Q�Trunc
In this section, we pass to the quantum theory start-
ing from the reduced, truncated phase space Q�Trun. The
structure of the classical phase space Q�Trun D �hom� Q�1

suggests that in the quantum theory the total wave func-
tion � has the form

�.a;Tk; �/D �0.a; �/˝ .Tk; �/ : (39.44)

This product structure is maintained as long as the
test field approximation holds. Because back-reaction
is neglected, the background part �0 evolves inde-
pendently of perturbations, and the solutions for �0
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are the ones obtained in Sect. 39.2. When written in
terms of the relational time �, they satisfy the equation
Op.�/�0 ��i„@��0 D OH0�0, where the operator OH0 �p
� is obtained from expressions (39.3) and (39.11).

The remaining task is to lift this trajectory to the full
Hilbert space, by writing down the quantum theory for
 propagating on the quantum geometry specified by
�0. The evolution of will be specified by the operator
analogue of QS.T /2 , which generates the dynamics in the
classical phase space. In the classical theory QS.T /2 de-
pends not only on inhomogeneous degrees of freedoms,
but also on the homogeneous ones via the scale factor
a. Therefore, in the quantum theory the corresponding
operator will act on perturbations  as well as on �0.

Our goal is to generalize the theory of QFT in
curved spacetimes in which, on the one hand, quantum
fields propagate in an evolving classical FLRW spec-
ified by acl.�/ and, on the other hand, perturbations
are commonly quantized using the Heisenberg picture.
Therefore, to facilitate the comparison, we pass in this
section to the Heisenberg picture. In obtaining the evo-
lution equations for the operator OTk and its conjugated
momentum we will use � as internal time, because it
is the evolution variable that appears naturally in the
quantum theory, while standard cosmic or conformal
time are represented by operators. Internal time � cor-
responds to use the lapse function N D a3=p.�/ in the
expression (39.43). By choosing an appropriate factor
ordering to convert it to an operator, we have (as it is
common in quantum theory, we are not free of factor
ordering ambiguities)

@� OTk.�/D
i

„

h
OTk;
OQS.T /2

i
D 4�

�
Op�1
.�/˝ Op

.T /
k

	
I

@� Op
.T /
k .�/D

i

„

h
Op.T /k ; OQS.T /2

i

D�
k2

4�

�
Op�1=2
.�/
Oa4.�/Op�1=2

.�/
˝ OTk

	
:

(39.45)

These equations involve background operators as well
as perturbations. However, the test field approximation
allows us to trace over the background degrees of free-
dom. This can be done by taking expectation value with
respect to the background wave function �0 (in the
Heisenberg picture) obtained in the previous section

@� OTk D 4�
D
OH�1

0

E
Op.T /k ;

@� Op
.T /
k D�

k2

4�

D
OH�1=2

0 Oa4.�/ OH�1=2
0

E
OTk ; (39.46)

where background operators have been replaced by ex-
pectation values and, additionally, we have used the
evolution equation Op.�/�0 D OH0�0. The test field ap-
proximation ensures that we are not losing any infor-
mation when passing from (39.45) to (39.46). These
are the Heisenberg equations for perturbations, in which
the coefficients are given by expectation values of back-
ground operators in the quantum geometry specified
by �0. This is a quantum field theory of cosmo-
logical perturbation on a quantum FLRW universe.
Note that the above equation is exact, and not fur-
ther approximation has been made beyond the test field
approximation.

In this theory, spacetime geometry is not described
by a unique classical metric, it is rather character-
ized by a probability distribution �0 that contains the
unavoidable quantum fluctuations. The propagation of
perturbations is sensitive to those fluctuations. How-
ever, it is remarkable that those effects can be encoded
in a couple of expectation values of background opera-
tors: h OH�1

0 i and [39.4, 5]

h OH
�

1
2

0 Oa4.�/ OH
�

1
2

0 i :

Borrowing the analogy from [39.5], this is similar to
what happens in the propagation of light in a medium:
the electromagnetic waves interact in a complex way
with the atoms in the medium, but the net effect
of those interactions can be codified in a few pa-
rameters, such as the refractive index. Similarly, al-
though the final equations (39.46) depend in a sim-
ple way on the quantum geometry, it had been very
difficult to guess the precise moments of the quan-
tum geometry that are involved in the evolution of
perturbations.

We can now compare the above evolution equations
with the familiar quantum field theory of cosmological
perturbations on classical FLRW geometries, in which
the Heisenberg equations, when � is used as time, are
written in terms of the classical background quantities
a.�/ and p.�/ as

@� OTk D
4�

p.�/
Op.T /k I

@� Op
.T /
k D�

k2

4�

a.�/4

p.�/
OTk : (39.47)

Comparing with (39.46) we see that the QFT in a quan-
tum background �0 is indistinguishable from a QFT on
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a smooth FLRW metric

Qgab dxa dxb � dQs2

D�.Qp.�//
�2 Qa6.�/d�2C Qa.�/2 dx2 ;

(39.48)

where

.Qp.�//
�1 D h OH�1

0 i and Qa4 D

�
OH
�

1
2

0 Oa4.�/ OH
�

1
2

0

�

h OH�1
0 i

:

(39.49)

In terms of the more familiar conformal time used in
cosmology, we have dQs2 D Qa2. Q�/.�d Q�2C dx2/, with
d Q�D ŒQa2.�/�Qp�1

.�/
d�. This smooth metric captures all

the information of quantum geometry that is seen by
perturbations. Note that its components contain „ and
it does not satisfy the Einstein equation, not even the
LQC effective equations.

In terms of this smooth metric, we can write the
Heisenberg equations (39.46) as a second-order differ-
ential equation

OT 00k C 2
Qa0

Qa
OT 0k C k2 OTk D 0 ; (39.50)

where the prime now denotes derivative with respect
to Q�. This equation is mathematically equivalent to the
familiar formulation of QFT in classical FLRW space-
time, where all the effects of the quantum background
geometry have been encoded in a dressed, smooth met-
ric tensor Qgab. This unexpected mathematical analogy
highly simplifies the analysis, not only conceptually,
but also at the technical level. It allows to extend
well-established techniques from classical spacetimes
to define the physical Hilbert space and the appropriate
regularization and renormalization of composite opera-
tors on it (see [39.5, 86] for details of that construction).
These are the necessary tools to make sense of the mo-

mentum integrals appearing in, e.g. the Hamiltonian OQS2,
that so far were formal, and to regularize the expectation
value of the energy-momentum tensor in the physical
Hilbert space.

Criterion for Self-Consistency
The last step in the construction is to check whether the
underlaying approximation in our truncated theory, the
test field approximation, is satisfied throughout the evo-
lution. In our QFT in quantum spacetimes this question

translates to check whether the expectation value of the
stress-energy tensor can be neglected when compared to
the background one. However, in an homogeneous and
isotropic background a sufficient condition for this to be
satisfied is that energy density on scalar and tensor per-
turbations h O�. Q�/i be much smaller than the background
energy density h�0i at any time during dynamical phase
of interest [39.5]. It is evident that one can always find
states for perturbation for which that requirement is not
satisfied. Therefore, the relevant question is: is there
a sufficiently large subspace of the physical Hilbert
space for which the previous condition on the energy
density is satisfied? If the answer is in the affirmative
then one has a self-consistent approach in which test-
field approximation holds. This is a key question to
ensure self-consistency, and has to be answered when
this framework is applied to a concrete physical prob-
lem, as we do in the next section.

39.3.3 Comments

The previous framework is suitable to face interesting
conceptual questions arising in quantum gravity. For
instance, when does standard QFT in curved space-
times become a good approximation? Is it safe to use
standard QFT during inflation? This question can be
answered straightforwardly because both theories have
been written in the same form. From (39.50) it is clear
that the standard QFT is recovered in the regime in
which the quantum aspects of the geometry can be
neglected, and Sect. 39.2.3 provided the conditions un-
der which this happens. When the background energy
density h�0i is below one thousandth of �P`, quantum
corrections become negligible and General Relativity
becomes an excellent approximation. This is the regime
in which standard QFT arises from the more fundamen-
tal framework presented in this section. Therefore, in
the inflationary era where h�0i . 10�10�P`, we expect
the familiar QFT to be an excellent approximation.

By construction, this framework encompasses the
Planck regime and is suitable to discuss trans-Planckian
issues and distinguish real problems from apparent
ones. In LQG there is a priori no impediment for trans-
Planckian modes to exist. It may seem at first that the
existence of a minimum area may preclude their exis-
tence, but quantum geometry is subtle and, for instance,
there is no minimum value for volume or length. In ad-
dition, if we pay attention to the construction of the
background quantum theory, trans-Planckian quantities
appear there without causing problems: the value of
the momentum p.�/ of the background scalar field �
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is generally large in Planck units. However, the back-
ground energy density is bounded above by a fraction
of the Planck energy density. Something similar hap-
pens in our quantum field theory. There trans-Planckian
modes are admitted as long as the total energy den-

sity in perturbations remains small as compared to the
background. That is the real trans-Planckian problem,
which becomes a nontrivial issue in the deep Planck
regime where the volume of the universe acquires its
minimum value.

39.4 LQC Extension of the Inflationary Scenario

The previous sections have summarized the physical
ideas and mathematical tools necessary to undertake the
quantization of the sector of General Relativity contain-
ing the symmetries of cosmological spacetimes and the
study of cosmic perturbation thereon. The goal of this
section is to apply those techniques to extend the cur-
rent picture of the evolution of our universe to include
the Planck regime.

The cosmological �CDM (Lambda-cold dark mat-
ter) model with an early phase of inflation contains
conceptual limitations that are dictated by the domain
of applicability of the physical theories in which it
is based: General Relativity and Quantum Field The-
ory. One needs a theory of quantum gravity to extend
the model to include physics at the Planck era. Sec-
tion 39.4.1 summarizes how, by introducing a scalar
field with suitable potential, LQC provides a space-
time in which the big-bang singularity is resolved by
the quantum effects of gravity, and in which an infla-
tionary phase arises almost unavoidably at later times.
In Sect. 39.4.1, it is shown how the evolution of cos-
mological perturbation can be extended to include the
preinflationary spacetimes provided by LQC. In this
sense, the current scenario for the evolution of our
universe and the genesis of cosmic inhomogeneities
is extended all the way to the big bounce [39.87].
This extension goes beyond the conceptual level, as
it appears a narrow window in which the effects of
Planck scale physics could be imprinted in the CMB
and galaxy distributions, and concrete ideas connecting
those effects with forthcoming observations have been
proposed.

39.4.1 Inflation in LQC

As we have mentioned in previous sections, after the
bounce there is a period of superinflation where PH > 0
until the density reaches half its value at the bounce. It
was first hoped that this would be enough to account
for the necessary number of e-foldings, but this period
turns out to be too short when there is no potential for

the scalar field. Thus, it is clear that one needs such
a potential to compare the LQC predictions with the
inflationary paradigm. The simplest case one can con-
sider is quadratic potential V.�/D .1=2/m2�2, that has
been extensively studied in the literature and is compat-
ible with the 7-years WMAP observations [39.88]. The
existence of the bounce solves one of the conceptual
challenges that the standard scenario, based on the GR
dynamics poses. That is, in the GR dynamics, there is
always a past singularity, even in the presence of eternal
inflation [39.6]. The standard formalism is therefore,
conceptually incomplete.

The question that we shall pose in this part is the
following: Can we estimate how probable it is to have
enough inflation for the cosmological background? Let
us be more precise with the question. We know that ev-
ery effective trajectory undergoes a bounce, and some
of them will experience enough e-foldings and will
be of phenomenological relevance. Rather amazingly,
WMAP has provided us with a small observational win-
dow for the scalar field at the onset of inflation [39.88,
89], written in terms of a reference time tk

�

for which
a reference mode k

�

used by WMAP exited the Hubble
radius in the early universe. With an 4:5% accuracy, the
data is, in Planck units [39.88, 89]

�.tk
�

/D˙3:15 ;

P�.tk
�

/D�1:98�10�7 ;

H.tk
�

/D 7:83�10�6 :

We can now pose the question more precisely. From
all the solutions S to the effective equations in LQC,
how many of them pass through the allowed interval?
This poses yet another question. How are we going to
count trajectories? Is there a canonical way of measur-
ing them? A proposal to answer this question was put
forward long ago [39.90, 91] based on the idea of using
the Liouville measure on phase space S, that is invari-
ant under time evolution. The idea then is to compute
the volume of Swmap, those solutions that pass through
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the WMAP window, relative to the total volume of S

ProbD
Vol.Swmap/

Vol.S/
: (39.51)

In order to compute this probability, one has to be care-
ful with the way one measures all possible trajectories
(for a discussion see [39.92]).

Let us now rephrase the question that we initially
posed at the beginning of this part: What is the rela-
tive number of solutions QSwmap that pass through the
observational WMAP window, from the total number
of solutions QS at the bounce? As explained before, the
probability is computed using formula (39.51), where
the volume is now obtained by integrating a uniform
distribution (as a function of �). The key to comput-
ing the probability is then a detailed knowledge of
the global dynamics, for all possible values �B of the
scalar field at the bounce. Extensive numerical evolu-
tions have shown that almost all trajectories fall within
the observational window. It is only for the small win-
dow �5:46< �B < 0:934 from the total range of �B 2

Œ�7:44�105; 7:44�105� that the future dynamics lies
outside the WMAP window [39.89]. For this interval,
the probability that the dynamics falls outside of the
observational window is less than 3�10�6. To under-
stand this, one can see the LQC dynamics as shown
in Fig. 39.1, where one considers a uniform distribu-
tion at the bounce and follows the dynamics. As can
be easily seen, most trajectories funnel into a very
small region that is precisely where the WMAP win-
dow is. Just before the onset of inflation the density
is approximately 10�11 smaller than the density at the
bounce. At that density the allowed WMAP region is
only 4% of the total allowed range in � [39.89]. Thus,
as seen in the figure, almost all of the trajectories at the
Planck scale fall into a very small region at the onset of
inflation [39.64].

One should also note that this attractor feature of the
global dynamics explains why the probability is much
smaller when computed in General Relativity at the on-
set of inflation [39.64, 93].

Let us summarize. In LQC it is natural to consider
the bounce as the point where to compute probability of
inflation. The global dynamics is such that most of the
trajectories get funneled into the small WMAP window
at the onset of inflation where the density is 11 orders
of magnitude smaller than the density at the bounce.
Thus, one can conclude that having enough inflation
is generic in LQC for the homogeneous and isotropic
background.

φ

φ·

Fig. 39.1 In this figure we plot the exterior, critical density
surface �max, and a surface of constant density �onset�

�max (not drawn to scale, of course) on the . P�; �/ plane.
Trajectories with a uniform distribution at the LQC bounce
ellipsoid are plotted. Note that trajectories for which there
is enough inflation get funneled into a small region in the
smaller �onset ellipse. Near this surface, the GR and LQC
dynamics almost coincide

39.4.2 Preinflationary Evolution
of Cosmic Perturbations

In this section, we apply the quantum theory of cosmo-
logical perturbations on the quantum, preinflationary
spacetime to extend the study of cosmic inhomo-
geneities all the way back to the Planck era. In addition
to the conceptual completion provided by the inclu-
sion of Planck scale physics, the resulting framework
opens an exciting avenue to extend observations into
the Planck regime. Before entering into technical de-
tails, we summarize here the physical idea behind this
possibility.

It is known since the seminal work by Parker in
the 1960s [39.94–96], that a dynamical expansion of
the universe is able to excite quanta, or particles, of
test fields out from an initially vacuum state. This phe-
nomenon of particle creation is one of the main features
of QFT in curved spacetimes, and plays a key role
in black hole thermal radiance and in the generation
of cosmic inhomogeneities during inflation. If k repre-
sents a comoving Fourier mode of a test scalar field in
FLRW, excitations on that mode may be created if the
energy scale provided by the spacetime scalar curvature
is comparable to the physical wavelength 	D 2�a=k at
some time during the evolution. The amount of quanta
created during a period of expansion in each mode de-
pends on the details of the scale factor a.t/ as a function
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of time. Let us focus on the finite range of momenta that
is accessible in cosmological observations. The previ-
ous argument tell us that, even if those modes are born
in the ground state at time of the bounce, particles may
be created during the evolution. The resulting state, e.g.
at the onset of inflation, would then depart from the
vacuum state at that time as a consequence of the non-
trivial evolution, and the spectrum of particles created
will carry information about the preinflationary space-
time geometry.

Furthermore, it has been shown in the context of
inflation that [39.97–101] the predictions for the CMB
and the distribution of galaxies are sensitive to the de-
tails of the state describing perturbations at the onset of
inflation, and concrete observation have been proposed
that could reveal information about that state [39.102–
104]. In other words, those observations may reveal in-
formation about the propagation of perturbations before
inflation, when quantum gravity corrections dominate.

In the inflationary scenario observable modes have
wavelength much smaller than the radius of curvature
at the onset of inflation (in the cosmological argot,
modes are deeply inside the Hubble radius). The some-
times implicit assumption in inflationary physics is that,
whatever happened before inflation, wavelength of in-
terest were much smaller than the radius of curvature
at any time before inflation. Under this assumption,
preinflationary dynamics for those modes is indistin-
guishable from an evolution in Minkowski spacetime,
and the use of a vacuum state is justified. The rele-
vant question is then: is this assumption accurate in the
preinflationary background provided by LQC? More
explicitly, consider modes with physical wavelength
smaller than the radius of curvature at the beginning
of inflation, and propagate them backward in time un-
til the bounce. Do those wavelength generically remain
smaller than the radius of curvature of the dressed met-
ric Qgab during the entire preinflationary evolution? The
detailed analysis of [39.86, 87] shows that the answer
to this question is in the negative (Fig. 39.2). While
short enough wavelengths (large enough momenta) re-
main always smaller that the curvature radius, there are
modes which at some time during the evolution have
physical size comparable to it. The evolution of those
modes is sensitive to the spacetime curvature and the
quantum state at the onset of inflation will depart from
the vacuum.

Notice that in LQC the maximum value of the cur-
vature takes place at the bounce time and this value
is universal, fixed by the quantum geometry and inde-
pendent of the form of the scalar field potential. If we
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Fig. 39.2 This plot shows: (i) The scalar curvature of the effec-
tive geometry (red solid line), (ii) The physical momentum squared
.k=Qa.t//2, for kD 6 (dotted black line), and kD 10 (dashed black
line), and iii) .kR=Qa.t//2, where kR is the comoving scale associ-
ated with the maximum value of the curvature (dotted-dashed green
line); as a function of cosmic time t. By convention, we choose
the scale factor of the effective geometry to be one at the bounce,
Qa.0/D 1. Both axes are in Planck units. Curvature attains the max-
imum value at the bounce and decreases very fast after it. Modes
with momentum k larger than the scale of curvature at the bounce,
k > kR, have physical momentum larger than the curvature during
the entire evolution (dashed black line). Those modes do not feel
the curvature and evolve as if they were in Minkowski spacetime.
On the other hand, modes that at the bounce have physical momen-
tum smaller that the curvature, k < kR, quickly evolve to become of
the same order as the curvature scale (black dotted line), and there-
fore their evolution will differ considerably from that in flat space.
At later times those modes also become two energetic to feel the
spacetime curvature

call kR the comoving scale associated with this maxi-
mum value of the curvature, we expect excitations with
k . kR to be created during the evolution, concretely
in the Planck regime near the bounce. On the other
hand, for modes with k� kR preinflationary dynamics
has negligible effect. From this qualitative discussion
we may expect observable effects from Planck scale
physics in CMB and large scale structure if observa-
tions are accessible to modes k around or smaller than
the universal scale kR provided by LQC.

In the remainder of this section, we provide precise
computations that support this qualitative physical pic-
ture. We start by specifying the initial condition for both
background and perturbations at the bounce. We then
evolve those perturbations until the end of slow-roll
inflation, compute the resulting quantum state and the
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power spectrum for scalar and tensor perturbations, and
study under what set of initial conditions quantum grav-
ity corrections may be sizeable for observable modes.

Initial Conditions
In the standard inflationary paradigm one specifies ini-
tial data for the background and perturbations at the
onset of slow-roll. From a fundamental point of view, it
would be more satisfactory to impose initial conditions
at the beginning rather than at an intermediate time in
the evolution of the universe. In classical cosmology the
beginning is the big-bang singularity, and it is not pos-
sible to unambiguously defined initial condition at that
time. In LQC the big bang is replaced by a quantum
bounce where physical quantities do not blow up, pro-
viding a preferred time to specify initial data.

In the test field approximation, the total wave func-
tion naturally decomposes as a product � D �0˝ ,
and this form holds as long as back-reaction of per-
turbations remains negligible. We need therefore to
specify initial data for both, �0 and  .

Background. For computational purposes, it is con-
venient to make the following further simplification on
the background dynamics. As described in Sect. 39.2.1,
the background wave function �0 can be chosen to
be highly peaked along the entire evolution, including
the deep Planck regime. The peak of that wave func-
tion describes an effective geometry characterized by
the scale factor Na.�/D hOa.�/i, which satisfies the ef-
fective (39.28). Because the dispersion of �0 remains
very small during evolution, it is convenient to ignore
quantum fluctuations in our computations, by making
a mean field approximation in which the expectation
values of powers of background operators, such as Oa
and OH0, are replaced by the same powers of their ex-
pectation. For instance, in the evolution of quantum
inhomogeneities given by (39.50), this is equivalent to
replace Qa� Na. At the practical level this is an excellent
approximation, e.g. numerical errors in simulations turn
out to be larger than those introduced by the mean field
approximation.

In Sect. 39.4.1 we described the effective preinfla-
tionary background arising in LQC for the representa-
tive example of a quadratic potential. In that effective
geometry initial data is entirely specified by the value
of the scalar field at the bounce, �B, and, unless �B lies
in a small region R around �B D 0, the evolution generi-
cally finds an inflationary phase at late times compatible
with WMAP observations [39.88]. Therefore, we will
choose �0 to be a state sharply peaked in an effective

trajectory specified by a value of �B that lies outside
the region R.

The effect of choosing different values of �B can
be understood using the effective equations (39.28) to-
gether with numerical simulations. On the one hand,
immediately after the bounce the background evolu-
tion is entirely dominated by quantum gravity effects,
and it is largely insensitive to the concrete value of �B.
Except for very small momenta k, the times at which
perturbations Qk and Tk feel the spacetime curvature is
precisely just after the bounce (Fig. 39.2). Therefore,
the features that those modes acquire during the evo-
lution turn out to be quite insensitive to the value of
�B. On the other hand, different values of �B do modify
significantly the spacetime geometry at later times. The
larger �B, the longer it takes to reach the end of slow-
roll inflation, or, equivalently, the larger the amount of
expansion of the universe between the bounce and the
end of slow-roll. A larger amount of expansion implies
that observable modes had larger physical momentum
at the time of the bounce. Because by convention we
fix the scale factor at the bounce NaB D 1 (rather than
Natoday D 1), the effect of choosing different values of �B

essentially translates into a change in the range of co-
moving momenta k relevant for observations, moving to
larger k’s as �B increases. If Œkmin, kmax � 2000kmin� is
the window covered by WMAP, we have, for instance,
kmin � 2:8�10�3 for �B D 1, kmin � 0:14 for �B D 1:1
and kmin � 8:2 for �B D 1:2. The physical momentum
k=Natoday of modes observed today is of course the same
in all cases, but the convention NaB D 1 makes that differ-
ent amount of expansion (i. e., different �B) translates
into different comoving k for those modes.

Perturbations. As already occurs in classical space-
times, quantum fields in quantum cosmological back-
grounds does not admit a preferred state that we can call
the vacuum. In backgrounds with large enough number
of isometries, e.g. Minkowski or de Sitter spacetime,
a preferred ground state can be singled out by imposing
symmetry in combination with regularity conditions. In
our quantum FLRW we follow the same criteria, and
look for quantum states invariant under the isometries
of the background, spatial translations and rotations,
with appropriate ultraviolet behavior. That selects the
family of fourth adiabatic order vacua (see [39.5, 86]
for further details). As opposed to Poincare or de Sitter
invariance, symmetry under spatial translations and ro-
tations is not restrictive enough to select a unique state,
but it substantially narrows down the possibilities. This
is the set of initial data we choose for perturbations.
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The next subsection will summarize the time evolution
of different choices of initial state within the family of
fourth-order adiabatic vacua, and will show that quanti-
ties of interest such as the power spectrum of observable
modes, are all very similar.

Physically, the choice of a fourth-order adiabatic
vacuum at the time of the bounce corresponds to assume
initial quantum homogeneity. One is requiring that the
portion of the universe corresponding to our observable
patch at the time of the bounce is as homogeneous as
quantum mechanics allows, i. e., only vacuum fluctu-
ation of inhomogeneities are present. This is a strong
assumption. The motivation comes from [39.86, 87]:

� In a universe containing a phase of inflation lasting
at least for 60 e-folds, the physical size of observ-
able universe was very small at the bounce time,
. 10`Pl, for the solutions of interest.

� The quantum degeneracy force responsible of the
bounce has a diluting effect that may produce ho-
mogeneity at scales of the order of the Planck length
at the bounce. This is the new ingredient that LQC
provides at the time of the bounce to produce homo-
geneity at Planck scale distances.

� There is a precise sense in which the assumption of
quantum homogeneity captures a quantum version
of the Weyl curvature hypothesis [39.105].

Power Spectrum
Our task is to use the equations of the quantum the-
ory summarized in Sect. 39.3.2 to compute the state of
cosmic inhomogeneities at the end of the inflationary
epoch, by starting from the initial condition specified
above for background and perturbations at the time of
the bounce.

Due to computational limitations, it is convenient to
restrict numerical simulations to backgrounds for which
the bounce is kinetic energy dominated, where it has
been shown that quantum fluctuations of �0 remain
very small along the entire evolution. Several numerical
simulations have been carried out for effective back-
grounds with initial conditions �B 2 .0:93;1:5/, which
turns out to be the most interesting range [39.86]. It is
not expected that new features appear for larger values
of �B, but computational limitations make difficult to
check it explicitly.

For perturbations, simulations have been carried out
using different choices of fourth-order adiabatic vacua,
and the results are all very similar. Figures 39.3 and 39.4
are obtained by using the obvious or standard fourth-
order vacuum at the bounce time Q�B (see [39.5] for
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Fig. 39.3 Number nk of scalar excitations/particles with comoving
momentum k in the interval Œk; kC dk�, per comoving unit vol-
ume contained in the evolved state as compared to the BD vacuum
during inflation. The plot is computed for �B D 1:15 and for the ob-
vious fourth-order adiabatic vacuum at the bounce. The horizontal
axis is in Planck units

precise definition), and they show the relevant informa-
tion of the evolved state.

First of all, to gain intuition on the effect of the
preinflationary evolution, we compare the evolved state
with the natural vacuum during inflation, the so-called
Bunch–Davies (BD) vacuum. Figure 39.3 shows the
number nk of excitations/particles with momentum k
per comoving unit volume in space and momentum,
contained in the evolved state relative to the BD vacuum
during inflation. The plot is computed for �B D 1:15
but, as explained in Sect. 39.4.2, Initial Conditions, it
is not altered by choosing a different value inside our
family. Changing the value of �B has essentially the
effect of shifting the location of the observationally rel-
evant window Œkmin; kmax � 2000kmin� in the horizontal
axes of the plot, which moves steadily to the right as
�B increases. Figure 39.3 is in good agreement with
the qualitative arguments presented at the beginning
of Sect. 39.4.2. Namely, the preinflationary evolution
affects modes with low k, for which a considerable
amount of excitations have been created. On the con-
trary, modes with large k remain in the ground state
at the onset of inflation. As it was expected, for k >
kR � 7:7 (recall that kR is the comoving scale associ-
ated with the scalar curvature of the effective metric
at the bounce), the number of BD particles contained
in the evolved state is very close to zero. Therefore,
if kmin & kR, that corresponds to �B & 1:2, the evolved
state is indistinguishable from the BD vacuum for ob-
servable modes. For �B . 1:2 the state at the onset
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Fig. 39.4 Ratio of the LQC power
spectrum for scalar perturbation to
the standard inflationary power spec-
trum. Crosses show the ratio for dif-
ferent values of k. The LQC power
spectrum oscillates rapidly for small
k. The solid curve averages over bins
of width �kD 0:5. The inset shows
a zoom-in of the interesting region
around kD 9
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Fig. 39.5 Ratio of the energy density
of scalar perturbation to the back-
ground energy density as a function
of cosmic time. The initial conditions
were chosen as �B D 1:23 for the
background, and the obvious fourth-
order adiabatic vacuum at the bounce
for perturbations. Slow-roll inflation
starts about 3�105 Planck seconds
after the bounce. During the entire
evolution the ratio remains small.
This example constitutes a self-
consistent extension of the evolution
of cosmic inhomogeneities to include
the Planck era

of inflation differs significantly from the vacuum for
modes in the interesting window and, as analyzed in
detail in [39.97–101], those deviations have an im-
portant effect on the predictions of inflation for the
spectrum of cosmic inhomogeneities, specially regard-
ing non-Gaussianity. There exist concrete proposals for
observables in the CMB [39.102, 104] and in the distri-
bution of galaxies [39.102, 103] that should be sensitive
to the effects of the created particles.

A quantity of direct observational interest is the
power spectrum of tensor and scalar perturbations,
PT .k/ and PR.k/ (see Chap. 30 for definitions), which
are directly related to CMB observables. Figure 39.4
shows the relation between the LQC power spectrum
computed with the evolved state and the standard infla-

tionary power spectrum that assumes the BD-vacuum,
for scalar perturbations. The conclusions are similar to
the ones obtained from Fig. 39.3, namely for �B & 1:2
the power spectrum of observable modes is indistin-
guishable from the standard inflationary predictions.
For smaller values of �B deviations become sizable
for modes of observational interest. For instance, for
�B D 1:15 we have kmin � 1 and deviations from stan-
dard prediction will appear for modes with `. 30 in
the WMAP angular decomposition. These deviations
are inside current uncertainties. However, the fact that
the state for perturbations differs from the BD-vacuum
opens a window to observe those effects.

The analogous plot for tensor modes has the same
form as Fig. 39.4, and the conclusions are also the
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same [39.86]. In particular, there are no important cor-
rections for the tensor-to-scalar ratio, although the infla-
tionary consistency relation, which relates the tensor-
to-scalar-ratio and the tensor spectral index, is modi-
fied [39.86].

Self-Consistency
The last step is to check whether there exist a big
enough set of physical states  on the Hilbert space
for which the truncation underlying our quantum the-
ory, the test field approximation, holds during the entire
evolution. This is an intricate question because:

i) It requires a detailed analytical control of the nec-
essary regularization on states and composite oper-
ators on our Hilbert space.

ii) Numerical implementation of those techniques are
necessary to check self-consistency at any time
during the evolution, dealing with the subtleties
of having numerical control on the subtraction of
quantities that tend rapidly to infinity, during a pe-
riod that covers around 11 orders of magnitude in
energy density.

Section 39.3.2 summarized the necessary tools to
check self-consistency and pointed out that a sufficient
condition is that the energy density in perturbations h O�i

be negligible compared to the background h O�0i at any
time during the evolution. Figure 39.5 shows the re-
sult of the numerical evolution of the energy density
for scalar perturbations (analogous results hold for ten-
sor perturbations). The plot shows the ratio h O�Qi=h O�0i

for a background corresponding to � D 1:23 and the
obvious fourth adiabatic order vacuum specified at the
bounce. This ratio remains small for the entire evolu-
tion, including the Planck regime. The initial condition
� D 1:23 corresponds to kmin � 30, therefore the num-
ber of excitations over the BD state on observable
modes is negligible (Fig. 39.3) for this background. Ad-
ditionally, there exist an analytical argument [39.86]
ensuring that, given a state for perturbations for which
back-reaction is negligible, there exist a well-defined
neighborhood of that state with the same property. Each
of those provide a state at the beginning of slow-roll
indistinguishable from the BD vacuum. They provide
therefore, viable extensions of the standard inflation-
ary scenario that includes Planck scale physics [39.86,
87].

For the range �B < 1:2 there are only upper bounds
for h O�Qi which are far from being optimal. At the
present time there are no explicit computations for
which the test field approximation is satisfied for �B in
that window, and additional work is required to estab-
lish the self-consistency of our truncation scheme.

39.5 Conclusions

One of the most pressing questions a quantum theory
of gravity has pertains to both theoretical and obser-
vational issues in cosmology. In the theoretical front
the standard model is based on General Relativity that
possesses an initial singularity, a signal that the theory
breaks down at some point. On the observational front,
the CMB spectrum poses very stringent conditions for
any theory of the early universe. One of such scenar-
ios is given by the inflationary paradigm, that explains
very successfully the detailed structure of the inhomo-
geneities seen in the CMB as an imprint of quantum
fluctuations of certain fields just before the inflationary
phase. Can one have a formalism that provides a satis-
factory, nonsingular description both at the Planck scale
and at the onset of inflation? Interestingly, loop quan-
tum cosmology allows one to answer both questions in
the affirmative.

As we have described in this chapter, when one
considers the homogeneous degrees of freedom, the so-

called background geometry, the formalism provides
precise singularity resolution, replacing the classical
big bang with a big bounce. The dynamics of semiclas-
sical states is very well described by an effective theory
that captures the leading quantum gravity effects and
allows one to describe the spacetime geometry in terms
of an effective background metric.

The inflationary scenario is very powerful to ex-
plain in great detail many features of the observed CMB
spectrum. It is however, incomplete in various direc-
tions. In particular, it is based on General Relativity
where the spacetimes under consideration are past in-
complete, that is, singular. As we have described in
detail, one can indeed extend the scenario back in time
to the Planck scale. For that one needs two new in-
gredients. The first one is a formalism that allows one
to treat quantum perturbations of the spacetime met-
ric propagating not on a classical spacetime, but rather
on a quantum spacetime. The second ingredient in-
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volves consistency conditions that ensure us that one
can evolve the quantum perturbations back to the Planck
scale without violating the approximations that yield
validity to the formalism. As we have seen one can
indeed consistently consider the extension of the infla-
tionary scenario.

Perhaps the most pressing question is whether this
extension to the quantum bounce provides a window for

Planck scale physics to be observed in the CMB. As we
have described, the sector of the parameter space that
has been explored provides predictions that are fully
consistent with the standard inflationary scenario, under
current observations. Further explorations are needed to
decide whether the scenario provided by LQC is both
consistent in the full parameter space and provides us
with distinct testable predictions.
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Aristotelian spacetime 74
Arnowitt, Deser, Misner (ADM)

193, 252, 305, 381, 451, 762
arrow of time 185, 256
Ashtekar
– –Barbero connection 359
– formulation of general relativity

754
– –Lewandowski representation

767
– new variables 717
– variables 354
astronomy
– gravitational 557
astrophysical system 624
asymmetry parameter 732
asymptotic
– AdS (AAdS) 382, 385
– diffeomorphisms 387
– energy 398
– exterior gluing 316
– flat 364
– flat end 369
– Killing field 388
– local AdS (AlAdS) 382
– predictability 421
– region 354
– safety 723
– spacetime 385
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– spacetime with matter 389
– structure 382
– symmetry 391
– symmetry group 356
– velocity term dominated (AVTD)

445
Atacama Cosmology Telescope

(ACT) 705
atomic clock 65
atoms of spacetime 213
attractor solution 679, 680, 691
Avogadro number 229
axially symmetric metric 368
axiomatic method 72
axion force 748

B

baby universe 728, 729
background
– field method 714
– independence 784, 788
– solution 679
– universe 698
Bañados-Teitelboim–Zanelli (BTZ)

black hole 404
Barbero–Immirzi parameter 359,

763, 790
Bargmann theorem 266
Bargmann–Wigner
– equation 275
– field 274
barotropic fluid 663
baryon number nonconservation

190
Bayes
– factor 598
– inference 597
– theorem 597, 599, 604
beam pattern function 592, 593
BEIDOU 509
Bekenstein–Hawking
– entropy 713
– temperature 189
Belinski, Khalatnikov, Lifshitz

(BKL)
– conjecture 445
– map 455
– parameter u 457

BF (background field)
– spin foam 795
– spin foam, interpretation of labels

796
– theory 793
Bianchi identities 334
Bianchi IX 445
Bianchi type-I universe 641, 642,

645, 652
Bianchi types 441
big bang 439, 626, 636, 644
– epoch 744
– nucleosynthesis (BBN) 700
– singularity 185, 662, 744
big bounce 192
big crunch 191, 194
billiards 458
binary black hole (BNH) 572, 592,

602
binary neutron star (BNS) 572,

581, 592, 593, 600, 601, 603, 610
black hole 409
– bumpy 606
– complementarity 190
– inner boundaries 365
– Kerr 603
– radiation 188
– temperature 188
blackbody
– radiation 30
– spectrum 702
block universe 91, 103, 105, 244
Boltzmann’s H-theorem 256
Bolyai 72
Bondi k-factor 42
boost 48, 269

Borel, Émile 33
Born, Max 30, 34
Born–Oppenheimer 195
bounce law 453
bounces in minisuperspace 443
bouncing cosmology 749
boundary
– conditions 385, 393
– data 753
– Hilbert space 788
– observables 404
– state 753
– transition amplitudes 755
– unitarity 405

Bowen–York initial data 359
Bradley 8, 19
brain processes 258
brane 747
– collision 749
– Dirichlet 748
– -gas cosmology 749
– interaction 748
– tension 690
– -world cosmology 748
– -world inflationary universe 676
Brans–Dicke theory 470, 593–595
breathing mode 592, 593
Breitenlohner–Freedman (BF) bound

388
Bridgman 96
broken symmetry 250
Brown–York charge 392
Bucherer, Alfred Heinrich 21, 30
bulk 753
– viscosity 629–638, 640, 642, 646
bumpy black hole 606
Bunch–Davies (BD) 833
– vacuum state 683

C

c2 formalism 466
canonical
– quantization 324
– quantum gravity 716
Cartan 76, 80
Cartesian coordinates 4, 5
Castelnuovo, Guido 34
Cauchy
– horizon 308
– problem 341
– surface 307, 430
causal
– gravity 723
– structure 216
– theory of time 108
causal dynamical triangulation

(CDT) 715, 723, 729
– higher dimensions 730
causality 17, 101
– violation 416
CDT building blocks 732
cellular decomposition 754
center-of-momentum frame 21
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central extension
– central charge 403
chaos 446
chaotic inflation 677
Chaplygin gas 634, 636
character group 272
charge parity low-energy antiproton

ring (CPLEAR) 471
Chern–Simons theory 596
chirp mass 607
Christoffel
– connection 202
– symbols 176, 179, 334
chronology protection 260
classical
– electrodynamics 165, 170, 181
– electron radius 166, 172
– limit 786
– mechanics 4
Clifford 82
clock 95, 751
– atomic 65
– -comparison tests of Lorentz

symmetry 501
– hypothesis 53
closed
– string 745
– time-like curves 185
– time-like lines 261
coarse graining 256
coefficient of anholonomy 199
coframe 762
coherent state 803
coisotropic submanifold 347
cold dark matter (CDM) 630
Colella, Overhauser, Werner (COW)

711
collapse of the wave function 192
collision
– elastic 22
– inelastic 22
– plastic 21
comovil wave number 683
comoving proper time 439
compact binary coalescence 591
complete Riemannian manifold 365
composition of motions
– relativistic 16
Compton 21
– effect 22
– wavelength 23

cone
– null 79
configuration space
– extended 752
conformal
– anomaly 394, 395, 403
– covariance 312
– diagram 440
– dimension 404
– field theory (CFT) 381, 720
– flat data 356
– flat metrics 368
– frame 384
– frame, defining function 385
– Killing field 388
– method 310
– symmetry 745
– thin sandwich (CTS) 316
– thin sandwich (CTS) method 315
– transformation 387, 404
congruence of worldlines 101
conjugate points 413
connected sum gluing 317
conservation
– of energy 21
– of momentum 21
conserved
– energy 247
– quantity 327
constant
– acceleration 54
– cosmological 325
– curvature 336
– mean curvature (CMC) 311
– spinor 375
constrained Hamiltonian system

323, 324
constrained system 345
constraint 341
– diffeomorphism 341, 397, 716
– equation 442
– first class 346
– primary 346
– secondary 346
– simplicity 794
– surface 345
continuity equation 661
continuous medium 122, 129
continuous wave (CW) 579
contortion tensor 201, 205
contravariant tensor 324

conventionality of simultaneity 91,
103, 107, 112

coordinate
– Cartesian 4, 5
– Gullstrand–Painlevé 373
– harmonic 308
– ignorable 80
– Kruskal 186, 187
– Riemann normal 219
– Rindler 176
– singularity 410
– system, inertial 46
– time 158, 514, 517
Copernican system 149
corpuscular model 8
correlator in quantum gravity 728
cosmic
– background explorer (COBE)

660, 702
– background temperature 188
– distance ladder 591, 607, 608
– microwave radiation 630
– rays 249, 502
– space 233
– time 87
– triangle 700
cosmic censorship 409, 418, 420,

421, 441
– strong 421
– weak 421
cosmic microwave background

(CMB) 608, 660, 697, 698, 701,
809

– radiation (CMBR) 86, 88, 235,
495

cosmological
– horizon 666
– metric 623
– model 697
– principle 673
– redshift 658
– spacetime 437
cosmological constant 85, 215,

325, 620, 632, 634, 642, 663, 697,
755

– problem 257
cosmology 620
– bouncing 749
– cyclic 749
– decaying vacuum 689
– local 87
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– loop quantum (LQC) 809
– relativistic 85
– standard model 702
– string 743, 745
– string-gas 749
Coulomb field 166, 179
Coulomb four-momentum 169
covariance 80
– principle of 81
covariant
– derivative 332
– quantum gravity 713
– tensor 324
CP (charge, parity) problem in

quantum gravity 354
CPT (charge, parity, time) 195
– symmetry 486
creation of particles 22
critical density 630, 638
critical point 728
crystallizing block universe (CBU)

259, 261
current dipole 560
curvaton field 674
curvature 63
– blow-up singularity 439
– caused by matter 328
– constant 336, 337
– extrinsic 333
– Gaussian 333
– of rays of light 157
– of spacetime 69, 328
– perturbation 683, 686
– Ricci 335
– scalar 335
– sectional 334
– singularity 410
– spacetime 152, 744
– tensor 77, 83, 201, 217
curved spacetime 156
curved worldline 148
cyclic cosmology 749

D

d’Alembertian 51, see wave
operator

– operator 16, 19
Darboux, Gaston 29

dark energy 88, 417, 591, 606–609,
630, 634, 697

dark fluid 634, 637
dark matter 630, 638, 652, 664,

697, 743
dark sector 634, 636
Davies–Unruh temperature 214
de Sitter
– metric 624
– spacetime 87, 226, 663
de Sitter, Willem 153
De Witt metric 337
decaying vacuum
– cosmology 689
– energy 644
deceleration parameter 623, 631,

637–639, 659, 688
decoherence 189, 190, 192, 194,

195
decomposition
– cellular 754
deformed worldtube 149
degeneracy problem 634
Degree Angular Scale Interferometer

(DASI) 705
degrees of freedom 224
delayed choice experiment 259
density
– gravitational 622
– parameter 630, 652, 664
– wave 668
derivative
– coupling 309
– covariant 332
– functional 217
Descartes 6, 8
detector
– uniformly accelerated 190
determined data 310
determinism 104
diffeomorphism
– constraint 341, 397, 716
– invariance 221
– transformation 487
differential form integral 796
differential microwave radiometer

(DMR) 702
diffuse infrared background

experiment (DIRBE) 702
dilaton force 748

dimension
– conformal 404
dipolar emission 595, 596
Dirac algebra 764
Dirac–Bergmann theory 324
direction of time 256, 259
Dirichlet brane 748
discrete
– area 755
– volume 755
discreteness 756
dislocalization of superposition

189, 192
displacement vector 49
distance
– radar 41
distant parallelism condition 204
distribution of galaxies 702
divergence 631
Doppler effect 19, 520
Drude, Paul 28
dual cell 796
– complex 791, 795
duality simmetry 745
duration 100
dust 662
– collapse, homogeneous 420
– collapse, inhomogeneous 422
– -dominated era 668
Dvali–Gabadadze-Porrati model

593
dynamical
– horizon (DH) 541
– spacetime 323
– system 679
– triangulation (DT) 727
– variable 80
dynamics of the universe 698

E

earth oblateness 515
earth-centered inertial (ECI) frame

513
earth-centered, locally inertial (ECI)

516
earth-fixed reference frame (ECEF)

511
eccentric
– anomaly 518
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– correction 519
– effect 519
Eckart theory 634, 640, 641, 646,

648, 652
Eddington 84, 246
edge 755
effective
– action 735
– field theory 491
– one-body formalism 602
e-fold 679
– number 685
Einstein
– equations 24, 83, 323, 325, 617
– equivalence principle (EP) 466
– field equations 86, 622, 632, 647,

661, 709
– geodesic principle 85
– gravitational field 82
– principle of equivalence 81, 85
– principle of relativity 78
– spaces 336
– static type 87
– static universe (ESU) 85, 384
– synchronization 513, 517
– Telescope (ET) 595, 604, 605,

608–610
– telescope (ET) 569, 590
– tensor 84, 325, 620
Einstein, Albert 13, 21, 28–30,

33–36, 78, 143, 150, 156
Einstein–Hilbert
– action 218, 390, 709
– equation 147, 152
Einstein’s 1905 paper 91, 95, 108
ekpyrotic scenario 749
electric quadrupole 560
electrodynamics 165
electromagnetic
– field 165, 174
– field energy 165, 180
– power 179
– radiation 169, 178, 181, 560
– waves 9
electron 27, 28, 30, 34
– radius, classical 166, 172
elliptic system 378
emergence of space 215, 235
emergent block universe (EBU)

244
emergent paradigm 214

emission theory 12
empiricism 109
end of a manifold 354
energy 58, 363
– ADM 355
– at rest 20
– conservation 522
– conserved 247
– current density 326
– density 326, 633, 635, 637, 639,

643, 644, 648–652
– function 345
– gravitational 154, 155
– inertial 154
– of the particle 20
– spectrum of the CMB 702
energy condition
– strong 327
– weak 327
energy–momentum tensor 84, 325,

469, 630, 642
– of gravitation 208
– of source fields 206
Engle-Pereira-CR-Livine (EPRL)

755
entropy 633, 646, 649
– balance 227
– balance law 226
– Bekenstein–Hawking 713
– density 215, 220
– entanglement 220
– gravitational 232
– quantization 232
– tensor 215, 221
Eötvös, Loránd 64
EPR 259
equation
– of continuity 631, 632
– of motion 165, 166, 182
– of state 253, 626, 635–637,

639–641
equivalence principle (EP) 190,

470, 510, 618
– Einstein 466
– strong (SEP) 472
– test 64
– weak (WEP) 470
eternal inflation 744
eternalism 104, 106
ether 9, 12, 13, 39, 74, 79
– frame 78

Euclidean
– at infinity 364
– geometry 72
– group 73
– metric 324
– quantum gravity 324
– spatial geometry 638
Euler–Lagrange equation 80, 84,

344
European Space Agency (ESA) 706
event 5
– horizon 623
evidence 597, 598, 600
evolution of space 323
evolving block universe (EBU) 243
expansion 630, 632, 636, 638, 639,

644
– accelerated 637, 638, 649
– of the universe 606
– shear and rotation tensors 412
expectation value 802
experimental tests
– of general relativity 468
– of special relativity 463
explicit Lorentz violation 497
extended configuration space 752
exterior gluing
– asymptotic 316
extra dimensions 595, 747
extreme mass ratio inspiral (EMRI)

605
extrinsic curvature 333

F

face 755
factory frequency offset 518, 519
fall-of conditions 366
false vacuum 663
far-CMC data 314
far-infrared absolute

spectrophotometer (FIRAS) 702
Fefferman–Graham
– coordinates 386
– expansion 385
Fermi normal coordinates 68
Fermi–Walker (FW)
– transport 67, 119, 127, 130
Feynman amplitude 785
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field
– electric and magnetic

invariants 60
– equation 273, 617, 625
– geometrical 153
– gravitational 160
– reaction force 167, 177
– theory, effective 491
– theory, string 490
fields for arbitrary spin 273
fine structure constant of gravity

711
finiteness 751, 755
firewall 189
first class constraint 346
first fundamental form 333
first law of thermodynamics 675
first moral principle 154
FitzGerald 12
FitzGerald–Lorentz contraction 29,

33
Fizeau 11, 16
flat
– asymptotic 364
– connection 77
– end, asymptotic 369
– geometry 15, 24
– spacetime 167, 176, 178
– universe 88, 630
flatness problem 418, 665
flow equation 685, 686
flow of time 91, 103, 105, 112
FLRW 659
fluid
– dark 634, 637
– gravity correspondence 404
flyby anomaly 474
Fock–Ivanenko derivative 200
Foldy–Wouthuysen transformation

712
foliation 305
force 20
– axion 748
– dilaton 748
– inertial 7, 76, 81, 149
Foucault 8
foundational knowledge 141, 142
four
– -acceleration 53, 59, 631
– -dimensional physics 141
– -dimensional stress 149

– -divergence 51
– -force, Abraham 167, 177
– -gradient 51
– -momentum 57
– -momentum conservation 57
– -velocity 52, 53
four-vector 49
– null 50
– orthogonal 50
– spacelike 50
– timelike 50
fractal spacetime 729
fractional frequency shift 519, 522
frame
– accelerating 67
– adapted 331
– bundle 198
– center-of-momentum 21
– earth-centered inertial (ECI) 513
– earth-fixed reference (ECEF) 511
– ether 78
– inertial 7, 167, 170, 176, 179, 182
– local inertial 167
– local Rindler (LRF) 219
– of reference, inertial 46
– rotating 102, 111
Frank, Philipp 33, 34
free (conformal) data 310
free fall 62
free particle 152, 457
free scalar field theory 787
freely falling
– charge 165, 176, 177
– frame (FFF) 216
– particle 76
frequency 19
Fresnel 8, 10
– partial dragging 11, 16
friction 248
Friedmann
– constraint 661
– equation 606, 634, 639, 674, 675,

683, 685, 697, 698
Friedmann, Robertson, Walker,

Lemaître (FRWL) 85
– model 85
Friedmann–Chern–Simons equation

676
Friedmann–Lemaître–Robertson–

Walker (FLRW) 250, 606, 657,
813

Friedmann–Robertson–Walker
(FRW) 411, 439, 621

– universe 634, 639
Friedman–Scarr (FS) 136
– transport 132, 136
Frobenius’ theorem 348
Fuchsian method 455
function
– energy 345
– Hamiltonian 346
functional
– action, free particle 20
– action, Lorentz-invariant 19
– derivative 217
fundamental
– constant 617
– form 333
– observer 86, 87
– world line 250
future
– absolute 104
future-outer-trapping horizon

(FOTH) 540
future-pointing 50
– timelike (FPTL) 50

G

galaxy 630
– catalog 609
– clustering 609
Galilean
– boosts 93
– group 77
– spacetime 93
– transformation 5, 9, 16, 44, 74
GALILEO 509
Galileo 6, 8, 74
Galileo terrestrial reference frame

(GTRF) 512
gamma factor 43
gamma ray burst (GRB) 576, 608
Garfinkle algorithm 447
Gassendi 6
gauge
– dependence 667
– invariance 789
– invariant 397
– invariant perturbation 667
– symmetry 793
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– transformation 346
– versus proper symmetries 346,

356
– York 343
Gauss
– curvature 326, 333
– map 458
Gauss–Codazzi–Mainardi equations

306
Gelfand triple 752
general coordinate systems 81
general relativity (GR) 24, 106,

147, 152, 250, 463, 485, 589, 617,
709, 809

generalized Dirac matrix 274
generalized uncertainty relation

719
generalized uniform acceleration

(GUA) 132
generating function 674, 680, 682,

686, 687
generic 438
– T2-symmetric 454
geodesic 76, 84, 87
– hypothesis 147, 150, 152, 154
– incompleteness 411
– worldline 153
geodetic distance 524
geoid
– of Earth 514
– potential of 514
geometric object 352
geometrical field 153
geometrization of Newtonian

gravitational field 76
geometry
– and physics 72
– Euclidean 31, 32
– hyperbolic 32, 33, 35
– non-Euclidean 31–33, 35
geon 358
ghost 393
– state 747
Gibbons–Hawking
– temperature 668
– term 391
G-isomorphism 272
glitch 579
global
– hyperbolicity 421
– measure 622

– navigation satellite system (GNSS)
476, 509

– positioning system (GPS) 24, 39,
65, 252, 509, 709

globally hyperbolic 305, 328
globalnaya navigatsionnaya

sputnikovaya sistema (GLONASS)
509

gluing 316
good clock 74
– definition 94, 98
Göttingen Mathematical Society

31, 32
Gowdy model 452
grand unification theory (GUT) 811
grandfather paradox 260
graph 754
gravitation
– law of 28
gravitational
– acceleration 75
– astronomy 557
– collapse 186, 419
– constant 328
– density 622
– energy 154, 155
– energy-momentum 153
– entropy 232
– field 155, 160, 619
– focusing 412
– frequency shift 64
– interaction 141, 155
– mass 23, 64
– N-body problem 318
– parameter 639
– potential 76
– redshift 61
– wave (GW) 142, 154, 558, 590
– wave luminosity 560
– wave spectral index 684, 689
– wave tails 595, 603
– wave, primordial 669
graviton 714
– mass 595
gravity 23
– alternative theories of 590
– as spacetime curvature 155
– causal 723
– fine structure constant of 711
– Hořava–Lifshitz 715, 730, 738
– lattice 726

– loop quantum (LQG) 360, 458,
596, 717, 718, 760, 784, 790

– probe B experiment 69
– repulsive 630
– tests of Lorentz symmetry 503
– unimodular 257
Greisen–Zatsepin–Kuzmin (GZK)

474, 502
group
– averaging 772
– field theory 802
– of gauge transformations 349
groupoid 349
Gullstrand–Painlevé coordinates

373
GUT (grand unification theory) 811

H

Haar measure 270
Hamilton function 752
– of general relativity 753
Hamiltonian 257, 346
– constraint 341, 451, 752, 789,

804
– dynamics 244
– evolution 258
– formulation 763
– system, constrained 323, 324
– vector field 347
Hamilton–Jacobi (H–J) 674
– approach 692
– equation 752
– scheme 674
Hankel function 683
harmonic
– coordinates 308
– slicing 343
Harrison–Zel’dovich spectrum 666,

689
Hartle–Hawking wave function 729
Hausdorff dimension 729
Hawking
– radiation 188, 189
– temperature 712
helicity eigenstates 269
Helmholtz, Hermann von 30
Herglotz, Gustav 30
high resolution fly’s eye (HiRes)

502
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higher-dimensional space 747
Hilbert
– axioms 73
– space, boundary 788
Hilbert, David 30, 72
HILV (network of four gravitational

wave detectors) 569
history 784, 792
– of space 323
HLJV (advanced LIGO detectors

plus advanced Virgo plus
KAGRA) 609

HLV (advanced LIGO detectors plus
advanced Virgo) 609

HLVJI (five-detector network plus
IndIGO) 609

Hoek 10
holographic
– equipartition 229, 235
– principle 720
holonomy-flux algebra 767
Holst term 762
homogeneous 86, 629, 630, 632,

640–642, 647, 652
– Lorentz group 267
– space 270
Hořava–Lifshitz
– deformation 738
– gravity 715, 730, 738
horismos 414
horizon
– cosmological 666
– dynamical (DH) 541
– problem 418
hot big bang
– cosmology 662
– model (HBBM) 697
Hubble
– constant 591, 606, 609, 659, 664
– expansion 86, 88, 658
– length 664
– parameter 606, 623, 631–644,

650–652, 675, 681, 686
– radius 237, 744, 746
– ratio 685
– slow-roll parameter 678, 682, 687
– space telescope (HST) 700
– time 744
Hubble’s law 608
Hulse–Taylor binary neutron star

590, 592

Hurwitz, Adolf 30
Huygens 8
hybrid model 677
hyperbolic partial differential

equation (PDE) 308
hyperbolic space 658
hyperplane of simultaneity (HOS)

119, 127, 138

I

identity of space over time 92
ignorable coordinates 80
incidence relation 73
IndIGO 590, 594, 609
induced representation 270
inertia 149
– in spacetime 147
inertial
– coordinate system 46
– energy 154
– force 7, 76, 81, 149
– frame 7, 167, 170, 176, 179, 182
– mass 23, 64
– motion 149
– observer 74
inflating horizon 666
inflation 191, 596, 665, 676, 678,

688, 744
– chaotic 677
– eternal 744
– field 673
inflationary consistency condition

685
inflationary epoch 237
inflationary universe models 673
information loss
– paradox 185, 189
– problem 720
inhomogeneous perturbation 667
initial data
– Bowen–York 359
– for black hole collisions 370
– set 364
initial LIGO (iLIGO) 569
initial value problem for Maxwell’s

theory 304
inner automorphism 272
inner product 50
inspiral 595–597, 599–609, 611
instantaneous space 157

interaction
– at a distance 23
– local 23
intermediate inflation 674, 680
– model 675
internal conversion 189
international atomic time (TAI) 510
International Bureau of Weights and

Measures (BIPM) 512
international celestial reference

frame (ICRF) 512
international earth rotation service

(IERS) 512
international space station (ISS) 40,

500
international terrestrial reference

frame (ITRF) 512
international terrestrial reference

system (ITRS) 512
invariance
– of distances and time intervals 4
– of lengths and times 23
– of the acceleration 6
– of the speed of light 13
invariant 4
– energy–momentum 20
– interval 514
– operator 51
– transversal length 15
inverse square law 75
isentropic expansion 699
isoentropic deformation 232
isolated system 363
isomorphism
– musical 325
isotropic 86, 630, 632, 640, 642,

644, 646, 647, 652
– cosmological model 702
– submanifold 347
isotropy 657
– algebra 86
Israel–Stewart theory 630, 640,

641, 646

J

Jacobi field 413
Jordan–Pauli distribution 277
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K

KAGRA (Kamioka Gravitational
Wave Detector) 569, 590, 594,
609

Kaluza–Klein
– model 747
– theory 593
Kasner
– circle 445
– era 642
– solution 443
Kaufmann, Walter 30
Kepler 8
kernel distribution 347, 348
Kerr black hole 603
Kerr–Newman metric 187
Kichenassamy methods 453
Killing
– deformation 232
– field 327
– local vector field 87
– observer 137
– vector field (KVF) 80, 86, 136,

388
kinematics 34, 35
kinetic energy 20, 166, 168, 172,

173, 182
Kirchhoff, Gustav 30
Klein, Felix 27
Klein–Gordon equation 673, 674,

678
Komar energy 234
Kostelecký–Samuel (KS) 498
Kruskal
– coordinate 186, 187
– spacetime 357
Kulkarni–Nomizu product 336

L

Lagrange function 344
Lagrangian 344
– action 678
– submanifold 347
Lambda-cold dark matter (�CDM)

700, 829
Lanczos–Lovelock models 217
Landau–Lifschitz (LL) 182
landscape 192
Langevin metric 512

Laplacian
– conformally covariant 338
lapse and shift 253
lapse function 262, 305, 331
large field 677
large hadron collider (LHC) 711
large-scale structure (LSS) 698
Larmor 16
– formula 167, 177
Laser Interferometer

Gravitational-Wave Observatory
(LIGO) 568

Laser Interferometer Space Antenna
(LISA) 570

lattice
– gravity 726
– QCD 753
– Yang–Mills theory 754
Laub, Jakob 34
Laue, Max von 30
laws of dynamics 6
Leibniz 7
length contraction 14, 144, 145
– FitzGerald–Lorentz 12
Levi-Civita
– connection 202
– covariant derivative 337
Lewis, Gilbert Newton 33
Lichnerowicz equation 311
Lichnerowicz, Choquet-Bruhat, York

(LCBY) 310
Lie
– algebroid 349
– derivative 136
Lie, Sophus 28
lift experiment 82
light
– average coordinate velocity of

159
– average proper velocity of 159
– cone 46, 54
– ellipse 29, 35, 36
likelihood function 597, 598, 604
limit equation 315
linear
– momentum 372
– perturbation 679
– simplicity constraint 797
linearized quantum gravity 804
link 754

LISA (Laser Interferometer Space
Antenna) 590, 595, 604, 605,
609, 610

little (stability) group 268
LIVE (Lorentz invariant vacuum

energy) 630, 632, 642
Lobachevski 72
local
– cosmology 87
– density perturbation 667
– inertial frame 167
– Lorentz invariance (LLI) 470,

486
– position invariance (LPI) 470,

474
– quantum field 277
– Rindler frame (LRF) 219
– time 100
– velocity of light 160, 161
locality 101
Lodge 12
logamediate 674
logarithmic scale factor (LSF) 445
logical empiricism 108
longitudinal mode 592, 594
loop quantum cosmology (LQC)

809
loop quantum gravity (LQG) 360,

458, 596, 717, 718, 760, 784, 790
Lorentz
– connection 200
– connection of general relativity

201
– connection of teleparallel gravity

204
– connection, purely inertial 202
– contraction 44
– force 9, 21
– group 29, 45, 79, 86, 795
– invariance 169, 181, 266, 463,

473
– invariant 630, 632
– invariant vacuum energy (LIVE)

630
– symmetry, muon tests of 503
– symmetry, neutrino tests of 503
– symmetry, photon tests of 502
– violation 486, 500
– violation, explicit 497
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Lorentz transformation 15, 20,
27–30, 32–35, 43, 47, 61, 79, 99,
464, 488

– proper orthochronous 45, 48
– standard 48
Lorentz, Hendrik Antoon 12, 16,

27, 28, 30, 33, 34, 78, 144
Lorentz–Abraham–Dirac (LAD)

equation 165, 166
low-mass x-ray binary (LMXB)

580
LQG (loop quantum gravity) spin

foam
– amplitude 798
– interpretation of labels 798
– model 797
– model, semiclassical limit 801
luminosity 561
– distance 607, 659
lunar laser ranging (LLR) 473

M

Mach, Ernst 148, 150
Mackey theorem 272
magnetar 579
magnetic dipole 560
Malament’s argument 110
many worlds 189, 190, 194
Marcolongo, Roberto 28, 31
marginally trapped tube (MTT) 539
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